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Abstract—Safety and resiliency are essential components of
autonomous vehicles. In this research, we introduce ROSFI, the
first robot operating system (ROS) resilience analysis method-
ology, to assess the effect of silent data corruption (SDC) on
mission metrics. We use unmanned aerial vehicles (UAVs) as a
case study to demonstrate that system-level parameters, such
as flight time and success rate, are necessary for accurately
measuring system resilience. We demonstrate that downstream
ROS tasks such as planning and control are more susceptible
to SDCs than the visual perception stage in the perception–
planning–control (PPC) compute pipeline. This observation only
becomes apparent when we consider the complete end-to-end
system-level pipeline, as opposed to isolated compute kernels, as
previous work does. To enhance the safety and robustness of
robot systems bound by size, weight, and power (SWaP), we offer
two low-overhead anomaly-based SDC detection and recovery
algorithms based on Gaussian statistical models and autoencoder
neural networks. Our anomaly error protection techniques are
validated in numerous simulated environments. We demonstrate
that the autoencoder-based technique can recover up to all failure
cases in our studied scenarios with a computational overhead of
no more than 0.0062%. Finally, our open-source methodology
can be utilized to comprehensively test the robustness of other
ROS-based applications. It is available for public download
at https://github.com/harvard-edge/MAVBench/tree/mavfi.

Index Terms—Anomaly detection, resilience, robot operating
system (ROS), silent data corruption (SDC), unmanned aerial
vehicle (UAV).
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I. INTRODUCTION

S ILENT data corruption (SDC) has become an important
problem for computing [1]. It has shown a significant

threat in server scale systems [2], [3]. However, there are
emerging application areas where SDCs’ effects extend beyond
just computational reliability into safety. Such an emerging
area is autonomous vehicles where safety and reliability are
critical.

Prior works have studied SDCs in the context of
autonomous cars [4], [5]. However, prior work has yet to
carefully examine the system-level effects of the middleware
that orchestrates the entire perception, planning, and control
(PPC) flow, where resiliency can be baked in to ensure
SDC detection and recovery. To this end, we focus on
the system-level implications of fault injection (FI) on the
robot operating system (ROS) using unmanned aerial vehicles
(UAVs) as a proof of concept vessel, as UAVs are agile and
highly sensitive to real-time input. UAVs are predicted to
have a significant market shortly due to their diversity in
applications and uses [6], [7]. Nevertheless, practical safety
considerations, such as performing unmanned tasks safely
and without collision, impede the wide adoption of these
safety-critical applications in many real-world scenarios. SDCs
caused by external radiation [8] and voltage noise [9] in the
computational element like the computing subsystem present
a major threat to the safe deployment of UAVs [10], [11].

There are multiple error mitigation techniques, including
dynamic verification [12] and redundancy [13] at the hardware
or software level to improve AVs’ resilience. Although current
methods prove their effectiveness, they face impracticality
when applied to size, weight, and power (SWaP)-constrained
AVs like UAVs, primarily due to the constraints imposed
by power requirements and the physical dimensions of UAV
systems. Recent software techniques [14] for the resilience of
convolutional neural networks (CNNs) on GPU do not apply to
UAVs that typically do not have access to power-hungry GPUs
onboard. Moreover, UAVs operate under stringent constraints,
including limited onboard battery capacity, which imposes
strict limitations on the total flight duration. Therefore, UAVs
need a lightweight fault mitigation technique to prevent SDC
from detouring or even crashing the UAV without compromis-
ing flight performance and availability. To this end, we set out
to answer three fundamental questions.
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Fig. 1. End-to-end PPC computing paradigm. Each PPC stage contains
multiple kernels, and we study the safety and resilience of the end-to-end
pipeline.

1) What is the SDCs’ impact on system-level autonomy
metrics, such as flight time, energy consumption, and
mission success rate (SR) for autonomous aerial robots
such as UAVs?

2) Could conventional single, isolated-kernel SDC anal-
ysis provide similar insights as our end-to-end fault
characterization based on system- and application-level
metrics?

3) How to enhance the safety and resilience of an
autonomous robotic system against SDCs with a
lightweight mitigation technique under SWaP constraints
embedded inside ROS?

To answer the first and the second question, we propose
system-level metrics for evaluation and perform extensive fault
characterizations (Section IV) on a real physical ROS-based
autonomous system. The autonomous UAV compute consists
of an end-to-end PPC pipeline (Fig. 1) that generates flight
commands based on the environment in real time. The PPC
pipeline is the decision-making center for a UAV to maneuver
safely. An SDC could cause a UAV to detour or even crash. To
analyze the impact of SDCs, we adopt the bit-flip model for
FIs into the UAV’s PPC pipeline and obtain quality-of-flight
(QoF) metrics to quantify the impact of the faults on safety at
the end-to-end whole application level.

Our findings show that application-aware metrics are essen-
tial for the resilience analysis of robotic applications. Analysis
focusing on an individual computing stage without consider-
ing inter-kernel interactions leads to suboptimal insights and
misguided conclusions. Prior works [15], [16], [17], [18] rely
on the SDC rate to determine the vulnerability of a single
compute kernel. However, a high SDC rate at a kernel-level
may have a negligible impact on the QoF metrics.

For the third question, we are interested in improving UAV’s
safety and resilience with a lightweight mitigation technique.
To this end, we propose two software-directed and lightweight
enhancements for the resilience of UAV systems (Section V).
Because agile robots like UAVs are constrained by SWaP,
lightweight solutions are necessary. We perform data prepro-
cessing to extract UAV’s kinetics by calculating the delta
value of the inter-kernel states. Based on the delta values, we
perform two anomaly detection techniques. First, we perform
a Gaussian-based anomaly detection (GAD) and recovery
mechanism (Section V-C). This technique features a Gaussian-
based range detector to exclude outliers. Second, we use an
autoencoder-based anomaly detection (AAD) technique for
improved UAV resilience (Section V-D). AAD adopts a neural

network-based autoencoder to learn normal UAVs’ kinematics
and detect anomalies according to the reconstruction error of
the input delta values. We show that our application-aware
error detection and recovery techniques save energy by up to
1.91× than traditional redundancy-based hardware solutions
[e.g., dual modular redundancy (DMR) and triple modular
redundancy (TMR)] that increase the weight and form factor
of UAV and lead to performance overheads.

We evaluate the effectiveness of the two detection and
recovery techniques across four vastly different types of
environments on two computing platforms. Our experimental
results demonstrate that the Gaussian-based technique recovers
up to 89.6% of failure cases, and the autoencoder-based
can recover all failures in the best-case scenario. Regarding
QoF metrics, the Gaussian-based technique can recover the
SDC-degraded flight time by up to 63.5% and 73.0% for
the autoencoder-based technique. Furthermore, our measured
overhead is less than 0.0062%. Moreover, our end-to-end fault
analysis framework is more generally applicable to other types
of (U)AVs.

In summary, the contributions of this work are as follows.
1) We present an end-to-end ROS-based application-aware

resilience analysis framework ROSFI to analyze robot
applications’ fault tolerance characteristics with proper
metrics. ROSFI is seamlessly integrated with the ROS
ecosystem and can be adapted for various ROS-based
applications.

2) We conduct fault tolerance characterizations of the
PPC pipeline from both kernel-level and system-level.
We show that application-aware metrics are essential
to understanding kernel vulnerability and fault’s impact
compared to the conventional isolated analysis.

3) We present two low-cost anomaly error detection and
recovery schemes and evaluate them on different UAV
configurations. By integrating anomaly error detection
and recovery in ROS, We demonstrate that SDC impact
on safety can be rectified in real time with negligible
overhead.

II. BACKGROUND AND MOTIVATION

Safety Standards: Many efforts have been dedicated to
autonomous vehicle safety [19], [20]. The safety standard
ISO 26262 [21] has been developed to provide guidance and
safety requirements for vehicle and their systems. There are
also online safety protection hardware systems developed for
vehicles, such as the NXP FS4500 system for functional
safety measurement. A variety of fault tolerance analyses has
been performed for the computing system [4], [22] of AVs.
Unfortunately, to date, there are no comprehensive standards
for autonomous UAV assessment. Prior works mainly focus on
evaluating learning-based navigation system [23], [24], [25].
However, the PPC compute paradigm-based UAV system is
widely adopted in UAV systems nowadays, and its fault
tolerance has not been adequately explored. Therefore, we take
the first step to explore how SDCs propagate through the PPC
pipeline and impact the safety of UAV systems. In this work,
we define UAV reliability as the fault tolerance of autonomy
kernels and UAV safety as the QoF at the application level for
mission execution.
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Fig. 2. System stack for a UAV. UAVs are complex cyber–physical
systems with strong interdependencies between the computing and physical
components. We focus on how faults in the companion computer affect the
rest of the system.

System Layer: To understand how to address safety and
resilience in UAVs, we must understand their complex system
configuration. To this end, Fig. 2 presents the software–
hardware stack of a UAV system. The system layer includes
both ROS and Linux. ROS is the commonly used “operating
system” to provide communication functions and resource
allocation for robotic applications. Despite its name, ROS is
not an operating system but a collection of robotics middle-
ware and tools aimed at managing cyber–physical systems
by providing services for heterogeneous computing, low-level
device control logic, and message-passing between processes.
ROS consists of multiple ROS nodes, ROS services, and a
ROS master to support the functionalities and communica-
tions [26], [27]. Underneath ROS, the Linux system maps
workloads to compute units and schedules tasks at runtime.
Each ROS node is treated as a process that is scheduled to a
thread on CPU cores.

Hardware Layer: This layer consists of sensors, a compan-
ion computer, and a flight controller. The companion computer
is used to execute the PPC kernels. These kernels usually
act as ROS nodes and run on a general-purpose processor
(e.g., CPU). Unlike autonomous vehicles, UAVs are limited
in computing resources and energy budget, and thus, it is
less common to equip UAVs with power-intensive GPU.
The companion computer would generate high-level flight
commands (e.g., velocity in x, y, and z directions) in response
to the sensor readings. The flight controller converts the high-
level flight commands to low-level actuation commands to
control and stabilize the UAV. In this work, we consider
the faults in the companion computer and not the flight
controller. The former determines the flight commands based
on the real-time sensor readings, while the latter executes the
commands. For instance, a corrupted yaw rotation generated
by the companion computer could direct the UAV to point
toward an obstacle and cause collisions. Meanwhile, the flight
controller only executes the given commands without knowing
the world models.

Algorithms: There has been significant advancement in
perception, localization, mapping, and deep learning. Among
all autonomy paradigms, the PPC computational pipeline is a
widely used system [28], [29], [30]. In the PPC pipeline, the
perception stage takes the sensor data and creates 3-D models
to provide a volumetric representation of space, such as a

TABLE I
COMPARISON OF FI TECHNIQUES

point cloud [31] and occupancy map [32]. The 3-D models are
then fed into the planning stage to determine a collision-free
trajectory by running a motion planner [33]. Finally, based on
the UAV’s dynamics, the control stage follows the planned
path through controllers [34].

III. ROS FAULT INJECTION

To analyze SDCs’ impact on ROS, we first and foremost
need an FI framework in the ROS middleware for injecting
faults into the end-to-end UAV application pipeline to assess
their impact systematically. This section presents ROSFI that
supports FI with QoF metrics for evaluation.

A. Fault Injection Method Choices

Faults can be injected and simulated at different levels
of the stack, ranging from low-level RTL [40] to high-level
software [4], as shown in Table I. Although RTL simulation
can accurately capture logic errors at the logic or gate levels,
it requires an extremely long simulation time. In addition, it
needs the RTL design or netlist of target processors, which is
normally unavailable. On the other hand, software-level error
injection has been widely utilized for system analysis with
large vulnerability exploration space, showing significantly
shorter simulation time and wide error cover range [41].

We adopt a software-level FI method to support system-level
analysis, which aligns with previous fault tolerance studies
for AVs by NVIDIA [4]. Software-level FI presents the best
approach for an end-to-end study of the UAV pipeline; end-
to-end implies the flow of data from the perception stage to
the planning and control stages.

We assume that faults injected in ROSFI can corrupt the
architectural states. Memory and caches are assumed to be
protected with error correction code (ECC). Each injected fault
is characterized by its location and the injected value [4]. The
faults injected into the architectural states of processors can
manifest as errors in the inputs, outputs, and internal states
of application-level ROS nodes. ROSFI can directly inject
errors in ROS node outputs by corrupting the corresponding
variables based on hardware layer results. These variables
are ultimately stored in different levels of storage hierarchies.
Single- or multiple-bit faults cause corruption of variables
when not masked in hardware. Hence, faults are injected into
these memory units, and the application-level variables are
corrupted accordingly to emulate the faults.

The need for a software-based approach is justified by
Fig. 3, which demonstrates the FI execution time of single-
kernel and UAV experiments at different layers. One UAV
run includes hundreds of single-kernel executions for the UAV
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Fig. 3. Comparison of techniques at layers of abstraction. Performing end-
to-end analysis requires fast execution time.

autonomous navigation experiments, which take 5 min per run
or 3.48 days per scenario (i.e., 1000 runs) with our software-
level execution. Consequently, it is infeasible for extensive
fault analysis involving thousands of FIs at the lower levels of
the abstraction layers.

B. ROS Fault Injector Implementation

Fig. 4 illustrates the FI infrastructure of a ROS-based UAV
system, including environment and UAV simulation on the
host simulator and the UAV’s PPC pipeline integrated with
ROSFI on the companion computer. Each PPC stage contains
one or multiple ROS nodes, and each ROS node comprises
a single compute kernel, such as point cloud generation or
motion planner. ROS node communicates through ROS topics
(one-to-many communication) and ROS services (one-to-one
communication). The ROSFI is built as a ROS node to
maintain our framework’s portability, which leverages the ROS
communication protocol and Linux system call.

To establish UAV experiments, we leveraged an open-source
ROS-based UAV simulator, MAVBench [28]. MAVBench
includes unreal engine (UE) to simulate the surrounding envi-
ronment, AirSim simulator [42] to capture a UAV’s dynamics
and kinematics, and PPC computational pipeline to generate
flight commands in real time. The AirSim interface allows the
PPC pipeline to access the sensor data and send back the flight
commands to the flight controller in the AirSim simulator.
The PPC pipeline processes the sensor data and generates
flight commands continuously until the mission is complete.
Finally, the mission QoF metrics are recorded. Although we
use UAVs as an example in our framework, the fault analysis
methodology is broadly applicable to any ROS-based use case.

Fig. 4 also illustrates an error propagation example within
the system. For instance, when a fault is injected at the Motion
Planner kernel and manifests as a corruption of execution
results (i.e., Multidoftraj and Trajectory), which eventually
corrupts a flight command and impacts the overall QoF. The
framework works on x86/Linux platforms. Fig. 5 shows the
instruction-level FI details of ROSFI. Each oval node is a
ROS node. The figure illustrates the FI sequence using an
example for ROS node 2. During the system initialization
phase, the ROSFI node publishes its process ID (pID) to all
the other nodes and subscribes to their pID. Thus, the ROSFI

Fig. 4. Overview of the end-to-end application-aware ROSFI resilience
analysis framework.

Fig. 5. Design details of the ROSFI FI node and its interactions with other
ROS nodes.

node can attach and manipulate the other ROS nodes in the
system via the ptrace system call supported by Linux. The
ptrace system call allows synchronization and manipulation
of processes’ register files with much less overhead than the
ROS communication protocol.

ROSFI is the first FI framework built on top of ptrace
system call and ROS. It emulates SDCs that occur in the
processor’s functional units (e.g., arithmetic and logic units)
by introducing transient bit-flips at the source or destination
register of only one dynamic instruction, which is known as
instruction-level FI [43], [44], [45]. We do not consider faults
in the memories or caches as they can be protected by ECCs
in safety-critical applications. ECC is used to protect memory
for robots that use TX2-level hardware (as considered in this
article). We also assume no faults in the processor’s control
logic, which constitutes only a small portion of the processor.
This is in line with previous fault analyses [16], [17], [46].
Hence, while our approach does not cover all the FI sites, it
provides us with quality early-stage, end-to-end insights.

To inject faults, ROSFI selects a random time point to
pause all the nodes during the simulation of real-time ROS
applications. All ROS nodes’ execution will be stopped before
FI, ensuring that every node follows the original executive
order. After all the nodes have stopped, the general-purpose
and floating-point register files of the target node (i.e., node 2)
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TABLE II
COMPARISON BETWEEN ROSFI AND PRIOR FI METHODS

are fetched via the ptrace system call, with the instruction
pointer register decoded to access the current operating regis-
ter. The number of registers being accessed by an instruction
ranges from 0 to 2. If the value is zero, ROSFI resumes all
ROS nodes’ execution and repeats the above steps to obtain a
new instruction. For more than one register under operation,
ROSFI randomly chooses one register to inject. For the source
register, according to the user-defined injection configuration,
a single bit-flip or multiple bit-flips are introduced. For the
destination register, before FI, ROSFI would step toward the
next instruction to allow the current instruction to finish the
write, which avoids the corrupted destination register being
overwritten by the current instruction. After FI, the corrupted
register is written back to the target node’s register files, and all
nodes are notified to resume the execution. The faults injected
into the registers of the processors could manifest as errors
in the inputs, outputs, and internal states of the computational
kernels. To better understand error propagation among PPC
stages, ROSFI can inject errors into the inter-kernel states (the
input of the other kernel) via source-level FI [4].

ROSFI can inject either single or multiple bit-flips simulta-
neously. In a previous study [47], it was shown that a single
bit-flip is good enough for fault analysis since it can capture
first-order vulnerability characteristics as well as multiple-bit-
flips analyses. Therefore, for the analysis results in this article,
we mainly focus on a single bit-flip. For simplicity and clarity,
we refer to single-bit-flip FI in the rest of this article unless
multiple bit-flips are specified.

ROSFI has the potential to extend to cover the memory
and control logic of the processor. For memory, in this
article, we assume memory and caches are protected with
SECDED codes. The faults injected in instructions may result
in accessing the wrong data for computation, thus corrupting
the variables. Faults in memory will result in corrupted com-
putation data as well. These variables are ultimately stored in
different levels of storage hierarchies (e.g., registers or caches).
For control, since ROSFI obtains the whole instruction, it is
able to modify the opcode of the instruction, thus the control
logic.

C. Comparison to Prior Art

SDCs and resilience analysis have been studied for single
kernels on CPU and GPU, as shown in Table II. However,
prior methods [15], [16], [17], [18] focus on the SDC rate
of a single kernel, which does not directly translate to the
impact of SDCs on UAVs’ QoF metrics. On the one hand,

more recently, DriveFI [4] explored the resilience impact of
SDCs for autonomous driving systems on power-hungry GPU
platforms.

However, there currently does not exist an FI framework
to analyze the resilience of ROS-based applications where the
ROS nodes typically run on CPU with ROS [49]. Furthermore,
a difference between prior autonomous vehicles resilience
analysis studies and UAVs is that the compute environment
of a UAV diverges from the recent trend in autonomous
vehicles. While we find that most recent systems and tools are
migrating to GPUs for increased parallel processing and DNN
acceleration (and thus, may require GPU-centric resilience
analysis tools, such as SASSIFI [15] or NVBitFI [50]), UAVs
continued to operate in the CPU realm for flexibility and lower
energy needs. Currently, UAVs are intrinsically associated with
CPUs due to the reliance on ROS (Section II).

IV. END-TO-END PPC PIPELINE FAULT TOLERANCE

This section presents the fault tolerance analysis at two
granularity levels, i.e., single-kernel level and application-
aware system-level performance. We explore how errors would
impact a single kernel and propagate through the whole PPC
pipeline to affect UAV QoF metrics. Through the comparison,
we observe that isolated, single-kernel analysis (as is common
practice) provides different or even opposite insights on the
vulnerabilities of kernels than the application-aware analysis,
which shows that end-to-end application-aware fault analysis
is crucial to capturing SDCs’ impact at the system level.

Metrics: For single-kernel level analysis (Section IV-A),
we use benign, crash, hang, and SDC rates to evalu-
ate the resilience of representative autonomy kernels. For
application-level analysis (Section IV-B), we use UAV QoF
(i.e., mission SR, time, and energy) to evaluate end-to-end
system performance and resilience characteristics.

A. Kernel-Level Fault Tolerance Analysis

To prove the importance of application-aware fault analysis,
we first conduct the single-kernel analysis with instruction-
level FI. The single-kernel FI flow is similar to prior FI
works [51]. We show that conducting similar analyses in a
complex PPC pipeline can lead to misguided conclusions,
specifically for UAV systems.

We evaluate the common kernels in the PPC pipeline,
including OctoMap [52] for the perception stage, three
sampling-based motion planners [53] (i.e., RRT, RRTConnect,
and RRT∗) for the planning stage, and PID controller [28]
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Fig. 6. Conventional isolated single-kernel analysis.

for the control stage. For each kernel, we perform instruction-
level FI for 5000 runs in total. Each kernel is run without
FI to obtain the error-free golden results. With FI, there are
four outcomes: 1) execution results same as the golden results
(i.e., benign); 2) execution exceptions (i.e., crash); 3) infinite
execution time (i.e., hang); and 4) execution results different
from the golden results (i.e., SDC) [54].

From a single-kernel perspective, the perception stage is
the most critical when an SDC manifests. Fig. 6 shows that
most compute kernels are more than 25% benign error-
tolerant except for OctoMap at the perception stage. This is
because SDC could easily manifest at the output (Octree)
with noisy values for the OctoMap kernel. Hence, OctoMap
is less resilient than sampling-based planning and PID control
algorithms. On the other hand, the path planning kernels (RRT,
RRTConnect, and RRT∗) are all sampling-based algorithms,
which are known for their high efficiency and performance
for low-dimensional planning. Injected faults should not affect
output results as long as the corrupted waypoint is not
sampled. The more waypoints we sample, the higher the
probability the planning algorithms could sample a corrupted
waypoint, resulting in SDC. RRTConnect runs two RRT
algorithms from both start and goal positions, ending up with
fewer sampled waypoints than RRT. RRT∗ is the optimized
version of RRT algorithm to find the shortest path by selecting
even fewer waypoints than RRT and RRTConnect, making
RRT∗ having the least SDC. The PID algorithm at the control
stage also experiences around 25% benign cases as the PID
has a simple self-healing mechanism to clip data outside of a
bounded range.

B. End-to-End, System-Level Fault Tolerance Analysis

Compared to the single-kernel fault analysis, we next
conduct application-aware fault analysis based on our ROSFI
framework. This end-to-end system-level characterization
investigates how kernel errors would propagate through PPC
pipelines and impact UAV performance. We assess the
performance of the UAV using QoF metrics, encompassing
key aspects such as flight SR, distance, time, and energy.
Ultimately, these metrics matter from an “application” or
system-level perspective. The SR quantifies the ratio of suc-
cessful missions to the total number of flight runs. We define
a mission as successful when the UAV reaches its destination
without encountering any collisions. Conversely, a failure
occurs when the UAV either collides with obstacles or is
unable to identify a viable path to its intended destination.
Flight time represents the total duration required for the
UAV to reach its designated destination. Similarly, flight

energy signifies the overall energy expended by the UAV to
reach the destination. Since rotors dominate mission energy
(∼95% [28]), flight energy positively correlates with flight
time. It is worth mentioning that with reduced single-mission
flight energy (E), the number of completed missions (N) under
a battery charge (Eb) and SR will increase through N = SR ×
(Eb/E).

We adopt the instruction-level fault injector supported by
ROSFI to corrupt the PPC kernels. In our default settings,
the PPC pipeline includes Point cloud generation, OctoMap,
Collision check for perception, RRT* for planning, and PID for
control. Two other common planning algorithms are evaluated
at the planning stage, i.e., RRT and RRTConnect. Each kernel
has experimented with 100 FI runs. Besides FI, 100 error-free
experiment runs are defined as Golden. In each experiment,
all kernels in the PPC pipeline would be launched by ROS
to complete a given navigation task. Only one of the kernels
would have a one-time FI during each flight mission for
FI runs. We achieved a 4.45% error margin with a 95%
confidence level with 100 experiment runs per configuration.
Without loss of generality, we limit our discussion to a
navigation task in the Sparse environment here. More results
are demonstrated in Section VI.

Counter to the single-kernel perspective, from an end-to-
end application perspective, the perception stage is the least
critical when an SDC manifests. Prior works generally tend to
focus on error resilience of the perception stage [1], [14], [55].
These are aligned with the single-kernel analysis, which shows
that OctoMap, the main algorithm for perception, has the
highest percentage of SDC among the evaluated kernels.
However, as we show, for the perception stage both Point
Cloud Generation and OctoMap have little to negligible
impact on the system metrics, as shown in Fig. 7.

The reason why OctoMap has the least impact on QoF
metrics is that even if an occupied voxel is corrupted and
mistaken as a free voxel, the presence of all other surrounding
voxels as occupied ensures that the UAV can still accurately
determine the locations of obstacles. This holds as long as
the resolution of the OctoMap is adequate, allowing the UAV
to make the correct decisions regarding its flight path. This
counter-intuitive insight underscores the significance of con-
ducting comprehensive end-to-end analysis.Collision Check is
the critical kernel in the perception stage since a false alarm
can lead to trajectory replanning or collisions.

From the end-to-end application-level perspective, planning,
and control are more critical than perception, counter-intuitive
to the single-kernel analysis. While the SDC percentages
of planning and control kernels are lower than OctoMap,
corrupted outputs (e.g., yaw, roll, pitch, and velocity) from
these two stages can directly lead to a detour or crash of the
UAV. From Fig. 7(a), even though the average flight time is
similar, the range of RRT, RRTConnect, RRT*, and PID is
much wider than Octomap and Golden. The error propagation
of the corrupted execution results could greatly increase the
flight time by up to 57.3% and even lead to degradation of
SR by up to 8% as shown in Fig. 7(c). Hence, the planning
and control stages are more critical than the perception stage
from an end-to-end application perspective.
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Fig. 7. Application-aware system-level end-to-end resilience analysis (flight time, energy, and SR) with ROSFI framework. (a) Flight time. (b) Flight energy.
(c) Flight SR.

Fig. 8. End-to-end fault tolerance analysis. (a) Flight time. (b) Flight SR.

C. Error Propagation Across PPC Stages

To understand error propagation across kernels, we ana-
lyze the impact of corrupted inter-kernel states in the PPC
pipeline. This provides insights to improve the PPC kernels
and facilitate error detection and mitigation in Section V. We
do source-level FI for this inter-kernel error propagation study
with 100 navigation task runs for each evaluation.

As shown in Fig. 8, inter-kernel states exhibit different
resilience to faults and have diverse impacts on UAV QoF
metrics based on their functionality. For example, in the
perception stage, future_collision_seq is much more robust
than time_to_collision, whose QoF metrics noticeably vary
when compared to the golden run. Faults in time_to_collision
can skew the UAV’s perceived distance to obstacles. Similarly,
data corruption of (x, y, z) and yaw of waypoints planned
by motion planner can lead to a wrong direction or crash
into obstacles, and faults in (vx, vy, vz) could make the UAV
fail to keep track of a trajectory. As a result, the distorted
trajectory leads to collision or increased flight time and
mission energy.

Bit-flips in different data fields have distinct levels of impact
on UAV performance. Prior works have evaluated data field
impact on the processor and neural network [1], and we
further corroborate this in end-to-end UAV systems from the
application-level perspective. We conduct source-level FI at
the float64 inter-kernel states (x, y, z), which contains 1 sign

(a) (b)

Fig. 9. Impact of FI at different data fields. (a) Flight time. (b) Bit-flip
analysis.

TABLE III
QOF METRICS WITH A DIFFERENT NUMBER OF BIT-FLIP INJECTIONS

bit, 11 exponent bits, and 52 mantissa bits. Faults in sign and
exponent fields have a greater impact on the UAV’s resilience
and result in increased flight time, energy, and failure cases, as
shown in Fig. 9(a). Faults in the sign and exponent will result
in a greater change in the inter-kernel states than faults in the
mantissa field. For example, a single bit-flip at the exponent
and sign could corrupt 1.38 to 0 and −1.38, respectively, as
illustrated in Fig. 9(b). The huge differences show that sign
and exponent fields are more critical to the UAV system when
an SDC manifests and propagates through the PPC pipeline.
We further leverage this insight in lightweight UAV anomaly
detection in Section V.

To compare single bit-flip with multiple bit-flips, we evalu-
ate the performance impact with multiple bit-flips FI as shown
in Table III. In this experiment, 100 FIs are performed for
1, 3, and 5 bits, respectively, at (ax, ay, az), which are the
output states of the planning stage. From 1-bit to 5-bits FI,
the average flight time and energy slightly increase by 6.2 s
and 3.9 kJ, respectively, and the SR decreases by 3%. Since
more bit-flips are more likely to affect the sign and exponent
fields, the value changes could be more dramatic with multiple
bit-flip FI. However, the slight differences between single bit-
flip and multiple bit-flips also show that single bit-flip can
capture the first-order vulnerability characteristics as shown in
the prior work [47].
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V. ERROR DETECTION AND RECOVERY

To enhance safety and resiliency, we further explore the
detection and recovery technique based on the observations
from ROSFI. As the conventional redundancy-based hardware
protection introduces significant overhead, we propose two
software-level low-overhead anomaly detection and recovery
schemes for UAVs. The proposed schemes detect anomalous
behavior of the inter-kernel states in the PPC pipeline and
cease the error propagation, ensuring UAV’s safety.

A. Overview of Detection and Recovery

Due to the low overhead and high effectiveness of anomaly
detection, it has been used to distinguish anomaly from normal
data distribution in many applications [56]. However, there is
no effective general anomaly detection technique for differ-
ent domains. Moreover, autonomous machines are complex
systems that typically involve multiple kernels’ heterogeneous
computing. It is infeasible to separate normal data from
anomaly based on the system’s input (e.g., sensor readings)
and output (e.g., flight commands). The heterogeneity also
makes it hard to extract information from the system for
anomaly detection. As a consequence, no prior work has
focused on anomaly detection to enhance the resilience of
autonomous aerial vehicles.

We propose two anomaly detection techniques to detect
SDC that could cause a safety hazard for UAVs, including
Gaussian- and autoencoder-based techniques. It is observed
that both techniques can greatly enhance the safety and
resilience of UAVs with a low computational overhead.
Fig. 10(a) shows the proposed anomaly detection and recovery
scheme for UAVs. According to the analysis in Section IV-C,
the inter-kernel states as shown in Fig. 8 are monitored for
the anomalous SDC. The monitored states pass through a data
preprocessing module to increase the detection performance
while further reducing the computational overhead. After
data preprocessing, the processed states go into either of the
proposed anomaly detection techniques for supervision.

Error recovery is a feedback loop from the detection
modules to the PPC pipeline. Once an anomalous behavior
is detected, an alarm signal will be raised by the detection
modules, triggering the recomputation of the corresponding
stage, which prevents the corrupted inter-kernel states from
propagating to the other kernels. The proposed detection and
recovery system can greatly increase the resilience of UAV’s
PPC pipeline against SDCs that degrade the safety and flight
performance of UAVs. Our approach focuses on SDC as
ROS node crash can be detected by the ROS system. The
ROS master node would restart the node automatically if it
crashes [57].

B. Data Preprocessing

In Fig. 10(a), the monitored inter-kernel states from the PPC
pipeline are processed in the data preprocessing block before
being sent to the anomaly detection block. Data preprocessing
has two steps, including data format transformation and delta
calculation. First, for data format transformation, the sign and
exponent bits of float64 states are transformed into 16-bits

(a)

(b) (c)

Fig. 10. Proposed anomaly detection and recovery scheme for UAV
computational pipeline. (a) Overview. (b) Gaussian-based. (c) Autoencoder-
based.

(a)

(b)

Fig. 11. Histogram comparison between the states’ value and delta after data
processing. (a) Histogram of the states’ value. (b) Histogram of the states’
delta.

integer states. Since SDC at the mantissa bits of float64 are
insignificant as shown in Section IV-C, only the sign and
exponent bits are monitored to reduce the detection overhead.
Second, the deltas of the incoming states are calculated. We
define delta as the number of value changes from the previous
time point to the current time point for an inter-kernel state.

Fig. 11 shows the insight of using the state’s delta for
anomaly detection. For most states, the value could have either
uniform or Gaussian distribution. However, the uniform value
distribution is not well suited to GAD, leading to very low
detection accuracy. The uniform distribution can be trans-
formed into a Gaussian distribution by calculating the states’
delta, leveraging the inter-kernel states’ temporal dependency.
Furthermore, the state’s delta range is much smaller than the
original data. For instance, as shown in Fig. 11, the range of
multi_x, multi_vx, and multi_ax states is reduced by 98%, 94%,
and 76%, respectively, making the differences between normal

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 14,2024 at 07:45:29 UTC from IEEE Xplore.  Restrictions apply. 



HSIAO et al.: SDC IN ROS: A CASE FOR END-TO-END SYSTEM-LEVEL FAULT ANALYSIS USING AUTONOMOUS UAVs 1045

(a) (b) (c) (d)

Fig. 12. Effectiveness of the proposed anomaly detection and recovery schemes in terms of flight time. D&R(G) and D&R(A) represent the Gaussian-based
and autoencoder-based schemes, respectively. (a) UE Factory. (b) UE Farm. (c) Sparse. (d) Dense.

(a) (b)

Fig. 13. Trajectories of the golden run, with FI, with both FI and error
detection and recovery. (a) FI in perception. (b) FI in planning.

Fig. 14. Worst-case QoF metrics with different error detection and recovery
stages (results normalized to golden run). (a) GAD and recovery (flight time).
(b) AAD and recovery (flight time).

and anomaly data even larger. Thus, data preprocessing can
increase anomaly detection performance while decreasing the
overhead of detection.

C. Gaussian-Based Anomaly Detection

Fig. 10(b) shows the design of the GAD. Each PPC stage
has a corresponding GAD that consists of several customized
GAD (cGAD) for each inter-kernel state. If the value of
an incoming state is outside the range of its normal data
distribution, its cGAD will send out an alarm. The alarms from
each cGAD are gathered for each PPC stage, respectively. An
alarm from a GAD would trigger the recomputation path of
its corresponding stage, stopping the error propagation to the
next stage.

The Gaussian model parameters (i.e., mean and standard
deviation) for each cGAD are estimated as follows:

Mk = Mk−1 + (xk − Mk−1)/k (1)

Sk = Sk−1 + (xk − Mk−1)(xk − Mk) (2)

where k is the number of samples, Mk is the mean value for
the k samples, and Sk is an auxiliary term used to compute
standard deviation σ . At initialization, we introduce and set
the terms M1 = x1, S1 = 0. The parameters are updated online
with the recurrence formulas above for new incoming data
xk [58]. For k ≥ 2, the standard deviation σ can be derived by
σ = √

Sk/(k − 1). Whenever the value of the incoming data is
n sigma away from the mean value, the alarm of the cGAD will
be raised. The number of sigma n is a configurable variable
that can be optimized based on the complexity of the flight
task and environment. To ensure the Gaussian models have
sufficient samples before starting anomaly detection, we first
have the model updated with error-free training environments.

D. Autoencoder-Based Anomaly Detection

Fig. 10(c) shows the AAD. The AAD block collects the
processed states from all PPC stages as input. An alarm
will be raised and triggers the recomputation of the control
stage if an anomaly is detected. The proposed autoencoder
comprises an encoder with three fully connected layers and
a decoder with two fully connected layers. The encoder has
an input layer of 13 neurons, a hidden layer of 6 neurons,
and an output layer of 3 neurons. The decoder has an input
layer of 3 neurons, which takes the compressed data from
the encoder, and an output layer of 13 neurons. The output
of the decoder represents the reconstructed input data. The
reconstruction error is the difference between the input and
output of the autoencoder. We use the mean squared error
during the unsupervised training as the reconstruction error. If
the reconstruction error is beyond the threshold at the inference
phase, the alarm will be raised. The threshold is the upper
bound of the reconstruction error in the error-free golden run.

Rather than a separate Gaussian-based detection mod-
ule for each PPC stage, we use a single autoencoder for
the whole PPC pipeline to leverage the correlation among
the inter-kernel states. Once an anomaly is detected, the
alarm triggers the recomputation of the control stage. In
this way, the autoencoder scheme achieves higher detection
performance while reducing the recomputation overhead as
shown in Section VII-D.
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E. Recovery Scheme

Once an anomalous inter-kernel state is detected, the recom-
putation path will be triggered to cease the error propagation.
The corresponding compute stage fetches the newest data from
the previous compute stage or sensor and regenerates the
results. Take the navigation task as an example. If an alarm
is raised in the perception stage, the stage starts to recompute
and fetch the newest RGB-D camera data. Then, Point Cloud
Generation, Octomap, and Collision Check kernels process the
data and generate results for the following stage. Similarly, if
an alarm is raised in the planning stage, the planning algorithm
will fetch the latest occupancy map from the perception stage
and plan a new trajectory. Finally, the flight command is
monitored at the control stage before being sent back to the
UAV. If an alarm is raised, the control stage will abandon the
current anomalous waypoint and fetch the next waypoint of
the trajectory, generating correct flight commands.

F. Anomaly Detection and Recovery on ROS

The anomaly detection and recovery scheme are built as a
ROS detection node. This node contains the data preprocessing
and anomaly detection functions (as explained previously).
The detection node subscribes to the topics containing the
inter-kernel states in the PPC pipeline as input and publishes
recomputation signals to the corresponding stages if the
detection function raises the alarm. The detection node can
thus continuously supervise inter-kernel states of the PPC
pipeline, avoiding error propagation among kernels and thus
increasing the resilience of UAV’s computational pipeline with
negligible overhead.

VI. EXPERIMENTAL SETUP

Hardware-in-the-Loop Simulator: We used a closed-loop
simulator as the experimental platform [28], including UE
to simulate the scenarios and AirSim to capture the UAV’s
kinematics. Sensors, including RGB-D camera and IMU, used
in the experiments, are common for UAVs. An Intel i9-9940X
CPU and an NVIDIA GTX 2080 Ti GPU are used as the
host machine to simulate environments and the UAV. The
companion computer has a CPU that takes sensory data and
generates flight commands for UAVs.

Training Environments: To create a training dataset for
the autoencoder-based technique, we built an environment
generator with configurable parameters (i.e., obstacle density
and size of obstacle). The obstacle density is defined as the
probability of a 10 * 10 grid spawned with an obstacle.
Each obstacle is a cuboid with n * n and infinite height
(n is in [1, 10]). [obstacle density, size of obstacles] is
defined as an environment configuration pair. We collect data
from randomized environments with the combinations of two
obstacle densities (0.05 and 0.2) and two sizes of obstacles
(3 and 5). Therefore, there are four configuration pairs in
total, and each is run 25 times. A random seed is used to
randomize the environment. For the Gaussian-based technique,
the Gaussian models are updated with the same error-free
training environments.

TABLE IV
FLIGHT SR IN FOUR EVALUATION ENVIRONMENTS

Evaluation Environments: The anomaly detection and recov-
ery schemes are evaluated in four environments, which are
unknown to the UAV. So we are not evaluating on training data.
The Factory and Farm are provided by UE, representing com-
mon navigation scenarios with blocks, walls, and hedges. We
generate the Sparse with [0.05, 3] and the Dense with [0.2, 5]
using our environment generator. The random seed is fixed.

Overheads: The QoF metrics do not include the FI time
since the ROS nodes are paused during FI. In terms of
simulation time, ROSFI only takes less than 5 ms for one-time
FI, which is negligible for a typical flight mission that takes
more than 100 s. For anomaly detection and recovery runs,
we quantify the overhead of Gaussian and autoencoder-based
techniques in Section VII-D.

VII. EVALUATION

To evaluate the anomaly detection and recovery scheme,
we run 100 error-free simulations for each environment as
the baseline (golden run). Then, we conduct 900 single-bit
injections at instruction level for each environment, including
300 runs for each setting (i.e., FI, detection and recovery
with Gaussian [D&R(G)], and detection and recovery with
autoencoder [D&R(A)]), as shown in Fig. 12. In each setting,
we have 100 FIs for each PPC stage. Each run includes a one-
time single-bit injection. A total of 1000 runs is chosen where
each run takes about 5 min. Even though ROSFI introduces
a negligible overhead of only 5 ms, the experiment time is a
limiting factor for the total runs.

A. Safety Metrics

Improvement of SR: Table IV shows the SRs of UAV flights
across four environments. In the FI runs, the SR drops 9.7%
in the Dense environment. Faults may easily cause collisions
or fail to find a collision-free path in complex environments.
In contrast, Farm is an obstacles-free environment. Even if
a UAV detours from its path, there are more feasible paths
toward the destination than a complex environment. With
the anomaly detection and recovery scheme, Gaussian- and
autoencoder-based techniques recover up to 89.6% and 100%
(fully recover) of failure cases, respectively. Generally, the
autoencoder recovers more failure cases than the Gaussian-
based scheme and increases the SR close to or the same as
the error-free runs.

Improvement of Flight Time: Fig. 12 shows the flight time
of all successful cases in Table IV across four environments.
Similar to Section IV-B, the FI runs result in a much wider
range of flight time than the golden run and increase the flight
time by 73.8%, 74.2%, 62.6%, and 93.3% in the worst case
for each environment, respectively. However, with GAD and
recovery, many outliers can be recovered, and the worst-case
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flight time is recovered by 56.4%, 63.5%, 49.0%, and 58.7%.
On the other hand, the autoencoder-based technique recovers
most of the outliers and can recover the worst-case flight
time by 64.2%, 68.4%, 57.8%, and 73.0%, outperforming the
Gaussian method.

Comparison of Gaussian-Based and Autoencoder-Based
Schemes: The autoencoder-based technique consistently out-
performs the Gaussian-based technique in SR and QoF
metrics. The reason is that the autoencoder can leverage the
correlation among the inter-kernel states; thus, it can detect the
subtle discrepancy of the states. However, the Gaussian-based
technique does not have correlation information among states.
Therefore, it can only detect each variable separately, which
may fail to detect anomalies if the corrupted data is still inside
the range of the normal data distribution.

We provide both methods in the ROSFI framework. The
Gaussian method serves as a practical and efficient solution
for anomaly detection. It requires minimal data collection
to update the standard deviation and mean values for each
inter-kernel state. This simplicity and real-time adaptability
are especially valuable in scenarios where immediate anomaly
detection is critical, as it minimizes computation and over-
head. The autoencoder method, while more effective in terms
of detection accuracy, necessitates offline training, making
it more suitable for scenarios where detection accuracy is
paramount and time constraints permit offline model training.
In essence, the choice to utilize both methods stems from prag-
matic consideration of the diverse needs in UAV operations.

Comparison of Environments: More dense environments
with a higher density of obstacles make it difficult to recover
from errors. For the Dense environment, a UAV has more
complex trajectories to follow and more dynamic actions in
response to the obstacles, making the range of the variable
distribution wider. The wider distribution increases the number
of false-negative detections. Thus, there is still a 20.1% gap
between autoencoder-based recovery results and golden for
the worst case. On the other hand, for the obstacle-free Farm
environment or Sparse, the autoencoder-based technique can
achieve a similar performance as the golden run.

B. Trajectory Analysis

To show the impact of faults and the effectiveness of our
detection and recovery schemes, we visualize UAV’s trajecto-
ries in the Dense environment. We present the trajectories with
the autoencoder-based technique, while the Gaussian-based
technique has similar results when successful.

Fig. 13 shows the scenario in which a single-bit injection in
the PPC stage can lead to a flight detour and how the detection
and recovery scheme improves the flight. Without FI (blue
curve), the UAV takes off at the start point and flies toward
the endpoint in the beginning phase. Then, when facing an
obstacle, it stops at a safe distance and replans a new trajectory
that flies back slightly and bypasses the obstacle.

When faults corrupt critical inter-kernel states, such as the
coordinate of a waypoint, the path may be distorted. The UAV
may not stop until it faces an obstacle (orange curve), which
causes the UAV to fly back or replan its trajectory. The more

often the UAV replans and detours from its path, the longer
it takes to reach the destination, which increases the flight
time by 21.9% and 24.5% for Fig. 13(a) and (b), respectively.
With the detection scheme, the corrupted waypoint will be
abandoned once an anomaly is detected. The alarm raised
by the detection module triggers the stage recomputation.
Therefore, the UAV would follow a better trajectory (green
curve) without detour, which recovers the QoF metrics.

C. Anomaly Detection and Recovery

To evaluate error detection effectiveness in different PPC
stages, we experiment with the anomaly detection and recov-
ery scheme for certain compute stages.

Single-Stage Detection and Recovery: We first experiment
with anomaly detection and recovery by only detecting a
single pipeline stage. As shown in Fig. 14, the Gaussian-based
technique recovers the flight time by 16.2%, 29.9%, and 34.7%
and the autoencoder-based technique recovers the flight time
by 20.1%, 59.3%, and 73.2% for PPC, respectively, along with
the SR improvement and flight energy savings, in Factory
environment. A similar trend has been demonstrated in the
other three environments. Both techniques show that the flight
time can be recovered the most by detecting the faults that
happened in the control stage. The reasons are twofold. First,
the planning and control stages are more vulnerable to faults
from the system perspective. Second, any error propagated
from previous stages has to pass through the control stage
before corrupting the flight command. The evaluation of the
individual stage lines up with the analysis in Section IV-B.

Multistage Detection and Recovery: To understand how
different stages affect anomaly detection and recovery, we
apply the scheme to multistages, namely, the planning-and-
control (PC) stage and all PPC stages. The Gaussian method
recovers the flight time by 65.1% and 76.5%, and the
autoencoder-based recovers by 74.8% and 87.1% for PC and
PPC, respectively, along with the SR increase and fight energy
savings, in Factory environment. For the Gaussian method,
detecting the PC stage significantly outperforms the single-
stage detection and recovery in all environments. For the
autoencoder-based technique, detecting the PC stage achieves
slightly better performance than only detecting control in
Factory, Farm, and Sparse environment. However, in Dense
environment, detecting the PC stage with the autoencoder-
based scheme greatly outperforms detecting the control stage
by 47.4%. Results indicate that a UAV achieves similar
or higher performance by monitoring more stages, and the
performance benefit is greater for complex environments.

D. Compute Overhead

Software-Level Protection: We study the overhead of
the proposed software-level anomaly detection and recovery
scheme across the tested environments. The overhead is the
total detection and recomputation time for each mission.
Table V shows that the overall overhead of the autoencoder
is much smaller than the Gaussian-based technique. The
overhead of the Gaussian-based technique is dominated by
the recovery of perception and planning stages, which is
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TABLE V
COMPUTE TIME OVERHEAD OF DETECTION AND RECOVERY

Fig. 15. Comparison of DMR, TMR, and the anomaly detection and recovery
schemes on ARM Cortex-A57. (a) AirSim UAV. (b) DJI Spark.

Fig. 16. Comparison of detection and recovery schemes.

around 289 ms for each occupancy map generation and
83 ms for each trajectory generation. On the other hand, even
if the autoencoder-based technique’s detection overhead is
higher, the recovery overhead is negligible as the control stage
recomputation only takes 0.46 ms. As the scheme is operated
at the software level with negligible overhead, it is possible
to deploy multiple anomaly detection nodes to improve the
robustness of detection nodes.

Hardware-Level Protection: To demonstrate the benefits
of our schemes over redundancy-based hardware protections,
we adopt a UAV visual performance model from [59] to
evaluate the performance overhead of microarchitecture-based
redundancy schemes (DMR and TMR) on UAV. Two types
of UAVs, AirSim UAV and DJI Spark (with the same specs
as [60]), are used as experimental platforms. Fig. 15 shows
that TMR incurs a flight time increase by 1.06× on AirSim
UAV and 1.91× on DJI compared to the anomaly detection
scheme. The rationale is that hardware redundancy brings
higher compute power with higher thermal design power and
weight, thus lowering flight velocity and increasing flight time.
Given the tight resource constraints of the UAV system, our
scheme demonstrates negligible performance overhead.

E. Computing Platform Comparison

To show the portability we conduct FI on different platforms
by introducing a single bit-flip at the inter-kernel states as
in Section IV-C. Fig. 16 shows a similar error trend for both
platforms. On the TX2, the worst flight time increases 2.8×
since TX2 is an edge platform that has slower responses to
environmental changes. However, with the anomaly detection

ROS node continuously monitoring the anomaly of inter-
kernel states, the flight time is recovered by 79.3% and 88.0%
with Gaussian-based and autoencoder-based techniques.

VIII. CONCLUSION AND FUTURE WORK

Safety is paramount in autonomous vehicles. We present
the first ROSFI fault analysis framework to enable system-
level resilience analysis and show that system-level analysis is
essential to capture system vulnerability compared to isolated,
single-kernel FI analysis which is the common approach.
Furthermore, we propose two anomaly detection and recovery
schemes and demonstrate that with less than 0.0062% compute
overhead, the autoencoder-based scheme can recover up to
100% failure cases in the tested scenario. Being an instruction-
level FI framework, ROSFI has limitations. Nonetheless, we
believe it moves the field of fault and resilience analysis
forward in a significant way, providing a unique contribution
of application-aware fault and resilience analysis in the context
of robotics. Future directions include extending the fault model
to consider microarchitecture-level errors that also manifest
as bit flips in architecture states read by an instruction and
incorporating different AV pipelines.
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