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Abstract

13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely

used to investigate the operation of biochemical networks in both biological and bio-

technological research. Both methods use metabolic reaction network models of metab-

olism operating at steady state so that reaction rates (fluxes) and the levels of metabolic

intermediates are constrained to be invariant. They provide estimated (MFA) or pre-

dicted (FBA) values of the fluxes through the network in vivo, which cannot be mea-

sured directly. These fluxes can shed light on basic biology and have been successfully

used to inform metabolic engineering strategies. Several approaches have been taken to

test the reliability of estimates and predictions from constraint-based methods and to

compare alternative model architectures. Despite advances in other areas of the statisti-

cal evaluation of metabolic models, such as the quantification of flux estimate uncer-

tainty, validation and model selection methods have been underappreciated and

underexplored. We review the history and state-of-the-art in constraint-based metabolic

model validation and model selection. Applications and limitations of the χ2-test of

goodness-of-fit, the most widely used quantitative validation and selection approach in

13C-MFA, are discussed, and complementary and alternative forms of validation and

selection are proposed. A combined model validation and selection framework for 13C-

MFA incorporating metabolite pool size information that leverages new developments

in the field is presented and advocated for. Finally, we discuss how adopting robust vali-

dation and selection procedures can enhance confidence in constraint-based modeling

as a whole and ultimately facilitate more widespread use of FBA in biotechnology.
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1 | INTRODUCTION

The set of biochemical reaction rates in the metabolic network of a

living system (its flux map) represents an integrated functional pheno-

type that emerges from multiple layers of biological organization and

regulation, including the genome, transcriptome, and proteome.1 The

study of metabolic fluxes is therefore important for systems biology,

rational metabolic engineering, and synthetic biology. A grand chal-

lenge of systems biology is building an integrated mechanistic under-

standing of the operation of living organisms across these levels of
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regulation2 – an understanding that goes beyond statistical or correla-

tive descriptions, however useful these can be. Meeting this challenge

requires fluxes to be accurately predicted from network structure

using explicit rules or hypotheses and reliably estimated using experi-

mental data. Fluxes are also critical to many biotechnological and met-

abolic engineering applications. Examples such as the development of

lysine hyper-producing strains of Corynebacterium glutamicum3–5 and

the rewiring of E. coli's metabolism to make it grow chemoautotrophi-

cally6 attest to the usefulness of these techniques. As the scale and

complexity of integrative systems biology and biological engineering

efforts increase, so too will the need for reliable and robust estimates

of fluxes.

In vivo fluxes cannot be directly measured, necessitating modeling

approaches to estimate or predict them. The most commonly used

approaches for metabolic modeling is the constraint-based modeling

frameworks of 13C-Metabolic Flux Analysis (13C-MFA) and Flux Bal-

ance Analysis (FBA). Both require a metabolic network consisting of

metabolites linked by biochemical reactions to be defined using the bio-

chemical literature, knowledge of the enzymes and transporters

expressed from the genome, and physico-chemical rules. In 13C-MFA,

atom mappings describing the positions and interconversions of the

carbon atoms in reactants and products are also included in the model.

These methods assume that the system is at metabolic steady-state,

such that the concentrations of all metabolic intermediates and reaction

rates are constant.7 External fluxes, such as the uptake of a substrate

or the rate of production of new cells or a product, are also measured

and used to constrain the possible flux ranges. These assumptions and

constraints define a “solution space” containing all flux maps consistent

with them but are typically insufficient to pinpoint a unique flux map.

In 13C-MFA, isotopic labeling data is used to identify a particular

solution within the solution space. 13C-labeled substrates are fed to

the system under investigation and the endpoint labeling, or time-

course labeling in Isotopically Nonstationary Metabolic Flux Analysis

(INST-MFA), of metabolites is measured using mass spectrometry

and/or NMR techniques.7,8 Given a metabolic network, a flux map,

and information about the labeled substrate fed into the system, the

label distribution through all the metabolites in a network can be

solved analytically. However, 13C-MFA works backwards from mea-

sured label distributions to flux maps by minimizing the differences

between measured and estimated Mass Isotopomer Distribution

(MID) values by varying flux estimates.9 For INST MFA pool size mea-

surements can also be included in the minimization process.

In FBA, linear optimization is used to identify a flux map (or set of

flux maps) from the solution space.10 This is the map(s) for which the

sum of one or more fluxes (the objective function) is maximized or mini-

mized. Objective functions frequently represent measures of efficiency,

including the maximization of growth rate or product formation or the

minimization of total flux.11 Such functions may embody hypotheses

about what the in vivo system has been evolutionarily tuned to opti-

mize, or questions about the operational capacity of that system under

particular conditions. Since the objective function, together with the

network architecture and empirical and/or theoretical constraints intro-

duced by the modeler, is a key determinant of the flux maps generated

by FBA, careful selection, justification, and, ideally, validation of objec-

tive functions is crucial. As shown in Ref. 12, alternative objective func-

tions can, and should, be evaluated to identify those that result in the

best agreement with experimental data. In many cases, the

constraints – typically on external fluxes – imposed during an FBA opti-

mization result in a set of viable flux maps (a solution space) rather than

a single map. In such cases, related techniques, including Flux Variability

Analysis13 and random sampling14–17 can be used to characterize the

set of flux maps consistent with the set constraints. The computational

tractability and small amount of experimental data necessary to per-

form FBA allow the analysis of Genome-Scale Stoichiometric Models

(GSSMs). These models incorporate all known reactions believed to

occur in an organism based on a combination of genome annotation

and manual curation. Additional linear-optimization-based methods for

solving GSSMs using the FBA framework have been developed and are

sometimes used together with FBA. These include Minimization of

Metabolic Adjustment (MOMA),18 and Regulatory On/Off Minimization

(ROOM),19 as well as a host of methods that incorporate omic data into

the optimization process (e.g.,20–24). FBA and its related methods are

sometimes used to analyze models other than true GSSMs, such as

“core” models that focus on central metabolic processes that conduct

the large majority of flux.25 When discussing validation, however, the

same principles apply to all of these linear optimization methods and

across the different model scales. For the sake of simplicity, we will be

using “FBA” to refer to this family of methods generally and will refer

to the medium- to large-scale models used with these methods as

“FBA models.”
Progress has been made in improving the statistical rigor and reli-

ability of flux estimates and characterizing uncertainty in estimates

and predictions. For example, in MFA, the development of effective

methods for flux uncertainty estimation26 allows researchers to better

quantify confidence in flux predictions and, where appropriate, to

gather additional data to better support their conclusions. Bayesian

techniques for the characterization of uncertainties in flux estimates

derived from isotopic labeling have also been presented.27 On the

experimental side of MFA, there have been advances in designing and

implementing parallel labeling experiments, wherein multiple tracers

are employed in parallel labeling experiments and the results are

simultaneously fit to generate a single 13C-MFA flux map. This

enables more precise estimation of fluxes than experiments with indi-

vidual tracers or tracer combinations allow.28–35 Greater resolution in

isotopic labeling data through the use of tandem mass spectrometry

techniques, which allow for the quantification of positional labeling,

can also improve the precision of modeled fluxes, as described in Ref.

36,37. Recent years have also seen developments in FBA meant to

improve the reliability of its predictions. For example studies have

characterized the impact of departures from metabolic steady state

and devised methods to account for uncertainties in biomass compo-

sitions (e.g.,38,39). The many sources of uncertainty when working with

FBA and genome-scale models, and attempts to characterize and miti-

gate this uncertainty, have been reviewed elsewhere.40

In this review, we specifically focus on the validation of flux pre-

dictions and estimates from constraint-based modeling studies and
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the selection of well-supported model architectures, which have

received less attention and specific treatment in the literature. How

can MFA and FBA researchers validate the accuracy of their estimates

and predictions? These flux analysis methods also require researchers

to make choices about the network structure of the model to be used.

This leads to questions of model selection; that is, how do we select

the most statistically justified model from among the alternatives?

Validation and model selection are key to improving the fidelity of

model-derived fluxes to the real in vivo ones. The fields of systems

and synthetic biology have seen substantial development of model

selection and validation practices,41,42 but these topics are not fre-

quently discussed in the metabolic modeling literature. Previous reviews

and methods papers have touched on the use of tools like the χ2-test of

goodness-of-fit for the validation of MFA models.43,44 However, to our

knowledge, no reviews covering the various methods for validating FBA

predictions exist, nor have previous reviews discussed the various limita-

tions of the χ2-test. Moreover, previous reviews have not addressed the

most recent improvements in model selection in 13C-MFA, which have

not been adequately incorporated into routine practice. Addressing

these topics explicitly is important for practitioners as they carry out

their work. It is also important for readers of the flux analysis literature,

who must understand the assumptions, tests of validity, and model

selection techniques underlying what they are reading.

Although only a subset of research groups conduct both FBA and

MFA modeling, we believe most metabolic modeling practitioners

and consumers read literature containing both modeling paradigms. As

we highlight in this review, some similar themes emerge when examin-

ing the validation of both FBA and MFA flux maps. Finally, one of the

most robust validations that can be conducted for FBA predictions is

comparison against MFA estimated fluxes, which makes simultaneously

considering the validity of both FBA and MFA flux maps crucial. For

these reasons, we consider both modeling approaches in this review.

We review and provide our perspective on these areas and pros-

pects for future development, highlighting: (1) Validation methods appli-

cable to FBA flux maps; (2) approaches for validating 13C-MFA flux

maps; and (3) developments and prospects for model selection in 13C-

MFA; (4) How validation and model selection practices in 13C-MFA

could benefit from a greater emphasis on the isolation of training and

validation datasets and; (5) the importance of corroborating flux map-

ping results using independent modeling and experimental techniques.

2 | VALIDATION TECHNIQUES IN FBA
AND 13C-MFA

Flux Balance Analysis and 13C-MFA studies commonly validate the

model(s) used, though there is great variation in their nature and

extent. We summarize these validation strategies in Figure 1.

2.1 | Validation in FBA

The COnstraint-Based Reconstruction and Analysis (COBRA)

framework, implemented in software solutions such as the COBRA

Toolbox45 and cobrapy46 and widely used for FBA studies, features

functions and pipelines that can be used to ensure basic functionality

of models including balancing of charge, pH, and cofactors/cosub-

strates, thermodynamic feasibility, and connectivity of all metabolites.

Model characteristics evaluated include the inability to generate ATP

without an external source of energy and the inability to synthesize

biomass without adding substrates not known to be needed. Addi-

tionally, the MEMOTE (MEtabolic MOdel TEsts) pipeline contains

tests to ensure, for example, that biomass precursors can be success-

fully synthesized in a model in a variety of growth media.47 MEMOTE

has been used to ensure appropriate stoichiometry and consistency

with accepted format standards in models entered into the BiGG48

model database. These forms of Quality Control are an important first

step in ensuring that models are behaving appropriately and generat-

ing useful predictions. However, following these initial checks on

functionality, the techniques used to validate actual model predictions

are varied and not standardized. Indeed, even in the BiGG database,

which is highly curated and focuses primarily on models of microbial

systems, models vary in the type and extent of validation performed.

Given the variety of validation procedures that appear in the litera-

ture, it is important when using an FBA model to be aware of what

specific validations were used, what their limitations are, and conse-

quently, what inferences or downstream applications are appropriate

(summarized in Table 1).

Perhaps the most common validation in FBA is comparison

between FBA-predicted and empirically measured rates of growth

(e.g.,49–55). One may similarly evaluate growth/no-growth in different

media and/or with different carbon sources (e.g.,51,54–57). A related

approach is the comparison of in silico metabolite uptake/secretion

with experimental measurements.54,57,58 Such evaluations give confi-

dence in the model's basic predictions. To ensure that the accuracy of

growth-rate predictions generalizes well, we strongly recommend vali-

dating growth rates on substrates or in media conditions from which

biomass composition and parameters like Growth-Associated Mainte-

nance (GAM) and Non-Growth Associated Maintenance (NGAM) costs

were not experimentally derived, as done in Ref. 51. GAM represents

the energy expenditure needed to support a certain rate of biomass

growth and NGAM represents the energy expenditure required for a

cell or organism to survive without any net growth.59 These values may

vary depending on growth conditions, so testing whether the values

measured in one set of conditions generalize to others is important.

Otherwise, future users may use a model with, for example, another

common media composition and find – or worse yet, simply not

notice – that the resulting predictions do not accurately reflect essential

characteristics of the organism's actual metabolism.

A related approach involves comparing growth/no-growth of

gene knockout strains to FBA predictions to address whether the

metabolic pathways used in the model mirror the biological system.

Experimentally verified lethal knockouts that appear nonlethal in silico

point to alternative routes the model can use to grow. Conversely, in

silico lethality predictions not confirmed by experiment suggest the

model is missing isoforms or alternative reaction routes. Collecting

the true positive, true negative, false positive, and false negative pre-

dictions from the in silico versus in vivo lethality predictions into a
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confusion matrix allows for an at-a-glance evaluation of overall model

accuracy and for the comparison of alternative model architectures.68

Researchers sometimes use algorithms to identify knockouts that cou-

ple biomass accumulation to flux through a reaction for biotechnologi-

cal applications.63–65 This requires that models accurately predict

growth/no-growth phenotypes for gene knockouts, but previous

work in a model of Saccharomyces cerevisiae, for example, shows that

FBA performs poorly at predicting the synthetic lethality of double-

knockouts, making this a serious concern.66 When performing such

validations, one must keep in mind that imposed constraints and deci-

sions made during the model construction or optimization process

may implicitly or explicitly add the predictions one is trying to validate

into the model, rendering the exercise meaningless. This makes clear

and transparent documentation of the assumptions used in the

modeling process key for reviewers and readers to assess the episte-

mic value of the validations that are reported.

F IGURE 1 Graphical summary of validation strategies in (a) FBA and (b) 13C-MFA. Dotted lines connect inputs with the associated validation
technique(s). (a) FBA predictions can be validated by comparing growth rate or growth/no-growth phenotypes across different substrates, growth
conditions, or sets of gene knockouts in silico and in vivo. Values can be calculated from flux maps and compared with experimental
measurements. FBA internal flux predictions can be compared with 13C-MFA fluxes. (b) Values can be calculated from 13C-MFA flux maps and
compared with an independent experimental measurement from the in vivo system. Goodness-of-fit can be assessed between simulated and
measured MIDs, and simulated and measured metabolite pool sizes in INST-MFA. Flux maps can be compared with the results of independent
modeling exercises. Molecules are schematically shown as connected circles of atomic positions: open circles are unlabeled, and filled circles are
isotopically labeled. Mn, metabolites in the metabolic network; Sn, exogenous substrates; Vi, Fluxes; [Mn], metabolite concentrations.
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It is crucial to note that the methods discussed above do not vali-

date the internal flux predictions made by FBA. Due to the underde-

termined nature of FBA, many radically different flux maps may be

compatible with, for example, the optimization of growth-rate,13 mak-

ing validations using growth-rate or any other individual external flux

uninformative with respect to internal flux distributions. In well-

characterized systems, there may be a wealth of known metabolic

functionalities that an organism can carry out and evaluating whether

the model can reproduce them can give some assurance of realistic

model behavior. In Ref. 72,73, 288 metabolic processes known to take

place in mammalian cells were evaluated in models of human and

mouse models, though it was only the ability to carry out the pro-

cesses at all, and not the actual flux values, that were evaluated. In

favorable cases, individual internal fluxes can be quantitatively esti-

mated in vivo using independent methods and compared directly to

ones from a predicted flux map to provide a powerful form of valida-

tion. For example, in a study from our group74 the ratio of the cyclic

electron flow (CEF) to linear electron flow (LEF) fluxes in photosyn-

thesis predicted by FBA was evaluated against CEF/LEF ratios from

fluorescence measurements for validation purposes. Though less spe-

cific, the sum of FBA-predicted values for fluxes that produce and/or

consume a product (such as CO2) can also be compared to

experimental measurements. In addition to these approaches, there is

the possibility going forward of integrating metabolomics data into

the FBA prediction process (e.g.,75) and/or comparison of FBA results

against metabolomic datasets. Although, it should be noted that

metabolite levels and changes in those levels in the steady-state can-

not be directly interpreted in terms of fluxes, so any attempts to vali-

date FBA results using observations in metabolomics datasets should

be done with caution.

However, validations of internal flux predictions across the net-

work require comparing FBA flux maps with high-quality ones from

13C-MFA. Such validations are the most information-rich of all the

methods surveyed so far and tell us the most about how well the FBA

flux maps generated by a particular combination of network architec-

ture, constraints, and objective function line up with experimental

data. Unfortunately, 13C-MFA flux maps are time-consuming to gen-

erate, making this “gold-standard” validation rare. To compare FBA-

predicted and MFA-estimated fluxes, the model architectures must be

the same, or the MFA must at least be a subnetwork of the model

used for the FBA. Additionally, the empirical constraints

(e.g., substrate uptake and biomass accumulation) must be the same in

both cases. In cases where the growth rates predicted or constrained

for an FBA flux map do not perfectly line up with those from an MFA

TABLE 1 The most common model validation strategies in Flux Balance Analysis, what these methods tell us, limitations, and important
considerations for researchers and/or readers, and examples of these methods' implementation in the literature.

Method Information content Limitations Use case Examples

Comparison of growth/no-

growth on one or more

substrates

Presence/absence of

reactions necessary for

substrate utilization and

biomass synthesis.

Validation is qualitative, only

indicating the existence of

metabolic routes. Does not

test the accuracy of

predicted internal flux

values

Useful when viability/

nonviability of different

growth conditions is of

interest. Unlike a growth-

rate comparison, does not

indicate whether the

efficiency of biomass

synthesis is realistic.

51,55,56,60,61

Comparison of growth rates

on one or more

substrates

Consistency of metabolic

network, biomass

composition, and

maintenance costs with

observed efficiency of

substrate-to-biomass

conversion.

Provides quantitative

information on the overall

efficiency of substrate

conversion to biomass, but

is uninformative with

respect to the accuracy of

internal flux predictions.

When done across multiple

substrates and conditions,

this validation gives

confidence in the predicted

efficiency with which the

model produces biomass.

Useful when identifying

growth-limiting factors.

51,55,60,62

Comparison of in vivo and

in silico knockout lethality

Presence/absence of

biosynthetic reactions

necessary for substrate use

and growth.

Care is needed to reduce

incorrect predictions from

many different factors,

including optimization

method and biomass

composition changes in

response to knockout.

Critically important to perform

when designing growth-

coupled knockout

strategies.63–65

62,66–68

Comparison of FBA

predictions with MFA

fluxes

Accuracy of internal flux

predictions.

Few MFA flux maps exist for

most organisms, making this

validation impossible or

requiring comparison with

an MFA flux map taken for

very different experimental

conditions.

Important when the intended

use of FBA modeling

requires that the predictions

of specific internal flux

values be accurate.

60,69–71
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flux map, normalization of fluxes to account for this discrepancy can

be used to get an apples-to-apples comparison.69 The imposition of

identical external flux constraints on both the FBA and MFA models

may preclude validation of the accuracy of certain external flux pre-

dictions by the FBA. However, such comparisons can be done after-

wards by removing the relevant constraints. Comparison is also

complicated by the underdetermined nature of most FBA optimiza-

tions, which can result in large feasible ranges for the individual fluxes

being compared against the corresponding flux values obtained from

13C-MFA, making the validation less stringent. FBA optimizations

that assume parsimony11,76 tend to yield narrower flux ranges, but

this advantage may come at the cost of neglecting other plausible

objective functions that might be more accurate.

Finally, when FBA-predicted and MFA-estimated flux maps dis-

agree, assuming the experimental constraints are consistent between

the two and that the person doing the comparison is confident in the

MFA estimates, either the FBA network architecture or objective

function could be to blame. There is not, to our knowledge, a consis-

tent strategy for disambiguating disagreements due to architecture or

objective function. If the biological/biochemical accuracy of the objec-

tive function is in question, methods for inferring objective functions

using isotopic labeling data can be employed (e.g.,77) the resulting

objective functions can be compared with the one being used, and

discrepancies can be considered. All objective functions that relate to

growth will be affected by the accuracy of the biomass composition

used in the model, although in some systems central metabolic fluxes

may be relatively robust to variability in the exact values of this com-

position.78 In systems for which extensive biomass composition data

is available, known variability in biomass composition can be incorpo-

rated during the optimization process.39 Despite these various limita-

tions and difficulties when validating FBA using 13C-MFA fluxes,

some studies have evaluated the accuracy of FBA against 13C-MFA-

estimated flux maps (e.g.,22,54,60,70,79–81) with mixed results.

A consistent challenge when validating FBA fluxes using any

method is the need to compare the FBA flux map against empirical

fluxes or other measurements that were generated under similar con-

ditions to those being simulated. For organisms or systems whose

metabolic models are undergoing continual refinement, thus requiring

repeated validation, community-curated and updated validation data-

sets generated under well-defined and carefully reported conditions

may be useful. Standards on what metabolic phenotypes and

responses need to be captured by these models (e.g., the 288 known

metabolic functions in human cells used in Ref. 72) may also help

ensure that reconstructions maintain essential biological features as

they grow larger and more detailed.

To summarize, we make the following recommendations for the

validation of FBA-predicted flux maps:

1. When possible, comparisons between FBA-predicted and 13C-

MFA-estimated flux maps should be performed to validate the

accuracy of FBA-predicted internal fluxes. This provides a greater

wealth of information about where and to what extent the model

is, and is not, lining up with experimental evidence. When

performing such validations, care should be taken to ensure that

the conditions under which the FBA-predictions and MFA-

estimates are generated are as similar as possible and that any nec-

essary normalizations to account for differences have been made.

For an example of thorough FBA-to-MFA comparisons, see

Ref. 69,82.

• Note: FBA-predicted flux maps require definition not just of the

network architecture and constraints, but also an objective

function for optimization. Validation of the FBA-predicted flux

maps is therefore also a validation of the selected objective

function. It is possible for a poorly selected objective function

to generate flux predictions that do not align with MFA-

estimated fluxes; in such cases, alternative objective functions

can be explored.

2. As highlighted in Table 1, different validation methods evaluate

different aspects of the model's predictions. Therefore, employing

a number of different validations allows for a fuller and more

detailed analysis of model performance and increases the likeli-

hood that other users of the model may be able to appropriately

apply it to their research question. For an example of a study

employing several different validation techniques, see Ref. 57.

3. Validations of model predictions are only valuable when the data

the predictions are validated against has not already been used in

the training or construction of the model. The complexity of the

metabolic model reconstruction and analysis process can make it

difficult to notice when contamination of the validation dataset by

training data has occurred. In order to identify contamination, one

must consider the source of all data used for validation and con-

sider whether it or a value derived from it was used at any stage of

the FBA modeling process. For an example of a study that clearly

and systematically validates FBA predictions while avoiding such

contamination, see Ref. 51.

Improving confidence in the accuracy of FBA flux maps is valu-

able because generating validated 13C-MFA flux maps for all systems

and conditions of interest is impractical. 13C-MFA requires substan-

tial experimental work for each set of conditions and is unsuitable for

many multicellular tissues and organisms where the required combina-

tion of extended periods of metabolic steady state, controlled provi-

sion of informative, non-perturbing labeled substrates, and obtaining

enough labeling data cannot be achieved. This FBA-empowered

future for systems biology and biotechnology requires well-validated

MFA flux maps, so we turn our attention to model validation and

selection in MFA.

2.2 | Validation in 13C-MFA

13C-MFA flux estimates are typically validated based on the

goodness-of-fit between measured labeling data and the correspond-

ing values generated by the network model after the optimization of

model parameters. The goodness-of-fit is represented by the sum of

squared residuals (SSR) where each residual is weighted by dividing it
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by its experimental variance. The χ2-test of goodness-of-fit, which is

built into commonly used 13C-MFA software,83–85 is then used to

test whether the SSR falls within the 95% confidence interval

expected for the defined number of degrees of freedom (DOF). Since

its development as a validation method in 13C-MFA,26 the χ2-test has

been widely used and has been useful in the validation of 13C-MFA

metabolic models inferred from genome annotations.86–92

However, as described in Ref. 93,27 the use of the χ2-test can be

problematic in 13C-MFA for several reasons. When upper- and lower-

bounds are imposed on estimated flux parameter values, this makes

accurate estimation of the effective DOF for the χ2-test difficult.27 It

can also be difficult to accurately determine errors in the MID

measurements made for 13C-MFA, resulting in distortion of the

variance-weighted SSR values that are being compared against the

95% Confidence Interval.93

In addition to these technical difficulties with properly applying the

χ2-test, problems arise from how the test is implemented into the

model development process during a typical 13C-MFA study. Espe-

cially for eukaryotic systems, 13C-MFA flux modeling generally

involves making iterative changes to the model based on how well it

can explain the data – as assessed informally and by the χ2-test – fol-

lowed by refinement and assessment of the data based on this agree-

ment. For example, if the data do not allow the fluxes between the

same metabolite in different compartments to be determined, they

may be merged in the model or additional measurements may be made

to resolve them. Metabolites may also be excluded from the model due

to inconsistency between their simulated versus measured MIDs caus-

ing the model to fail the χ2-test, on the assumption that biological,

model-structural, or analytical uncertainties underlie these unexplained

divergences.94* The difficulty of accurately quantifying MID measure-

ment errors, mentioned earlier, may be addressed by arbitrarily increas-

ing the assumed measurement error, which reduces the deduced

precision of flux estimates to take into account the potential for error

sources not accounted for by experimentally observed scatter.93–95*

This process is a natural consequence of the diversity and uncertainty

of the metabolic architecture of different systems and is a valid form of

exploratory data analysis and model building. However, altering the

model by excluding specific data points and adding additional fluxes or

metabolites until the χ2-test passes, and then relying on this very same

test as validation is statistically dubious from a rigorous perspective. As

in the case of an FBA model validation in which the prediction being

validated has been implicitly introduced to the model itself, a final vali-

dation of a 13C-MFA model with the same data used to make it

acceptable, as quantified by the χ2-test, does not constitute a real vali-

dation. It also can naturally lead to over- or under-fit models, which we

discuss below in the section on model selection.

Due to these difficulties, we propose that the χ2-test, as it is cur-

rently used, should be used as one of multiple lines of evidence to

consider when validating a 13C-MFA model, especially for less

defined and/or more complex eukaryotic systems such as plants. One

way to address the issue of using the χ2-test for both model develop-

ment and validation is to reserve a portion of the dataset only for final

model validation. This practice of holding out a subset of the data to

be used exclusively for validation is standard statistical practice41 in

other areas of systems biology and, conveniently, can also be used for

model selection.93

In the absence of direct experimentally measurable fluxes, inde-

pendent measurements that can be measured or inferred from empiri-

cal measurements in vivo provide an important ground-truth value to

compare with flux estimates and can complement the use of the χ2-

test for validation. An example of this can be found in the plant 13C-

MFA literature, where independent measurements of the relative

rates of oxygenation and carboxylation by the enzyme RuBisCO can

be compared with 13C-MFA flux estimates.94–96 In Ref. 95 for exam-

ple, our group compared predicted values for the relative rates of oxy-

genation and carboxylation by the enzyme RuBisCO in

photosynthesis versus inferred values from stomatal conductance and

other empirical measurements. This led us to conclude that labeling

data from whole tissue extracts was insufficient to accurately esti-

mate photorespiratory fluxes without information on the compart-

mentation of certain metabolites. Despite the strength of this form of

validation, it is infrequently practiced.

Another little-used but potentially valuable approach to validation

is the corroboration of key features of 13C-MFA models using inde-

pendent modeling methods. In Ref. 94, simplified compartmental

kinetic models yielded analytical solutions predicting that overall label-

ing time courses should take the form of sums of exponential rate

components. Fitting labeling data to these exponential models and

applying statistical model selection techniques provided independent

corroboration of the overall architecture of the 13C-MFA model that

was used to obtain a detailed flux map.

Returning to goodness-of-fit, one must also keep in mind what

information is taken into consideration and the effect of the assumed

network architecture. In INST-MFA, where time-course labeling data

is used, metabolite pool sizes are both estimable parameters and con-

strainable modeling inputs. When pool sizes are not provided as

empirical measurements, pool size estimates are typically imprecise

and inaccurate.97 The inaccuracy of these estimates is not usually

interpreted as an impediment to publishing 13C-MFA results and

according to Ref. 97, leaving out pool size information does not

adversely affect flux estimate accuracy. Flux estimates are not, how-

ever, always robust against misspecifications of the network model.93

The exclusion of pool size information provides greater flexibility in

fitting experimental data, allowing robustness against model misspeci-

fications at the expense of not detecting them.97 A useful next step

for this field would be to routinely measure and include pool size esti-

mates to improve the detection of incorrect model architectures.

Measurement of all metabolites in a way that allows discrimination of

pools for identical metabolites in different cellular compartments

requires a method like Non-Aqueous Fractionation (e.g.,98) which may

be prohibitively difficult to implement in many studies. In such cases,

*Here we primarily cite our own work because, as discussed, there are a number of sound

reasons for leaving out metabolites and/or increasing MID measurement errors. We have

chosen not to highlight other studies that have employed the same practices since we do not

know all of the experimental and analytical details underlying them and would not want their

inclusion here to be interpreted as implicit criticism.
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use of a strategically selected set of metabolite levels may be used to

allow for improved detection of incorrect model architectures. This

introduces the matter of model selection.

2.3 | Model Selection in 13C-MFA

As discussed earlier, model development in 13C-MFA is an iterative

process. Alternate models developed during this process may differ in

their numbers of reactions and metabolites, resulting in different

DOF. Adding model parameters can result in overfitting when these

extra DOF lead the 13C-MFA optimization to fit noise rather than

biological signal. Model selection techniques can be used to avoid this

overfitting and to select the most statistically supported model among

alternatives. The development of FBA models can also involve decid-

ing between alternative architectures. However, comparison and

selection of such models from sets of alternatives based on their pre-

dictions' deviations from empirical measurements is uncommon, so

we focus our attention on 13C-MFA.

Model misspecification can result in missing important fluxes,

incorrectly estimating the rates of modeled fluxes, or incorrectly esti-

mating the precision of flux estimates. In a study our group performed

of central metabolic fluxes in the oilseed crop Camelina sativa,94 previ-

ously published model architectures that passed the χ2-test of

goodness-of-fit95 were nonetheless shown to be missing an important

set of metabolic reactions involving the movement of carbohydrates

to and from the vacuole. In Ref. 93, in silico examples of sub-optimal

model selection resulting in flux estimates that fall outside of the 95%

confidence intervals for those same fluxes generated using the correct

model architecture are provided, showing the potential for biased flux

estimates when model selection is not properly performed. Finally,

the literature on “Genome-scale-13C-MFA” has provided evidence

that the exclusion of many reactions peripheral to the metabolic net-

work under consideration (typically core metabolism) in 13C-MFA can

result in artificially narrow confidence intervals. Genome-scale-13C-

MFA involves estimating a flux map by minimizing deviation between

predicted and measured isotopic labeling but using the kind of

genome-scale metabolic network more typically used for FBA

analyses.99,100 In studies on the cyanobacterium Synechococcus

elongatus,101,102 it has been shown that the substantially larger

genome-scale 13C-MFA models achieved better fits to the labeling

data, that these reductions in SSR were statistically justified, and that

the original models of core metabolism underestimated the uncer-

tainty in a number of flux estimates by ignoring alternative metabolic

pathways that could also explain patterns in the labeling data.100 The

examples above demonstrate that rather than being a statistical curi-

osity, model selection (or the lack thereof) can have serious implica-

tions for the accuracy and reliability of flux modeling results.

Several approaches to model selection can be found in the 13C-

MFA literature, with different approaches being taken in different

studies. The simplest is selecting the model with the smallest SSR.

This method does not work when the DOF of the compared models

are different, as increasing the DOF in a model inevitably allows it to

fit a given data set better. This may be accounted for informally by

noting the change in DOF (e.g.,94) or in a more statistically rigorous

way using the extra-sum-of-squares test103,104 or information cri-

teria.105,106 The most common model selection approach used in

13C-MFA is an informal method using the χ2-test, wherein models are

iteratively modified until a model and dataset pass the test, or where

several alternative models are evaluated and the one that passes the

test by the widest margin is selected.43,44,93,107 These approaches

have been used, for example, to demonstrate that the isotopic labeling

data of co-culture systems cannot be adequately described by model-

ing with a single-culture 13C-MFA model,108,109 to provide evidence

for the operation of previously undescribed fluxes in mammalian

cells,110 and to detect missing reactions in metabolic network recon-

structions from genome annotations or that are needed to describe

the metabolism of mutant E. coli strains.80,86

However, the previously mentioned limitations of the χ2-test for

model validation also affect its usefulness for model selection and

models failing the test due to these limitations can lead to the addition

of statistically unjustified metabolites or reactions to the model until it

passes.93 We refer to the χ2-test-based methods as “informal” model

selection because when multiple models are evaluated, they are not

directly or formally compared to determine whether the additional

parameters in more complex models are statistically justified, which

can naturally lead to the selection of overfit models.

The general approach of avoiding overfitting by evaluating models

based on their performance on a set of data not used during the fitting

process is widely used in statistics (e.g., cross-validation techniques111).

The validation-based approach taken in Ref. 93 implements this best

practice, separating fitting and testing data sets to avoid the pitfalls dis-

cussed above. In our view, this represents a substantial advancement in

model selection in 13C-MFA. This method divides the labeling dataset

into training and validation subsets and then estimates fluxes in alterna-

tive models using the training data. These alternative models' flux maps,

and their accompanying predicted MIDs, are then compared based on

their agreement with the validation MID data. The model whose flux

map results in the smallest SSR when compared with this validation

data is selected. The authors generated synthetic labeling data from a

predefined “correct” model and assessed the ability of their new

method and other model selection techniques to identify this correct

model from a set of alternatives. The validation-based approach accom-

plishes this more consistently than existing model selection methods,

including χ2-test-based methods, and does so irrespective of the value

of the measurement error in the labeling datasets. The incorrect models

selected by other methods contain flux estimates that fall outside the

95% confidence intervals of the fluxes from the correct model,

highlighting the importance of model selection for obtaining accurate

flux estimates.93 The generation of MID data in additional labeling

experiments to precisely measure all fluxes in a network28–35 provides

the reserved validation datasets needed for the method described in

Ref. 93. This means that for 13C-MFA studies that already require a

parallel labeling approach, implementation of this more rigorous model

selection approach is simply a matter of setting aside a subset of data

to evaluate alternative model architectures.

8 of 13 KASTE and SHACHAR-HILL

 15206033, 2024, 1, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/btpr.3413 by T

est, W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



This approach can be extended in INST-MFA by using metabolite

pool size measurements in the selection process. Individual pool sizes

are sensitive to the local kinetic parameters and will fit poorly when

reaction networks are incompletely specified.97 We therefore suggest

that validation-based model selection using pool size measurements

as input measurements is a promising prospective model selection

approach for INST MFA (Figure 2). Indeed, although not referred to

explicitly as model selection, in Ref. 97 the authors show that inclu-

sion of pool size information results in an incorrectly specified net-

work architecture failing to pass the χ2-test of goodness-of-fit,

whereas a correctly specified network does pass. This corresponds to

the “first to pass χ2” method of model selection discussed in Ref. 93

and is subject to the various limitations of the χ2-test as a model

selection technique covered earlier. By incorporating these metabolite

pool sizes into the formalized model selection framework described in

Ref. 93, we may arrive at a more robust form of model selection that

is better at detecting misspecified networks. As the authors of Ref. 93

note, the optimal model selected by their method should be subjected

to a final validation to assess model quality. A model architecture may

be selected by the model selection process but result in a substantial

deviation of some metric from independently measured values. For

this final validation, a combination of the χ2-test, independent experi-

mental measurements, and alternative modeling approaches can be

used. Keeping in mind both the trade-off between goodness-of-fit

and model complexity and the multiple ways in which 13C-MFA

model predictions can be validated will ensure that flux estimates are

as accurate and robust as possible.

Model validation and selection are an integral part of the 13C-

MFA process. Notably, model selection practices like the use of

validation-based model selection93 and the use of the extra-sum-of-

squares test104 to compare alternative model architectures represent,

in our view, a major improvement over exclusive use of the χ2-test of

goodness-of-fit test for both purposes, but are seldom practiced in

the literature. We encourage the use of these techniques and believe

they hold promise for improving confidence in both the fluxes and

network architectures reported in studies.

With respect to validation and model selection in MFA, we rec-

ommend the following:

1. As highlighted in Ref. 44, transparency is key in 13C-MFA, given

the assumptions that must be satisfied for 13C-MFA modeling as

well as the sensitivity of flux estimates to model architecture.

F IGURE 2 Approaches to model selection for 13C-MFA. Metabolic network models 1–3, which have increasing complexity, are compared.
Model 2 in this example is the correct description of the network. (a) Labeling data (MID1 & MID2) are gathered and, for each model, agreement
between model output and these data is optimized. The χ2-test of goodness-of-fit is used to assess each model fit and these model fits are
ranked 1st, 2nd, or 3rd, with the 1st passing the test by the widest margin and being selected as the most statistically well-supported model.
(b) Labeling data are split into “training” and “testing” subsets and agreement between model output and the “training” data is optimized. The
Sum-of-Squared Residuals (SSR) is then calculated for each model from the deviation between its output and the “testing” data. The model fits
are then ranked 1st, 2nd, and 3rd, with the 1st having the lowest SSR and being selected. (c) Labeling data and metabolite pool data (C1 and C2)
are gathered and split into “training” and “testing” subsets. For each model, agreement between model output and these data is optimized. The
Sum-of-Squared Residuals (SSR) is then calculated for each model from the deviation between its output and the “testing” data. The model fits
are then ranked 1st, 2nd, and 3rd, with the 1st having the lowest SSR and being selected. The inclusion of metabolite pool size data into both the
“fitting” and “testing” datasets provides more data to go off when evaluating goodness-of-fit, potentially increasing the likelihood of identifying
the correct model from a set of alternatives.
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As an example of a transparently reported 13C-MFA study, see

Ref. 112.

2. The validation and selection of MFA-estimated fluxes, like the vali-

dation of any model output, benefits from multiple lines of corrob-

orating evidence. When possible, the use of alternative modeling

approaches of isotopic labeling data can be a powerful tool for

arriving at well-supported model architectures, as in Ref. 94.

3. In INST-MFA, metabolite pool size measurements can be used to

provide additional confidence in model validity and tighten flux

confidence intervals,113 as well as provide additional measure-

ments for validation-based model selection. However, practi-

tioners should be aware that these measurements can make model

fits highly sensitive to incorrectly specified network models in

ways that may or may not affect the accuracy of flux estimates.97

Additionally determination of subcellular compartmentation of cer-

tain metabolites may be prohibitively difficult in some cases. In

such cases, key metabolites with known subcellular compartmen-

tation may be measured.

4. We recommend the use of a proper model selection framework to

compare alternative, biochemically reasonable model architectures

when performing 13C-MFA modeling. The framework outlined in

Ref. 93 represents the state-of-the-art in this area. Barring the

application of that method, a more traditional model selection

approach, such as the extra-sum-of-squares approach used in Ref.

104 can be employed.

3 | FUTURE DIRECTIONS

We believe that validation and selection deserve greater attention

from the flux analysis community and suggest that implementing the

approaches highlighted in this review will improve the accuracy and

reliability of constraint-based metabolic modeling and flux estimates.

However, we also recognize that some approaches suggested here,

such as the use of pool size measurements, can be extremely difficult

to implement in practice. A recent publication on isotopically non-

stationary MFA of Arabidopsis thaliana heterotrophic cell culture

metabolism highlighted that although pool size data could potentially

be used to improve the accuracy and precision of flux predictions, the

experimental difficulty of measuring the concentrations of metabolites

distributed across multiple subcellular compartments made this pro-

hibitively difficult.114 As in all areas of science, then, the development

of consensus best practices in the evaluation of and inference from

data and models must arise at the intersection of rigorous statistical

theory and experimental practicalities. However, we believe that

researchers engaged in constraint-based metabolic modeling as well

as readers of modeling studies benefit when the limitations of present

validation and selection practices are clarified.

Several matters call for investigation before definitive recommen-

dations can be made on best practices. At present, it is not clear how

to appropriately weight the contributions to flux estimation of unam-

biguous direct flux measurements like substrate uptake, which typi-

cally have relatively large standard deviations, against MIDs, which

frequently have much smaller standard deviations but whose relation-

ship to fluxes depends on model structure and whose measured

values may be offset by unknown analytical effects. Likewise, it is

unclear how best to deal with those not infrequent MID measure-

ments that have extremely small, but imprecisely measured, standard

deviations, which can exert too much control over the fitting process.

Finally, we would like to conclude by emphasizing that the pro-

cess of careful validation and model selection can lead to the genera-

tion of models that are not only more quantitatively sound, but that

yield exciting scientific insights (e.g.,109,110).
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