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1 | INTRODUCTION

Metabolic modeling provides scientists with a quantita-
tive description of the in vivo rates of biochemical reac-
tions in biological networks. These rates of biochemical
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Abstract

The modeling of rates of biochemical reactions—fluxes—in metabolic networks
is widely used for both basic biological research and biotechnological applica-
tions. A number of different modeling methods have been developed to estimate
and predict fluxes, including kinetic and constraint-based (Metabolic Flux Anal-
ysis and flux balance analysis) approaches. Although different resources exist for
teaching these methods individually, to-date no resources have been developed
to teach these approaches in an integrative way that equips learners with an
understanding of each modeling paradigm, how they relate to one another, and
the information that can be gleaned from each. We have developed a series of
modeling simulations in Python to teach kinetic modeling, metabolic control
analysis, 13C-metabolic flux analysis, and flux balance analysis. These simula-
tions are presented in a series of interactive notebooks with guided lesson plans
and associated lecture notes. Learners assimilate key principles using models of
simple metabolic networks by running simulations, generating and using data,
and making and validating predictions about the effects of modifying model
parameters. We used these simulations as the hands-on computer laboratory
component of a four-day metabolic modeling workshop and participant survey
results showed improvements in learners’ self-assessed competence and confi-
dence in understanding and applying metabolic modeling techniques after hav-
ing attended the workshop. The resources provided can be incorporated in their
entirety or individually into courses and workshops on bioengineering and met-
abolic modeling at the undergraduate, graduate, or postgraduate level.
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reactions—fluxes—are a function of many layers of
cellular regulation (transcriptional, translational,
post-translational, etc.) and relate directly to the living
system's functional phenotype. Understanding metabolic
flux thus provides important insights into biological

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.

Biochem Mol Biol Educ. 2023;51:653-661.

wileyonlinelibrary.com/journal/bmb 653


https://orcid.org/0000-0003-1942-0315
https://orcid.org/0000-0001-8793-5084
mailto:kastejos@msu.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/bmb
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbmb.21777&domain=pdf&date_stamp=2023-08-16

KASTE ET AL.

= | WILEY-@)

systems and underlies efforts to rationally modify their
metabolism to suit our biotechnological needs."

Fluxes in metabolic pathways and networks cannot be
directly measured, necessitating the use of mathematical
modeling approaches to estimate or predict them. These
approaches can be broadly categorized into kinetic and
constraint-based methods. Within both categories,
methods exist both for predicting fluxes and for estimating
them from experimental data. Kinetic methods involve
simulating the dynamically changing fluxes and metabo-
lite concentrations in a metabolic network over time,
whereas constraint-based methods like flux balance analy-
sis (FBA)® and metabolic flux analysis (MFA)* estimate
steady-state fluxes using linear optimization principles or
experimentally-measured isotopic labeling data.

Metabolic modeling, and particularly constraint-
based modeling approaches, have been used productively
to aid in biotechnological applications. For example, Met-
abolic Flux Analysis techniques using isotopic labeling
informed the engineering of the bacterium Corynebacte-
rium glutamicum to produce high concentrations of
lysine.”” Flux balance analysis has been deployed to
improve the microbial production of a number of biopro-
ducts, including threonine® and valine,” and in ambitious
reengineering efforts like that described in Reference 10
where FBA and related methods including Reference 11
were used to enable engineering of normally heterotro-
phic Escherichia coli to incorporate CO, into its biomass
using a heterologously expressed Calvin-Benson Cycle.
These and an increasing number of other metabolic
modeling applications indicate that this is an area that is
of great value to learners and practitioners in biology,
biochemistry, and chemical engineering.

Related to kinetic metabolic analysis, metabolic con-
trol analysis (MCA) provides mathematical tools for
understanding how control over flux and internal metab-
olite concentrations are distributed between the enzymes
in a biochemical network.'>"* Like metabolic flux model-
ing and mapping the questions addressed by Metabolic
Control Analysis have major biotechnological implica-
tions. We believe it therefore makes sense to introduce
and teach concepts in MCA along with kinetic and
constraint-based metabolic modeling techniques. We
describe the necessary inputs, applications, and potential
pitfalls of MCA and the previously mentioned metabolic
modeling techniques in Table 1.

Although previous studies have described and pro-
vided resources for teaching kinetic metabolic
modeling,"* FBA,*'*> MFA,'®"” and MCA,"** there are
not any published and freely available instructional
resources for introducing these toolsets to learners in an
integrative and interactive fashion. Moreover, although
papers and books exist describing how to experimentally
approach 13C-MFA?*'™** or the theoretical background

behind the technique,?® we are not aware of any dedi-

cated and published educationally focused resources for
introducing learners to the theoretical background
behind label-assisted MFA. We believe introducing
learners to all of these major areas of metabolic modeling
together allows them to appreciate their interconnections
and better evaluate what approach(es) may be useful to
their own research and/or engineering goals than if they
encounter them in isolation.

To address this gap in the biochemistry education liter-
ature, we developed a series of interactive Python-based
Jupyter notebooks featuring exercises that give learners
hands-on experience with kinetic modeling, FBA, MFA,
and MCA. These notebooks were used as the hands-on
laboratory exercises for the 2022 iteration of an annual
metabolic modeling workshop at Michigan State Univer-
sity. To assess the efficacy of the workshop and the inter-
active exercises, surveys were distributed to participants—
a mix of graduate students and postdoctoral researchers—
before, immediately after, and 4 months after the work-
shop to measure self-assessed competence and confidence
in metabolic modeling techniques and in the application
of these techniques to learners’ own research questions.
Although the materials are structured with a particular
sequence and timeline, the individual notebooks, paired
with appropriate lecture material, contain sufficient expla-
nation to be flexibly incorporated into different course or
workshop structures.

2 | METHODS

2.1 | Exercise development

All simulation code was written in Python and packaged
and presented in Jupyter notebooks.”’ Numpy®® and
SciPy* were used to handle data import and export
and calculate control coefficients for MCA. Interactive
elements were incorporated into the notebooks using the
ipywidgets package. MFA simulations were run in Python
using the package mfapy® and FBA simulations were
run using cobrapy.>* For the FBA exercises, the genome-
scale model of E. coli's metabolic network iJ01366°> was
used along with a smaller “core” model of E. coli's meta-
bolic network.> Several example networks from Refer-
ence 25 were adopted for demonstration purposes
throughout the notebooks.

Time-courses of metabolite concentrations, fluxes,
and labeling were generated in kinetic simulations fea-
turing reversible or irreversible first-order and Michaelis-
Menten kinetics. Euler's method was used to generate all
concentration, flux, and labeling values. In most of the
simulations that feature labeling, all metabolites are trea-
ted as having only one labelable position, so the
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Overview of the modeling and analytical techniques taught in the resources presented in this study, along with required

TABLE 1
inputs, applications, and potential pitfalls.

Modeling Appropriate
method Description Required inputs applications Limitations
Enzyme- Uses a set of enzyme 1. A small- to medium- Testing and improving our ~ The behavior of most
based kinetic equations to scale metabolic understanding of how systems is
kinetic simulate fluxes and network. enzyme Kkinetic underdetermined (i.e.
modeling metabolite 2. Kinetic parameters for properties govern the there are many possible
concentration time enzyme rate equations behavior of a metabolic solutions), with a degree
courses. (Km, Vmax, etc.) system. of underdetermination
increasing rapidly as
model size increases.
This is because the
equations have multiple
parameters for each
reaction, rather than
one for MFA and FBA,
most of which are
unknown or poorly
defined.
13C- Technique that uses 1. A small- to medium- Generating experimentally ~ Experimentally
metabolic isotopic labeling data to scale metabolic based flux maps for demanding and setting
flux estimate steady-state network. system under a up a new system can
analysis metabolic fluxes. 2. Isotopic labeling data particular condition or take a substantial
for metabolites set of conditions. amount of time.
appearing in the
modeled network.
3. Theoretical or
empirically-derived
flux constraints (e.g.
substrate uptake and
biomass accumulation)
Flux balance Linear optimization based 1. A small- to genome- 1. Characterizing Flux maps are usually
analysis approach to predicting scale metabolic completeness of underdetermined, with
steady-state metabolic network. metabolic network a degree of
fluxes. 2. Theoretical or and/or genome underdetermination
empirically-derived annotation. increasing rapidly with
flux constraints (e.g. . Identifying essential larger model sizes. Flux
substrate uptake and and nonessential genes. predictions are highly
biomass accumulation). . Predicting feasible sensitive to choice of the
3. One or more objective efficiencies and objective function.
functions describing a engineering
hypothesis about what approaches.
the organism is trying
to accomplish
metabolically or
relating to a
biotechnological or
theoretical question the
investigator has.
Metabolic Method to quantify how 1. A small- to medium- Identification of enzymes Experimentally
control much control each scale metabolic or metabolite demanding. Control
analysis reaction has on fluxes network. concentrations that are coefficient estimates are,
and metabolite 2. Empirical influencing flux through by definition, only valid

concentrations in a
network

measurements on
enzyme concentrations,

a pathway or network

under a given set of

(Continues)
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TABLE 1 (Continued)
Modeling
method Description Required inputs

enzyme activity,

metabolite

Appropriate

applications Limitations

under a particular set of
conditions.

conditions and may not
generalize well.

concentrations, and

fluxes.

proportion of labeled and unlabeled metabolite is
tracked. In the simulations in the notebook for Day
4 (see Table 2), both one- and two-carbon molecules are
present, so the quantities of unlabeled, half-labeled, and
fully-labeled species for each metabolite are calculated
and tracked independently to allow for comparison with
13C-MFA flux map results.

2.2 | Survey ethics and analysis

The survey component of this study was deemed exempt
by the Michigan State University Office of Research Reg-
ulatory Support. Survey respondents were asked to self-
assess their confidence in and understanding of kinetic
and constraint-based metabolic modeling methods and
the application of these methods to their own research
goals on a Likert scale.”* Survey responses were gathered
from workshop participants before, immediately after,
and 4 months following the workshop. The survey instru-
ments can be found in the Survey Instruments of Data S1.
One-sided Mann-Whitney U tests*® were used to com-
pare pre- and post-workshop responses, where our null
hypothesis was that there is no difference between the
pre- and post-workshop responses and our alternative
hypothesis was that the post-workshop responses were
higher than the pre-workshop responses. We evaluated
each question with a = 0.05.

3 | RESULTS AND DISCUSSION

3.1 | Educational Jupyter notebooks

We developed a series of four Jupyter notebooks covering
various aspects of kinetic and constraint-based metabolic
modeling and metabolic control analysis. A graphical
summary of the different areas of metabolic modeling
covered and their relationships is shown in Figure 1. In
addition to learning the theory behind these methods,
learners are exposed to the key concepts for successful
applications of flux modeling listed below. We also note
in Table 2 and Data S1 Lesson Plan documents when an
exercise can be used to teach one of these concepts.

1. Concept 1: The relationship between the noise and
time resolution of experimental data and the confi-
dence one can have in parameter estimates and
assumed model architectures.

2. Concept 2: The uniqueness and identifiability of flux
estimates in FBA and 13C-MFA and their relationship
to model complexity.

3. Concept 3: The distribution of control over fluxes and
concentrations in a network across the reactions of
that network.

These concepts are necessary both to effectively con-
duct any experiment or study involving flux analysis and
to understanding the primary metabolic modeling litera-
ture. They are often not intuitively obvious, and the first
two also receive rather little attention in the teaching or
research literature. The concepts are therefore explained
in the lecture notes, revisited throughout the Jupyter
notebooks and demonstrated with hands-on exercises.
For example, in Exercises 4.0-4.2 in the Day 4 Jupyter
Notebook, learners gain insight into Concept 1 by first
using a kinetic model to generate simulated labeling data
and then attempting to fit it using both correctly and
incorrectly specified network models using 13C-MFA. By
doing so, the learners can observe the difference in 13C-
MFA fits when using the correct or incorrect model spec-
ification and how this difference can be obscured even by
low levels of experimental noise. This allows instructors
to highlight important issues concerning data quality and
to discuss model selection, which is rarely addressed but
crucially important to metabolic modeling, as
discussed in Reference 36.

The subjects covered in the sections of each notebook
with the timeline for a 4-day workshop are given in
Table 2. On the first and second days, learners are given
an extensive introduction to kinetic modeling theory and
exercises before learning about MCA, FBA, and 13C-
MFA. We do this to allow learners to gain both a theoret-
ical and practical understanding of the dynamic ways
that matter moves through biochemical networks. The
hands-on experience exposes learners to the sometimes
surprisingly complex behavior of even simple networks
governed by systems of Ordinary Differential
Equations (ODEs). This is aimed at giving learners a
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TABLE 2 A table describing the

) 3 > Day Section(s)
contents of the interactive exercises

presented in this publication. Key 1 1.0-1.2

concepts (as outlined in the text). 2.0-2.2

3.0-3.1

4.0

5.0-5.1

2.0

3.0-3.4

4.0

3 1.0-1.2

2.0-2.2

3.0

4.0

5.0
4 1.0-1.2

2.0
3.0-3.3

4.0-4.2

5.0

strong sense of the dynamics of metabolic systems before
learning about steady-state approaches, in which simpli-
fications of the kinetic state allow powerful analyses in
13C-MFA and FBA. MCA is explored in the second and
third days and MCA calculations of flux-
and concentration-control coefficients are discussed.
Control coefficients are connected to the understanding

Contents Concept

Introduction to the Jupyterlab Interface.

Exploration of a simulation demonstrating first-
order kinetics.

Exercise on inferring kinetic parameters from 1
example datasets.

Exercise demonstrating the relationship between 1
model architecture and the information
contained in each datapoint.

Introduction to metabolic steady-state and the
utility of labeling data.

Introduction to reversible first-order kinetic
models

Exercise on inferring model parameters in the 1
presence of reversibility

Exploration of metabolic control analysis, 3

including calculation of flux and concentration
control coefficients as well as elasticities.

Comparison of results gathered in 3.0-3.4 “by 1
hand” with results from an automated MCA
script.

Metabolic control analysis with branching 3
networks, negative control coefficients, and
modeling a system with an incomplete network
description.

Kinetic modeling with Michaelis-Menten
kinetics.

Fitting a dataset using either first-order or 1
Michaelis-Menten kinetics in the presence or
absence of noise.

Kinetic modeling with reversible Michaelis—
Menten kinetics.

Using MCA to calculate response coefficients. 3

A kinetic simulation that incorporates labeling
dynamics, for comparison with 13C-MFA and
FBA.

Introduction to FBA modeling. 2

Introduction to FVA and randomized sampling 2
methods in FBA.

Introduction to 13C-MFA and comparison with 2,1
results from 1.0 to 1.2.

Discussion about incorporating metabolic
modeling into one's own work and/or research.

of reversible first-order kinetics participants gained from
the preceding kinetic modeling exercises. Lastly, partici-
pants are introduced to constraint-based methods by ana-
lyzing the same network structure using kinetic
modeling, FBA, and 13C-MFA. This highlights the differ-
ent inputs needed and the resulting outputs from each
technique. To our knowledge, this is the first such cross-
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Flux estimation/prediction

Steady-state

Metabolic —

Modeling
Topics

Analysis

d(A)

dt
d(B]

[Enzyme]

FIGURE 1

Kinetic modeling

dt

13C-MFA

Intensity

= kq[S] — k2[A]

ol

Conc.

= kq(4]

Time

Metabolic modeling topics covered in the resources presented in this study. A majority of the techniques covered—kinetic

modeling, FBA, and 13C-MFA—are used to estimate or predict fluxes through a metabolic network. MCA, on the other hand, is used to
analyze the relationship between enzyme activities/concentrations and metabolite or regulator concentrations on the flux through the
network. Within the flux estimation/prediction techniques, kinetic modeling can be used to estimate fluxes and metabolite concentrations in
systems whether they are in steady-state or not (dynamic systems where concentrations are still changing). The constraint-based modeling
techniques of FBA and 13C-MFA, on the other hand, rely on an assumption of metabolic steady-state, as does MCA.

comparison of different metabolic modeling techniques
presented in the teaching literature, and we believe this
will be of value to instructors introducing this material to
their students and trainees.

Interactive sliders and drop-down menus were incor-
porated into all of the notebooks to allow learners to
modify parameters, run simulations, and visualize their
results. This allows learners to expose the underlying
simulation code and for those with a modest background
in Python or general coding to see how the simulations
function and potentially to modify the model structures.
By default the code is not visible, making the notebooks
approachable for participants interested in using meta-
bolic modeling without engaging with the underlying
code. We believe that the incorporation of these interac-
tive modules into the notebooks will make the resources
presented in this publication useable by learners with lit-
tle to no coding knowledge.

In writing the notebooks, special attention was given
to commenting the Python code used to run the simula-
tions and interactive interface elements. We believe the
extensive commenting used in these notebooks, together
with the use of intuitive and easy-to-understand methods
for implementing the simulations will make the note-
books both easy for instructors to adopt and for learners
interested in the underlying code to understand it. This is
in contrast to software like COPASI that, while very pow-
erful, obscure the underlying simulation logic.”’

Installation and compatibility issues are commonplace
when using computational resources, particularly when
workshop or class participants are asked to run code or
software on their own computers. To further ensure max-
imal useability of these resources by instructors, detailed
installation instructions for Windows, MacOS, and Linux
systems with the specific version numbers needed to suc-
cessfully run all of the notebooks provided together with
the notebook files in the GitHub repository where they
are available for download.

3.2 | Implementation in workshop and
survey results

The Jupyter notebooks were incorporated into a four-day
workshop held at Michigan State University in May 2022.
Participants in the workshop included graduate students
and postdoctoral researchers. Each day of the workshop
consisted of 3h of lecture in the morning and a
three-hour hands-on period for computational exercises.
Due to time constraints and interest among the partici-
pants in constraint-based modeling approaches—
particularly label-assisted flux mapping using MFA—the
third day's notebook exercises were omitted and replaced
with the fourth day's exercises on constraint-based
modeling. The last day of the workshop was used for an
open-ended discussion about participants’ research aims
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TABLE 3
modeling techniques.

Pre-workshop

Question median

I feel confident in applying and incorporating 2
metabolic modeling techniques to my
research question(s).

I feel confident in evaluating the results of a 2
metabolic modeling study or a study that
incorporates metabolic modeling.

I feel confident in identifying metabolic 2
modeling techniques and software that I can
apply to my research question(s).

I understand the purpose(s) of metabolic 4
modeling.

I can describe kinetic metabolic modeling, 3
what information it can provide, and its
limitations.

I can describe metabolic flux analysis, what 3
information it can provide, and its
limitations.

I can describe flux balance analysis, what 2
information it can provide, and its
limitations.

I understand the data types I would need to 2.5
carry out kinetic metabolic modeling.

I understand the data types I would need to 2.5
carry out metabolic flux analysis.

I understand the data types I would need to 2
carry out flux balance analysis.

I can name the language(s) or software 2
package(s) I would use to incorporate
metabolic modeling into my own research.

I can critically evaluate the application and 3

results of metabolic modeling in publications
and presentations relevant to my area of
research.

Quantitative pre- and post-workshop survey results evaluating learners' self-assessed confidence and competence in metabolic

Post-workshop Significant
median improvement?*
3 Not significant
3 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

4 Significant

3Statistically significant improvement was defined by the rejection of the null hypothesis by the one-sided Mann-Whitney U test®® at a = 0.05.

and how they could incorporate what they learned in the
workshop into their own work. For instructors interested
in incorporating not only the computational resources
developed for the workshop, but also all or portions of
the lecture material, detailed lecture notes have been pro-
vided in the Lecture Notes of Data S1. The details of the
material covered in each day of the workshop can be
found in the Lesson Plans of Data S1.

The pre- and post-workshop survey results suggest
that participants felt they gained greater confidence in
and knowledge of metabolic modeling over the course of
the workshop (Table 3). Our survey evaluated partici-
pants’ self-assessed confidence and competence but did

not ask participants to attribute their comprehension
gains to the lecture or hands-on components. In a free-
response question (“What did you find useful about the
workshop?”), one participant responded, “Understanding
what goes into metabolic modeling, learning how to criti-
cally appraise these models in published literature, and
beginning to learn how to implement them into our own
projects.” In response to that same question, another par-
ticipant focused more specifically on FBA: “The hands-
on use of cobrapy was very helpful. This helped me
understand how one goes about metabolic modeling.” It
should be noted, however, that the sample sizes for the
study were small and we had fewer respondents in
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the post-workshop survey than the pre-workshop survey
(N =12 in the pre-workshop survey and N =7 in the
post-workshop survey). Because of this, the results may
be skewed due to survivorship bias from learners who
were either no longer interested in the topic or unhappy
with the presentation of the material leaving and not par-
ticipating in the post-workshop survey. All survey instru-
ments can be found in the Survey Instruments of
Data S1.

Multiple respondents noted that they would have
liked to have worked with real data sets in the exercises
rather than simulated ones. Given the modifiability and
extensive annotation of the notebooks provided, we
encourage instructors using the provided resources to
add analyses of real datasets that are relevant to their spe-
cific audience. We believe this will help provide real-
world context for learners as they carry out the exercises.

Although we have packaged and used the materials
presented in the context of an intensive workshop, we
believe the materials can be adapted to a variety of teach-
ing circumstances. The Jupyter-based simulations could
be used for computer lab sessions in a semester-long
course, for example, or used as an interactive demonstra-
tion in a lecture setting. With the relevant theory taught
beforehand, these resources can also be appropriate for
undergraduate learning. As noted, the extensive annota-
tion of the code paired with the easy-to-use graphical
interface for the exercises also makes them suitable for
both learners with extensive and with no prior knowl-
edge of programming. For individuals with some prior
training in biochemistry, these resources may also be
used as a self-teaching tool in order to get exposure to
metabolic modeling. We encourage readers using these
resources to set aside 2 to 3 h for each set of lecture notes
and lesson plans and to engage with the references pro-
vided in order to gain the context needed to properly ben-
efit from the interactive exercises In a workshop or
classroom setting, the necessary background can instead
be disseminated to students through a pre-exercise lec-
ture or discussion.

4 | CONCLUSIONS

Recognizing the absence of resources for teaching the
major areas and techniques of metabolic modeling and
flux analysis in an integrative fashion, we have developed
a set of resources that should be readily adoptable by
instructors, students, and researchers alike to teach and
learn. By emphasizing the legibility and cross-platform
useability of our code, we hope the resources presented
in this study can be used and incorporated by the broader

teaching community into other workshop and class
settings.
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