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ABSTRACT

The construction of Earth’s largest highland, the Tibetan Plateau, is gener-
ally considered to have been generated by the Cenozoic India-​Asia collision. 
However, the extent to which high topography existed prior to the Cenozoic 
remains unclear. The Hexi Corridor foreland basin of the northern Tibetan 
Plateau is an ideal region in which to investigate this history, given its wide-
spread exposure of Early Cretaceous sedimentary sequences. In this study, we 
examined the Early Cretaceous strata in the northern Hexi Corridor to under-
stand the relationships between pre-​Cenozoic sedimentation and tectonic 
deformation and constrain the late Mesozoic tectonic setting of the adjacent 
Qilian Shan and Alxa blocks bordering the northern Tibetan Plateau. Results 
of sandstone petrology analyses, paleocurrent observations, and U-Pb geo-
chronology suggest that the oldest Early Cretaceous sediments deposited in 
the northern Hexi Corridor were sourced from the southern Alxa block during 
the earliest Cretaceous. By the late Early Cretaceous, Hexi Corridor sediments 
were sourced from both the southern Alxa block to the north and the Qilian 
Shan to the south. Sandstone petrologic results indicate that the northern 
Hexi Corridor experienced a tectonic transition from contraction to exten-
sion during the Early Cretaceous. These findings suggest that the northern 
Tibetan Plateau region was partially uplifted to a high elevation during the 
late Mesozoic before the India-​Asia collision.

■■ 1. INTRODUCTION

The tectonic evolution and formation mechanism(s) of the Tibetan Plateau 
and Asian tectonic system have profound implications for understanding 

the dynamics of intracontinental deformation (Figs. 1A and 1B; Burchfiel et 
al., 1991; Yin and Harrison, 2000; Tapponnier et al., 2001; Taylor et al., 2003; 
Royden et al., 2008; Yin, 2010; Clark, 2012; Ren et al., 2013; Wu et al., 2021b; 
Ding et al., 2022). Furthermore, deformation along the northernmost margin 
of the Tibetan Plateau is key to understanding how and when the plateau was 
constructed (e.g., Meyer et al., 1998; Clark et al., 2010; Clark, 2012; Duvall et 
al., 2011; Yuan et al., 2013; Zheng et al., 2017a; Li et al., 2019a, 2020b; Yu et al., 
2019; Zuza et al., 2016, 2019; An et al., 2020; Wang et al., 2020a, 2022, 2023; 
Wu et al., 2021a, 2021b). Numerous investigations have focused on Cenozoic 
deformation across the northern Tibetan Plateau, which was induced by the 
India-​Asia collision to the south. However, distributed faulting, overprinting 
relationships, relatively slow erosion, and limited exhumation in the northern 
Tibetan Plateau have hindered the use of traditional techniques, such as low-​
temperature thermochronology, to precisely resolve deformation kinematics, 
resulting in an incomplete understanding of the strain history (e.g., Chen et 
al., 2019a, 2019b; Zuza et al., 2019; Li et al., 2020a).

Two existing end-​member models describe deformation along the north-
ernmost Tibetan Plateau. In one model, deformation gradually propagated 
northward from the Himalayan collisional front to the northern plateau mar-
gin (e.g., Tapponnier et al., 2001; Clark, 2012; Wang et al., 2014, 2020a, 2020b; 
Zheng et al., 2017a; Yu et al., 2019). In the second model, deformation occurred 
across most of the Himalayan-​Tibetan orogen shortly after the initial India-​Asia 
collision, exploiting preexisting weaknesses, such as older suture zones. This 
was followed by out-​of-​sequence deformation along the northern Tibetan Pla-
teau margin from the Eastern Kunlun Range in the south to the Hexi Corridor 
foreland basin in the northeast (Fig. 1B; e.g., Yin and Harrison, 2000; Chen et 
al., 2019a, 2020; Li et al., 2019a, 2020a; Wu et al., 2019b; Zuza et al., 2019, 2020; 
Bian et al., 2020). These two end-​member models make predictions for the 
expansion directions of the thick and high Tibetan Plateau to the north and 
east, along with the kinematics and timing of intracontinental deformation and 
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Figure 1. (A) Map of southern Asia showing the location of 
the study area in the northern Tibetan Plateau and Hexi Cor-
ridor foreland basin. (B) Geologic map of the northern Tibetan 
Plateau and Alxa block showing ages of magmatic rocks. The 
map is modified from Pan et al. (2004), Wu et al. (2022a), and 
Wang et al. (2022). The location of Figure 2 is shown by a pink 
dashed box. Data are compiled from: 1—Yang et al. (2020); 2—
Tseng et al. (2009); 3—Yu et al. (2015); 4—Chen et al. (2016); 
5—Xiong et al. (2012); 6—Qian et al. (1998); 7—Wu et al. (2004); 
8—Chen et al. (2015b); 9—Zhang et al. (2017b); 10—Wu et al. 
(2011); 11—Wu et al. (2010); 12—Chen et al. (2014b); 13—Huang 
et al. (2017); 14—Chen et al. (2012); 15—Zhao et al. (2014); 
16—Li et al. (2019b); 17—Mao et al. (2000); 18—Gehrels et al. 
(2003b); 19—Wang et al. (2021); 20—Li et al. (2021); 21—Peng 
et al. (2019); 22—Guo et al. (2000); 23—Wan et al. (2001, 2003); 
24—Tung et al. (2007); 25—Xu et al. (2007); 26—Yong et al. 
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cooling and exhumation histories of the northern Tibetan Plateau. The out-​of-​
sequence deformation model predicts that Cenozoic sedimentation occurred 
directly north of the Tibetan Plateau shortly after the India-​Asia collision. 
Evidence in support of these predictions has come from both basinal sedi-
mentology studies and bedrock thermochronology. For instance, the earlier 
uplift of the Qilian Shan in the north contradicts the long-​established idea of 
a gradual northward progression within the Himalayan-​Tibetan orogen. The 
northern Tibetan Plateau and Hexi Corridor to the northeast (Fig. 1A) expe-
rienced late Mesozoic tectonic activity, as evidenced by cooling ages in the 
Qilian Shan, which has complicated our understanding of Cenozoic tectonic 
evolution in that area (e.g., Li et al., 2019a, 2020a; An et al., 2020; Wu et al., 
2021a). Early Cretaceous crustal uplift and shortening remain enigmatic but 
have been linked to the general absence of Cretaceous strata in the Qilian 
Shan and the widespread occurrence of early Cenozoic coarse-​grained allu-
vial sediments in the Hexi Corridor (Fig. 1B; e.g., BGMR, 1969; Vincent and 
Allen, 1999; Chen et al., 2019a). The Cenozoic Qilian Shan–​Nan Shan thrust 
belt developed shortly after the Cenozoic India-​Asia collision (Fig. 1B; e.g., 
Yin et al., 2008a, 2008b; Clark et al., 2010; Clark, 2012; Duvall et al., 2011; Qi 
et al., 2016; Yu et al., 2017) and has remained active along the same north-
eastern Tibetan Plateau margin via out-​of-​sequence thrusting (e.g., George 
et al., 2001; Jolivet et al., 2001; Li et al., 2019a, 2020a; Wu e al., 2019a; Zuza et 
al., 2019). Subsequent Miocene deformation along the northeastern margin 
of the Tibetan Plateau may have affected the Hexi Corridor. The late Meso-
zoic spatiotemporal tectonic evolution of the Qilian Shan and Hexi Corridor 
remains poorly resolved, and characterization of this evolution can improve 
our understanding of the growth history and mechanisms of the northern 
Tibetan Plateau and its foreland.

Whether the present-​day high topography formed during the Cenozoic 
or Mesozoic remains controversial, as researchers have suggested that the 
northern Tibetan Plateau experienced regional contraction and subsequent 
extension during the Mesozoic, despite significant Cenozoic overprinting and 
reactivation of older structures (Yin and Harrison, 2000; Chen et al., 2003, 2004, 
2019a, 2019b; Horton et al., 2004; Pan et al., 2004; Yin et al., 2008a, 2008b; Yin, 
2010; Gao et al., 2013; Zuza et al., 2018, 2019; He et al., 2019; Shao et al., 2019; 
Wu et al., 2021a; Wang et al., 2022). Late Mesozoic sedimentary successions 
are widespread in the Hexi Corridor, providing a key window to better under-
stand the late Mesozoic deformation and sedimentation history of the northern 
Tibetan Plateau (Fig. 1B).

The Pingshanhu Basin of the northern Hexi Corridor contains Early Creta-
ceous siliciclastic strata that provide a record of tectonic events in the northern 
Tibetan Plateau (Figs. 1 and 2). In this contribution, we integrated geologic field 
mapping, detrital zircon U-Pb geochronology, sandstone petrographic compo-
sition analyses, Kolmogorov-​Smirnov statistical tests, and multidimensional 
scaling analyses to document the late Mesozoic sedimentary provenance of 
the Pingshanhu Basin and tectonic history of the Hexi Corridor and adjacent 
mountain blocks. Our findings allow us to present a model for the Early Cre-
taceous tectonic evolution of the northern Tibetan Plateau.

■■ 2. REGIONAL GEOLOGICAL SETTING

The high elevation of the Tibetan Plateau was primarily attained in the Ceno-
zoic as a result of the India-​Asia collision (Yin and Harrison, 2000; Tapponnier et 
al., 2001; Royden et al., 2008; Ding et al., 2022), but there is evidence for prior 
Mesozoic crustal thickening, particularly along the southern and eastern pla-
teau margins (e.g., Worley and Wilson, 1996; Murphy et al., 1997). The average 
elevation of the northeastern Tibetan Plateau (~3.5 km) is slightly lower than 
the rest of the plateau and sharply decreases to <1.5 km in the Hexi Corridor to 
the northeast (Fig. 1B). The Qilian Shan–​Nan Shan thrust belt, located between 
the Alxa block and North China craton to the north and the Qaidam Basin to 
the south, marks the northeastern margin of the Tibetan Plateau (Fig. 1B). The 
Qilian Shan has a complex pre-​Cenozoic tectonic history involving multiple 
phases of Proterozoic basement deformation, early Paleozoic orogeny, Meso-
zoic extension, and Cenozoic intracontinental deformation (e.g., Vincent and 
Allen, 1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; Yin et al., 
2007; Zuza et al., 2018). The development of the Qilian Shan–​Nan Shan thrust 
belt is largely considered to have been a Cenozoic structural event; however, 
recent studies reported the occurrence of Early Cretaceous thrust faults in 
the northern Qilian Shan (Chen et al., 2019a; Wang et al., 2022). In addition, 
Jurassic–​Cretaceous extensional and transtensional basins developed in the 
northern Tibetan Plateau, which were interpreted to have resulted from the 
far-​field effects of the collision between the Lhasa and Qiangtang blocks to the 
south (e.g., Horton et al., 2004; Pan et al., 2004). Normal faults associated with 
Jurassic–​Cretaceous extension do not appear to have been reactivated during 
Cenozoic contraction, as evidenced by both seismic reflection images (Yin et 
al., 2008a) and field observations (Zuza et al., 2019). Protracted cooling and 
deformation since the Early Cretaceous are recorded throughout the northern 
Tibetan Plateau and its foreland region (e.g., George et al., 2001; Jolivet et al., 
2001; Li et al., 2019a, 2020a; An et al., 2020; Wu et al., 2021a). In this section, 
we describe the geology and tectonic setting of the Hexi Corridor, Qilian Shan 
to the south, and Alxa block to the north (Fig. 1B).

The early Paleozoic Qilian orogen exposed in the Qilian Shan contains sev-
eral subparallel ophiolitic mélange belts of the North and South Qilian suture 
zones that separate the Qaidam continent to the south from the combined 
North Tarim and North China cratons to the north (Fig. 1B). In general, the pri-
mary tectonic domains of the early Paleozoic Qilian orogen include, from north 
to south (Fig. 1B): (1) the southern margin of the North China craton, including 
Paleoproterozoic metamorphic basement rocks and a Mesoproterozoic cover 
sequence, Neoproterozoic passive-​margin strata, and postcollisional intru-
sions; (2) the North Qilian suture zone, consisting of discontinuously exposed, 
blueschist-​facies ophiolitic rocks; (3) the Central Qilian terrane, consisting 
of Precambrian basement rocks intruded by early Neoproterozoic plutons; 
(4) the South Qilian suture zone, consisting of intermittently exposed ophiol-
itic rocks and widely exposed magmatic arc volcanic and plutonic rocks that 
overlie and/or intrude amphibolite-​facies metamorphic rocks; and (5) the North 
Qaidam ultrahigh-​pressure metamorphic rocks and Zongwulong ophiolitic 
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complex. Key geologic relationships and rock ages of the Qilian Shan divided 
into northern, central, and southern segments have been summarized in sim-
plified tectonostratigraphic columns and regional geologic maps by Wu et al. 
(2022a). The Qilian Shan experienced three periods of magmatism (Fig. 1B; 
Cowgill et al., 2003; Gehrels et al., 2003b; Wu et al., 2017, 2022a; Zuza et al., 
2018), as evidenced by: (1) ca. 960–​820 Ma plutons intruding Proterozoic base-
ment rocks (Yin et al., 2007), (2) ca. 520–​400 Ma magmatic arc plutons and 

volcanic rocks; and (3) less prevalent ca. 270 Ma plutons related to the Permian 
Kunlun arc magmatism scattered throughout the southern Qilian Shan and 
northern Qaidam Basin.

The Hexi Corridor foreland basin is located along the northeastern mar-
gin of the Tibetan Plateau, surrounded by the Tarim Basin to the west, Qilian 
Shan to the south, and Alxa block to the north (Fig. 1B). The Hexi Corridor 
contains folded and faulted late Mesozoic–​Cenozoic sedimentary rocks that 
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are predominantly exposed along the northern margin of the Qilian Shan and 
Longshoushan region to the north (Fig. 1B; Zhang et al., 2016a, 2017a). The 
Longshoushan has a long and complex tectonic history dating back to the 
Paleoproterozoic (Wu et al., 2022b). During the Neoproterozoic, continental 
rifting occurred in the Longshoushan region, as evidenced by the local occur-
rence of ca. 832–​827 Ma (ultra)mafic intrusions (e.g., Li et al., 2004, 2005; Zhang 
et al., 2010; Tung et al., 2013; Tang et al., 2014). Ca. 444–​414 Ma arc granitoids 
and ca. 424–​421 Ma (ultra)mafic rocks were emplaced in the Longshoushan 
region during the Central Asian and Qilian orogenies (Fig. 1B; Duan et al., 2015; 
Zeng et al., 2016, 2021; Song et al., 2017; Zhang et al., 2017b; Zhang and Gong, 
2018; Liu et al., 2020a, 2020b; Wang et al., 2020b; Wu et al., 2021a).

Since the late Mesozoic, the Hexi Corridor has experienced several peri-
ods of tectonic deformation and exhumation (Zhang et al., 2017a), including: 
(1) ca. 130 Ma exhumation and cooling due to the collision of the Lhasa and 
Qiangtang blocks, (2) early Cenozoic exhumation due to the India-​Asia collision, 
and (3) deformation and exhumation since the late Cenozoic. Thermal-​tectonic 
activity since the late Mesozoic, widely recorded in the Hexi Corridor, is also 
reported for the Longshoushan (Zhang et al., 2017a; Chen et al., 2019a, 2022; 
Wang et al., 2022).

The Alxa block of the western North China craton (Fig. 1B) was generated 
due to subduction, accretion, and collision processes of the Paleo-​Asian Ocean 
domain (Zheng et al., 2014; Xiao et al., 2015). The Alxa block experienced 
four main magmatic-​metamorphic events during the Precambrian (Fig. 1B; 
e.g., Geng et al., 2010; Dan et al., 2012; Gong et al., 2012; Zhang et al., 2013b; 
Wu et al., 2014; Zhang and Gong, 2018): (1) ca. 2.8–​2.7 Ga crustal growth 
indicated by Hf isotope signatures (Zhang and Gong, 2018), (2) ca. 2.5 Ga 
tonalite-​trondhjemite-​granodiorite petrogenesis (Gong et al., 2012; Zhang et 
al., 2013b), (3) ca. 2.3–​2.0 Ga multiphase magmatism (Dan et al., 2012; Gong et 
al., 2016), and (4) ca. 1.95–​1.90 Ga and ca. 1.85 Ga high-​grade metamorphism 
(Zhang et al., 2013b). During the Phanerozoic, the Alxa block experienced three 
main magmatic events associated with southward subduction of Paleo-​Asian 
oceanic lithosphere (e.g., Feng et al., 2013; Zheng et al., 2014; Zhang et al., 
2022): (1) Late Devonian–​early Carboniferous magmatism related to subduc-
tion of Paleo-​Asian oceanic lithosphere (Feng et al., 2013; Deng et al., 2022); 
(2) widespread late Carboniferous–​late Permian magmatism in a back-​arc 
basin along the northern margin of the Alxa block (Feng et al., 2013; Zhang et 
al., 2022); and (3) Early to Late Triassic magmatism, marking the final phase 
of Paleo-​Asian oceanic subduction (Feng et al., 2013).

The southwestern Alxa block experienced Triassic intracontinental defor-
mation related to the closures of the Paleo-​Asian and Paleo-​Tethys Oceans 
(Song et al., 2018; Zhang et al., 2021). During the Jurassic–​Early Cretaceous, 
Permian–​Triassic strata now exposed in the southwestern Alxa block (Fig. 1B) 
were exhumed and eroded, thereby supplying detritus to a proximal basin (Song 
et al., 2018). Basin sedimentation was followed by tectonic inversion during the 
Cretaceous (Song et al., 2018). During the Jurassic–​Cretaceous, the southwestern 
Alxa block experienced tectonic burial and heating associated with the Mongol-​
Okhotsk orogeny and/or the Lhasa-​Qiangtang block collision (Song et al., 2018).

■■ 3. GEOLOGY OF THE PINGSHANHU BASIN

3.1. Stratigraphy

The ~30 × 30 km Pingshanhu Basin is bounded by the right-​slip Long-
shoushan fault to the south, Heli Shan to the west, and Beida Shan to the north 
(Figs. 1 and 2). Basement rocks of the Pingshanhu Basin, largely exposed in 
the Longshoushan area, consist of mostly Paleoproterozoic (ca. 2.69–​1.76 Ga) 
granitic intrusions and granitic gneisses and a few Neoproterozoic metased-
imentary rocks (Fig. 2; Gong et al., 2016; Wu et al., 2021b, 2022b). Middle 
Carboniferous strata of the Pingshanhu Basin consist of metasandstone, slate, 
phyllite, and lenticular crystalline limestone (Fig. 3; BGGP, 1973). Middle to 
Upper Carboniferous strata of the basin consist of crystalline limestone, seric-
ite schist, and quartzite. Jurassic strata of the basin consist of fine-​grained 
sandstone, siltstone, and sandy shale (Fig. 3).

Within the Pingshanhu Basin, widespread Lower Cretaceous strata overlie 
Middle to Upper Carboniferous strata along an angular unconformity. The 
Lower Cretaceous stratigraphy can be divided into a lower section, represented 
by the lower Miaogou Group (labeled K1mga), which strikes northwest in the 
southern part of the basin, and an upper section, represented by the upper 
Miaogou Group (labeled K1mgb), which constitutes most of the basin (Fig. 3). 
The lower Miaogou Group has an average thickness of ~900 m and consists 
of blocky conglomerate and sandstone with minor gravels (Fig. 3; e.g., BGGP, 
1973; Shao et al., 2019). The conglomerate is poorly sorted and contains mostly 
~1–5 cm granitic clasts and angular, sandy gravels. These lithologies indicate an 
alluvial fan–​fan delta sedimentary environment during the earliest Cretaceous 
Period. The upper Miaogou Group has an average thickness of ~1900 m and 
consists of claystone, fine-​grained sandstone, and carbonaceous shale with 
trough cross-​beds (Fig. 3; e.g., BGGP, 1973; Shao et al., 2019). The coarse- and 
fine-​grained sandstones locally display well-​developed, ~4-​m-​thick cross-​beds 
(Fig. 4A). These strata were deposited in an alluvial environment that transi-
tioned to a lacustrine environment (e.g., Vincent and Allen, 1999; Peng et al., 
2011). Cretaceous strata are unconformably overlain by Miocene claystone 
and brick-​red sandstone (BGGP, 1973). Quaternary alluvial fans, eolian depos-
its, and terrace sediments overlie older strata along unconformities (Fig. 3).

3.2. Structural Observations

3.2.1. Folds and Growth Strata

We observed northwest-​trending folds in the Pingshanhu Basin mostly 
comprised of the Lower Cretaceous upper Miaogou Group strata (Fig. 2). These 
folds are open and symmetric, and they have wavelengths of ~0.5–1 km, axial 
trace lengths up to ~2 km, and plunges of ~5°–20° (Fig. 2).

Syntectonic growth strata in foreland basins offer a direct connection to 
tectonic deformation. Two sections of growth strata occur throughout the 
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Lower Cretaceous Miaogou Group, indicating two syndepositional tectonic 
events (Figs. 4B and 4C). Lower Cretaceous growth strata of the lower Miao-
gou Group occur along the margin of the Pingshanhu Basin and have dips of 
12°–40° that shallow up section to the south (Fig. 4B). Pregrowth strata contain 
sediment grain sizes that transition from coarse at the basal section to fine 
at the uppermost section.

Lower Cretaceous growth strata of the upper Miaogou Group are localized 
to the southern limb of an anticline in the basin center and have dips of 17°–52° 
that shallow up section (Fig. 4C). Deposition of the growth strata was coeval 
with folding and thrusting, as the oldest growth strata suggest the initiation 
of anticlinal growth.

3.2.2. Faults

We used field observations and satellite imagery to map the extent of 
northwest-​striking thrust and normal faults throughout the Pingshanhu Basin 
(Figs. 4D and 4F). For convenience of description, the faults are labeled f1 to 
f4 from south to north (Fig. 2A).

Fault 1 (f1 in Fig. 2) is a southwest-​dipping, curvilinear thrust fault exposed 
along the southwestern margin of the Pingshanhu Basin, interpreted to be 
the along-​strike continuation of the Longshoushan fault (Fig. 2A). Along its 
eastern segment, fault 1 juxtaposes Carboniferous strata over Lower Creta-
ceous strata of the lower Miaogou Group (K1mga; Fig. 2). Fault 1 can be traced 
for ~15 km to the southeast to the southwestern margin of Longshoushan, 
where the fault is buried by Quaternary strata (Fig. 2A). Fault 2 (f2 in Fig. 2) 
is a northeast-​dipping thrust fault (strike 115° and dip 42°N) exposed in the 
center of the Pingshanhu Basin (Fig. 2A). We identified three sets of marker 
beds characterized by gray-​white sandstone and estimated their offsets by 
fault 2 (Fig. 4D). Along its northern segment, fault 2 juxtaposes hanging-​wall 
strata that form an ~50-​m-​wide syncline over footwall growth strata (Fig. 4D). 
Fault 3 (f3 in Fig. 2) is a northeast-​dipping normal fault that cuts the upper 
Miaogou Group (Fig. 4E). Hanging-​wall strata dip 53°N, and footwall strata 
dip 43°N (Fig. 4E). Fault 3 has offset an ~0.5-​m-​thick, gray-​white sandstone 
marker bed by ~1.5 m. Fault 4 (f4 in Fig. 2) is a northeast-​dipping normal fault 
that cuts the upper Miaogou Group by ~20 m (Fig. 4F). Fault 4 is buried by 
Quaternary strata (Fig. 4F).

Several northwest-​striking, normal right-​slip faults cut the Lower Creta-
ceous upper Miaogou Group (Figs. 4G and 5). These normal right-​slip faults 
may continue to the southeast for ~10 km and link with fault 1 (Fig. 5). Mapped 
separations and striations on fault surfaces indicate normal right-​slip kinemat-
ics (Fig. 4H). Marker beds are offset by ~2–​20 m along these faults (Figs. 4I 
and 4J). We also observed a domino-​type extensional normal fault system 
that cuts the upper Miaogou Group (Fig. 4K). Elsewhere, we observed low-​
angle thrust faults cut by younger, high-​angle normal faults within the upper 
Miaogou Group (Fig. 6). The photo locations and directions are also shown 
in Google Earth imagery in the figures (Fig. 5A).
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3.3. Balanced Cross-Section Restoration

Based on the results of geologic mapping, we constructed an east-west–​
oriented balanced cross section across the southwestern Pingshanhu Basin 
to calculate the local extension of the upper Miaogou Group (B-​B′ in Figs. 5A 
and 5B). Restoration of the cross section was performed by measuring the line 
lengths of observed Cretaceous marker beds and retrodeforming slip along 
the faults to restore the marker beds to a continuous and subhorizontal config-
uration (Fig. 5C). The restoration yielded a magnitude of extension of 7.17 km 
across an original section length of 5.09 km (29% extensional strain; Figs. 5B 
and 5C). This strain estimate is a minimum given that our cross section only 

restored plane-​strain normal-​fault slip, thus ignoring any potential out-​of-​plane 
motion due to strike-​slip or oblique-​slip faulting.

3.4. Paleocurrent Analysis

Paleocurrent directions indicate sediment dispersal patterns and can be 
used to resolve sediment provenance (DeCelles et al., 1983; Amajor, 1987). 
We collected paleocurrent measurements in the upper and lower Miaogou 
Group following the method of DeCelles et al. (1983) (Figs. 4A and 4L). Sixty 
paleocurrent measurements were collected in the lower and upper Miaogou 
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Group, which were measured on one stratigraphic section. The first group of 
paleocurrent data was collected in the lower Miaogou Group with 36 measure-
ments (Fig. 4L). The second group of paleocurrent data was collected in the 
upper Miaogou Group with 24 measurements (Fig. 4A). Horizontal bedding 
rotations were corrected, and the results are shown in rose diagrams (Fig. 3). 
Strata-​corrected paleocurrent flow directions are directed southwestward for 
the lower Miaogou Group, but they are predominantly directed northward, with 
some minor southward measurements, for the upper Miaogou Group (Fig. 3).

■■ 4. SAMPLING STRATEGY AND ANALYTICAL METHODS

We collected two coarse-​grained sandstone samples (HX20220815–​4 and 
HX20220822–​1) from the lower Miaogou Group and six fine-​grained sandstone 
and silty claystone samples (HX20220815–​2, HX20220815–​3, HX20220816–​1, 

HX20220822–​2, HX20220822–​3, and HX20220816–​2) from the upper Miaogou 
Group to examine sediment compositions for provenance and tectonic setting 
determinations. Sample locations are listed in Table 1 and shown in Figure 2A.

4.1. Sandstone Composition

We performed quartz–​feldspar–​lithic fragment (Qt-​F-​L) composition analyses 
for seven sandstone samples and one silty claystone sample (HX20220815–​2; 
HX20220815–​3; HX20220815–​4; HX20220816–​1; HX20220816–​2; HX20220822–​1; 
HX20220822–​2; HX20220822–​3) using the Gazzi-​Dickinson method to determine 
whether sediment of the Early Cretaceous Miaogou Group was derived from 
stable continental blocks, recycled orogens, and/or magmatic arcs (Dickinson, 
1970, 1985). To eliminate the effects of grain size, grains larger than 0.625 mm 
were counted as monocrystalline (Fig. 7; Dickinson, 1970, 1985; Ingersoll et al., 
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1984). Monocrystalline quartz (Qm), polycrystalline quartz (Qp), plagioclase (P), 
K-feldspar (K), volcanic/metavolcanic lithic fragments (Lv), and sedimentary/
metasedimentary lithic fragments (Ls) were differentiated optically in petro-
graphic thin sections. Based on the petrologic compositions, total quartzose 
grains (Qt = Qm + Qp), feldspar grains (F = P + K), total unstable lithic frag-
ments (L = Lv + Ls), and total lithic fragments (Lt = L + Qp) were calculated. 
Detailed sample locations and results are listed in Tables 1 and 2, respectively.

4.2. Detrital Zircon U-Pb Geochronology

We performed detrital zircon U-Pb geochronology on eight sedimentary 
rock samples to determine the magmatic record of the northern Tibetan Plateau 
and provenance of the Lower Cretaceous Miaogou Group strata. Whole-​rock 
samples were initially processed via standard crushing and sieving. Detrital 
zircon grains (Table S1 in the Supplemental Material1) were separated from 
sieved material using typical heavy liquids and magnetic separation techniques. 
Zircon grains were randomly picked under a microscope and mounted in epoxy 
resin. Cathodoluminescence images of zircon grains were collected using a 
scanning electron microscope to identify their internal texture and determine 
laser-​ablation (LA) spot targets. We analyzed one spot for each zircon grain. 
We targeted the clear growth zoning to obtain the youngest crystallization 
age. Detrital zircon U-Pb age and trace-​element compositions were measured 
via LA–​inductively coupled plasma–​mass spectrometry (LA-​ICP-​MS) at the 
Key Laboratory of Continental Collision and Plateau Uplift, Chinese Academy 
of Sciences, Beijing, China. Reference standard zircon grains Plešovice and 
91500 zircon, and glass reference materials NIST SRM 610 and NIST SRM 612 
(Wiedenbeck et al., 1995; Pearce et al., 1997; Sláma et al., 2008) were each 
measured between 10 unknown sample analyses. An ATL 193 nm ArF exci-
mer laser-​ablation system and Agilent 7500a ICP-​MS instrument were used to 

1 Supplemental Material. Table S1: Detailed results of detrital zircon U-Pb analyses for sandstone 
samples from Pingshanhu Basin. Table S2: Summary of geochronology results for magmatic 
rocks in the Qilian Shan and the Alxa block. Please visit https://doi.org/10.1130/GEOS.S.25008647 
to access the supplemental material, and contact editing@geosociety.org with any questions.

ablate zircon grains and acquire element ion-​signal intensities, respectively. 
The Plešovice and NIST SRM 612 reference standard zircon grains were used 
for matrix-​matched calibration and trace-​element content calibration, respec-
tively. Isotope ratios and trace-​element concentrations were calculated using 
the program Iolite 4.0 (Paton et al., 2010, 2011). The program ComPbCon#3.17 
(Andersen, 2002) was used for common Pb corrections and ages. Concordia 
plots were generated using the program Isoplot (Ludwig, 2003). We report 
207Pb/206Pb ages for zircon grains older than 1000 Ma and 206Pb/238U ages for 
zircon grains younger than 1000 Ma (Black et al., 2003; Ludwig, 2003; Table S1).

4.3. Kolmogorov-Smirnov Statistical Tests and Multidimensional 
Scaling

We calculated Kolmogorov-​Smirnov nonparametric statistics to quantify 
the age similarity of two detrital zircon samples. The maximum difference in 
ages between samples is defined as the D value, and α = 0.01 or 0.05. Typi-
cally, the null hypothesis (H0) that the two samples were drawn from the same 
population can be rejected when Dobserved is greater than Dcritical (α = 0.05). For α 
= 0.05, the Dcritical value is calculated as

	 Dcritical = 1.36
N1 +N2

N1N2

,	 (1)

where N1 and N2 are the numbers of zircon grain analyses for the two samples, 
respectively (Saylor and Sundell, 2016; Wu et al., 2019a). In the Kolmogorov-​
Smirnov test, the P value is the threshold of the significance level at which to 
reject the null hypothesis (H0). Thus, a P value >0.05 corresponds to a >95% 
confidence level that the two samples are derived from the same parent dis-
tribution. Because the random sampling of a large population distorts the 
distributions introduced, relatively large sample sizes are required to reject 
the null hypothesis (H0) (Saylor and Sundell, 2016).

We performed multidimensional scaling (MDS; Vermeesch, 2013) to visu-
alize the dissimilarity between the ages of detrital samples (e.g., Wu et al., 
2019a; Liu et al., 2023) and eliminate inherent bias stemming from sediment 

TABLE 1. SUMMARY OF SAMPLE LOCATIONS AND DETRITAL ZIRCON U-Pb RESULTS FOR THE PINGSHANHU BASIN

Sample number Description Latitude 
(°N)

Longitude 
(°E)

Elevation 
(m)

Sample site n

HX20220815-2 Sandstone 39°10′56.50″ 100°38′51.50″ 1758 Upper section of Cretaceous Miaogou Group 81 of 100
HX20220815-3 Sandstone 39°11′20.10″ 100°40′46.10″ 1853 Upper section of Cretaceous Miaogou Group 74 of 84
HX20220816-1 Sandstone 39°08′23.90″ 100°32′17.70″ 1619 Upper section of Cretaceous Miaogou Group 75 of 100
HX20220816-2 Silty claystone 39°08′58.70″ 100°30′25.90″ 1663 Upper section of Cretaceous Miaogou Group 66 of 100
HX20220822-2 Sandstone 39°07′27.82″ 100°32′43.54″ 1580 Upper section of Cretaceous Miaogou Group 80 of 100
HX20220822-3 Sandstone 39°10′59.74″ 100°35′32.89″ 1719 Upper section of Cretaceous Miaogou Group 71 of 100
HX20220822-1 Sandstone 39°06′24.41″ 100°32′36.85″ 1584 Lower section of Cretaceous Miaogou Group 84 of 100
HX20220815-4 Sandstone 39°06′14.60″ 100°32′28.80″ 1572 Lower section of Cretaceous Miaogou Group 90 of 100
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recycling and/or variations in zircon fertility in age comparisons (Nordsvan et 
al., 2020). In multidimensional Cartesian space, the greater distance between 
sample points corresponds to more dissimilarity between the samples. MDS 
results can be used to interpret stratigraphic correlations, constrain maximum 
depositional ages, and understand broader tectonic histories (e.g., Cawood 
et al., 2012; Gehrels, 2014). MDS analyses were conducted on a compilation 
of the zircon ages of our samples and potential source areas to interpret the 
provenance of the Early Cretaceous Miaogou Group of the Pingshanhu Basin. 
We compared the Cretaceous strata with bulk compilations of Qilian Shan 
and Alxa block magmatic rocks in MDS to avoid missing some important age 
populations. We also used the Kolmogorov-​Smirnov statistic to compare the 
Miaogou Group ages with the published ages of 8 samples from the Qilian 
Shan and Alxa block to investigate their depositional relationships (Yang et al., 
2009; Zhang et al., 2016b; Zhao et al., 2016; Song et al., 2017, 2021; Li et al., 2021).

■■ 5. RESULTS

5.1. Sandstone Petrography

The detrital materials of eight sandstone and silty claystone samples 
from the Lower Cretaceous Miaogou Group of the Pingshanhu Basin are 
moderately sorted and rounded grains and composed of monocrystalline 
(~42%–93%) and polycrystalline quartz (~3%–18%), feldspar (~5%–52%), and 
unstable lithic fragments (~1%–44%) defined by volcanic (~0.7%–1.2%) and 
sedimentary (~1%–43%) fragments (Fig. 7). Petrologic compositional fields 
and detrital mode triangular diagrams suggest different sources for the sam-
ples (Dickinson and Suczek, 1979; Dickinson et al., 1983). In the Qt-​F-​L and 
Qm-​F-​Lt diagrams, the sandstone and silty claystone compositions generally 
plot within the recycled orogen field and continental block field, respectively 
(Figs. 7I and 7J). Furthermore, the sandstone and silty claystone compositions 

indicate a provenance transition from the craton interior to basement uplift, 
indicating that the maturity and/or stability of the source decreased. In the 
Qp-Lv-Ls diagram, collisional sutures or fold-​and-​thrust belts are shown as 
potential sources of the sandstone and silty claystone material (Fig. 7K). In 
the Qm-P-K diagram, the sandstone and silty claystone compositions gen-
erally plot within the Qm region, but the data show a trend of decreasing 
provenance maturity and/or stability with the Miaogou Group strata becom-
ing younger (Fig. 7L).

5.2. Detrital Zircon U-Pb Geochronology

Zircon grains from the samples of the Miaogou Group were mostly sub
hedral and colorless except for a few elongated, euhedral grains (Fig. 8). Zircon 
grains were ~50–​200 μm long and had aspect ratios of 1:1–​3:1. Cathodolumi-
nescence images of zircon grains showed clear growth zoning (Fig. 8).

The chondrite-​normalized rare earth element patterns of the analyzed zircon 
grains (Figs. 9A and 9B; Table 1) show heavy rare earth element enrichment 
with a positive Ce anomaly and negative Eu anomaly. These patterns suggest 
that the grains were mostly sourced from igneous rocks, with few grains 
sourced from metamorphic rocks (Belousova et al., 2002; Corfu et al., 2003; 
Hoskin, 2005). The Th/U values of the zircon grains were mostly >0.1, except 
for 11 zircon grains with Th/U values <0.1 (Fig. 9C; Table S1). These values sug-
gest that most of the zircon grains came from a magmatic origin (Belousova 
et al., 2002; Corfu et al., 2003).

5.2.1. Lower Miaogou Group

Sandstone sample HX20220815–4 was collected from the lower Miao-
gou Group in the southern part of the Pingshanhu Basin (Figs. 2 and 5A). 

TABLE 2. MODAL COMPOSITIONS OF THE SANDSTONE SAMPLES IN THIS STUDY

Strata Sample Component Total

Qm Qp Lv Ls Lm P K Qt F L Lt

Upper section of Cretaceous 
Miaogou Group

HX20220815-2 240 (60.15%) 12 (3.01%) 0 (0%) 0 (0%) 0 (0%) 42 (10.53%) 105 (26.32%) 252 (63.16%) 147 (36.84%) 0 (0%) 12 (3.01%) 399
HX20220815-3 180 (42.86%) 16 (3.81%) 0 (0%) 4 (0.95%) 0 (0%) 96 (22.86%) 124 (29.52%) 196 (46.67%) 220 (52.38%) 4 (0.95%) 20 (4.76%) 420
HX20220816-1 296 (70.48%) 2 (0.48%) 3 (0.71%) 15 (3.57%) 0 (0%) 44 (10.48%) 60 (14.29%) 298 (70.95%) 104 (24.76%) 18 (4.29%) 20 (4.76%) 420
HX20220816-2 336 (93.07%) 1 (0.28%) 0 (0%) 12 (3.32%) 0 (0%) 2 (0.55%) 10 (2.77%) 337 (93.35%) 12 (3.32%) 12 (3.32%) 13 (3.6%) 361
HX20220822-2 183 (46.92%) 18 (4.62%) 0 (0%) 129 (33.08%) 0 (0%) 18 (4.62%) 42 (10.77%) 201 (51.54%) 60 (15.38%) 129 (33.08%) 147 (37.69%) 390
HX20220822-3 225 (57.84%) 2 (0.51%) 0 (0%) 45 (11.57%) 0 (0%) 32 (8.23%) 85 (21.85%) 227 (58.35%) 117 (30.08%) 45 (11.57%) 47 (12.08%) 389

Lower section of Cretaceous 
Miaogou Group

HX20220815-4 192 (48.61%) 6 (1.52%) 5 (1.27%) 172 (43.54%) 0 (0%) 8 (2.03%) 12 (3.04%) 198 (50.13%) 20 (5.06%) 177 (44.81%) 183 (46.33%) 395
HX20220822-1 152 (39.9%) 72 (18.9%) 0 (0%) 115 (30.18%) 0 (0%) 32 (8.4%) 10 (2.62%) 224 (58.79%) 42 (11.02%) 115 (30.18%) 187 (49.08%) 381

Notes: Total = Qm + Qp + Lv + Ls + Lm + P + K. Abbreviations: monocrystalline quartz (Qm), polycrystalline quartz (Qp), plagioclase (P), K-feldspar (K), volcanic/metavolcanic lithic fragments (Lv), sedimentary/
metasedimentary lithic fragments (Ls), and metamorphic lithic fragments (Lm). Total quartzose grains (Qt) = Qm + Qp, feldspar grains (F) = P + K, total unstable lithic fragments (L) = Lv +Ls, and total lithic fragments (Lt) = L + Qp.
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One-​hundred zircon grain analyses yielded U-Pb ages ranging ca. 2830–​430 Ma 
(Fig. 10A). The dominant age population of this sample (Figs. 3 and 10A) is ca. 
480–​400 Ma with a ca. 461 Ma peak (Fig. 10A). A second age population occurs 
ca. 1000–​800 Ma with a ca. 908 Ma peak (Fig. 10A). Minor age populations 
occur ca. 2500–​2400 Ma (Fig. 10A).

Sandstone sample HX20220822–​1 was collected from the lower Miaogou 
Group in the southern part of the Pingshanhu Basin (Figs. 2 and 5A). One-​
hundred zircon grains analyses yielded U-Pb ages ranging ca. 2837–​431 Ma 
(Fig. 10A). The dominant age population of this sample (Figs. 3 and 10A) is 
ca. 480–​400 Ma with a ca. 464 Ma peak (Fig. 10A). A second age population 
occurs ca. 1000–​800 Ma with a ca. 972 Ma peak (Fig. 10A).

Sandstone sample CQL2017-L1–​25 was collected from the lower Miaogou 
Group (Fig. 3; Shao et al., 2019). Eighty zircon grains yielded U-Pb ages rang-
ing ca. 3215–​283 Ma (Fig. 10A). The dominant age population of this sample 
(Fig. 10A) is ca. 600–​400 Ma with a ca. 470 Ma peak (Fig. 10A). Two second 
age populations occur ca. 1000–​800 Ma with a ca. 952 Ma peak (Fig. 10A) and 
ca. 2600–​2400 Ma with a ca. 2466 Ma peak.

5.2.2. Upper Miaogou Group

Sandstone sample HX20220815–​2 was collected from the upper Miaogou 
Group in the center of the Pingshanhu Basin (Fig. 2). One-​hundred zircon 
grains yielded U-Pb ages ranging ca. 2499–​149 Ma (Fig. 10B). The dominant 
age population of this sample (Figs. 3 and 10B) occurs ca. 300–​250 Ma with a 
ca. 272 Ma peak (Fig. 10B). Two other age populations occur ca. 480–​400 Ma 
with a ca. 438 Ma peak and ca. 1900–​1800 Ma with a ca. 1852 Ma peak (Fig. 10B). 
Few ages are clustered ca. 2500–​2400 Ma (Fig. 10B).

Sandstone sample HX20220815–​3 was collected from the upper Miaogou 
Group in the center of the Pingshanhu Basin (Fig. 2). Eighty-​four zircon grains 
yielded U-Pb ages ranging ca. 2419–​230 Ma (Fig. 10B). The dominant age 
population of this sample (Figs. 3 and 10B) occurs ca. 300–​250 Ma with a ca. 
275 Ma peak (Fig. 10B). Two other age populations occur ca. 480–​400 Ma with 
a ca. 412 Ma peak and ca. 1900–​1800 Ma with a ca. 1849 Ma peak.

Sandstone sample HX20220816–​1 was collected from the upper Miaogou 
Group in the southern part of the Pingshanhu Basin (Figs. 2 and 5A). One-​
hundred zircon grains yielded U-Pb ages ranging ca. 2461–​234 Ma (Fig. 10B). 
The dominant age population of this sample (Figs. 3 and 10B) occurs ca. 480–​
400 Ma with a ca. 418 Ma peak (Fig. 10B). A second age population occurs 
ca. 1000–​800 Ma with a ca. 933 Ma peak (Fig. 10B).

Silty claystone sample HX20220816–​2 was collected from the upper 
Miaogou Group in the southern part of the Pingshanhu Basin (Figs. 2 and 
5A). One-​hundred zircon grains yielded U-Pb ages ranging ca. 2377–​237 Ma 
(Fig. 10B). The dominant age population of this sample (Figs. 3 and 10B) occurs 
ca. 480–​400 Ma with a ca. 418 Ma peak (Fig. 10B). A second age population 
occurs ca. 300–​250 Ma with a ca. 285 Ma peak (Fig. 10B).

Sandstone sample HX20220822–​2 was collected from the upper Miaogou 
Group in the southern part of the Pingshanhu Basin (Fig. 2). One-​hundred zircon 
grains yielded U-Pb ages ranging ca. 3171–​310 Ma (Fig. 10B). The dominant 
age population of this sample (Figs. 3 and 10B) occurs ca. 480–​400 Ma with a 
ca. 456 Ma peak (Fig. 10B). A second age population occurs ca. 1000–​800 Ma 
with a ca. 929 Ma peak (Fig. 10B).

Sandstone sample HX20220822–​3 was collected from the upper Miaogou 
Group in the center of the Pingshanhu Basin (Fig. 2). One-​hundred zircon 
grains yielded U-Pb ages ranging ca. 3037–​241 Ma (Fig. 10B). The dominant 
age population of this sample (Figs. 3 and 10B) occurs ca. 300–​250 Ma with a 
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ca. 261 Ma peak (Fig. 10B). A second age population occurs ca. 480–​400 Ma 
with a ca. 402 Ma peak (Fig. 10B).

Sandstone sample CQL2017-L1–​42 was collected from the upper Miaogou 
Group (Fig. 3; Shao et al., 2019). Eighty zircon grains yielded U-Pb ages ranging 
ca. 3116–​424 Ma (Fig. 10B). The age population of this sample (Fig. 10B) is ca. 
480–​400 Ma with a ca. 424 Ma peak. Second age populations occur ca. 1000–​
800 Ma with a ca. 978 Ma peak and ca. 2600–​2400 Ma with a ca. 2494 Ma peak.

Sandstone sample CQL2017-L1–​88 was collected from the upper Miao-
gou Group (Fig. 3; Shao et al., 2019). Forty-​nine zircon grains yielded U-Pb 
ages ranging ca. 2976–​129 Ma (Fig. 10B). The age population of this sample 
(Fig. 10B) is ca. 300–​200 Ma with a ca. 272 Ma peak, with a second population 
ca. 500–​400 Ma with a ca. 452 Ma peak.

Sandstone sample CQL2016-L1–​154 was collected from the upper Miaogou 
Group (Fig. 3; Shao et al., 2019). Seventy-​five zircon grains yielded U-Pb ages 
ranging ca. 2776–​209 Ma (Fig. 10B). The age population of this sample (Fig. 10B) 
is ca. 300–​200 Ma with a ca. 297 Ma peak, with second populations ca. 500–​
400 Ma with a ca. 406 Ma peak and ca. 2000–​1800 Ma with a ca. 1817 Ma peak.

Sandstone sample CQL2017-L1–​183 was collected from the upper Miao-
gou Group (Fig. 3; Shao et al., 2019). Seventy-​five zircon grains yielded U-Pb 
ages ranging ca. 2617–​236 Ma (Fig. 10B). The age population of this sample 
(Fig. 10B) is ca. 300–​200 Ma with a ca. 257 Ma peak, with a second population 
ca. 500–​400 Ma with a ca. 426 Ma peak.

5.3. Statistical Results

5.3.1. Lower Miaogou Group

We used the Kolmogorov-​Smirnov statistic and MDS tests to compare the 
ages of Miaogou Group samples with those of Qilian Shan and Alxa block 
plutons (Fig. 11; Table 3). Large P values (i.e., 0.902 and 0.194) correspond to 
sample HX20220815–​4 and Silurian and Ordovician strata of the Alxa block 
(Table 3). The D values for the ages of sample HX20220815–​4 compared to 
those of Alxa block strata are 0.084 and 0.164, respectively, which are less than 
Dcritical (α = 0.05). Sample HX20220822–​1 and Alxa block samples deposited 
in the Neoproterozoic, Cambrian, and Ordovician yielded P values of 0.282, 
0.066, and 0.481, respectively (Table 3). The D values for the ages of sample 
HX20220822–1 compared to those of Cambrian, Ordovician, and Neoprotero-
zoic strata of the Alxa block are 0.143, 0.196, and 0.130, respectively, which 
are less than Dcritical (α = 0.05).

5.3.2. Upper Miaogou Group

The P values of 0.136 and 0.429 were calculated for sample HX20220822–​2 
and Silurian strata of the Alxa block and Devonian strata in the Qilian Shan 
(Table 3). The D values for the ages of sample HX20220822–​2 compared to 

those of Silurian strata of the Alxa block and Devonian strata of the Qilian Shan 
are 0.176 and 0.133, respectively, which are less than Dcritical (α = 0.05). Sample 
HX20220816–​1 and Devonian strata of the Qilian Shan yielded a P value of 
0.055 (Table 3). The D value for the ages of sample HX20220816–​1 compared 
to those of Devonian strata of the Qilian Shan is 0.226, which is less than Dcritical 
(α = 0.05). Sample HX20220816–​2 and Permian strata of the Alxa block yielded 
a P value of 0.267 (Table 3). The D value for the ages of sample HX20220816–​2 
compared to those of Permian strata of the Alxa block is 0.172, which is less 
than Dcritical (α = 0.05). Sample HX20220815–​2 and Cretaceous and Triassic strata 
of the Qilian Shan yielded P values of 0.220 and 0.390 (Table 3). The D values 
for sample HX20220815–​2 compared to those of Cretaceous and Triassic strata 
of the Qilian Shan are 0.163, and 0.134, which are less than Dcritical (α = 0.05). 
Sample HX20220815–​3 and the Cretaceous and Triassic strata of the Qilian 
Shan yielded P values of 0.260 and 0.313 (Table 3), which are consistent with 
sample HX20220815–​2. The D values for the ages of sample HX20220815–​3 
compared to those of Cretaceous and Triassic strata of the Qilian Shan are 
0.160 and 0.147, which are less than Dcritical (α = 0.05). Given the P and Dcritical 
values being larger than the D values, the null hypothesis (H0) can be accepted.

The Shepard plot shows the dissimilarities between the upper Miaogou 
Group and the plutons in the Alxa block and Qilian Shan pluton, with a low-​
stress value of 0.31316 (left panel in Fig. 11). The two-​dimensional MDS plot 
shows a systematic similarity in sediment provenance between the lower 
Miaogou Group and the Alxa block plutons (i.e., Carboniferous, Ordovician, 
Cambrian, and Proterozoic plutons) and the Qilian pluton (i.e., Ordovician, 
Cambrian, and Proterozoic plutons). The upper Miaogou Group has an inherent 
connection with the Alxa block plutons (i.e., Triassic, Permian, Carboniferous, 
Devonian, and Silurian plutons) and Qilian plutons (i.e., Permian, Devonian, 
Silurian, and Cambrian plutons; right panel in Fig. 11).

■■ 6. DISCUSSION

6.1. Sediment Sources of the Early Cretaceous Pingshanhu Basin

In the following sections, we discuss the implications of our field observa-
tions, compilation of detrital zircon U-Pb ages (Fig. 10), results of petrologic 
compositional analyses (Fig. 7), and results of Kolmogorov-​Smirnov (Table 3) 
and MDS analyses (Fig. 11) on tectonic setting and depositional systems of 
the Hexi Corridor and the northern Tibetan Plateau during the Cretaceous.

6.1.1. Lower Cretaceous Lower Miaogou Group

Three samples collected from the lower Miaogou Group of the Pingshanhu 
Basin contained five prominent age populations with peaks at ca. 278 Ma, ca. 
471 Ma, ca. 951 Ma, ca. 1847 Ma, and ca. 2450 Ma (Fig. 10C). Plutons with Tri-
assic ages occur along the north margin of Qaidam Basin (Figs. 1B and 10E). 
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TABLE 3. TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST RESULTS FOR THE SAMPLES COLLECTED FROM THE PINGSHANHU BASIN AND ADJACENT REGION

P values/
D values

HX2022 
0815-2

HX2022 
0815-3

HX2022 
0815-4

HX2022 
0816-1

HX2022 
0816-2

HX2022 
0822-1

HX2022 
0822-2

HX2022 
0822-3

Qilian-
Cretaceous

Qilian-
Triassic

Qilian-
Devonian

Alxa-​
Permian

Alxa-​
Silurian

Alxa-​
Ordovician

Alxa-​
Cambrian

Alxa-​
Neoproterozoic

HX0815-2 – 0.350 0.000 0.000 0.000 0.000 0.000 0.000 0.220 0.390 0.000 0.000 0.000 0.000 0.000 0.000
HX0815-3 0.150 – 0.000 0.000 0.000 0.000 0.000 0.005 0.260 0.313 0.000 0.000 0.000 0.000 0.000 0.000
HX0815-4 0.366 0.453 – 0.000 0.000 0.268 0.309 0.000 0.000 0.000 0.002 0.000 0.902 0.194 0.006 0.002
HX0816-1 0.441 0.373 0.379 – 0.067 0.000 0.014 0.148 0.001 0.000 0.055 0.001 0.000 0.000 0.000 0.000
HX0816-2 0.477 0.406 0.495 0.246 – 0.000 0.000 0.130 0.000 0.000 0.001 0.267 0.000 0.000 0.000 0.000
HX0822-1 0.388 0.471 0.152 0.426 0.637 – 0.009 0.000 0.000 0.000 0.000 0.000 0.020 0.481 0.066 0.282
HX0822-2 0.345 0.352 0.148 0.275 0.402 0.257 – 0.000 0.000 0.000 0.136 0.000 0.429 0.004 0.000 0.000
HX0822-3 0.348 0.289 0.496 0.204 0.209 0.514 0.400 – 0.028 0.005 0.000 0.007 0.000 0.000 0.000 0.000
Qilian-Cretaceous 0.163 0.160 0.479 0.327 0.362 0.496 0.411 0.235 – 0.090 0.000 0.000 0.000 0.000 0.000 0.000
Qilian-Triassic 0.134 0.147 0.446 0.351 0.386 0.457 0.371 0.268 0.182 – 0.000 0.000 0.000 0.000 0.000 0.000
Qilian-Devonian 0.462 0.365 0.276 0.226 0.333 0.406 0.176 0.419 0.428 0.380 – 0.000 0.006 0.000 0.000 0.000
Alxa-Permian 0.520 0.463 0.632 0.344 0.172 0.706 0.483 0.271 0.407 0.442 0.443 – 0.000 0.000 0.000 0.000
Alxa-Silurian 0.369 0.449 0.084 0.379 0.459 0.228 0.133 0.498 0.482 0.449 0.248 0.597 – 0.026 0.000 0.000
Alxa-Ordovician 0.377 0.459 0.164 0.542 0.643 0.130 0.276 0.509 0.484 0.445 0.437 0.705 0.221 – 0.329 0.284
Alxa-Cambrian 0.444 0.514 0.252 0.608 0.743 0.196 0.374 0.576 0.523 0.526 0.510 0.836 0.336 0.142 – 0.435
Alxa-Neoproterozoic 0.444 0.513 0.263 0.522 0.756 0.143 0.385 0.572 0.523 0.527 0.508 0.837 0.340 0.143 0.122 –

Notes: Bold indicates P and Dcritical values are larger than D values, the null hypothesis (H0) can be accepted. Triangular area on the upper-right of the table represents the P values. Triangular area on the lower-left of the table 
represents the D values.
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Therefore, the Triassic zircon grains in the Lower Cretaceous lower Miaogou 
Group were likely sourced from the Alxa block to the north via southward 
flow (Fig. 10F). These age populations are consistent with reported magmatic 
ages for the Alxa block to the north (Fig. 10F; e.g., Wei et al., 2013; Duan et al., 
2015; Tang, 2015; Liu et al., 2016b, 2017; Zhou et al., 2016; Zhang et al., 2017b, 
2018d; Wang et al., 2020b; Table S2). In addition, paleocurrent results in the 
lower Miaogou Group indicate southward flow (Fig. 10C). These constraints 
suggest that the provenance of sediment in the Pingshanhu Basin during 
the earliest Cretaceous was the Alxa block to the north. This interpretation 
is consistent with the sedimentary records and detrital age compositions of 
the Early Cretaceous strata of the Yumu Shan in the southern Hexi Corridor 
(Wang et al., 2022).

6.1.2. Lower Cretaceous Upper Miaogou Group

The detrital zircon age distributions of the sandstone samples collected 
from the basal portion of the upper Miaogou Group (i.e., CQL2017-L1–​42, 
HX20220822–​2; Figs. 10A and 10B) are comparable to those of sandstone 
samples collected from the lower Miaogou Group. This similarity implies that 
the Miaogou Group sediment continued to be sourced from the Alxa block 
during the late Early Cretaceous. The detrital zircon ages of other samples 
from the upper Miaogou Group (Figs. 10B and 10D) are consistent with the 
ages from both the northern Qilian Shan and Alxa block (Figs. 10E and 10F). 
Particularly, the detrital zircon age peaks at ca. 928 Ma, ca. 1839 Ma, and ca. 
2466 Ma in samples from the upper Miaogou Group allow us to suggest that 
Cretaceous sediments of the Pingshanhu Basin were partially sourced from 
late Paleozoic magmatic rocks related to subduction of Paleo-​Asian oceanic 
lithosphere. Detrital zircon ages for the upper Miaogou Group show a slight 
increase in grains younger than 300 Ma compared to samples from the lower 
Miaogou Group. This transition in detrital ages may reflect an increased con-
tribution of sediment from the Qilian Shan in response to regional extension 
in the northern Tibetan Plateau at that time.

In contrast to the Lower Cretaceous lower Miaogou Group, paleocurrent 
results in the upper Miaogou Group suggest predominantly northward flow, 
with minor southward flow (Figs. 3 and 12). These findings suggest that 
the sediment provenance of the Pingshanhu Basin changed as the basin 
margins evolved and igneous rocks in the adjacent Beida Shan and Long-
shoushan were exhumed to the surface. Some metamorphic zircons found 
in the Miaogou Group sediments may have been derived from Precambrian 
metamorphic rocks in the Alxa block. This indicates that the Alxa block might 
have been a continuous source of the sediments. Taken together, we interpret 
that the Miaogou Group sediments of the Pingshanhu Basin were sourced 
from the north during the earliest Cretaceous and from both the north and 
south during the late Early Cretaceous. This interpretation is consistent with 
the results of our Kolmogorov-​Smirnov statistical test (Table 3) and MDS 
analyses (Fig. 11).

6.2. Tectonic Evolution of the Hexi Corridor and Northern Tibetan Plateau

A qualitative evaluation of the tectonic setting of the Pingshanhu Basin can 
be conducted based on the detrital zircon ages minus the host depositional 
ages plotted in synthetic relative probability diagrams (Cawood et al., 2012). 
A significant proportion of the detrital zircon ages is within 150 m.y. of the 
host depositional ages, which correspond to a continental collision setting 
(Fig. 10G; Cawood et al., 2012). Three samples from the lower Miaogou Group 
and two samples from the upper Miaogou Group suggest an extensional 
setting (Fig. 10G). In contrast, eight samples from the upper Miaogou Group 
correspond to a continental collision setting (Fig. 10G). Cumulative probability 
curves demonstrate the transition in the sedimentary environment from an 
extensional basin to a continental collision setting during the Early Cretaceous 
(Fig. 10G). However, extension is not reported for the northern Tibetan Plateau 
and Alxa block during the Late Jurassic and Early Cretaceous. Rather, the 
northern Tibetan Plateau and Alxa block experienced contraction and uplift 
during this time, related to the closure of the Mongol-​Okhotsk Ocean and the 
Lhasa-​Qiangtang block collision (Zhang et al., 2017a, 2021; Song et al., 2018; 
Chen et al., 2019a, 2019b; Wang et al., 2022; Han et al., 2023). Furthermore, the 
upper Miaogou Group contains an appreciable percentage of Permian-​aged 
zircon grains. This is consistent with the tectonic setting and sedimentary 
environment in the Yumu Shan of the southern Hexi Corridor (Wang et al., 
2022), implying that the same tectonic-​sedimentary environment was present 
throughout the Hexi Corridor during the Early Cretaceous.

Based on new and previously published constraints, we propose the fol-
lowing model for the Mesozoic tectonic evolution of the Hexi Corridor (Fig. 12): 
During the Late Jurassic, the southwestern Alxa block was uplifted and exhumed 
in response to the Mongol-​Okhotsk orogeny (Song et al., 2018). During earliest 
Cretaceous contraction, the northern Hexi Corridor received sediment from the 
Alxa block to the north, as evidenced by growth strata and paleocurrent indi-
cators in the Miaogou Group (Figs. 3, 4B, and 12). Mesozoic unroofing of the 
southwestern Alxa block supplied sediment with ample Paleozoic zircon grains 
to the Hexi Corridor (Fig. 12). By ca. 130 Ma, the continued Lhasa-​Qiangtang 
block collision resulted in contraction and exhumation of the Longshoushan 
(Zhang et al., 2017a). During this time, the Longshoushan contributed detrital 
materials to the Hexi Corridor. Early Cretaceous regional contraction was suc-
ceeded by ~2 km of extension (~29% strain) and right-​slip faulting in the Hexi 
Corridor (Figs. 5C and 12; Wang et al., 2022). This extensional event is also evi-
denced in the Jiuquan and Yin’e basins (Chen et al., 2014a; Zhang et al., 2019a, 
2020; Hou et al., 2020). During this time, both the northern Qilian Shan to the 
south and Alxa block to the north supplied sediment to the Hexi Corridor, with 
a progressively more dominant detrital input from the Qilian Shan (Fig. 12). 
Thus, the present-​day topography of the northern Tibetan Plateau can be traced 
back to tectonic activity since the Cretaceous (Feng et al., 2023).

Our findings for the Pingshanhu Basin in the northern Hexi Corridor sug-
gest that the northern Tibetan Plateau experienced a complex deformation 
history during the Mesozoic. Specifically, field observations and detrital zircon 
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Figure 12. Three-​stage tectonic evolution model of the northern Tibetan Plateau during the Early Cretaceous. (1) During the early stage of Early 
Cretaceous deposition, the northern Hexi Corridor basin received sediment from the Alxa block to the north. (2) Continued collision of the Lhasa 
and Qiangtang blocks resulted in ca. 130 Ma contraction and exhumation of the Pingshanhu Basin. (3) Early Cretaceous regional contraction 
was succeeded by extension and right-​slip faulting in the Hexi Corridor basin. K—Lower Cretaceous; C–P—Carboniferous–​Permian; S—Silu-
rian; O—Ordovician; —Cambrian; SYNF—South Yeniugou fault; NQT—North Qilian thrust; YMF—Yumushan fault; LSF—Longshoushan fault.
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ages suggest that the Hexi Corridor underwent regional contraction and sub-
sequent extension during the Early Cretaceous (Shao et al., 2019; Wang et al., 
2022). At the onset of the Early Cretaceous, the depositional environment of 
the Pingshanhu Basin remained relatively stable with sediment sourced from 
the southern Alxa block, which had been uplifted since the Triassic (Song et 
al., 2018). Due to the far-​field effects of the Qiangtang-​Lhasa block collision, 
the Qilian Shan was uplifted during the late Early Cretaceous and contributed 
detrital materials to the Hexi Corridor. Uplift of the Qilian Shan was accom-
modated via ~48 km of slip along the North Qilian thrust system (Wang et 
al., 2022). Our model also suggests that deformation in the northern Tibetan 
Plateau beginning in the Mesozoic may also have continued into the Cenozoic 
after the initial India-​Asia collision as out-​of-​sequence thrusting.

The Qilian Shan was the dominant sediment source for the Hexi Corridor 
during the Early Cretaceous, suggesting that tectonic activity was focused in 
the Qilian Shan at that time. Sedimentary structures within the Pingshanhu 
Basin suggest the occurrence of a prograding deltaic system (Peng et al., 2011; 
Wang et al., 2022). Closures of the Tethys and Paleo-​Asian Ocean systems (Peng 
et al., 2013; Zhang et al., 2021; Wang et al., 2022) and normal and right-​slip 
faulting occurred in the Pingshanhu Basin and surrounding areas (Vincent and 
Allen, 1999; Wang et al., 2022). The notable absence of Late Cretaceous strata 
in the Hexi Corridor may have resulted from uplift and erosion throughout 
the northern Tibetan Plateau as a result of the Cenozoic India-​Asia collision.

■■ 7. CONCLUSIONS

Structural, petrologic, and geochronologic data collected from the Creta-
ceous section of the Pingshanhu Basin in the Hexi Corridor foreland basin led 
to the following key findings:
(1)	The Early Cretaceous Miaogou Group exhibits five prominent age popula-

tions at ca. 300–​250 Ma, ca. 480–​400 Ma, ca. 1000–​800 Ma, ca. 1900–​1800 Ma, 
and ca. 2500–​2400 Ma.

(2)	 Pingshanhu Basin strata were sourced from the Alxa block to the north 
during the earliest Cretaceous. During the late Early Cretaceous, Pingshanhu 
Basin strata were predominantly sourced from the Qilian Shan to the south, 
with minor continued sediment contribution from the Alxa block to the north.

(3)	Field observations, petrologic compositions, and provenance interpreta-
tions from detrital zircon ages of Pingshanhu Basin strata indicate that the 
northern Hexi Corridor experienced regional contraction and subsequent 
extension (~2 km, ~29%) during the Early Cretaceous.

(4)	During the late Mesozoic, the uplift of the Qilian Shan in the northern 
Tibetan Plateau resulted in sediment dispersal throughout the Hexi Corridor.
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