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Abstract—Finding a computable expression for the feedback
capacity of channels with colored Gaussian, additive noise is
a long standing open problem. In this paper, we solve this
problem in the scenario where the channel has multiple inputs
and multiple outputs (MIMO) and the noise process is generated
as the output of a time-invariant state-space model. Our main
result is a computable expression for the feedback capacity in
terms of a finite-dimensional convex optimization. The solution
to the feedback capacity problem is obtained by formulating the
finite-block counterpart of the capacity problem as a sequential
convex optimization problem which leads in turn to a single-letter
upper bound. This converse derivation integrates tools and
ideas from information theory, control, filtering and convex
optimization. A tight lower bound is realized by optimizing over a
family of time-invariant policies thus showing that time-invariant
inputs are optimal even when the noise process may not be
stationary. The optimal time-invariant policy is used to construct
a capacity-achieving and simple coding scheme for scalar chan-
nels, and its analysis reveals an interesting relation between a
smoothing problem and the feedback capacity expression.

Index Terms— Multiple inputs and multiple outputs (MIMO),
channel capacity, feedback, colored noise, additive white
Gaussian noise (AWGN), convex optimization.

I. INTRODUCTION

E CONSIDER the feedback capacity of a multiple-
input multiple-output (MIMO) Gaussian channel

i =Ax;+z, (D

where A € RP*™ is a deterministic matrix, y; is the channel
output and x; is the channel input. The noise, z;, is a colored
Gaussian process generated by a vector state-space model (a
hidden Markov model)

si+1 =F's; +G w;
Zi:HSi'FVi, (2)

where the sequence (w;,v;) is i.i.d. with Gaussian distribu-
tion. Our assumptions on the state-space are mild and include
for instance non-stationary noise processes (when the spectral
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radius of F' is greater than 1). Particular realizations of the
state-space reveal well-known random processes such as the
auto-regressive moving-average (ARMA) noise process.
Most related to our setting is the framework for channels
with general additive Gaussian noise processes by Cover and
Pombra [2]. They showed that the feedback capacity is equal
to the limit of
1 det(Kv + (I + B)KZ(I + B)T)

—1
Kvios 2n 8 det K7 ’
3)

where KZ is the covariance of the Gaussian noise, and
the maximum is subject to strictly-causal linear operators B
(lower-triangular matrices) and pairs (Ky, B) that satisfy the
power constraint Tr(Ky + BKZBT) < nP. Their general
methodology applies to arbitrary Gaussian processes, and can
be extended to MIMO channels and results in a formula that is
similar to (3), but the computation of such expressions remains
non-trivial. In this paper, we show that imposing a state-space
structure on the Gaussian noise leads to a computable charac-
terization of the infinite-limit of the optimization problem (3).

Our main result is a computable expression for the feedback
capacity, formulated as a finite-dimensional convex optimiza-
tion problem. The optimization is a maximal determinant
optimization problem subject to linear matrix inequalities
(LMIs) constraints, a class of convex optimization problems
that often appear in the control literature [3], [4], [5], [6] and
recently also in information theory [7], [8], [9], [10]. The
LMIs are interpretable, and one of the LMIs corresponds to a
tight relaxation of a Riccati equation. Several aspects of the
feedback capacity solution such as computability, comparison
with non-feedback rates, and optimal inputs distribution are
discusses by studying the capacity of the moving-average
(MA) and the auto-regressive (AR) noise processes.

The literature on the feedback capacity of scalar Gaussian
channel is rich, e.g. [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], and the focus here is on works most related
to ours (a detailed survey can be found in [21]). In [22],
an explicit lower bound for ARMA(1,1) noise was derived.
The lower bound was shown to be optimal in [21] and [231'.
In [21], it is also shown that stationary channel input processes
achieve the feedback capacity when the noise is stationary.
Based on this fundamental result, [21] studies the special case
of our channel in (1)-(2) where the channel is scalar, the
noise is stable, and the hidden state is available to the encoder
(w; = v;), and formulated its capacity as a finite-dimensional,
non-convex optimization problem. In contrast, we provide a
convex optimization for the feedback capacity of the general

Cn(P) =

'Recently, [24] identified that the proof of [21, Lemma 4.4] is invalid,
which implies that the conjecture in [22] is only proven for the MA(1)
noise [23]. More details in Section IV-A.
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channel in (1)-(2) under mild conditions (see Section II below).
In [10], a change of variable to the non-convex optimization
in [21], combined with the interesting idea of using LMlIs,
showed that the capacity can be formulated as a convex
optimization problem. However, the change of variable relied
on an erroneous claim (see Remark 1). Our paper studies
colored Gaussian noise described by the general state-space
model where the hidden state of the noise may or may not be
available to the encoder, the channel may be scalar or vector
(MIMO), and the noise may be stationary or not. We express
the feedback capacity as a convex optimization problem in
this general setting. A recent conference paper also studies
MIMO channels, and extends the convex optimization in [15]
to MIMO channels with ISI [24]. The intersection of [25] and
our setting is a MIMO channel with a stable, colored Gaussian
noise, and the capacity results in the current paper (initially
published as [1]) and [25] were developed independently
and published concurrently. Each work considers a different
extension of the MIMO channel with stable noise: [25] studies
channels with ISI, whereas we study colored Gaussian noise
that can be either stationary or non-stationary. A major techni-
cal contribution in our work is that we show the optimality of
stationary inputs for non-stationary noise processes. This fact
and its proof may be of independent interest since it does not
rely on the frequency-based methods of [21], and it can be
even used to generalize the capacity results in this paper [26].

The starting point of our derivations is the general
Cover-Pombra characterization in (3), and we develop a time-
domain methodology to provide a computable expression for
the feedback capacity. We derive a novel formulation of the
n—letter capacity in (3) as a sequential convex optimization
problem (SCOP). In particular, we formulate an optimization
problem whose decision variable is a sequence of length n,
where at each time fixed-dimensional matrices are optimized.
In the SCOP formulation, the LMI constraints have a sequen-
tial nature and should depend on two consecutive times only.
This sequential property combined with the convexity of the
problem is the key to obtain a single-letter upper bound for the
limit of the n-letter capacity in (3). For the lower bound, a fam-
ily of time-invariant channel inputs distributions is optimized
and is shown to achieve the upper bound. An outcome of our
derivation is a new methodology to show that time-invariant
inputs are sufficient to achieve the feedback capacity even
when noise may be non-stationary.

An optimal time-invariant policy can be computed directly
from the feedback capacity convex optimization. Using this
policy, we also construct an explicit coding scheme that
achieves the feedback capacity for scalar channels. The derived
scheme generalizes the coding proposed in [21], and simplifies
its encoding by showing that the message can be encoded as
a scalar rather than the multi-dimensional variant proposed
in [21]. We also derive an explicit decoding rule by studying a
related smoothing problem [27]. The analysis of the smoothing
problem reveals an interesting relation between the volume
reduction of its error covariance and the capacity solution. That
analysis is performed for the general case of a MIMO channel,
and a possible MIMO scheme is discussed in Section VII.

The rest of the paper is organized as follows. In Section II,
we present the setting and the preliminaries. Section III
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includes our main result on the feedback -capacity of
the MIMO Gaussian channel and several examples.
In Section IV, we present the optimal inputs distribution and
the capacity-achieving coding scheme. In Section V, the main
ideas and the technical lemmas to prove our main result are
presented while their detailed proofs appear in Section VI.

II. THE SETTING AND PRELIMINARIES
This section includes the communication setting. We also
present the Kalman filter and the Riccati equation that are
required for the presentation of the main result.

A. The Setting
We consider a MIMO additive Gaussian channel

i =Ax;+ 2z, €]

where the channel input is x; € R™, y, € R? is the channel
output, the additive noise is z; € RP, and A € RP*"™ is a fixed
known matrix. The encoder has access to noiseless, strictly-
causal feedback so that the input x; is a function of the mes-
sage and all previous channel outputs y'~! :=y,,...,y,_;.
For a fixed blocklength n, the channel input should satisfy the
average power constraint = > | E[x! x;] < P. Definitions
of the average probability of error, achievable rates and the
feedback capacity are standard and can be found in [21], for
instance. The feedback capacity with a power constraint P is
denoted by Cj(P).

In the case of MIMO channels, the capacity can be
expressed as the multi-letter expression in (3) by modifying
all the matrices to their corresponding block matrices with
appropriate dimensions. An equivalent characterization of the
n-letter objective in (3) is the directed information I(x™ —
y™) that characterizes the feedback capacity of point to point
channels [28], [29], [30], [31].

The additive noise is a colored Gaussian process generated
as the output of the state-space:

Siv1 = F'si +Gw;
z; = Hs; + vy, ®)

where s; € R", w; ~ N(0,W) and v, ~ N(0,V) are i.i.d.
sequences with E[w;vl] = L, and are independent of the
initial state s; ~ N (0, %;). Note that, due to the feedback, the
encoder has a strictly causal access to the noise z;, but not to
the hidden state s;. For this case, we can use Kalman filtering
to write the state-space (5) in an observer form [32]. This
pre-Kalman filtering step for the state-space (5) allows one to

define a new channel state that is available to the encoder.

B. The Kalman Filter and the Innovations Process

The Kalman filter is a simple, recursive method to compute
the maximum likelihood estimate of the hidden state s; based
on the measurements zi,...,2;_1. The predicted-estimate of
the state and its error covariance are denoted by

§; =FE[s; |z
¥, = cov(s; —§;). (6)
The Kalman filter is given by the recursion

Sit1 =F§,+K,(z; —HS,;) @)
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with the initialization §; = 0, and the constants are

K,i=(FS,HT + GL)Y; !
U, =HS,H' +V, (®)

where the error covariance X; is described by the Riccati
recursion

Sip1 = FSFT 4+ GWGET — K, UK, ®)

with the initial condition »; > 0. The estimate in (7)
is updated using the innovations process, defined as e; =
z; —H §;, and is distributed according to N (0, ¥;). It can be
easily shown that the innovation e; is orthogonal (statistically
independent) of the previous instances of the measurements
z'~1 [33]. Thus, we can write a new equivalent channel as

Sit1 =18, +Kp;e;

where §; plays the role of the channel state and is available
to the encoder. Note that this is a valid channel due to the
Markov chain (8;41,y;) — (xi,8;) — (x*~ 1, yi=1 87 m).

The innovations process also characterizes the entropy rate
of Gaussian random processes as

1 n _l - . i—1
TCRREIICIE
1 n
_ h i
n; (ei)

I 1 4
=5 ;logdet(\h) + o log(2me)“. (11)

In (8), it is assumed that W; > O for all ¢. This is a natural
assumption since otherwise the capacity is infinite. Namely,
if ¥, is only positive semidefinite, a coordinate in the noise
vector z; is a deterministic function of the past noise instances
z'~!. Building an infinite-rate scheme is straightforward: the
encoder transmits x; = 0 so that y; = z; for j < ¢ — L
Then, by having z'~!, the encoder and the decoder know a
coordinate of z;, and can communicate an infinite number of
bits on this vector coordinate (assuming the image of A is not
degenerated at this particular direction).

C. The Riccati Equation
Consider the matrix function

f(E)=FSFT =S+ GWGT — K, (S)¥(D)K,) (2), (12)

where K,(X) = (FXHT + GL)¥(X)~! and ¥(%) =
HYH?T + V. The Riccati equation is defined as f(X) = 0.
The stabilizing solution to the Riccati equation (if exists)
solves f(X) = 0, and is the unique solution such that its
corresponding closed-loop system F' — K,(X)H is stable.
In the rest of the paper, we refer to

K, = (FSH" + GL)¥ !

U=HYH" +V (13)
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as the constants evaluated at the stabilizing solution. The
corresponding time-invariant Kalman filter is
§i+1 =Fs; +Kp(Zi —-H él) (14)

We move on to present assumptions on the state-space
model. The stability of F' determines the stationarity of the
noise process.

Definition 1: The matrix F' is stable if its spectral radius
satisfies p(F') < 1.

Without further assumptions, our results hold for the station-
ary case, i.e., when F' is stable (and L = 0). Thus, a reader
whose interest is limited to the stationary case may skip the
following assumptions.

Assumption 1: The pair (F, H) is detectable. That is, there
exists a matrix K such that p(F — KH) < 1.

Assumption 2: The pair (Fs, W) is controllable on the
unit circle where Fy, £ F — GLV'H and W, & W —
GLV-'LTGT. That is, for any x and \ such that xF; = x ),
if [\| = 1, then 2W3/? 0.

Assumption 1 asserts that all eigenvectors of F' that have
unstable eigenvalues (outside the unit circle) can be observed
via the matrix H. Indeed, without loss of generality, it can even
be assumed the pair (F, H) is observable (for all eigenvectors)
since the unobserved eigenvectors have no effect on the chan-
nel noise. Assumptions 1 and 2 are sufficient and necessary
conditions for the existence of the unique stabilizing solution
to the Riccati equation in (12).

We further assume that the initial covariance matrix >; con-
verges to the stabilizing solution. Advanced discussions on
convergence of Riccati recursions can be found in [27, App.
E], and here we aim to provide several alternatives in order to
obtain a general framework. The first condition is stabilizabil-
ity of (Fs, Wy). That is, for any = and A such that zFs = x ),
if |[A\|] > 1, then :stl/ 2 # 0. This condition guarantees
that the stabilizing solution is the only positive semidefinite
solution to the Riccati equation, which implies that any initial
state covariance converges to the stabilizing solution. Another
useful condition is ¥7 > 3 where . is the stabilizing solution.
Beyond these two sufficient conditions, in simple cases (such
as the moving average noise in Section III-A), the convergence
can be verified manually. With these assumptions, there is no
loss of generality in assuming that the initial covariance YJ; is
equal to the stabilizing solution of the Riccati equation in (12)
by letting x; = 0 before the transmission begins.

III. MAIN RESULT AND DISCUSSION

In this section we present the feedback capacity of the
MIMO channel and its particularization to scalar channels.
We discuss different aspects of our main results via several
examples. The following is our main result.

Theorem 1 (Feedback capacity of MIMO channels): The
feedback capacity of the MIMO Gaussian channel in (4)-(5)
is given by the convex optimization

1 1
Cp(P) = max - logdet(¥y) — - log det(¥)
mer 2 2

st. Uy =ATUAT + HSHT + ATHT + HTTAT +
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IANDY
FYP” 4+ KUE) -8 F(ITAT + SHT) + K, 0\ 0
(AT + HY)FT + UK Uy -

(1 DYeo <

15)
where K, and ¥ are constants given in (13), and the opti-
mization variables are the matrices II € R™*™, = Rxn,
and I' € R™*™,

Note that the first LMI constraint implies that the opti-
mization variables II and 3 are positive semidefinite. The
objective structure is a difference between the entropy rates
of the channel outputs process and that of the noise process.
Note that the objective is a concave function of the decision
variables since Wy is a linear function the decision variables,
while ¥ is a constant. The concavity of the objective and
the linear constraints show that the optimization problem is
a convex optimization that can be computed with standard
software e.g. [34].

In Section IV-A, the decision variables will be given a
straightforward interpretation by showing that they induce a
time-invariant, optimal inputs distribution. Here, we briefly
remark on the LMIs in (15). The decision variable II corre-
sponds to the covariance of the channel input so that the first
LMI in (15) is a verification that it forms a valid covariance
matrix with a correlated variable whose covariance matrix is
3. For the second LMI in (15), its Schur complement implies
the Riccati inequality

Y FSFT + K,UK! — KyUy KT, (16)

with Ky = (F(TTAT + 2HT) + K,¥)¥,'. In Lemma 7
(Section V), it is shown that there always exist optimal
decision variables (IT, &, T') that satisfy the Riccati inequality
(16) with equality, i.e., it is a Riccati equation. This reveals that
the origin for explicit capacity formulae expressed as function
of roots to some polynomials [21], [22], [23] is the Riccati
equation. We demonstrate this interesting fact in Section III-A
for the MA noise process.

If the channel outputs, inputs, and the additive noise are
scalars, but the hidden state of the noise s; is possibly a vector,
the capacity in Theorem 1 can be simplified as follows.

Theorem 2 (Feedback capacity of scalar channels): The
feedback capacity of the scalar Gaussian channel (4)-(5) with
A =1 is given by the convex optimization problem

<1+ P+H2HT+FHT+HFT>

1
Cyp(P) = max - log
s 2

)

P T
S.t. 7 5) >0,

FYFT + K,UK] =% FIT + FSHT + K0\ 0
IFT + HYFT + UK Uy =
Uy =P+ HSHT +THT + HTT + 0,

where K, and ¥ are constants given in (13).
Choosing H = 0 in (17) recovers the capacity formula of
an additive white Gaussian noise (AWGN) channel

1 P
Cy(P) = 3 log <1 + V) .

v

a7
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Remark 1: The state-space studied in [10] can be recovered
from the setting in Theorem 2 with W =V =L =1 and a
stable F. It is also assumed that ¥ = 0 implying that K, =
G,V = 1. In this case, the capacity expression in (17) and
that in [10, Th. 4] are almost in full agreement. In particular,
they write the optimization problem with a supremum, and
there is a difference in the sign of the first LMI in (17) which
reads as a strict LMI (>) in [10]. The reasoning for their strict
LMI follows from an erroneous claim after their Theorem
3 that the i.i.d. component of the optimal policy should have
a positive variance at all times (the policy structure appears
below in (27)). This claim is utilized to show their argument
on the invertibility of 3. In Section III-A we show, for the
MA noise, that the i.i.d. component of the optimal policy is
zero. In particular, we show that the optimum is achieved on
the boundary of the LMI, i.e., the optimal variables induce a
singular matrix in the LMI (see the proof of Theorem 3 for
details).

A. Moving Average (MA) Noise

In this section, we study a scalar channel with the MA noise
process
(18)

with iid. w; ~ N(0,1) and o € R. In [23], the feedback
capacity of the MA noise with |a| < 1 was shown to be
equal to

Z; = W; + Qw;—1,

Cfb(P) = —logxo, (19)
where xq is the unique positive root of
Pz* = (1 —|alz)*(1 — 7). (20)

The MA noise can be realized by the state space (5) with
F=0H=aG=W=V =L =1. We derive here the
feedback capacity for all a.

Theorem 3 (Moving-average noise): The feedback capacity

of the Gaussian channel with MA noise is
1
Cp(a, P) = 3 log(1 +SNR), (21)

where SNR is the maximal positive root of the polynomial

2
g ) (VP Hlaly/i258s) i e <1
- 2
a2 (VP+ /258 ) " if Jal > 1,5 > 0,

(22)

The capacity expression in (21)-(22) for || < 1 coincides
with the feedback capacity expression in (19).

For |a] < 1, the feedback capacity is independent of the
initial state covariance X but, for || > 1, we assume 3 # 0.
This condition is made to avoid the singularity that ; = 0 for
all ¢, and does not converge to the stabilizing solution of the
Riccati equation. If |a| > 1 and ¥; = 0 (i.e., the initial state
is known), the capacity can still be computed but with the
solution to the first polynomial in (22).

To compare the capacity expression in Theorem 3 with
(19) when |a| < 1, one can use the change of variable
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= (1+SNR) ! to write (21) as Cfb( ) = —log x¢ where
Zo solves 1;;” (\/>+ lav/1 — x2) It is interesting to

note that the latter polynomial and (20) are different. However,
the second part of Theorem 3 confirms that the feedback
capacities are in agreement for |«| < 1 by showing that their
positive roots coincide. We proceed to prove Theorem 3.

Proof of Theorem 3: We compute the capacity expressions
in Theorem 2, and then verify thereafter that the required
conditions are met.

The Schur complement of <I‘P; g) > 0 evaluated in the
optimal variables is shown to be zero using contradiction.
Assume that P — 25~ = p for some p > 0. Then, we can
replace I' with I = T'(1 + I~2p%)'/2 to obtain a larger
objective. The Riccati LMI can be verified to be satisfied with
this replacement. This step shows that the LMI cannot be strict
at the optimum. For the other LMI in Theorem 2, a similar
reasoning shows that the Schur complement of the Riccati
LMI (16) can be achieved with equality (see Lemma 7),
and the Schur complement simplifies to the Riccati equation
Y= K, UK, — (VK,)2U "

To derive the capacity expression in Theorem 2, we compute
the Riccati constants K, and ¥ from the stabilizing solution
of the Riccati equation in (12). The Riccati equation has two
solutions ¥ = 0,1 — ;. For |a| < 1, the stabilizing solution
is ¥ = 0 which implies K, = \Il = 1, while for |a| > 1 the
stablllzmg solution is ¥ = 1 — = which implies ¥ = o and
K, = a™*. We note that in both cases K, ¥ =1 so that the
Riccati equation above simplifies to 3 = Kp ! where K,
is either 1 or a~2. The decoder’s innovation can be written as

Uy = U + P+ o’ 4 2oV PY
2
_\If+<\f+|a Uy ),

where the sign of I' was chosen to maximize ¥y. We denote
Uy ¥~1 =1+ SNR and substitute the latter in both sides of
(23) to obtain the fixed-point equations in (22).

We verify the conditions for Theorem 2. The pair (F =
0,H = a«) is detectable (Assumption 1) for all «, and
(Fs,Ws) = (—a,0) is controllable on the unit-circle for all
|a] # 1 (Assumption 2). Thus, for |a| # 1, the stabilizing
solution for the Riccati equation exists and is equal to ¥ =
max{0, 1— -3 }. Itis easy to check that the Riccati recursion in
), Xiy1=1— 122 , converges to the stabilizing solution
unless o] > 1 and ¥ =0.

If |a| = 1, the only solution to the Riccati equation is ¥ =
0, but it is not a stabilizing solution (it is the maximal solution).
Although Theorem 1 concerns noise processes whose Riccati
equations have stabilizing solutions, the upper bound extends
to non-stabilizing solutions as well. For the particular instance
of the MA noise with |«| = 1, we verified that the lower bound
in Lemma 6 holds as well.

Finally, we show the equivalence of our capacity expres-
sion and (19), for || < 1, by proving that the positive

2
(\/]3 + o]Vl — :c2) coincide.

.. . 1—_7;2 _ P
The positive root of (20) satisfies zgo = TTaleo)?

(23)

and
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2 T
=-=Feedback: Th. 1
—Feedback: Kim [21] =
i.i.d. inputs = B
= Water-filling

Rate [bits/ch. use]

1.5 2 2.5 3
Regression parameter (3

L
1
1
1
1
!
1

0 0.5

Fig. 1. The feedback capacity of the Gaussian channel with an auto-regressive
noise of first order and a unit-power input constraint (black curve). The
blue curve describes the feedback capacity expression for the stationary
case (\ﬁ\ < 1) from [21], but is plotted here for greater values of g,
as it numerically coincides with the feedback capacity as long as M = 0
(see Fig. 2 below). The red curve corresponds to the feedforward capacity
(without feedback) obtained via a water-filling solution, and the green curves
corresponds to an i.i.d. coding law (feedback-independent) of the channel

inputs in (26).
VPaq

V1—a3 = T Talzo’ and by substituting these equations into
0
the second polynomial, we get

~ (VP +lalVi-a?)

P
:u—mw‘(@“a

2
\/%) =0. (4
1 —|a|xo

The other direction can be shown similarly. ]

B. Auto-Regressive (AR) Noise

The auto-regressive (AR) process of first order is given by

z; = Pri—1 + wy, (25)

where w; ~ N(0,1) is an i.i.d. sequence. This is one of the
simplest instances of colored Gaussian noise and was studied
in [11], [12], and [13]. A closed-form feedback capacity
expression for the stationary case |3| < 1 was derived in [21]%.
We present next the AR noise with a general 5. The AR
process can be realized by (5) with F' = 3 and
G=L=W=V=1

In Fig. 1, the feedback capacity in Theorem 1, the feed-
back capacity expression for |3| < 1 from [21], and the
non-feedback capacity (using a water filling solution) are
plotted. Additionally, we plot the maximal achievable rate with
i.i.d. inputs by adding the constraint I' = 0 to the optimization
in (17). This rate can also be computed explicitly as

2
Ria(B,P=1) = %log (1+ﬁ (1+,/1+ 544)). (26)

First, it is interesting to note that black and blue curves
coincide for some non-stationary noise with 1 < g < 1.5.
This means that the capacity expression in [21] holds true
even for some values beyond the stationary regime. The rate

2Recently [24] showed that [21] has an error in Corollary 4.4, which
renders the feedback capacity expression in [21] for the AR noise with
|B] < 1 unjustified. Particularizing our general capacity expression to AR
noise and carrying out a computation similar that of the MA noise (Theorem 3)
shows that the feedback capacity expression in [21] is correct for |3] < 1.
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achieved with i.i.d. inputs (green curve) approaches the feed-
back capacity for large regression parameters. Thus, the plot
shows that, as the regression parameter grows large, the rate
achieved by i.i.d. inputs approaches the feedback capacity,
and the feedback link has a negligible contribution in terms
of capacity. From operational perspective, the feedforward
capacity lies in between the i.i.d. achievable rate (green curve)
and the feedback capacity (black curve). Thus, for large 3,
it can be well-approximated with simple i.i.d. inputs, i.e.,
codewords with memory are not needed. These phenomena are
related to the structure of the optimal inputs distribution that
is presented and discussed for the AR noise in Section IV-A.

IV. OPTIMAL INPUTS DISTRIBUTION AND
CODING SCHEME

In this section, we present a capacity-achieving, time-
invariant inputs distribution that can be computed from the
convex optimization in Theorem 1. We then use this inputs
distribution to construct a capacity-achieving coding scheme
for scalar channels, and discuss a possible extension to MIMO
channels.

A. Optimal Inputs Distribution

The optimal decision variables in Theorem 1 induce a time-
invariant capacity-achieving inputs distribution®:
x; =318 —8;) + my, 27)
where §; is defined in (6), and its estimate at the decoder is
defined by
s 2E[8 |y (28)
The optimal policy is composed as the sum of two signal-
ing components. The first component, (§; —$;) corresponds
to the decoder’s estimation error, and is a function of the
feedback. Its transmission refines the decoders’ knowledge on
S; by transmitting the states innovation (the vector §; can be
regarded as the channel state, see Section II). The covariance
of the innovation (8; —§;) is 3, so that the covariance of
the first component is cov(I'ST(8; —§;)) = I'SITT. The
second component, m;, is independent of (x'~!,y*~!) (and
thus is feedback-independent), and has an i.i.d. distribution
with the remaining covariance, i.e., m; ~ N(0,M) with
M 2 I-TXTT. The transmission of the vector m; increases
the uncertainty of the channel state S; at the decoder, but it can
be used to transmit new information (on the message). In the
AWGN channel, for instance, the entire power is allocated to
the second component m,. We proceed to illustrate the policy
behavior for the AR noise.

In Fig. 2, the power allocated to each of the signals in (27)
is plotted for the AR noise in (25) with a power constraint
P =1.For 0 < B <1, Fig. 2 agrees with the claim in [21, Th.
4.6] on the sufficiency of inputs distribution with m; = 0 for
scalar and stationary noise (see also next paragraph). However,
beyond the stationary regime, there is a sharp phase transition,
and the power allocated to m; increases as 3 grows. The phase

3More precisely, a capacity-achieving policy in Lemma 6 is the
time-invariant law in (27) for ¢ > 1, and a different coding law for ¢t = 1.
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Fig. 2. The power of the signaling components in the inputs distribution (27)
for AR noise. The red curve corresponds to the feedback-dependent signal
I'Sf(8; — $;) and the blue curve corresponds to m;. Note that there are two
phase transitions, at § = 0 and 8 ~ 1.5. Consistent with [21, Th. 4.6],
M = 0 achieves the feedback capacity in the stationary regime 3 € (0, 1).
Also, as 3 grows large, the power allocated to the i.i.d. component grows
as well. Combined with the i.i.d. coding law curve in Fig. 1 (green curve),
this shows that the feedback link has negligible contribution to the capacity
solution.

transition location, § ~ 1.5, explains the gap between the
feedback capacity in Theorem 1 and the capacity expression
in [21] since the latter used a policy with m; = 0. Fig. 2
also shows that the rate achieved with i.i.d. inputs in (26)
approaches the feedback capacity for growing (. This implies
that the Schalkwijk-Kailath (SK) encoding law is close to
optimal in this regime [35].

The role of the second component m; has been discussed in
several papers [10], [21], [24]. In [21, Cor. 4.4], it is claimed
that for scalar channels with stationary noise, the capacity can
be achieved with M = 0. Recently, [24] showed that the
proof of the claim in [21, Cor. 4.4] relies on an erroneous
calculation and thus is invalid. Our capacity derivation relies
on a general policy with M > 0 (with a different coding for
the first time ¢ = 1). As illustrated in the examples above,
for general noise processes, M can be either positive or zero;
for the MA noise, we prove in Theorem 3 that M = 0 is
necessary to achieve the capacity, and for the AR noise, it is
illustrated that M > 0 in the non-stationary regime (Fig. 2).
When specializing our capacity expression for stationary noise
processes, it may be utilized to find a counterexample for
[21, Cor. 4.4]. We ran extensive simulations to specialize our
capacity expression in Theorem 2 to various stationary noise
processes and to compute the optimal M, yet we did not find
a counterexample to [21, Cor. 4.4]. Thus the claim in [21, Cor.
4.4] may be true.

As mentioned in Remark 1, the fact that M = 0 does not
imply that the achievable rate is as erroneously claimed in [10].
If M = 0, it simply implies that the message is encoded at the
first time with m; # 0, and from ¢ > 1 the encoder follows
the rule x; = Fif(éi —8;). In the next section, we show that
this explicit coding scheme is capacity-achieving with double-
exponential decay in the error probability for any rate below
capacity.

B. Coding Scheme for Scalar Channels

In this section, we construct a capacity-achieving coding
scheme for scalar channels (with a vector hidden state) based
on the optimal inputs distribution in (27). Throughout this
section, it is assumed that the optimal inputs distribution in
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(27) satisfies M = 0. The design of an explicit coding scheme
with M # 0 remains open.

Our scheme resembles the SK scheme [35], [36], and other
posterior matching schemes for memoryless channels [37],
[38], [39], [40] and channels with memory [21], [23], [25],
[41], [42], [43], [44] in its main idea to refine the decoders’
knowledge of the message (or equivalently, to refine the
decoders’ knowledge of the first channel noise instance in
Gaussian channels).

The main difference with the SK scheme is that rather
than encoding the scaled innovation of the first noise instance
zp (our coding scheme starts at ¢ = 0), our encoding
follows (27) to transmit the innovation of §;. This modifi-
cation results in a more numerically stable encoding since
our scaling factor st is a constant, while in the SK
scheme the scaling of the message innovation increases with
time.

A related scheme for a similar setting appears in [21].
Both schemes follow the encoding in (27) but, only our
paper provides a computable expression for the coefficient
matrix I'ST (via Theorem 1). Additionally, we simplify the
multidimensional encoding method in [21] by showing that,
even when the hidden state is a vector, it is sufficient to
encode the message in a single time instance. Additionally,
we provide an explicit smoother for the maximum likelihood
decoder proposed in [21] and [45].

Our coding scheme consists of three main steps:

1) Message transmission: At time ¢ = 0, the message
m € [1 : 2"%] is mapped to a zero-mean, unit-
separation symbol U(m) = m — 2"#~1 whose variance
is Var(U) = (22" — 1)/12. The normalized symbol
U(m) = Var(U)~2U (m) will be transmitted at the first
time instance as xq(m).

2) Refinement: At times ¢ = 1,...,n, the encoding
process is simply to use the optimal inputs distribution
in (27). The estimates §; and $; can be computed directly
from (7) and (42) and the constant 'S is obtained from
the optimization in Theorem 1.

3) Decoding: When the refinement stage ends (after
the nth transmission), the decoder constructs the
maximum-likelihood estimate of the noise instance
7o based on the measurements y7. This estimation
problem corresponds to a smoothing problem analysis
that is formally presented in Lemma 1. Based on the
estimate of zg, the decoder forms an estimate of xy and
declares its nearest neighbour xg(m) as the decoded
message point.

We are ready to present the coding scheme as Algorithm 1.
The abbreviation KF-ENC stands for time-invariant Kalman
filter at the encoder (14). The abbreviation KF-DEC
stands for the time-varying Kalman filter at the decoder
in (42) Wi}h the initial conditions f]l = Kp\I/KpT and
My =V(@) (and ¥; = UV, K,,; = K, for i = 1,...,n).
Lastly, Smooth stands for the smoothing function
in Lemma 1 (Eq. (30) below).

6127

Algorithm 1 Optimal Scheme for Scalar Channels

Inputs: m, I, f], 20|0 =0

zg — U(m) > Transmission
Store yg = x¢ + 2o > Dec.
§1 — Kpzo > Enc. estimate
él —0 > Initialization

procedure i =1 :n

z; — ITXT(8; —8)) > Transmission

Yi =% + 2 > Ch. output
%7;4_1 — KF-ENC(%Z, Zi = Yi — Ii) > Eq (14)
éi+1 — I(F-I)EC(él7 Yis Z) > Eq (42)

20‘2' — SmOOth(éoh‘_l, Yiy 7’)
end procedure B
m = arg ming, |(yo — Zom) — U(m')]

> Dec. (Eq. (30))

> Dec.

An implementation of the coding scheme can be found
in [46]. Note thqt the decoder in Algorithm 1 does not utilize
yo to estimate $;. The choice of the initial state estimate,
§1 = 0, is arbitrary, and allows us to present the analysis
of the refinement stage at 7 = 1,...,n independently of the
message transmission at ¢ = 0. The following theorem shows
the optimality of our coding scheme.

Theorem 4 (Capacity-achieving coding scheme): For any
rate R < Cyy(P), the error probability of the coding scheme
for scalar channels (with m; = 0) in Algorithm 1 decays in
a doubly-exponential rate for large n.

A simple proof of Theorem 4 appears at the end of this
section. Its main building block is the analysis of a smoothing
problem (Lemma 1) that corresponds to the refinement stage.
We provide now explicit formulas to compute the estimate and
its error covariance. The formulas are presented for the general
MIMO channel, and their particularization to scalar channels
will be used in the proof of Theorem 4.

Lemma 1 (The Smoothing Problem): Consider the smooth-
ing problem of estimating zy from y7 with

2O|n £ ]E[ZO |y7ﬂ

ZO|n £ cov(zg —Zo|n)- (29)

Subject to the optimal inputs distribution (27), when m; = 0,
1) The optimal smoother can be recursively computed as

Zo|i = Zoji—1 T ZAo|i—1fiiT‘1’§_f,1¢(yz‘ ~Hs;), i=1,....n
(30)

with zg;p = 0 and
ki 2 (ATST + H)(F — K,(ATST + H))' 'K,
2) The error covariance can be updated as

ZO|i = (I — ZAO|i71H1T\II;'é’%i)ZO‘i713 Z = 1, ey
(€29)

with Zo|0 = U, and its determinant satisfies

det(Zoj;) = det(TyiW) det(Zoji—1).  (32)
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Moreover, Wy ; converges to V5., the optimal value of
Uy in Theorem 1.
- Therefore, for scalar channels, the error covariance
satisfies
. PPN
Zoji = Wy, WZoji1, (33)

and Uy,; converges to W3,

The proof of Lemma 1 appears in Section VI-A. Recall
from Theorem 1 that the capacity can be expressed as
Cyp(P) = 3 logdet(¥3 ¥~') where ¥} denotes the optimal
Uy-. The relation between the capacity and the smoothing
problem is transparent. The volume (determinant) reduc-
tion of the error covariance in (32) is the logarithm argu-
ment in the capacity expression. For scalar channels, the
volume reduces to a single dimension refinement of the
noise instance zgy. However, for MIMO channels the vol-
ume reduction is not sufficient to derive an explicit coding
scheme. We provide details on a possible MIMO scheme
construction.

A suggested scheme for MIMO channels is as follows:
assume for simplicity A = I, and split the message into p
independent sub-messages where p is dimension of the input,
output and noise. In the first time, we normalize each sub-
message, and transmit their concatenation as the vector Xg.
The encoding is identical to that in Agorithm 1, that is,
it follows the policy in (27). The estimation of the vector
Zo is based on the smoother in (30), and the decoding is
carried out using coordinate-wise successive cancellation of
the vector Zg),,. The analysis of such scheme can be possibly
done using Lemma 1, but a finer spectral analysis is needed. In
particular, the geometric reduction in (32) needs to be shown
for each coordinate and not for the overall determinant. The
geometric rate of the error covariance in (33) should also
determine the rates allocated to each sub-message, and is the
key to obtain the double-exponential decay. We proceed to
show the optimality of Algorithm 1 for scalar channels using
the analysis of Lemma 1.

Proof of Theorem 4: The decoder estimates xy from yg —
20n = U(m)+ 29— Zo|n- This is the problem of estimating an
M-PAM signal from a Gaussian-corrupted measurement, and
the probability of error can be bounded as

. N 1 12
%>§M<%EMWHZQ pw;1>

= 2@(771)’

where the inequality follows from the first and last messages
where a large error deviation will not incur an error on one of
their ends, and the equality follows from ,, £ £ 12%

with the standard @-function. We can further bound ~,, as

Yo < V327 Var(z|yn).

By Lemma I, -,

(34)

(35)

has a positive exponent if
R < HLlogW[]",(¥y,,U~'), which leads to the
doubly-exponential decay rate. As W¥y; — U3, R can
be chosen arbitrarily close to 1log(¥3¥~!) which is
precisely the feedback capacity. (]
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V. PROOF OF THE MAIN RESULT

In this section we outline the proof of Theorem 1 by
presenting the technical lemmas leading to tight lower and
upper bounds. The proof is structured as three parts.

1. Sequential convex optimization problem (SCOP): The
n-letter capacity expression for the MIMO channel is defined
as

Cn(P) = max

n n
PG Ny 0oy BT Xi]SPh(y )~ ") (36)
The first three lemmas formulate the n-letter capacity as a
SCOP. While it is easy to show that C,,(P) is concave in its
decision variable P(x"||y™), the challenge is to formulate it as
a convex optimization problem that enables one to explicitly
compute the limit of C,,(P). To this end, we realize a SCOP

with LMI constraints that have a sequential structure.

2. Upper bound via convexity: The second part of the
proof utilizes the SCOP structure to show that the capacity
expression in Theorem 1 is an upper bound on the capacity.
Since the optimization constraints contain decision variables at
consecutive times, the standard time-sharing random variable
argument does not apply here, and we use a different technique
to show that these constraints are asymptotically satisfied when
realized at the convex combinations of the decision variables.

3. Lower bound using time-invariant inputs: The last
part constructs a time-invariant policy whose optimization
leads to a lower bound that is expressed as the upper bound
optimization problem with additional constraints. We show
that the additional constraints are redundant, concluding the
proof of the main result.

A. Sequential Convex Optimization Problem

The first lemma identifies an_optimal structure for the
inputs distribution using §; and §; defined in (6) and (28),
respectively.

Lemma 2 (The Optimal Policy Structure): For a fixed n,
it is sufficient to optimize (36) with inputs of the form

x; =T8N (8 —8)+m;, i=1,....n (37)

where m; ~ N (0, M;) is independent of (x'~1,y"~1), $I is
the Moore-Penrose pseudo-inverse of

3 = cov(§; —§;), (38)
I'; is a matrix that satisfies
LI -0 =0, (39)
and the power constraint is
1< .
=3 Te(D,SI0T + M) < P. (40)
n

i=1

Lemma 2 simplifies the optimization (36) by showing that
the optimization domain is over the sequence of matrices
(T;, M; = 0)%_,. Note that 3; is a deterministic function
of the policy up to time ¢ — 1 and thus is not part of the
optimization. Similar policies appeared in the literature e.g.
[23, Section IV] and [10] puilding on the ideas in [22]. Their
policy reads x; = I';(§; — §;)+m;, and our policy in Lemma 2
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is a subset of their policy. Specifically, if 3, is invertible,
the orthogonality constraint is redundant, and one can use
the change of variable I", = Fiflf ! to show the equivalence
of the policies. However, in general, 3 may be singular,
and the orthogonality constraint is required for the convex
optimization formulation in Lemma 4. In the next lemma,
the channel output is formalized as the measurement of a
controlled state space.

Lemma 3 (Channel Outputs Dynamics): For a fixed policy
{(T;, M;)},, the channel outputs admit the state-space
model

=Fs; +Kp,i €;,
= (AIST + H)8; Al S8, +Am; +e;,  (41)

where K,; and e; ~ N(0,7;) are defined in (8). The
estimator in (28) can be written as

Fsz +KY1(

Sit1

§i+1 HS,) (42)
and its error covariance 3; = cov(§; — él) satisfies the Riccati
recursion

Sip1 = FSFT + K U KE — Ky, Uy, KL, (43)

with the initial condition f]l = 0, and the constants
Uy, = (AT + H)S; (AT + H)T + AMAT + 9,
Ky, = (FS(ATS] + H)T + K, ;9,) Uy (44)

Lemma 3 is a direct consequence of the policy derived in
Lemma 2. As seen from (41), the policy in (37) translates into
an additive measurement noise m; and a modification of the
observability matrix AFiXA]I + H. Similar state-space structures
appeared in [21] and [32], but it is interesting to realize that
(41) does not fall into the classical state-space structure since
the observability matrix depends on the error covariance pIp
induced from our policy. Lemma 3 also reveals an objective
structure that resembles the one in Theorem 1. In particular,
we can use the covariance of the channel outputs innovation
in (44), Uy ;, and (11) to write

h(zi|2' ™)

The next lemma summarizes the SCOP formulation.

Lemma 4 (Sequential Convex-Optimization Formulation):
The n-letter capacity can be bounded by the convex
optimization problem

hy; |y~ —

max
{F7 7H Ez+1} i=1

I, T 1
s.t. (F; Zt) =0, — Zrﬁ(m) <P
=1

Uy, = AILAT + HS HT + AT HT + HTFAT + 0,

Ky, = (FITAT + FS,H” + K, 0,) 03}

(Fﬁ]tFT + K UKL — S Ky Uy,
Uy Ky, Uy

Cn(P)< Z ogdet(Ty ;) — logdet(T;)

) =0,%,11 >0
(45)

where the constraints hold for t =1,...,n, and f]l = 0.

1 1
=3 log det(¥y,;)— 3 log det(¥;).
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To see that (45) is a convex optimization, note that each
of the matrix constraints is a linear function of the decision
variables. In the next section, we provide the single-letter
upper bound on the capacity. The key to the upper bound
is the concavity of the objective function and the linearity
of the constraints, along with the crucial property that the
Riccati LMI constraint in (45) includes decision variables of
two consecutive times only.

B. Single-Letter Upper Bound

The next lemma concludes the upper bound in Theorem 1.
Lemma 5 (The Upper Bound): The feedback capacity is
bounded by the convex optimization

1 1
Cyp(P) < max - logdet(Ty) — - logdet(¥)
3,1 2 2

Imr
t. ~ | = <
5.t (FT 2> >0, Tr(Il) <P,
Uy = ATIAT + HSHT + ATHT + HTTAT + @
Ky = (FTTAT + FSHT + K,0)0,!

<FZFT + K, K] - % KY\IIY> - 0.

Uy KT Uy (46)

The main idea behind the upper bound is to show that
the objective function evaluated at the convex combination of
each of the decision variables in Lemma 4 achieves a larger
objective. At a high level, the idea is similar to the time-sharing
random variable, but the challenge lies in the constraints.
Specifically, one cannot show that the Riccati LMI constraint
(46) is satisfied at all times when evaluated at the convex
combination of the decision variables. To settle this point,
we show that this constraint is satisfied in the asymptotics.

C. Lower Bound

In this section, we show that the upper bound in Lemma 5 is
achievable. It is shown with two lemmas: the first formulates
a lower bound as an optimization problem that resembles the
upper bound but has two additional constraints. The second
lemma shows that additional constraints are satisfied in the
upper bound optimization problem.

Lemma 6 (Lower Bound): For time-invariant policies

with m; ~ N(0,M) (and a different coding rule for i =
1), the maximization of (36) over (I, M) achieves the lower
bound

Cyp(P) > max log det(¥y) —
0,8

I T
st <FT X3)&0, Te(Il) < P

Ky = (FSHT + FTTAT + K,0)0,!
Uy = ATIAT + HSHT + ATHT + HTTAT + 0
S =FYF" + K, 9K — Ky Uy K{ (48)
IK : p(F — K(ATST + H)) < 1 (49)

log det (D)
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The optimization problem in (49) is the same as the upper
bound in (46) except for the additional constraint (49) and the
Riccati equation (48) which appears as an inequality in the
upper bound (16). Next, we show that these two conditions
are redundant concluding the proof of Theorem 1.

Lemma 7 (Equality Between the Lower and Upper Bounds):
For any optimal tuple (II,3,T) for the upper bound
optimization problem in (46):

1) There exists an optimal tuple such that the Schur
complement of the Riccati LMI (16) is achieved with
equality.

2) The pair (F,A'ST + H) is detectable, i.e.,

IK : p(F — K(ATS 4+ H)) < 1.

Consequently, the upper bound in Lemma 5 and the lower
bound in Lemma 6 are equal to the feedback capacity.

For scalar channels with H # 0, it can be shown that
the optimal tuple satisfies the first item. That is, the Schur
complement of the Riccati equation evaluated at any optimal
solution tuple is zero. This fact is utilized in Theorem 3.

VI. PROOF OF TECHNICAL LEMMAS

In this section, we provide detailed proofs of Lemmas 2 - 7
consecutively. We then prove Lemma (1) on the smoothing
problem in Section IV.

Proof of Lemma 2: The policy in (37) forms
a subset of the maximization domain P(x"[|y")
[T, P(xi|x*"',y*~!) in (36). Thus, our proof strategy is to
construct a policy of the form (37), for any inputs distribution
P(x™||y™), and show that it induces the same objective.
The optimality of a Gaussian inputs distribution in (36) can
be shown with a standard argument of maximum entropy,
e.g., [21]. We start by computing the 7th objective as

My ly'™) — h(zi |z

1 - 1
=3 log det(cov(y, —y;)) — B log det(P;),

(50)

where y, 2 Ely,|y*']. The covariance can be computed
explicitly as
2 (@) 2
cov(y; —y;) = cov(y; — )

® cov(Ax;,+HS;—H §+z; —H 8i)

(é) COV(AXZ‘ +H(§Z—§Z)) +\I]7J (51)

where (a) follows from z; £ E[z; |y*~!] and E[x; | y'~'] =
0. The latter assumption is without loss of optimality since
any policy with E[x;|y*~1] # 0 can be modified to %X; =
x; —E[x; | y*~1] that has zero mean without affecting the
objective function in (50). Step (b) follows from the channel
outputs definition in (4) and (28), and (¢) follows from
the independence of the innovation z; —H §; and the tuple
(xt,yi~1, 7 1),

For any inputs distribution P(x™||y™), denoted by P,
we construct a new policy of the form (37), denoted by @,
as follows

X; = inj(éz — él) + m,;, (52)
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where I; 2 Ep[x;(8;—8;)7], m; is independent of
(x*71,y""1) and is distributed according to m; ~ N (0, M;)
with

M; 2 Ep[x;x7] — Eplxi(8; — ;) TS Ep[(8; — 8:) ! ],
(53)

and f]j is the pseudo inverse of EA]i £ covp(s; —él) The
subscript P is made to emphasize the dependence on the
distribution P.

We show by induction that the new policy in (52) induces
the same objective as the distribution P. Consider the Gaussian
=P/Q

vector =; (8 —éi,xi,yi —ffi) where the superscript
indicates its distribution. If we show that = has the same
distribution as E? for ¢+ = 1,...,n, then their objectives are

equal by (50). For the base case of the induction, we have

Ef/ Q= (0,0,x1,y,) for both policies and our construction
in (52) guarantees that x; has the same distribution for both
policies. For the induction step, assume that the variables
{ZP}i<, have the same distribution as {Z%},<,. We show that
tuple =7 11 has the same distribution as E?H by comparing
their different components using a Bayes rule. First, the
encoders’ estimate S;41 is independent of the policy choice.
The decoders’ estimate S;+; = E[S$;11|y’] is a function of
the innovations {y,; — ili}iﬁt’ and by the induction hypothesis
these innovations have the same distribution. These first two
steps conclude that cov p($i41 — Si41) = covg(Si41 — Sit1)-
For the channel input, it can be easily verified by (52)
that Eq[xs41 %7, 1] = Ep[xi41x7,4], and the orthogonality
constraint (shown below) implies that

N 2 T & &
Eqxe1 (8141 — 8141)7] = Tep1 5], Do
=T
o 2 T

= Ep[xt+1(8t41 —Se41)" |-
The last step to complete the inductive step is for the innova-
tion y;,; —¥,,1, and we note from (51) that the distribution
of the latter conditioned on (S;41 — S¢41), X¢41 is determined
by Zi1 —-H §t+1. o

The orthogonality constraint T';(I — EZZZ») is a property

of covariance matrices since (I — EIZi) is the orthogonal
projection onto the kernel of X2;, but we prove it here for com-
pleteness. Consider the eigendecomposition of the covariance

matrix
Q 0) (UOT>
Uy U ,
(o th) <o 0) \uf

where (Uy Uy) is an orthogonal matrix and € > 0 which

(54)

imply (8; —8;)TU; = 0. The Moore-Penrose pseudo inverse

1S
~ -t oo\ [Ud
- (8 ().

and the constraint can be written as
Elx;(8; —8:)7](1 — £I%))

= E[x;(8; —8:)7] <I (Uo Uh) (é 8) (g(;;)) . (56)

(55)
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To see that (56) is the zero matrix, note that if u is a

UT
column of Uy, then <I— (Uo Ul) (é 8) (UOT>> u =
1

0. Further, if w« is a column of U;, then

(I (Uo Th) <é 8) (g?)) u = u, but (8; —8;)Tu =

0 by the decomposition in (54).
Finally, it can be verified that the power consumed by the
new policy satisfies

n n
D Eolx! xi] =) Eplx] xi].
=1 =1

O

Proof of Lemma 3: The recursion for the predicted state

S;+1 is given in Eq. (7) where e; is the innovation process.
For the channel output, we use Lemma 2 to write

yi=Axi+z
Note that the term §; is a deterministic function of y*~! and

thus has no effect on the estimation error. To show that (41)
is a state-space model that admits standard Kalman filtering,
note that the measurement noise Am; + e; is independent of
z'~1. Thus, the measurement noise is independent of previous
measurements y*~! and the hidden states §'' of the state-
space model.

To obtain the optimal estimator and the error covariance
recursion in (43), we apply the standard Kalman filter recur-
sions (7)-(9) that also hold with the time-varying constants
G =Ky, H=ADS + HW =8 =¥, and V =
AMAT + ;. O

Proof of Lemma 4: The starting point is the combination of
Lemma 2 and Lemma 3 to the optimization problem of C,, (P)

1 n
max 5 ; log det(Vy,;) — log det(¥;)

1 & .
s.t. - ;’IY(EZII}T +M;) <P,
Li(I—-%18) =0, M;*0
Uy, = (AL + H)S(ADE! + H)T + AMAT + 0,
Ky = (FS(ADS] + H) + K, ¥,) ¥y}

Sip1 = FSFT + K, UK, — Ky, Uy, K{, (58)

with the initial condition 21 = (0. The maximum is over all
involved variables, that is, {T';, M;, X, 11} ;.
The first step is to introduce an auxiliary decision variable

= TSIrT 4+ M. (59)
Then, $y; can be written as

Uy,; = AIGAT + HS,HT + AT HT + HTTAT 4+ 0,

where we used the orthogonality constraint T'; (I — f);rf]z) =0.
As a result, the Riccati recursion can also be represented with
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II; only. The power constraint can also be expressed as
1 n
~> Te(IL) <P, (60)
nia
so that the variable M; only appears in the constraints
I = 03T + M,
M; = 0, (61)
which can be reduced to the constraint
I, = I,8irT, (62)

By the Schur complement for positive semidefinite matrices
[47, p. 651],

Sim0& I —DETT =0 & (I —SI8) =0

I, T,
— <FTL Ei) = 0.

Finally, the Riccati equation is relaxed to the Riccati
inequality

Sip1 2 FSFT 4+ Ky UKL — Ky, Uy, KL,

(63)

(64)
and using the Schur complement transformation, we can write

<F21FT + Kp,quing - i}i_}rl KY,Z'\IIY,'L'
T

= 0.
\I/Y,iKy’i \I/Y,i >_O (65)

O

Proof of Lemma 5: This is the converse proof for the

capacity expression in Theorem 1. Recall that throughout the

derivations, we used the n-letter capacity C,,(P) in (36), but

a standard converse argument can relate this quantity to the
feedback capacity by showing that for any n,

Cp(P) < ~Cu(P) +4, (66)

where 6, — 0 is resulted from a Fano’s inequality. The
remaining step is to show that the SCOP formulation in
Lemma 4 that serves as an upper bound to C,(P) can be
further upper bounded by its single-letter counterpart, the
optimization problem in Theorem 1.

Define the convex combinations of the decision variables as

S I R
Hn:E;Hi, F”:ﬁ;n’ Z":ﬁ;Ei’ (67)

and also let £, & 13" %, ¥, £ L3 P, denote the
averaged constants of the Riccati variables.

The concavity of the logdet(-) function and Jensen’s
inequality imply that the convex combinations attain a greater

objective than the one in Lemma 4,

y 1 —
= logdet(¥y ;) <logdet [ =Y Wy, |, 63

where the argument of the right-hand side can be written as
the linear function

1 n
- Z Py,

i=1

= AT, AT + HS, HT + AT HT + HTTAT + HS, HT.
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Next, the per-time constraints of the n-letter problem should
be transformed into their single-letter counterparts, that is,
the ones evaluated at the convex combinations in (67). It is
straightforward to show that the power constraint and the first
LMI constraint are satisfied at the convex combination by

Tr(11,,) = % zn:Tr(Hi)
i=1

<P, (69)
and
1, T. 1<~ /I, Ty
(& ) =22 (o 5)
= 0. (70)

We proceed to the last constraint in the optimization problem,
the Riccati LMI, defined by

- (FiFT — S+ K, UK]

Ky (T
QUL X, T) = Ky (T E)T

)
\IJY (Fa i7 H)
(71

with

Ky ([,%) = FTTAT + FSHT + K, 0
Uy (0,5, 1) = AIAT + HSHT + ATHT + HDTAT + 0.
The main challenge is that the Riccati LMI does not satisfy
O(I1,,%,,T,) = 0 for all n. In other words, the tuple of
convex combinations in (67) does not lie in the constraint set of
the convex optimization in Theorem 1. Our strategy is to show
that the limiting tuple of convex combinations (as a function
of n) lies in the required constraint set. This is achieved by
showing that the tuple of convex combinations lies in a relaxed
constraints set, parameterized with some ¢ > 0. We then show
that € can be made small as n grows large and argue that there
is a limit point that lies in the constraints set that corresponds
to e =0.

Define the e-domain of the constraints set as

I r N
¢~ ((pr ) =0:ED) el = 0.Tx(D) < P,

and note that Cy is the constraints set in Theorem 1.
By summing over both sides of the Riccati inequality in
(65), we have

(i S i 0>

0 0
n S T T
< 1 Z (FZZ-F + KpT,i\I!iKp,i Ky’i\I/Y’i>
T on = Uy, Ky, Uy,
Arranging both sides and using the fact that ¥,,1; > 0,

-
Sh)

(f}n 0) - FS,FT + K, WK Ky(T,,
0 0 Ky(fn,in)T \I/Y(f‘nyinvﬁn)
N U, -V F(%, —-$)HT
H(En*E)FT \Ijnqu .

By our assumptions on the state-space model of the noise,
we can use [27, Ch. 14] to have ¥,, — > and ¥,, — V. Thus,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 10, OCTOBER 2023

the constraint on Q(ﬁn,in,fn) is satisfied asymptotically.
Specifically, for any e, there exists an n, such that for all
n > ne

0 < QI 50, T) + el (72)

Since the set C. is closed and nested (in €), the sequence
{(ﬁ,b,f]n,fn)}neN has a limit point in (), ,Cc = Co. That
is, there exists a sequence of times 77 < 75 < T3... such
that lim; . (IT7,, i)Ti, ['7,) € Co. It is important to note that
the times sequence depends on the noise characteristics and
not on the underlying codebooks. The proof is completed by
taking the limit over the sequence 77,75, ... in (66) to obtain

Cr(P) < max  ~logdet(Wy (T, 5, 1)) — — log det(W),
(I1,3, I eCo 2
which is precisely the optimization problem in (46). ]
Proof of Lemma 6: This is the achievability proof of the
optimization problem in Lemma 6. The main ides is to fix a
time-invariant policy and analyze the achievable rate which is
determined by the asymptotic behaviour of the channel outputs
process. Since the channel outputs process is described as a
state-space, the asymptotic behavior of the channel outputs
statistics boils down to the analysis of Riccati recursion
convergence. To that end, we will use a result from [48]
on certain conditions to guarantee the convergence of the
Riccati recursion to the Riccati equation. Lastly, since one
of the condition is given on the initial condition of the Riccati
recursion (which we have no direct control over), we modify
the time-invariant policy at the first time only to guarantee the
convergence.
We use the policy in Lemma 2 with I'; = Ff)i and M; = M
such that the corresponding power satisfies

1 & .
= TSI+ M) < P.
n

=1

By Lemma 3, the induced state-space is

Siv1 = Fs;+K,;e;,

y; = (AT + H)§; —AT'S; +Am, + e;, (73)
and the corresponding Riccati recursion is
Sip1 = FEFT 4+ Ky VK], — KW K] (74)
with 3, = 0 and
Uy = (AT + H)S(AT + H)T + AMAT + 9,
Kp;=(FY(AT + H)" 4+ K, ;;) ¥, . (75)

The next step is to show the convergence of the Riccati
recursion in (74) to a fixed-point solution of the Riccati
equation. Since K ; and ¥; converge to their time-invariant
counterparts in (13) exponentially fast, we replace K, ; and
W, with K, and W, respectively. This comes at the cost that
the initial condition 21 = 0 becomes arbitrary.

Before presenting the convergence conditions, we need to
modify the Riccati recursion in (74) to have an equivalent form
with the property that the disturbance and the measurement of
the state are independent. This is a standard modification can
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be found for instance in [27, Sec. 14.7]. The equivalent form
of (74) can be written as

i = F5FT + KstKpT — KL,i‘I/L,iK};p (76)
and
Fy=F — K,U(AMA"T + )" (AT + H)
Qs =T — U(AMAT + ¥)"1w
Kp;=F5(AT + H)"o; ) (77)

We use [48, Th. 1] for the convergence of the Riccati recur-
sion in (76) to the maximal solution of the Riccati equation, the
maximal solution 3, whose all of its closed-loop modes are
inside or on the unit circle, that is, p(Fs — K ;(AT+H)) < 1.
The sufficient condition from [48] translates to the Riccati
equation in (76) as

1) The initial state satisfies 21 > 25.

2) The pair (Fs, AT + H) is detectable.

The detectability condition guarantees the existence of the
maximal solution. This condition will be carried to the lower
bound optimization problem as a restriction on the optimiza-
tion parameters (I', M). Also note that (Fy,AT' + H) is
detectable iff (F,AT’ + H) is detectable and thus can be
expressed as 3K : p(F— K (AI'+ H)) < 1. The first condition
is needed for the convergence to the maximal solution and is
shown next. As mentioned, the initial condition 21 is arbitrary.
To this end, we modify the time-invariant policy by changing
M to be an identity matrix scaled with a constant a.

We proceed to show that the null-space of 3, lies in the
null-space of any solution to the Riccati equation. For this
proof, we use the closed-loop Lyapunov recursion of (76) can
be expressed as

Sy = (Fy — Kp1 (AT + H)Sy (Fs — Kp1 (AT + H))T
+ KpQ K + Kpy(AMAT + U)K] . (78)

Let = be an eigenvector of F' with A such that a:flg = 0. Then,
pre- and post- multiplying the closed-loop Riccati equation in

(76) with = and zT we have
0=a(Fy— Kp1 (AT + H))S, (Fy — Kp (AT + H) 2T
+ prQSK;;FmT + K (AM AT + \II)K'Ele. (79)

Then, we have zK,Q, = 0, :cf(L,l = 0 which also implies
szﬁ) = 0. By M; > 0, we have (); > 0 so that zK, = 0.
Now, consider any solution to the Riccati equation. Then, pre-
and post- multiplying the Riccati equation with 2 and 27" gives

Szt = 2 F,SF 2T + tK,Q K} a" — 2" K W K] a",

which implies 2327 (1 — |A|?) < 0. Finally, by the stability of
F—K,H, the equation 2K, = 0 implies || < 1 and therefore
23 = 0. To conclude the proof of the first item, we can choose
« to be large enough such that the error covariance o = B,
Note that the power constraint may be violated for small n
but it will average out when taking n to be large enough.

To summarize, for any time-invariant policy (M, T") subject
to the detectability condition, the channel outputs entropy rate
converges to

1 1 1 d
lim —A(Y") = 3 log det(Ty.s) + 3 log(2me)

n—oo N

(80)
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where Wy, is the innovation covariance of the Riccati equa-
tion in (76) evaluated at its (unique) maximal solution.

As shown in [2], the asymptotic equipartition prop-
erty (AEP) holds for arbitrary Gaussian processes, so that
limy, oo = (h(Y™)—h(Z™)) is achievable for any policy of the
form X™ = B, Z"™+ V™ where V" ~ (0, Xy, ) is independent
of Z" and B, is a (block) lower-triangular matrix, i.e., it is
a strictly causal operator. The policy considered here can be
written in this form since §; is a strictly causal function of
{z;}i>1 and 8; is a strictly causal function of {y,};>1. Thus,
we have that

1 1
Cpp(P) > B log det(Ty,s) — 3 log det (). (81)

We formulate an optimization problem which serves as a
lower bound on the feedback capacity. By taking a maximum
over all valid policies, we have

Csp(P) > max 1log det(Ty,s) —
rM,S, 2
st. Tr(T8,IT + M) < P
Sy =FS,F" + K, WK — K W KT
Kp = (FY, (AT + H)T + K, 0)0;?
Uy, = (AT + H)S (AT + H)T + AMAT + @
K :p(F - K(AT'+ H)) <1,

1
3 log det(¥)

(82)

To complete the proof, change the variable TV = I's,, add
the orthogonality constraint and follow the steps in Lemma 5:
define I = FEA]H‘T + M, reduce M and apply the Schur com-
plement to get the optimization problem (82). For consistency
with the upper bound notation, we rename I and S, with T
and © respectively. |
Proof of Lemma 7: Recall that from the upper bound
optimization problem, the tuple (II,3,T) satisfies

Y FYFT + K,UK! — Ky Uy KT, (83)
with
Uy = ATIAT + HSHT 4+ ATHT + HTTAT + @

= (ATST+ H)S(ATE + BT + AT - TEITT)AT + 0
Ky = (FE(ATST + H)T + K,0)0;! (84)
We prove the claims.

1) If the optimal tuple does not satisfy the Riccati inequal-
ity (83) with equality, there exists a matrix @) > 0 such

that
Q2 FSFT - S+ K, UK! — KyUyK{  (85)

is not the zero matrix. We let 3/ = Q+ il, and observe
that this modification satisfies the power constraint, and

the LMI
m r
sy ) =0

Then, using 3 = 3 and the optimality of the tuple
(T',I1, %), we conclude that the objective is still equal
to its optimal value after the modification.
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2) If there exists an unstable mode in F' that cannot be
observed via AT'St + H, by our assumption that (F, H)
is detectable, this mode can be observed via AT,
On the other hand, the instability of this mode implies
that the error covariance 3 has an infinite value in this
direction which is a contradiction to the observability of
this mode via the matrix AT'SY. a

A. Proof for the Coding Scheme Analysis

Proof of Lemma 1: The proof follows a sequential esti-
mation argument of estimating zo from yi = yi,...,¥,-
At each time, a new measurement (i.e., channel output) is
made available to the decoder that improves in turn its estimate
of the channel noise instance z,. The derivation mostly focuses
on writing the channel output as a simple linear function of
Zg, and then apply known recursive formulas for updating the
estimate and the error covariance with a new measurement.
We iterate that the derivations here hold for general MIMO
channels.

Recall that the channel output can be written as

Y, =Ax,+2z,
W AT (8, — 80) + H 8 + (20 —H $,)

= (ATS! + H) (8, —8,) + e, +H §,, (86)

where (a) follows from the channel input x, =
AI'Sf (8, —8,). We now relate the channel output y, and
zo. To this end, the estimation error can be written as the
recursion

Sni1—Snp1 = F8, +Kye, —(F&, +Ky,(y, —HS,))

W P, —80) — Kyn(y, —Hé)

+ Kp(yn _Hén _(APXA;T + H)(én - én))
= (F = K,(ATS + H))(8,, — 8,,)
+ (Kp - KYm)(Yn -H én)
b ~ 2 ~
(:) FP(Sn - Sn) + (Kp - KY,n)yn
=Fl&—%1) + Y (K, — Ky,)y,
=1

(©

< F'K, 20 +d,, (87)

where (a) follows from (86), (b) follows from F, £ F —

K,(ATY! + H) and y,, £ y,, —H $,,, and (c) follows from
él = Kp 70, él = 0, and dn £ Z?:l F;L_Z(Kp — KY,z)S’z
We combine (86) and (87) to write the channel output as

Vo = (ATS! + H)(FP 'Ky 29 +dn-1) + e, +HS,

= kin 20 +(ATST + H)d,_1 + e, +H §,,, (88)

with k, 2 (AI'ST + H)F»~'K,. The estimation model in

(88) is a sequential estimation problem, but the terms d,,_;

and Hs, on the right-hand side depend on the previous

measurement. We proceed to show that these bias ferms have

no effect on the estimation problem and thus can be ignored.
Define the transformed measurements (channel outputs)

on 2y, — (ATST + H)d,_,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 10, OCTOBER 2023

= KnZo +€n, (89)

in order to obtain a sequential estimation problem (without
the bias terms) where the source is zg, and at each time
we observe o,, with the measurement noise e,,. The trans-
formation {y,;}?, — {o;}?, is linear and causal (lower-
triangular). Also note that this transformation is invertible
since d,,_1 is a function of y,,...,y,,_; only. Informally, the
invertibility of this transformation shows that the information
that can be extracted from the original channel outputs and
the transformed channel outputs is the same. Formally, the
innovations of both processes are the same, i.e.,

(90)

n—l] _ n—l].

Op, _E[On|0 yn_]E[yn|y

We are now ready to present the recursions for the sequential
estimation problem in (89). Since the source is the same at all
times (i.e., zg), we only need a measurement-update formula
(e.g., [27, Lemma 9.3.2]) to write it recursively as

iO\n = 20|n—1

+ Zopn—1#z, oV (¥, [y ) Ty, —Ely, [y 1)
ZO\n+1 = ZO|n
o1
0 and Zo‘o = .

e cov(y, |y"~!) and
= H §,, so that the recursions simplify to

- ZAO‘TLK:;I; COV(Yn | yn71)7157L20|n

with the initial conditions zgo =
By Lemma 3, we have Uy, =

Ely, [y""]
#0in = Zojn—1 + Zojn—15p Uy (v, —H $)

ZO|n =~ ZAO|anHZ‘1/§_/ian)ZAO|n71~ 92)

Furthermore, due to the optimal inputs distribution, the innova-
tion covariance Wy, converges to its optimal value W3 (for
more details, see the proof of Lemma 6). Finally, taking a
determinant over (92), applying Sylvester’s identity, and note
that Uy, = kinZojn_16 + ¥ in (90) gives (32). O

VII. CONCLUSION AND FUTURE WORK

In this paper, we solved the feedback capacity problem
of the Gaussian MIMO channel when the noise is generated
from a linear dynamical system. The derivation relies on a
sequential convex optimization formulation for the finite-block
capacity problem using tools from control theory and convex
optimization methods. Using the optimization problem con-
vexity along with properties of Riccati recursions convergence,
we provided tight lower and upper bounds that resulted a
single-letter, computable capacity expression. Additionally,
we showed that that the optimization problem induces a time-
invariant capacity-achieving inputs distribution that was used
to construct an explicit coding scheme for scalar channels.

In a broader perspective, we derived a single-letter formula
for the directed information and its main steps can be sum-
marized as follows

I(X" = YN) =) I(XHYY')
i=1

N (X ST YT vy
=1
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O S (XL S(X L YT VS (V)
i=1
~nl(X,$;Y|9), 93)

where in (a) a channel state S; = E[S;| X", Vi
E[S;|Z"~'] is defined and satisfies the channel Markov chain
(Si11,Y:) — (X3, 8;) — (X1, Y1 8§ 1) and in (b) S; £
E[S;|Y~1]. Note that the channel state S; can be computed at
the encoder since it is a function of (X~1 Y?~1). Also, the
computation of the asymptotic behaviour at the last step was
enabled due to the description of the channel outputs process
structure as a hidden-Markov (Lemma 3).

The above steps are related to computations of the directed
information for the discrete-alphabet counterpart of the Gaus-
sian channel, the finite-state channel (FSC). More specifically,
for FSCs with state that can be computed at the encoder, the
directed information can be written as

I(X" = Y™ = I(X;, 8 Yi[Y'™),
i=1

and could be expressed with a computable expression in few
instances only [41], [44], [49], [50], [51], [52], [53], [54].
In [55] and [56], it was shown that all these solutions can be
unified with the single-letter expression I(X,S;Y|Q), where
the channel outputs is a hidden Markov model and () serves
as its hidden state with a finite, graphical structure (called the
@Q-graph). As the conjectured formula structure resembles the
one for the Gaussian channel in (93), it should be interesting to
investigate whether the techniques developed here apply also
for FSCs. In particular, the main step is the formulation of
the directed information as a sequential convex optimization
problem in order to have an alternative feedback capacity
formula that can be single-letterized.

Two more research directions are as follows.

1) Explicit Formulae: It may be possible to find simple
capacity expressions for particular noise processes using the
convex optimization in Theorem 1. For instance, the capacity
of the ARMA noise of first order can be expressed as a func-
tion of the positive root to a quartic equation [21]. This implies
that the two decision variables in Theorem 2 can be reduced
to a single variable. Pursuing such simplifications for ARMA
processes of higher order is natural [11], [12], [13], [17].

2) Scheme for MIMO Channels: In Section IV, we pre-
sented an explicit scheme for scalar channel that trivially
extends to MIMO channels that can be decomposed to parallel
scalar channels. However, an explicit scheme for non-trivial
MIMO channels remains open. A conjectured scheme was
described in Section IV, and a refinement of the spectral
analysis in Lemma 1 should prove the scheme optimality.

(94)
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