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ABSTRACT

This research introduces a cost-effective, smartphone-powered, computer-vision-based system for Power
Wheelchair Intelligent Assistive Driving (PWC IA-Driving). This system enables the safe, hands-free operation
of a Power Wheelchair (PWC) with reduced attention required from the user in indoor environments, thereby
casing the burden on disabled individuals and lessening their stress. Our objective is to provide an affordable
and practical solution that can be easily incorporated into existing PWCs. The system leverages a customized
and pre-trained ResNet-based model on a smartphone to derive driving commands from real-time imagery
captured by the phone’s camera. These instructions are then conveyed to the PWC via a control interface
connected to the smartphone. We have developed a prototype of this assistive driving system on a Pixel-6
Android phone and tested its feasibility on a mobile robot as a proof-of-concept. Our evaluations indicate that
the smartphone can process up to 25 images per second. This rapid processing rate allows for the generation

of driving instructions in real time, enabling the mobile robot to navigate safely at reasonable speeds within

the test environment, while requiring minimal user intervention.

1. Introduction

The US Census Bureau reported in 2013 that around 3.6 million
individuals over the age of 15 used wheelchairs to assist with mobility
in day-to-day tasks.! Power wheelchairs (PWCs) have been widely
utilized to improve the independence of people with disabilities. In
order to alleviate the operation difficulties, PWCs usually provide
convenient joystick-type interfaces that can be easily operated with
hands. Recently, new technologies have enabled a variety of hands-free
controls, including using a headrest attached to a wheelchair, using
breath by inhaling (sip) and exhaling (puff), or using face and mouth
movement to operate a PWC.

However, for people with severe cognitive, motion, or sensory
issues, it is still a difficult task to operate PWCs to their fullest extent.
In particular, 17% of PWC users have reported severe pain, where
over 50% of them attributed the pain to the operations of PWCs [1].
Furthermore, many PWC users complain about fatigue, insecurities,
and general inconvenience while navigating through (mostly indoor)
public spaces for an extended period. A fully automated PWC with a

navigation system would offer an ideal solution. Unfortunately, such
navigation systems are still in the design and development phases
and are thus not accessible to socially disadvantaged demographics.?
Furthermore, they often require specific types of wheelchairs to accom-
modate the navigation software and related hardware components to
ensure compatibility for a wheelchair to navigate through spaces safely.
With the advancement of computer-vision technology, there have
been many research studies focused on hands-free interfaces for PWCs,
such as the use of head movements [2] to ease the operation of PWCs
and enable different navigation schemes for indoor environments [3—
5]. However, there is limited research on low-cost, assistive driving
systems that can control PWCs in a semi-automatic fashion with re-
duced attention from users beyond hands-free operations. To achieve
this goal, we present an affordable and intelligent assistive driving
system that utilizes computer vision on a smartphone, leveraging its
built-in camera for power wheelchairs (PWCs). The system is designed
with availability and safety as top priorities.
Our work addresses the above concerns by focusing on the design

and development of an affordable, mobile application-based assistive
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driving solution that can be used on existing power wheelchairs to
reduce the need for manual operations significantly. The system har-
nesses the affordability and widespread availability of popular smart-
phones with built-in cameras, utilizing deep learning models for au-
tomation. Mobile applications (apps) running on smartphones have
become increasingly valuable, allowing users to streamline their lives
through various functions, including media sharing and GPS naviga-
tion. These capabilities are made possible by the cameras and other
sensors present in modern mobile devices, such as smartphones. Simi-
larly, deep-learning-based innovations have been shown to outperform
human beings in areas such as image classification, object detection,
and voice recognition. For example, Man et al. [6] compared the
performance of a CNN model and human observers for detecting lesions
and concluded that the CNN model outperformed the human observers.
Our framework integrates the capability of deep learning image clas-
sification with the availability of feature-rich smartphones to provide
wheelchair users assistance in moving through indoor spaces safely.

The PWC IA-Driving system is designed as a driving assistance tool
rather than a fully automated solution. It offers hands-free navigation
in primarily obstacle-free indoor environments like hallways and corri-
dors. Users of the PWC must still manually control the vehicle in areas
crowded or dense with obstacles. When in more open spaces, such as
uncrowded hallways or lengthy corridors, the system can take on most
of the driving tasks, thereby providing substantial stress relief for the
PWC user.

This work builds upon our previous work titled “A Vision-Based
Low-Cost Power Wheelchair Assistive Driving System for Smartphones”,
published in the Proc. of the IEEE International Conference on Embed-
ded Systems and Software (ICESS) 2022 [7]. In the conference paper,
we introduced a vision-based solution designed for smartphones to aid

in navigating powered wheelchairs (PWCs) in an indoor environment.

We have significantly extended the work reported in our confer-
ence paper. The main differences and novel contributions are outlined

below.

* We have re-designed the system by incorporating pre-trained
Deep Neural Network (DNN) models through the TensorFlow
Lite — a streamlined version of TensorFlow specifically tailored
for mobile platforms and resource-constrained embedded devices.
The newly developed app efficiently leverages the hardware ac-
celeration capabilities of smartphones, achieving a processing
speed of up to 25 images per second. This improvement enhances
both the safety and robustness of the system. See Section 3-D
(pages 6 to 7).

To address the wide range of hardware architectures present in

modern smartphones, we utilized various methods to generate
multiple DNN models, each optimized for CPU, GPU, and PTU
operations on these devices. App users now have the option to
choose from a list of deployed models to optimize performance.

To enhance the confidence in the model’s potential to generalize
effectively across various environments (a requirement for high-
risk applications), we employed class activation maps to validate
that the DNN model effectively learns the appropriate features
and patterns to generate correct driving instructions.

In summary, the PWC IA-Driving system presented in this paper
brings forth several noteworthy contributions: (1) a vision-based system
to assist the operation of PWCs in indoor environments; (2) the de-
ployment of a deep learning model compressed and optimized using a
variety of techniques provided by TensorFlow-lite on an Android smart-
phone and successful use of images captured by the built-in camera
to provide real-time driving instructions; (3) the design of an Android
app that interfaces with the PWC user, the deep learning model, and
the PWC to safely facilitate navigation. To evaluate this vision-based,
low-cost PWC assistive driving system, we measure the accuracy and
response time of the system as well as the (reduced) attention time and
hands-free period of PWC users.
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The remainder of the paper is organized as follows. In Section 2,
we provide a review of the closely related work and background that
underpins our approach. Section 3 outlines the innovative design of a
vision-based, low-cost assistive driving system suitable for smartphone
deployment. Section 4 describes the evaluation of the assistive driving
system, and Section 5 discusses the possible enhancement of the model.
Finally, we conclude the paper and outline plans for future work in
Section 6.

2. Background and closely related work

In this section, we survey closely related work and provide the
background information necessary to motivate the need for our work.

2.1. Navigation for wheelchairs

Automated driving vehicles (ADVs) have drawn much attention in
the past decade, and many industry leaders, including Google, Tesla,
and Mobileye, have invested in ADVs. Many research works in the area
of ADVs have been published [8—12]. However, automated or assistive
driving technology for PWC systems has not been extensively explored.
Below are some works that are closely related to this field. Kutbi et al.
studied a hands-free wheelchair control approach based on egocen-
tric computer vision and evaluated the scheme with 21 subjects [2].
Compared to joystick and chin-based control, their quantitative and
qualitative evaluation results show that the vision-based control ap-
proach is viable for hands-free indoor use. However, their approach
requires an Egocentric camera and an on-board laptop to support
the complex computation to detect head movement. Similarly, other
hand-free driving systems for power wheelchairs were developed [13],
focusing on alternative means than joysticks to operate a PWC. Notable
examples include voice control [14], chin-operated joystick [15], and
head-tilt control [16], which significantly improved the usability of
power wheelchairs for specific groups of people with disabilities. Unlike
our approach, all of the above approaches require users to operate the
power chairs with full attention while driving.

Navigation systems have been developed to assist the vision im-
[17=20]. These
approaches utilize techniques such as sign recognition, obstacle de-

paited while walking in indoor environments

tection, and object positioning to improve user navigation. Working
toward similar goals, Ohya et al. [21] proposed a vision-based nav-
igation system for mobile robots in 1998. That approach was based
on traditional image-processing algorithms without the use of modern
deep-learning models. To our knowledge, such works have not been
adapted to PWCs.

Kulhanek et al. proposed a reinforcement learning-based approach
to navigate a robot to a target location in a virtual environment [22].
The model was trained to find a way to arrive at the destination given
by an image. Our approach is different from this path planning ap-
proach in that it does not require a path map or similar instrumentation
to the environment being navigated.

Lane-detection-based driving assistance systems for automobiles
have been well-studied [23—25] and, at a cursory level, is similar to
driving a PWC along corridors inside a building. However, unlike high-
ways, indoor environments do not follow strict rules and regulations
(e.g., lane width, road markings, etc.), so fewer assumptions can be
made about the environment in the context of PWCs.

2.2. End-to-end autonomous vehicles

Numerous Automated Driving Vehicle (ADV) control systems are
composed of various modules, each dedicated to a distinct aspect of
autonomous driving. However, as outlined by Le Mero et al. [20],
there exists an alternative approach involving a single, distinct module.
This module is tasked with directly converting raw sensory inputs
(such as those from cameras, LIDAR, etc.) into control signals (like
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steering and braking commands). Systems employing this methodology
are commonly referred to as end-to-end autonomous driving systems.
While modular systems may offer easier verification, they tend to lack
computational efficiency. In contrast, end-to-end systems are generally
more computationally efficient.

In end-to-end Automated Driving Vehicles (ADVs), a single mod-
ule often employs Deep Learning techniques to train the system for
the complex tasks associated with driving. This training is primarily
conducted through Imitation Learning [27], a process where human
experts supply data (expert policy) to guide the learning system. The
system then attempts to learn the optimal policy by observing and
emulating the decisions made by the expert. Essentially, Imitation
Learning involves acquiring skills by replicating the actions of someone
experienced.

Bojarski et al. [28] presents their end-to-end self-driving system
that utilizes a convolutional neural network (CNN) trained to map
raw pixels from a single front-facing camera directly to steering com-
mands. This system autonomously learns internal representations, using
solely the human steering angle as the training signal. Adopting the
end-to-end approach, NVIDIA developed PilotNet, a neural network-
based system that calculates steering angles from images of the road
ahead [29,30]. Utilizing only camera inputs and without the aid of
lidar, radar, or maps, the most advanced version of PilotNet is capable
of autonomously steering a vehicle for an average of approximately 500
km on highways before requiring human intervention.

Despite PilotNet’s success in facilitating ADVs on highways, the
system cannot be directly applied to PWC driving systems due to con-
siderable differences in the driving environment, such as the absence
of lane markings in indoor settings.

2.3. Image classification

Navigation systems primarily rely on an image classification tech-
nique to analyze the images captured by the camera and generate
driving instructions. The use of neural networks to classify images has
been studied for decades. In 1998, LeCun et al. presented the first con-
volutional neural network, LeNet-5, to classify images of handwritten
digits and achieved great success [31]. The success of LeNet-5 resulted
in great interest in studying neural networks. However, given the
limited computational power of the time, the architectures of the neural
networks in the early 2000s remained shallow. As a result, the error
rate of image classification with those models remained high until 2012
when Alex Krizhevsky’s team built the famous AlexNet [32] which
leveraged the power of GPUs to train the network consisting of eight
layers, including five convolutional layers and three fully-connected
layers. AlexNet achieved a top-5 error rate (the rate at which a model
includes correctly labeled images in its five most confident predictions)
of 15.3% and won the ILSVRC 2012 competition.’ In later competitions,
ZFNet [33], considered the extended version of Alexnet, won in 2013
with a top-5 error rate of 11.2%. Inception V1 (GoogLeNet), a 22-
layer DNN using 1 X 1-sized filters and Relu to reduce the computation
costs, won the competition in 2014 with a top-5 error rate of 6.67%.
In the same competition of 2014, VGG [34] won second place with
a top-5 error rate of 7.3% and subsequently became one of the most
popular models for image classification. ResNet emerged as the victor
in ILSVRC 2015 across image classification, detection, and localization.
During the competition, ResNet achieved a validation top-5 error rate
of 3.57%, surpassing the average human classification error rate. Due
to this remarkable performance, our model is built upon ResNet, as
detailed in Section 3.2.

Our approach involves the training and deployment of a single
deep learning model directly on a smartphone. Such a combination

3 https://machinclcarningkm»\\chgc.ai/p »pular-image-classification

models-in-imagenet-challenge-ilsvre-competition-history/
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Fig. 1. The PWC Intelligent Assistive Driving (PWC TA-Driving) system.
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has been successfully implemented for other works such as navigation
and speech recognition [35-37]. Despite the significant differences in
driving environments and speed limits between Automated Driving
Vehicles (ADVs) and Personal Wheelchair (PWC) driving systems, our
approach aligns with the principles of end-to-end autonomous vehicle
systems. To the best of our knowledge, ours is the first implementation
that integrates the Android platform specifically to cater to the unique

constraints inherent in PWCs.

3. PWC IA-drive framework

As shown in Fig. 1, the proposed system comprises an Android
app deployed on an Android smartphone. The app incorporates a pre-
trained ResNet-based DDN model and code for image processing, PWC
interfacing, and user input management. The app accesses essential
Android sensors, such as the camera and wireless interface, through
the Android platform APIL. It is important to note that advanced mod-
ification of the Android platform (e.g., rooting) is not necessary, and
only permissions for the camera and network are required.

The flow of data from the PWC’s environment through the pre-
trained model to the PWC is illustrated in Fig. 1. Starting from the
top right, real-time images of the environment are captured by the app
through the Android device’s physical camera. Subsequently, the app
performs necessary preprocessing steps, including cropping (as detailed
in Section 3.1) and down-sampling, to prepare the data for the ResNet-
based DNN model. The app then forwards this preprocessed data to the
model.

The pre-trained model processes the data and generates one of the
four driving instructions, which are turning left, turning right, moving
forward, or stopping. These driving instructions are then transmitted
to the PWC using an implementation of a universal device interface.
This interface can be customized to the specific PWC that the app is
configured to communicate with. In our proof-of-concept experiments,
we utilized a WiFi connection to interact with a REST API implemented
on a Pioneer 3-AT robot.*

Fig. 2 shows the derivation of driving commands by training the
ResNet-based DDN model. We train the model using images captured by
a smartphone to automatically generate the four driving instructions:

turning left, turning right, moving forward, and stopping.

4 https:/ /sites.google.com/a/nd.edu/discoverlab/robot-platform/ugv/

pioneer-robots-1
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Fig. 2. The training process of the ResNet-based DDN model in PWC IA-Driving system.
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Fig. 3. Labeled training images.

Table 1

Image size vs model accuracy.

Model layers Full-size Half-size Quarter-size
50 layers 96.05% 99.7% 99.21%
40 layers 95.66% 99.87% 98.42%
22 layers 94.61% 98.8% 94.87%
10 layers 92.63% 96.45% 82.50%
2 layers 69.21% 74.87% 76.18%

3.1. Data collection and preprocessing

Since the PWC IA-Driving system is designed to provide indoor
driving assistance for PWCs, we gathered data in various indoor set-
tings, including hallways, corridors, and staircases, within multiple
buildings where PWCs are commonly utilized. This data was used for
the pre-training of the ResNet-based DNN model.

The collected images are auto-labeled based on the orientation of
the smartphone’s camera in relation to its surroundings. Specifically,
if the camera faces the left side of the corridor, the collected images
are labeled as “right”, indicating the PWC should turn right to avoid
colliding with the wall. If the camera faces the right side of the corridor,
the collected images are labeled “left”, signifying the PWC should turn
left to avoid colliding with the wall. If the camera is parallel to the
corridor, the collected images are labeled as "forward”, indicating that
the PWC can continue moving forward without changing direction.
If there are obstacles or stairs in front of the camera, the images
are labeled as "stop”, indicating that the PWC should halt to avoid
collisions. Fig. 3 demonstrates some examples of these labels.

For this proof of concept, approximately 10,000 images were col-
lected; 80% of them from different locations were used to train the
model, and 20% of them were used to test the model. The images in the
training set and test set were taken in different buildings with different
architectural styles to demonstrate the generalizability of the system
better.

Images taken by a smartphone generally have a 4:3 aspect ratio.
We initially used the full images to train the model, resulting in non-
ideal accuracy. We hypothesized that the upper portion of the images
was less relevant for providing the driving directions, potentially in-
troducing false correlations to the model. Based on this observation,
we evaluated the use of three differently-cropped versions of images
to determine how the different portions of the images may affect the
model’s accuracy.

Table 1 shows the results for three different image cropping strate-
gies over models of different sizes that are based on ResNet (Sec-
tion 3.2). The cropping strategies include the full-size, only the lower
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Cropped Image

Original Image

Fig. 4. Image cropping.

half, and only the lower quarter. The experiment results show that
using the lower half of images produces the best result for almost all
models except for the simple two-layer model, where the lower quarter
images perform slightly better than lower half images (76.15% vs.
74.87%).

Based on the experiment results, all images are cropped in half for
our approach; only the lower half is kept for model training and actual
operation, as shown in Fig. 4. After the cropping, the image aspect ratio
becomes 2:3. It is essential for all images collected, for both training
and actual operation, to maintain this ratio to ensure that the deep
learning model produces high-accuracy results. This pre-processing
step significantly enhances the accuracy of the deep learning model.
This improvement is likely because the edges of the corridors, where
the floor meets the wall, are the most robust orientation indicators
(Section 3.3).

3.2. The deep learning model

Safety is the foremost concern of the PWC IA-Driving system. Af-
ter conducting thorough background research on image classification
models (as discussed in Section 2.3), we selected the ResNet (Residual
Network) architecture as the foundation for our model due to its
superior accuracy in classifying images.

Unlike the previous deeper DNN models where layers are stacked, a
residual network consists of several building blocks, allowing for more
layers in the DNN without losing accuracy. The ResNet (Residual Net-
work) architecture comes in several variants, often referred to by their
depth. Some common variants of ResNet models include ResNet-18,
ResNet-34, ResNet-50, ResNet-101, ResNet-152, etc.

Considering the computing power and memory available on most
smartphones, we selected ResNet-50 as our base model. ResNet-50
consists of five stages: Stage 1 consists of a convolution layer with 64
7 X 7 filters. Stage 2 includes 3 building blocks, stage 3 includes 4
building blocks, stage 4 includes 6 building blocks, and stage 5 includes
3 building blocks. Each building block consists of one 1 X 1 convolution
layer, one 3 X 3 convolution layer, and one 1 X 1 convolution layer.
Ultimately, there are a total of 50 layers, including the final output
layer.

ResNet was initially designed to classify images into 1000 cate-
gories. Therefore, the final output layer consists of 1000 fully connected
nodes. In our implementation, we modified the ResNet-50 model by
removing the output layer. We added a global average pooling 2D layer
and a fully connected layer with four nodes as the final prediction layer.
These four nodes correspond to the classes “left”, “right”, “forward”,
and “stop”.

Our modified ResNet-50 model comprises 23,595,908 parameters,
of which 23,542,788 are trainable, and 53,120 ate non-trainable. For
training, we utilized a computer equipped with two Intel Cascade
Lake CPUs (40 cores total), 384 GB RAM, and an NVIDIA V100 GPU
featuring 32 GB of memory, 5120 CUDA Cores, and 640 Tensor Cores.
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Table 2

Model performance.

Model layers Accuracy Inference time (ms)
50 layers 99.7% 510
40 layers 99.87% 410
22 layers 98.8% 290
10 layers 96.45% 180
2 layers 74.87% 110

The model was trained using the Keras framework, with a learning
rate set at 0.001, a mini-batch size of 32, and SGD as the opti-
mizer, including a momentum of 0.9. The loss function used was

“categorical_crossentropy”. Conducting training over 50 epochs and

incorporating “EarlyStopping” callbacks with “restore_best_weights”

set to True, the model achieved an impressive test accuracy of 99.7%.

Despite the remarkable accuracy of 99.7% achieved by the ResNet-

50-based model, we notice that, apart from its relatively large size,
the model took an average of 0.5 s to process an image on a Pixel 6
smartphone without any optimization or hardware acceleration. Since
simpler models take less time to process images, it would be intriguing
to find out if simpler models with fewer trainable parameters can
achieve similar or even better results. With this objective in mind, we
built four more models based on the ResNet-50 structure: attaching
the two new layers to the output of stage 4 to form a 40-layer model;
attaching the two new layers to the output of stage 3 to form a 22-
layer model; attaching the two new layers to the output of stage 2
to form a 10-layer model; and attaching the two new layers to the
output of stage 1 to form a simple 2-layer model with one convolution
layer. We tested a Pixel 6 smartphone using all four models without
any model optimizations or hardware acceleration. The accuracy and
image processing speed of each model are shown in Table 2. From
the table, we can see that the 40-layer model performs better on
both accuracy and speed from the five tested models. Considering the
hardware accelerations available in modern smartphones, processing
times can be significantly improved, potentially up to ten times faster
as shown in Table 3. Therefore, there is a lessened need to sacrifice
accuracy for quicker processing by opting for a simpler model, such as
the 22-layer one. Our approach focuses on the 40-layer model as our
target for this project.

Fig. 5 shows the training accuracy vs. test accuracy over the number
of epochs, and I'ig. 6 shows the training loss vs. test loss over the
number of epochs for our selected model. The training process has
no obvious over-fitting, except the test loss increases slightly at epoch
43. Therefore, our final target model is trained for 43 epochs with an
accuracy of 99.87%, as shown in Table 2.
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3.3. Model interpretability

Although our constructed and trained model achieves commendable
accuracy in producing driving instructions, it is imperative to conduct
qualitative analysis to gain insights into its underlying mechanics for
accurate predictions. This approach will enhance our confidence in the
model’s potential to generalize effectively across various environments.
This is crucial for high-risk applications such as self-driving systems,
where the consequences of wrong predictions can be deadly. Such an
analysis is necessary to foster trust, particularly if we can confirm that
the model has learned the correct features and patterns it is supposed
to identify.

In general, the explainability of a model’s prediction is linked to the
collection of features contributing to the decision [38]. In our case, the
features can be scores of regions in the input image contributing to the
final decision. There are many interpretation methods for DNN image
classification models (e.g., Saliency maps [39], Class Activation Map
(CAM) [40], and Gradient-CAM [41]). Among those approaches, Class
Activation Map (CAM) based heat maps visualize how the DNN model
values different parts of the input image when it makes a prediction.
This is done by highlighting the pixels of the input image most strongly
supporting the classification decision. By examining the highlighted
regions of predictions, users will have greater confidence in the model
if these regions are genuinely meaningful to the prediction. We use such
heat maps over randomly selected images from each decision type to
visualize how the model decides.

To produce the heat map, we modify the model by using its final
output and the extracted output of the last convolution layer to form a
dual-output model: one is the output of the convolution layer, and one
is the prediction result. The convolution layer outputis a 7 X 7 X 2048
tensor, which can be considered as 2048 features of 7 X 7 images. The
results are based on each prediction’s 2048 features and weight vectors.
The heat map for an input image combines the input image and the

product of features, multiplying the weight vector for the predicted
result (dot product) [42]. We select one image from each of the four

categories in the test set and produce the heat maps as shown in Fig. 7.

As seen in the resulting heat maps in Fig. 7, the PWC model uses

the baseboards or joints between the floor and the wall along the
corridor as an indication of “lanes”. For example, the model should

predict a “turning right” if the PWC is moving toward the left lane (the
baseboard on the left). In the corresponding heat map of the prediction,
the regions of the edge between the wall and floor on the left side
of the corridor should be highlighted. Conversely, for a prediction of
moving forward, the edges on both sides should be highlighted in the

corresponding heat map. For a “stop” prediction, the obstacles should
be highlighted in the corresponding heat map. These findings confirm
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Fig. 7. Heat map.

that the model effectively utilizes relevant features for its predictions.
Consequently, we can have confidence in the model’s performance and
ability to generalize to unseen data.

3.4. Model deployment and Android app

TensorFlow Lite (TF-lite), developed by Google, is a lightweight
variant of TensorFlow explicitly designed for mobile platforms and
embedded devices with limited resources. Its purpose is to enable the
deployment of pre-trained TensorFlow models on resource-constrained
devices such as smartphones. TensorFlow Lite converts the models
into specialized formats suitable for such devices to achieve this. Op-
timization methods like operation fusion, quantization, and model
compression enhance performance during the conversion process. De-
pending on the available hardware on the smartphone, the transformed
models can run on a CPU via the CPU delegate or run on a GPU or
Tensor Chip to further speed up via GPU and the Neural Networks API
(NNAPI) delegates. We evaluated and compared the performance of the
models optimized using these methods, ultimately selecting the most
suitable one for deployment.

Our model evaluations were performed on a Google Pixel 6 smart-
phone, equipped with an ARMG64-based system-on-chip (SoC) Google
Tensor Processing Unit (TPU), a 20-core Mali-G78 MP20 GPU with
8 GB of memory, and an Octa-core CPU. The CPU features a tri-cluster
configuration of 2+2+4: two Cortex-X1-based performance cores at
2.8 GHz, two Cortex-A76-based medium cores at 2.2 GHz, and four
Cortex-A55-based efficiency cores running at 1.8 GHz. The evaluated
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models include four models: the original TensorFlow model, the TF-
lite converted model without any optimizations, the TF-lite converted
model with floatl6 quantization, and the TF-lite converted model with
dynamic range quantization. We tested the non-TF-lite model using
Pydroid, a Python environment for Android. To the authors’ knowledge,
Pydroid does not directly support device accelerations. Hence, our
testing focused on running the model on the device’s CPU. TF-lite
is designed with built-in support for executing models on different
hardware, including CPUs, GPUs, and Tensor Chips. Therefore, we
assessed the performance of the three TF-lite converted models across
each of these hardware units through TF-lite’s CPU, GPU, and NNAPI
delegates.

As shown in Table 3, The TF-lite converted models demonstrated
significantly better performance than the original TensorFlow model
when running with Pydroid, even without optimizations or hardware
accelerations. Additionally, the sizes of the TF-lite converted models
have been significantly reduced, simplifying the model development
process. Among the three TF-lite converted models, the one without any
optimization performs the best with the NNAPI delegate. It achieves
a processing speed of nearly 30 images per second, which makes it
an ideal model for smartphones with advanced Tensor Chip. On the
other hand, the model with dynamic range quantitation performs the
best with the CPU delegate. It achieves a processing speed of nearly 18
images per second, which makes it a perfect choice for smartphones
without specialized processing capabilities.

As a proof of concept, we evaluated the navigational application
using a Pioneer 3-AT robot. The robot was configured to run at speeds
of up to 700 mm/s to simulate the approximate speed of a wheelchair.
Additionally, we attached a bracket to hold the smartphone with the
camera facing the front of the robot.

We have designed an Android app as shown in Fig. 8. The appli-
cation includes a user-friendly interface with a four-direction control
system for effortless manual control of the PWC. Users can easily switch
between automatic and manual operation modes using a dedicated tog-
gle switch. Furthermore, the app offers a range of customizable options,
such as model selection, motor speed adjustments, hardware delegation
preferences, and various essential tasks. Moreover, the application
provides real-time feedback on preprocessing time, inference time, and
decision confidence scores, enhancing the overall user experience.

The app leverages images captured by the smartphone’s camera.
It performs crucial preprocessing tasks such as cropping and resizing
before passing them to the autonomous driving model to generate
driving instructions, including commands to turn left, turn right, move
forward, or stop. These instructions are then communicated to the
robot.

3.5. Safety consideration

Safety is of utmost importance for any driving assistance system.
Besides model accuracy, we consider response time, which is directly
related to the PWC’s velocity, to be a major indicator of safety. There
are speed limits for Powered wheelchairs in most countries. For exam-
ple, PWCs must not travel faster than 4 mph (1.79 m/s) in the UK. in
the USA, most of PWCs cannot go faster than 5 mph (2.24 m/s)¢ With
a significantly improved processing rate of 25 images/second over the
previous version on the Pixel 6 using Google’s tensor chip, the system
could theoretically respond to obstacles as close as 0.07 and 0.09 m,
respectively. On a lower-end smartphone without any hardware accel-
eration, the processing rate can still reach 18 images/second, ensuring
a reaction range of 0.10 m and 0.124 m, respectively. Our model is
trained to recognize obstacles within a two-meter range. The processing

5 https:/ /www.gov.uk/guidance/the-highway-code/rules-for-users-of-
powered-wheelchairs-and-mobility-scooters-36-to-46

6 https:/ /www.wheelchairjunkie.com/speedselection/
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Table 3
Model performance running on smartphone (PIXEL 6).
Model Size (MB) Accuracy CPU delegate (ms) GPU delegate (ms) NNAPI delegate (ms)
Preprocessing Inference Preprocessing Inference Preprocessing Inference
Original without TF-lite conversion 51.4 99.87% 2 410 - - - -
TF-lite without optimization 252 99.87% 2 130 4 85 5 35
TF-lite optimized with float16 12.6 99.87% 2 128 3 92 2 167
TF-lite optimized with dynamic range 6.5 99.87% 2 55 3 86 2 57
<a 308G 8 <0 Table 4
Travel time, hands-free ratio, and attention time of the assistive app under different
A' Wheelchair Driving é\_ Al Wheelchair Driving é\_ test cases.
Test case Travel time (s) Hands-free (%) Attention time (s)
forward 0.92 1 (baseline) 24 0 24
2 24 100 0
3 27 100 3
Auto @ 4 35 100 11
5 31 83.8 7
6 26 100 0
7 26 100 0
outdoor environment,” we adjust the control of the mobile robot to
make it run at a speed up to 0.7 m/s.
Preprocessing Time 2ms
right 0.85 Inference Time 136 ms 4.1. Test cases and hands-free driving
Threshold B 020 g . .
Auto '@ To answer RQ1, we considered seven different test cases for the
Threads = CPU assistive-driving application described in Section 3.4 with or without
GPU various obstacles in a 20-meter-long corridor (as detailed below). We
Motor Speed = NNAPI collected the respective total travel time, the ratio of hands-free time
(i.e., total travel time minus the manual operation time over the total
Delegate CPU - . . . . . .. .
travel time), and attention time (i.e., the time requiring user attention
Model 40 layers N due to stops at obstacles, though the user may not need to manually

a. Main view. b. Configuration View.

Fig. 8. Android app.

rate is motre than sufficient to ensure that a PWC will receive a “stop”
instruction when encountering an obstacle, even if the PWC is traveling
at its maximum speed. The unlikelihood of high-speed travel within
indoor environments further strengthens these safety characteristics.

Safety is further improved by the app’s control override feature.
The user can always override the instructions given by the model by
operating the joy-stick-like buttons of the app.

4. Experimental evaluation and discussion

In this section, we report our experimental evaluation to address the
following research questions.

* RQ1: Can the proposed system offer hands-free, and reduced-
attention control in operating wheelchairs?

* RQ2: Can the vision-based assistive-driving system with deep
learning models make timely and safe decisions to control the
wheelchair’s movement?

We have implemented a prototype mobile application that inte-
grates the modified and pre-trained ResNet50 models, the image-
capturing function, and the control interface for a mobile robot as the
proof-of-concept design. The mobile application runs on a Google Pixel
6 smartphone. The Pioneer 3-AT mobile robot has three 12 V/9 Ah
batteries that can power the robot to reach speeds up to 0.8 m/s. To
simulate the average operation speed of wheelchairs for indoor spaces,
where the regulation permits to run up to 4 mph (1.79 m/s) in an

operate the robot). The results are shown in Table 4.

- Test Case 1: The user operated the web-based robot control
interface to manually operate the robot at its highest speed of 0.7 m/s
where there is no obstacle in the corridor. It took 24 s to reach the spot
about 3 m before the end of the corridor. Here, the robot has a safety
distance of 3 m to avoid bumping into walls. This is the baseline case
for comparison, where the user needs to operate the robot all the time
(i.e., 0% hands-free time) with full attention.

- Test Case 2: In this case, the robot was positioned in parallel
with the corridor initially and there is no obstacle in the corridor.
The assistive-driving application running on the Pixel 6 controlled the
robot’s movement based on the derived driving instructions from the
images captured in real time through the phone’s camera. The robot
also took 24 s to reach the exact location about three meters before
the corridor’s end and stopped. Here, the assistive-driving application
running on Pixel 6 could navigate the robot at the same speed as a
human operator in Test Case 1 without any collision and stop in the
middle of the operation. In this ideal case, no manual operation is
needed (i.e., 100% hands-free) and no attention of the user is called
since there is no obstacle and no stop.

- Test Case 3: This case used the same parameters as in Test Case
2 except that a stationary obstacle (trash can) was positioned in the
middle of the corridor, 10 m from the end. In this case, the assistive-
driving application controlled the robot until the application detected
the trash can and made the robot stop about two meters before the
obstacle. We assume that the user will realize and react when the robot
stops, at which time the user could ask for help to move the obstacle
away or manually drive the robot around it. In this case, the trash was
moved away and the robot resumed moving forward under the control

7 https://www.nidirect.gov.uk/articles/rules-users-powered-wheelchairs-

and-mobility-scooters-36-46
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of the application without the user’s manual operation. It took 27 s
for the robot to reach the target destination before the corridor’s end,
where the extra 3 s were due to the robot stopping and requiring the
attention of the user.

- Test Case 4: This case used the same parameters as in Test Case 2
except that the stationary obstacle was replaced with a moving obstacle
(person) moving across the corridor three times where the distances
from the robot were 1, 1.5, and 2 m. In this case, the assistive-driving
application detected all three occurrences of moving obstacles and
directed the robot to stop safely without collision. Once the person
walked away (beyond the two-meter range), the application continued
driving the robot forward. It took 35 s for the robot to reach the target
destination. The attention of the user was called each time the robot
stopped for a total of 11 s. However, as with Test Case 3, no manual
operation was required.

- Test Case 5: This case used the same parameters as in Test Case 3
where the stationary obstacle (trash can) was positioned in the middle
of the corridor, 10 m from the end. Differently from Test Case 3,
after the robot is stopped under the control of the assistive-driving
application, instead of moving the trash can away, we emulated the
case where the user takes control and manually operates the robot to
move around the trash can. After manual intervention, the assistive-
driving application took control again and navigated the robot to the
destination. It took 31 s in total in this case where the user was called
to attention for 7 s with 5 s used to manually navigate the robot around
the obstacle.

- Test Case 6: This case used the same parameters as in Test Case
2, except that the robot was initially angled slightly towards the left of
the corridor. The assistive-driving application detected that the robot
was not parallel with the corridor at the beginning and navigated the
robot to continuously turn right at reduced speeds until it faced directly
parallel within the corridor. With the reduced turning speeds and
refined driving commands derived by the assistive-driving application,
we observed that there was no over-correcting of the angle during
the experiment. Once the robot corrected its direction, it proceeded
forward to the target destination. The robot took 26 s in total in this
case. No manual operation was necessary, since the PWC did not need
to stop.

- Test Case 7: This case used the same parameters as in Test Case
6, except that the robot was initially angled slightly towards the right
of the corridor. As in Test Case 06, the robot successfully corrected the
angle and navigated to the target destination in 26 s.

4.2. Safety

To answer RQ2, we observed the reaction times of our system
during the test cases where obstacles were placed in front of the robot.
For all the test cases, the robot was able to stop when it detected
an obstacle within 1-3 m in front of it. As an eighth test case, we
observed that the system would also stop if it was driving toward stairs.
Moreover, to maintain the uset’s awareness in case manual override
is necessary, the mobile application requires the user’s interaction
(e.g., touching the screen) at least every 35 s. The app will issue a
warning message if there is no user interaction for more than 30 s,
followed by issuing a “stop” command to the robot if there is still no
user interaction for another five seconds. As part of our future work,
we also plan to incorporate the phone’s screen-side “selfie” camera to
measure user attention.

5. Discussion

In this section, we discuss the results of the evaluation and potential

implications.
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5.1. Results and model enhancement

Our modified ResNet model was pre-trained on a server using
images captured in a variety of indoor environments and deployed to
an Android-based smartphone. The results of the test cases verified the
efficacy of our system as the PWC was successfully navigated to its
destination even in the presence of various obstacles and situations.
Furthermore, the system exhibited adequate response time to ensure
safety. In cases where the model makes incorrect driving decisions,
our system will allow users to override the model-derived driving
instructions by manually operating the in-app joystick.

To improve our system in the future, we kept the images that caused
wrong decisions in the experiments to form a new data set. We plan
to utilize the new data set to enhance the model using three different
strategies: (1) Merge the dataset utilized for training the pre-trained
model with the new dataset to conduct a retraining of the model; (2)
use only the new data set to retrain the model with a much smaller
learning rate; (3) create an ensemble model [43] to combine the pre-
trained model and the new model trained only with the new data set.
We will also consider using reinforcement learning to train a model.

5.2. Privacy protection

Since the introduction of the smartphone, millions of mobile apps,
such as Google Maps, Weather apps, and Fitness apps, have been widely
used to simplify and improve the quality of human lives. As with
the app presented in this paper, many apps require access to sensors,
including GPS and cameras, which can produce sensitive personal
information. To protect privacy, regulations require mobile apps to
inform each user if such sensitive data is collected and processed. Our
assistive driving system uses the built-in camera of a smartphone to
capture images of hallways, which can include the people walking in
them. Privacy is a natural concern when real-time images are captured
during operation. In our approach, the risk to privacy is lessened as
only the lower portion of the images are saved for training and test
purposes, and those cropped images contain no personally identifiable
info such as human faces. Furthermore, the images captured in real-
time are processed locally on the phone without interaction with other
cloud services, and they are discarded immediately after the model
produces the driving instructions.

6. Conclusions and future work

This paper describes an affordable, Intelligent Assistant driving (IA-
driving) system that has the potential to be used in power wheelchairs
to assist those with mobility impairments. We demonstrate that a
smartphone app-based system could provide a highly accessible, low-
cost solution to assist users in operating PWCs in a hands-free and
attention-free manner.

As a continuation of this work, we will work to incorporate incre-
mental learning techniques utilizing the data captured as the PWC user
overrides the model decisions as discussed in Section 5.1 to improve
the model. We will also expand the training data to include mote ob-
stacles in different environments, including home and outdoor settings.
Finally, we will explore the use of virtual and augmented reality and
Reinforcement Learning to improve the system.
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