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Abstract—This manuscript presents a novel approach utiliz-
ing computational graph strategies for solving the power flow
equations through the synergistic use of Newton-Raphson (NR)
and Gradient Descent (GD). As a foundational element for
operational and strategic decision-making in electrical networks,
the power flow analysis has been rigorously examined for decades.
Conventional solution techniques typically depend on second-
order processes, which may falter, especially when faced with
subpar starting values or during heightened system demands.
These issues are becoming more acute with the dynamic shifts in
generation and consumption patterns within modern electrical
systems. Our research introduces a dual-mode algorithm that
amalgamates the principles of first-order operation. This inven-
tive method is adept at circumventing potential local minima
traps that hinder current methodologies, thereby reinforcing
the dependability of power flow solutions. We substantiate the
effectiveness of our advanced algorithm with comprehensive
testing on established IEEE benchmark systems. Our findings
reveal that our approach not only expedites the convergence
process but also ensures consistent performance across diverse
system states, signifying a meaningful progression in the realm
of power flow computation.

Index Terms—ACPF analysis, Automation differentiation,
Chain rule, Computational graph, Newton-Raphson.

I. INTRODUCTION

The integration of renewable energy sources such as wind
and solar power is revolutionizing the power systems land-
scape, presenting new challenges that stem from their vari-
able and intermittent nature. The once-predictable flow of
electricity is now subject to fluctuations, leading to a power
grid that is more dynamic and less predictable than ever
before. This transformation calls for advanced computational
techniques capable of conducting power flow analysis with
greater resilience and adaptability.

Traditional power flow analysis methods, like the Newton-
Raphson (NR) technique, have provided reliable solutions
for decades. However, the NR method is primarily designed
for stable and predictable systems and may struggle with
the irregularities introduced by renewable sources. This is
primarily because the NR method’s success hinges on good
initial approximations and conditions that remain close to
normal operating ranges. As renewable integration intensifies,
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these conditions are increasingly difficult to guarantee, leading
to potential convergence issues and inaccuracies. Power flow
analysis, crucial in the power system field, involves solving
nonlinear algebraic equations. The Newton-Raphson (NR)
method, widely used for its rapid convergence, iteratively
updates solutions using the Jacobian’s inverse [1], [2]. How-
ever, this method faces challenges in convergence when initial
guesses are far from the final solution or the Jacobian matrix
becomes problematic during iterations [3]. Various strategies
address these issues, such as augmenting system states [4],
exploring polar versus rectangular formulations [5], refining
starting points [6], [7], and employing alternate Jacobian
approximations [8]-[10]. An innovative approach reformulates
power flow as an optimization problem, integrating com-
plementarity constraints for PV buses [11]-[15]. This paper
presents a cutting-edge algorithm blending projected gradient
descent (GD) and Newton-Raphson (NR) methods, uniquely
targeting computational challenges in AC power flow (ACPF)
problems. This novel strategy redefines the ACPF problem
as an optimization challenge, allowing for gradient descent
steps without requiring Jacobian matrix inversion, a limitation
of conventional NR techniques. Projected GD, effective in
maintaining constraints, does not inherently circumvent local
optima and saddle points, typical in deterministic optimization.
The algorithm smartly transitions to NR methods for quicker
convergence as it approaches the global optimum.

This complex scenario demands a sophisticated solution
adaptable to the dynamic power grid environment. An effective
answer is the integration of the NR method with GD and
computational graphs. This comprehensive approach combines
NR’s iterative resolution prowess with GD’s adaptive learning
strengths—celebrated for its effectiveness in complex, high-
dimensional domains like machine learning and Al

Computational graphs represent a further leap in this in-
tegrated method. By mapping the intricate relationships of
power system variables as a network of nodes and edges,
computational graphs offer a clear visualization of the power
flow problem. They simplify the application of both NR and
GD by providing a framework for systematic calculations and
updates to the system’s state, facilitating the management of
the non-linearities characteristic of modern power grids.

In this context, computational graphs not only serve as
a visual aid but as a foundational tool that transforms the
power flow analysis into a more flexible and adaptive process.
This allows for the systematic application of GD, which
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can iteratively adjust the system state by moving against the
gradient of the error surface, thus providing a mechanism to
overcome the shortcomings of traditional methods.

The convergence of these methods—NR’s precision, GD’s
adaptability, and computational graphs’ clarity—creates a
powerful toolkit for today’s power system analysts. It equips
them to tackle the stochastic nature of renewable energy
sources and ensures that power flow analysis remains a reliable
and insightful process, crucial for the planning and operation
of modern, sustainable power systems.

The paper is structured to first outline the ACPF problem
(Section II), describe the computational graph algorithm and
NR method (Section III), provide numerical simulations for
six test case studies and comparison with existing methods
(Section IV), and conclude with insights and findings (Section
V).

II. POWER FLOW EQUATIONS

In an electrical network with n nodes, each node, indexed
as k, possesses a set of electrical properties: a complex voltage
including the magnitude voltage Vi, and phase angle 6y,
alongside its associated active P, and reactive ()j power
components. These properties can be collectively represented
in vectorial formas V = (Vq,...,V;,),0 = (61,...,0,),P =
(Py,...,P,), and Q = (Q1,...,Qy). The network’s admit-
tance matrix is denoted by Y. This allows the encapsulation
of the network’s power flow equations into a concise notation:
g(V) =P +;Q = diag (VVTYT), where (-)' signifies the
conjugate transpose operation.

When presented with a complex load vector s, the ACPF
calculation seeks the magnitude voltage vector V and phase
angle 6 that satisfies g(V,6) = s. Rather than confronting
this nonlinear equation head on, an optimization framework
is posited for resolution. To address the system of equations
g(V,0) = s, we employ an optimization approach aimed at
minimizing the error ¢ = ¢g(V,0) — s. A least-square loss
function, which quantifies the error € as miny g 5 ||€[|3 which
is defined in (1).

1 2_.1n 2
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It is important to clarify that Equation (1) does not represent
an optimal power flow (OPF) problem. Rather, to address the
issues of infeasibility and solvability in the ACPF analysis,
we approach the ACPF by minimizing the least-square error.
Consequently, we continue to refer to the problem defined
in Equation (1) as a ACPF problem. In scenarios where the
ACPF problem is solvable, the ideal outcome for the objective
measure equates to zero. Under these circumstances, there
exists an optimal voltage vector, denoted as V*, 6%, fulfilling
the condition g (V*,6*) = s. Considering the problem’s struc-
ture as an unconstrained one, characterized by a continuously
differentiable objective function, the application of gradient
descent emerges as an intuitive method for finding a solution.

For ease of reference, the objective function in equation (1)
is represented as L. The gradient of £ concerning V8 is
derived using the chain rule and can be expressed as:

Vvl =J3"(g9(V,0) —s) )

where J symbolizes the Jacobian matrix associated with the
power flow. The conventional Gradient Descent (GD) formula
is then:

Vip1 =V —nVvL (Vt) 3)

0t+1 = 9t — HV(),C (et) (4)

with t indicating the iteration stage, and n representing the
step size or learning rate, which can be either constant or
variable.

The sets of bus indices for the reference bus, PV buses,
and PQ buses are denoted as Z.t , Zpv, and Zpq, respectively.
In the context of equation (3) and (4), adjustments are made
only to the voltage angles dy;, for i ¢ Z,r and the voltage
magnitudes vy, for i € Zpq. This selective updating also
allows for the setting of specific voltage magnitudes on PV
buses.

From equations (3) and (4), the GD algorithm ceases under
two circumstances: 1) the global optimum is achieved with
g(V,0) —s =0, or 2) the Jacobian J becomes singular, and
g(V,0) — s falls within the null space of J'.

The latter scenario implies that the iterative values V; and
0, are caught in a local minimum or at a saddle point. To
break free from this impasse, the algorithm must diverge from
the gradient path (which becomes null) and adopt a different
trajectory. The chosen direction for this shift should not be
arbitrary but strategically selected. In this paper, we propose
a specific approach to guide this directional change.

III. COMPUTATIONAL GRAPH

A. What is computational graph?

A computational graph is a network where each node
signifies an arithmetic operation. It is a structural represen-
tation used to depict and compute mathematical expressions
efficiently. Consider the elementary mathematical formula:

p=x+y &)
ST
Yy y—3
(a) (c)
X xr 1 @_1
S
y g y—3 :;g
z z -3 i
(0) (d)

Fig. 1. Computational graph for a simple calculation

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 14,2024 at 18:54:01 UTC from IEEE Xplore. Restrictions apply.



The computational graph for the equation is depicted in Fig.
2(a), where a node marked with a “+” sign adds inputs = and
y to produce output g ”. For a complex example, consider the
following equation:

g=(r+y)- 2 (6)

In the computational graph shown in Fig. 2(b), the initial
node combines x and y by addition, which then merges with
z in a multiplication node to produce the output g.

B. Gradient calculation on computational graphs

In stochastic gradient descent with Newton-Raphson, com-
putational graphs guide each iteration’s solution refinement.
The forward pass processes inputs sequentially through the
graph, moving from initial to terminal nodes, akin to a journey
from origin to destination. This involves specific input values
progressing through layers and functions at each iteration. For
illustrative purposes, let’s assign specific values to the inputs
as follows: ¢ = 1, y = 3, z = —3, as illustrated in Fig.
2(c) and Fig. 2(d). With these values assigned, executing a
forward pass allows the computation of intermediary and final
output values at each node. In Fig. 2(c), commencing with
the values z = 1 and y = 3, we calculate the intermediate
output p = 4. Subsequently in Fig. 2(d), employing p = 4
and z = —3, we determine the final output ¢ = —12.
The computation progresses linearly from inputs to outputs,
with gradient calculation determining each input’s impact on
the final output, crucial for refining solutions via gradient
descent optimization. Consider the necessity to determine the
following gradient values:

ox 0y 0
of of of
Initiating the backward pass, we calculate the rate of change

of the final output in relation to itself, which, by definition,
yields a value of one.

(7

dg

— =1 8

3y ®)
Visualizing our computational graph post this step is shown

in Fig. 2(d).

Proceeding, we reverse through the multiplication operation.
Here, we need to compute the gradient at the nodes p and zm
where ¢ is the product of pand z (p =x+y and g =p - 2).

Using a computational graph in ACPF calculation offers
several benefits:

1) Efficient Backpropagation: It allows for automatic dif-
ferentiation, making the calculation of gradients for
optimization algorithms (like gradient descent) more
efficient and accurate.

2) Improved Performance: It enables optimization of com-
putational resources and parallel processing, speeding up
calculations.

3) Easier Debugging and Visualization: It helps in visual-
izing and understanding complex operations, which aids
in debugging and improving ACPF models in different
use cases and test cases.

Not using a computational graph can lead to:

1) Manual Gradient Calculation: This can be error-prone
and computationally intensive, especially for complex
models.

2) Reduced Efficiency: Without the optimized execution
paths that computational graphs provide, computations
may be slower and less efficient.

3) Difficulty in Scaling: Manual implementations without
computational graphs can be challenging to scale for
large power grids.

C. Automatic Differentiation

Our approach will employ automatic differentiation to de-
termine 0z /Ox and 0z /dy. Initially, we consider a single node
defined by the equation z = z(x,y), which is a component
of a broader graph culminating in a scalar value, denoted as
¢. Presuming we have successfully computed 9¢/0z, the task
then is to find 9¢/0x and 0¢/dy. To determine the derivative
with respect to x, the following formula is utilized:

o _ot o
or 0z Oz

Similarly, for the derivative with respect to y, the equation
is: % B % %
dy 9z Oy

It’s important to clarify that the expression ¢(z(z,y)) may
seem slightly confusing. It simply signifies that ¢ is a function
of z, which in turn is a function of x and y. In a more complex
graph, ¢ could depend on numerous other variables.

In computational graphs, understanding the derivative of the
final output ¢ with respect to a node’s output allows reverse
calculation of ¢’s derivative relative to the node’s inputs. This
principle enables backpropagation from the final output to
initial inputs, a core concept in ACPF calculation.

T,
N ] .
or F 2 ol
N _
% <o 0z

Fig. 2. Computational graph illustrating backward differentiation paths for
the function z = z(z,y).

D. Gradient Calculation in ACPF

The power flow equations are symbolized as:

g(u,z) =s )

It can be rewritten as the following equation:

g(u,z) —5=0 (10

Where, the u is the input of the power flow problem; the
active power and magnitude voltage of the PV buses; active
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power and reactive power of the PQ buses. This particular
notation reflects the equilibrium of both active and reactive
power at each node within an electrical grid. In a network with
n nodes, this translates to a total of 2n distinct real equations.
These equations are formulated as follows:
Pk(17g)_Pnetk:O7 k:{l,,n}
Qk(KaQ)_Qnetk =0, k‘:{l,-” 7”}

where, In the framework of bus voltage dynamics, the
variables V_ and 6 symbolize the magnitude and phase angles
of voltages at n distinct nodes respectively. The active and
reactive power injections at the k" node are represented by
P(V,0) and Q(V,0). These are calculated based on the
voltage magnitudes and angles.

The net active and reactive power entering the k™ node are
denoted as Ppex and Qnek. These are derived as the differences
between generated power (Pgk, Qi) and the power demand
(Ppgk, @pyr) at the respective node.

The formulations for the active and reactive power injections
at each node are given by:

Pk(K, Q) =Vi Z Vin (ka c0s Oy, + B, sin Hkm)
me{K}

Qk (Ka Q) = Vk Z Vm (ka sin ekm - Bkm COSs ekm)
me{K}

Y

(12)

Here, K refers to the set of nodes adjacent to the k™ node.
The parameters G, and By,, represent the conductance and
susceptance of the transmission line between nodes k and m.
The term 6y, is the angular difference between these nodes.

By reformulating the power flow equation as indicated in
equation (12), a more streamlined nested model emerges.
This model presents an ideal mathematical structure for the
implementation of automatic partial derivative calculations.

Py(p) = Z Pkm
me{K} (13)
Qr(g) = Z Qkm
me{K}
Pkm (Qa §) = kackm + Bkmskm, (14)
ka(g §) = kaskm - Bkmckm
m(V,0) =V V,, O,
ckm (V. 0) % Vi €0S 0, 15)

Skm(V, 0) = Vi Vi, sin Oy,

This revised approach aligns with the computational graph
framework and facilitates the automatic computation of gradi-
ents. It necessitates the use of a chain rule for the calculation
of the Jacobian matrix, integral to gradient determination.
This structure is consistent with modern methods of automatic
gradient computation, streamlining the process. The power
flow equation can be reformulated into a series of nested
functions, each dependent on nested variables.

P = p(C(V, 9)7 S(Vﬂ 0))

Q = q(c(V.6), 5(V.0)) (10

The gradient can be determined by applying the chain rule in
the following manner:

oP _op op 0c_ 0P oy s
00 Op Oc 00 Op O0s 00
0Q _0Q g 9 0Q 0g 0
00 dq Oc 00 Oq 0s 00 a7
oP 0P 0Op Odc OP 0p O0s
oV dp dc oV ' dp s OV
0Q _0Q 0g dc 0Q 94 0s
oV 9q 9Oc OV = 9q 0s IV

Transforming equations (13) and (17) through a first-order
Taylor series approximation centered at the point (VO,QO)
results in the following equations.

Py (VO + AV, 0° + A9)

_ 0 0 aPk(K7Q)
- () + |20

Qx (V° + AV, 60° + AG)

OP,(V, 9)} { Af }
6Z (Z07Q0) Ai

0Qx(V,0)  9Qr(V,0) Ad
= Qk Kovgo + |: ‘ D
(13)
Replacing equations (18) into (11) yields,
Pretk — Pe (V°,0°) = AP,
_ [0P(V,0) | oP,(V,0) Af
Looe V| wog | AV
Qnetk — Qi (V°,0°) = AQs (19)
[00u(20)  9Qw(V.0) A0
a 00 oV AV
L (V9,69

From the full array of linearized power balance equations,
a specific subset defined by equation (19) is chosen, consid-
ering the unique characteristics of each bus in the network.
This subset includes (n — 1) active power equations, each
representing a different bus excluding the slack bus, and an
additional N P(Q equations for the reactive power at the load
buses. Consequently, the fundamental load flow equation is
established as follows:

APpy Abpy
APpg | =Jip | Afpg (20)
where,
Hpy,pv  Hpv,pg Npv,pq
Jur = | Hpqprv Hpgrqg Nrqrg (21)
Jeq.pv  JrgPQ  LPq.Pq

IV. SIMULATION RESULTS

This section presents the numerical results obtained from
the implementation of the numerical techniques described
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in previous sections. The experiments were conducted on
Google Cloud Services using the NVIDIA V100 GPU instance
for gradient descent calculation. We implemented the ACPF
model with Python programming.

TABLE I
SUMMARY OF INITIAL SOLUTION VIOLATIONS AND THEIR MAGNITUDES
IN VARIOUS TEST SYSTEMS

Test _NO- _Of Magnitudt.t of .the
System Violations Largest Violation
(Init.Sol.) (p.u.)
v VP Q;
IEEE14 7 0.0292
IEEE30 18 0.0826
NEGL39 28 0.0603
IEEES7 36 0.0634
PRCTS89 56 0.0475
IEEE118 3 0.0070

The tests involve initially executing an ACPF followed by
addressing any potential PQ bus voltage magnitude violations
in the load flow solution. To provoke these violations, the
lower limits of dependent variables were raised, creating a
narrowly feasible region. The results, as shown in Tables I
and II, indicate the effective reduction of violations through
orthogonal projections onto feasible regions, with violations
ranging from 3 in the 118 bus system to 56 in the 89 bus
system.

Considering the limitations in control variables (32 for
the largest system), it’s impractical to address all violations
simultaneously. Thus, only the most significant violations,
concerning bus magnitude limits, are included in the active
constraint set. This approach maintains a manageable system
size compared to the original problem and ensures that the
reactive power adjustments are minimal yet sufficient to rectify
the violations, typically resulting in at least one PQ bus voltage
reaching its limit, as observed in Table II's last two columns.

TABLE 11
EXTENDED ANALYSIS OF COMPUTATIONAL TIME AND VOLTAGE LIMITS
AT BUSES. THIS TABLE SHOWCASES THE TOTAL COMPUTATIONAL TIME
AND THE NUMBER OF BUSES MEETING THEIR VOLTAGE LIMITS
(V3 = V™) IN THE FINAL SOLUTION FOR DIFFERENT TEST SYSTEMS.
“CG”: PROPOSED COMPUTATIONAL GRAPH METHOD

Total c.p.u. time
Test System (sec) No.of Buses with V; = Vi“"‘
CG / traditional NR
Vio [V,
IEEE14 0.0025 / 0.0011 2 0
1IEEE30 0.0032 / 0.0028 1 0
NEGL39 0.4231 / 0.6624 2 2
1IEEES57 0.6443 / 0.8216 1 1
PRCT89 1.1046 / 1.6421 1 1
IEEE118 1.3592 / 1.7380 3 0

The cpu time of the computing process for orthogonal
projections is closely linked to the number of constraints that
are either activated or breached. Correcting deviations in the
lower voltage limits of the PQ buses may result in exceeding
the upper voltage limits. The procedure is concluded only
upon resolving all such discrepancies or upon recognizing

the infeasibility of finding a viable solution. Table II'’s second
column demonstrates the computational graph method’s supe-
riority over the traditional Newton-Raphson method in large-
scale applications. For instance, in the case of a 118-bus test
system, there was a notable 21.79% reduction in CPU time.

V. CONCLUSION

This paper’s empirical findings demonstrate that the com-
putational graph methodologies introduced are not only com-
petitive but also surpass alternative methods in several aspects.
The effectiveness of these techniques was evaluated using six
electrical power networks. The approach successfully rectified
PQ bus voltage limit violations without resorting to penalty
functions, instead utilizing orthogonal projection onto feasible
solution regions. This method proved efficient both inde-
pendently and when integrated with the Gradient Projection
technique aligned with computational graph strategies. Its
efficacy and reliability were particularly evident in resolving
significant voltage violations within acceptable computational
timeframes.
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