Environmental Modelling and Software 176 (2024) 105999

FI. SEVIER

Contents lists available at ScienceDirect
Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

Check for

Design and calibration of a nitrate decision support tool for groundwater  [w&s

wells in Wisconsin, USA

Paul F. Juckem ™, Nicholas T. Corson-Dosch ?, Laura A. Schachter?, Christopher T. Green ",
Kelsie M. Ferin ¢, Eric G. Booth ¢, Christopher J. Kucharik ¢, Brian P. Austin“, Leon J. Kauffman ®

2 U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Dr., Madison, WI, 53726, USA

by.s. Geological Survey, Water Resources Mission Area, P.O. Box 158, Moffett Field, California, 94035, USA

¢ Department of Plant and Agroecosystem Sciences, University of Wisconsin — Madison, 457 Moore Hall, 1575 Linden Dr., Madison, WI, 53706, USA

4 Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources, 101 S. Webster St., P.O. Box 7921, Madison, Wisconsin, USA
€ U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike Suite 110, Lawrenceville, NJ, 08648, USA

ARTICLE INFO ABSTRACT

Handling Editor: Daniel P Ames

Keywords:
Nitrate

Decision support
Groundwater
Uncertainty

This paper describes development of a nitrate decision support tool for groundwater wells (GW-NDST) that
combines nitrate leaching and groundwater lag-times to compute well concentrations. The GW-NDST uses output
from support models that simulate leached nitrate, groundwater age distributions, and nitrate reduction rates.
The support models are linked through convolution to simulate nitrate transport to wells. Spatially distributed
parameters were adjusted through calibration to 34,255 nitrate sample targets. Prediction uncertainty is illus-
trated via Monte Carlo realizations informed during calibration. Over 78% of target concentrations were within
the simulated range of results from 450 realizations. An example forecasting scenario illustrates that a range of

feasible outcomes exist and should be considered when interpreting forecasts for decision making. Uncertainty in
forecasting is unavoidable; the intent of characterizing uncertainty in the GW-NDST is to facilitate decision
making by increasing insight into the response of nitrate contamination to physical and chemical processes.

1. Introduction

The concentration of nitrate-N in a well is dependent upon many
factors including the rate of nitrate leaching below the land surface,
travel time of water through the vadose zone and aquifer material, and
geochemical conditions in the aquifer. Major sources of groundwater
nitrogen historically include human and animal waste (manure) and
synthetic fertilizer (Byrnes et al., 2020). Nitrogen is a nutrient that
promotes plant growth and is therefore an important component of crop
fertilization. Excessive nitrogen fertilizer use or inefficient application
timing of fertilizer and manure, however, can result in nitrate becoming
a groundwater pollutant. Moreover, nitrate does not form strong bonds
with soil particles, meaning that soils have limited capacity to store
nitrate for subsequent plant use, especially during periods of precipita-
tion (or irrigation) and associated infiltration (Masarik et al., 2014).
Similarly, once leached below the root zone, nitrate is easily transported
with groundwater over long distances through aquifers. Due to
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heterogeneity of soil and aquifer properties that results in flow paths of
varying rates and lengths, a single well screen or water sample contains
many “parcels” of water with varying travel times. This time range can
be estimated or modeled using a travel time distribution (TTD; Vogel,
1967b; Zuber, 1986; Varni and Carrera, 1998; Cook and Bohlke, 2000;
Green et al., 2014). Nitrate concentrations in aquifers and wells can also
be influenced by denitrification, which tends to occur at faster rates in
zones with electron donors such as organic carbon or reduced inorganic
iron and sulfur species (Korom, 1992).

While nitrate pollution of aquifers is a wide-spread problem, there
are few readily available tools for rapid assessment of current and future
nitrate concentrations in wells that can be applied across large regions
(e.g.: Kourakos and Harter, 2014; Leon et al., 2000). Variable land use
and geological heterogeneity create high degrees of spatiotemporal
variability that are often difficult to capture even with detailed nu-
merical models over small areas and pose significant challenges for
simulating groundwater nitrate at large spatial scales. Regional and
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national-scale statistical and machine learning models have been used to
successfully generate maps of nitrate occurrence (Nolan et al., 2018;
Nolan and Hitt, 2006; Ransom et al., 2022; Mechenich and Johnson,
2022), but maps are static with limited application for evaluating future
management scenarios. Fully deterministic models, such as SWAT
(Neitsch et al., 2011), Agro-IBIS (Kucharik and Brye, 2003), and MOD-
FLOW (Niswonger et al., 2011) for example, are often well suited for
scenario simulations and can incorporate small-scale detail, but these
models often focus on only one component of the process, such as either
the nitrogen cycle or groundwater flow. Linking multiple deterministic
models (Wei et al., 2019) can yield highly detailed simulations capable
of incorporating complex forecast scenarios, yet the resources involved
are often substantial, particularly on a “per area” basis. The problem is
well suited to reduced complexity modeling, which involves distillation
of a complex system into key features and processes that meet the needs
for predictive capability (Sarofim et al., 2021). That is, reduced
complexity models are typically more computationally efficient than
complex numerical models yet incorporate adjustable model parameters
that facilitate sensitivity evaluations of scenario outcomes (e.g., fore-
casts) involving important processes and conditions (Sarofim et al.,
2021) — valuable characteristics of a decision support tool.

This paper presents the development of a tool designed to assist
resource managers with assessing the potential for achieving future
improvements in well water quality by reducing nitrate leaching rates
near wells. The U.S. Geological Survey partnered with the Wisconsin
Dept. Of Natural Resources and the University of Wisconsin-Madison to
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develop a groundwater Nitrate Decision Support Tool (GW-NDST;
Schachter et al., 2024a) for the state. The GW-NDST, also referred to as
“the tool” in this paper, is designed to assist with the challenges of ni-
trate management by providing a flexible framework for improving the
understanding of how changes in the amount of nitrate introduced to
aquifers (nitrate leaching) translate to nitrate concentrations in indi-
vidual wells. The relationship is influenced by the rate of leaching, time
required for the nitrate to be transported through the unsaturated zone
and the aquifer as it flows to wells, mixing of water with differing ages
and nitrate concentrations captured by wells, and chemical trans-
formation by denitrification along the flow path. The tool was developed
using output from a dynamic ecosystem model (Agro-IBIS; Kucharik and
Brye, 2003; Motew et al., 2017; Lark et al., 2022), analytical ground-
water fate and transport methods (Maloszewski and Zuber, 1982; Green
et al., 2018; Green et al., 2021), and oxygen and nitrate reduction rate
estimates (Green et al., 2018; Juckem and Green, 2024) to address
questions such as “how much nitrate leaching reduction would be
needed in order to reduce nitrate below a specified concentration in a
well of interest?”” and “how long would it take before improvements from
reduced nitrate leaching rates would be observed in the well?”” The tool
also quantifies forecast uncertainty by incorporating an ensemble of
calibration parameters, spanning probable ranges, that were condi-
tioned to over 34,000 nitrate sample targets collected across the state
over multiple decades.
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Fig. 1. Flow chart diagram of the GW-NDST for Wisconsin, highlighting the three major processes (calibration, primary code, Graphical User Interface) and how the
input, support models, intermediate steps, and results fit into and connect those major processes.
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2. Methods

This paper focuses on the implementation of a groundwater transport
and forecasting method for nitrate concentrations in groundwater sup-
plied wells located in the state of Wisconsin, USA. Fig. 1 illustrates in
broad terms how the tool is organized and the major components of the
tool’s workflow. The method ingests user-supplied information for a
single well, and then computes historical and future nitrate concentra-
tions in the well using mathematical convolution (Maloszewski and
Zuber, 1982) and location-specific input generated by multiple sup-
porting models designed to simulate 1. Historical nitrate leaching, 2.
Groundwater age distributions, and 3. Oxygen reduction and denitrifi-
cation. The convolution equation is solved for numerous dates over time
to graphically illustrate historical nitrate concentration trends in the
user-specified well. An ensemble of reasonable parameter values
generated from model calibration are used to assess model uncertainty
in simulated results. Finally, the user can choose among six forecasting
scenarios to assess potential nitrate leaching reductions needed to meet
user-defined nitrate concentration goals by a user-specified future date.
The GW-NDST is coded in Python (Van Rossum and Drake, 2009) and is
made accessible to users in a simple Jupyter Notebook (Kluyver et al.,
2016) Graphical User Interface (GUI). Readers should refer to the Soft-
ware availability section for instructions on how to obtain and install the
tool, and to Juckem et al. (2024) for access to all additional data that
supported development of the GW-NDST. The following sections
describe in greater detail the supporting models, the convolution
method for contaminant transport, the GW-NDST calibration and un-
certainty assessment, and demonstration of one forecasting scenario in
the GW-NDST.

2.1. Nitrate sources

Nitrate loading to the water table in the GW-NDST is derived from
two estimates of annual nitrate leaching below the root zone. One source
is a dynamic ecosystem model, called Agro-IBIS (Kucharik and Brye,
2003; Motew et al., 2017), that incorporates nutrient application data
for fertilizer, manure, and other sources to simulate plant growth and
nutrient balances in the soil over space and time. Agro-IBIS has the
ability to represent forest and grass plant functional types (PFTs) and
corn, soybean, and wheat cropping systems of the Midwest USA. The
other source of nitrate leaching is a decadal census-based estimate
derived from septic systems that was developed for this tool (Schachter
et al., 2024b).

Nitrate leached through the root zone was generated from a 116-year
(1901-2016) spatially refined version of a regional-scale Agro-IBIS
simulation by Lark et al. (2022). The regional study used the Agro-IBIS
ecosystem model to, among other aims, simulate nitrate leaching below
the root zone in agricultural areas across the Midwest USA based on
historical land cover and associated fertilizer and manure applications
(Lark et al., 2022). Agro-IBIS results were evaluated by comparing
simulated nitrate leaching with data from a meta-analysis by Shrestha
et al. (2023) and by comparing simulated crop yields with county-scale
data. Historical nitrate leaching results from Agro-IBIS were desirable
for use with the GW-NDST because the physically and biologically based
Agro-IBIS model directly simulates crop growth (yield) using soil,
meteorological, and nutrient application drivers, while tracking nitro-
gen flux through the physical and biological systems. Moreover,
Agro-IBIS simulates these processes at hourly to daily time steps (sub-
sequently summarized to annual time steps for the GW-NDST applica-
tion) and at a 1 km by 1.5 km spatial resolution (0.1°
latitude/longitude). Thus, the Agro-IBIS results are generated at a higher
spatial and temporal resolution than many other potential data sources,
such as county-scale fertilizer and manure estimates (Brakebill and
Gronberg, 2017; Gronberg and Arnold, 2017), which were used as in-
puts to the model. These features of the refined Agro-IBIS model facili-
tated generation of detailed nitrate leaching rates over space and time
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scales appropriate for a state-wide application.

A slight modification of the Agro-IBIS model results was required for
application with the GW-NDST framework. Agro-IBIS is a one-
dimensional model whereby computations within an individual cell of
the model have no effect on adjacent cells. Additionally, open water is
not simulated in the Agro-IBIS model because it is designed to simulate
terrestrial systems only. The refined Agro-IBIS model of Lark et al.
(2022) used a liberal method to identify open water areas in order to
minimize computational problems due to expanding and contracting
waterbody areas over time. That is, Lark et al. (2022) integrated mul-
tiple land use and land cover datasets that estimated changes in land
cover since 1938. Individual model cells were defined as open water if
the primary land classification for that cell was ever identified as open
water in any of the historical land classification maps. This eliminated
problems caused by land cover potentially flipping between open water
and dry land during the simulation period. However, numerous homes
with domestic wells are located along shorelines of lakes and other open
water areas in Wisconsin. Thus, for application with the GW-NDST, ni-
trate leaching values were linearly interpolated across waterbodies for
each individual year of the Agro-IBIS simulation using the scipy. inter-
polate.griddata method (Jones et al., n.d.) to ensure that any individual
Agro-IBIS cell in which a user-supplied well is located contains a
reasonable nitrate leaching history, with the assumption that leaching
rates interpolated from adjacent cells adequately represent leaching
rates along shorelines.

Nitrate leaching from septic systems was estimated using decadal
census data and a per person nitrate excretion rate. In 1990, the Census
Bureau asked respondents to indicate whether their primary place of
residence was connected to a municipal sewer system or utilized a septic
system for waste disposal. This is the last year in which respondents
were directly asked about septic system use, thus the 1990 census data
was used to estimate the percent of an area’s population that relied upon
septic systems; individual residence location information is not included
in census data. Prior to 1990, counties were the finest resolution area
with consistency between decadal censuses, so the fraction of residents
using septic systems was computed at the county scale for 1990 and then
interpolated backward in time, increasing to 100% of the population
using septic systems in 1850 or the earliest decade for which a non-zero
population was reported in each county. This approach relies upon the
assumption that few if any modern sewage systems had been built prior
to state incorporation (https://www.mmsd.com/about-us/history). The
fraction of the population on septic systems was then multiplied by the
county population to estimate the population using septic systems per
county for each decade from 1850 to 1980. The population using septic
systems was then multiplied by 4.1 kg of nitrate-nitrogen per person per
year (11.2 g/person/day; Lusk et al., 2017) and normalized by county
area to estimate the total leached nitrate in kg/ha from septic systems
for each county. A similar approach for estimating septic nitrate leach-
ing per area (kg/ha) was applied with 1990, 2000, and 2010 census
data, but leveraged the finer resolution census block groups rather than
counties. The results were mapped to shapefiles and then extracted to
the 1 km by 1.5 km Agro-IBIS grid for each decade. The shapefiles, the
python code used to generate the shapefiles, and a netCDF file that ag-
gregates the 1 km by 1.5 km grids for each decade are available from
(Schachter et al., 2024b). For implementation with the GW-NDST, the
decadal leached septic nitrate data are extracted for the user-specified
well location, and annual values are computed via linear interpolation
between each decade. Septic leaching is also extrapolated to the current
year (based on the date the user runs the tool) for the user-specified well
location based on the average slope of annual leached nitrate between
1990 and 2000 and between 2000 and 2010.

2.2. Groundwater age model

The machine learning model of groundwater age (ageML) developed
by Green et al. (2021) for the Great Lakes region using the R statistical
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software program (R Core Team, 2019) was converted into an equiva-
lent model (Kauffman, et al., 2024) in Python (Van Rossum and Drake,
2009) to allow for greater software compatibility and maintainability as
part of the GW-NDST. The Python version of the ageML model was
re-trained using the same training (80%) and testing (20%) dataset as
Green et al. (2021). The ageML model uses predictor variables to esti-
mate the mean groundwater age for a well, including landscape char-
acteristics within a 500 m radius around the user-specified well, well
construction information, well water level data, and water chemistry
data for the well. The GW-NDST aggregates these predictor variables for
the user-specified well and uses the ageML model to estimate a mean
groundwater age. At a minimum, the well location (latitude and longi-
tude) and well depth are required for running the tool; additional
well-specific data, as described next, improves the ageML results but are
not required for obtaining a solution. Well depth is the single most
important predictor of groundwater age for the ageML model (Green
et al., 2021), as has been documented for wells and aquifers based on
first principles described in other studies (Vogel, 1967a; Maloszewski
and Zuber, 1982; Haitjema, 1995; Luther and Haitjema, 1998; Green
et al., 2018). The sampling depth, or the distance from the water table to
the center of the saturated open interval of the well, was identified as the
second most important predictor of groundwater age for the ageML
model but requires knowledge of the depth to water and well casing or
well screen length, either of which can be missing from some well re-
cords. If no depth to water information is provided by the user, a value is
estimated using a separate machine learning model that was developed
for this purpose (Smith et al., 2024). Finally, water chemistry informa-
tion including nitrate, pH, chloride, and iron concentrations among
others, are used by the ageML model (Green et al., 2021) to refine the
estimate of mean age. Water level and chemistry information, which
could be measured and reported repeatedly over time, are summarized
in the GW-NDST as the mean of each year’s average value prior to input
to the ageML model. If water chemistry data is incomplete or not pro-
vided, the ageML model ignores that input and generates an estimated
age without it, albeit with less predictive accuracy, as described by
Green et al. (2021). In this way, the GW-NDST can be applied to nearly
any well in the state but is expected to have improved accuracy when
applied to wells with extensive well construction and water chemistry
data.

The ageML model estimates a mean age for a given well location and
depth; however, actual well water contains a distribution of ages from
young to old water. Indeed, a distribution of groundwater ages is needed
for the convolution solution implemented in the GW-NDST (see
Convolution section). The mean age computed by the ageML model was
converted to a travel time distribution g(z) by applying a dispersion ratio
to an advection-dispersion equation (Kreft and Zuber, 1978; Malos-
zewski and Zuber, 1982),

VT 2
lg(‘r):\/jﬂ% exp <7g<1—%> >

where d is the dimensionless dispersion ratio, 7 is the travel time from
infiltration to discharge from the well for a parcel of water sampled from
the well, and 7 is the mean travel time of water discharged from the well.
The mean travel time, 7, (incorporating both unsaturated and saturated
flow) is generated from the ageML model, d is estimated from prior
studies (commonly around 20; Green et al., 2018) and spatially cali-
brated across Wisconsin for the GW-NDST (see Calibration & uncer-
tainty section), and 7 is a travel time, which is represented in the
GW-NDST with a series of timesteps of variable duration that are most
refined around the mean travel time for each individual well.

2.3. Depth to water machine-learning model

As described in the Groundwater age model section, the depth to
water in the well is a component of the “sample depth” predictor
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variable of the groundwater ageML model (Green et al., 2021). For wells
in which the user does not provide this information, the GW-NDST ap-
plies a depth to water machine-learning model to estimate the depth to
water and “sample depth”, which is then supplied to the ageML model.
The depth to water model (Smith et al., 2024) leveraged 48 GIS-based
predictor variables and was trained on 61,692 water level measure-
ments from wells and 53,307 stream elevations assumed to represent the
water table during baseflow conditions. For implementation with the
GW-NDST, the machine learning model parameter values that provided
the lowest root mean squared error (RMSE), in terms of matching the
depth to water model to the training dataset, were combined with GIS
input data from within 500 m of the user-supplied well location. Again,
model-estimated depth to water is only used in the GW-NDST workflow
when measured depth to water is not provided by the user (Fig. 1).

2.4. Oxygen and nitrate reduction rate model

Nitrate dissolved in groundwater can be converted to inert nitrogen
gas (Ng) through the denitrification process. However, denitrification
within aquifers occurs only after most of the oxygen dissolved in the
water has been depleted, with an effective oxygen cut-off threshold
value (see equation 2 below) of approximately 2 mg/L (Green et al.,
2008; Tesoriero and Puckett, 2011). Oxygen inhibition of denitrification
creates non-linear reaction kinetics that are not captured by single
parameter (zero- or first-order decay coefficient) kinetic models. The
GW-NDST realistically represents the reaction kinetics by accounting for
oxygen reduction and denitrification separately. Oxygen reduction rates
were estimated for the GW-NDST using a multi-variate regression model
(Juckem and Green, 2024) trained on dissolved oxygen concentrations
from wells that had been sampled as part of numerous USGS and
non-USGS studies (Baker et al., 2024). The wells used for training and
validating the multi-variate regression model had at least one dissolved
oxygen concentration value and a computed mean groundwater age
informed by age tracer samples (Juckem and Green, 2024). This data
included publicly available USGS data (U.S. Geological Survey, 2016)
and sample data from 10 historical reports published by the Wisconsin
Geological and Natural History Survey and the University of Wisconsin
at Stevens Point (Baker et al., 2024). The multi-variate regression model
was trained to match dissolved oxygen concentrations for 461 wells in
the dataset using predictor variables of land cover, soil, and aquifer li-
thology and hydrogeologic position, plus other mappable variables.
Mappable predictor variables were computed as the average values
within a 500 m radius surrounding each well. Well specific metrics,
including the thickness of the unsaturated zone and the sampling depth
were also used as predictor variables.

Denitrification was implemented in the GW-NDST by computing an
oxygen reduction rate from the multivariate regression model using the
parameter values that best matched the training dataset, along with
estimates of the dissolved oxygen concentration at which denitrification
begins (Co ci) and estimated denitrification rates that were scaled to the
computed oxygen reduction rate via a calibrated multiplier (kO2_to_-
kNO3_mult). That is, denitrification is simulated in the GW-NDST only
after estimated dissolved oxygen concentrations drop below a cut-off
threshold value (Cop ). Thus, the groundwater age at which denitrifi-
cation begins (z),) for an individual parcel of water is expressed as

27y =7—7,— (Coo — Cocu) / koo

where 7, is the unsaturated zone travel time, C o is the input concen-
tration of dissolved oxygen at the water table (assumed 9.8 mg/L
everywhere for the GW-NDST), and koo is the zero-order oxygen
reduction rate computed for the individual well by the multi-variate
regression model. The denitrification rate (ko) is computed as the
product of the oxygen reduction rate (ko) and a multiplier value
(kO2_to_kNO3_mult). Data were insufficient to independently estimate
Co.cur and the denitrification rate multiplier (kO2_to_kNO3_mult) values,
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which were instead parameterized and estimated during a state-wide
calibration of the GW-NDST to nitrate concentrations by assigning
initial estimates with upper and lower bounds informed from Green
et al. (2018, Fig. 7) and other studies (see Calibration & uncertainty
section).

2.5. Convolution

Nitrate transport from below the root zone to wells is simulated in
the GW-NDST via mathematical convolution of historical nitrate
leaching over time and groundwater age distributions, with zero-order
oxygen and denitrification rates. The method is described in detail in
section 2.3 of (Green et al., 2018), but adapted and expanded here for
use with any well location in Wisconsin and alternate sources of nitrate
leaching data, in addition to a separate calibration scheme (Calibration
& uncertainty). Briefly, nitrate concentration in a well is simulated over
a range of travel times using the convolution equation,

t

3C, (1) = / [Co(r) — (¢ — £ Ykow]g(t — £)df

—o

where C; is the concentration [M/L3] of nitrate on the sample date (t); Co
is the nitrate concentration on the date of infiltration at time t’; ko y is
the zero-order denitrification rate [M/L3/T] between the date t*, at
which the reaction begins and the date of sampling (t); and g is the travel
time distribution between the date of infiltration and the time of sam-
pling (t =t — t’) as described in equation 1.

2.6. Calibration & uncertainty

The GW-NDST was calibrated to nitrate samples across Wisconsin by
using the iterative ensemble smoother technique (IES; White, 2018)
implemented in PESTPP (PESTPP-IES; White et al., 2020). Model cali-
bration (also known as history matching or parameter estimation) using
PESTPP-IES involves assigning weights to nitrate sample targets that
reflect their accuracy and importance, and defining model parameters
that can be adjusted to improve the match between simulated and target
values. PESTPP-IES incrementally improves the model calibration by
reducing the sum of squared weighted residuals, or phi, over a series of
iterations that are informed by the response of simulated target values to
perturbations of the parameter values in the ensemble of realizations. An
important benefit of using the PESTPP-IES method for calibration is that
the method can be used to generate hundreds of realizations of model
parameters for which all parameter values remain within realistically
defined bounds and the simulated match to target values remain “in
calibration” (each retained realization has a phi value within 2 standard
deviations from the mean phi of all realizations). When evaluated as an
ensemble, the range of model parameter realizations provides insights
about the range of probable forecast outcomes. The sections below
describe details related to the targets, their weights, the model param-
eters, and implementation of the PESTPP-IES method for calibrating and
quantifying uncertainty for the GW-NDST.

2.7. Targets

Calibration of the GW-NDST was performed by comparing 27,195
measured nitrate concentration targets from 16,979 wells with equiva-
lent simulated values for each target. In addition, nitrate trends in wells
with multiple samples were compared with equivalent simulated trends
by computing differences among both 1. consecutive sample concen-
trations (9783 targets), and 2. concentrations for the first and last
samples from a well (1600 targets). Thus, a total of 38,578 targets were
used (27,195 measured concentrations and 11,383 concentration dif-
ferences) to initialize the calibration process. Nitrate concentration and
well construction data were obtained from the USGS NWIS database (U.
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S. Geological Survey, 2016) and the WI-DNR’s Groundwater Retrieval
Network (Wisconsin Department of Natural Resources, 2023).

An initial total of 53,708 candidate targets from the USGS and WI-
DNR databases were reduced to the 27,195 concentration targets lis-
ted above via three filtering steps. First, for wells with more than 4
samples and having at least one pair of consecutive samples that differed
by more than 10 mg-N/L (milligrams per liter as N), all samples with
concentrations that exceeded 1.5x the interquartile range of samples
from the well were removed. This step minimized the likelihood of
errant or spurious samples. Second, all wells with measured concen-
trations greater than 40 mg-N/L were manually vetted and samples were
removed if they were found to exhibit an unreasonably large change in
concentration over a short time. While some wells with very high con-
centrations may be influenced by local processes that are not repre-
sented in the GW-NDST, such wells were not automatically removed as
targets because the actual source was not documented. For example,
wells potentially screened across a neighboring septic plume, which the
GW-NDST is not designed to represent (septic is estimated at county and
census block-group scales), are not identified in the source datasets and
would require supplemental water chemistry sampling to identify.
Third, all samples less than a background concentration of 1.0 mg-N/L
(Nolan and Hitt, 2003) were removed as targets because the tool is
intended to focus on wells with nitrate contamination, and early cali-
bration efforts illustrated that the large number of low concentration
samples biased calibration results.

After the 38,578 concentration and difference targets were identified
and weighted (next paragraph), a fourth filtering step occurred during
the calibration process itself. As part of the PESTPP-IES methodology
(White et al., 2020), simulated outputs from prior parameter ensembles
(evaluated after each iteration) were used to identify target values that
were in prior-data conflict (Evans and Moshonov, 2006; Nott et al.,
2020). That is, targets with values beyond 4 standard deviations of the
mean of the distribution of simulated values for that target were
considered to be in conflict and thus removed from the parameter
adjustment process (1170 concentration and 3153 concentration dif-
ference targets). This resulted in 26,025 concentration targets and 8230
concentration difference targets, for a total of 34,255 targets used for
assessment of the final calibration metrics. Removal of outlier targets
(those in prior-data conflict) helps the calibration algorithm avoid un-
realistic parameter values that can result in biased model forecasts (Nott
et al., 2020; White 2018).

Weights for the nitrate concentration targets were initially estimated
by assessing the variability of sampled concentrations among wells
containing multiple samples within any 31-day period (429 samples).
The approach was designed to provide an indication of the level of
measurement uncertainty attributable to natural variability within
aquifers and the sampling process. Thus, the initial weight assigned to
each of the 27,195 concentration targets was computed as the inverse of
the standard deviation (2.6) of concentrations within any 31-day period
from this set of 429 samples, or a weight of 0.38. Similarly, initial
weights assigned to the first-to-last and consecutive difference targets
were computed as the inverse of the standard deviation (3.73 and 2.08,
respectively) of the target values, or weights of 0.27 and 0.48, respec-
tively. After assigning measurement-uncertainty-based weights, targets
were grouped by their measured concentration (1.0-4.9 mg-N/L, 5.0 to
9.9 mg-N/L, and greater or equal to 10.0 mg-N/L) and the reported
locational accuracy of the well (GPS or aerial photograph versus quarter-
section). The first-to-last concentration difference and consecutive dif-
ference targets were also assigned as individual target groups. The
contribution of each group to the sum of the squared-weighted-residuals
(phi) was computed using initial parameter values and measurement-
uncertainty based weights. Then target weights were re-balanced
(Doherty and Hunt, 2010; Fienen et al., 2022) to amplify target
groups deemed to be more accurate or more important for the calibra-
tion objectives, as illustrated in Table 1. For example, the target weight
re-balancing process assigned greater weight to wells with higher



P.F. Juckem et al.

Table 1

Description of target groups, number of targets per group, initial measurement error-based weights, and contribution of target groups to phi before and after re-balancing.

Rebalanced contribution

to phi (%)

Initial contribution to

Initial
phi (%)

Number of
targets

Description

Target
group

weight

10%

26.4%
16.2%
17.1%
20.7%
10.9%
5.6%
0.7%
2.4%

0.38
0.38
0.38
0.38
0.38
0.38
0.27

0.

9244
4777
2799

6442

Nitrate sample concentrations from WI-DNR databases for wells located to within a quarter-section based on the Public Land Survey

System. “1to5", “5t010", and “10plus” refer to the target concentration of samples within each group.

PLSS 5t010

PLSS_1to5

10%

PLSS 10

10%

plus

GPS_1to5

20%

Nitrate sample concentrations from USGS and WI-DNR databases for wells located via GPS or digitized on-screen from plat books or aerial

GPS 5t010

18%

2770
1163
1600
9783

“1t05", “5t010", and “10plus” refer to the target concentration of samples within each group.

photographs.

GPS10

17%
5%

plus

Diff FL

Differences in nitrate concentration between the first (earliest) and latest sample from the same well.

Differences in nitrate concentration between consecutive samples from the same well.

Diff CS

10%

48
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locational accuracy and samples with higher concentrations because the
calibration dataset had relatively fewer targets with high concentra-
tions. Thus, final weights for each target were assigned based on the
original measurement uncertainty assessment and the manual
re-balancing step illustrated in Table 1.

2.8. Parameters

Eleven parameter groups were used for calibrating the GW-NDST
and consisted primarily of multiplier values applied to outputs from
the support models, such as multipliers applied to the nitrate leaching
flux from the Agro-IBIS model, a multiplier on the mean groundwater
age produced from the ageML model, and others. Input values that were
not available from support models or other sources were parameterized
and estimated directly as native parameter values rather than as mul-
tipliers. Each parameter was allowed to vary spatially across the state
using pilot points (Doherty, 2003; Doherty et al., 2010). These pilot
points were conceptualized as geostatistically correlated fields, which
were described by an exponential variogram and a 200,000 m range;
pilot points were spaced 20,000 m apart. This approach resulted in 408
pilot points for each parameter group, for a total of 4488 unique
pilot-point parameters. A maximum of 50 singular values were used to
regularize, or limit, parameter variability. Readers are referred to White
et al. (2020) for detailed descriptions on the application of pilot points,
singular values, regularization, and other advanced calibration topics.

Setting realistic lower and upper parameter bounds was an important
step in setting up the calibration because the bounds, in conjunction
with par sigma range (discussed next), are a primary control over the
ensemble of parameter values generated for the PESTPP-IES calibration
process. Bounds for parameters that were not informed by output from
support models (disp_ratio, uz_mobile, O2_cut, and kO2_to_kNO3_mult)
were informed by the fifth and 95th percentile of values reported by
Green et al. (2018). A similar approach was used to assess the starting
multiplier value and bounds for recharge simulated from the Agro-IBIS
model (flux_mult) by comparing the Agro-IBIS results with a baseflow
analysis by Gebert et al. (2011). Bounds for support model multiplier
parameters were informed from cross-validation of the individual sup-
port model results, as well as from prior experience and expert judge-
ment. For example, the age_mult parameter’s bounds were set based on
cross-validation of the ageML model results (Green et al., 2021) in that,
the lower and upper bounds of 0.5x and 2.0x (Table 2) are similar to the
mean ratio of errors from the ageML model holdout (testing) dataset.
This approach ensured that the groundwater ages used within the
GW-NDST (after calibration) didn’t deviate too much from the ageML
model results, which were trained on groundwater ages informed by age
tracer samples, yet also allowed flexibility for the ages used by the
GW-NDST to improve the tool’s match to measured nitrate concentra-
tions while staying within the confidence interval of the ageML model.

The prior parameter ensemble was constructed for PESTPP-IES using
a geostatistical draw and a prior covariance matrix that was informed by
the variogram, parameter bounds, and the PESTPP-IES setting par. sig-
ma_range. A value of 4 was used for par. sigma_range, which assumed that
the parameter bounds approximated a 95-percent confidence interval (i.
e., four standard deviations between the lower and upper bounds) on the
prior parameter probability distribution. This setting provided a broad
sampling of parameter values across the lower and upper bounds during
the geostatistical draws that ultimately produced the ensemble of re-
alizations used to characterize model uncertainty in the GW-NDST.
Table 2 summarizes the parameters used to calibrate the GW-NDST,
along with lower and upper bounds that were used to generate the
parameter ensemble for PESTPP-IES.

The calibration process used by PESTPP-IES involves modifying all
parameter values for all realizations comprising the ensemble (in in-
cremental steps called iterations) to generate associated response
changes for all simulated results (nitrate concentrations) to generate an
approximation to the Jacobian matrix. This approximate Jacobian



Table 2

Calibration parameter group names, starting values, lower and upper bounds, description, and the source for justification of the starting parameter values and bounds.

Parameter Starting Lower bound Upper bound Actual Actual Description Source and justification
group name Value (multiplier on (multiplier on lower upper
starting value) starting value) bound bound
age_mult 1 0.5 2 0.5 2 Multiplier on the mean age (1) generated by the Lower and upper bounds approximately match computed average errors
groundwater age machine learning model (ageML). for holdout and cross validation with the age model by Green et al. (2021).
disp_ratio 21.32 0.22 1.90 4.73 40.44 Value for the dispersion ratio (d) in equation 1. From Green et al. (2018); starting and actual bounds equate to the
median, 5th, and 95th percentiles.
uz_mobile 0.16 0.63 1.94 0.1 0.31 Value for the unsaturated mobile water content used From Green et al. (2018); starting and actual bounds equate to the
to estimate lag time in the unsaturated zone. median, 5th, and 95th percentiles.
IBIS_mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration The bounds attempt to account for the coarse representation of variable
generated by the Agro-IBIS model. Applies equally to  land cover and associated nutrient application variability within the
all dates. approx. 1 km by 1.5 km cells, while recognizing observed ranges in
measured nitrate leaching rates below common midwestern agricultural
fields (Shrestha et al., 2023).
IBIS start_ mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration This parameter facilitates calibration of nitrate leaching trends. The
generated by the Agro-IBIS model. This multiplier is ~ bounds consider the coarse representation of the Agro-IBIS model cells
interpolated from the calibrated value in 1850 to 1.0 ~ and observed ranges in measured leaching rates (Shrestha et al., 2023).
in 2016.
IBIS_end_ mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration This parameter facilitates calibration of nitrate leaching trends. The
generated by the Agro-IBIS model. This multiplier is ~ bounds consider the coarse representation of the Agro-IBIS model cells
interpolated from 1.0 in 1850 to the calibrated value  and observed ranges in measured leaching rates (Shrestha et al., 2023).
in 2016.
flux_mult 0.55 0.25 2.50 0.14 1.4 Multiplier on the recharge flux simulated by the Starting and actual bounds equate to the mean ratio of baseflow estimated
Agro-IBIS model. Applies equally to all dates. recharge (Gebert et al., 2011) to IBIS simulated recharge for gages and
partial record basin, and the 5th and 95th percentile of the ratio for partial
record basins.
septic_ 1 0.1 10 0.1 10 Multiplier on the nitrate leaching mass generated by =~ The two orders of magnitude range across the bounds attempt to account
mult the septic system algorithm. Applies equally to all for the coarse estimation of septic leaching at county to census block
dates. groups, as per Schachter et al. (2024b).
kO2_mult 1 0.5 20 0.5 20 Multiplier on the oxygen reduction rate (ko,o) in Lower and upper bounds are approximated as the ratio of the 5th and 95th
equation 2. percentiles, respectively, from Fig. 7 of Green et al. (2018), divided by the
median oxygen reduction rate computed with the multivariate regression
model used for the GW-NDST (Juckem and Green, 2024).
02_cut 0.87 0.45 8.25 0.39 7.18 Value for the oxygen cutoff threshold (Co o) in From Green et al. (2018) table S3 after removing insensitive parameter
equation 2. values that were unchanged from the initial value of 2.1; starting and
actual bounds equate to the median, 5th, and 95th percentiles. The
bounds are within those observed by Tesoriero and Puckett (2011).
kO2_to_ 2 0.25 10 0.5 20 Multiplier on the oxygen reduction rate (ko o) to Starting and actual bounds are approximated from Green et al. (2018),
kNO3_mult generate a denitrification rate (ko) in equation 3. Fig. 7.
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matrix is similar to the Jacobian, or “sensitivity” matrix generated by
more traditional gradient-based methods in PESTPP that increment each
parameter in isolation. Successive IES iterations are performed until the
difference between simulated results and target values (phi) are judged
to be sufficiently small to be considered “calibrated”. The result of this
process is an estimate of the posterior parameter probability distribu-
tion, from which a posterior parameter ensemble can be generated and
used to quantify model uncertainty. The approach requires a means for
determining which parameter realizations to consider as being “in
calibration” versus those with excessively large composite residuals, or
phi. For calibrating the GW-NDST, realizations were excluded if their
phi value was more than two standard deviations from the mean phi
value of that iteration’s suite of realizations.

Unlike the traditional calibration methods in PEST (Doherty, 2018)
and PESTPP (White et al., 2020), which focus on a single “best”
parameter set, the idea behind the IES method (White, 2018) is to
improve the overall fit of an ensemble of model parameters by reducing
parameter uncertainty using the information contained in the observa-
tion data. That is, no single model result exactly replicates the real
world, but an ensemble of results can be assessed for their potential to
produce a range of results that likely encapsulate the “true” (though
unknown) result. The calibration process for PESTPP-IES improves the
fit between each ensemble member (a unique set of parameter values)
and the target values during each iteration. This correspondence be-
tween simulated and target values improves during each iteration,
sometimes dramatically; however, improved fit often comes at the
expense of reduced variability of model predictions (ensemble collapse).
The favored approach, therefore, is viewed as a balance between
improving the match to measurements while retaining a reasonably
broad range of results from the ensemble of realizations. This approach
is similarly designed to reduce the chance of over-fitting the calibration
dataset, which can often result in degraded forecasts (Kuhn and John-
son, 2013; Anderson et al., 2015).

2.9. Scenario implementation

The GW-NDST design focuses on simulating current and historical
nitrate concentrations and providing users with flexible forecasting
scenarios. The “historical_simulation” function computes historical ni-
trate concentrations up to a specified prior date or the current date of
use, and generates three plots: historical nitrate leaching rates,
groundwater age distributions, and historical nitrate concentrations in
the well of interest. The visualization of historical leaching rates and
groundwater ages can aid with understanding patterns and trends in the
nitrate concentration history for each well. Another use of the historical
plots is to assist the user with anticipating reasonable goal concentra-
tions for the future scenarios, which are accessible via the
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“future_scenarios” function. The GW-NDST incorporates six future sce-
nario options: 1. A constant future leaching rate based on the latest Agro-
IBIS and septic leaching rates, 2. A user-specified constant future
leaching rate, 3. A user-specified percent change (from rates computed
for a specified date or the date the tool is run) for future leaching rates, 4.
An optimization method whereby the user specifies a goal concentration
and date, and the GW-NDST computes the required immediate and
constant nitrate leaching reduction required to meet this goal (if
possible), 5. A similar optimization method based on a goal concentra-
tion and date, whereby the GW-NDST computes an annual nitrate
leaching reduction rate (a per-year reduction rather than immediate
reduction) that would be required to meet the goal (if possible), and 6.
An optimization method whereby the user identifies a goal concentra-
tion and nitrate leaching rate, and the GW-NDST computes the date at
which the goal concentration is expected to be met (if possible). Mean
annual measured nitrate concentrations based on sample results pro-
vided in the user’s input file are also plotted in all cases for comparison
with simulated results.

Uncertainty in the simulated results is illustrated by leveraging the
450-realization posterior parameter ensemble generated during the
calibration process. Each realization includes a suite of reasonable
parameter values that resulted in a similar match to nitrate concentra-
tion and trend targets as the “calibrated” or “base” realization. Thus,
both the historical_simulation and future_scenarios functions display
results from the base realization, as well as results from near-minimum,
median, and near-maximum realizations. The specific realizations
plotted for each user-identified well will differ and are selected based on
their computed nitrate concentration for the date that the tool is used
unless a past date is specified by the user. That is, computed concen-
trations for the date of use (or specified date) are ranked from lowest to
highest from all 450 realizations, and the median realization is identified
as the realization parameter set that produced the median concentration
on that date. Similarly, the near-minimum realization parameter set is
associated with the concentration that exceeds five percent of all
computed concentrations on the date, and the near-maximum realiza-
tion is associated with the concentration that exceeds 95 percent of
computed concentrations. The median realization is used as a comple-
ment to the base realization with the goal of these two model results
illustrating the central tendency of simulated historical, current, and
future nitrate concentrations. The near-minimum and near-maximum
realizations bracket a reasonable range in the simulated historical,
current, and forecasted future nitrate concentrations.

3. Results

This section discusses results of the calibration process and uses an
example run of the Graphical User Interface (GUI) to illustrate how

A B. C.
70 T = \ T 120 — T
= Base 160,000 w— Base — . ter. 1
\ Realizations \ Realizations 100 — N lter.2 |
6.5 § Panel B y-bounds — 2 . ter.3
140,000 S
®
N
£ = g
§’ 8- 120,000 'E.‘
o
£
E
=
100,000 =
80,000 0
0 1 3 4 80,000 100,000 120,000 140,000
IES iteration IES iteration Phi

Fig. 2. Calibration metric (phi) characteristics of the PESTPP-IES calibration of the GW-NDST tool, showing (a) the reduction in log (phi) for the “base” simulation
(red line) and ensemble of the other 449 realizations (black lines) over 5 iterations including the initial parameter values (iteration 0), (b) a zoomed-in depiction of
the reduction in phi for all 450 realizations across all iterations, and (c) histograms of phi for all realizations for iterations 1, 2, and 3 (iterations 0 and 4 omitted for

improved X-axis scaling).
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Fig. 3. One-to-one plots of measured versus simulated nitrate concentration for the base realization for PESTPP-IES iteration number 2, (a) with the minimum and
maximum simulated range from the other 449 realizations shown for each target as a vertical gray line, and (b) shown as a hex-bin plot in which warmer colors

illustrate a higher number of paired measured:simulated values.

results of the calibration and uncertainty analysis inform the forecasting
scenario results. The calibration process and results are highlighted
because they represent the means by which outputs from support models
were adjusted in order to tune their collective results for working within
the context of this tool, highlighting the model capabilities and limita-
tions, and incorporating simulated uncertainty and forecasting out-
comes in results.

3.1. Calibration results and model uncertainty

Iteration number 2 of the PESTPP-IES (White, 2018) calibration was
selected and judged to be the best ensemble of parameter realizations
based on the calibration metrics (phi, RMSE, etc.), the number of con-
centration targets contained within the range of ensemble results, the
range of parameter values contained in the ensembles, and the limited
number of parameters hitting the upper or lower bounds. Fig. 2
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illustrates this balance of minimizing phi without collapsing the
parameter set (narrow range of phi) across five PESTPP-IES iterations
(only iterations 1-3 shown in 2c for greater clarity). Also, the results are
shown for the final ensemble of 450 realizations (including the base
realization) out of an initial 500 realizations because 50 realizations
generated excessively high phi values (greater than 2 standard de-
viations from the mean phi of the 500 realizations) and were automat-
ically removed by PESTPP-IES during the calibration process.

Results from iteration number 2 were selected partially because they
adequately matched measured target concentrations and concentration
trends, while minimizing biases and capturing over 78 percent of target
concentrations within the ensemble of realizations. This is shown in
Fig. 3 for iteration 2, and illustrates the GW-NDST’s ability to match
measured nitrate concentrations across the state that ranged from 1 mg-
N/L to nearly 50 mg-N/L. For the base realization, the mean absolute
error (MAE) for all concentration targets was 3.1 mg-N/L and the RMSE
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Fig. 4. Maps showing (a) the number of nitrate observations per hexbin area used to calibrate the GW-NDST across Wisconsin, and (b) the mean residual for each
hexbin. Each hexbin covers approximately 160 square kilometers. White areas without hexbins had no nitrate observations.
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was 4.5 mg-N/L, with 61% of samples simulated within 3 mg-N/L and
81% simulated within 5 mg-N/L. The calibration exhibits minimal
clustering of residuals up to about 20 mg-N/L, but systematically under-
simulates concentrations above about 20 mg-N/L. The tool’s perfor-
mance above 20 mg-N/L likely results from a lack of site-specific in-
formation, such as septic system locations and farm-specific
management data (manure and fertilizer application, crops, cover crop
use, irrigation, etc.) related to potential intensive leaching areas and
events that aren’t captured by the grid resolution of the Agro-IBIS model
and its underlying input datasets; preferential flow due to natural fea-
tures or well construction, not captured by the ageML model (eq. 1), may
also contribute. Nonetheless, improved correspondence among rela-
tively high concentrations is achieved when considering the full range of
results (gray vertical lines in Fig. 3a) from the 450 realizations. Indeed,
the ensemble of results from the 450 realizations overlapped 78% of the
target concentrations, as per the calibration objectives described above,
highlighting the importance of incorporating model uncertainty in
simulated outcomes and decision making.

Spatially, simulated residuals across the state (Fig. 4) exhibit mini-
mal bias. The highest density of nitrate concentration targets (Fig. 4a)
occurs in a north-south line through the center of the state from the II-
linois border in the south to about 45° latitude, north of which much of
the land is covered by forest and lakes. Smaller high-density areas of
nitrate sample targets also occur throughout the state, such as in the
north-west and south-east. Mean residuals (Fig. 4b) in these high-
sample-density areas are consistently near zero mg-N/L, demon-
strating the effectiveness of the spatially varying parameters (pilot
points; see the Parameters section). Large mean residuals (greater than
10 mg-N/L) tend to occur where target density is low (less than about 10
wells within each hexbin in Fig. 4).

Trends in nitrate concentration were represented in the calibration
by the first-last and the consecutive difference target groups, in which
concentration differences were computed from wells that included
multiple nitrate samples over multiple years. Two nutrient leaching
calibration parameters in particular, IBIS_start mult and IBIS_end_mult,
provided added flexibility to the calibration process for influencing
long-term trends (from 1850 to 2020). However, these parameters
modify the leaching rate trends over the full 170-year duration of the
Agro-IBIS results, and therefore have minimal influence on inter-annual
variability. That is, much of the simulated temporal variability and
trends observed in the GW-NDST, especially inter-annual variability, is
controlled by the variability and trends in annual leaching rates directly
simulated by the Agro-IBIS model. Two example wells illustrate char-
acteristic timeseries data and simulation results (Fig. 5). The simulated
pattern for these wells generally matched the time-series data, although
the GW-NDST under-simulated the magnitude of change in temporal
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fluctuations. This limitation is not surprising since farm-specific land
management practices are not incorporated into the Agro-IBIS model,
nor are transient stresses such as rapid infiltration or dynamic pumping
incorporated into the groundwater transport processes. Nonetheless,
simulated results for both wells generally mimic both short-term vari-
ability as well as longer-term trends exhibited by the data. Interestingly,
the state-wide mean calibrated values for IBIS_start mult and IBI-
S_end_mult were 1.14x and 0.90x, respectively, indicating that the
actual nitrate leaching over time may have decreased relative to that
simulated directly by the Agro-IBIS model, although the suite of 450
realizations included numerous individual realizations in which the
parameters yielded increasing leaching rates over time compared with
the raw Agro-IBIS output.

Parameter values varied spatially across the state (Fig. 6) as well as
across the ensemble of realizations (Fig. 7; Table 3). A global sensitivity
analysis (Table 3) using the Method of Morris (White et al., 2020)
indicated that the IBIS_mult and age_mult parameter groups were the
most sensitive for the calibration (51.0% and 38.5% of total sensitivity,
respectively). For the base realization, each parameter field (interpo-
lated between pilot points) varied smoothly across the state with local
variations that improved the simulated match to targets in that area of
the state. The maps in Fig. 6 further illustrate the geostatistical draw
method’s advantage of generating smoothly varying values from
regional averages to local patterns without generating “bullseye” pat-
terns that are common with least-squares interpolation methods. The
associated histograms for the base realization (Fig. 6¢c and d) illustrate
the distribution of values across the entire state for these sensitive pa-
rameters. Parameters also varied spatially for all the other 449 re-
alizations through the same pilot point design, although the spatial
patterns differed for every realization. For example, all values for the
age_mult parameter across the state for all realizations (not just the base
case) are shown in Fig. 7. This cumulative histogram (Fig. 7) illustrates a
relatively dense distribution of values between the 5th and 95th per-
centiles (red vertical lines) of the parameter range, with the highest
density of values centered around the mean and median values. Notably,
the value of the age_mult parameter rarely reached the lower or upper
bound anywhere in the state throughout all realizations, with the 5th
and 95th percentile of values ranging from 0.71 to 1.45 times the mean
age predicted by the ageML model (Table 3). Note that the histogram for
age_mult in the base realization (Fig. 6¢) is only one of the 450 reali-
zation histograms that make up Fig. 7.

3.2. Example scenario results

Example scenarios from the GW-NDST serve to clarify the relation-
ships between nitrate leaching rates, groundwater ages, and associated
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Fig. 7. Range of parameter values in the age_mult parameter group shown as a cumulative histogram for all 450 realizations across Wisconsin (parlb and parub are
the lower bounds and upper bounds, respectively, for the parameter group, as per Table 2).
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Table 3
Calibrated parameter group results, including mean and median values across the state, 5th to 95th percentile ranges, and percent of sensitivity computed from 450
realizations.
Parameter Starting Actual Actual Description Mean Median 5th 95th Percent of
group name Value lower upper calibrated calibrated percentile percentile total
bound bound value across value across value value sensitivity
WI WI
age_mult 1 0.5 2 Multiplier on the mean age (t) 1.05 1.03 0.71 1.45 38.5
generated by the groundwater age
machine learning model (ageML).
disp_ratio 21.32 4.73 40.44 Value for the dispersion ratio (d) in 16.64 15.52 7.25 29.6 3.4
equation 1.
uz_mobile 0.16 0.1 0.31 Value for the unsaturated mobile 0.17 0.17 0.11 0.25 0.4
water content used to estimate lag
time in the unsaturated zone.
IBIS_mult 1 0.2 3 Multiplier on the nitrate leaching 0.64 0.57 0.26 1.27 51.0
concentration generated by the Agro-
IBIS model. Applies equally to all
dates.
IBIS start_ 1 0.2 3 Multiplier on the nitrate leaching 1.27 1.14 0.46 2.59 1.2
mult concentration generated by the Agro-
IBIS model. This multiplier is
interpolated from the calibrated
value in 1850 to 1.0 in 2016.
IBIS.end_ mult 1 0.2 3 Multiplier on the nitrate leaching 0.91 0.8 0.34 1.86 2.5
concentration generated by the Agro-
IBIS model. This multiplier is
interpolated from 1.0 in 1850 to the
calibrated value in 2016.
flux_mult 0.55 0.14 1.4 Multiplier on the recharge flux 0.64 0.59 0.28 1.17 1.3
simulated by the Agro-IBIS model.
Applies equally to all dates.
septic_mult 1 0.1 10 Multiplier on the nitrate leaching 4.71 3.89 0.8 10 0.1
mass generated by the septic system
algorithm. Applies equally to all
dates.
kO2_mult 1 0.5 20 Multiplier on the oxygen reduction 1.07 0.83 0.5 2.46 1.4
rate (ko,0) in equation 2.
02_cut 0.87 0.39 7.18 Value for the oxygen cutoff threshold 1.1 0.86 0.4 2.61 0.1
(Co,cup) in equation 2.
kO2_to_ 2 0.5 20 Multiplier on the oxygen reduction 3.64 2.58 0.74 10.44 0.1
kNO3_mult rate (ko,0) to generate a
denitrification rate (ko) in equation
3.
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Fig. 8. Graphical results for an example well using the forecasting scenario option 1 (constant future leaching rate, with ranked realizations as of Aug. 17, 2023) to
illustrate (a) historical and forecasted nitrate leaching rates, (b) groundwater age distributions, and (c) forecasted nitrate concentrations in the well for the base, 5th,

50th (median), and 95th percentile realizations.

estimates of nitrate concentrations in wells in Wisconsin. The tool in-
cludes a hindcasting scenario and six forecasting scenarios for assisting
users with assessing potential interactions among possible future nitrate
leaching rates and well concentrations. A brief overview is provided
here to aid readers in understanding how the design and calibration of
the tool influences application and results of forecasting scenarios. All
scenarios include plots that show results from the base parameter real-
ization as well as results from three additional parameter realizations
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that yield near-minimum (5th percentile), median (50th percentile), and
near-maximum (95th percentile) simulated concentrations for the date
the GW-NDST is run (or a user-specified date). These additional re-
alizations are displayed for comparison and assessment of model un-
certainty. Historical nitrate leaching, groundwater age distributions,
and oxygen and nitrogen reduction parameters contained in the suite of
realizations are not altered for the forecasting scenarios; only future
nitrate leaching rates are modified in the scenarios.
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The most basic forecast scenario, scenario number 1, applies the
latest estimated nitrate leaching rate forward in time to the user’s cho-
sen planning date. Scenario 1 addresses the question of “how will esti-
mated well concentrations change in the future if current leaching rates
do not change?” Results for an example well (Fig. 8) illustrate that most
of the historically measured concentrations fall between the 5th
percentile (near-minimum) and the 95th percentile (near-maximum)
realizations, as described in the Calibration results and model uncer-
tainty section. The example results also illustrate that maintaining cur-
rent (the date the GW-NDST was run; Aug. 17, 2023 for this example)
nitrate leaching rates will produce nearly steady nitrate concentrations
for the 5th percentile realization, but increased nitrate concentrations of
about 20%-35% for the 50th percentile (median), base, and 95th
percentile realizations over the next four decades, with the base reali-
zation still appearing to increase beyond 2063. These patterns are likely
driven by the differing historical leaching trends and groundwater age
distributions among the four plotted realizations. Similarly, while the
historical and forecasted leaching rates are similar for the base and 50th
percentile realizations, the forecasted concentrations show greater
divergence due to their differing groundwater age distributions (lag
times) and potentially due to differing oxygen and nitrate reduction
rates.

The dynamic variability among the individual realizations highlights
the value of using multiple realizations to illustrate uncertainty of his-
torical trends and forecasted concentrations due to the range of feasible
parameter values. For example, the 5th and 50th percentile realizations
nearly equally match the concentrations measured around the year
2000, and both realizations nearly match one of the measurements
collected over a decade later. However, the forecasted concentrations
for the 5th and 50th percentile realizations diverge substantially after
about 2010, highlighting the limitations of historical measurements for
informing future concentrations. Thus, users of the GW-NDST are
encouraged to consider the full range of forecasted nitrate concentra-
tions when contemplating decisions informed by the tool, and poten-
tially use the results to guide targeted study and data collection to
further facilitate the decision-making process.

4. Discussion

The GW-NDST was built by integrating multiple independently
developed support models to simulate the key processes affecting nitrate
concentrations in wells: historical leaching rates, travel time distribu-
tions, and biogeochemical reactions. The calibration leveraged spatially
distributed parameters to modify, or tune, the support model output as
necessary to better match 34,255 historical nitrate concentration and
trend targets. Judgements made during the calibration process, such as
target weights and parameterization, are not unassailable but were
informed by data, results, literature, and experience (Thompson, 2022).
The calibration improved model performance, reducing phi of the base
realization by 60 percent from about 200,000 for the initial iteration to
about 80,000 on iteration 2, while also generating 450 unique param-
eter realizations with broadly sampled but reasonable parameter com-
binations that allowed 78 percent of all target concentrations to fall
within the ensemble of model results. Nonetheless, the calibration il-
lustrates that matching some individual samples was difficult, especially
those above 20 mg-N/L. The reduction of the mean IBIS_mult parameter
value from 1.0 to about 0.6 likely degraded the match to samples above
20 mg-N/L, despite the authors preferentially increasing the target
weight for the most accurate targets with concentrations greater than 10
mg-N/L by a factor of three (Table 1). This result suggests that simulated
leached nitrate from the Agro-IBIS model is on average too high, while
peak leaching rates may be too low. This dichotomy is likely a conse-
quence of spatial averaging and limited site-specific data. That is, the
contributing area for most domestic and non-community wells is likely
on the scale of a few kilometers or less; similar to or smaller than the grid
resolution of the Agro-IBIS model. This coarseness in the model grid
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results in the combining of sources with very high leaching rates, such as
individual fields, with areas having lower leaching rates, and results in
rates that are on average both too high and too similar (reduced vari-
ability). Shrestha et al. (2023) illustrate large differences in nitrate
leaching rates due to crop types and crop rotations, soils, precipitation
events, and fertilizer application rates, as well as natural variability
among individual sites. Future work to refine the Agro-IBIS grid reso-
lution and nutrient application inputs, along with improved estimates of
septic system leaching variability, might improve calibration results but
could also be limited by a general lack of site-specific data, such as
nutrient application rates on individual fields or even at individual
farms; such information is generally not publicly available, if recorded.
However, emerging research that uses machine learning and remote
sensing to map livestock facilities may aid in providing better estimates
of spatially explicit manure application rates (Robinson et al., 2022;
Shea et al., 2022).

Calibration of the GW-NDST also included concentration difference
targets intended to provide insight into trends and interannual vari-
ability. Example comparisons (Fig. 5) illustrated that the tool properly
reproduced long-term trends and the direction of inter-annual change at
some wells, but generally under-estimates the magnitude of temporal
variability. The coarse resolution of the Agro-IBIS model, combined with
the steady-state, unimodal (lacking a second peak for preferential flow)
groundwater age distribution formula (eq. 1), may influence this limited
inter-annual variability simulated by the tool. Smaller Agro-IBIS cells
that better match with individual agricultural fields would allow
improved estimates of field-specific practices affecting temporal vari-
ability, compared with averaging across larger areas that requires
blending of land cover, nutrient and water management, and soil
characteristics. However, publicly available field-specific datasets on
crop management and nutrient application rates and timing are lacking,
which limits the extent to which finer resolution modeling can improve
results.

Similarly, the ageML model of Green et al. (2021; Kauffman et al.,
2024) that was used for the GW-NDST does not account for certain
factors that may produce large variations of concentrations. A potential
factor in concentration variations is preferential flow due to natural
(karst, fractured rock) or well construction factors. The ageML model
was not trained on datasets of wells with obvious preferential flow. The
unimodal form of the age distribution, based on Fickian transport, can
simulate rapid response to inputs in samples with a mean age close to
zero (wells near the water table in shallow groundwater), but does not
account for scenarios with both preferential and diffuse transport. While
Green et al. (2014) showed that several age distribution models,
including multimodal distributions, often yield similar results for nitrate
predictions, extreme differences in expected and actual age distributions
can occur. Users interested in applying the GW-NDST for wells in areas
well-known for having karst or fractured bedrock aquifers in Wisconsin
will be informed by the GUI that the tool may have limited validity for
their well, but users will not be prevented from applying the tool. Future
efforts to enhance the GW-NDST may include introducing alternative or
more flexible forms of the age distribution model, and including
methods to assess the source area of nutrients captured by wells.
Recognizing the limitations of the tool to reproduce observed interan-
nual variability in concentrations, users are encouraged to consider the
full range of possible outcomes depicted by all four of the realizations
illustrated in the results when evaluating decisions and to also delay
judgement of management change effectiveness based on only a few
measurements collected shortly after management implementation.

The support model that estimates oxygen and nitrate reduction rates
had less influence on predictions than the nitrate leaching and
groundwater age support models based on the estimated sensitivity of
parameters (Table 3). Reactions can, however, greatly affect nitrate
concentrations in reduced groundwater (Bohlke and Denver, 1995),
which does occur in Wisconsin aquifers (Kraft et al., 2008; Erickson
et al., 2021; Tesoriero et al., 2017). Emphasis on wells with high
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concentrations of nitrate and removal of target concentrations less than
1 mg-N/L may have selected for relatively non-reactive areas where
denitrification has less influence on concentrations. Assessment of
reactivity at the scale of the GW-NDST remains challenging because data
to characterize oxygen and nitrate reduction conditions in aquifers are
scarce. Future efforts may leverage growing datasets related to redox
conditions (Erickson et al., 2021) and machine learning methods.

Demonstrating application of the tool for an example well and
forecasting scenario (Fig. 8) highlights the value of translating the re-
sults of the calibration into terms of model uncertainty in the GW-NDST
results. For instance, while the base realization (the calibration metrics
highlighted in Fig. 3) over-simulated all measured concentrations from
the example well, the four realizations bracketed all measured values.
Moreover, while simulated nitrate from the 5th and 50th percentile
realizations had arguably similar matches to the measurements, their
forecasted concentrations diverged substantially, with concentrations
deviating by nearly a factor of two (7 mg-N/L vs 13 mg-N/L, respec-
tively) over the 40-year forecast. These observations highlight the dif-
ficulty in attempting to identify a single “best” forecast of an uncertain
future. Part of the challenge lies with known uncertainty around pa-
rameters that are insufficiently informed by measured data. That is,
most of the 11 calibration parameter groups exhibited relatively low
sensitivity for calibrating the model to concentration and concentration
difference targets (Table 3). However, the Iterative Ensemble
Smoother’s ability to sample a diverse combination of parameter values
across reasonable bounds enabled the tool to incorporate that uncer-
tainty into visualizations of alternative possible outcomes. Additional
data collection, such as N and noble gas samples to inform denitrifi-
cation rates or bromide tracer studies to inform leaching rates and
groundwater ages (Cardiff et al., 2022), along with agronomic data,
could potentially better constrain future calibration efforts by allowing
for tighter starting bounds on parameters. Yet regardless of hindcasting
performance of the GW-NDST (or other modeling tools), caution in
interpreting forecast accuracy is prudent when used for decision making
(Thompson, 2022). That is, while high numerical accuracy is beneficial
and has been pursued in the development of this GW-NDST, the tool may
also be effective for testing assumptions and limitations related to
relative concentration changes stemming from nutrient management
decisions. Indeed, many nitrate leaching reduction practices are them-
selves highly variable and uncertain in their effectiveness over the large
range of natural conditions (Dinnes et al., 2002; Masarik et al., 2014;
Esmaeili et al., 2020). For scenarios in which forecasts indicate that
large leaching reductions will be required to achieve well concentration
goals, multiple nitrate leaching reduction strategies may need to be
applied, with every individual management practice incrementally
increasing the potential for success (Dinnes et al., 2002; Hajhamad and
Almasri, 2009).

5. Conclusions

The GW-NDST presented in this paper was developed as a framework
to assist users with understanding relationships between nitrate leaching
rates, groundwater age and lag times, geochemical reactions, and nitrate
concentrations in wells. The tool is novel in its use of multiple support
models as input sources, quantification and display of uncertainty, and
ease of use with individual wells over a broad region (Wisconsin, USA).
Results from the tool are displayed as graphs of historical and forecasted
nitrate leaching rates, groundwater age distributions (travel time lags),
and computed historical and forecasted nitrate concentrations in the
well of interest. Each graph includes results from a set of parameter
realizations that characterize the range of results informed by model
uncertainty, as informed by the calibration. The “base” and 50th
percentile realizations represent central tendencies, and the 5th (near-
minimum) and 95th (near-maximum) percentile realizations illustrate
the broader range of possible results.
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This study focused on the design and calibration of the GW-NDST,
including interpretation of how key processes influence the forecasted
results from the ensemble of parameter realizations sampled from the
posterior parameter probability distribution. Information on model
uncertainty was incorporated into the tool via an ensemble of parameter
realizations generated through the calibration processes, with an
emphasis placed on avoiding over-fitting of model parameters and
acceptance of a range of model variability within the bounds of
reasonable parameter values. The calibration process involved adjusting
eleven spatially variable parameter groups, eight of which represented
multipliers applied to support model outputs to improve the simulated
match to 34,255 nitrate sample targets. Application of an ensemble
calibration method, PESTPP-IES (White et al., 2020), facilitated simul-
taneous improvement in model fit and quantification of model uncer-
tainty. Targets were weighted based on their measurement and
locational accuracy plus their concentration, such that the fewest
high-accuracy and high-concentration targets were weighted most
heavily. Nonetheless, the calibration analysis illustrates that the tool
may under-estimate concentrations greater than about 20 mg-N/L,
which is likely a function of the coarse resolution (1 km x 1.5 km) and
limited site-specific nutrient application information available to the
Agro-IBIS ecosystem model (Lark et al., 2022; Kucharik and Brye, 2003)
that generated historical nitrate leaching rates for the tool, and simpli-
fication of groundwater age distributions that represent nutrient trans-
port through aquifers. Despite the bias, 78% of all target concentrations,
including concentrations above 20 mg-N/L, are shown to be captured in
the range of results simulated by the ensemble of realizations. This high
percent of overlap is one of the important benefits for including results
from the realizations in the plots generated by the tool.

The value of illustrating model uncertainty was further evidenced
through an example application of a forecasting scenario. The example
demonstrates that long term forecasts can differ among equally likely
realizations. Thus, identification of a “single best” forecast can lead to
misinterpretations. Consideration of the uncertainty illustrated by a
range of realizations is an important component of the decision support
aspect of the tool. Nonetheless, subsequent data collection and en-
hancements to the tool’s support models along with targeted data
collection for future re-calibration efforts could reduce uncertainty in
future versions of the GW-NDST. It is hoped that use of this tool will lead
to additional data and methods refinement, which will in-turn drive
prediction improvements over time.

6. Software availability

The Groundwater Nitrate Decision Support Tool (GW-NDST) for
Wisconsin is available at no cost from: https://doi.org/10.5066
/P13ETB4Q. The tool requires the user to have an operating system
capable of running Python 3.10 and can be run on Windows, Mac OS, or
Linux. The software was written in Python, and an YAML installation file
is available from the above website for installing a Python environment
containing the specific Python libraries and versions known to properly
execute the code. Full installation of the software involves: 1. Cloning
the computer code from the above website, 2. Installing a Python
environment based on the YAML file included at that site, and 3.
Downloading input GIS data from Corson-Dosch and Juckem (2024a; htt
ps://doi.org/10.5066/P9Q1X606; 1.1 GB compressed; 4.9 GB uncom-
pressed) and parameter files from Corson-Dosch and Juckem (2024b; htt
ps://doi.org/10.5066/P9QHPVU3; 2.8 GB) that are required by the
tool’s machine learning and statistical support models. The downloaded
GIS data and parameter files must be extracted from compressed files
and saved to specific sub-directories within the directory structure of the
cloned/downloaded software. Full instructions for downloading the
software and data files, extracting and saving the data files, and running
the software can be found with the source code at: https://doi.
org/10.5066/P13ETB4Q.
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Software name: GW-NDST, version 1.1.0.

Developers: Variable; authorship will increase with subsequent
version updates. Please refer to the software repository for a current list
of authors.

Contact information: pfjuckem@usgs.gov, Ischachter@usgs.gov, nco
rson-dosch@usgs.gov, ctgreen@usgs.gov.

First year available: 2024.

Program language: Python; a YAML file is available from the soft-
ware repository to aid with installing an environment known to work
with the software code.

Program size: 112 MB; Total including downloaded data: 4.0 GB
compressed; 7.8 GB uncompressed.

Cost: Free.

Disclaimer

No warranty, expressed or implied, is made by the USGS or the U.S.
Government as to the functionality of the software and related material
nor shall the fact of release constitute any such warranty. The software is
provided on the condition that neither the USGS nor the U.S. Govern-
ment shall be held liable for any damages resulting from the authorized
or unauthorized use of the software.

Any use of trade, firm, or product names is for descriptive purposes
only and does not imply endorsement by the U.S. Government.
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