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Abstract— In this paper, we investigate the capacity of finite-
state channels (FSCs) in the presence of delayed feedback.
We show that the capacity of a FSC with delayed feedback can
be computed as that of a new FSC with instantaneous feedback
and an extended state. Consequently, graph-based methods to
obtain computable upper and lower bounds on the delayed
feedback capacity of unifilar FSCs are proposed. Based on
these methods, we establish that the capacity of the trapdoor
channel with delayed feedback of two time instances is given by
logs (%]. In addition, we derive an analytical upper bound on
the delayed feedback capacity of the binary symmetric channel
with a no consecutive ones input constraint. This bound also
serves as a novel upper bound on its non-feedback capacity, which
outperforms all previously known bounds. Lastly, we demonstrate
that feedback does improve the capacity of the dicode erasure
channel.

Index Terms— Channel capacity, directed information, dual
capacity upper bound, finite state channels (FSCs).

I. INTRODUCTION

A FINITE-STATE channel (FSC) is a widely used
statistical model for a channel with memory [2], [3], [4].
The memory of this channel is represented by an underlying
channel state that takes values from a finite set. This model has
been used in many practical applications, including wireless
communication [5], [6], [7], molecular communication [8], [9],
and magnetic recording [10]. An example of its versatility
is the ability to model a memoryless channel with an input
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Fig. 1. Finite-state channel with delayed feedback of d time instances.

constraint by introducing a dummy sink state whose capacity
is zero in case the constraint is violated. Generally speaking,
the capacity formula of a FSC, whether or not feedback is
allowed, is given by a multi-letter expression which is hard
to evaluate. The main focus of this paper is on an important
class of FSCs, known as unifilar FSCs. For these channels, the
new channel state is determined by a time-invariant function
of the previous channel state, the current channel input, and
the current channel output.

The capacity of a unifilar FSC with instantaneous feedback
has been broadly investigated in the literature, while
instantaneous feedback refers to the case where at time £,
the encoder has access to the channel outputs up to time
t — 1. This has resulted in several powerful methodologies
that have been employed to derive simple capacity expressions
and optimal coding schemes for well-known instances of
unifilar FSCs with feedback [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. We mention here three essential works
that will be utilized in the current paper: in [21] and [22],
for a given Q-graph,' single-letter upper and lower bounds
on the feedback capacity of unifilar FSCs were introduced,
as well as a methodology to evaluate the bounds; in [23],
an alternative methodology to derive computable capacity
upper bounds was proposed. In particular, in [23] it was shown
that the dual capacity upper bound can be formulated as a
simple Markov decision process (MDP) with the MDP states,
actions, and disturbances taking values within finite sets. The
main advantage of this methodology compared to the single-
letter Q-graph upper bound lies in the simplicity of deriving
analytical upper bounds. The bounds, however, depend on the
choice of a test distribution over the channel outputs ensemble.
Therefore, in order for these bounds to be meaningful, the test
distribution must be chosen carefully.

'The Q-graph is an auxiliary directed graph that is used to map channel
output sequences onto one of the graph nodes (e.g. see Fig. 2).
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In this paper, we investigate the delayed feedback capacity
of FSCs. This means that, in the case of a delay of d time
instances, the encoder has access to the channel outputs up
to time t — d, in contrast to the standard feedback definition
of access up to time ¢ — 1 (see Fig. 1). We demonstrate
that the capacity of a general FSC with delayed feedback
can be computed as the capacity of a new reformulated
FSC with instantaneous feedback. Specifically, we define the
new channel state as S;_1 = (Si_q, X::éﬂ), the new
channel output as Y, = Y:_4+1, and leave the channel input
unchanged, i.e., X, = X,. We prove that this new channel is an
FSC and that its capacity with instantaneous feedback is equal
to the capacity of the original FSC with delayed feedback of
d time instances. In addition, we show that if the original
channel is a unifilar FSC, then the reformulated FSC is a
unifilar FSC as well. As a result, for any unifilar FSC the
methodologies from [21], [22], and [23] can also be applied
when the feedback is delayed, by redefining the FSC. It is a
known fact that feedback can only increase the feedforward
capacity (i.e. the capacity without feedback). Accordingly,
while studying the delayed feedback capacity is an important
task in itself, it is also beneficial for deriving upper bounds
on the feedforward capacity.

A major contribution of this paper is our investigation
of the delayed feedback capacity of several well-known
FSCs. We provide novel results regarding both their delayed
feedback capacity and their feedforward capacity. Specifically,
our first main result concerns the capacity of the trapdoor
channel [24]. Despite the extensive research efforts dedicated
to the trapdoor channel, e.g. [12], [25], [26], [27], [28],
and [29], its feedforward capacity has remained an open
problem for over sixty years. In [12], it was shown that
the feedback capacity of the trapdoor channel is equal to
CP = log, (1+—2‘/§ ~ 0.6942. In this paper, we consider
the trapdoor channel with delayed feedback of two time
instances. We show that the capacity in this scenario is equal to
CP =log, (3) ~ 0.5850, which is much closer to the lower
bound on the feedforward capacity of 0.572 [27]. Further,
by investigating a greater delay of the feedback, we provide
a new upper bound on its feedforward capacity, which is
approximately equal to 0.5765. Next, we study the capacity
of the binary symmetric channel (BSC) in the case where the
input sequence is not allowed to contain two consecutive ones.
For this setting, we derive an analytical upper bound on its
capacity with delayed feedback of time instances that also
serves as a novel upper bound on the feedforward capacity.
It is interesting that for both the trapdoor channel and the input
constrained BSC the capacity significantly degrades when only
the previous channel output is not provided to the encoder.
Finally, we demonstrate that the feedback capacity of the
dicode erasure channel (DEC) [30], [31] is not equal to its
feedforward capacity, by providing a new upper bound on
its feedforward capacity that lies slightly below the feedback
capacity.

The remainder of this paper is organized as follows.
Section II introduces the notation and the model definition.
Section III introduces computable upper and lower bounds

on the capacity of unifilar FSCs with instantaneous feedback.
Section IV states the main results of this paper. Section V
presents our demonstration of the fact that the delayed feed-
back capacity problem can be reduced into an instantaneous
feedback capacity problem, by appropriately reformulating
the channel. Subsequently, we also introduce computable
upper and lower bounds on the delayed feedback capacity of
unifilar FSCs. Section VI presents our main results regarding
the capacity of the trapdoor channel. Section VII provides
novel results concerning the feedforward capacities of the
input-constrained BSC and the DEC, by investigating their
delayed feedback capacity. Finally, our conclusions appear in
Section VIIIL. To preserve the flow of the presentation, some
of the proofs are given in the appendices.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the notation, the model
definition, and our MDP framework.

A. Notation

Throughout this paper, random variables will be denoted
by capital letters and their realizations will be denoted by
lower-case letters, e.g. X and z, respectively. Calligraphic
letters denote sets, e.g. X'. We use the notation X™ to denote
the random vector (X7, Xs,...,X,) and =" to denote the
realization of such a random vector. We also use the notation
X/ (j > i) to designate the random vector (X;, ..., X;). For
a real number o € [0, 1], we define @ = 1— a. The probability
Pr[X = 1] is denoted by Px(x). When the random variable
is clear from the context, we write it in shorthand as P(x).
The directed information between X™ and Y™ is defined as

I(X™ = Y™) =Y I(X5Y,|YH).
i=1

The probability mass function of X™ causally conditioned on
Y™~ is defined as
n

P(z"|ly"~%) =[] Plilz""*,4"~%).
i=1
We denote by C, C'P, and CTP, the feedforward capacity
(i.e. no feedback), the feedback capacity (the capacity with
instantaneous feedback, i.e. d = 1 in Fig. 1), and the d time
instances delayed feedback capacity, respectively.

B. Finite-State Channels

A FSC is defined statistically by a time-invariant transition
probability kernel, Ps+ y|x s, where X, Y, S, St denote
the channel input, output, and state before and after one
transmission, respectively. The cardinalities X,), S are
assumed to be finite. Formally, given a message m, the channel
has the following property:

P(s¢,yelz’, g1, s m) = Ps+ yx,s(5t; ye| e, 5t-1).-

(1)
A unifilar FSC has the additional property that the state
evolution is given by a time-invariant function, f(-), such that
St = f(st—l,l"t:yt)-
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As shown in the theorem below, the feedback capacity of a
strongly connected” FSC is given by a multi-letter expression
that cannot be computed directly.

Theorem 1 ([12], Th. 3): The feedback capacity of a
strongly connected FSC is

.1
C® = lim = max
n—oe 1 Pen|yn—t)

I(X™ —Y™). )

In this paper, we consider a communication setting that
involves delayed feedback of d time instances, as depicted
in Fig. 1. In particular, at time ¢, the encoder has access to
the message m and the channel outputs up to time ¢ — d.
As a result, the encoder output x; is a function of both the
message and the delayed feedback. The channel input x; then
goes through a FSC, and the resulting output y; enters the
decoder. The encoder then receives the channel output with a
delay of d time instances. When the feedback has a delay of d
time instances, the maximization over the directed information
in Theorem 1 is performed over P(z"||y™ %) instead of over
P(z"||y™1) [32].

C. MDP Framework

In this section, we introduce the MDP problem, which
is a mathematical framework for modeling decision-making
problems in which the outcomes of actions are uncertain and
dependent on the current state of the system. Specifically,
we consider an MDP problem with a state space Z, an action
space U, and a disturbance space V. The initial state zy € Z
is randomly drawn from a distribution Pz. At each time step
t, the system is in a state z;_; € Z, the decision-maker
selects an action u; € U, and a disturbance w; € W is
drawn according to a conditional distribution Py, (+|z¢_1,uz)-
The state z; then evolves according to a transition function F :
ZxUxW — Z, ie., 2zt = F(2t_1,ut, w). The disturbance
w; represents uncertainty and exogenous influences that affect
the system’s evolution over time. These disturbances capture
external factors and stochastic elements beyond the control of
the decision-maker.

The decision-maker selects the action u; according to
a deterministic function g, which maps histories h; =
(zg,wp,-..,w;_1) onto actions, ie. u; = p;(h;). Note
that given history h;, and a policy m = {uq,pus,...},
one can compute past states zj,...,z;—; and actions
u1,...,us—1. Given a policy 7 and a bounded reward function
g: 2 xU — R, our goal is to maximize the average reward
over an infinite time horizon. The average reward achieved by
policy 7 is defined as

—1

RS R

pr = liminf —E Z g (Zt,#t+1(ht+1))
n—oo 1
t=0

The optimal average reward is denoted by p* and is achieved
by the policy that maximizes the expected sum of rewards over
time, i.e., p* = sup, px.

ZA FSC is strongly connected if for any states s,s' € S, there
exit an integer T and an input distribution {Py, s, }Z_, such that

T
> =1 Ps, 5, (8]8") = 0.

The following theorem presents the Bellman equation in the
context of the formulation defined above. For MDP problems,
this equation provides a sufficient condition for determining
whether a given average reward is optimal.

Theorem 2 (Bellman equation, [33]): If a scalar p € R and
a bounded function h : Z — R satisfy

p+h(z)= i:g (g (z,u) + / Py(dw|z,u)h (F (z,u, w))) )
Vze 2

then p = p*.

ITII. BOUNDS ON FEEDBACK CAPACITY

In this section, we introduce computable bounds on the
feedback capacity of unifilar FSCs. These bounds were
introduced for unifilar FSCs with instantaneous feedback
in [21] and [23]. In Section V, we demonstrate that they can
be extended to the case of delayed feedback as well.

A. The Q-Graph Bounds

We begin by introducing an auxiliary tool known as the
Q-graph. For a fixed Q-graph, we then present the single-
letter upper and lower bounds that were established in [21].
The @-graph is a directed, connected, and labeled graph, for
which each of its nodes have || outgoing edges with distinct
labels from the channel output alphabet. Given an initial node,
an output sequence, y®, is mapped onto a unique node by
walking along the labeled edges. An example of a QQ-graph is
provided in Fig. 2. The induced mapping is denoted by @, :
V' — Q, which can be presented alternatively as a function
¢ : Qx Y — Q. Namely, a new graph node can be computed
as a time-invariant function of the previous node and a channel
output.

Remark 1: A special case of a @Q-graph is a kth-order
Markov @Q-graph, which is defined on the set of nodes Q =
YVE; for each node ¢ = (y1,¥2,...,yx), the outgoing edge
labeled y € Y goes to the node (ys,.-.,¥yk,y). For instance,
Fig. 2 shows a Markov Q-graph with ) = {0,1} and k = 1.

For a fixed FSC and a given Q-graph, consider the (S, Q)-
graph, an additional directed graph that combines both the
information on the @-graph and the evolution of the channel
states. Specifically, split each node in the @-graph into |S| new
nodes, which are represented by pairs (s,q) € S x Q. Then,
an edge labeled (x,y) from node (s, ) to node (s*,q") exists
if and only if there is a pair (z,y) such that s* = f(s, z,y),
qt = ¢(q,y), and P(y|z,s) > 0. The pair of functions (f, ¢)
are given by the channel and the fixed Q-graph. For any choice
of input distribution Px/s ¢, the transition probabilities on the
edges of the (.9, Q)-graph are computed as

P(s*,q"|s,q)
=Y P(z,y,s",q"|s,q)

I!y

©'S™ Plals, ) P(ylz, )1 (g —p(a List—sezyys 3
T,y
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Fig. 2. An example of a Q-graph with Q@ = 2 and J = {0, 1}.

where (a) follows by the channel law and by the fact that g™
is a deterministic function of (g, y). We define the notation Py
as the set of input distributions Px|s,q that induce a unique
stationary distribution on (S, @), namely, their corresponding
(S, Q)-graph is irreducible and aperiodic.

In the following theorem we introduce the upper bound.

Theorem 3: [21, Theorem 2] The feedback capacity of
a strongly connected unifilar FSC, where the initial state is
available to both the encoder and the decoder, is bounded by

CP< swp I(X,8Y|Q), @)
Px|5,0€P=
for all Q-graphs for which the (S, Q)-graph has a single and
aperiodic closed communicating class. The joint distribution is
Py x5, = Pr|x,sPx|s,q7s,q, Where g5 g is the stationary
distribution of the (.S, Q)-graph.

We proceed to describe the lower bound. Let us first define a
property called the BCJR-invariant input. An input distribution
Px|s,q is said to be an aperiodic input if its (S,Q)-graph
is aperiodic, and an aperiodic input distribution is said to be
BCJR-invariant if the Markov chain St —Q* —(Q,Y’) holds.
A simple verification of the Markov chain is given by the
following equation:

ELS ﬂ—(5|Q)P($|3: Q)P(y|zn S)]]-{s+=f(x,y,s)}
Z:l:’,s’ ﬁ(SI|Q)P(I!|S’1 Q)P(le’: S!) ’
()

w(stlgh) =

which needs to hold for all (s*,q,y) and ¢* = ¢(q, ).
Now that we have defined a BCIR-invariant input
distribution, the lower bound can be introduced.
Theorem 4: [21, Theorem 3] If the initial state s; is
available to both the encoder and the decoder, then the

feedback capacity of a strongly connected unifilar FSC is
bounded by

CcP > I(X,S;Y|Q), (6)

for all aperiodic inputs Px|s,g € Py that are BCJR-invariant,
and for all irreducible Q-graphs with gy such that (sq, gg) lies
in an aperiodic closed communicating class.

Henceforth, we refer to a pair of a @-graph and an input
distribution Px|s g that satisfies the BCJR-invariant property
as a graph-based encoder.

Remark 2: The upper bound in Theorem 3 can be
formulated as a convex optimization [22]. As a result, for a
fixed @-graph, the upper bound can be efficiently evaluated.
On the other hand, the lower bound optimization results in a
non-convex optimization problem, but it still has the advantage
that any feasible point (i.e. BCJR-invariant input distribution)
induces a graph-based encoder. It was shown in [22] that
any graph-based encoder implies a simple coding scheme
that achieves the lower bound. The scheme is based on the

posterior matching principle in [34], but for channels with
memory whose details are given in [19] and [22].

Remark 3: The selection of the @-graph significantly
impacts the performance of the bounds. To identify a
Q-graph with good performance, we suggest conducting an
exhaustive search over all possible @Q-graphs, as explained
in detail in [22]. While such an exploration can become
computationally expensive with increasing @-graph size, it is
often sufficient to consider a small cardinality graph to obtain
good performance or capacity-achieving bounds. Another
approach is to evaluate the performance of Markov Q-graphs,
which often provide good performance bounds. A Matlab
implementation of the optimization problems, including the
Q-graph search methods, is available in [35].

B. Upper Bounds via Duality

Here we present computable upper bounds on the capacity
of unifilar FSCs from [23], that are based on the dual capacity
upper bound [36]. For the sake of clarity, we first introduce
the dual capacity upper bound for a discrete memoryless
channel. Specifically, for a memoryless channel, Py x, and
for any choice of a test distribution, Ty, on the channel output
alphabet, the dual capacity upper bound states that

< - .
C< lgleai,CD (Py|x=2|ITy¥) (7)

The choice of the test distribution is crucial since it directly
affects the performance of the bound. If the test distribution
is equal to the optimal output distribution, then the upper
bound is tight. For FSCs, the dual upper bound depends on
a test distribution, 7y =, with memory. In [23] and [29], test
distributions that are structured on a @-graph were proposed,
that is, the following equality holds:

Ty~ (y") = [ [ Ty @ (la—1), (8)

t=1

where ¢;_1 = ®(y'~!). We refer to such test distributions
as graph-based test distributions. The use of graph-based test
distributions yielded the result in the theorem below.
Theorem 5 (Computable Upper Bounds): [23, Theorem
4] For any graph-based test distribution Ty g, the feedback
capacity of a strongly connected unifilar FSC is bounded by

CP < lim max min
n—oo f(z™||y™—1) so,q0

1 T
- Y E lD (PY|X,S('|I51 Si—1)
i=1

'n—l)

TY|Q('|Q§—1))] , (9

where f(z"||y stands for causal conditioning of deter-
ministic functions, i.e.

FE" ™) = [Tl wmn@ra-

Additionally, the upper bound in (9) defines an infinite-horizon
average reward MDP that is presented in Table I.

The following theorem is a simplification of the Bellman
equation in Theorem 2 for the case of the MDP formulation
in Table 1.
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TABLE I
MDP FORMULATION

MDP notations Upper bound on capacity |

MDP state zt—1 2 (st-1,qt—1)
Action up £
Disturbance wy £ yy
The reward | D (Pyx s(Jxe, se—1)[[Ty|(lai—1))

Theorem 6 (Bellman Equation): If there exists a scalar
p € R and a bounded function h : S x Q — R such that

p+ h(s,q) = max (D (Pyx,s( e, 9)[| Ty o(|a)
+3 Plyle, o)k (£(s,2,9), 60 ) ),

yey

(10)

for all (s, q), then p = p*.

Following Theorem 6, it is sufficient to solve the Bellman
equation associated with the MDP problem in Table I to show
that the feedback capacity of a given FSC is upper bounded by
the induced average reward of the MDP. Note that the MDP
formulation in Table I consists of finite MDP states, actions,
and disturbances. Thus, given an optimal policy, it is relatively
easy to derive a conjectured solution for (p*, h(-)) since it is
based on solving a finite set of linear equations.

Remark 4: Although the Q-graph upper bound has yielded
new capacity results, its analytical computation remains
challenging due to the necessity of verifying the Karush—
Kuhn-Tucker (KKT) conditions, especially when dealing with
channel parameters involving large alphabets. The approach
proposed in this section provides an alternative and notably
simpler method for deriving analytical upper bounds. However,
it is essential to note that these bounds heavily depend on
the selection of the test distribution, which must be chosen
carefully to derive meaningful upper bounds.

IV. MAIN RESULTS

This section summarizes the main results of this paper.
We start with a general result, in which the delayed feedback
capacity of any FSC can be computed as the instantaneous
feedback capacity of a transformed FSC. By utilizing this
reduction, we derive computable upper and lower bounds on
the delayed feedback capacity of unifilar FSCs, which will be
introduced in Section V-B.

For a positive integer d and for any FSC given by
a transition kernel Py g+|x,5, we define the following
transformation: _

o The channel state is S; = (Si—ay1, X} 4.5)-

« The channel output is Y; £ Y;_4, 1.

« The channel input remains the same, i.e. X2 X,.
First, it can be shown that the above transformation defines
a new FSC with a transition kernel Pg 5%, where the
superscript d emphasizes the transformation dependence on
the delay d. That is, the new channel follows the time-invariant
Markov property of FSCs in (1). Second, we show in the
following theorem the relation between the channel capacity
of the original FSC and its transformation.

Channel

©
@@':D/@

St—1
T2 Tisd

/=00

-1 Yt-2

Tt

Fig. 3. The trapdoor channel. The channel can be viewed as a box in which
at time t a labelled ball s;—1 (channel state) lies. Then, a new ball x; (channel
input) is inserted into the box, and the channel output y; is chosen with equal
probability as either s;_1 or xz. The remaining ball in the box (either s;_; or
r¢) is now called s+ and serves as the channel state for the next time-instance.

Theorem 7: The capacity of a FSC Py g+|x, s With delayed
feedback of d time instances is equal to the instantaneous
feedback capacity of the FSC Pg, 5HR5 Furthermore, if the
original FSC is unifilar, then the new transformed FSC is
unifilar as well.

The proof of Theorem 7 is shown in Section V-A.
In Section III we introduced two powerful methodologies
to compute upper and lower bounds on the capacity of
unifilar FSCs with instantaneous feedback. Based on these
approaches, we establish computable upper and lower bounds
on the capacity of the unifilar FSC with delayed feedback.
Specifically, following Theorem 7, since the delayed feedback
capacity of a unifilar FSC can be computed as the capacity of a
new unifilar FSC with instantaneous feedback, the computable
bounds from Section III can be directly adapted for the case
of delayed feedback, just by redefining the channel and then
applying the bounds on the new unifilar FSC. It is important
to note that the cardinality of the new channel state is |S| =
|S| - |X|9~1, while the cardinality of the channel state in the
original channel is |S|. That is, we pay the price of having
a larger channel state space as a result of the delay. When
d grows to infinity, the feedforwad capacity is considered.
However, performing asymptotic analysis to obtain bounds on
the feedforward capacity becomes intractable since the channel
state cardinality of the transformed channel explodes.

In Sections VI and VII, we present novel results concerning
the capacity (with and without feedback) of several well-
known FSCs, by investigating their delayed feedback capacity.
In particular, in the following theorems, we present the main
results along with some brief remarks. The first theorem
below regards the capacity of the trapdoor channel, which is
described in Fig. 3.

Theorem 8: The capacity of the trapdoor channel with
delayed feedback of two time instances is

3
CP =log, (5) .

The proof of Theorem 8 is given in Appendix A. A detailed
discussion regarding the result is given in Section VI. Its main
implications are:

1) There is a simple coding scheme that is based on the
posterior matching scheme [22], which achieves the
capacity result in Theorem 8.

2) We show that our capacity result is not equal to
the feedforward capacity. That is, computer-based
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Xt—l = 0

Xi1=1
0<1"P 01t=P
p: p:

X Y, X 7Y
K l
1 =T 1 1=7=—5—0

Fig. 4. The DEC. The inputs take values from the binary alphabet while the
outputs take values in J = {—1,0,1,7}. Given an input z;, the output of
the DEC is y¢ = =t —x¢_ with probability 1 —p, or y; =7 with probability
p, where p € [0,1] is the channel parameter. The channel state is the previous
input, i.e. s;—1 = T¢—1.

simulations with a greater delay of the feedback suggest
that the feedforward capacity satisfies C' < 0.5765,
while it is known to be lower bounded by 0.572 [37].
In the theorem below we present the second result
concerning the capacity of the BSC with a no consecutive
ones input constraint.
Theorem 9: The capacity of the input-constrained BSC(p)
with a (1,00)-RLL constraint and delayed feedback of two
time instances satisfies

=p ., (p*—3p+3p—1) (}5,7) (P°—P%)
C%(p) < minlog, (ppppa (bed) ) :

(@bc)(P*—2p%+p) gp°
where the minimum is over all (a, b, ¢, d) € [0, 1]* that satisfy:
a(4p*—12p"+11p—3) () (4P° —6p"+2p) 5(4p° ~4p*+p)
1< (a,c)(4p3—8p2+5p—1)b(4p3—10p2+6p—1)g(4p3_2p2) ’
(4P’ 109" +8p—2) (B (4p°—4p"+p) 5(4p" ~2p"~2p+1)
= (@c)(4p*—6p°+2p) p(4p° —8p*+5p—1) J(4p°—p)

. (11)

As shown in the theorem above, we derived an analytical
upper bound on the delayed feedback capacity of the BSC
with a no consecutive ones input constraint. Although we
introduce our bound for the case of feedback delayed by two
time instances, it also provides a novel upper bound on the
feedforward capacity that outperforms all previously known
bounds. Nonetheless, we emphasize that our bound almost
coincides with a lower bound on the feedforward capacity. The
proof of Theorem 9 is given in Appendix B, and a detailed
discussion regarding the result is given in Section VII-A.

The following theorem presents our result on the capacity
of the DEC. The operation of the DEC is described in Fig. 4.

Theorem 10: Feedback increases the capacity of the DEC.

In the theorem above we state that the feedback capacity
of the DEC, which was derived in [21], is not equal to its
feedforward capacity. In [29], the authors investigated the
feedforward capacity of the DEC, and they derived an upper
bound that was equal exactly to the feedback capacity, which is
known to be almost tight to a lower bound on the feedforward
capacity. This fact raised the question of whether the feedback
capacity is equal to the feedforward capacity. By investigating
the delayed feedback capacity of the DEC, we showed that
this is not the case. Further details regarding the statement of
Theorem 10 are given in Section VII-B.

Remark 5: As will be demonstrated in Sections VI and VII,
the role of instantaneous feedback is critical in terms of

channel capacity. In other words, when considering both the
trapdoor channel and the input constrained BSC with feedback,
even a single time-instance delay leads to a sharp decrease of
the capacity towards the feedforward capacity.

V. COMPUTABLE BOUNDS ON DELAYED
FEEDBACK CAPACITY

In this section, we first show that the delayed feedback
capacity problem can be converted into an instantaneous
feedback capacity problem, by reformulating the FSC.
Consequently, for any unifilar FSC, we then introduce upper
and lower bounds on the delayed feedback capacity that
are a straightforward extension of the @-graph bounds from
Section III-A.

A. Proof of Theorem 7: Delayed Feedback Capacity as
Instantaneous Feedback Capacity

Here, we show that the capacity of a general FSC with
delayed feedback can be computed as the capacity of a new
FSC with instantaneous feedback, by redefining the channel
state, input, and output. Moreover, if the original channel is a
unifilar FSC, then the new reformulated channel is a unifilar
FSC as well.

Formally, given a general FSC, define the new channel state
as S;_1 = (Se—a, Xf:éﬂ), let the channel output be Y; =
Y:_d+1, and let the channel input remain the same, i.e. X, =
X;. In the following, we show that the new channel is a FSC
such that its capacity with instantaneous feedback is equal to
the capacity of the original channel with delayed feedback of
d time instances.

« Conditioned on the previous channel state S;_1, the
channel input X, and the channel output Y;, the new
channel state S; is independent of any other previous
states, inputs, and outputs. That is,

P(5:|7%, 3%, 87 Y) = P(3¢|8t—1, %4, ). (12)

This equation holds due to the Markov chain
(St—d-i-l: Xf_aq.z) (St—d: XE_dH, Yt—d-ﬁ-l) -
(X*=4,Y*=4) which follows directly by the Markov
chain property of the original channel. In particular,
since Sy = (Si_a+1, X{_g,o)> and since (S;_1,X¢,Y;)
include (S;_q4, Xg_dﬂ, Yi_a+1), (12) holds.

In addition, we show below that, if the original channel
is a unifilar FSC, then the unfilar property also holds for
the new induced channel. That is, we show that the new
channel state 5; is a time-invariant function of 3;_q, Ts,
and 7

St = (St—d+1: $§—d+2)

(f (St—du xt—d+1:yt—d+1) s x:_aq_g)
A F i~ -~ o~
= f (St—lj I, yt) ]

where, clearly, f' - X x j’ xS — S is a time-invariant
function of (8¢_31,,9:). Thus, the unifilar property
holds in this case.

« Conditioned on the previous channel state S;_1 and
the channel input X,, the channel output Y, is
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independent of any other previous states, inputs, and
outputs. Specifically, note that §,_; includes the pair
(8t—d, Tt—qy1), and therefore it implies that

P(gt|£t1§t_1)§t_l) = P(§t|£t:§£—l):

due to the fact that the redefined channel output 7, is the
original channel output at time (t —d + 1).

« The initial state Sy is known both to the encoder and to
the decoder, as required. As shown above, the redefined
channel is a FSC. Additionally, at each time-step ¢,
the encoder knows all previous channel outputs g'—!,
as required in the case of instantaneous feedback.

Now, given an input sequence, the corresponding outputs of
the redefined FSC are drawn according to the statistics of
the original channel model. Furthermore, maximizing over
P(z"||g™1) is equivalent to maximizing over P(z"||y"~%).
Therefore, we can deduce that the capacity of the original
channel with delayed feedback can be computed as

CP = lim max lI(}?"‘ —Y"),

n—oo P(zn|jgn-t) n

(13)

while reformulating the channel model as described above.

A similar formulation appeared in [38] and [39], but only for
the case where the channel state s; is a deterministic function
of s;_1 and z;. Here, we presented a general formulation that
holds for any FSC. The trapdoor channel, for instance, does
not fall into the framework of [38] and [39] since the channel
state depends on the channel outputs as well.

Remark 6: Following our formulation, it is interesting to
observe that the channel output Y; is independent of X,
conditioned on S;_;. In other words, the channel output
solely depends on the channel state and not on the channel
input. However, the choice of the channel input Z; is still of
significant importance since it directly affects the evolution of
the next channel state.

B. Q-Graph Bounds on Delayed Feedback Capacity

In this section, we present upper and lower bounds on the
delayed feedback capacity of unifilar FSCs. These bounds
are based on the @-graph bounds from Section III-A, which
were introduced for the case of instantaneous feedback.
In particular, to compute bounds on the delayed feedback
capacity of a given unifilar FSC, we first reformulate the FSC
(according to the formulation in Section V-A) to obtain an
equivalent instantaneous feedback capacity problem of a new
uniflar FSC. Then, given the new unifilar FSC, the Q-graph
bounds can be directly applied. We emphasize that a delay
of at least two time instances is assumed here. Otherwise,
we have the standard instantaneous feedback scenario. In the
following theorem, we present the Q-graph upper bound for
the case of delayed feedback.

Theorem 11: The d time instances delayed feedback
capacity of a strongly connected unifilar FSC, where the
initial state is available to both the encoder and the decoder,
is bounded by

CP < 1(5;Y|Q), (14)

sup
P%5.0€Px

where X s }N’, S are the new channel input, output, and state,
respectively (as defined in Section V-A). The bound holds
for all Q-graphs for which the (S, Q)-graph has a single and
aperiodic closed communicating class. The joint distribution is
Py % 5.0 = Pr1x,5Px%3,075,q> Where mg g is the stationary
distribution of the (S, Q)-graph.

Further, the Q-graph lower bound for the case of delayed
feedback is given in the theorem below.

Theorem 12: If the initial state sp is available to both the
encoder and the decoder, then the d time instances delayed
feedback capacity of a strongly connected unifilar FSC is
bounded by

ch > I1(5;Y1Q), (15)

where X, f’, S are the new channel input, output, and state,
respectively (as defined in Section V-A). The bound holds only
for aperiodic inputs Pg s 5 € Pr that are BCJR-invariant, and
for all irreducible Q-graphs with gp such that (5, gp) lies in
an aperiodic closed communicating class.

Proof: [Proof of Theorems 11 and 12] First, as shown
in Section V-A, after reformulating the FSC, we obtain an
equivalent instantaneous feedback capacity problem. Since the
new induced channel is a unifilar FSC, Theorems 3 and 4
can be directly applied on the new unifilar channel
Accordingly, it is only left to show that it is sufficient to
optimize I(S5;Y|Q) instead of I(X, S;Y|Q). The latter holds
by the trivial Markov chain ¥ —S5—X. In particular, according
to the new formulation, the new channel state already include
the new channel input. 0

V1. TRAPDOOR CHANNEL WITH DELAYED FEEDBACK

The trapdoor channel (Fig. 3) has had a long history in
information theory since its introduction by David Blackwell
in 1961 [24]. The channel has attracted much interest since
its representation is very simple, yet its capacity computation
is highly non-trivial. The channel can be viewed as a (causal)
permutation channel since the weight of the input sequence
is equal to the weight of the output sequence. This channel
is also termed the chemical channel, which alludes to a
physical system in which chemical concentrations are used
to communicate [40]. A detailed discussion on the trapdoor
channel can be found in Robert Ash’s book [41] (which even
uses the channel for his book cover).

The trapdoor channel is a unifilar FSC whose operation can
be described as follows. At time ¢, let z; € {0,1} be the
channel input and s;_; € {0, 1} be the previous channel state.
The channel input, x, is transmitted through the channel. The
channel output, ¥, is equal to the previous state s;_; or to the
input x,, with the same probability. The new channel state is
evaluated according to s; = x; ® y: P s¢_1, Where & denotes
the XOR operation.

Despite the simplicity and the extensive research efforts
dedicated to trapdoor channel, e.g. [12], [25], [26], [27], [28],
and [29], its capacity has remained an open problem for
over sixty years. Notwithstanding, the capacity is known in
two important variations of the original capacity problem.
In [25] and [26], it was shown that the zero-error capacity
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of the trapdoor channel is Cy = 0.5 bits per channel use.
This provides a lower bound which is known to be non-tight
(e.g. [27]). The other variation is the feedback capacity, which
is equal to C{b = log, k"zig ~ 0.6942, as shown in [12].
It is also known that feedback does increase the capacity for
the trapdoor channel (e.g. [28], [29]).

In Theorem 8, we introduced our main result concerning
the delayed feedback capacity of the trapdoor channel.
Specifically, we stated that the capacity of the trapdoor channel
with delayed feedback of two time instances is CIP =
log (3). In the following, we list several implications of
this capacity result. The above capacity is approximately
CP =~ 0.5849, while the instantaneous feedback capacity is
approximately CP ~ 0.6942. The best lower bound to date
on the feedforward capacity is C > 0.572 [27]. It is interesting
to note that even a single time-instance delay leads to a sharp
decrease in the capacity towards the feedforward capacity.

The delayed feedback capacity in Theorem 8 also serves as
an upper bound on the feedforward capacity. Overall, the best
bounds on the feedforward capacity are given by

0.572 < C' < 0.5849.

While the delayed feedback capacity is equal to the best upper
bound on the feedforward capacity, it does not establish a
new upper bound. In particular, a recent paper proposed using
duality-based upper bounds on the feedforward capacity and
established the same bound [29]. However, their bound is for
the feedforward capacity only, and therefore we still need to
show a converse proof for Theorem 8.

An interesting question is whether the delayed feedback
capacity is, indeed, the feedforward capacity. Simulations of
the delayed feedback capacity with a delay greater than two
time instances suggest that this is not the case. In particular,
by operational considerations, we have the following chain of
inequalities:

C<..<CP<Cy<CP. (16)

As clarified, the upper bound in Theorem 11 can be formulated
as a convex optimization problem, and its evaluation for a
greater delay of the feedback gives

CP < 0.5782, CIP < 0.5765. (17)

Accordingly, these simulations suggest that the feedforward
capacity satisfies C' < 0.5765. In other words, the delayed
feedback capacity in Theorem 8 does not seem to be the
feedforward capacity, which remains an open problem.
Remark 7: The achievability proof of Theorem 8 is based on
the @-graph lower bound, which was presented in Section V-B.
That is, the lower bound was established by showing that a
particular graph-based encoder, given by the Q-graph in (24)
and the input distribution in (25), provides an achievable
rate of log,(3/2). This graph-based encoder implies a simple
coding scheme that, in our case, achieves the capacity.
As explained in Remark 2, the scheme is based on the
posterior matching principle, and the exact details regarding
the constriction of the coding scheme are given in [22].
Remark 8: Following the formulation in Section V-A,
we present in Fig. 5 the trapdoor channel with delayed

51 =(0,0) §-1=(0,1) §:-1=(1,0) Fe1=(1,1)
B I
00 055 o U5 5 o
L 5 o 5 o
t Y Tt >5<yf Tt ><Uc Lt Yt
1 1 11 05 1 1 1
Fig. 5. The trapdoor channel with delayed feedback of two time instances

as a new unifilar FSC with instantaneous feedback.

feedback of two time instances as a new unifilar FSC with
instantaneous feedback. For the new FSC, it is interesting to
note that the capacity of each individual channel (per state) is
zero. Nevertheless, as we already demonstrated, the capacity
of the overall FSC is not zero. This follows due to the fact
that, at each time ¢, the output depends only on the previous
channel state, and the choice of the current input will only
participate in the evolution of the next channel state.

VII. UPPER BOUNDS ON FEEDFORWARD CAPACITY

In this section, we demonstrate that the investigation of the
delayed feedback capacity plays an important role in deriving
upper bounds on the feedforward capacity. Specifically,
besides the trapdoor channel, we present here two additional
FSCs for which we derive novel results concerning their
feedforward capacity by investigating their delayed feedback

capacity.

A. Input-Constrained BSC

Regardless of whether feedback is allowed or not,
memoryless channels have the same simple single-letter
capacity expression [42]. When the inputs are constrained,
however, the capacity problem is very challenging. The
feedforward capacity in the presence of constrained inputs
has been extensively investigated, e.g. [43], [44], [45], [46],
and [47], but is still given by a multi-letter expression.

Here, we consider the BSC with crossover probability p,
denoted by BSC(p), where the inputs are constrained to satisfy
the (1, 00)-RLL constraint. Namely, the input sequence does
not contain two consecutive ones. Even though this setting
does not fall under the classical definition of a unifilar FSC,
it is straightforward to convert input constraints by defining a
dummy sink state whose capacity is zero in the case that the
constraint is violated. For this setting, while the feedforwad
capacity is still open, the feedback capacity was established
in [19], and it is known that feedback does increase the
capacity [19], [48].

In Theorem 9, we introduced our upper bound on the
two time instances delayed feedback capacity of the BSC(p)
with (1,00)-RLL constraint. In Fig. 6, this upper bound
is plotted along with the feedback capacity from [19], the
best upper bound on the feedforward capacity from [48],
and a lower bound on the feedforward capacity obtained
using the simulation method in [49]. Here as well, it is
surprising to note from the plot that the difference between
the capacity with instantaneous feedback and the capacity
with an additional time-instance delay is quite significant.
Further, although our upper bound was introduced for the case
of delayed feedback, it also serves as a novel upper bound
on the feedforward capacity, and outperforms all previously
known bounds. Nonetheless, our upper bound almost coincides
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(1,00)-RLL Input-Constrained BSC - Upper and Lower bounds
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Fig. 6. Upper and lower bounds on the feedforward capacity of the

input-constrained BSC(p). The feedback bound is the feedback capacity
from [19]. The duality bound (dashed red line) is the best upper bound from
the literature [48]. The black line represents our upper bound in Theorem 9.
Finally, the bounds are compared to a lower bound on the feedforward capacity
(blue line).

with the achievable rate (a lower bound on the feedforward
capacity).

We would like to emphasize that our upper bound can
be further improved. Specifically, evaluating the upper bound
in Theorem 11 with a 3-order Markov Q-graph provides an
even tighter upper bound on the delayed feedback capacity of
two time instances. However, the upper bound in Theorem 9
already achieves remarkable performance, and therefore we
do not provide here an analytical expression for the additional
bound.

B. The Dicode Erasure Channel

The DEC was studied in [21], [29], [30], and [31] and is
a simplified version of the well-known dicode channel with
additive white Gaussian noise. The operation of the DEC
is illustrated in Fig. 4. The feedback capacity of the DEC
was established in [21], and is given in the theorem below.
However, in the absence of feedback the capacity is still
unknown.

Theorem 13 ([21], Th. 5): The feedback capacity of the
DEC is
1-p)< + pH>(€)

p+(1—pe
for any channel parameter p € [0, 1].

In the following theorem, we derive an upper bound on the
delayed feedback capacity of the DEC for p = 0.5. This bound
serves as a novel upper bound on the feedforward capacity, and
it also demonstrates that feedback does increase the capacity
of the DEC for p = 0.5 (as stated earlier in Theorem 10).

Theorem 14: The capacity of the DEC with delayed
feedback of two time instances is upper bounded by

CP(0.5) < max

a€(0,0.5)

C?(p) =
1 (p) Jnax

(18)

1

2—3a
~lo .
1082 ((1 —2a) - (1+8a2a — 3a— (1 — daa)y/1 —|—4a3))

DEC - Upper and Lower bounds
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Fig. 7. Upper and lower bound on the capacity of the DEC. The feedback
bound is the feedback capacity from [21]. The delayed feedback bound
(blue line) is our upper bound. The black line is an achievable rate on the
feedforward capacity.

The proof of Theorem 14 is given in Appendix C.
The upper bound is derived by using a particular Q-graph
with eight nodes, which is given within the proof of the
theorem.

In Fig. 7, we present bounds on the feedforward capacity
of the DEC. In particular, the red line is the feedback
capacity from Theorem 13, which serves as a non-trivial
upper bound. The black line is an achievable rate from [50],
obtained by considering a first-order Markov input process.
Finally, the blue line shows our upper bound on the two
time instances delayed feedback capacity. This bound is a
numerical evaluation of Theorem 11 with the same Q-graph
that is used for the proof of Theorem 14. Accordingly, for
p = 0.5, the plot provides a numerical evaluation of the
analytical upper bound in Theorem 14. In [29], the authors
derived an upper bound on the feedforward capacity, which
turned out to be exactly equal to the feedback capacity.
This fact led to the question of whether the feedback
capacity is equal to the feedforward capacity, which, indeed,
is negligibly different from the first-order Markov achievable
rate. Following our numerical upper bound, we could see
that this bound improves the feedback capacity for any
p € (0,1), which indicates that feedback increases the
capacity of the DEC over the entire region of the erasure
parameter.

VIII. CONCLUSION

In this paper, we investigated the delayed feedback capacity
of FSCs. It was shown that the capacity of a FSC with
delayed feedback can be computed as that of a new FSC
with instantaneous feedback. Accordingly, several graph-
based methods to obtain computable bounds on the capacity
of unifilar FSCs, which were introduced for the case of
instantaneous feedback, could be adapted to the case of
delayed feedback as well. Using these bounds, we could
establish that the capacity of the trapdoor channel with
delayed feedback of two time instances is equal to log, (3).
In addition, we derived an upper bound on the delayed
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feedback capacity of the input-constrained BSC, which also
serves as a novel upper bound on its feedforward capacity.
Finally, we demonstrate that feedback increases capacity for
the DEC.

APPENDIX A
TRAPDOOR CHANNEL — PROOF OF CAPACITY
(THEOREM 8)

Proof: The proof of the capacity result in Theorem 8
consists of two parts. In Section A-A, we prove the converse,
that is, C < log, (2), and in Section A-B, we show a
corresponding lower bound.

The proof is based on the methodology in Section III
As clarified, the upper and lower bounds hold for instantaneous
feedback, but using the formulation in Section V-A, we are
able to transform the delayed feedback capacity into a capacity
problem with instantaneous feedback.

We begin with presenting the formulation of the trapdoor
channel with delayed feedback as a new unifilar FSC with
instantaneous feedback. The new FSC (see Fig. 5) is defined
as follows: the channel state consists of the pair of the previous
channel state and channel input, that is, §,_; = (5;_9,T;_1).
The channel input is #; = z; and the channel output is
Ut = yp—1. If 5,1 = (0,1) or 8,3 = (1,0), then we have a
BSC(0.5). Otherwise, for any Z¢, if 5,1 = (0,0) then g; =0,
and if 5,y = (1,1) then g, = 1.

A. Upper Bound

Here, we will show that CI’ < log, (2). The proof is
based on fixing a particular graph -based test distribution, and
then solving the MDP problem of the dual capacity upper
bound (for additional details, see Section III-B). The MDP
formulation is presented in Table 1.

Consider the @-graph in Fig. 2, which consists of two nodes,
and the following graph-based test distribution:

—0jg) = [g%]

To present the solution for the Bellman equation, define the

constant
3
= ]_ —
ng (2) ?
and the value function

- 1, (8=1(0,0),q=
h(S’Q):{O e(zlse( )

Remark 9: The conjectured solution (p*,h(-)) has been
obtained by using the value iteration algorithm with the
MDP defined in Table 1. Specifically, applying the value
iteration algorithm provides the optimal policy for any possible
MDP state. Then, it is only left to solve a finite set of
linear equations in order to derive closed-form expressions
for p* and h(-).

We proceed to show that p* in (20) and the value function
in (21) solve the Bellman equation. This directly implies,

(19)

(20)

2)or (5=(1,1),q=1),

(21

by Theorem 5, that CIP < p* = log,(3/2). For the MDP
state (5 = (0,0),q = 1), the right-hand side of the Bellman
equation is a maximum over T of

D (Pyx 501, 9)| Ty g (1a)
—|—ZP 7|Z, 3) ( (8,%,9), qb(q,ﬁ))

gey
{ (1L,0] || [2,4]) +h((0,0),1), if
D ([1,0]| [3,3]) +A((0,1),1), ifi

In both cases of Z, the equation is simplified to ]og2 (). while
the left-hand side of the Bellman equation is p* + k((0, 0), 1),
which is equal to log, ( ) as well. Therefore, we can conclude
that the Bellman equation holds for (5 = (0,0),q = 1).

For the MDP state (5 = (0,0),q = 2), the right-hand side
of the Bellman equation is a maximum over Z of

D (Pyx 501, 9) Ty q(1a)
—|—ZP 7|Z, 8) ( (5,7,7), qb(q,ﬁ))

31
Il

0
’ 22
L (22)

31
Il

21
3°3
21
33

gey
_JD (11,0 [3,3]) +R((0,0),1), ifz=0,
o 12 o (23)
D ([1,0]]| [3,3]) +A((0,1),1), ifz=1.
Also here, in both cases of z, the equation is equal to

log, (3), while the left-hand side of the Bellman equation is
p*+h((0,0),2) = log,(3). Thus, the Bellman equation holds
for this case too. The verification for the remaining MDP states
can be done similarly.

B. Lower Bound

The lower bound is derived using Theorem 12 with
a particular graph-based encoder that induces the BCIR-
invariant property. We show that the achievable rate induced
by the graph-based encoder is R = log, (3), and therefore
C > log, (3).

A graph-based encoder consists of a Q-graph and an input
distribution Py |5 ¢ that is BCJR-invariant. We choose a Q-
graph consisting of four nodes, and its evolution function is
given by the vector representation

$(¢,9=0)=1,3,1,3]
o(g,9=1)=1[2,4,2,4]. (24)
This vector representation implies, for instance, ¢(q = 1,

g =0)=1and ¢(¢g = 1,5 = 1) = 2. For the Q-graph
in (24), we define the following input distribution:

Pz15,0(015,9)
§=(0,0) [ 5=(0,1) | §=(1,0) | 5= (1,1)
g=1 2/3 1/3 1/3 0
=[¢=2 1 2/3 0 1/3
q=3| 2/3 1 1/3 0
g=4 1 2/3 2/3 1/3
(25)
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According to (3), the Markov transition probability can now

be computed as
P(s*,q%|5,9)

—ZP 7|8, q)

Consequently, standard computation of the stationary distribu-

tion (3, q) provides that

P(91Z, 3) g+ =g(a.9)} L{s+ = F(5.2.9)}

"'T§1Q(§: q)
5=(0,0) [5=(0,1) | 5=(L0) [ 5=(L1)
g=1] 1/6 1/12 1/36 1/18
—[gq=2 1/36 1/18 0 1/12
(=3| 1/12 0 1/18 1/36
g—4| 1/18 1/36 1/12 1/6

We now verify that the proposed graph-based encoder
satisfies the BCJR-invariant property in (5). Let us show this
explicitly for the case where (g,7) = (1,1) and §+ = (0,0).
Since ¢(1,1) = 2, the left-hand side of Eq. (5) is equal to
750((0,0)[2), while the right-hand side is equal to

E:l:,.s ﬂ§|Q(5|1)PXT|§,Q($|S: I)P?|)Z.',§(1|I: S)]]'{(O,O)=f(x,l,s)}

Zx’,s’ ﬂ§|Q(5’|1)PXT|§,‘Q(I’|3!1 I)P?|X',.§(1|$!1 S’)
1
=5
which, indeed, is equal to 73 Q((O 0)|2), as required. The
verification of the other cases can be done similarly.
Finally, the achievable rate of the graph-based encoder is

R=I(5;Y|Q)

= Z ?TQ(q 5‘ Y’| =q)
qeQ

= Z mo(q) - [Hg }”’|Q = q) — Hz(}”qg,Q = q)}
qeQ

@ q%m(g) : |:H2 %) — H,y(Y|5,Q = q)]

> alo)

-(3) -
qeQ
2\ 1
= (5)‘5
3
—10g2 (5) ]

where (a) follows due to the fact that

-Hy(Y|5,Q =q)

Py o(0lg) =Y m(3lq)P(#]3, 9) Py ¢ 5(0]%, 3)
.8
_)2/3, gq=1lorq=3,
"~ 11/3, g=20rq=4.
O
APPENDIX B

INPUT-CONSTRAINED BSC — PROOF OF THEOREM 9

Proof: Here we provide the proof of Theorem 9
regarding the upper bound on the capacity of the (1, co)-input
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constrained BSC(p). We begin with the formulation of the
channel with delayed feedback of two time instances as a new
unifilar FSC with instantaneous feedback. The channel state is
defined as 5;_1 = (x4_2,x;_1), the channel input is F; = z,
and the channel output is ¢ = 1. If 51 = (0,0) or
3:—1 = (1,0), then g = 0 with probability 1—p or g = 1 with
probability p. Otherwise, if 5;_; = (0,1), then g, = 0 with
probability p or g = 1 with probability 1 — p. Due to the
input constraint, if §;_; = (0,1), then the transmitted input
I; must be zero.

For a particular graph-based test distribution, we solve
the MDP problem of the dual capacity upper bound. Here
too, consider the @-graph in Eq. (24), and the following
parameterized graph-based test distribution:

T (g =0lg) = [a,b,c,d],
where (a,b,c,d) € (0,1)% Define the constant

B pPpPa(P’ 30" +30-1) (bzd) (P°—P%)
= logz ( (abc)(p3_2p2+p)gpa . {2?)

(26)

Further, define the value function h(3, g) as follows:
h((0,0),1) = h((1,0),1)

o, (FddE (abed\”
~ 982 | Z2pppa2-3p "\ abed

h((0,0),2) = h((1,0),2) = log, (% : (g_j)”)

a2P-143P (abccf) P
(abc)P abed

1((0,0),3) = k((1,0),3) = log, (

h((0,0),4) = h((1,0),4) = 0
h((0,1),1)

abP* —6p+1520°—p220” 320" —p+13p  / gbed\ 2P ’
= log, ( G4r? —2p+1p4ap? —3p+1,4p2—2p ' (aEEd) )
h((0,1),2)
" log, ( asp2—4_p+1(acd)p(gfdg)p2 . ( &l_;ccf) 2p3)

bl—P(abc)3p abed

h((0,1),3)

a9’ —5p+152p° —pa2p° +p—1 420" —p+1 Jp abccf)zp
= IOgZ( atP’—ppip?—3p+1:4P°—p(abed) 2P’ )

a7" 4P+ (bedd)?’
(@bc)3P*—pdl-P

(abc.i) 2’
abed ’

(28)

h((0,1),4) = log, (

To complete the proof it is left to show that, under the
constraints given in (11), the scalar p* in (27) and the value
function in (28) solve the Bellman equation. For the MDP
state (5 = (0,0),q = 1), the right-hand side of the Bellman
equation is a maximum over T of

D (Pm S—(-wz, 9|75 o la))
+> P(jlz (f(s £,7), (q,ﬁ))

gey
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TABLE 1T
GRAPH-BASED TEST DISTRIBUTION FOR THE DEC
g=1 qg=2 q=3 g=4 g=5 q==6 g=T1 g=8
y=-— 0 72/2 a/2 a/2 72/2 05— v2/2 a/2
Ty|qlylg) =] y=0 T 05— 72 05—a 05—a 05— 72 1 0.5 — 2 05—a
y= 05—7 72/2 a/2 a/2 72/2 0 72/2 a/2
y =7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
=D ([p, pl || [a, a]) Also, define h(3, q) as follows:
p-h((0,1),1) +p-h((0,1),2), ifi= h((0,0),1) = h((0,0),6) = — ]032 (m)
Under the constraints given in (11), it can be verified that h((0,0),2) = h((0,0),5) = (( 0),7)
Z = 0 attains the maximum in (29). Further, the left-hand 1l darivye
side of the Bellman equation is p* + h((0,0), 1), which, after 1 082 (1—2a)(1—2v,)°
being simplified, is exactly equal to the right-hand side of h((0,0),3) = h((0,0),4) = h((0,0),8)
the Bellman equation. Hence, the Bellman equation holds for 1’ ’ ‘ia 12 T
the case that (§ = (0,0),g = 1). The verification for the = —log, ( Zl 72 )
remaining MDP states is omitted here and follows similar 4 (1—2a)3(1 —27,)

calculations. O

APPENDIX C
DEC — PROOF OF THEOREM 14

Proof: Here we provide the proof of Theorem 14
regarding the upper bound on the capacity of the DEC.
As before, we start with the formulation of the channel with
delayed feedback of two time instances as a new unifilar FSC
with instantaneous feedback. The channel state is defined as
§_1 = (w4_2,7¢ 1), the channel input is #; = x;, and
the channel output is : = y:—1. The output of the DEC
is g = x4_1 — T¢_o with probability 1 — p, or g, =7 with
probability p, where p € [0, 1] is the channel parameter.

Also here, for a particular graph-based test distribution,
we solve the MDP problem of the dual capacity upper bound.
Specifically, consider the following @Q-graph:

#(g,7=-1)=[1,1,1,1,1,1,1,1]
#(q,7=0)=1L1,3,3,4,4,6,8, 8]
#(¢,7=1)=1[6,6,6,6,6,6,6, 6]

Q_B(E g=")=1[2,7,7,7,7,5,7,7]. (30)

For a,v1,72 € (0,0.5) and the Q-graph in (30), consider
the graph-based test distribution Ty q(y|g) that is given by
Table II. The proposed graph-based test distribution follows
by first numerically optimizing over the test distribution.
Then, we observed that the optimal test distribution can be
represented by three parameters, which are denoted here as

71, Y2, and a.
Define the constant

*_110 (1—-2a)"1(2—3a)
1%\ (11 8a%—3a— (1-daa)V1tdad) )
(31)

1 a(l — 2a?)
h((0,1),1) = 1 logy (m
(( 1),2) = h((0,1),5) = h((0,1),7)
a(l — 2a)
4 o8 (’r%(l - 271))
h((0,1),3) = h((0,1),4) = h((0,1),8)
1 (1 - 2a)?
-3 (i) 2
R
h((1,0),1) = %logz (mf(_l ;2&))
h((1,0),2) = k((1,0),5) = h((1,0),7)
1 a(l —2a
1% (72(1 - 272))
h((1,0),3) = h((1,0),4) = h((1,0),8)
_ Ly a(l — 2v,)
= qloe (72(1 - 2‘1))
1 avyz(1 — 2a)
1(1:010) = ot (=32 )

h((1,1),1) = log, (12_71%)

h((1,1),2) = A((1,1),5) = h((1,1),7) = %bgz (1—72“)

1— 27y

h((1,1),3) = h((1,1),4) = h((1,1),8) =0
1 a(1 — 2a)?
h((1,1),6) = 71082 (M) . (32)
Let us assume that the optimal policy is given by
L, (5=(0,1),9=1),
* = 33
w(s9) {0, else. (33)
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The policy above was obtained by solving the MDP
problem numerically using the value iteration algorithm.
Assuming (33), it can be noted that the Bellman equation is
based on a finite set of linear equations, and it can be verified
that if

1
"=, ((2 — 4a) - \Va2 + 0.25 + 4aa — 1)
(1

(40> g2+ 1)VT+ 407 —8a%a+1), (34

=4 " 6a

then the Bellman equation holds under our choice of p* in (31)
and the function h(s,q) in (32). The verification follows
from straightforward calculations, as we did in the previous
sections, and therefore the details are omitted here. In Eq.
(34), we write analytical expressions for ~y;, 2 as a function
of a. These expressions were derived by observing that, for
particular MDP states, the optimal solution (in terms of the
test distribution’s parameters) is achieved when the right-hand
side of the Bellman equation does not depend on the action.
Namely, for particular MDP states we require that the right-
hand side of the Bellman equation is equal for « = 0 and
u = 1. Such a requirement results in linear equality constraints
that are satisfied with ~; and -, in (34). O
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