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1 | INTRODUCTION

The set of biochemical reaction rates in the metabolic network of a
living system (its flux map) represents an integrated functional pheno-
type that emerges from multiple layers of biological organization and

Yair Shachar-Hill?

Abstract

13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely
used to investigate the operation of biochemical networks in both biological and bio-
technological research. Both methods use metabolic reaction network models of metab-
olism operating at steady state so that reaction rates (fluxes) and the levels of metabolic
intermediates are constrained to be invariant. They provide estimated (MFA) or pre-
dicted (FBA) values of the fluxes through the network in vivo, which cannot be mea-
sured directly. These fluxes can shed light on basic biology and have been successfully
used to inform metabolic engineering strategies. Several approaches have been taken to
test the reliability of estimates and predictions from constraint-based methods and to
compare alternative model architectures. Despite advances in other areas of the statisti-
cal evaluation of metabolic models, such as the quantification of flux estimate uncer-
tainty, validation and model selection methods have been underappreciated and
underexplored. We review the history and state-of-the-art in constraint-based metabolic
model validation and model selection. Applications and limitations of the x*-test of
goodness-of-fit, the most widely used quantitative validation and selection approach in
13C-MFA, are discussed, and complementary and alternative forms of validation and
selection are proposed. A combined model validation and selection framework for 13C-
MFA incorporating metabolite pool size information that leverages new developments
in the field is presented and advocated for. Finally, we discuss how adopting robust vali-
dation and selection procedures can enhance confidence in constraint-based modeling

as a whole and ultimately facilitate more widespread use of FBA in biotechnology.
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regulation, including the genome, transcriptome, and proteome.® The
study of metabolic fluxes is therefore important for systems biology,
rational metabolic engineering, and synthetic biology. A grand chal-
lenge of systems biology is building an integrated mechanistic under-

standing of the operation of living organisms across these levels of
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regulation? - an understanding that goes beyond statistical or correla-
tive descriptions, however useful these can be. Meeting this challenge
requires fluxes to be accurately predicted from network structure
using explicit rules or hypotheses and reliably estimated using experi-
mental data. Fluxes are also critical to many biotechnological and met-
abolic engineering applications. Examples such as the development of
lysine hyper-producing strains of Corynebacterium glutamicum®™> and
the rewiring of E. coli's metabolism to make it grow chemoautotrophi-
cally® attest to the usefulness of these techniques. As the scale and
complexity of integrative systems biology and biological engineering
efforts increase, so too will the need for reliable and robust estimates
of fluxes.

In vivo fluxes cannot be directly measured, necessitating modeling
approaches to estimate or predict them. The most commonly used
approaches for metabolic modeling is the constraint-based modeling
frameworks of 13C-Metabolic Flux Analysis (13C-MFA) and Flux Bal-
ance Analysis (FBA). Both require a metabolic network consisting of
metabolites linked by biochemical reactions to be defined using the bio-
chemical literature, knowledge of the enzymes and transporters
expressed from the genome, and physico-chemical rules. In 13C-MFA,
atom mappings describing the positions and interconversions of the
carbon atoms in reactants and products are also included in the model.
These methods assume that the system is at metabolic steady-state,
such that the concentrations of all metabolic intermediates and reaction
rates are constant.” External fluxes, such as the uptake of a substrate
or the rate of production of new cells or a product, are also measured
and used to constrain the possible flux ranges. These assumptions and
constraints define a “solution space” containing all flux maps consistent
with them but are typically insufficient to pinpoint a unique flux map.

In 13C-MFA, isotopic labeling data is used to identify a particular
solution within the solution space. 13C-labeled substrates are fed to
the system under investigation and the endpoint labeling, or time-
course labeling in Isotopically Nonstationary Metabolic Flux Analysis
(INST-MFA), of metabolites is measured using mass spectrometry
and/or NMR techniques.7'8 Given a metabolic network, a flux map,
and information about the labeled substrate fed into the system, the
label distribution through all the metabolites in a network can be
solved analytically. However, 13C-MFA works backwards from mea-
sured label distributions to flux maps by minimizing the differences
between measured and estimated Mass Isotopomer Distribution
(MID) values by varying flux estimates.’ For INST MFA pool size mea-
surements can also be included in the minimization process.

In FBA, linear optimization is used to identify a flux map (or set of
flux maps) from the solution space.’® This is the map(s) for which the
sum of one or more fluxes (the objective function) is maximized or mini-
mized. Objective functions frequently represent measures of efficiency,
including the maximization of growth rate or product formation or the
minimization of total flux.!* Such functions may embody hypotheses
about what the in vivo system has been evolutionarily tuned to opti-
mize, or questions about the operational capacity of that system under
particular conditions. Since the objective function, together with the
network architecture and empirical and/or theoretical constraints intro-
duced by the modeler, is a key determinant of the flux maps generated

by FBA, careful selection, justification, and, ideally, validation of objec-
tive functions is crucial. As shown in Ref. 12, alternative objective func-
tions can, and should, be evaluated to identify those that result in the
best agreement with experimental data. In many cases, the
constraints - typically on external fluxes - imposed during an FBA opti-
mization result in a set of viable flux maps (a solution space) rather than
a single map. In such cases, related techniques, including Flux Variability

14-17 can be used to characterize the

Analysis*® and random sampling
set of flux maps consistent with the set constraints. The computational
tractability and small amount of experimental data necessary to per-
form FBA allow the analysis of Genome-Scale Stoichiometric Models
(GSSMs). These models incorporate all known reactions believed to
occur in an organism based on a combination of genome annotation
and manual curation. Additional linear-optimization-based methods for
solving GSSMs using the FBA framework have been developed and are
sometimes used together with FBA. These include Minimization of
Metabolic Adjustment (MOMA),*8 and Regulatory On/Off Minimization
(ROOM),*? as well as a host of methods that incorporate omic data into
the optimization process (e.g.2°2%). FBA and its related methods are
sometimes used to analyze models other than true GSSMs, such as
“core” models that focus on central metabolic processes that conduct
the large majority of flux.2> When discussing validation, however, the
same principles apply to all of these linear optimization methods and
across the different model scales. For the sake of simplicity, we will be
using “FBA” to refer to this family of methods generally and will refer
to the medium- to large-scale models used with these methods as
“FBA models.”

Progress has been made in improving the statistical rigor and reli-
ability of flux estimates and characterizing uncertainty in estimates
and predictions. For example, in MFA, the development of effective
methods for flux uncertainty estimation?® allows researchers to better
quantify confidence in flux predictions and, where appropriate, to
gather additional data to better support their conclusions. Bayesian
techniques for the characterization of uncertainties in flux estimates
derived from isotopic labeling have also been presented.?’” On the
experimental side of MFA, there have been advances in designing and
implementing parallel labeling experiments, wherein multiple tracers
are employed in parallel labeling experiments and the results are
simultaneously fit to generate a single 13C-MFA flux map. This
enables more precise estimation of fluxes than experiments with indi-
vidual tracers or tracer combinations allow.?2=3° Greater resolution in
isotopic labeling data through the use of tandem mass spectrometry
techniques, which allow for the quantification of positional labeling,
can also improve the precision of modeled fluxes, as described in Ref.
36,37. Recent years have also seen developments in FBA meant to
improve the reliability of its predictions. For example studies have
characterized the impact of departures from metabolic steady state
and devised methods to account for uncertainties in biomass compo-

38:3%) The many sources of uncertainty when working with

sitions (e.g.,
FBA and genome-scale models, and attempts to characterize and miti-
gate this uncertainty, have been reviewed elsewhere.*°

In this review, we specifically focus on the validation of flux pre-

dictions and estimates from constraint-based modeling studies and
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the selection of well-supported model architectures, which have
received less attention and specific treatment in the literature. How
can MFA and FBA researchers validate the accuracy of their estimates
and predictions? These flux analysis methods also require researchers
to make choices about the network structure of the model to be used.
This leads to questions of model selection; that is, how do we select
the most statistically justified model from among the alternatives?
Validation and model selection are key to improving the fidelity of
model-derived fluxes to the real in vivo ones. The fields of systems
and synthetic biology have seen substantial development of model
selection and validation practices,***? but these topics are not fre-
guently discussed in the metabolic modeling literature. Previous reviews
and methods papers have touched on the use of tools like the x*-test of
goodness-of-fit for the validation of MFA models.*>*** However, to our
knowledge, no reviews covering the various methods for validating FBA
predictions exist, nor have previous reviews discussed the various limita-
tions of the x?-test. Moreover, previous reviews have not addressed the
most recent improvements in model selection in 13C-MFA, which have
not been adequately incorporated into routine practice. Addressing
these topics explicitly is important for practitioners as they carry out
their work. It is also important for readers of the flux analysis literature,
who must understand the assumptions, tests of validity, and model
selection techniques underlying what they are reading.

Although only a subset of research groups conduct both FBA and
MFA modeling, we believe most metabolic modeling practitioners
and consumers read literature containing both modeling paradigms. As
we highlight in this review, some similar themes emerge when examin-
ing the validation of both FBA and MFA flux maps. Finally, one of the
most robust validations that can be conducted for FBA predictions is
comparison against MFA estimated fluxes, which makes simultaneously
considering the validity of both FBA and MFA flux maps crucial. For
these reasons, we consider both modeling approaches in this review.

We review and provide our perspective on these areas and pros-
pects for future development, highlighting: (1) Validation methods appli-
cable to FBA flux maps; (2) approaches for validating 13C-MFA flux
maps; and (3) developments and prospects for model selection in 13C-
MFA; (4) How validation and model selection practices in 13C-MFA
could benefit from a greater emphasis on the isolation of training and
validation datasets and; (5) the importance of corroborating flux map-

ping results using independent modeling and experimental techniques.

2 | VALIDATION TECHNIQUES IN FBA
AND 13C-MFA

Flux Balance Analysis and 13C-MFA studies commonly validate the
model(s) used, though there is great variation in their nature and
extent. We summarize these validation strategies in Figure 1.

21 | Validationin FBA

The COnstraint-Based Reconstruction and Analysis (COBRA)
framework, implemented in software solutions such as the COBRA

PROGRESS

Toolbox*® and cobrapy*® and widely used for FBA studies, features
functions and pipelines that can be used to ensure basic functionality
of models including balancing of charge, pH, and cofactors/cosub-
strates, thermodynamic feasibility, and connectivity of all metabolites.
Model characteristics evaluated include the inability to generate ATP
without an external source of energy and the inability to synthesize
biomass without adding substrates not known to be needed. Addi-
tionally, the MEMOTE (MEtabolic MOdel TEsts) pipeline contains
tests to ensure, for example, that biomass precursors can be success-
fully synthesized in a model in a variety of growth media.*’” MEMOTE
has been used to ensure appropriate stoichiometry and consistency
with accepted format standards in models entered into the BiGG*®
model database. These forms of Quality Control are an important first
step in ensuring that models are behaving appropriately and generat-
ing useful predictions. However, following these initial checks on
functionality, the techniques used to validate actual model predictions
are varied and not standardized. Indeed, even in the BiGG database,
which is highly curated and focuses primarily on models of microbial
systems, models vary in the type and extent of validation performed.
Given the variety of validation procedures that appear in the litera-
ture, it is important when using an FBA model to be aware of what
specific validations were used, what their limitations are, and conse-
quently, what inferences or downstream applications are appropriate
(summarized in Table 1).

Perhaps the most common validation in FBA is comparison
between FBA-predicted and empirically measured rates of growth
(e.g.,49’55)

media and/or with different carbon sources (e.g.>>**>’). A related

. One may similarly evaluate growth/no-growth in different

approach is the comparison of in silico metabolite uptake/secretion
with experimental measurements.>*>”*® Such evaluations give confi-
dence in the model's basic predictions. To ensure that the accuracy of
growth-rate predictions generalizes well, we strongly recommend vali-
dating growth rates on substrates or in media conditions from which
biomass composition and parameters like Growth-Associated Mainte-
nance (GAM) and Non-Growth Associated Maintenance (NGAM) costs
were not experimentally derived, as done in Ref. 51. GAM represents
the energy expenditure needed to support a certain rate of biomass
growth and NGAM represents the energy expenditure required for a
cell or organism to survive without any net growth.>? These values may
vary depending on growth conditions, so testing whether the values
measured in one set of conditions generalize to others is important.
Otherwise, future users may use a model with, for example, another
common media composition and find - or worse yet, simply not
notice - that the resulting predictions do not accurately reflect essential
characteristics of the organism's actual metabolism.

A related approach involves comparing growth/no-growth of
gene knockout strains to FBA predictions to address whether the
metabolic pathways used in the model mirror the biological system.
Experimentally verified lethal knockouts that appear nonlethal in silico
point to alternative routes the model can use to grow. Conversely, in
silico lethality predictions not confirmed by experiment suggest the
model is missing isoforms or alternative reaction routes. Collecting
the true positive, true negative, false positive, and false negative pre-
dictions from the in silico versus in vivo lethality predictions into a
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(b) Stationary/nonstationary 13C-MFA

Validation techniques
Growth/no-growth on )

different substrates

Growth/no-growth with
different gene knockouts

Growth rate )

Comparison with other in
vivo measurements

Comparison of internal
fluxes with 13C-MFA

Validation techniques

Best-fit |

Comparison with other in
vivo measurements

Goodness-of-fit between
best-fit and measured
MID data

best-fit and measured
pool size data

Comparison with other

FIGURE 1

modeling techniques

Goodness-of-fit between ]

Independent
modeling
approach

Graphical summary of validation strategies in (a) FBA and (b) 13C-MFA. Dotted lines connect inputs with the associated validation

technique(s). (a) FBA predictions can be validated by comparing growth rate or growth/no-growth phenotypes across different substrates, growth
conditions, or sets of gene knockouts in silico and in vivo. Values can be calculated from flux maps and compared with experimental
measurements. FBA internal flux predictions can be compared with 13C-MFA fluxes. (b) Values can be calculated from 13C-MFA flux maps and
compared with an independent experimental measurement from the in vivo system. Goodness-of-fit can be assessed between simulated and
measured MIDs, and simulated and measured metabolite pool sizes in INST-MFA. Flux maps can be compared with the results of independent
modeling exercises. Molecules are schematically shown as connected circles of atomic positions: open circles are unlabeled, and filled circles are
isotopically labeled. Mn, metabolites in the metabolic network; S,,, exogenous substrates; V;, Fluxes; [M,,], metabolite concentrations.

confusion matrix allows for an at-a-glance evaluation of overall model
accuracy and for the comparison of alternative model architectures.®®
Researchers sometimes use algorithms to identify knockouts that cou-
ple biomass accumulation to flux through a reaction for biotechnologi-
cal applications.®®>"%> This requires that models accurately predict
growth/no-growth phenotypes for gene knockouts, but previous
work in a model of Saccharomyces cerevisiae, for example, shows that
FBA performs poorly at predicting the synthetic lethality of double-

knockouts, making this a serious concern.®® When performing such
validations, one must keep in mind that imposed constraints and deci-
sions made during the model construction or optimization process
may implicitly or explicitly add the predictions one is trying to validate
into the model, rendering the exercise meaningless. This makes clear
and transparent documentation of the assumptions used in the
modeling process key for reviewers and readers to assess the episte-

mic value of the validations that are reported.
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TABLE 1

considerations for researchers and/or readers, and examples of these methods' implementation in the literature.

Method

Comparison of growth/no-
growth on one or more
substrates

Comparison of growth rates
on one or more
substrates

Comparison of in vivo and
in silico knockout lethality

Comparison of FBA
predictions with MFA
fluxes

Information content

Presence/absence of
reactions necessary for
substrate utilization and
biomass synthesis.

Consistency of metabolic
network, biomass
composition, and
maintenance costs with
observed efficiency of
substrate-to-biomass
conversion.

Presence/absence of
biosynthetic reactions
necessary for substrate use
and growth.

Accuracy of internal flux
predictions.
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The most common model validation strategies in Flux Balance Analysis, what these methods tell us, limitations, and important

Limitations Use case Examples
Validation is qualitative, only Useful when viability/ 51,55,56,60,61
indicating the existence of nonviability of different
metabolic routes. Does not growth conditions is of
test the accuracy of interest. Unlike a growth-
predicted internal flux rate comparison, does not
values indicate whether the
efficiency of biomass
synthesis is realistic.
Provides quantitative When done across multiple 51,55,60,62
information on the overall substrates and conditions,
efficiency of substrate this validation gives
conversion to biomass, but confidence in the predicted
is uninformative with efficiency with which the
respect to the accuracy of model produces biomass.
internal flux predictions. Useful when identifying
growth-limiting factors.
Care is needed to reduce Critically important to perform  62,66-68
incorrect predictions from when designing growth-
many different factors, coupled knockout
including optimization strategies.63-65
method and biomass
composition changes in
response to knockout.
Few MFA flux maps exist for Important when the intended 60,69-71

most organisms, making this
validation impossible or
requiring comparison with
an MFA flux map taken for
very different experimental
conditions.

use of FBA modeling
requires that the predictions
of specific internal flux
values be accurate.

It is crucial to note that the methods discussed above do not vali-
date the internal flux predictions made by FBA. Due to the underde-
termined nature of FBA, many radically different flux maps may be
compatible with, for example, the optimization of growth-rate,*® mak-
ing validations using growth-rate or any other individual external flux
uninformative with respect to internal flux distributions. In well-
characterized systems, there may be a wealth of known metabolic
functionalities that an organism can carry out and evaluating whether
the model can reproduce them can give some assurance of realistic
model behavior. In Ref. 72,73, 288 metabolic processes known to take
place in mammalian cells were evaluated in models of human and
mouse models, though it was only the ability to carry out the pro-
cesses at all, and not the actual flux values, that were evaluated. In
favorable cases, individual internal fluxes can be quantitatively esti-
mated in vivo using independent methods and compared directly to
ones from a predicted flux map to provide a powerful form of valida-
tion. For example, in a study from our group”* the ratio of the cyclic
electron flow (CEF) to linear electron flow (LEF) fluxes in photosyn-
thesis predicted by FBA was evaluated against CEF/LEF ratios from
fluorescence measurements for validation purposes. Though less spe-
cific, the sum of FBA-predicted values for fluxes that produce and/or

consume a product (such as CO,) can also be compared to

experimental measurements. In addition to these approaches, there is
the possibility going forward of integrating metabolomics data into
the FBA prediction process (e.g.,”®) and/or comparison of FBA results
against metabolomic datasets. Although, it should be noted that
metabolite levels and changes in those levels in the steady-state can-
not be directly interpreted in terms of fluxes, so any attempts to vali-
date FBA results using observations in metabolomics datasets should
be done with caution.

However, validations of internal flux predictions across the net-
work require comparing FBA flux maps with high-quality ones from
13C-MFA. Such validations are the most information-rich of all the
methods surveyed so far and tell us the most about how well the FBA
flux maps generated by a particular combination of network architec-
ture, constraints, and objective function line up with experimental
data. Unfortunately, 13C-MFA flux maps are time-consuming to gen-
erate, making this “gold-standard” validation rare. To compare FBA-
predicted and MFA-estimated fluxes, the model architectures must be
the same, or the MFA must at least be a subnetwork of the model
FBA. Additionally, the

(e.g., substrate uptake and biomass accumulation) must be the same in

used for the empirical constraints
both cases. In cases where the growth rates predicted or constrained

for an FBA flux map do not perfectly line up with those from an MFA
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flux map, normalization of fluxes to account for this discrepancy can
be used to get an apples-to-apples comparison.®’ The imposition of
identical external flux constraints on both the FBA and MFA models
may preclude validation of the accuracy of certain external flux pre-
dictions by the FBA. However, such comparisons can be done after-
wards by removing the relevant constraints. Comparison is also
complicated by the underdetermined nature of most FBA optimiza-
tions, which can result in large feasible ranges for the individual fluxes
being compared against the corresponding flux values obtained from
13C-MFA, making the validation less stringent. FBA optimizations
that assume parsimony'”¢ tend to yield narrower flux ranges, but
this advantage may come at the cost of neglecting other plausible
objective functions that might be more accurate.

Finally, when FBA-predicted and MFA-estimated flux maps dis-
agree, assuming the experimental constraints are consistent between
the two and that the person doing the comparison is confident in the
MFA estimates, either the FBA network architecture or objective
function could be to blame. There is not, to our knowledge, a consis-
tent strategy for disambiguating disagreements due to architecture or
objective function. If the biological/biochemical accuracy of the objec-
tive function is in question, methods for inferring objective functions
using isotopic labeling data can be employed (e.g.,””) the resulting
objective functions can be compared with the one being used, and
discrepancies can be considered. All objective functions that relate to
growth will be affected by the accuracy of the biomass composition
used in the model, although in some systems central metabolic fluxes
may be relatively robust to variability in the exact values of this com-
position.”® In systems for which extensive biomass composition data
is available, known variability in biomass composition can be incorpo-
rated during the optimization process.>’ Despite these various limita-
tions and difficulties when validating FBA using 13C-MFA fluxes,
some studies have evaluated the accuracy of FBA against 13C-MFA-

22,54,60,70.79-81) \ith mixed results.

estimated flux maps (e.g.,

A consistent challenge when validating FBA fluxes using any
method is the need to compare the FBA flux map against empirical
fluxes or other measurements that were generated under similar con-
ditions to those being simulated. For organisms or systems whose
metabolic models are undergoing continual refinement, thus requiring
repeated validation, community-curated and updated validation data-
sets generated under well-defined and carefully reported conditions
may be useful. Standards on what metabolic phenotypes and
responses need to be captured by these models (e.g., the 288 known
metabolic functions in human cells used in Ref. 72) may also help
ensure that reconstructions maintain essential biological features as
they grow larger and more detailed.

To summarize, we make the following recommendations for the
validation of FBA-predicted flux maps:

1. When possible, comparisons between FBA-predicted and 13C-
MFA-estimated flux maps should be performed to validate the
accuracy of FBA-predicted internal fluxes. This provides a greater
wealth of information about where and to what extent the model

is, and is not, lining up with experimental evidence. When

performing such validations, care should be taken to ensure that

the conditions under which the FBA-predictions and MFA-

estimates are generated are as similar as possible and that any nec-
essary normalizations to account for differences have been made.

For an example of thorough FBA-to-MFA comparisons, see

Ref. 69,82.

o Note: FBA-predicted flux maps require definition not just of the
network architecture and constraints, but also an objective
function for optimization. Validation of the FBA-predicted flux
maps is therefore also a validation of the selected objective
function. It is possible for a poorly selected objective function
to generate flux predictions that do not align with MFA-
estimated fluxes; in such cases, alternative objective functions
can be explored.

2. As highlighted in Table 1, different validation methods evaluate
different aspects of the model's predictions. Therefore, employing
a number of different validations allows for a fuller and more
detailed analysis of model performance and increases the likeli-
hood that other users of the model may be able to appropriately
apply it to their research question. For an example of a study
employing several different validation techniques, see Ref. 57.

3. Validations of model predictions are only valuable when the data
the predictions are validated against has not already been used in
the training or construction of the model. The complexity of the
metabolic model reconstruction and analysis process can make it
difficult to notice when contamination of the validation dataset by
training data has occurred. In order to identify contamination, one
must consider the source of all data used for validation and con-
sider whether it or a value derived from it was used at any stage of
the FBA modeling process. For an example of a study that clearly
and systematically validates FBA predictions while avoiding such

contamination, see Ref. 51.

Improving confidence in the accuracy of FBA flux maps is valu-
able because generating validated 13C-MFA flux maps for all systems
and conditions of interest is impractical. 13C-MFA requires substan-
tial experimental work for each set of conditions and is unsuitable for
many multicellular tissues and organisms where the required combina-
tion of extended periods of metabolic steady state, controlled provi-
sion of informative, non-perturbing labeled substrates, and obtaining
enough labeling data cannot be achieved. This FBA-empowered
future for systems biology and biotechnology requires well-validated
MFA flux maps, so we turn our attention to model validation and

selection in MFA.

2.2 | Validation in 13C-MFA

13C-MFA flux estimates are typically validated based on the
goodness-of-fit between measured labeling data and the correspond-
ing values generated by the network model after the optimization of
model parameters. The goodness-of-fit is represented by the sum of

squared residuals (SSR) where each residual is weighted by dividing it
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by its experimental variance. The x?-test of goodness-of-fit, which is

83-85 is then used to

built into commonly used 13C-MFA software,
test whether the SSR falls within the 95% confidence interval
expected for the defined number of degrees of freedom (DOF). Since
its development as a validation method in 13C-MFA, ¢ the x?-test has
been widely used and has been useful in the validation of 13C-MFA
metabolic models inferred from genome annotations.8-%2

However, as described in Ref. 93,27 the use of the xz—test can be
problematic in 13C-MFA for several reasons. When upper- and lower-
bounds are imposed on estimated flux parameter values, this makes
accurate estimation of the effective DOF for the y?-test difficult.?” It
can also be difficult to accurately determine errors in the MID
measurements made for 13C-MFA, resulting in distortion of the
variance-weighted SSR values that are being compared against the
95% Confidence Interval.”

In addition to these technical difficulties with properly applying the
x>-test, problems arise from how the test is implemented into the
model development process during a typical 13C-MFA study. Espe-
cially for eukaryotic systems, 13C-MFA flux modeling generally
involves making iterative changes to the model based on how well it
can explain the data - as assessed informally and by the x>-test - fol-
lowed by refinement and assessment of the data based on this agree-
ment. For example, if the data do not allow the fluxes between the
same metabolite in different compartments to be determined, they
may be merged in the model or additional measurements may be made
to resolve them. Metabolites may also be excluded from the model due
to inconsistency between their simulated versus measured MIDs caus-
ing the model to fail the y>-test, on the assumption that biological,
model-structural, or analytical uncertainties underlie these unexplained
divergences.%’ The difficulty of accurately quantifying MID measure-
ment errors, mentioned earlier, may be addressed by arbitrarily increas-
ing the assumed measurement error, which reduces the deduced
precision of flux estimates to take into account the potential for error
sources not accounted for by experimentally observed scatter.”37%"
This process is a natural consequence of the diversity and uncertainty
of the metabolic architecture of different systems and is a valid form of
exploratory data analysis and model building. However, altering the
model by excluding specific data points and adding additional fluxes or
metabolites until the x?-test passes, and then relying on this very same
test as validation is statistically dubious from a rigorous perspective. As
in the case of an FBA model validation in which the prediction being
validated has been implicitly introduced to the model itself, a final vali-
dation of a 13C-MFA model with the same data used to make it
acceptable, as quantified by the x2-test, does not constitute a real vali-
dation. It also can naturally lead to over- or under-fit models, which we
discuss below in the section on model selection.

Due to these difficulties, we propose that the x>-test, as it is cur-
rently used, should be used as one of multiple lines of evidence to

*Here we primarily cite our own work because, as discussed, there are a number of sound
reasons for leaving out metabolites and/or increasing MID measurement errors. We have
chosen not to highlight other studies that have employed the same practices since we do not
know all of the experimental and analytical details underlying them and would not want their
inclusion here to be interpreted as implicit criticism.
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consider when validating a 13C-MFA model, especially for less
defined and/or more complex eukaryotic systems such as plants. One
way to address the issue of using the X?-test for both model develop-
ment and validation is to reserve a portion of the dataset only for final
model validation. This practice of holding out a subset of the data to
be used exclusively for validation is standard statistical practice*! in
other areas of systems biology and, conveniently, can also be used for
model selection.”

In the absence of direct experimentally measurable fluxes, inde-
pendent measurements that can be measured or inferred from empiri-
cal measurements in vivo provide an important ground-truth value to
compare with flux estimates and can complement the use of the x?-
test for validation. An example of this can be found in the plant 13C-
MFA literature, where independent measurements of the relative
rates of oxygenation and carboxylation by the enzyme RuBisCO can
be compared with 13C-MFA flux estimates.”*~%® In Ref. 95 for exam-
ple, our group compared predicted values for the relative rates of oxy-
genation and carboxylation by the enzyme RuBisCO in
photosynthesis versus inferred values from stomatal conductance and
other empirical measurements. This led us to conclude that labeling
data from whole tissue extracts was insufficient to accurately esti-
mate photorespiratory fluxes without information on the compart-
mentation of certain metabolites. Despite the strength of this form of
validation, it is infrequently practiced.

Another little-used but potentially valuable approach to validation
is the corroboration of key features of 13C-MFA models using inde-
pendent modeling methods. In Ref. 94, simplified compartmental
kinetic models yielded analytical solutions predicting that overall label-
ing time courses should take the form of sums of exponential rate
components. Fitting labeling data to these exponential models and
applying statistical model selection techniques provided independent
corroboration of the overall architecture of the 13C-MFA model that
was used to obtain a detailed flux map.

Returning to goodness-of-fit, one must also keep in mind what
information is taken into consideration and the effect of the assumed
network architecture. In INST-MFA, where time-course labeling data
is used, metabolite pool sizes are both estimable parameters and con-
strainable modeling inputs. When pool sizes are not provided as
empirical measurements, pool size estimates are typically imprecise
and inaccurate.”” The inaccuracy of these estimates is not usually
interpreted as an impediment to publishing 13C-MFA results and
according to Ref. 97, leaving out pool size information does not
adversely affect flux estimate accuracy. Flux estimates are not, how-
ever, always robust against misspecifications of the network model.”®
The exclusion of pool size information provides greater flexibility in
fitting experimental data, allowing robustness against model misspeci-
fications at the expense of not detecting them.”” A useful next step
for this field would be to routinely measure and include pool size esti-
mates to improve the detection of incorrect model architectures.
Measurement of all metabolites in a way that allows discrimination of
pools for identical metabolites in different cellular compartments
requires a method like Non-Aqueous Fractionation (e.g.,’8) which may

be prohibitively difficult to implement in many studies. In such cases,
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use of a strategically selected set of metabolite levels may be used to

allow for improved detection of incorrect model architectures. This

introduces the matter of model selection.

2.3 | Model Selection in 13C-MFA

As discussed earlier, model development in 13C-MFA is an iterative
process. Alternate models developed during this process may differ in
their numbers of reactions and metabolites, resulting in different
DOF. Adding model parameters can result in overfitting when these
extra DOF lead the 13C-MFA optimization to fit noise rather than
biological signal. Model selection techniques can be used to avoid this
overfitting and to select the most statistically supported model among
alternatives. The development of FBA models can also involve decid-
ing between alternative architectures. However, comparison and
selection of such models from sets of alternatives based on their pre-
dictions' deviations from empirical measurements is uncommon, so
we focus our attention on 13C-MFA.

Model misspecification can result in missing important fluxes,
incorrectly estimating the rates of modeled fluxes, or incorrectly esti-
mating the precision of flux estimates. In a study our group performed
of central metabolic fluxes in the oilseed crop Camelina sativa,”* previ-
ously published model architectures that passed the x>-test of
goodness-of-fit”> were nonetheless shown to be missing an important
set of metabolic reactions involving the movement of carbohydrates
to and from the vacuole. In Ref. 93, in silico examples of sub-optimal
model selection resulting in flux estimates that fall outside of the 95%
confidence intervals for those same fluxes generated using the correct
model architecture are provided, showing the potential for biased flux
estimates when model selection is not properly performed. Finally,
the literature on “Genome-scale-13C-MFA” has provided evidence
that the exclusion of many reactions peripheral to the metabolic net-
work under consideration (typically core metabolism) in 13C-MFA can
result in artificially narrow confidence intervals. Genome-scale-13C-
MFA involves estimating a flux map by minimizing deviation between
predicted and measured isotopic labeling but using the kind of
genome-scale metabolic network more typically used for FBA

99,100

analyses. In studies on the cyanobacterium Synechococcus

103102 it has been shown that the substantially larger

elongatus,
genome-scale 13C-MFA models achieved better fits to the labeling
data, that these reductions in SSR were statistically justified, and that
the original models of core metabolism underestimated the uncer-
tainty in a number of flux estimates by ignoring alternative metabolic
pathways that could also explain patterns in the labeling data.'®® The
examples above demonstrate that rather than being a statistical curi-
osity, model selection (or the lack thereof) can have serious implica-
tions for the accuracy and reliability of flux modeling results.

Several approaches to model selection can be found in the 13C-
MFA literature, with different approaches being taken in different
studies. The simplest is selecting the model with the smallest SSR.
This method does not work when the DOF of the compared models

are different, as increasing the DOF in a model inevitably allows it to

fit a given data set better. This may be accounted for informally by
noting the change in DOF (e.g.,”* or in a more statistically rigorous
way using the extra-sum-of-squares test'°>1%* or information cri-
teria.1%>1% The most common model selection approach used in
13C-MFA is an informal method using the x?-test, wherein models are
iteratively modified until a model and dataset pass the test, or where
several alternative models are evaluated and the one that passes the
test by the widest margin is selected.**44?3107 These approaches
have been used, for example, to demonstrate that the isotopic labeling
data of co-culture systems cannot be adequately described by model-
ing with a single-culture 13C-MFA model,*%%1%? to provide evidence
for the operation of previously undescribed fluxes in mammalian

110

cells,”* and to detect missing reactions in metabolic network recon-

structions from genome annotations or that are needed to describe
the metabolism of mutant E. coli strains.8%8¢

However, the previously mentioned limitations of the y?-test for
model validation also affect its usefulness for model selection and
models failing the test due to these limitations can lead to the addition
of statistically unjustified metabolites or reactions to the model until it
passes.”® We refer to the x2-test-based methods as “informal” model
selection because when multiple models are evaluated, they are not
directly or formally compared to determine whether the additional
parameters in more complex models are statistically justified, which
can naturally lead to the selection of overfit models.

The general approach of avoiding overfitting by evaluating models
based on their performance on a set of data not used during the fitting
process is widely used in statistics (e.g., cross-validation techniques'?).
The validation-based approach taken in Ref. 93 implements this best
practice, separating fitting and testing data sets to avoid the pitfalls dis-
cussed above. In our view, this represents a substantial advancement in
model selection in 13C-MFA. This method divides the labeling dataset
into training and validation subsets and then estimates fluxes in alterna-
tive models using the training data. These alternative models' flux maps,
and their accompanying predicted MIDs, are then compared based on
their agreement with the validation MID data. The model whose flux
map results in the smallest SSR when compared with this validation
data is selected. The authors generated synthetic labeling data from a
predefined “correct” model and assessed the ability of their new
method and other model selection techniques to identify this correct
model from a set of alternatives. The validation-based approach accom-
plishes this more consistently than existing model selection methods,
including x?-test-based methods, and does so irrespective of the value
of the measurement error in the labeling datasets. The incorrect models
selected by other methods contain flux estimates that fall outside the
95% confidence intervals of the fluxes from the correct model,
highlighting the importance of model selection for obtaining accurate
flux estimates.”® The generation of MID data in additional labeling
experiments to precisely measure all fluxes in a network?®=3° provides
the reserved validation datasets needed for the method described in
Ref. 93. This means that for 13C-MFA studies that already require a
parallel labeling approach, implementation of this more rigorous model
selection approach is simply a matter of setting aside a subset of data

to evaluate alternative model architectures.
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FIGURE 2 Approaches to model selection for 13C-MFA. Metabolic network models 1-3, which have increasing complexity, are compared.
Model 2 in this example is the correct description of the network. (a) Labeling data (MID1 & MID2) are gathered and, for each model, agreement
between model output and these data is optimized. The x?-test of goodness-of-fit is used to assess each model fit and these model fits are
ranked 1st, 2nd, or 3rd, with the 1st passing the test by the widest margin and being selected as the most statistically well-supported model.

(b) Labeling data are split into “training” and “testing” subsets and agreement between model output and the “training” data is optimized. The
Sum-of-Squared Residuals (SSR) is then calculated for each model from the deviation between its output and the “testing” data. The model fits
are then ranked 1st, 2nd, and 3rd, with the 1st having the lowest SSR and being selected. (c) Labeling data and metabolite pool data (C1 and C2)
are gathered and split into “training” and “testing” subsets. For each model, agreement between model output and these data is optimized. The
Sum-of-Squared Residuals (SSR) is then calculated for each model from the deviation between its output and the “testing” data. The model fits
are then ranked 1st, 2nd, and 3rd, with the 1st having the lowest SSR and being selected. The inclusion of metabolite pool size data into both the
“fitting” and “testing” datasets provides more data to go off when evaluating goodness-of-fit, potentially increasing the likelihood of identifying

the correct model from a set of alternatives.

This approach can be extended in INST-MFA by using metabolite
pool size measurements in the selection process. Individual pool sizes
are sensitive to the local kinetic parameters and will fit poorly when

reaction networks are incompletely specified.””

We therefore suggest
that validation-based model selection using pool size measurements
as input measurements is a promising prospective model selection
approach for INST MFA (Figure 2). Indeed, although not referred to
explicitly as model selection, in Ref. 97 the authors show that inclu-
sion of pool size information results in an incorrectly specified net-
work architecture failing to pass the y?-test of goodness-of-fit,
whereas a correctly specified network does pass. This corresponds to

2> method of model selection discussed in Ref. 93

the “first to pass x
and is subject to the various limitations of the x*-test as a model
selection technique covered earlier. By incorporating these metabolite
pool sizes into the formalized model selection framework described in
Ref. 93, we may arrive at a more robust form of model selection that
is better at detecting misspecified networks. As the authors of Ref. 93
note, the optimal model selected by their method should be subjected
to a final validation to assess model quality. A model architecture may
be selected by the model selection process but result in a substantial

deviation of some metric from independently measured values. For

this final validation, a combination of the x?-test, independent experi-
mental measurements, and alternative modeling approaches can be
used. Keeping in mind both the trade-off between goodness-of-fit
and model complexity and the multiple ways in which 13C-MFA
model predictions can be validated will ensure that flux estimates are
as accurate and robust as possible.

Model validation and selection are an integral part of the 13C-
MFA process. Notably, model selection practices like the use of
validation-based model selection”® and the use of the extra-sum-of-
squares test'®* to compare alternative model architectures represent,
in our view, a major improvement over exclusive use of the x?-test of
goodness-of-fit test for both purposes, but are seldom practiced in
the literature. We encourage the use of these techniques and believe
they hold promise for improving confidence in both the fluxes and
network architectures reported in studies.

With respect to validation and model selection in MFA, we rec-
ommend the following:

1. As highlighted in Ref. 44, transparency is key in 13C-MFA, given
the assumptions that must be satisfied for 13C-MFA modeling as
well as the sensitivity of flux estimates to model architecture.
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As an example of a transparently reported 13C-MFA study, see
Ref. 112.

2. The validation and selection of MFA-estimated fluxes, like the vali-
dation of any model output, benefits from multiple lines of corrob-
orating evidence. When possible, the use of alternative modeling
approaches of isotopic labeling data can be a powerful tool for
arriving at well-supported model architectures, as in Ref. 94.

3. In INST-MFA, metabolite pool size measurements can be used to
provide additional confidence in model validity and tighten flux

113 35 well as provide additional measure-

confidence intervals,
ments for validation-based model selection. However, practi-
tioners should be aware that these measurements can make model
fits highly sensitive to incorrectly specified network models in
ways that may or may not affect the accuracy of flux estimates.””
Additionally determination of subcellular compartmentation of cer-
tain metabolites may be prohibitively difficult in some cases. In
such cases, key metabolites with known subcellular compartmen-
tation may be measured.

4. We recommend the use of a proper model selection framework to
compare alternative, biochemically reasonable model architectures
when performing 13C-MFA modeling. The framework outlined in
Ref. 93 represents the state-of-the-art in this area. Barring the
application of that method, a more traditional model selection
approach, such as the extra-sum-of-squares approach used in Ref.
104 can be employed.

3 | FUTURE DIRECTIONS

We believe that validation and selection deserve greater attention
from the flux analysis community and suggest that implementing the
approaches highlighted in this review will improve the accuracy and
reliability of constraint-based metabolic modeling and flux estimates.
However, we also recognize that some approaches suggested here,
such as the use of pool size measurements, can be extremely difficult
to implement in practice. A recent publication on isotopically non-
stationary MFA of Arabidopsis thaliana heterotrophic cell culture
metabolism highlighted that although pool size data could potentially
be used to improve the accuracy and precision of flux predictions, the
experimental difficulty of measuring the concentrations of metabolites
distributed across multiple subcellular compartments made this pro-
hibitively difficult.'** As in all areas of science, then, the development
of consensus best practices in the evaluation of and inference from
data and models must arise at the intersection of rigorous statistical
theory and experimental practicalities. However, we believe that
researchers engaged in constraint-based metabolic modeling as well
as readers of modeling studies benefit when the limitations of present
validation and selection practices are clarified.

Several matters call for investigation before definitive recommen-
dations can be made on best practices. At present, it is not clear how
to appropriately weight the contributions to flux estimation of unam-
biguous direct flux measurements like substrate uptake, which typi-

cally have relatively large standard deviations, against MIDs, which

frequently have much smaller standard deviations but whose relation-
ship to fluxes depends on model structure and whose measured
values may be offset by unknown analytical effects. Likewise, it is
unclear how best to deal with those not infrequent MID measure-
ments that have extremely small, but imprecisely measured, standard
deviations, which can exert too much control over the fitting process.

Finally, we would like to conclude by emphasizing that the pro-
cess of careful validation and model selection can lead to the genera-
tion of models that are not only more quantitatively sound, but that

yield exciting scientific insights (e.g.,2°%11°).
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