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A B S T R A C T   

This paper describes development of a nitrate decision support tool for groundwater wells (GW-NDST) that 
combines nitrate leaching and groundwater lag-times to compute well concentrations. The GW-NDST uses output 
from support models that simulate leached nitrate, groundwater age distributions, and nitrate reduction rates. 
The support models are linked through convolution to simulate nitrate transport to wells. Spatially distributed 
parameters were adjusted through calibration to 34,255 nitrate sample targets. Prediction uncertainty is illus
trated via Monte Carlo realizations informed during calibration. Over 78% of target concentrations were within 
the simulated range of results from 450 realizations. An example forecasting scenario illustrates that a range of 
feasible outcomes exist and should be considered when interpreting forecasts for decision making. Uncertainty in 
forecasting is unavoidable; the intent of characterizing uncertainty in the GW-NDST is to facilitate decision 
making by increasing insight into the response of nitrate contamination to physical and chemical processes.   

1. Introduction 

The concentration of nitrate-N in a well is dependent upon many 
factors including the rate of nitrate leaching below the land surface, 
travel time of water through the vadose zone and aquifer material, and 
geochemical conditions in the aquifer. Major sources of groundwater 
nitrogen historically include human and animal waste (manure) and 
synthetic fertilizer (Byrnes et al., 2020). Nitrogen is a nutrient that 
promotes plant growth and is therefore an important component of crop 
fertilization. Excessive nitrogen fertilizer use or inefficient application 
timing of fertilizer and manure, however, can result in nitrate becoming 
a groundwater pollutant. Moreover, nitrate does not form strong bonds 
with soil particles, meaning that soils have limited capacity to store 
nitrate for subsequent plant use, especially during periods of precipita
tion (or irrigation) and associated infiltration (Masarik et al., 2014). 
Similarly, once leached below the root zone, nitrate is easily transported 
with groundwater over long distances through aquifers. Due to 

heterogeneity of soil and aquifer properties that results in flow paths of 
varying rates and lengths, a single well screen or water sample contains 
many “parcels” of water with varying travel times. This time range can 
be estimated or modeled using a travel time distribution (TTD; Vogel, 
1967b; Zuber, 1986; Varni and Carrera, 1998; Cook and Böhlke, 2000; 
Green et al., 2014). Nitrate concentrations in aquifers and wells can also 
be influenced by denitrification, which tends to occur at faster rates in 
zones with electron donors such as organic carbon or reduced inorganic 
iron and sulfur species (Korom, 1992). 

While nitrate pollution of aquifers is a wide-spread problem, there 
are few readily available tools for rapid assessment of current and future 
nitrate concentrations in wells that can be applied across large regions 
(e.g.: Kourakos and Harter, 2014; León et al., 2000). Variable land use 
and geological heterogeneity create high degrees of spatiotemporal 
variability that are often difficult to capture even with detailed nu
merical models over small areas and pose significant challenges for 
simulating groundwater nitrate at large spatial scales. Regional and 
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national-scale statistical and machine learning models have been used to 
successfully generate maps of nitrate occurrence (Nolan et al., 2018; 
Nolan and Hitt, 2006; Ransom et al., 2022; Mechenich and Johnson, 
2022), but maps are static with limited application for evaluating future 
management scenarios. Fully deterministic models, such as SWAT 
(Neitsch et al., 2011), Agro-IBIS (Kucharik and Brye, 2003), and MOD
FLOW (Niswonger et al., 2011) for example, are often well suited for 
scenario simulations and can incorporate small-scale detail, but these 
models often focus on only one component of the process, such as either 
the nitrogen cycle or groundwater flow. Linking multiple deterministic 
models (Wei et al., 2019) can yield highly detailed simulations capable 
of incorporating complex forecast scenarios, yet the resources involved 
are often substantial, particularly on a “per area” basis. The problem is 
well suited to reduced complexity modeling, which involves distillation 
of a complex system into key features and processes that meet the needs 
for predictive capability (Sarofim et al., 2021). That is, reduced 
complexity models are typically more computationally efficient than 
complex numerical models yet incorporate adjustable model parameters 
that facilitate sensitivity evaluations of scenario outcomes (e.g., fore
casts) involving important processes and conditions (Sarofim et al., 
2021) – valuable characteristics of a decision support tool. 

This paper presents the development of a tool designed to assist 
resource managers with assessing the potential for achieving future 
improvements in well water quality by reducing nitrate leaching rates 
near wells. The U.S. Geological Survey partnered with the Wisconsin 
Dept. Of Natural Resources and the University of Wisconsin-Madison to 

develop a groundwater Nitrate Decision Support Tool (GW-NDST; 
Schachter et al., 2024a) for the state. The GW-NDST, also referred to as 
“the tool” in this paper, is designed to assist with the challenges of ni
trate management by providing a flexible framework for improving the 
understanding of how changes in the amount of nitrate introduced to 
aquifers (nitrate leaching) translate to nitrate concentrations in indi
vidual wells. The relationship is influenced by the rate of leaching, time 
required for the nitrate to be transported through the unsaturated zone 
and the aquifer as it flows to wells, mixing of water with differing ages 
and nitrate concentrations captured by wells, and chemical trans
formation by denitrification along the flow path. The tool was developed 
using output from a dynamic ecosystem model (Agro-IBIS; Kucharik and 
Brye, 2003; Motew et al., 2017; Lark et al., 2022), analytical ground
water fate and transport methods (Maloszewski and Zuber, 1982; Green 
et al., 2018; Green et al., 2021), and oxygen and nitrate reduction rate 
estimates (Green et al., 2018; Juckem and Green, 2024) to address 
questions such as “how much nitrate leaching reduction would be 
needed in order to reduce nitrate below a specified concentration in a 
well of interest?” and “how long would it take before improvements from 
reduced nitrate leaching rates would be observed in the well?” The tool 
also quantifies forecast uncertainty by incorporating an ensemble of 
calibration parameters, spanning probable ranges, that were condi
tioned to over 34,000 nitrate sample targets collected across the state 
over multiple decades. 

Fig. 1. Flow chart diagram of the GW-NDST for Wisconsin, highlighting the three major processes (calibration, primary code, Graphical User Interface) and how the 
input, support models, intermediate steps, and results fit into and connect those major processes. 
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2. Methods 

This paper focuses on the implementation of a groundwater transport 
and forecasting method for nitrate concentrations in groundwater sup
plied wells located in the state of Wisconsin, USA. Fig. 1 illustrates in 
broad terms how the tool is organized and the major components of the 
tool’s workflow. The method ingests user-supplied information for a 
single well, and then computes historical and future nitrate concentra
tions in the well using mathematical convolution (Maloszewski and 
Zuber, 1982) and location-specific input generated by multiple sup
porting models designed to simulate 1. Historical nitrate leaching, 2. 
Groundwater age distributions, and 3. Oxygen reduction and denitrifi
cation. The convolution equation is solved for numerous dates over time 
to graphically illustrate historical nitrate concentration trends in the 
user-specified well. An ensemble of reasonable parameter values 
generated from model calibration are used to assess model uncertainty 
in simulated results. Finally, the user can choose among six forecasting 
scenarios to assess potential nitrate leaching reductions needed to meet 
user-defined nitrate concentration goals by a user-specified future date. 
The GW-NDST is coded in Python (Van Rossum and Drake, 2009) and is 
made accessible to users in a simple Jupyter Notebook (Kluyver et al., 
2016) Graphical User Interface (GUI). Readers should refer to the Soft
ware availability section for instructions on how to obtain and install the 
tool, and to Juckem et al. (2024) for access to all additional data that 
supported development of the GW-NDST. The following sections 
describe in greater detail the supporting models, the convolution 
method for contaminant transport, the GW-NDST calibration and un
certainty assessment, and demonstration of one forecasting scenario in 
the GW-NDST. 

2.1. Nitrate sources 

Nitrate loading to the water table in the GW-NDST is derived from 
two estimates of annual nitrate leaching below the root zone. One source 
is a dynamic ecosystem model, called Agro-IBIS (Kucharik and Brye, 
2003; Motew et al., 2017), that incorporates nutrient application data 
for fertilizer, manure, and other sources to simulate plant growth and 
nutrient balances in the soil over space and time. Agro-IBIS has the 
ability to represent forest and grass plant functional types (PFTs) and 
corn, soybean, and wheat cropping systems of the Midwest USA. The 
other source of nitrate leaching is a decadal census-based estimate 
derived from septic systems that was developed for this tool (Schachter 
et al., 2024b). 

Nitrate leached through the root zone was generated from a 116-year 
(1901–2016) spatially refined version of a regional-scale Agro-IBIS 
simulation by Lark et al. (2022). The regional study used the Agro-IBIS 
ecosystem model to, among other aims, simulate nitrate leaching below 
the root zone in agricultural areas across the Midwest USA based on 
historical land cover and associated fertilizer and manure applications 
(Lark et al., 2022). Agro-IBIS results were evaluated by comparing 
simulated nitrate leaching with data from a meta-analysis by Shrestha 
et al. (2023) and by comparing simulated crop yields with county-scale 
data. Historical nitrate leaching results from Agro-IBIS were desirable 
for use with the GW-NDST because the physically and biologically based 
Agro-IBIS model directly simulates crop growth (yield) using soil, 
meteorological, and nutrient application drivers, while tracking nitro
gen flux through the physical and biological systems. Moreover, 
Agro-IBIS simulates these processes at hourly to daily time steps (sub
sequently summarized to annual time steps for the GW-NDST applica
tion) and at a 1 km by 1.5 km spatial resolution (0.1◦

latitude/longitude). Thus, the Agro-IBIS results are generated at a higher 
spatial and temporal resolution than many other potential data sources, 
such as county-scale fertilizer and manure estimates (Brakebill and 
Gronberg, 2017; Gronberg and Arnold, 2017), which were used as in
puts to the model. These features of the refined Agro-IBIS model facili
tated generation of detailed nitrate leaching rates over space and time 

scales appropriate for a state-wide application. 
A slight modification of the Agro-IBIS model results was required for 

application with the GW-NDST framework. Agro-IBIS is a one- 
dimensional model whereby computations within an individual cell of 
the model have no effect on adjacent cells. Additionally, open water is 
not simulated in the Agro-IBIS model because it is designed to simulate 
terrestrial systems only. The refined Agro-IBIS model of Lark et al. 
(2022) used a liberal method to identify open water areas in order to 
minimize computational problems due to expanding and contracting 
waterbody areas over time. That is, Lark et al. (2022) integrated mul
tiple land use and land cover datasets that estimated changes in land 
cover since 1938. Individual model cells were defined as open water if 
the primary land classification for that cell was ever identified as open 
water in any of the historical land classification maps. This eliminated 
problems caused by land cover potentially flipping between open water 
and dry land during the simulation period. However, numerous homes 
with domestic wells are located along shorelines of lakes and other open 
water areas in Wisconsin. Thus, for application with the GW-NDST, ni
trate leaching values were linearly interpolated across waterbodies for 
each individual year of the Agro-IBIS simulation using the scipy. inter
polate.griddata method (Jones et al., n.d.) to ensure that any individual 
Agro-IBIS cell in which a user-supplied well is located contains a 
reasonable nitrate leaching history, with the assumption that leaching 
rates interpolated from adjacent cells adequately represent leaching 
rates along shorelines. 

Nitrate leaching from septic systems was estimated using decadal 
census data and a per person nitrate excretion rate. In 1990, the Census 
Bureau asked respondents to indicate whether their primary place of 
residence was connected to a municipal sewer system or utilized a septic 
system for waste disposal. This is the last year in which respondents 
were directly asked about septic system use, thus the 1990 census data 
was used to estimate the percent of an area’s population that relied upon 
septic systems; individual residence location information is not included 
in census data. Prior to 1990, counties were the finest resolution area 
with consistency between decadal censuses, so the fraction of residents 
using septic systems was computed at the county scale for 1990 and then 
interpolated backward in time, increasing to 100% of the population 
using septic systems in 1850 or the earliest decade for which a non-zero 
population was reported in each county. This approach relies upon the 
assumption that few if any modern sewage systems had been built prior 
to state incorporation (https://www.mmsd.com/about-us/history). The 
fraction of the population on septic systems was then multiplied by the 
county population to estimate the population using septic systems per 
county for each decade from 1850 to 1980. The population using septic 
systems was then multiplied by 4.1 kg of nitrate-nitrogen per person per 
year (11.2 g/person/day; Lusk et al., 2017) and normalized by county 
area to estimate the total leached nitrate in kg/ha from septic systems 
for each county. A similar approach for estimating septic nitrate leach
ing per area (kg/ha) was applied with 1990, 2000, and 2010 census 
data, but leveraged the finer resolution census block groups rather than 
counties. The results were mapped to shapefiles and then extracted to 
the 1 km by 1.5 km Agro-IBIS grid for each decade. The shapefiles, the 
python code used to generate the shapefiles, and a netCDF file that ag
gregates the 1 km by 1.5 km grids for each decade are available from 
(Schachter et al., 2024b). For implementation with the GW-NDST, the 
decadal leached septic nitrate data are extracted for the user-specified 
well location, and annual values are computed via linear interpolation 
between each decade. Septic leaching is also extrapolated to the current 
year (based on the date the user runs the tool) for the user-specified well 
location based on the average slope of annual leached nitrate between 
1990 and 2000 and between 2000 and 2010. 

2.2. Groundwater age model 

The machine learning model of groundwater age (ageML) developed 
by Green et al. (2021) for the Great Lakes region using the R statistical 
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software program (R Core Team, 2019) was converted into an equiva
lent model (Kauffman, et al., 2024) in Python (Van Rossum and Drake, 
2009) to allow for greater software compatibility and maintainability as 
part of the GW-NDST. The Python version of the ageML model was 
re-trained using the same training (80%) and testing (20%) dataset as 
Green et al. (2021). The ageML model uses predictor variables to esti
mate the mean groundwater age for a well, including landscape char
acteristics within a 500 m radius around the user-specified well, well 
construction information, well water level data, and water chemistry 
data for the well. The GW-NDST aggregates these predictor variables for 
the user-specified well and uses the ageML model to estimate a mean 
groundwater age. At a minimum, the well location (latitude and longi
tude) and well depth are required for running the tool; additional 
well-specific data, as described next, improves the ageML results but are 
not required for obtaining a solution. Well depth is the single most 
important predictor of groundwater age for the ageML model (Green 
et al., 2021), as has been documented for wells and aquifers based on 
first principles described in other studies (Vogel, 1967a; Maloszewski 
and Zuber, 1982; Haitjema, 1995; Luther and Haitjema, 1998; Green 
et al., 2018). The sampling depth, or the distance from the water table to 
the center of the saturated open interval of the well, was identified as the 
second most important predictor of groundwater age for the ageML 
model but requires knowledge of the depth to water and well casing or 
well screen length, either of which can be missing from some well re
cords. If no depth to water information is provided by the user, a value is 
estimated using a separate machine learning model that was developed 
for this purpose (Smith et al., 2024). Finally, water chemistry informa
tion including nitrate, pH, chloride, and iron concentrations among 
others, are used by the ageML model (Green et al., 2021) to refine the 
estimate of mean age. Water level and chemistry information, which 
could be measured and reported repeatedly over time, are summarized 
in the GW-NDST as the mean of each year’s average value prior to input 
to the ageML model. If water chemistry data is incomplete or not pro
vided, the ageML model ignores that input and generates an estimated 
age without it, albeit with less predictive accuracy, as described by 
Green et al. (2021). In this way, the GW-NDST can be applied to nearly 
any well in the state but is expected to have improved accuracy when 
applied to wells with extensive well construction and water chemistry 
data. 

The ageML model estimates a mean age for a given well location and 
depth; however, actual well water contains a distribution of ages from 
young to old water. Indeed, a distribution of groundwater ages is needed 
for the convolution solution implemented in the GW-NDST (see 
Convolution section). The mean age computed by the ageML model was 
converted to a travel time distribution g(τ) by applying a dispersion ratio 
to an advection-dispersion equation (Kreft and Zuber, 1978; Malos
zewski and Zuber, 1982), 

1 g(τ) =
d

̅̅̅
τ

√

̅̅̅̅̅̅̅̅̅̅̅̅
4πdτ3

√ exp
(

−
dτ
4τ

(
1 −

τ
τ

)2
)

where d is the dimensionless dispersion ratio, τ is the travel time from 
infiltration to discharge from the well for a parcel of water sampled from 
the well, and τ is the mean travel time of water discharged from the well. 
The mean travel time, τ, (incorporating both unsaturated and saturated 
flow) is generated from the ageML model, d is estimated from prior 
studies (commonly around 20; Green et al., 2018) and spatially cali
brated across Wisconsin for the GW-NDST (see Calibration & uncer
tainty section), and τ is a travel time, which is represented in the 
GW-NDST with a series of timesteps of variable duration that are most 
refined around the mean travel time for each individual well. 

2.3. Depth to water machine-learning model 

As described in the Groundwater age model section, the depth to 
water in the well is a component of the “sample depth” predictor 

variable of the groundwater ageML model (Green et al., 2021). For wells 
in which the user does not provide this information, the GW-NDST ap
plies a depth to water machine-learning model to estimate the depth to 
water and “sample depth”, which is then supplied to the ageML model. 
The depth to water model (Smith et al., 2024) leveraged 48 GIS-based 
predictor variables and was trained on 61,692 water level measure
ments from wells and 53,307 stream elevations assumed to represent the 
water table during baseflow conditions. For implementation with the 
GW-NDST, the machine learning model parameter values that provided 
the lowest root mean squared error (RMSE), in terms of matching the 
depth to water model to the training dataset, were combined with GIS 
input data from within 500 m of the user-supplied well location. Again, 
model-estimated depth to water is only used in the GW-NDST workflow 
when measured depth to water is not provided by the user (Fig. 1). 

2.4. Oxygen and nitrate reduction rate model 

Nitrate dissolved in groundwater can be converted to inert nitrogen 
gas (N2) through the denitrification process. However, denitrification 
within aquifers occurs only after most of the oxygen dissolved in the 
water has been depleted, with an effective oxygen cut-off threshold 
value (see equation 2 below) of approximately 2 mg/L (Green et al., 
2008; Tesoriero and Puckett, 2011). Oxygen inhibition of denitrification 
creates non-linear reaction kinetics that are not captured by single 
parameter (zero- or first-order decay coefficient) kinetic models. The 
GW-NDST realistically represents the reaction kinetics by accounting for 
oxygen reduction and denitrification separately. Oxygen reduction rates 
were estimated for the GW-NDST using a multi-variate regression model 
(Juckem and Green, 2024) trained on dissolved oxygen concentrations 
from wells that had been sampled as part of numerous USGS and 
non-USGS studies (Baker et al., 2024). The wells used for training and 
validating the multi-variate regression model had at least one dissolved 
oxygen concentration value and a computed mean groundwater age 
informed by age tracer samples (Juckem and Green, 2024). This data 
included publicly available USGS data (U.S. Geological Survey, 2016) 
and sample data from 10 historical reports published by the Wisconsin 
Geological and Natural History Survey and the University of Wisconsin 
at Stevens Point (Baker et al., 2024). The multi-variate regression model 
was trained to match dissolved oxygen concentrations for 461 wells in 
the dataset using predictor variables of land cover, soil, and aquifer li
thology and hydrogeologic position, plus other mappable variables. 
Mappable predictor variables were computed as the average values 
within a 500 m radius surrounding each well. Well specific metrics, 
including the thickness of the unsaturated zone and the sampling depth 
were also used as predictor variables. 

Denitrification was implemented in the GW-NDST by computing an 
oxygen reduction rate from the multivariate regression model using the 
parameter values that best matched the training dataset, along with 
estimates of the dissolved oxygen concentration at which denitrification 
begins (CO,cut) and estimated denitrification rates that were scaled to the 
computed oxygen reduction rate via a calibrated multiplier (kO2_to_
kNO3_mult). That is, denitrification is simulated in the GW-NDST only 
after estimated dissolved oxygen concentrations drop below a cut-off 
threshold value (CO,cut). Thus, the groundwater age at which denitrifi
cation begins (τ*

N) for an individual parcel of water is expressed as 

2 τ*
N = τ − τu −

(
C0,O − CO,cut

) /
k0,O  

where τu is the unsaturated zone travel time, C0,O is the input concen
tration of dissolved oxygen at the water table (assumed 9.8 mg/L 
everywhere for the GW-NDST), and k0,O is the zero-order oxygen 
reduction rate computed for the individual well by the multi-variate 
regression model. The denitrification rate (k0,N) is computed as the 
product of the oxygen reduction rate (k0,O) and a multiplier value 
(kO2_to_kNO3_mult). Data were insufficient to independently estimate 
CO,cut and the denitrification rate multiplier (kO2_to_kNO3_mult) values, 
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which were instead parameterized and estimated during a state-wide 
calibration of the GW-NDST to nitrate concentrations by assigning 
initial estimates with upper and lower bounds informed from Green 
et al. (2018, Fig. 7) and other studies (see Calibration & uncertainty 
section). 

2.5. Convolution 

Nitrate transport from below the root zone to wells is simulated in 
the GW-NDST via mathematical convolution of historical nitrate 
leaching over time and groundwater age distributions, with zero-order 
oxygen and denitrification rates. The method is described in detail in 
section 2.3 of (Green et al., 2018), but adapted and expanded here for 
use with any well location in Wisconsin and alternate sources of nitrate 
leaching data, in addition to a separate calibration scheme (Calibration 
& uncertainty). Briefly, nitrate concentration in a well is simulated over 
a range of travel times using the convolution equation, 

3 Cs(t) =

∫t

−∞

[
C0(t′) − (t − t*)k0,N

]
g(t − t′)dt′  

where Cs is the concentration [M/L3] of nitrate on the sample date (t); C0 
is the nitrate concentration on the date of infiltration at time t’; k0,N is 
the zero-order denitrification rate [M/L3/T] between the date t*, at 
which the reaction begins and the date of sampling (t); and g is the travel 
time distribution between the date of infiltration and the time of sam
pling (τ = t – t’) as described in equation 1. 

2.6. Calibration & uncertainty 

The GW-NDST was calibrated to nitrate samples across Wisconsin by 
using the iterative ensemble smoother technique (IES; White, 2018) 
implemented in PESTPP (PESTPP-IES; White et al., 2020). Model cali
bration (also known as history matching or parameter estimation) using 
PESTPP-IES involves assigning weights to nitrate sample targets that 
reflect their accuracy and importance, and defining model parameters 
that can be adjusted to improve the match between simulated and target 
values. PESTPP-IES incrementally improves the model calibration by 
reducing the sum of squared weighted residuals, or phi, over a series of 
iterations that are informed by the response of simulated target values to 
perturbations of the parameter values in the ensemble of realizations. An 
important benefit of using the PESTPP-IES method for calibration is that 
the method can be used to generate hundreds of realizations of model 
parameters for which all parameter values remain within realistically 
defined bounds and the simulated match to target values remain “in 
calibration” (each retained realization has a phi value within 2 standard 
deviations from the mean phi of all realizations). When evaluated as an 
ensemble, the range of model parameter realizations provides insights 
about the range of probable forecast outcomes. The sections below 
describe details related to the targets, their weights, the model param
eters, and implementation of the PESTPP-IES method for calibrating and 
quantifying uncertainty for the GW-NDST. 

2.7. Targets 

Calibration of the GW-NDST was performed by comparing 27,195 
measured nitrate concentration targets from 16,979 wells with equiva
lent simulated values for each target. In addition, nitrate trends in wells 
with multiple samples were compared with equivalent simulated trends 
by computing differences among both 1. consecutive sample concen
trations (9783 targets), and 2. concentrations for the first and last 
samples from a well (1600 targets). Thus, a total of 38,578 targets were 
used (27,195 measured concentrations and 11,383 concentration dif
ferences) to initialize the calibration process. Nitrate concentration and 
well construction data were obtained from the USGS NWIS database (U. 

S. Geological Survey, 2016) and the WI-DNR’s Groundwater Retrieval 
Network (Wisconsin Department of Natural Resources, 2023). 

An initial total of 53,708 candidate targets from the USGS and WI- 
DNR databases were reduced to the 27,195 concentration targets lis
ted above via three filtering steps. First, for wells with more than 4 
samples and having at least one pair of consecutive samples that differed 
by more than 10 mg-N/L (milligrams per liter as N), all samples with 
concentrations that exceeded 1.5× the interquartile range of samples 
from the well were removed. This step minimized the likelihood of 
errant or spurious samples. Second, all wells with measured concen
trations greater than 40 mg-N/L were manually vetted and samples were 
removed if they were found to exhibit an unreasonably large change in 
concentration over a short time. While some wells with very high con
centrations may be influenced by local processes that are not repre
sented in the GW-NDST, such wells were not automatically removed as 
targets because the actual source was not documented. For example, 
wells potentially screened across a neighboring septic plume, which the 
GW-NDST is not designed to represent (septic is estimated at county and 
census block-group scales), are not identified in the source datasets and 
would require supplemental water chemistry sampling to identify. 
Third, all samples less than a background concentration of 1.0 mg-N/L 
(Nolan and Hitt, 2003) were removed as targets because the tool is 
intended to focus on wells with nitrate contamination, and early cali
bration efforts illustrated that the large number of low concentration 
samples biased calibration results. 

After the 38,578 concentration and difference targets were identified 
and weighted (next paragraph), a fourth filtering step occurred during 
the calibration process itself. As part of the PESTPP-IES methodology 
(White et al., 2020), simulated outputs from prior parameter ensembles 
(evaluated after each iteration) were used to identify target values that 
were in prior-data conflict (Evans and Moshonov, 2006; Nott et al., 
2020). That is, targets with values beyond 4 standard deviations of the 
mean of the distribution of simulated values for that target were 
considered to be in conflict and thus removed from the parameter 
adjustment process (1170 concentration and 3153 concentration dif
ference targets). This resulted in 26,025 concentration targets and 8230 
concentration difference targets, for a total of 34,255 targets used for 
assessment of the final calibration metrics. Removal of outlier targets 
(those in prior-data conflict) helps the calibration algorithm avoid un
realistic parameter values that can result in biased model forecasts (Nott 
et al., 2020; White 2018). 

Weights for the nitrate concentration targets were initially estimated 
by assessing the variability of sampled concentrations among wells 
containing multiple samples within any 31-day period (429 samples). 
The approach was designed to provide an indication of the level of 
measurement uncertainty attributable to natural variability within 
aquifers and the sampling process. Thus, the initial weight assigned to 
each of the 27,195 concentration targets was computed as the inverse of 
the standard deviation (2.6) of concentrations within any 31-day period 
from this set of 429 samples, or a weight of 0.38. Similarly, initial 
weights assigned to the first-to-last and consecutive difference targets 
were computed as the inverse of the standard deviation (3.73 and 2.08, 
respectively) of the target values, or weights of 0.27 and 0.48, respec
tively. After assigning measurement-uncertainty-based weights, targets 
were grouped by their measured concentration (1.0–4.9 mg-N/L, 5.0 to 
9.9 mg-N/L, and greater or equal to 10.0 mg-N/L) and the reported 
locational accuracy of the well (GPS or aerial photograph versus quarter- 
section). The first-to-last concentration difference and consecutive dif
ference targets were also assigned as individual target groups. The 
contribution of each group to the sum of the squared-weighted-residuals 
(phi) was computed using initial parameter values and measurement- 
uncertainty based weights. Then target weights were re-balanced 
(Doherty and Hunt, 2010; Fienen et al., 2022) to amplify target 
groups deemed to be more accurate or more important for the calibra
tion objectives, as illustrated in Table 1. For example, the target weight 
re-balancing process assigned greater weight to wells with higher 
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locational accuracy and samples with higher concentrations because the 
calibration dataset had relatively fewer targets with high concentra
tions. Thus, final weights for each target were assigned based on the 
original measurement uncertainty assessment and the manual 
re-balancing step illustrated in Table 1. 

2.8. Parameters 

Eleven parameter groups were used for calibrating the GW-NDST 
and consisted primarily of multiplier values applied to outputs from 
the support models, such as multipliers applied to the nitrate leaching 
flux from the Agro-IBIS model, a multiplier on the mean groundwater 
age produced from the ageML model, and others. Input values that were 
not available from support models or other sources were parameterized 
and estimated directly as native parameter values rather than as mul
tipliers. Each parameter was allowed to vary spatially across the state 
using pilot points (Doherty, 2003; Doherty et al., 2010). These pilot 
points were conceptualized as geostatistically correlated fields, which 
were described by an exponential variogram and a 200,000 m range; 
pilot points were spaced 20,000 m apart. This approach resulted in 408 
pilot points for each parameter group, for a total of 4488 unique 
pilot-point parameters. A maximum of 50 singular values were used to 
regularize, or limit, parameter variability. Readers are referred to White 
et al. (2020) for detailed descriptions on the application of pilot points, 
singular values, regularization, and other advanced calibration topics. 

Setting realistic lower and upper parameter bounds was an important 
step in setting up the calibration because the bounds, in conjunction 
with par_sigma_range (discussed next), are a primary control over the 
ensemble of parameter values generated for the PESTPP-IES calibration 
process. Bounds for parameters that were not informed by output from 
support models (disp_ratio, uz_mobile, O2_cut, and kO2_to_kNO3_mult) 
were informed by the fifth and 95th percentile of values reported by 
Green et al. (2018). A similar approach was used to assess the starting 
multiplier value and bounds for recharge simulated from the Agro-IBIS 
model (flux_mult) by comparing the Agro-IBIS results with a baseflow 
analysis by Gebert et al. (2011). Bounds for support model multiplier 
parameters were informed from cross-validation of the individual sup
port model results, as well as from prior experience and expert judge
ment. For example, the age_mult parameter’s bounds were set based on 
cross-validation of the ageML model results (Green et al., 2021) in that, 
the lower and upper bounds of 0.5× and 2.0× (Table 2) are similar to the 
mean ratio of errors from the ageML model holdout (testing) dataset. 
This approach ensured that the groundwater ages used within the 
GW-NDST (after calibration) didn’t deviate too much from the ageML 
model results, which were trained on groundwater ages informed by age 
tracer samples, yet also allowed flexibility for the ages used by the 
GW-NDST to improve the tool’s match to measured nitrate concentra
tions while staying within the confidence interval of the ageML model. 

The prior parameter ensemble was constructed for PESTPP-IES using 
a geostatistical draw and a prior covariance matrix that was informed by 
the variogram, parameter bounds, and the PESTPP-IES setting par_sig
ma_range. A value of 4 was used for par_sigma_range, which assumed that 
the parameter bounds approximated a 95-percent confidence interval (i. 
e., four standard deviations between the lower and upper bounds) on the 
prior parameter probability distribution. This setting provided a broad 
sampling of parameter values across the lower and upper bounds during 
the geostatistical draws that ultimately produced the ensemble of re
alizations used to characterize model uncertainty in the GW-NDST. 
Table 2 summarizes the parameters used to calibrate the GW-NDST, 
along with lower and upper bounds that were used to generate the 
parameter ensemble for PESTPP-IES. 

The calibration process used by PESTPP-IES involves modifying all 
parameter values for all realizations comprising the ensemble (in in
cremental steps called iterations) to generate associated response 
changes for all simulated results (nitrate concentrations) to generate an 
approximation to the Jacobian matrix. This approximate Jacobian Ta
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Table 2 
Calibration parameter group names, starting values, lower and upper bounds, description, and the source for justification of the starting parameter values and bounds.  

Parameter 
group name 

Starting 
Value 

Lower bound 
(multiplier on 
starting value) 

Upper bound 
(multiplier on 
starting value) 

Actual 
lower 
bound 

Actual 
upper 
bound 

Description Source and justification 

age_mult 1 0.5 2 0.5 2 Multiplier on the mean age (τ) generated by the 
groundwater age machine learning model (ageML). 

Lower and upper bounds approximately match computed average errors 
for holdout and cross validation with the age model by Green et al. (2021). 

disp_ratio 21.32 0.22 1.90 4.73 40.44 Value for the dispersion ratio (d) in equation 1. From Green et al. (2018); starting and actual bounds equate to the 
median, 5th, and 95th percentiles. 

uz_mobile 0.16 0.63 1.94 0.1 0.31 Value for the unsaturated mobile water content used 
to estimate lag time in the unsaturated zone. 

From Green et al. (2018); starting and actual bounds equate to the 
median, 5th, and 95th percentiles. 

IBIS_mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration 
generated by the Agro-IBIS model. Applies equally to 
all dates. 

The bounds attempt to account for the coarse representation of variable 
land cover and associated nutrient application variability within the 
approx. 1 km by 1.5 km cells, while recognizing observed ranges in 
measured nitrate leaching rates below common midwestern agricultural 
fields (Shrestha et al., 2023). 

IBIS_start_ mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration 
generated by the Agro-IBIS model. This multiplier is 
interpolated from the calibrated value in 1850 to 1.0 
in 2016. 

This parameter facilitates calibration of nitrate leaching trends. The 
bounds consider the coarse representation of the Agro-IBIS model cells 
and observed ranges in measured leaching rates (Shrestha et al., 2023). 

IBIS_end_ mult 1 0.2 3 0.2 3 Multiplier on the nitrate leaching concentration 
generated by the Agro-IBIS model. This multiplier is 
interpolated from 1.0 in 1850 to the calibrated value 
in 2016. 

This parameter facilitates calibration of nitrate leaching trends. The 
bounds consider the coarse representation of the Agro-IBIS model cells 
and observed ranges in measured leaching rates (Shrestha et al., 2023). 

flux_mult 0.55 0.25 2.50 0.14 1.4 Multiplier on the recharge flux simulated by the 
Agro-IBIS model. Applies equally to all dates. 

Starting and actual bounds equate to the mean ratio of baseflow estimated 
recharge (Gebert et al., 2011) to IBIS simulated recharge for gages and 
partial record basin, and the 5th and 95th percentile of the ratio for partial 
record basins. 

septic_ 
mult 

1 0.1 10 0.1 10 Multiplier on the nitrate leaching mass generated by 
the septic system algorithm. Applies equally to all 
dates. 

The two orders of magnitude range across the bounds attempt to account 
for the coarse estimation of septic leaching at county to census block 
groups, as per Schachter et al. (2024b). 

kO2_mult 1 0.5 20 0.5 20 Multiplier on the oxygen reduction rate (k0,O) in 
equation 2. 

Lower and upper bounds are approximated as the ratio of the 5th and 95th 
percentiles, respectively, from Fig. 7 of Green et al. (2018), divided by the 
median oxygen reduction rate computed with the multivariate regression 
model used for the GW-NDST (Juckem and Green, 2024). 

O2_cut 0.87 0.45 8.25 0.39 7.18 Value for the oxygen cutoff threshold (CO,cut) in 
equation 2. 

From Green et al. (2018) table S3 after removing insensitive parameter 
values that were unchanged from the initial value of 2.1; starting and 
actual bounds equate to the median, 5th, and 95th percentiles. The 
bounds are within those observed by Tesoriero and Puckett (2011). 

kO2_to_ 
kNO3_mult 

2 0.25 10 0.5 20 Multiplier on the oxygen reduction rate (k0,O) to 
generate a denitrification rate (k0,N) in equation 3. 

Starting and actual bounds are approximated from Green et al. (2018),  
Fig. 7.  
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matrix is similar to the Jacobian, or “sensitivity” matrix generated by 
more traditional gradient-based methods in PESTPP that increment each 
parameter in isolation. Successive IES iterations are performed until the 
difference between simulated results and target values (phi) are judged 
to be sufficiently small to be considered “calibrated”. The result of this 
process is an estimate of the posterior parameter probability distribu
tion, from which a posterior parameter ensemble can be generated and 
used to quantify model uncertainty. The approach requires a means for 
determining which parameter realizations to consider as being “in 
calibration” versus those with excessively large composite residuals, or 
phi. For calibrating the GW-NDST, realizations were excluded if their 
phi value was more than two standard deviations from the mean phi 
value of that iteration’s suite of realizations. 

Unlike the traditional calibration methods in PEST (Doherty, 2018) 
and PESTPP (White et al., 2020), which focus on a single “best” 
parameter set, the idea behind the IES method (White, 2018) is to 
improve the overall fit of an ensemble of model parameters by reducing 
parameter uncertainty using the information contained in the observa
tion data. That is, no single model result exactly replicates the real 
world, but an ensemble of results can be assessed for their potential to 
produce a range of results that likely encapsulate the “true” (though 
unknown) result. The calibration process for PESTPP-IES improves the 
fit between each ensemble member (a unique set of parameter values) 
and the target values during each iteration. This correspondence be
tween simulated and target values improves during each iteration, 
sometimes dramatically; however, improved fit often comes at the 
expense of reduced variability of model predictions (ensemble collapse). 
The favored approach, therefore, is viewed as a balance between 
improving the match to measurements while retaining a reasonably 
broad range of results from the ensemble of realizations. This approach 
is similarly designed to reduce the chance of over-fitting the calibration 
dataset, which can often result in degraded forecasts (Kuhn and John
son, 2013; Anderson et al., 2015). 

2.9. Scenario implementation 

The GW-NDST design focuses on simulating current and historical 
nitrate concentrations and providing users with flexible forecasting 
scenarios. The “historical_simulation” function computes historical ni
trate concentrations up to a specified prior date or the current date of 
use, and generates three plots: historical nitrate leaching rates, 
groundwater age distributions, and historical nitrate concentrations in 
the well of interest. The visualization of historical leaching rates and 
groundwater ages can aid with understanding patterns and trends in the 
nitrate concentration history for each well. Another use of the historical 
plots is to assist the user with anticipating reasonable goal concentra
tions for the future scenarios, which are accessible via the 

“future_scenarios” function. The GW-NDST incorporates six future sce
nario options: 1. A constant future leaching rate based on the latest Agro- 
IBIS and septic leaching rates, 2. A user-specified constant future 
leaching rate, 3. A user-specified percent change (from rates computed 
for a specified date or the date the tool is run) for future leaching rates, 4. 
An optimization method whereby the user specifies a goal concentration 
and date, and the GW-NDST computes the required immediate and 
constant nitrate leaching reduction required to meet this goal (if 
possible), 5. A similar optimization method based on a goal concentra
tion and date, whereby the GW-NDST computes an annual nitrate 
leaching reduction rate (a per-year reduction rather than immediate 
reduction) that would be required to meet the goal (if possible), and 6. 
An optimization method whereby the user identifies a goal concentra
tion and nitrate leaching rate, and the GW-NDST computes the date at 
which the goal concentration is expected to be met (if possible). Mean 
annual measured nitrate concentrations based on sample results pro
vided in the user’s input file are also plotted in all cases for comparison 
with simulated results. 

Uncertainty in the simulated results is illustrated by leveraging the 
450-realization posterior parameter ensemble generated during the 
calibration process. Each realization includes a suite of reasonable 
parameter values that resulted in a similar match to nitrate concentra
tion and trend targets as the “calibrated” or “base” realization. Thus, 
both the historical_simulation and future_scenarios functions display 
results from the base realization, as well as results from near-minimum, 
median, and near-maximum realizations. The specific realizations 
plotted for each user-identified well will differ and are selected based on 
their computed nitrate concentration for the date that the tool is used 
unless a past date is specified by the user. That is, computed concen
trations for the date of use (or specified date) are ranked from lowest to 
highest from all 450 realizations, and the median realization is identified 
as the realization parameter set that produced the median concentration 
on that date. Similarly, the near-minimum realization parameter set is 
associated with the concentration that exceeds five percent of all 
computed concentrations on the date, and the near-maximum realiza
tion is associated with the concentration that exceeds 95 percent of 
computed concentrations. The median realization is used as a comple
ment to the base realization with the goal of these two model results 
illustrating the central tendency of simulated historical, current, and 
future nitrate concentrations. The near-minimum and near-maximum 
realizations bracket a reasonable range in the simulated historical, 
current, and forecasted future nitrate concentrations. 

3. Results 

This section discusses results of the calibration process and uses an 
example run of the Graphical User Interface (GUI) to illustrate how 

Fig. 2. Calibration metric (phi) characteristics of the PESTPP-IES calibration of the GW-NDST tool, showing (a) the reduction in log (phi) for the “base” simulation 
(red line) and ensemble of the other 449 realizations (black lines) over 5 iterations including the initial parameter values (iteration 0), (b) a zoomed-in depiction of 
the reduction in phi for all 450 realizations across all iterations, and (c) histograms of phi for all realizations for iterations 1, 2, and 3 (iterations 0 and 4 omitted for 
improved X-axis scaling). 
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results of the calibration and uncertainty analysis inform the forecasting 
scenario results. The calibration process and results are highlighted 
because they represent the means by which outputs from support models 
were adjusted in order to tune their collective results for working within 
the context of this tool, highlighting the model capabilities and limita
tions, and incorporating simulated uncertainty and forecasting out
comes in results. 

3.1. Calibration results and model uncertainty 

Iteration number 2 of the PESTPP-IES (White, 2018) calibration was 
selected and judged to be the best ensemble of parameter realizations 
based on the calibration metrics (phi, RMSE, etc.), the number of con
centration targets contained within the range of ensemble results, the 
range of parameter values contained in the ensembles, and the limited 
number of parameters hitting the upper or lower bounds. Fig. 2 

illustrates this balance of minimizing phi without collapsing the 
parameter set (narrow range of phi) across five PESTPP-IES iterations 
(only iterations 1–3 shown in 2c for greater clarity). Also, the results are 
shown for the final ensemble of 450 realizations (including the base 
realization) out of an initial 500 realizations because 50 realizations 
generated excessively high phi values (greater than 2 standard de
viations from the mean phi of the 500 realizations) and were automat
ically removed by PESTPP-IES during the calibration process. 

Results from iteration number 2 were selected partially because they 
adequately matched measured target concentrations and concentration 
trends, while minimizing biases and capturing over 78 percent of target 
concentrations within the ensemble of realizations. This is shown in 
Fig. 3 for iteration 2, and illustrates the GW-NDST’s ability to match 
measured nitrate concentrations across the state that ranged from 1 mg- 
N/L to nearly 50 mg-N/L. For the base realization, the mean absolute 
error (MAE) for all concentration targets was 3.1 mg-N/L and the RMSE 

Fig. 3. One-to-one plots of measured versus simulated nitrate concentration for the base realization for PESTPP-IES iteration number 2, (a) with the minimum and 
maximum simulated range from the other 449 realizations shown for each target as a vertical gray line, and (b) shown as a hex-bin plot in which warmer colors 
illustrate a higher number of paired measured:simulated values. 

Fig. 4. Maps showing (a) the number of nitrate observations per hexbin area used to calibrate the GW-NDST across Wisconsin, and (b) the mean residual for each 
hexbin. Each hexbin covers approximately 160 square kilometers. White areas without hexbins had no nitrate observations. 
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Fig. 5. Time-series of modeled (base realization) versus measured concentrations for two example wells.  

Fig. 6. Range of parameter values shown (a, b) spatially and (c, d) as distribution histograms for the age_mult (a, c) and IBIS_mult (b, d) parameter groups, 
respectively, for the base realization. 
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was 4.5 mg-N/L, with 61% of samples simulated within 3 mg-N/L and 
81% simulated within 5 mg-N/L. The calibration exhibits minimal 
clustering of residuals up to about 20 mg-N/L, but systematically under- 
simulates concentrations above about 20 mg-N/L. The tool’s perfor
mance above 20 mg-N/L likely results from a lack of site-specific in
formation, such as septic system locations and farm-specific 
management data (manure and fertilizer application, crops, cover crop 
use, irrigation, etc.) related to potential intensive leaching areas and 
events that aren’t captured by the grid resolution of the Agro-IBIS model 
and its underlying input datasets; preferential flow due to natural fea
tures or well construction, not captured by the ageML model (eq. 1), may 
also contribute. Nonetheless, improved correspondence among rela
tively high concentrations is achieved when considering the full range of 
results (gray vertical lines in Fig. 3a) from the 450 realizations. Indeed, 
the ensemble of results from the 450 realizations overlapped 78% of the 
target concentrations, as per the calibration objectives described above, 
highlighting the importance of incorporating model uncertainty in 
simulated outcomes and decision making. 

Spatially, simulated residuals across the state (Fig. 4) exhibit mini
mal bias. The highest density of nitrate concentration targets (Fig. 4a) 
occurs in a north-south line through the center of the state from the Il
linois border in the south to about 45◦ latitude, north of which much of 
the land is covered by forest and lakes. Smaller high-density areas of 
nitrate sample targets also occur throughout the state, such as in the 
north-west and south-east. Mean residuals (Fig. 4b) in these high- 
sample-density areas are consistently near zero mg-N/L, demon
strating the effectiveness of the spatially varying parameters (pilot 
points; see the Parameters section). Large mean residuals (greater than 
10 mg-N/L) tend to occur where target density is low (less than about 10 
wells within each hexbin in Fig. 4). 

Trends in nitrate concentration were represented in the calibration 
by the first-last and the consecutive difference target groups, in which 
concentration differences were computed from wells that included 
multiple nitrate samples over multiple years. Two nutrient leaching 
calibration parameters in particular, IBIS_start_mult and IBIS_end_mult, 
provided added flexibility to the calibration process for influencing 
long-term trends (from 1850 to 2020). However, these parameters 
modify the leaching rate trends over the full 170-year duration of the 
Agro-IBIS results, and therefore have minimal influence on inter-annual 
variability. That is, much of the simulated temporal variability and 
trends observed in the GW-NDST, especially inter-annual variability, is 
controlled by the variability and trends in annual leaching rates directly 
simulated by the Agro-IBIS model. Two example wells illustrate char
acteristic timeseries data and simulation results (Fig. 5). The simulated 
pattern for these wells generally matched the time-series data, although 
the GW-NDST under-simulated the magnitude of change in temporal 

fluctuations. This limitation is not surprising since farm-specific land 
management practices are not incorporated into the Agro-IBIS model, 
nor are transient stresses such as rapid infiltration or dynamic pumping 
incorporated into the groundwater transport processes. Nonetheless, 
simulated results for both wells generally mimic both short-term vari
ability as well as longer-term trends exhibited by the data. Interestingly, 
the state-wide mean calibrated values for IBIS_start_mult and IBI
S_end_mult were 1.14× and 0.90×, respectively, indicating that the 
actual nitrate leaching over time may have decreased relative to that 
simulated directly by the Agro-IBIS model, although the suite of 450 
realizations included numerous individual realizations in which the 
parameters yielded increasing leaching rates over time compared with 
the raw Agro-IBIS output. 

Parameter values varied spatially across the state (Fig. 6) as well as 
across the ensemble of realizations (Fig. 7; Table 3). A global sensitivity 
analysis (Table 3) using the Method of Morris (White et al., 2020) 
indicated that the IBIS_mult and age_mult parameter groups were the 
most sensitive for the calibration (51.0% and 38.5% of total sensitivity, 
respectively). For the base realization, each parameter field (interpo
lated between pilot points) varied smoothly across the state with local 
variations that improved the simulated match to targets in that area of 
the state. The maps in Fig. 6 further illustrate the geostatistical draw 
method’s advantage of generating smoothly varying values from 
regional averages to local patterns without generating “bullseye” pat
terns that are common with least-squares interpolation methods. The 
associated histograms for the base realization (Fig. 6c and d) illustrate 
the distribution of values across the entire state for these sensitive pa
rameters. Parameters also varied spatially for all the other 449 re
alizations through the same pilot point design, although the spatial 
patterns differed for every realization. For example, all values for the 
age_mult parameter across the state for all realizations (not just the base 
case) are shown in Fig. 7. This cumulative histogram (Fig. 7) illustrates a 
relatively dense distribution of values between the 5th and 95th per
centiles (red vertical lines) of the parameter range, with the highest 
density of values centered around the mean and median values. Notably, 
the value of the age_mult parameter rarely reached the lower or upper 
bound anywhere in the state throughout all realizations, with the 5th 
and 95th percentile of values ranging from 0.71 to 1.45 times the mean 
age predicted by the ageML model (Table 3). Note that the histogram for 
age_mult in the base realization (Fig. 6c) is only one of the 450 reali
zation histograms that make up Fig. 7. 

3.2. Example scenario results 

Example scenarios from the GW-NDST serve to clarify the relation
ships between nitrate leaching rates, groundwater ages, and associated 

Fig. 7. Range of parameter values in the age_mult parameter group shown as a cumulative histogram for all 450 realizations across Wisconsin (parlb and parub are 
the lower bounds and upper bounds, respectively, for the parameter group, as per Table 2). 
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estimates of nitrate concentrations in wells in Wisconsin. The tool in
cludes a hindcasting scenario and six forecasting scenarios for assisting 
users with assessing potential interactions among possible future nitrate 
leaching rates and well concentrations. A brief overview is provided 
here to aid readers in understanding how the design and calibration of 
the tool influences application and results of forecasting scenarios. All 
scenarios include plots that show results from the base parameter real
ization as well as results from three additional parameter realizations 

that yield near-minimum (5th percentile), median (50th percentile), and 
near-maximum (95th percentile) simulated concentrations for the date 
the GW-NDST is run (or a user-specified date). These additional re
alizations are displayed for comparison and assessment of model un
certainty. Historical nitrate leaching, groundwater age distributions, 
and oxygen and nitrogen reduction parameters contained in the suite of 
realizations are not altered for the forecasting scenarios; only future 
nitrate leaching rates are modified in the scenarios. 

Table 3 
Calibrated parameter group results, including mean and median values across the state, 5th to 95th percentile ranges, and percent of sensitivity computed from 450 
realizations.  

Parameter 
group name 

Starting 
Value 

Actual 
lower 
bound 

Actual 
upper 
bound 

Description Mean 
calibrated 
value across 
WI 

Median 
calibrated 
value across 
WI 

5th 
percentile 
value 

95th 
percentile 
value 

Percent of 
total 
sensitivity 

age_mult 1 0.5 2 Multiplier on the mean age (τ) 
generated by the groundwater age 
machine learning model (ageML). 

1.05 1.03 0.71 1.45 38.5 

disp_ratio 21.32 4.73 40.44 Value for the dispersion ratio (d) in 
equation 1. 

16.64 15.52 7.25 29.6 3.4 

uz_mobile 0.16 0.1 0.31 Value for the unsaturated mobile 
water content used to estimate lag 
time in the unsaturated zone. 

0.17 0.17 0.11 0.25 0.4 

IBIS_mult 1 0.2 3 Multiplier on the nitrate leaching 
concentration generated by the Agro- 
IBIS model. Applies equally to all 
dates. 

0.64 0.57 0.26 1.27 51.0 

IBIS_start_ 
mult 

1 0.2 3 Multiplier on the nitrate leaching 
concentration generated by the Agro- 
IBIS model. This multiplier is 
interpolated from the calibrated 
value in 1850 to 1.0 in 2016. 

1.27 1.14 0.46 2.59 1.2 

IBIS_end_ mult 1 0.2 3 Multiplier on the nitrate leaching 
concentration generated by the Agro- 
IBIS model. This multiplier is 
interpolated from 1.0 in 1850 to the 
calibrated value in 2016. 

0.91 0.8 0.34 1.86 2.5 

flux_mult 0.55 0.14 1.4 Multiplier on the recharge flux 
simulated by the Agro-IBIS model. 
Applies equally to all dates. 

0.64 0.59 0.28 1.17 1.3 

septic_mult 1 0.1 10 Multiplier on the nitrate leaching 
mass generated by the septic system 
algorithm. Applies equally to all 
dates. 

4.71 3.89 0.8 10 0.1 

kO2_mult 1 0.5 20 Multiplier on the oxygen reduction 
rate (k0,O) in equation 2. 

1.07 0.83 0.5 2.46 1.4 

O2_cut 0.87 0.39 7.18 Value for the oxygen cutoff threshold 
(CO,cut) in equation 2. 

1.1 0.86 0.4 2.61 0.1 

kO2_to_ 
kNO3_mult 

2 0.5 20 Multiplier on the oxygen reduction 
rate (k0,O) to generate a 
denitrification rate (k0,N) in equation 
3. 

3.64 2.58 0.74 10.44 0.1  

Fig. 8. Graphical results for an example well using the forecasting scenario option 1 (constant future leaching rate, with ranked realizations as of Aug. 17, 2023) to 
illustrate (a) historical and forecasted nitrate leaching rates, (b) groundwater age distributions, and (c) forecasted nitrate concentrations in the well for the base, 5th, 
50th (median), and 95th percentile realizations. 
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The most basic forecast scenario, scenario number 1, applies the 
latest estimated nitrate leaching rate forward in time to the user’s cho
sen planning date. Scenario 1 addresses the question of “how will esti
mated well concentrations change in the future if current leaching rates 
do not change?” Results for an example well (Fig. 8) illustrate that most 
of the historically measured concentrations fall between the 5th 
percentile (near-minimum) and the 95th percentile (near-maximum) 
realizations, as described in the Calibration results and model uncer
tainty section. The example results also illustrate that maintaining cur
rent (the date the GW-NDST was run; Aug. 17, 2023 for this example) 
nitrate leaching rates will produce nearly steady nitrate concentrations 
for the 5th percentile realization, but increased nitrate concentrations of 
about 20%–35% for the 50th percentile (median), base, and 95th 
percentile realizations over the next four decades, with the base reali
zation still appearing to increase beyond 2063. These patterns are likely 
driven by the differing historical leaching trends and groundwater age 
distributions among the four plotted realizations. Similarly, while the 
historical and forecasted leaching rates are similar for the base and 50th 
percentile realizations, the forecasted concentrations show greater 
divergence due to their differing groundwater age distributions (lag 
times) and potentially due to differing oxygen and nitrate reduction 
rates. 

The dynamic variability among the individual realizations highlights 
the value of using multiple realizations to illustrate uncertainty of his
torical trends and forecasted concentrations due to the range of feasible 
parameter values. For example, the 5th and 50th percentile realizations 
nearly equally match the concentrations measured around the year 
2000, and both realizations nearly match one of the measurements 
collected over a decade later. However, the forecasted concentrations 
for the 5th and 50th percentile realizations diverge substantially after 
about 2010, highlighting the limitations of historical measurements for 
informing future concentrations. Thus, users of the GW-NDST are 
encouraged to consider the full range of forecasted nitrate concentra
tions when contemplating decisions informed by the tool, and poten
tially use the results to guide targeted study and data collection to 
further facilitate the decision-making process. 

4. Discussion 

The GW-NDST was built by integrating multiple independently 
developed support models to simulate the key processes affecting nitrate 
concentrations in wells: historical leaching rates, travel time distribu
tions, and biogeochemical reactions. The calibration leveraged spatially 
distributed parameters to modify, or tune, the support model output as 
necessary to better match 34,255 historical nitrate concentration and 
trend targets. Judgements made during the calibration process, such as 
target weights and parameterization, are not unassailable but were 
informed by data, results, literature, and experience (Thompson, 2022). 
The calibration improved model performance, reducing phi of the base 
realization by 60 percent from about 200,000 for the initial iteration to 
about 80,000 on iteration 2, while also generating 450 unique param
eter realizations with broadly sampled but reasonable parameter com
binations that allowed 78 percent of all target concentrations to fall 
within the ensemble of model results. Nonetheless, the calibration il
lustrates that matching some individual samples was difficult, especially 
those above 20 mg-N/L. The reduction of the mean IBIS_mult parameter 
value from 1.0 to about 0.6 likely degraded the match to samples above 
20 mg-N/L, despite the authors preferentially increasing the target 
weight for the most accurate targets with concentrations greater than 10 
mg-N/L by a factor of three (Table 1). This result suggests that simulated 
leached nitrate from the Agro-IBIS model is on average too high, while 
peak leaching rates may be too low. This dichotomy is likely a conse
quence of spatial averaging and limited site-specific data. That is, the 
contributing area for most domestic and non-community wells is likely 
on the scale of a few kilometers or less; similar to or smaller than the grid 
resolution of the Agro-IBIS model. This coarseness in the model grid 

results in the combining of sources with very high leaching rates, such as 
individual fields, with areas having lower leaching rates, and results in 
rates that are on average both too high and too similar (reduced vari
ability). Shrestha et al. (2023) illustrate large differences in nitrate 
leaching rates due to crop types and crop rotations, soils, precipitation 
events, and fertilizer application rates, as well as natural variability 
among individual sites. Future work to refine the Agro-IBIS grid reso
lution and nutrient application inputs, along with improved estimates of 
septic system leaching variability, might improve calibration results but 
could also be limited by a general lack of site-specific data, such as 
nutrient application rates on individual fields or even at individual 
farms; such information is generally not publicly available, if recorded. 
However, emerging research that uses machine learning and remote 
sensing to map livestock facilities may aid in providing better estimates 
of spatially explicit manure application rates (Robinson et al., 2022; 
Shea et al., 2022). 

Calibration of the GW-NDST also included concentration difference 
targets intended to provide insight into trends and interannual vari
ability. Example comparisons (Fig. 5) illustrated that the tool properly 
reproduced long-term trends and the direction of inter-annual change at 
some wells, but generally under-estimates the magnitude of temporal 
variability. The coarse resolution of the Agro-IBIS model, combined with 
the steady-state, unimodal (lacking a second peak for preferential flow) 
groundwater age distribution formula (eq. 1), may influence this limited 
inter-annual variability simulated by the tool. Smaller Agro-IBIS cells 
that better match with individual agricultural fields would allow 
improved estimates of field-specific practices affecting temporal vari
ability, compared with averaging across larger areas that requires 
blending of land cover, nutrient and water management, and soil 
characteristics. However, publicly available field-specific datasets on 
crop management and nutrient application rates and timing are lacking, 
which limits the extent to which finer resolution modeling can improve 
results. 

Similarly, the ageML model of Green et al. (2021; Kauffman et al., 
2024) that was used for the GW-NDST does not account for certain 
factors that may produce large variations of concentrations. A potential 
factor in concentration variations is preferential flow due to natural 
(karst, fractured rock) or well construction factors. The ageML model 
was not trained on datasets of wells with obvious preferential flow. The 
unimodal form of the age distribution, based on Fickian transport, can 
simulate rapid response to inputs in samples with a mean age close to 
zero (wells near the water table in shallow groundwater), but does not 
account for scenarios with both preferential and diffuse transport. While 
Green et al. (2014) showed that several age distribution models, 
including multimodal distributions, often yield similar results for nitrate 
predictions, extreme differences in expected and actual age distributions 
can occur. Users interested in applying the GW-NDST for wells in areas 
well-known for having karst or fractured bedrock aquifers in Wisconsin 
will be informed by the GUI that the tool may have limited validity for 
their well, but users will not be prevented from applying the tool. Future 
efforts to enhance the GW-NDST may include introducing alternative or 
more flexible forms of the age distribution model, and including 
methods to assess the source area of nutrients captured by wells. 
Recognizing the limitations of the tool to reproduce observed interan
nual variability in concentrations, users are encouraged to consider the 
full range of possible outcomes depicted by all four of the realizations 
illustrated in the results when evaluating decisions and to also delay 
judgement of management change effectiveness based on only a few 
measurements collected shortly after management implementation. 

The support model that estimates oxygen and nitrate reduction rates 
had less influence on predictions than the nitrate leaching and 
groundwater age support models based on the estimated sensitivity of 
parameters (Table 3). Reactions can, however, greatly affect nitrate 
concentrations in reduced groundwater (Böhlke and Denver, 1995), 
which does occur in Wisconsin aquifers (Kraft et al., 2008; Erickson 
et al., 2021; Tesoriero et al., 2017). Emphasis on wells with high 
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concentrations of nitrate and removal of target concentrations less than 
1 mg-N/L may have selected for relatively non-reactive areas where 
denitrification has less influence on concentrations. Assessment of 
reactivity at the scale of the GW-NDST remains challenging because data 
to characterize oxygen and nitrate reduction conditions in aquifers are 
scarce. Future efforts may leverage growing datasets related to redox 
conditions (Erickson et al., 2021) and machine learning methods. 

Demonstrating application of the tool for an example well and 
forecasting scenario (Fig. 8) highlights the value of translating the re
sults of the calibration into terms of model uncertainty in the GW-NDST 
results. For instance, while the base realization (the calibration metrics 
highlighted in Fig. 3) over-simulated all measured concentrations from 
the example well, the four realizations bracketed all measured values. 
Moreover, while simulated nitrate from the 5th and 50th percentile 
realizations had arguably similar matches to the measurements, their 
forecasted concentrations diverged substantially, with concentrations 
deviating by nearly a factor of two (7 mg-N/L vs 13 mg-N/L, respec
tively) over the 40-year forecast. These observations highlight the dif
ficulty in attempting to identify a single “best” forecast of an uncertain 
future. Part of the challenge lies with known uncertainty around pa
rameters that are insufficiently informed by measured data. That is, 
most of the 11 calibration parameter groups exhibited relatively low 
sensitivity for calibrating the model to concentration and concentration 
difference targets (Table 3). However, the Iterative Ensemble 
Smoother’s ability to sample a diverse combination of parameter values 
across reasonable bounds enabled the tool to incorporate that uncer
tainty into visualizations of alternative possible outcomes. Additional 
data collection, such as N2 and noble gas samples to inform denitrifi
cation rates or bromide tracer studies to inform leaching rates and 
groundwater ages (Cardiff et al., 2022), along with agronomic data, 
could potentially better constrain future calibration efforts by allowing 
for tighter starting bounds on parameters. Yet regardless of hindcasting 
performance of the GW-NDST (or other modeling tools), caution in 
interpreting forecast accuracy is prudent when used for decision making 
(Thompson, 2022). That is, while high numerical accuracy is beneficial 
and has been pursued in the development of this GW-NDST, the tool may 
also be effective for testing assumptions and limitations related to 
relative concentration changes stemming from nutrient management 
decisions. Indeed, many nitrate leaching reduction practices are them
selves highly variable and uncertain in their effectiveness over the large 
range of natural conditions (Dinnes et al., 2002; Masarik et al., 2014; 
Esmaeili et al., 2020). For scenarios in which forecasts indicate that 
large leaching reductions will be required to achieve well concentration 
goals, multiple nitrate leaching reduction strategies may need to be 
applied, with every individual management practice incrementally 
increasing the potential for success (Dinnes et al., 2002; Hajhamad and 
Almasri, 2009). 

5. Conclusions 

The GW-NDST presented in this paper was developed as a framework 
to assist users with understanding relationships between nitrate leaching 
rates, groundwater age and lag times, geochemical reactions, and nitrate 
concentrations in wells. The tool is novel in its use of multiple support 
models as input sources, quantification and display of uncertainty, and 
ease of use with individual wells over a broad region (Wisconsin, USA). 
Results from the tool are displayed as graphs of historical and forecasted 
nitrate leaching rates, groundwater age distributions (travel time lags), 
and computed historical and forecasted nitrate concentrations in the 
well of interest. Each graph includes results from a set of parameter 
realizations that characterize the range of results informed by model 
uncertainty, as informed by the calibration. The “base” and 50th 
percentile realizations represent central tendencies, and the 5th (near- 
minimum) and 95th (near-maximum) percentile realizations illustrate 
the broader range of possible results. 

This study focused on the design and calibration of the GW-NDST, 
including interpretation of how key processes influence the forecasted 
results from the ensemble of parameter realizations sampled from the 
posterior parameter probability distribution. Information on model 
uncertainty was incorporated into the tool via an ensemble of parameter 
realizations generated through the calibration processes, with an 
emphasis placed on avoiding over-fitting of model parameters and 
acceptance of a range of model variability within the bounds of 
reasonable parameter values. The calibration process involved adjusting 
eleven spatially variable parameter groups, eight of which represented 
multipliers applied to support model outputs to improve the simulated 
match to 34,255 nitrate sample targets. Application of an ensemble 
calibration method, PESTPP-IES (White et al., 2020), facilitated simul
taneous improvement in model fit and quantification of model uncer
tainty. Targets were weighted based on their measurement and 
locational accuracy plus their concentration, such that the fewest 
high-accuracy and high-concentration targets were weighted most 
heavily. Nonetheless, the calibration analysis illustrates that the tool 
may under-estimate concentrations greater than about 20 mg-N/L, 
which is likely a function of the coarse resolution (1 km × 1.5 km) and 
limited site-specific nutrient application information available to the 
Agro-IBIS ecosystem model (Lark et al., 2022; Kucharik and Brye, 2003) 
that generated historical nitrate leaching rates for the tool, and simpli
fication of groundwater age distributions that represent nutrient trans
port through aquifers. Despite the bias, 78% of all target concentrations, 
including concentrations above 20 mg-N/L, are shown to be captured in 
the range of results simulated by the ensemble of realizations. This high 
percent of overlap is one of the important benefits for including results 
from the realizations in the plots generated by the tool. 

The value of illustrating model uncertainty was further evidenced 
through an example application of a forecasting scenario. The example 
demonstrates that long term forecasts can differ among equally likely 
realizations. Thus, identification of a “single best” forecast can lead to 
misinterpretations. Consideration of the uncertainty illustrated by a 
range of realizations is an important component of the decision support 
aspect of the tool. Nonetheless, subsequent data collection and en
hancements to the tool’s support models along with targeted data 
collection for future re-calibration efforts could reduce uncertainty in 
future versions of the GW-NDST. It is hoped that use of this tool will lead 
to additional data and methods refinement, which will in-turn drive 
prediction improvements over time. 

6. Software availability 

The Groundwater Nitrate Decision Support Tool (GW-NDST) for 
Wisconsin is available at no cost from: https://doi.org/10.5066 
/P13ETB4Q. The tool requires the user to have an operating system 
capable of running Python 3.10 and can be run on Windows, Mac OS, or 
Linux. The software was written in Python, and an YAML installation file 
is available from the above website for installing a Python environment 
containing the specific Python libraries and versions known to properly 
execute the code. Full installation of the software involves: 1. Cloning 
the computer code from the above website, 2. Installing a Python 
environment based on the YAML file included at that site, and 3. 
Downloading input GIS data from Corson-Dosch and Juckem (2024a; htt 
ps://doi.org/10.5066/P9Q1X606; 1.1 GB compressed; 4.9 GB uncom
pressed) and parameter files from Corson-Dosch and Juckem (2024b; htt 
ps://doi.org/10.5066/P9QHPVU3; 2.8 GB) that are required by the 
tool’s machine learning and statistical support models. The downloaded 
GIS data and parameter files must be extracted from compressed files 
and saved to specific sub-directories within the directory structure of the 
cloned/downloaded software. Full instructions for downloading the 
software and data files, extracting and saving the data files, and running 
the software can be found with the source code at: https://doi. 
org/10.5066/P13ETB4Q. 
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Software name: GW-NDST, version 1.1.0. 
Developers: Variable; authorship will increase with subsequent 

version updates. Please refer to the software repository for a current list 
of authors. 

Contact information: pfjuckem@usgs.gov, lschachter@usgs.gov, nco 
rson-dosch@usgs.gov, ctgreen@usgs.gov. 

First year available: 2024. 
Program language: Python; a YAML file is available from the soft

ware repository to aid with installing an environment known to work 
with the software code. 

Program size: 112 MB; Total including downloaded data: 4.0 GB 
compressed; 7.8 GB uncompressed. 

Cost: Free. 

Disclaimer 

No warranty, expressed or implied, is made by the USGS or the U.S. 
Government as to the functionality of the software and related material 
nor shall the fact of release constitute any such warranty. The software is 
provided on the condition that neither the USGS nor the U.S. Govern
ment shall be held liable for any damages resulting from the authorized 
or unauthorized use of the software. 

Any use of trade, firm, or product names is for descriptive purposes 
only and does not imply endorsement by the U.S. Government. 
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