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Abstract—We study the linear quadratic Gaussian (LQG)
control problem, in which the controller’s observation of
the system state is insufficient to attain a desired quadratic
control cost. To achieve the desired LQG cost, we introduce
a communication link from the observer (encoder) to the
controller (decoder). We investigate the fundamental trade-
off between a desired LQG cost and the required commu-
nication (information) resources, measured with the condi-
tional directed information. The optimization domain is all
encoding—decoding policies, and our first result is the opti-
mality of memoryless encoders that only transmit Gaussian
measurements of the current system state. Additionally, it
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is shown that even if the controller’s measurements are
made available to the encoder it does not reduce the min-
imal directed information. The main result is a semidefi-
nite programming (SDP) formulation for that optimization
problem, which applies to general time-varying linear dy-
namical systems in the finite-horizon scenario, and to time-
invariant systems at infinite horizon. For the latter scenario
of time-invariant systems, we show that it is unnecessary
to consider time-varying policies as a simple and optimal
time-invariant policy can be directly constructed from the
SDP solution. Our results extend a seminal work by Tanaka
et al. to the scenario where the controller has access to a
noisy measurement of the system state. We demonstrate
the viability of this extra resource by illustrating that even
low-quality measurements may have a significant impact on
the required communication resources.

Index Terms—Communication channels, convex opti-
mization, LQG, networked control systems, optimal control.

|. INTRODUCTION

ETWORKED control systems possess an inherent tension
between the control performance and the resources that
are allocated to communicate by different nodes of the system.
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Fig. 1. LQG setting with a noisy observation y;. The control perfor-
mance (the quadratic cost) is improved using a communication link (the
dashed line) from the observer to the controller.

Despite the great advances on important questions in this theme
such as data rate theorems for stabilizability of dynamical sys-
tems [1], [2], [3], [4], [5], [6], [ 7], [8], there are still fundamental
questions that remain open, such as the tradeoff between com-
munication resources and the control cost [9], [10], [11], [12],
[13], [14], [15]. In this article, we investigate this tradeoff on
a simple, yet fundamental, topology consisting of the classical
linear quadratic gaussian (LQG) setting with a communication
link from an observer who has access to the system states to the
controller.

The networked control setting investigated in this article is
described in Fig. 1. It consists of an LQG system whose state is
x; with a noisy measurement y;, and a communication link
between a full observer and the controller. The operational
objective is to reduce the achievable control cost at the expense of
communication resources. The communication link introduced
between an encoder and a decoder (colocated with the controller)
serves as an information pipeline to the controller that also has
an access to the LQG measurements y,;. Based on its (full)
observation of the state, the encoder transmits extra information
to the controller resulting in a reduction of the control cost.
This problem can also be viewed as the rate-constrained LQG
setting [16] with side information available to the controller (the
measurement yy) [14], [17], [18], [19]. The objective here is to
characterize the minimal communication resources subject to
a strict constraint on the control performance measured by a
quadratic cost.

The communication (information) resources are measured by
the conditional directed information. The directed information is
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suitable for scenarios where the operations of the involved units
are sequential, e.g., scalar and multiple inputs multiple outputs
(MIMO) channels with feedback [20], [21], [22] and the causal
rate distortion function in the context of control problems [10],
[13]. The directed information is also closely related to the min-
imal expected length of variable-length codewords, as well as to
the minimal blocklength of fixed-length quantizers in networked
control systems [11, Sec. II-C]. From operational perspective,
the conditional directed information considered here serves as a
lower bound to the minimal expected length of variable-length
prefix-free codewords [9], [18] (See also Section VI). The con-
trol performance in our problem formulation is measured by the
quadratic cost of the states and control signals. The optimization
problem is formulated for two scenarios corresponding to the
finite-horizon and infinite-horizon regimes.

For the finite-horizon problem, we consider time-varying
linear dynamical systems, and we formulate the minimal con-
ditional directed information as a convex optimization prob-
lem. The optimization problem has a semidefinite programming
(SDP) form (more precisely, max log-det form) and can
be implemented using standard solvers even for large horizons.
We then show that the solution to the optimization problem
can be realized by three design steps: 1) computation of LQG
controller gains; 2) solution of the convex optimization prob-
lem; 3) a Kalman filter implemented at the controller. For the
infinite-horizon problem where the dynamical system matrices
are time-invariant, we show that the optimization problem can
be formulated a finite-dimensional SDP. Most importantly, we
show that the optimal encoding policy is a simple, time-invariant
Gaussian measurement of the state that can be computed from
the convex optimization.

Our results generalize the work by Tanaka et al. [16]. Specif-
ically, we investigate the measurement-feedback LQG setting,
while [16] assumed that the LQG measurement is absent (y; = 0
inFig. 1). Thus, the controller in our setting is based on the fusion
of the communication link information and the LQG Gaussian
measurement. Two key changes in our SDP formulation are
the objective function that includes an additional term due to
the study of conditional directed information rather than the
directed information in [16], and a new linear matrix inequality
(LMI) constraint which represents the error covariance reduction
due to the LQG measurement y;. To find the optimal policy
structure, we study a relaxed optimization problem where the
LQG measurements are available to the encoder as well. We then
show that even in this relaxed scenario, the optimal encoder is
a memoryless Gaussian measurement of the system state. Thus,
the knowledge of the LQG measurements at the encoder does
not reduce the minimal communication resources. This extends
an observation made in [17] for the scalar setting.

The problem of control under communication constraints with
side information has recently attracted much interest [14], [17],
[18], [19], [23]. In [17], a scalar version of the problem in Fig. 1
was solved. In [18], a slightly less general problem than Fig. 1
was considered. They conjectured that a linear, memoryless
policy is optimal and provided an SDP formulation for their
optimization. Their conjecture and the SDP formulation are sub-
sumed in the conference version of the current manuscript [24],

published prior to [18]. Additionally, [18] showed that the
conditional directed information is within a constant gap from
the operational problem of variable-length coding with side
information available to the controller and the encoder. This
is obtained by constructing a practical coding scheme and ana-
lyzing its performance. When the side information is available
to the controller only (as we assume in our setting), the minimal
directed information is a tighter lower bound [23], but it does not
appear to have a computable form. In [14], the rate-distortion
counterpart of the control problem studied here is considered. It
is shown that if the policy is restricted to be linear and the LQG
cost admits an upper bound at all times, a simple optimization
problem can be realized for the corresponding rate-distortion
problem. The result presented below in Theorem 1 confirms the
optimality of the policy conjectured in [18] and of the linear
policy assumed in [14].

The rest of this article is organized as follows. Section II
introduces the notation, setting and the problem definition.
Section III presents our main results. Section IV presents nu-
merical examples. Section V provides their proofs. Finally,
Section VI concludes this article

Il. SETTING AND PROBLEM DEFINITION

A linear dynamical system is described by
Xit1 = A% + Boug +w 21 (1)

where x; € R™ is the system state, u; € R™ is the control
signal, and w; ~ A(0, W}) is an i.i.d. disturbance with W; > 0.
The initial state x; is distributed according to P;jp > 0 and is
independent of w; for all . A noisy measurement of the state is
available to the controller

Vi =Cixs + vy (2)

with v ~ AN(0,V;). For a fixed time-horizon T, the LQG
quadratic cost is defined as

T
JETH ) =B | x1Qexepr + ui R | (3)

t=1

with @Q; = 0 and R; > 0, and superscripts denote vectors start-
ingattimet =1, e.g., x t1 £ (xy,...,Xp 1)

The objective is to design a system such that the LQG cost
does not exceed a cost target denoted by I'. Naturally, if the
measurements y, are sufficient to attain I', the classical solution
to the LQG problem is satisfactory, and there is no need to
expand. In the other extreme, the LQG cost is lower bounded
by the LQG cost attained by a fully observer, i.e., ¥; = X;.
Our interest lies in the scenario where I is below the optimal
LQG cost attainable with the partial observer (2) but above the
optimal LQG cost attainable with the full observer. In this case,
the introduction of a communication/information link (see the
dashed line in Fig. 1) between a full observer (encoder) and
a controller (a decoder) will help to attain the desired LQG
costI'.
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The encoder is characterized by the space of sequences of
Borel measurable stochastic kernels that can be compactly rep-
resented by the causally conditioned kernels

T
P(tT|[xT) £ [T P(£[£,x") “)
t=1
with f; € R™. Similarly, the decoder (controller) is a causally
conditioned probability distribution

T
P ||tT,y") £ [] P(usu ', £, y"). )
t=1
By the construction, the encoder—decoder pair satisfies at all
times

P(utu f£|ft_11 ut_lj Kta yt)
= P(ugu' ", £, y*) P(£[x", £71). (6)

The overall joint distribution can be summarized using the one-
step update

P(tht:utaft|xt_1ayt_1aft_1:ut_1)
:P(Ytaxt|xt—11ut—l)P(ut:f£|ft_1:ut_1axtayt)' (?)

The communication resources are measured by the directed
information from the encoder to the controller causally condi-
tioned on the partial observations at the controller [25], [26]

T
I(xT — £T[[yT) =Y I(x' 8[f 1, y") ®)
t=1
where I(X ;Y |Z) is the mutual information between X and Y
conditioned on Z.
The objective of this article is to solve the optimization
problem

min I(xT — f7||yT)
st. JxTu)<T 9)

where the minimum is over policies of the form (6).

When the measurement y; is absent, the optimization problem
in (9) simplifies to the directed information I(xT — f7T) that
was investigated in [9], [16]. To see that the conditional directed
information measures the information encapsulated at the en-
coding policy, assume that the ¢th element in the conditional
directed information satisfies

I(x%EIE0 YY) = I(xe £IE, y0). (10)

Then, the right hand side extracts the state uncertainty at
the controller with and without the encoding variable f;,
ie, I(xg;f|fyh) = h(xe|f1, y%) — h(x¢|ff, y%) where
h(x|y) denotes the conditional differential entropy of x given
y. Specifically, the difference reflects the fact that f; is costly
while y; is a natural occurrence of the dynamical system without
any cost. These arguments are formalized in Theorem 1 and
Lemma 1. We will also show a relation between the optimal
conditional directed information and the Kalman filtering theory
with two independent measurements.

lll. RESULTS

This section presents our results. First, we provide a sim-
ple structure for the optimal policy in Theorem 1. Then, we
present preliminaries on Kalman filtering theory to express the
directed information in its terms. We then provide a semidef-
inite programming formulation of the optimization problem
and present the optimal system design. Finally, Section III-E
includes the formulation and the solution for the infinite-horizon
problem.

A. Optimal Policy Structure

The first result is the optimal structure of the observer (en-
coder) and controller (decoder) policies:

Theorem 1 (Optimal policy structure): If the optimization
problem in (9) is feasible, an optimal policy is given by

fi = Dix¢ +my

u = —K; E[Xt|ftayt] an

where m; ~ N(0, M,) is independent from (x%, y?, f*~1) and
K, is a constant given by the LQR controller (see (19), below).

Moreover, the knowledge of the measurements y* at the
encoder does not reduce the optimal directed information control
problem in (9).

The theorem simplifies significantly the maximization do-
main from the general policy in (6) to the set {(D;, M;)}L_,.
After Theorem 2 below, we show an explicit construction of
these optimization variables. It is also shown that D, are wide
matrices. The encoding rule reveals that f; is an affine function
of the state with an additive Gaussian noise that reduces the
communication resources (i.e., the directed information). We
emphasize that our problem formulation does not impose any
structural constraints onto the encoding policy such as linear,
memoryless, or having a Gaussian distribution. The control
signal u; is the standard LQG certainty equivalence controller.
Thus, similar to the scalar case in [17], the separation principle
between the controller gain and the estimation is preserved here
too. The proof of Theorem 1 appears in Section V.

Theorem 1 extends [16, Th. 1] and recovers it when y;, the
observation, is absent. The extension of [16] to our setting is
not trivial (see e.g., [14], [18] for progress on that problem), and
involves the study of a relaxed optimization problem where, at
time ¢, the vector y? is also available to the encoder. For this
relaxed optimization problem, we show that the optimal policy
is of the form (11). In other words, even if the side information is
available at the encoder, it cannot reduce the conditional directed
information. This is consistent with the observation made in [17]
in the context of the scalar system.

B. Kalman Filter With Two (Independent) Measurements

As is evident from the optimal structure in Theorem 1, the
encoding function f; is a noisy measurement of the system state,
and its additive noise is independent of the other measurement
¥¢. Thus, the optimal system has a structure of an LQG setting
with two independent observations. However, for the purpose
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of optimizing the communication resources, f; has a cost, while
¥: is a natural occurrence of the system. In this section, we
provide short preliminaries on Kalman filtering and present the
conditional directed information in Kalman filtering terms.
Following a standard convention, we denote the error covari-
ance matrices with respect to both measurements y; and f; as

Pye—1 2 Cov(xe — E[x|f* 1,y 1, u 1))

Py £ Cov(xe — E[x|f", y", u)). (12)

Since the communication resources should be measured with
respect to the observation f; only, we define the intermediate
error covariance matrix corresponding to the prediction error
after observing y; only [Eqn. (14) shown at the bottom of this

page]
P+

ni1 = Cov(xe — Ex |t y*, u"1))

(13)

The following lemma formalizes several relations between
the error covariances.

Lemma 1 (Error covariance matrices): Let Py - 0 be the
covariance matrix of x;. Then, for a fixed policy {(D;, M)},
the error covariance matrices can be updated as

(Pl ) =Pl +SNRY (15a)
Pyje=((Pf, )" +SNRy)™!

= - L{D)Py,_, (15b)

Pyy1j = APy AT + W, (15¢)

where L{ = P, DF(D:P;, | Df + My)~', SNR{ =

DIM;D;,and SNRY = CIV,1C,.

The identities are standard in Kalman filtering theory e.g.,
[27, Ch. 9.3.2], and their proofs are omitted for brevity. Also
note that the inverses exist since W; = 0 and Py = 0. It now
follows that the directed information can be expressed as

T
IT = £7][yT) = h(x|y* £71) — h(x[y*, )
t=1
1 T
=3 > logdet(I — LF Dy). (16)

t=1

Note that the matrix (I — LF D;) is the multiplicative term of
the error reduction when computing P, from PtJ|rt—1- Therefore,
the conditional directed information measures the reduction in

error covariance with respect to f; only, as desired.

C. SDP Formulation

Despite the elegant representation of the objective function
in (16), it is not clear whether (9) can be formulated as a
convex optimization since its inverse includes a product of two
optimization variables (I — L¢ D;)~' = I + P;f,_,SNR{". Our
next result shows a convex optimization formulation for (9).

Theorem 2 (SDP formulation): For a fixed Py ~ 0, the
optimization problem (9) can be formulated as the convex opti-
mization

T-1

A— % S logdet(I + (A; Py, AT + Wi)SNRY )
t=1

inf
{Ptln ,H;}Z;l

1 Z
— EZlogdetﬂt

t=1

T
s.t. Tr(®1Pyo) + Z Tr (93Pt|3) + Tr(S:We) <T

t=1

_ T

Py — T P"‘i}‘ =01, =0, t<T
APy APy Ay + W,
Prr=Ilr=0

Q. =0, t=1,...,T ((14) below), (17)

where the constant matrices &, = ATS, A, — K (BFS,B; +
R;)K, and {©;}]_, can be computed from (19) below, and the
constant A is given by

T-1
1 B 1
A= -3 log det(Pp 5 + SNRY) + 3 ; logdet W,. (18)

The optimization problem in Theorem 2 is convex optimiza-
tion with respect to the decision variables (P, II;), and can
be solved using standard solvers, e.g., [28], [29], [301. It will
be shown in the proof of Theorem 2 in Section V below that
the auxiliary decision variable II; evaluated at the optimal point
is equal to (Pthl + ATW,; 1 A,)~'. However, it is necessary to
introduce this variable in order to convert the objective to have
a standard convex form. Then, the equality constraint resulting
from the change of variable IT, = (P, ' + AW, ' A,)~! canbe
(optimally) relaxed to an inequality that is equivalent to the LMI
above. The optimization problem extends [16, Th. 1] to the case
where the LQG measurement y; is available to the controller,
and recovers it by choosing C; = SNRY = 0. In this case, the

'Some solvers require to write the determinant of I+ (A:PmAT +

W;)SNRY in a symmetric form which can be done using Sylvester’s deter-
minant theorem.

0, 2 Pijo— Pip Py oCT
CiPyjo  C1PyoCT + V4
Q, 2 (At—lpt—llt—lAtT_l +Wi_1) — Py
LA
Ct(At—l-Pt—Ht—lAtT_l +W;_1)

(At—l-Pt—1|t—1A3T_1 + Wz_l)Cf
Ct(At—lpt—lh—lAtT_l + W, 1)CF +V,

for t=2,....,T. (14)
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Fig. 2. Tradeoffs between the conditional directed information and the
LQG cost when the SNR of the side information varies.

constraints on €, simplify to (A; 1P, 1, 1AL ; + Wi1) —
Py, = 0and Py = Pyp.

D. System Design

In this section, we construct a three-steps realizable policy
using the results from the previous section.

1) Controller Gain: The controller gains are independent
of the measurements and the variables from the optimization
problem. The gains can be computed from a backward Riccati
recursion, with the initial condition St = Qr, as

Si1 = AtTStAt - K;F(BtTStBt + Ry)K: + Qi1
Kg = (B;[‘StBt + R;)_]'B'tI‘StAt

0, = K} (B}S;B; + R,)K;. (19)

2) Covariance Matrices: Given the sequence {O;}L_,, the
optimal {P¢|3}g":1 can be determined from the convex optimiza-
tion problem in Theorem 2, and one can compute

SNR; = P! — (As-1Pi1j1AL  +Wi1) " —SNR}.

An application of the singular value decomposition (SVD) de-
composition SNRY = DT M, ' D, determines the parameters
{(D¢, M¢)}L_, of the optimal policy in Theorem 1.

3) Kalman Filter: The Kalman gain is defined as

L= Px|t—1HF(HtPt|tH;T + Nt)_l (20)
C, Vi 0
where H, 2 | | N, 2 | 'F .
D, 0 M,
The Kalman update is done in two steps
it+1|t = AX; + By
5 5 Yt — CeXyje1
Xy = Xgjeo1 + Le . (21)
v f; — Dtxt|t—1]

where the control signal is u; = —K;X;.

E. Infinite-Horizon Setting

In this section, we formulate and solve the optimization
problem (9) in the infinite-horizon regime. In this scenario, we
consider time-invariant systems, ie., A, = A, B, =B, W, =

W, Cy = C,V; =V and time-invariant cost matrices Q; = @,
R; = R. The optimization problem is defined as

inf lim sup lI(KT = £T|yT)
T—oo T

1
s.t. limsup =J(x" 1, u”) <T
T—oo T

(22)

where the infimum is taken with respect to the sequence of
stochastic policies given in (6).

The solution structure is similar to the finite-horizon solution
in Theorem 2. In particular, we construct a controller based on
a solution to a convex optimization problem. We begin with the
controller description.

1) Controller Gain: Assume that (A, B) is stabilizable and
(A, Q'/?) is observable on the unit circle. Then, we define S to
be the unique stabilizing solution for the Riccati equation

ATSA - S - ATSB(BTSB+ R)"'BTSA+Q=0. (23)

By having the stabilizing solution, we can present the SDP-based
system design in the infinite-horizon regime.

Theorem 3: If the pair (A, B) is stabilizable and the pair
(A, Q'/?) is observable on the unit circle, the infinite-horizon
optimization problem (22) can be formulated as the convex
optimization

1}}i1;[1 % logdet W — % log det(I + SNRY (APAT +W))

— % log det IT
st. Tr(OP)+Tr (WS) <D,
_ T
pP-1 pA >0, II>0.
AP APAT +W
APAT+W - P (APAT +W)CT <o
C(APAT + W) C(APAT +W)CT+V |~
(24)

where S is given in (23),and © = KT (BTSB + R)K.
Moreover, let P be the optimal solution in (24) and compute

SNRF = P! — (APAT +W)"1 —SNRY  (25)

and its SVD decomposition as SNR¥ = DTM 1 D. Then, op-
timal time-invariant encoder and decoder are given by

f; = Dx; +my
w=—-Kx% (26)

wherem; ~ N(0, M), K = (BYSB + R)"'1BTSA, and %, is
computed recursively using the Kalman filter in (21).

Theorem 3 shows that the optimization problem in the infinite-
horizon regime is computationaly simpler than the finite-horizon
regime solved in Theorem 2. In the proof of Theorem 3,
Theorem 1 is used for the structure of the optimal policy,
however, it is interesting to note that we also show that a
time-invariant law is optimal while in Theorem 2 the optimal
policy is time-varying. The main idea to show this property is

Authonzed licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY . Downloaded on June 17,2024 at 21:29:26 UTC from IEEE Xplore. Restrictions apply.



SABAG et al.. REDUCING THE LQG COST WITH MINIMAL COMMUNICATION

5263

the convexity of the objective. In particular, one can use Jensen’s
inequality to show that the evaluation of the objective at the
convex combination of the decision variables is smaller than
the averaged sum of objectives at all times. This fact can be
exploited in the infinite-horizon regime to show that the convex
combination of the decision variables satisfies the stationary
constraints presented in Theorem 3. The proof of Theorem 3 is
given in Section V-C.

IV. EXAMPLES

A. Side Information Reduces the Minimal Directed
Information

In this section, we study a numerical example to show the
benefits of side information and discuss the tradeoffs between
communication resources and control performance. We set the
matrices A, B, W, @, R to be the same as those in [16, Sec. V]

[ 0.12 063 —052 0.33
Ao 0.26 —1.28 157 1.13
- |-1.77 —0.30 0.77 0.25
|—0.16 020 —0.58 0.56
[ 0.66 —058 0.03 —0.20
B 261 —091 087 —0.07
-~ |-064 —-1.12 —-0.19 061
| 093 058 -1.18 -1.21
(494 —0.10 1.29 0.35
—0.10 5.55 2.07 0.31
W= 27
1.20 2.07 2.02 1.43
| 035 031 143 3.10

and the cost matrices @), R are set to be identity matrices.
We start by studying an LQG system in which the side
information to the decoder is given by C' =1 and V = %I

with p > 0, so that SNRY = pI. For each p = 0.1, p = 1, and
p = 10, we solve (24) foreach LQG cost constraintI" in the range
I" € [30,90] and plot the optimal value of (24) as a function of
I" in Fig. 2. The case without side information studied in [16]
can be equivalently viewed as the case with p = 0.

In Fig. 2, we can see that for any fixed I, the minimal con-
ditional directed information decreases as p (the signal-to-noise
ratio of the side information) increases. The red vertical line
corresponds to the minimal cost that can be attained with clean
observation available at the controller. The intersection with the
LQG constraint axis corresponds to the LQG cost that is achieved
without communication, i.e., using the side information only. It
is also interesting to note that a fixed information level, the gain
due to the presence of y; increases for an increasing control cost.

In all curves with side information, the minimal directed
information converges to zero as the LQG cost increases to
infinity. However, in the case without side information, the
curve converges to some constant known as the minimal rate
needed to stabilize the system A [31]. This rate can be computed
as R =7)",log, max{1,|A;(A)|}, where A;(-) denotes the ith

==r=0),[Tanaka et al.]
=r=1

r=2
=—r=3

r=4

PN~

40 &0 &0 100 120
LQG coat T

- o
W Bn ki
T T T

Disected information
- =
i b e

140 160 180 200

Fig. 3. Trade-off between the conditional directed information and the
LQG cost with different side information SNR matrices.

eigenvalue of its argument. The fact that the curves converge
to zero follow from the detectability of the pair (A, CV1/2)
(indeed, CV1/2 = p=1/2] is a full-rank so that the pair is
observable). We proceed to study a scenario in which the side
information implies that the pair is not detectable. Here, we fix
the side information variance to be the identity matrix V =1
(i.e., p = 1), but change the observability matrix C' according
to two scenarios. In the first, the matrix C' has dimensions
r x4 for 0 <r <4, and is given by C(r) = [Opx(a—r), Ir].
Clearly, if r = 0, there is no side information, and if r = 4 it
is the full-observable matrix studied in Fig. 2 with p = 1. In
the other case, we carefully choose C' to be orthogonal to one
of the unstable eigenvectors of A, i.e., the eigenvector whose

corresponding eigenvalue is A1 = —1.7124. One choice of such
1 1 1 375

amatrixisC'= (211 1 1 1
1 1 0 456

In Fig. 3, the minimal directed information is plotted as a
function of the LQG cost I'. As expected, it can be observed
that the communication resources are decreasing as the side
information dimension is increasing. For all observability ma-
trices C'(r) with 1 < r < 4, the curves tend to zero as the cost
I" grows to co. On the other hand, the curves that correspond
to = 0 from [16], and the observability matrix C" tend to a
constant when the cost is large. This constant can be calculated
as the minimal rate needed to stabilize the system. In the blue
curve, itis R = ), log, max{1, |A;(A)|} = 1.1685 and for C"
it is R’ =log, |*1(A)| = 0.776 where X; is the only unstable
eigenvalue that cannot be observed via C’.

B. Scalar Systems

For scalar systems, without the LQG measurement (C' =V =
0), the solution to (24) [6], [9], [16] is
woe

T-Wws (28)

%log(Az—r ) VI > WS

where S is the unique solution to the Riccati equation and can
be solved in closed-form as
5 (A2+B?-1)+ /(A2 + B? —1)?2 +4B?
B 2B? '
In the following result, we provide a closed-form for the scalar
problem. The proof is in Section V-D below.

(29)
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Corollary 1: When A, B,W,C,|V are scalars, Q =R =1
and |A| > 1, the optimal value of the optimization (24) is

1 ,  WwWe

5 _
— %log (1 + SNRY (W + @)) (30)

when W5 < T'< WS4+ OP*; and is 0 when I' > W& +
©P*, where P* is the unique positive solution to the quadratic
equation

A?SNRYP? + (1 - A2 +SNRYW)P-W =0  (31)

and S is given in (29) and © = (1‘1?33;); .
By comparing (28) and (30), the information gain due to the

presence of the LQG measurement is the nonnegative expression

) _
%log (1 + SNRY (W + M)) . (32

Note that the gain is an increasing function of SNRY . Also, the
gain is upper bounded by (28) which is achieved with equal-
ity when I' = WS + ©P* since P* satisfies 1 + SNRY (W +
A?P*) = A? + 5= [see (31)].

Remark 1: In [17], the rate distortion problem which cor-
responds to the control problem studied in this article has been
solved for the scalar case. To reveal [17, Th. 7] from Corollary 1,

letd £ F_ng in order to write (30) as

1 v 1
—5 ngd (SNR + m) .

V. PROOFs

(33)

In this section, we prove our results. We start with Theorem 1
on the optimal policy structure.

A. Proof of Theorem 1 (Optimal Policy Structure)

The proof follows from the following claims that will be
shown consecutively thereafter.
1) Instead of minimizing over stochastic kernels
P(ugJut~1, f*, y*) in (5), it is sufficient to minimize over
u; that is a deterministic function of f*, y*.
2) The minimization domain is relaxed by allowing encoders
of the form P(f;|y*,x", f*=1) instead of P(f;|x", f*~1)
[in (4)]. In words, the new encoder has additional access
to the observation y;.
3) Itis sufficient to minimize the relaxed optimization prob-
lem over P(f;|y?, x;, f*~1), i.e., to let the encoder depend
on x; rather the tuple x*.
4) Itis sufficient to minimize the relaxed optimization prob-
lem over Gaussian encoder outputs, i.e,

f, = DX, + Aey' + 1 + m,

where m; ~ N (0, My).
5) Itis sufficient to minimize the relaxed optimization prob-
lem over

(34)

fg = DgX; -+ 1. (35)

6) The optimal control is u; = —K; E[x|f?, yt], where K,

is the control gain.

By claim 5, the minimizer of the relaxed optimization prob-
lem is in the original minimization domain (6). Thus, both
optimization problems have a common minimizer, and u; is
a composition of a Kalman filter and certainty equivalence
controller.

Claim 1: From the functional representation lemma [32], one
can write uy = A(f1, y1, W1) for some deterministic function
A(-) and random variable W, that is independent of (f;, x;,¥).
Let f; £ (f;,W}), and note that I(x;;f|y1) = I(x1;f1]y1).
Moreover, the joint distribution of u; and x; is unaffected by
absorbing the controller’s randomness to the encoder (stochas-
tic) mapping so the LQG cost remains the same. This procedure
can be inductively repeated to derandomize u; at all times.

Claim 2: Trivial, since the minimization domain is increased.

Claim 3: Here we show that a lower bound on the ob-
jective function can be achieved using encoders of the form
P(f;|yt, x;, fi~1). Consider the lower bound

T
Ix" = £7|y") = I gyt 1)

t=1

T
>N I(xs By, 7). (36)
t=1

For a fixed sequence of deterministic mappings that characterize
u;, the lower bound (36) and the LQG cost are fully determined
by {P(Xt: yta ft)}tZI'

We will now show by induction that P(x;,y", f*) is de-
termined by {P(fi|y*,x;,f"1)}ics. For t = 1, this claim is
trivial. For the inductive step, assume that P(x,_1,y* 1, ft~1)
is determined by { P(f;|y®, x;, £ 1) }i<:. Now, consider

P(Xh ytaft) = P(ftlxhyt:ft_l)P(Xt:ytaft_l)

and note that P(x¢, y?, f*~!) can be written as

P(yelxe) P(xe[xe—1, 5" £ P(xeq, v )
Xi-1
which is fixed by the sequence { P(f;|y*?, x;, f* 1)}~ due to the
measurement characteristics (2), the fact that u; ; is a determin-
istic function of (y*~!, f®~1) and the induction hypothesis.
Claim 4: First, the differential entropy from (36) is rewritten
fort > 1 as

h(xtlyt: ft_l) = h(Yt, Xt, Xt—llyt_l': ft_l)
- h’(Ytlyt_la ft_l) - h’(xt—l |Xt: yt_la ft_l)
= h(ye, X¢|Xt-1,0¢-1) + h(xt—llyt_la ft_l)

- h(y'tlyt_li ft_l) - h’(xt—l |Kt: yt_la ft_l)'
(37)

We proceed to lower bound the mutual information using (37).
To that end, we define a Gaussian probability measure G(-) with
first and second order moments that are identical to the ones
under the measure P. All differential entropy are computed with
respect to P unless a subscript G appears. Consider the lower
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bound

T
ZI(Xt;fﬂytaft_l)
t=1

T
@D h(x1) = h(xrly™, £7) + 3 h(ye, Xelxe1, 10 1)
t=2

- h(yt|yt_1aft_l) - h(xt—1|xta yt_la ft_l)

T
> h(x1) — he(xr|y", £7) + D h(ye, Xe[Xe-1,u-1)
t=2

- hG(Ytlyt_l': ft_l) - hG(Xt—]. |Xt: yt_lj ft_l)

where (a) follows from (37), and the inequality follows from
the general observation that hp(x|y) < hg(x|y) for any prob-
ability measure G that has the same mean and covariance as P.
In particular, consider

(38)

— hp(x|y) + he(x|y)

= / log(P(x[y))dP(x,y) — / log(G(x]y))dG(x,y)

= / log(P(x]y))dP(x,y) — / log(G(x|y))dP(x,y)

>0 (39)

where in the second equality the measure can be changed since
log G(x|y) is a quadratic function of x,y and PP and G have
identical first and second moments. This is a direct extension
of a classical result for the unconditioned, scalar case [33, Th.
8.6.5].

Conversely, the lower bound can be achieved by choosing
f; with a Gaussian distribution. Specifically, for some fixed
inputs { P(f;|y?, X¢, f©~1) }+>1, a jointly Gaussian distribution is
formed by borrowing the first and second order statistics of the
joint. Let Dyx; + A¢y® + £~ be the linear minimum mean
square estimator of f; and m; be its error covariance. Then,
f; ~ N (Dyx; + Ayt + v f1, m,), and it can be shown that
the second-order statistics of { P(x;, y*, f*)}+>1 are unaffected
since the relation between the random variables are all linear.

Finally, note that the LQG cost depends on {P(u;,X;)}_,
via its second moments. Since the second moments of G and
P are the same, the LQG cost is unaffected. To summarize, we
showed that we may restrict the optimization domain to Gaussian
inputs of the form f; = Dyx; + A¢y? + 7 f1~! + m; without
loss of optimality.

Claim 5: By Claim 4, the objective of the relaxed optimization
problem can be written as

D I(x¢; Dexe + Ayt + 3+ myly®, £71)
T
= I(x¢; Dix + mely’, £7) (40)
t

where the equality follows since A;y! + 4~ 1 is constant when
conditioned on (y?,f*~!). For the LQG cost, since u; is a

deterministic function of (y*, ff~1), the effect of A;y® + . f*~!
can be embedded into the controller’s function.

Claim 6: In the previous steps, we showed that f; = D;x; +
m, is optimal. We now show that u, has no affect on the objective
function. Therefore, for a fixed f;, we have a classical LQG
problem whose solution is just a Kalman filter with the control
gain defined in (19). Consider the objective

T
ZI(Xt;fﬂytaft_l)
=1

T
= h(xely', £71) — h(xe|y*, £)
t=1

T
1
=3 Y logdet(Py, ;) —logdet(Py)
t=1

s
ST
(]~

log det(P;;_;) +logdet((Pf, ;)" + SNRY)
1

=
Il

log det(I + P}, ;SNR{") (41)

|
b |
M=

t

II
=

where (a) follows from Lemma 1. Also, by Lemma 1, Pt—|";—l

depends on the choice of SNRY" only. Therefore, the objective
is unaffected by u;.

B. Proof of Theorem 2

Using Lemma 1, the optimization problem can be written as

T
1
min - ; log det(P;f, ;) —log det(Py:)

T
st. Tr(®1Pro) + Y Tr (8,P,) + Tx(S,W,) <T

t=1

(P ) ' =(Py_1) ' +SNRY ,t=1,...,T

tjt—1

-1 _ 1 P
Pl = (Pl ) +SNR{, £ =1,...,T

Py = AtPtltAtT + W (42)

where the minimization is over the covariance matrices
{P;,_{}i=1- We first rewrite the objective in a convex form,
consider

] e
M=

log det(Pt‘ll;_l) — log det(Py)

i
S

1
log det(PlTu) —3 log det(Prr)
T-1

1
+3 > logdet(P} ) —logdet(Py,).  (43)
t=1

Each term in the sum can be written as

log det(Pt"_;_llt) — log det(Py;)
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@

= log det(I + Pt-l—]ltSNRt,Y) + l.Og det -Pt+1|t-P—1

tlt
© _log det(I + P, SNRY) + log det W,

+logdet(P;! + ATW; ' A,)
© _logdet(I + P,,1;SNRY ) + log det ¥,
+ il:_rlif log det IT; !
st.0<IL < (Pl + Af W1 A) !

@ inf —log det(I + Py1.SNRY)

— log det IT; + log det W,
_ T
sq, |Fie— T Puedi > 0,II » 0
APy APy Ay + W,

where (a) follows from Lemma 1, (b) follows from Lemma 1 and
Sylvester’s determinant theorem, (c) follows from introducing
an auxiliary positive definite matrix II; and from the mono-
tonicity of log det(-) and, finally, (d) follows from the matrix

inversion lemma and Schur complement.

We will now convert the constraints to have a standard LMI
form. First, note that the objective has no dependence on SNRf .
Thus, we can reduce this variable in the constraints of the

optimization in (42) as
(P, ) = (Pye1) ™" + SNRY

t

P—l

tlt z (Pt-ll-t—l)_l

Py = AtPt|tAtT + Ws.
The first two constraints can be combined as
PtTtl = (Pt|t—1)_1 + SNR‘ty

= (Pth:—l)_l + O;TVt_lct-

By taking the inverse of both sides and applying the matrix inver-
sion lemma, we can equivalently write the resulted inequality,

using the Schur complement of a matrix, as

_ | Pee-1 — Pye
CiPyji—1

Py 1 CF -0

Q
‘ CiPyu_1CT +V;| =

The derivation is completed by substituting in (47) Pt+1|3 =

AtPtuA;r +Wefort=1,..., T —1.

To summarize, we showed that the optimization problem (up

to the constant A) is

min

1
A — =logdet(P,
{P°|‘}3~=13{H;}3—=_11 2 ogde ( T|T)

T-1
1 L
+ 3 E —logdet(I + (SNR} )2

t=1

X Pyy1:(SNRY)%) — log det I,

(44)

(47)

T
st. Te(®1Pyo) + Y Tr (6, P,) + Te(SW;) < d
t=1
Py, — 11, Pz|cf;1;r = 0,11, > 0
APy APy Ay + Wy
Q; =0, (48)

where A = 337" 'logdet W; + 3 logdet(Py};). To obtain
the closed form in Theorem 2, we substitute (JF’IJlfO)—1 = Pl_lc} +
SNRY and define II7 = Pryr.

C. Proof of Theorem 3

To simplify notation, we define the objective of the optimiza-
tion problem as

fo(P) 2 %log det W — %log det(I + (APAT + W)SNRY)

+ %log det(P~! + ATW14) (49)
and the constraints set as

Do £ {P = 0| Tx(OP) + Tr (WS) < D,Q(P) = 0}, (50)
where
APAT+W - P
C(APAT +W)

(APAT + W)CT
C(APAT + W)CT +V

Q(P) £

We also define

1|1
Rrp(P) 2 7 [5 log det(I + (APAT + W)SNRY)
1

(45) -3 log det(APAT + W)] (51)
and present two technical lemmas needed for the proof of

Theorem 3.
Lemma 2: For a sequence of matrices {P,;}¢>1, let Pr £
(46) LT | P, betheiruniform convex combination. Then, forany

sequence {Pj;}:>1 that satisfies Q; = 0, there exists {T; }i>1
such that lim; ., Pr, € Dy.

Lemma 3: Let T; be a sequence as in Lemma 2, and
{Pr,i1, }+>1 is a sequence that satisfies the constraints in (17).
Then, under the conditions of Theorem 3,

lim sup Rr,(Pr,1,) > 0.
i—00

The proofs of Lemma 2 and Lemma 3 appear below. We are
now ready to prove the main result in this section.

Proof of Theorem 3: The optimal structure for the policy
derived in Theorem 1 is true for any time horizon. Therefore,
we can utilize Theorem 1 to write the optimization problem over
the time-varying decision variables policy as

inf

. 1 1
{ Py ~0}een fim oup T(ﬁT o 5 lOg det PT|T)

T—o0

-1
1
+ 57 Z; logdet(P;! + ATW'4)
=
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1 T-1 @
~ 5% Z; log det(I + (AP, AT + W)SNRY) Z min fu(P) (56)
t=

s.t.  limsup % Tr(®1Pypo)

T—oo

T
1
+ 5 > Tr(6:Py) + Tr(S,W) <T

t=1
_ T
0, = Pyiy — Py Ptlt—IOTt ~0,teN (52)
Ctptlt—]- OtPtlt—].Ct + Ift

where the constant matrices ® and ©; are given in Theorem 2,
and the constant Ay is given by
1 1
Ar =3 log det(Pyg +SNRY) + 3 Z; logdet W. (53)
=

By taking the limit in (52) over the time-independent quanti-
ties, wehave £Ar — £ log det W and £ Tr(®; Pyjg) — 0. The
LQG cost constraint is simplified by noting that S; converges
to the stabilizing solution of the Riccati equation in (23), S, by
the assumption that the (A, B) is stabilizable and (A, Q'/?) is
controllable on the unit circle. This in turn implies that ©; — ©.

Next, we define

T
1
fra({Pa}izy) & 5 ) logdet (P + ATW™'4)
t=1

T
1 1
+3 log det W — 57 ; log det(I +(AP,;, AT + W)SNRY)
(54)
in order to compactly express the optimization problem as

min limsup Rr(Prir) + frr({Puc}iey)
{P:|e}:eN T—o0

T
st limsup % > Tr(6Py) + Tx(SW) <T

T—o0

t=1
Q, = Ptlt—] - Pt|t Ptlt—l(i;r =0
CiPye—1 CiPy1Cy + Vi

Pyt 1=AP, 1y 1 AT+ W VteN (55)

where Rr(-) was defined in (51).
We can now present the main steps that constitute the proof
of the lower bound in Theorem 3

min lim sup Ry + fr,T({Pc|n}3=1 )
T—oo

(a) _

> minlimsup Ry, + fr.r, ({Pye}121)
i—r00

® .

> min 11]3_[1 sup fr,.Ti({Ptlt}t;l)

1—00

(e) _
> minlimsup f.(Pr,)

i—00

where:
a) follows relaxing to the limit supremum from 7; to T';
b) follows from the nonnegativity of lim sup R,. shown
below as Lemma 3;
c¢) follows from the convexity of the function — log det(I +
(APAT + W)SNRY) — logdet(P~' + ATW—1A);
d) follows from Lemma 2.

Note that the left-hand side of (56) is the optimization problem
derived in (55). Thus, we showed a single-letter lower bound to
the optimization problem (22). Furthermore, for a matrix P &
Do, the time-invariant cartesian product ), P satisfies the
time-dependent constraints in (55) and the resulting objective in
the optimization problem (55) is f.(P). These steps conclude
that (24) is a lower to (22).

In the last step, we show that there exists a time-invariant
policy that achieves the lower bound in (55). Namely, we show
that for each covariance matrix P € Dy in (56), there exists a
time-invariant policy that makes the objective in (55) equal to
fs(P). To this end, we construct a time-invariant policy given by
the pair (D, M) as follows: Given P, compute (D, M) matrices
using the SVD decomposition DTM 1D = P~1 — (APAT +
W)~! — SNRY with M = 0. By construction, we have that P
is a solution to the Riccati equation

APAT — P+ W — APHY(HPHT + V) 'HPAT =0
(37

Cl alV O

DI’ o M

equation of (57) can be rewritten as

(A—EH)P(A-EH)" —P+W +E2VET =0

where H £ . The closed-loop Riccati

(38)

where = APHT(HPHT 4+ V)~!. From the assumption
W = 0, the closed-loop system (A — = H) is stable. Therefore,
(A, H) is detectable and P is the unique maximal solution to
the Riccati equation. The detectability of (A, H) and Py, = P
2 guarantee the convergence of the forward Riccati recursion

Py = AP, 1, AT+ W

- APt—1|t—1HT(HPt—1|t—1HT + ﬁ)_lHPs—us—lAT
(39

to the maximal solution of the Riccati equation. The proof is
completed by computing the limit in (55) using the convergence
of (59). This concludes the proof of Theorem 3. |
Proof of Lemma 2: For e>0, define D= {P >
0| Tr(©P) + Tr(WS) < T and (60)}.
—el 0
0 of

(60)

APAT +W — P
C(APAT+W)

(APAT + W)CT
C(APAT + W)CT+V

2If this is not the case, one can increase the covariance by ignoring the
measurements for several time instances
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By the assumption, €2, = 0, for all ¢ > 1. Consider the time-
invariant constraint

1 T+1
Pr) = = >
t=1

—1pPCT
—+CPyoCT — LV

1 1
—7 P10 + 7 Priurs
1
_TO-P].“]

—% P — %Py joCT
_1CPyy —ACPCT - LV

) (61)

By the boundedness of Py and V/, for each € > 0, there exists

T, such that Pr € D, for all T > T,. The LQG constraint is

trivially satisfied at Pr by the linearity of the trace operator. The

boundedness of D, and D follows from the boundeness of a

larger set in [34]. Therefore, these sets are compact, and there

exists a limit point in N¢~oD, equal to Dy. |
Proof of Lemma 3: We can write

1[1
Rr, (PT;'|T|:) = T |2 log det(I + (A'prs|T‘:AT + W)SNRy)
—% log det(APr, 1, AT + W)

= %% logdet(PiTTi_l +SNRY) L. (62)

(]

In order to show the nonnegativity of the limit, one can follow
the steps in [34, Lemma 3] along with the fact that the limiting
error covariance lim; .., Pri, must be bounded in all directions
that are not orthogonal to A. |

D. Proof of Corollary 1

Proof: When A, B,W,C,V are scalars and Q =R =1,
S, K, © also become scalars and the optimization (24) reduces
to

. 1 1 Y42
p:,lll_}éR 5 logW — 5 log(1 + SNR" (AP +W))

— %logﬂ
st. OP+WS<T

P-1I AP

=0, >0
AP  A’P+W | T

A’P+W — P
C(A2P + W)

C(A2P + W)

=0. (63
C2(A2P+W)+V (63)

Since |A| > 1, we can easily verify using (29) that S > 0 (in
fact, S > 1) and thus K > 0 and © > 0. To simplify the PSD
constraints, notice thata 2 x 2 matrix X is positive semidefinite
ifandonlyif Tr(X') > Oand det(X') > 0. With this observation,
we can simplify the constraints further as

0<Pgmm{¥,P*}

WP
< mi 2 A —
0<H_mm{P+A P+ W, A2P+W} (64)

where P* is defined as the unique positive solution to (31). Since

WP w
—— < —<W<P+A’P+W
AP W S A AT
the constraint on IT is further simplified to 0 < IT < 2.
Also notice that for any fixed feasible P, log Il is maximized at
-7 - Then, the optimization problem is further simplified
as

_ 1 , W 1 c? o,
PE%{M) §log (A —l—?) —Elog (1+V(A P+WwW)|.
(66)

(65)

Let g(P) be the function such that the objective function is
written as —3 log g(P), i.e.,

P(1+ $(A2P+W))
AP+ W '

It then suffices to show that g(P) is an increasing function in
P > 0. This can be accomplished by rewriting g(P) as

1 /c2, W 2w
Q(P)_?(V(AP”LW)_AZPJFW_ v H)

g(P) £

(67)

(68)

which is increasing in P > 0 since W > 0. Therefore, when
WS < T < WS + ©P*, the optimal value is given by

1. (T-WS
2 ®9\ 7o

which equals (30). WhenT' > WS + © P*, the optimal value is
given by

(69)

1
—5logg (P*). (70)
Finally, one can verify that g(P*) = 1, which implies that the
optimal value equals 0 for I' > WS + © P* using the fact that
P* is the solution to (31). |

VI. CONCLUSION

In this article, we formulated and solved an optimization
problem for reducing the LQG cost using an additional com-
munication link. It was shown that the optimal encoding law
is a memoryless Gaussian measurement of the state, while the
optimal controller inherits the standard LQG control law. The
simple policy structure is utilized to show that the minimization
of the conditional directed information subject to a control
constraint can be formulated as a standard convex optimization
problem. For the finite-horizon regime, that convex optimization
problem consists of a sequence of decision variables, while
in the infinite-horizon regime, it simplifies to a single-letter
optimization problem. The examples illustrate the benefits of
the LQG setting with side information compared to the setting
without side information even if the measurement has a low
SNR.
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The optimization problem studied in this article serves as
a lower bound to the operational problem of minimizing the
expected length of prefix-free codewords subject to a constraint
on the control cost (see, e.g., [18], [23]). In [18], it is shown
that if the LQG measurement is available to the encoder and the
controller, then our optimization problem also serves as an upper
bound to the operational problem (up to an additive constant
term). A natural research direction is the construction of upper
bounds to the operational problem in the practical scenario where
the LQG measurements are available to the controller only.
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