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This research introduces a cost-effective, smartphone-powered, computer-vision-based system for Power 

Wheelchair Intelligent Assistive Driving (PWC IA-Driving). This system enables the safe, hands-free operation 

of a Power Wheelchair (PWC) with reduced attention required from the user in indoor environments, thereby 

easing the burden on disabled individuals and lessening their stress. Our objective is to provide an affordable 

and practical solution that can be easily incorporated into existing PWCs. The system leverages a customized 

and pre-trained ResNet-based model on a smartphone to derive driving commands from real-time imagery 

captured by the phone’s camera. These instructions are then conveyed to the PWC via a control interface 

connected to the smartphone. We have developed a prototype of this assistive driving system on a Pixel-6 

Android phone and tested its feasibility on a mobile robot as a proof-of-concept. Our evaluations indicate that 

the smartphone can process up to 25 images per second. This rapid processing rate allows for the generation 

of driving instructions in real time, enabling the mobile robot to navigate safely at reasonable speeds within 

the test environment, while requiring minimal user intervention. 
 

 

 

1. Introduction 

 
The US Census Bureau reported in 2013 that around 3.6 million 

individuals over the age of 15 used wheelchairs to assist with mobility 

in day-to-day tasks.1 Power wheelchairs (PWCs) have been widely 

utilized to improve the independence of people with disabilities. In 

order to alleviate the operation difficulties, PWCs usually provide 

convenient joystick-type interfaces that can be easily operated with 

hands. Recently, new technologies have enabled a variety of hands-free 

controls, including using a headrest attached to a wheelchair, using 

breath by inhaling (sip) and exhaling (puff), or using face and mouth 

movement to operate a PWC. 

However, for people with severe cognitive, motion, or sensory 

issues, it is still a difficult task to operate PWCs to their fullest extent. 

In particular, 17% of PWC users have reported severe pain, where 

over 50% of them attributed the pain to the operations of PWCs [1]. 

Furthermore, many PWC users complain about fatigue, insecurities, 

and general inconvenience while navigating through (mostly indoor) 

public spaces for an extended period. A fully automated PWC with a 

navigation system would offer an ideal solution. Unfortunately, such 

navigation systems are still in the design and development phases 

and are thus not accessible to socially disadvantaged demographics.2 

Furthermore, they often require specific types of wheelchairs to accom- 

modate the navigation software and related hardware components to 

ensure compatibility for a wheelchair to navigate through spaces safely. 

With the advancement of computer-vision technology, there have 

been many research studies focused on hands-free interfaces for PWCs, 

such as the use of head movements [2] to ease the operation of PWCs 

and enable different navigation schemes for indoor environments [3– 

5]. However, there is limited research on low-cost, assistive driving 

systems that can control PWCs in a semi-automatic fashion with re- 

duced attention from users beyond hands-free operations. To achieve 

this goal, we present an affordable and intelligent assistive driving 

system that utilizes computer vision on a smartphone, leveraging its 

built-in camera for power wheelchairs (PWCs). The system is designed 

with availability and safety as top priorities. 

Our work addresses the above concerns by focusing on the design 

and development of an affordable, mobile application-based assistive 
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driving solution that can be used on existing power wheelchairs to 

reduce the need for manual operations significantly. The system har- 

nesses the affordability and widespread availability of popular smart- 

phones with built-in cameras, utilizing deep learning models for au- 

tomation. Mobile applications (apps) running on smartphones have 

become increasingly valuable, allowing users to streamline their lives 

through various functions, including media sharing and GPS naviga- 

tion. These capabilities are made possible by the cameras and other 

sensors present in modern mobile devices, such as smartphones. Simi- 

larly, deep-learning-based innovations have been shown to outperform 

human beings in areas such as image classification, object detection, 

and voice recognition. For example, Man et al. [6] compared the 

performance of a CNN model and human observers for detecting lesions 

and concluded that the CNN model outperformed the human observers. 

Our framework integrates the capability of deep learning image clas- 

sification with the availability of feature-rich smartphones to provide 

wheelchair users assistance in moving through indoor spaces safely. 

The PWC IA-Driving system is designed as a driving assistance tool 

rather than a fully automated solution. It offers hands-free navigation 

in primarily obstacle-free indoor environments like hallways and corri- 

dors. Users of the PWC must still manually control the vehicle in areas 

crowded or dense with obstacles. When in more open spaces, such as 

uncrowded hallways or lengthy corridors, the system can take on most 

of the driving tasks, thereby providing substantial stress relief for the 

PWC user. 

This work builds upon our previous work titled ‘‘A Vision-Based 

Low-Cost Power Wheelchair Assistive Driving System for Smartphones’’, 

published in the Proc. of the IEEE International Conference on Embed- 

ded Systems and Software (ICESS) 2022 [7]. In the conference paper, 

we introduced a vision-based solution designed for smartphones to aid 

in navigating powered wheelchairs (PWCs) in an indoor environment. 

We have significantly extended the work reported in our confer- 

ence paper. The main differences and novel contributions are outlined 

below. 

• We have re-designed the system by incorporating pre-trained 

Deep Neural Network (DNN) models through the TensorFlow 

Lite — a streamlined version of TensorFlow specifically tailored 

for mobile platforms and resource-constrained embedded devices. 

The newly developed app efficiently leverages the hardware ac- 

celeration capabilities of smartphones, achieving a processing 

speed of up to 25 images per second. This improvement enhances 

both the safety and robustness of the system. See Section 3-D 

(pages 6 to 7). 

• To address the wide range of hardware architectures present in 

modern smartphones, we utilized various methods to generate 

multiple DNN models, each optimized for CPU, GPU, and PTU 

operations on these devices. App users now have the option to 

choose from a list of deployed models to optimize performance. 

• To enhance the confidence in the model’s potential to generalize 

effectively across various environments (a requirement for high- 

risk applications), we employed class activation maps to validate 

that the DNN model effectively learns the appropriate features 

and patterns to generate correct driving instructions. 

In summary, the PWC IA-Driving system presented in this paper 

brings forth several noteworthy contributions: (1) a vision-based system 

to assist the operation of PWCs in indoor environments; (2) the de- 

ployment of a deep learning model compressed and optimized using a 

variety of techniques provided by TensorFlow-lite on an Android smart- 

phone and successful use of images captured by the built-in camera 

to provide real-time driving instructions; (3) the design of an Android 

app that interfaces with the PWC user, the deep learning model, and 

the PWC to safely facilitate navigation. To evaluate this vision-based, 

low-cost PWC assistive driving system, we measure the accuracy and 

response time of the system as well as the (reduced) attention time and 

hands-free period of PWC users. 

The remainder of the paper is organized as follows. In Section 2, 

we provide a review of the closely related work and background that 

underpins our approach. Section 3 outlines the innovative design of a 

vision-based, low-cost assistive driving system suitable for smartphone 

deployment. Section 4 describes the evaluation of the assistive driving 

system, and Section 5 discusses the possible enhancement of the model. 

Finally, we conclude the paper and outline plans for future work in 

Section 6. 

 

2. Background and closely related work 

 
In this section, we survey closely related work and provide the 

background information necessary to motivate the need for our work. 

 

2.1. Navigation for wheelchairs 

 
Automated driving vehicles (ADVs) have drawn much attention in 

the past decade, and many industry leaders, including Google, Tesla, 

and Mobileye, have invested in ADVs. Many research works in the area 

of ADVs have been published [8–12]. However, automated or assistive 

driving technology for PWC systems has not been extensively explored. 

Below are some works that are closely related to this field. Kutbi et al. 

studied a hands-free wheelchair control approach based on egocen- 

tric computer vision and evaluated the scheme with 21 subjects [2]. 

Compared to joystick and chin-based control, their quantitative and 

qualitative evaluation results show that the vision-based control ap- 

proach is viable for hands-free indoor use. However, their approach 

requires an Egocentric camera and an on-board laptop to support 

the complex computation to detect head movement. Similarly, other 

hand-free driving systems for power wheelchairs were developed [13], 

focusing on alternative means than joysticks to operate a PWC. Notable 

examples include voice control [14], chin-operated joystick [15], and 

head-tilt control [16], which significantly improved the usability of 

power wheelchairs for specific groups of people with disabilities. Unlike 

our approach, all of the above approaches require users to operate the 

power chairs with full attention while driving. 

Navigation systems have been developed to assist the vision im- 

paired while walking in indoor environments [17–20]. These 

approaches utilize techniques such as sign recognition, obstacle de- 

tection, and object positioning to improve user navigation. Working 

toward similar goals, Ohya et al. [21] proposed a vision-based nav- 

igation system for mobile robots in 1998. That approach was based 

on traditional image-processing algorithms without the use of modern 

deep-learning models. To our knowledge, such works have not been 

adapted to PWCs. 

Kulhanek et al. proposed a reinforcement learning-based approach 

to navigate a robot to a target location in a virtual environment [22]. 

The model was trained to find a way to arrive at the destination given 

by an image. Our approach is different from this path planning ap- 

proach in that it does not require a path map or similar instrumentation 

to the environment being navigated. 

Lane-detection-based driving assistance systems for automobiles 

have been well-studied [23–25] and, at a cursory level, is similar to 

driving a PWC along corridors inside a building. However, unlike high- 

ways, indoor environments do not follow strict rules and regulations 

(e.g., lane width, road markings, etc.), so fewer assumptions can be 

made about the environment in the context of PWCs. 

 

2.2. End-to-end autonomous vehicles 

 
Numerous Automated Driving Vehicle (ADV) control systems are 

composed of various modules, each dedicated to a distinct aspect of 

autonomous driving. However, as outlined by Le Mero et al. [26], 

there exists an alternative approach involving a single, distinct module. 

This module is tasked with directly converting raw sensory inputs 

(such as those from cameras, LiDAR, etc.) into control signals (like 
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steering and braking commands). Systems employing this methodology 

are commonly referred to as end-to-end autonomous driving systems. 

While modular systems may offer easier verification, they tend to lack 

computational efficiency. In contrast, end-to-end systems are generally 

more computationally efficient. 

In end-to-end Automated Driving Vehicles (ADVs), a single mod- 

ule often employs Deep Learning techniques to train the system for 

the complex tasks associated with driving. This training is primarily 

conducted through Imitation Learning [27], a process where human 

experts supply data (expert policy) to guide the learning system. The 

system then attempts to learn the optimal policy by observing and 

emulating the decisions made by the expert. Essentially, Imitation 

Learning involves acquiring skills by replicating the actions of someone 

experienced. 

Bojarski et al. [28] presents their end-to-end self-driving system 

that utilizes a convolutional neural network (CNN) trained to map 

raw pixels from a single front-facing camera directly to steering com- 

mands. This system autonomously learns internal representations, using 

solely the human steering angle as the training signal. Adopting the 

end-to-end approach, NVIDIA developed PilotNet, a neural network- 

based system that calculates steering angles from images of the road 

ahead [29,30]. Utilizing only camera inputs and without the aid of 

lidar, radar, or maps, the most advanced version of PilotNet is capable 

of autonomously steering a vehicle for an average of approximately 500 

km on highways before requiring human intervention. 

Despite PilotNet’s success in facilitating ADVs on highways, the 

system cannot be directly applied to PWC driving systems due to con- 

siderable differences in the driving environment, such as the absence 

of lane markings in indoor settings. 

 

2.3. Image classification 

 

Navigation systems primarily rely on an image classification tech- 

nique to analyze the images captured by the camera and generate 

driving instructions. The use of neural networks to classify images has 

been studied for decades. In 1998, LeCun et al. presented the first con- 

volutional neural network, LeNet-5, to classify images of handwritten 

digits and achieved great success [31]. The success of LeNet-5 resulted 

in great interest in studying neural networks. However, given the 

limited computational power of the time, the architectures of the neural 

networks in the early 2000s remained shallow. As a result, the error 

rate of image classification with those models remained high until 2012 

when Alex Krizhevsky’s team built the famous AlexNet [32] which 

leveraged the power of GPUs to train the network consisting of eight 

layers, including five convolutional layers and three fully-connected 

layers. AlexNet achieved a top-5 error rate (the rate at which a model 

includes correctly labeled images in its five most confident predictions) 

of 15.3% and won the ILSVRC 2012 competition.3 In later competitions, 

ZFNet [33], considered the extended version of Alexnet, won in 2013 

with a top-5 error rate of 11.2%. Inception V1 (GoogLeNet), a 22- 

layer DNN using 1 × 1-sized filters and Relu to reduce the computation 

costs, won the competition in 2014 with a top-5 error rate of 6.67%. 

In the same competition of 2014, VGG [34] won second place with 

a top-5 error rate of 7.3% and subsequently became one of the most 

popular models for image classification. ResNet emerged as the victor 

in ILSVRC 2015 across image classification, detection, and localization. 

During the competition, ResNet achieved a validation top-5 error rate 

of 3.57%, surpassing the average human classification error rate. Due 

to this remarkable performance, our model is built upon ResNet, as 

detailed in Section 3.2. 

Our approach involves the training and deployment of a single 

deep learning model directly on a smartphone. Such a combination 

 

 
 

Fig. 1. The PWC Intelligent Assistive Driving (PWC IA-Driving) system. 
 
 

 

has been successfully implemented for other works such as navigation 

and speech recognition [35–37]. Despite the significant differences in 

driving environments and speed limits between Automated Driving 

Vehicles (ADVs) and Personal Wheelchair (PWC) driving systems, our 

approach aligns with the principles of end-to-end autonomous vehicle 

systems. To the best of our knowledge, ours is the first implementation 

that integrates the Android platform specifically to cater to the unique 

constraints inherent in PWCs. 

 

3. PWC IA-drive framework 

 
As shown in Fig. 1, the proposed system comprises an Android 

app deployed on an Android smartphone. The app incorporates a pre- 

trained ResNet-based DDN model and code for image processing, PWC 

interfacing, and user input management. The app accesses essential 

Android sensors, such as the camera and wireless interface, through 

the Android platform API. It is important to note that advanced mod- 

ification of the Android platform (e.g., rooting) is not necessary, and 

only permissions for the camera and network are required. 

The flow of data from the PWC’s environment through the pre- 

trained model to the PWC is illustrated in Fig. 1. Starting from the 

top right, real-time images of the environment are captured by the app 

through the Android device’s physical camera. Subsequently, the app 

performs necessary preprocessing steps, including cropping (as detailed 

in Section 3.1) and down-sampling, to prepare the data for the ResNet- 

based DNN model. The app then forwards this preprocessed data to the 

model. 

The pre-trained model processes the data and generates one of the 

four driving instructions, which are turning left, turning right, moving 

forward, or stopping. These driving instructions are then transmitted 

to the PWC using an implementation of a universal device interface. 

This interface can be customized to the specific PWC that the app is 

configured to communicate with. In our proof-of-concept experiments, 

we utilized a WiFi connection to interact with a REST API implemented 

on a Pioneer 3-AT robot.4 

Fig. 2 shows the derivation of driving commands by training the 

ResNet-based DDN model. We train the model using images captured by 

a smartphone to automatically generate the four driving instructions: 

turning left, turning right, moving forward, and stopping. 

 
  

3 https://machinelearningknowledge.ai/popular-image-classification- 

models-in-imagenet-challenge-ilsvrc-competition-history/ 

4 https://sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/ 

pioneer-robots-1 

https://machinelearningknowledge.ai/popular-image-classification-models-in-imagenet-challenge-ilsvrc-competition-history/
https://machinelearningknowledge.ai/popular-image-classification-models-in-imagenet-challenge-ilsvrc-competition-history/
https://sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/pioneer-robots-1
https://sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/pioneer-robots-1
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Fig. 2. The training process of the ResNet-based DDN model in PWC IA-Driving system. 
 
 
 
 
 
 
 
 

 

Fig. 4. Image cropping. 

 
 
 
 
 
 
 

 
Table 1 

 

 

 

 

Fig. 3. Labeled training images. 

half, and only the lower quarter. The experiment results show that 

using the lower half of images produces the best result for almost all 

models except for the simple two-layer model, where the lower quarter 

images perform slightly better than lower half images (76.15% vs. 

74.87%). 

Image size vs model accuracy. 
 

Model layers Full-size Half-size Quarter-size 

50 layers 96.05% 99.7% 99.21% 

40 layers 95.66% 99.87% 98.42% 

22 layers 94.61% 98.8% 94.87% 

10 layers 92.63% 96.45% 82.50% 

2 layers 69.21% 74.87% 76.18% 

 
 

 

3.1. Data collection and preprocessing 

 
Since the PWC IA-Driving system is designed to provide indoor 

driving assistance for PWCs, we gathered data in various indoor set- 

tings, including hallways, corridors, and staircases, within multiple 

buildings where PWCs are commonly utilized. This data was used for 

the pre-training of the ResNet-based DNN model. 

The collected images are auto-labeled based on the orientation of 

the smartphone’s camera in relation to its surroundings. Specifically, 

if the camera faces the left side of the corridor, the collected images 

are labeled as ‘‘right’’, indicating the PWC should turn right to avoid 

colliding with the wall. If the camera faces the right side of the corridor, 

the collected images are labeled ‘‘left’’, signifying the PWC should turn 

left to avoid colliding with the wall. If the camera is parallel to the 

corridor, the collected images are labeled as "forward’’, indicating that 

the PWC can continue moving forward without changing direction. 

If there are obstacles or stairs in front of the camera, the images 

are labeled as "stop’’, indicating that the PWC should halt to avoid 

collisions. Fig. 3 demonstrates some examples of these labels. 

For this proof of concept, approximately 10,000 images were col- 

lected; 80% of them from different locations were used to train the 

model, and 20% of them were used to test the model. The images in the 

training set and test set were taken in different buildings with different 

architectural styles to demonstrate the generalizability of the system 

better. 

Images taken by a smartphone generally have a 4:3 aspect ratio. 

We initially used the full images to train the model, resulting in non- 

ideal accuracy. We hypothesized that the upper portion of the images 

was less relevant for providing the driving directions, potentially in- 

troducing false correlations to the model. Based on this observation, 

we evaluated the use of three differently-cropped versions of images 

to determine how the different portions of the images may affect the 

model’s accuracy. 

Table 1 shows the results for three different image cropping strate- 

gies over models of different sizes that are based on ResNet (Sec- 

tion 3.2). The cropping strategies include the full-size, only the lower 

Based on the experiment results, all images are cropped in half for 

our approach; only the lower half is kept for model training and actual 

operation, as shown in Fig. 4. After the cropping, the image aspect ratio 

becomes 2:3. It is essential for all images collected, for both training 

and actual operation, to maintain this ratio to ensure that the deep 

learning model produces high-accuracy results. This pre-processing 

step significantly enhances the accuracy of the deep learning model. 

This improvement is likely because the edges of the corridors, where 

the floor meets the wall, are the most robust orientation indicators 

(Section 3.3). 

 

3.2. The deep learning model 

 
Safety is the foremost concern of the PWC IA-Driving system. Af- 

ter conducting thorough background research on image classification 

models (as discussed in Section 2.3), we selected the ResNet (Residual 

Network) architecture as the foundation for our model due to its 

superior accuracy in classifying images. 

Unlike the previous deeper DNN models where layers are stacked, a 

residual network consists of several building blocks, allowing for more 

layers in the DNN without losing accuracy. The ResNet (Residual Net- 

work) architecture comes in several variants, often referred to by their 

depth. Some common variants of ResNet models include ResNet-18, 

ResNet-34, ResNet-50, ResNet-101, ResNet-152, etc. 

Considering the computing power and memory available on most 

smartphones, we selected ResNet-50 as our base model. ResNet-50 

consists of five stages: Stage 1 consists of a convolution layer with 64 

7 × 7 filters. Stage 2 includes 3 building blocks, stage 3 includes 4 

building blocks, stage 4 includes 6 building blocks, and stage 5 includes 

3 building blocks. Each building block consists of one 1 × 1 convolution 

layer, one 3 × 3 convolution layer, and one 1 × 1 convolution layer. 
Ultimately, there are a total of 50 layers, including the final output 

layer. 

ResNet was initially designed to classify images into 1000 cate- 

gories. Therefore, the final output layer consists of 1000 fully connected 

nodes. In our implementation, we modified the ResNet-50 model by 

removing the output layer. We added a global average pooling 2D layer 

and a fully connected layer with four nodes as the final prediction layer. 

These four nodes correspond to the classes ‘‘left’’, ‘‘right’’, ‘‘forward’’, 

and ‘‘stop’’. 

Our modified ResNet-50 model comprises 23,595,908 parameters, 

of which 23,542,788 are trainable, and 53,120 are non-trainable. For 

training, we utilized a computer equipped with two Intel Cascade 

Lake CPUs (40 cores total), 384 GB RAM, and an NVIDIA V100 GPU 

featuring 32 GB of memory, 5120 CUDA Cores, and 640 Tensor Cores. 
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Fig. 5. Model accuracy. Fig. 6. Model loss. 

 

Table 2 

Model performance. 
 

Model layers Accuracy Inference time (ms) 

50 layers 99.7% 510 

40 layers 99.87% 410 

22 layers 98.8% 290 

10 layers 96.45% 180 

2 layers 74.87% 110 

 
 

 

The model was trained using the Keras framework, with a learning 

rate set at 0.001, a mini-batch size of 32, and SGD as the opti- 

mizer, including a momentum of 0.9. The loss function used was 

‘‘categorical_crossentropy’’. Conducting training over 50 epochs and 

incorporating ‘‘EarlyStopping’’ callbacks with ‘‘restore_best_weights’’ 

set to True, the model achieved an impressive test accuracy of 99.7%. 

Despite the remarkable accuracy of 99.7% achieved by the ResNet- 

50-based model, we notice that, apart from its relatively large size, 

the model took an average of 0.5 s to process an image on a Pixel 6 

smartphone without any optimization or hardware acceleration. Since 

simpler models take less time to process images, it would be intriguing 

to find out if simpler models with fewer trainable parameters can 

achieve similar or even better results. With this objective in mind, we 

built four more models based on the ResNet-50 structure: attaching 

the two new layers to the output of stage 4 to form a 40-layer model; 

attaching the two new layers to the output of stage 3 to form a 22- 

layer model; attaching the two new layers to the output of stage 2 

to form a 10-layer model; and attaching the two new layers to the 

output of stage 1 to form a simple 2-layer model with one convolution 

layer. We tested a Pixel 6 smartphone using all four models without 

any model optimizations or hardware acceleration. The accuracy and 

image processing speed of each model are shown in Table 2. From 

the table, we can see that the 40-layer model performs better on 

both accuracy and speed from the five tested models. Considering the 

hardware accelerations available in modern smartphones, processing 

times can be significantly improved, potentially up to ten times faster 

as shown in Table 3. Therefore, there is a lessened need to sacrifice 

accuracy for quicker processing by opting for a simpler model, such as 

the 22-layer one. Our approach focuses on the 40-layer model as our 

target for this project. 

Fig. 5 shows the training accuracy vs. test accuracy over the number 

of epochs, and Fig. 6 shows the training loss vs. test loss over the 

number of epochs for our selected model. The training process has 

no obvious over-fitting, except the test loss increases slightly at epoch 

43. Therefore, our final target model is trained for 43 epochs with an 

accuracy of 99.87%, as shown in Table 2. 

 

3.3. Model interpretability 

 
Although our constructed and trained model achieves commendable 

accuracy in producing driving instructions, it is imperative to conduct 

qualitative analysis to gain insights into its underlying mechanics for 

accurate predictions. This approach will enhance our confidence in the 

model’s potential to generalize effectively across various environments. 

This is crucial for high-risk applications such as self-driving systems, 

where the consequences of wrong predictions can be deadly. Such an 

analysis is necessary to foster trust, particularly if we can confirm that 

the model has learned the correct features and patterns it is supposed 

to identify. 

In general, the explainability of a model’s prediction is linked to the 

collection of features contributing to the decision [38]. In our case, the 

features can be scores of regions in the input image contributing to the 

final decision. There are many interpretation methods for DNN image 

classification models (e.g., Saliency maps [39], Class Activation Map 

(CAM) [40], and Gradient-CAM [41]). Among those approaches, Class 

Activation Map (CAM) based heat maps visualize how the DNN model 

values different parts of the input image when it makes a prediction. 

This is done by highlighting the pixels of the input image most strongly 

supporting the classification decision. By examining the highlighted 

regions of predictions, users will have greater confidence in the model 

if these regions are genuinely meaningful to the prediction. We use such 

heat maps over randomly selected images from each decision type to 

visualize how the model decides. 

To produce the heat map, we modify the model by using its final 

output and the extracted output of the last convolution layer to form a 

dual-output model: one is the output of the convolution layer, and one 

is the prediction result. The convolution layer output is a 7 × 7 × 2048 

tensor, which can be considered as 2048 features of 7 × 7 images. The 

results are based on each prediction’s 2048 features and weight vectors. 

The heat map for an input image combines the input image and the 

product of features, multiplying the weight vector for the predicted 

result (dot product) [42]. We select one image from each of the four 

categories in the test set and produce the heat maps as shown in Fig. 7. 

As seen in the resulting heat maps in Fig. 7, the PWC model uses 

the baseboards or joints between the floor and the wall along the 

corridor as an indication of ‘‘lanes’’. For example, the model should 

predict a ‘‘turning right’’ if the PWC is moving toward the left lane (the 

baseboard on the left). In the corresponding heat map of the prediction, 

the regions of the edge between the wall and floor on the left side 

of the corridor should be highlighted. Conversely, for a prediction of 

moving forward, the edges on both sides should be highlighted in the 

corresponding heat map. For a ‘‘stop’’ prediction, the obstacles should 

be highlighted in the corresponding heat map. These findings confirm 
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Fig. 7. Heat map. 
 
 

 

that the model effectively utilizes relevant features for its predictions. 

Consequently, we can have confidence in the model’s performance and 

ability to generalize to unseen data. 

 

3.4. Model deployment and Android app 

 
TensorFlow Lite (TF-lite), developed by Google, is a lightweight 

variant of TensorFlow explicitly designed for mobile platforms and 

embedded devices with limited resources. Its purpose is to enable the 

deployment of pre-trained TensorFlow models on resource-constrained 

devices such as smartphones. TensorFlow Lite converts the models 

into specialized formats suitable for such devices to achieve this. Op- 

timization methods like operation fusion, quantization, and model 

compression enhance performance during the conversion process. De- 

pending on the available hardware on the smartphone, the transformed 

models can run on a CPU via the CPU delegate or run on a GPU or 

Tensor Chip to further speed up via GPU and the Neural Networks API 

(NNAPI) delegates. We evaluated and compared the performance of the 

models optimized using these methods, ultimately selecting the most 

suitable one for deployment. 

Our model evaluations were performed on a Google Pixel 6 smart- 

phone, equipped with an ARM64-based system-on-chip (SoC) Google 

Tensor Processing Unit (TPU), a 20-core Mali-G78 MP20 GPU with 

8 GB of memory, and an Octa-core CPU. The CPU features a tri-cluster 

configuration of 2+2+4: two Cortex-X1-based performance cores at 

2.8 GHz, two Cortex-A76-based medium cores at 2.2 GHz, and four 

Cortex-A55-based efficiency cores running at 1.8 GHz. The evaluated 

models include four models: the original TensorFlow model, the TF- 

lite converted model without any optimizations, the TF-lite converted 

model with float16 quantization, and the TF-lite converted model with 

dynamic range quantization. We tested the non-TF-lite model using 

Pydroid, a Python environment for Android. To the authors’ knowledge, 

Pydroid does not directly support device accelerations. Hence, our 

testing focused on running the model on the device’s CPU. TF-lite 

is designed with built-in support for executing models on different 

hardware, including CPUs, GPUs, and Tensor Chips. Therefore, we 

assessed the performance of the three TF-lite converted models across 

each of these hardware units through TF-lite’s CPU, GPU, and NNAPI 

delegates. 

As shown in Table 3, The TF-lite converted models demonstrated 

significantly better performance than the original TensorFlow model 

when running with Pydroid, even without optimizations or hardware 

accelerations. Additionally, the sizes of the TF-lite converted models 

have been significantly reduced, simplifying the model development 

process. Among the three TF-lite converted models, the one without any 

optimization performs the best with the NNAPI delegate. It achieves 

a processing speed of nearly 30 images per second, which makes it 

an ideal model for smartphones with advanced Tensor Chip. On the 

other hand, the model with dynamic range quantitation performs the 

best with the CPU delegate. It achieves a processing speed of nearly 18 

images per second, which makes it a perfect choice for smartphones 

without specialized processing capabilities. 

As a proof of concept, we evaluated the navigational application 

using a Pioneer 3-AT robot. The robot was configured to run at speeds 

of up to 700 mm/s to simulate the approximate speed of a wheelchair. 

Additionally, we attached a bracket to hold the smartphone with the 

camera facing the front of the robot. 

We have designed an Android app as shown in Fig. 8. The appli- 

cation includes a user-friendly interface with a four-direction control 

system for effortless manual control of the PWC. Users can easily switch 

between automatic and manual operation modes using a dedicated tog- 

gle switch. Furthermore, the app offers a range of customizable options, 

such as model selection, motor speed adjustments, hardware delegation 

preferences, and various essential tasks. Moreover, the application 

provides real-time feedback on preprocessing time, inference time, and 

decision confidence scores, enhancing the overall user experience. 

The app leverages images captured by the smartphone’s camera. 

It performs crucial preprocessing tasks such as cropping and resizing 

before passing them to the autonomous driving model to generate 

driving instructions, including commands to turn left, turn right, move 

forward, or stop. These instructions are then communicated to the 

robot. 

 

3.5. Safety consideration 

 
Safety is of utmost importance for any driving assistance system. 

Besides model accuracy, we consider response time, which is directly 

related to the PWC’s velocity, to be a major indicator of safety. There 

are speed limits for Powered wheelchairs in most countries. For exam- 

ple, PWCs must not travel faster than 4 mph (1.79 m/s) in the UK.5; in 

the USA, most of PWCs cannot go faster than 5 mph (2.24 m/s)6 With 

a significantly improved processing rate of 25 images/second over the 

previous version on the Pixel 6 using Google’s tensor chip, the system 

could theoretically respond to obstacles as close as 0.07 and 0.09 m, 

respectively. On a lower-end smartphone without any hardware accel- 

eration, the processing rate can still reach 18 images/second, ensuring 

a reaction range of 0.10 m and 0.124 m, respectively. Our model is 

trained to recognize obstacles within a two-meter range. The processing 

 
5 https://www.gov.uk/guidance/the-highway-code/rules-for-users-of- 

powered-wheelchairs-and-mobility-scooters-36-to-46 
6 https://www.wheelchairjunkie.com/speedselection/ 

https://www.gov.uk/guidance/the-highway-code/rules-for-users-of-powered-wheelchairs-and-mobility-scooters-36-to-46
https://www.gov.uk/guidance/the-highway-code/rules-for-users-of-powered-wheelchairs-and-mobility-scooters-36-to-46
https://www.wheelchairjunkie.com/speedselection/
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Table 3 

Model performance running on smartphone (PIXEL 6). 

Model Size (MB) Accuracy CPU delegate (ms) GPU delegate (ms) NNAPI delegate (ms) 

 Preprocessing Inference  Preprocessing Inference  Preprocessing Inference 

Original without TF-lite conversion 51.4 99.87% 2 410  – –  – – 

TF-lite without optimization 25.2 99.87% 2 130  4 85  5 35 

TF-lite optimized with float16 12.6 99.87% 2 128  3 92  2 167 

TF-lite optimized with dynamic range 6.5 99.87% 2 55  3 86  2 57 

 

 

Table 4 

Travel time, hands-free ratio, and attention time of the assistive app under different 

test cases. 

Test case Travel time (s) Hands-free (%) Attention time (s) 

1 (baseline) 24 0 24 

2 24 100 0 

3 27 100 3 

4 35 100 11 

5 31 83.8 7 

6 26 100 0 

7 26 100 0 

 
 

 

outdoor environment,7 we adjust the control of the mobile robot to 

make it run at a speed up to 0.7 m/s. 

 

4.1. Test cases and hands-free driving 
 

 

 

 

 

 

 

 
   

 

Fig. 8. Android app. 
 
 

 

rate is more than sufficient to ensure that a PWC will receive a ‘‘stop’’ 

instruction when encountering an obstacle, even if the PWC is traveling 

at its maximum speed. The unlikelihood of high-speed travel within 

indoor environments further strengthens these safety characteristics. 

Safety is further improved by the app’s control override feature. 

The user can always override the instructions given by the model by 

operating the joy-stick-like buttons of the app. 

 

4. Experimental evaluation and discussion 

 
In this section, we report our experimental evaluation to address the 

following research questions. 

• RQ1: Can the proposed system offer hands-free, and reduced- 

attention control in operating wheelchairs? 

• RQ2: Can the vision-based assistive-driving system with deep 

learning models make timely and safe decisions to control the 

wheelchair’s movement? 

We have implemented a prototype mobile application that inte- 

grates the modified and pre-trained ResNet50 models, the image- 

capturing function, and the control interface for a mobile robot as the 

proof-of-concept design. The mobile application runs on a Google Pixel 

6 smartphone. The Pioneer 3-AT mobile robot has three 12 V/9 Ah 

To answer RQ1, we considered seven different test cases for the 

assistive-driving application described in Section 3.4 with or without 

various obstacles in a 20-meter-long corridor (as detailed below). We 

collected the respective total travel time, the ratio of hands-free time 

(i.e., total travel time minus the manual operation time over the total 

travel time), and attention time (i.e., the time requiring user attention 

due to stops at obstacles, though the user may not need to manually 

operate the robot). The results are shown in Table 4. 

- Test Case 1: The user operated the web-based robot control 

interface to manually operate the robot at its highest speed of 0.7 m/s 

where there is no obstacle in the corridor. It took 24 s to reach the spot 

about 3 m before the end of the corridor. Here, the robot has a safety 

distance of 3 m to avoid bumping into walls. This is the baseline case 

for comparison, where the user needs to operate the robot all the time 

(i.e., 0% hands-free time) with full attention. 

- Test Case 2: In this case, the robot was positioned in parallel 

with the corridor initially and there is no obstacle in the corridor. 

The assistive-driving application running on the Pixel 6 controlled the 

robot’s movement based on the derived driving instructions from the 

images captured in real time through the phone’s camera. The robot 

also took 24 s to reach the exact location about three meters before 

the corridor’s end and stopped. Here, the assistive-driving application 

running on Pixel 6 could navigate the robot at the same speed as a 

human operator in Test Case 1 without any collision and stop in the 

middle of the operation. In this ideal case, no manual operation is 

needed (i.e., 100% hands-free) and no attention of the user is called 

since there is no obstacle and no stop. 

- Test Case 3: This case used the same parameters as in Test Case 

2 except that a stationary obstacle (trash can) was positioned in the 

middle of the corridor, 10 m from the end. In this case, the assistive- 

driving application controlled the robot until the application detected 

the trash can and made the robot stop about two meters before the 

obstacle. We assume that the user will realize and react when the robot 

stops, at which time the user could ask for help to move the obstacle 

away or manually drive the robot around it. In this case, the trash was 

moved away and the robot resumed moving forward under the control 

batteries that can power the robot to reach speeds up to 0.8 m/s. To   

simulate the average operation speed of wheelchairs for indoor spaces, 

where the regulation permits to run up to 4 mph (1.79 m/s) in an 

7 https://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs- 

and-mobility-scooters-36-46 

https://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs-and-mobility-scooters-36-46
https://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs-and-mobility-scooters-36-46
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of the application without the user’s manual operation. It took 27 s 

for the robot to reach the target destination before the corridor’s end, 

where the extra 3 s were due to the robot stopping and requiring the 

attention of the user. 

- Test Case 4: This case used the same parameters as in Test Case 2 

except that the stationary obstacle was replaced with a moving obstacle 

(person) moving across the corridor three times where the distances 

from the robot were 1, 1.5, and 2 m. In this case, the assistive-driving 

application detected all three occurrences of moving obstacles and 

directed the robot to stop safely without collision. Once the person 

walked away (beyond the two-meter range), the application continued 

driving the robot forward. It took 35 s for the robot to reach the target 

destination. The attention of the user was called each time the robot 

stopped for a total of 11 s. However, as with Test Case 3, no manual 

operation was required. 

- Test Case 5: This case used the same parameters as in Test Case 3 

where the stationary obstacle (trash can) was positioned in the middle 

of the corridor, 10 m from the end. Differently from Test Case 3, 

after the robot is stopped under the control of the assistive-driving 

application, instead of moving the trash can away, we emulated the 

case where the user takes control and manually operates the robot to 

move around the trash can. After manual intervention, the assistive- 

driving application took control again and navigated the robot to the 

destination. It took 31 s in total in this case where the user was called 

to attention for 7 s with 5 s used to manually navigate the robot around 

the obstacle. 

- Test Case 6: This case used the same parameters as in Test Case 

2, except that the robot was initially angled slightly towards the left of 

the corridor. The assistive-driving application detected that the robot 

was not parallel with the corridor at the beginning and navigated the 

robot to continuously turn right at reduced speeds until it faced directly 

parallel within the corridor. With the reduced turning speeds and 

refined driving commands derived by the assistive-driving application, 

we observed that there was no over-correcting of the angle during 

the experiment. Once the robot corrected its direction, it proceeded 

forward to the target destination. The robot took 26 s in total in this 

case. No manual operation was necessary, since the PWC did not need 

to stop. 

- Test Case 7: This case used the same parameters as in Test Case 

6, except that the robot was initially angled slightly towards the right 

of the corridor. As in Test Case 6, the robot successfully corrected the 

angle and navigated to the target destination in 26 s. 

 

4.2. Safety 

 

To answer RQ2, we observed the reaction times of our system 

during the test cases where obstacles were placed in front of the robot. 

For all the test cases, the robot was able to stop when it detected 

an obstacle within 1–3 m in front of it. As an eighth test case, we 

observed that the system would also stop if it was driving toward stairs. 

Moreover, to maintain the user’s awareness in case manual override 

is necessary, the mobile application requires the user’s interaction 

(e.g., touching the screen) at least every 35 s. The app will issue a 

warning message if there is no user interaction for more than 30 s, 

followed by issuing a ‘‘stop’’ command to the robot if there is still no 

user interaction for another five seconds. As part of our future work, 

we also plan to incorporate the phone’s screen-side ‘‘selfie’’ camera to 

measure user attention. 

 

5. Discussion 

 
In this section, we discuss the results of the evaluation and potential 

implications. 

5.1. Results and model enhancement 

 
Our modified ResNet model was pre-trained on a server using 

images captured in a variety of indoor environments and deployed to 

an Android-based smartphone. The results of the test cases verified the 

efficacy of our system as the PWC was successfully navigated to its 

destination even in the presence of various obstacles and situations. 

Furthermore, the system exhibited adequate response time to ensure 

safety. In cases where the model makes incorrect driving decisions, 

our system will allow users to override the model-derived driving 

instructions by manually operating the in-app joystick. 

To improve our system in the future, we kept the images that caused 

wrong decisions in the experiments to form a new data set. We plan 

to utilize the new data set to enhance the model using three different 

strategies: (1) Merge the dataset utilized for training the pre-trained 

model with the new dataset to conduct a retraining of the model; (2) 

use only the new data set to retrain the model with a much smaller 

learning rate; (3) create an ensemble model [43] to combine the pre- 

trained model and the new model trained only with the new data set. 

We will also consider using reinforcement learning to train a model. 

 

5.2. Privacy protection 

 
Since the introduction of the smartphone, millions of mobile apps, 

such as Google Maps, Weather apps, and Fitness apps, have been widely 

used to simplify and improve the quality of human lives. As with 

the app presented in this paper, many apps require access to sensors, 

including GPS and cameras, which can produce sensitive personal 

information. To protect privacy, regulations require mobile apps to 

inform each user if such sensitive data is collected and processed. Our 

assistive driving system uses the built-in camera of a smartphone to 

capture images of hallways, which can include the people walking in 

them. Privacy is a natural concern when real-time images are captured 

during operation. In our approach, the risk to privacy is lessened as 

only the lower portion of the images are saved for training and test 

purposes, and those cropped images contain no personally identifiable 

info such as human faces. Furthermore, the images captured in real- 

time are processed locally on the phone without interaction with other 

cloud services, and they are discarded immediately after the model 

produces the driving instructions. 

 

6. Conclusions and future work 

 
This paper describes an affordable, Intelligent Assistant driving (IA- 

driving) system that has the potential to be used in power wheelchairs 

to assist those with mobility impairments. We demonstrate that a 

smartphone app-based system could provide a highly accessible, low- 

cost solution to assist users in operating PWCs in a hands-free and 

attention-free manner. 

As a continuation of this work, we will work to incorporate incre- 

mental learning techniques utilizing the data captured as the PWC user 

overrides the model decisions as discussed in Section 5.1 to improve 

the model. We will also expand the training data to include more ob- 

stacles in different environments, including home and outdoor settings. 

Finally, we will explore the use of virtual and augmented reality and 

Reinforcement Learning to improve the system. 
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