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Abstract—This paper investigates variable-length stop-
feedback codes for memoryless channels in point-to-point,
multiple access, and random access communication scenarios.
The proposed codes employ L decoding times ni,n2,...,nr
for the point-to-point and multiple access channels and KL + 1
decoding times for the random access channel with at most K
active transmitters. In the point-to-point and multiple access
channels, the decoder uses the observed channel outputs to
decide whether to decode at each of the allowed decoding times
ni,...,nr, at each time telling the encoder whether or not to
stop transmitting using a single bit of feedback. In the random
access scenario, the decoder estimates the number of active
transmitters at time no and then chooses among decoding times
Nk,1,---,Nk 1 if it believes that there are & active transmitters.
In all cases, the choice of allowed decoding times is part of
the code design; given fixed value L, allowed decoding times
are chosen to minimize the expected decoding time for a given
codebook size and target average error probability. The number
L in each scenario is assumed to be constant even when the
blocklength is allowed to grow; the resulting code therefore
requires only sparse feedback. The central results are asymptotic
approximations of achievable rates as a function of the error
probability, the expected decoding time, and the number of
decoding times. A converse for variable-length stop-feedback
codes with uniformly-spaced decoding times is included for the
point-to-point channel.

Index  Terms—Variable-length  coding, multiple-access,
random-access, feedback codes, sparse feedback, second-order
analysis, channel dispersion, moderate deviations, sequential
hypothesis testing.

I. INTRODUCTION

Although feedback does not increase the capacity of mem-
oryless, point-to-point channels (PPCs) [3], feedback can
simplify coding schemes and improve the speed of approach
to capacity with blocklength. Examples that demonstrate this
effect include Horstein’s scheme for the binary symmetric
channel (BSC) [4] and Schalkwijk and Kailath’s scheme for
the Gaussian channel [5], both of which leverage full channel
feedback to simplify coding in the fixed-length regime. Wagner
et al. [6] show that feedback improves the second-order
term in the achievable rate as a function of blocklength for
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fixed-rate coding over discrete, memoryless, point-to-point
channels (DM-PPCs) that have multiple capacity-achieving
input distributions giving distinct dispersions.

A. Literature Review on Variable-Length Feedback Codes

The benefits of feedback increase for codes with multiple
decoding times (called variable-length or rateless codes). In
[7], Burnashev shows that feedback significantly improves the
optimal error exponent of variable-length codes for DM-PPCs.
In [8], Polyanskiy er al. extend the work of Burnashev to
the finite-length regime with non-vanishing error probabilities,
introducing variable-length feedback (VLF) codes and deriv-
ing achievability and converse bounds on their performance.
Tchamkerten and Telatar [9] show that Burnashev’s optimal
error exponent is achieved for a family of BSCs and Z
channels, where the cross-over probability of the channel is
unknown. For the BSC, Naghshvar et al. [10] propose a VLF
coding scheme with a novel encoder called the small-enough-
difference (SED) encoder and derive a non-asymptotic achiev-
ability bound. Their scheme is an alternative to Burnashev’s
scheme to achieve the optimal error exponent. Yang et al. [11]
extend the SED encoder to the binary asymmetric channel,
of which the BSC is a special case, and derive refined non-
asymptotic achievability bounds for the binary asymmetric
channel. Guo and Kostina [12] propose an instantaneous SED
code for a source whose symbols progressively arrive at the
encoder in real time.

The feedback in VLF codes can be limited in its amount
and frequency. Here, the amount refers to how much feedback
is sent from the receiver at each time feedback is available;
the frequency refers to how many times feedback is available
throughout the communication epoch. The extreme cases in the
frequency are no feedback and feedback after every channel
use. The extreme cases in the amount are full feedback and
stop feedback. With full feedback, at time n;, the receiver
sends all symbols received until that time, Y™, which can
be used by the transmitter to encode the (n;y1)-th symbol.
With stop feedback, the receiver sends a single bit of feedback
to inform the transmitter whether or not to stop transmit-
ting. Unlike full-feedback codes, variable-length stop-feedback
(VLSF) codes employ codewords that are fixed when the code
is designed; that is, feedback affects how much of a codeword
is sent but does not affect the codeword’s value.

In [8], Polyanskiy et al. define VLSF codes with feedback
after every channel use. The result in [8, Th. 2] shows that
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variable-length coding improves the first-order term in the
asymptotic expansion of the maximum achievable message
set size from NC' to %, where C' is the capacity of the
DM-PPC, N is the average decoding time (averaging is with
respect to both the random message and the random noise),
and e is the average error probability. The second-order term
achievable for VLF codes is O(log N), which means that VLF
codes have zero dispersion and that the convergence to the
capacity is much faster than that achieved by the fixed-length
codes [13], [14]. In [15], Altug et al. modify the VLSF coding
paradigm by replacing the average decoding time constraint
with a constraint on the probability that the decoding time
exceeds a target value; the benefit in the first-order term does
not appear under this probabilistic delay constraint, and the
dispersion is no longer zero. A VLSF scenario with noisy
feedback and a finite largest available decoding time is studied
in [16]. For VLSF codes, Forney [17] shows an achievable
error exponent that is strictly better than that of fixed-length,
no-feedback codes and is strictly worse than Burnashev’s error
exponent for variable-length full-feedback codes. Ginzach et
al. [18] derive the exact error exponent of VLSF codes for the
BSC.

Bounds on the performance of VLSF codes that allow feed-
back after every channel use are derived for several network
communication problems. Truong and Tan [19], [20] extend
the results from [8] to the Gaussian multiple access channel
(MAC) under an average power constraint. Trillingsgaard et
al. [21] study the VLSF scenario where a common message
is transmitted across a K -user discrete memoryless broadcast
channel. Heidari et al. [22] extend Burnashev’s work from the
DM-PPC to the DM-MAC, deriving lower and upper bounds
on the error exponents of VLF codes for the DM-MAC.
Bounds on the performance of VLSF codes for the DM-MAC
with an unbounded number of decoding times appear in [23].
The achievability bounds for K -transmitter MAC in [20] and
[23] employ 2/ —1 simultaneous information density threshold
rules.

While high rates of feedback are impractical for many
applications — especially wireless applications on half-duplex
devices — most prior work on VLSF codes (e.g., [8], [15],
[19]-[23]) considers the densest feedback possible, using feed-
back at each of the (at most) n,ax time steps before decoding,
where npyax is the largest blocklength used by a given VLSF
code. To consider more limited feedback scenarios, let L
denote the number of potential decoding times in a VLSF
code, a number that we assume to be independent of the
blocklength. We further assume that feedback is available only
at the L fixed decoding times nq,...,nr, which are fixed in
the code design and known by the transmitter and receiver
before the start of transmission. In [24], Kim et al. choose the
decoding time for each message from the set {d,2d, ..., Ld}
for some positive integer d and L < oo, In [25], Williamson et
al. numerically optimize the values of L decoding times and
employ punctured convolutional codes and a Viterbi algorithm.
In [26], Vakilinia et al. introduce a sequential differential
optimization (SDO) algorithm to optimize the choices of the
L potential decoding times ni,...,nr, approximating the
random decoding time 7 by a Gaussian random variable.

Vakilinia et al. apply the SDO algorithm to non-binary low-
density parity-check codes over binary-input, additive white
Gaussian channels; the mean and variance of 7 are determined
through simulation. Heidarzadeh er al. [27] extend [26] to
account for the feedback rate and apply the SDO algorithm
to random linear codes over the binary erasure channel. In
[28], we develop a communication strategy for a random
access scenario with a total of K transmitters; in this scenario,
neither the transmitters nor the receiver knows the set of
active transmitters, which can vary from one epoch to the
next. The code in [28] is a VLSF code with decoding times
ng < nj < --- < ng. The decoder decodes messages only if
it decides at that time that k& out of total K transmitters are
active at time ny. It informs the transmitters about its decision
by sending a one-bit signal at each time n; until the time at
which it decodes. We show that our random access channel
(RAC) code with sparse stop feedback achieves performance
identical in the capacity and dispersion terms to that of the
best-known code without feedback for a MAC in which the set
of active transmitters is known a priori. An extension of [28§]
to low-density parity-check codes appears in [29]. Building
upon an earlier version of the present paper [1], Yang et
al. [30] construct an integer program to minimize the upper
bound on the average blocklength subject to constraints on
the average error probability and the minimum gap between
consecutive decoding times. By employing a combination of
the Edgeworth expansion [31, Sec. XVI.4] and the Petrov
expansion (Lemma 2), that paper develops an approximation
to the cumulative distribution function of the information
density random variable ¢+(X™; Y™); the numerical comparison
of their approximation and the empirical cumulant distribution
function shows that the approximation is tight even for small
values of n. Their analysis uses this tight approximation to
numerically evaluate the non-asymptotic achievability bound
(Theorem 1, below) for the BSC, binary erasure channel, and
binary-input Gaussian PPC for all L < 32. The resulting
numerical results show performance that closely approaches
Polyanskiy’s VLSF achievability bound [8] with a relatively
small L. For the binary erasure channel, [30] also proposes
a new zero-error code that employs systematic transmission
followed by random linear fountain coding; the proposed code
outperforms Polyanskiy’s achievability bound.

Sparse feedback is known to achieve the optimal error
exponent for VLF codes. Yamamoto and Itoh [32] construct
a two-phase scheme that achieves Burnashev’s optimal error
exponent [7]. Although their scheme allows an unlimited
number of feedback instances and decoding times, it is
sparse in the sense that feedback is available only at times
an,n, (1 + a)n,2n,... for some o € (0,1) and integer n.
Lalitha and Javidi [33] show that Burnashev’s optimal error
exponent can be achieved by only L = 3 decoding times by
truncating the Yamamoto—Itoh scheme.

Decoding for VLSF codes can be accomplished by running
a sequential hypothesis test (SHT) on each possible message.
At each increasingly larger stopping times, the SHT compares
a hypothesis Hy corresponding to a particular transmitted
message to the hypothesis H; corresponding to the marginal
distribution of the channel output. In [34], Berlin et al. derive



a bound on the average stopping time of an SHT. They then
use this bound to derive a non-asymptotic converse bound for
VLF codes. This result is an alternative proof for the converse
of Burnashev’s error exponent [7].

B. Contributions of This Work

Like [25]-[27], this paper studies VLSF codes under a
finite constraint L on the number of decoding times. While
[25]-[27] focus on practical coding and performance, our
goal is to derive new achievability bounds on the asymptotic
rate achievable by VLSF codes between L = 1 (the fixed-
length regime analyzed in [13], [35]) and L = npax (the
classical variable-length regime defined in [8, Def. 1] where
all decoding times 1, 2, ..., nyax are available).

Our contributions are summarized as follows.

1) We derive second-order achievability bounds for VLSF
codes over DM-PPCs, DM-MACs, DM-RACs, and the
Gaussian PPC with maximal power constraints. These
bounds are presented in Theorems 2, 5, 6, and 7, respec-
tively. In our analysis for each problem, we consider the
asymptotic regime where the number of decoding times
L is fixed while the average decoding time N grows
without bound, i.e., L = O(1) with respect to N. Each
of our asymptotic bounds follows from the correspond-
ing non-asymptotic bound that employs an information-
density threshold rule with a stop-at-time-zero procedure.
Asymptotically optimizing the values of the L decoding
times yields the given results. By viewing the proposed
decoder as a special case of SHT-based decoders, we
show a more general non-asymptotic achievability bound;
Theorem 8 employs an arbitrary SHT to decide whether
a message is transmitted.

2) Linking the error probability of any given VLSF code to
that of an SHT, in Theorem 9, we prove a converse bound
in the spirit of the meta-converse bound from [13, Th. 27].
Analyzing the new bound with infinitely many uniformly-
spaced decoding times over Cover—Thomas symmetric
channels, in Theorem 3, we prove a converse bound for
VLSF codes; the resulting bound is tight up to its second-
order term. Unfortunately, since analyzing our meta-
converse bound is challenging in the general case of an
arbitrary DM-PPC and an arbitrary number L of decoding
times (see [36, Th. 3.2.3] for the structure of optimal
SHTs with finitely many decoding times), whether or not
the second-order term is tight in the general case remains
an open question.

Below, we detail these contributions. Our main result shows
that for VLSF codes with L = O(1) > 2 decoding times over
a DM-PPC, message set size M satisfying
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is achievable. Here log L)(-) denotes the L-fold nested loga-
rithm, IV is the average decoding time, € is the average error
probability, and C' and V' are the capacity and dispersion

of the DM-PPC, respectively. Similar formulas arise for the
DM-MAC and DM-RAC, where C' and V are replaced by

the sum-rate mutual information and the sum-rate disper-
sion. The speed of convergence to & depends on L. It
is slower than the convergence to C in the fixed-length
scenario, which has second-order term O(v/N) [13]. The
L = 2 case in (1) recovers the rate of convergence for the
variable-length scenario without feedback, which has second-
order term O(y/Nlog N) [8, Proof of Th. 1]; that rate is
achieved with ny = 0. The nested logarithm term in (1)
arises because after writing the average decoding time as
E[r] =ni + Zf;ll (nit1 — ny)P [T > n;], the decoding time
choices in (22), below, satisfy (1,41 —n;)P [7 > n;] = o(,/n1)
for i € [L — 1], making the effect of each decoding time
on the average decoding time asymptotically similar. We then
use the SDO algorithm introduced in [26] to show that our
particular choice of ni,...,ny is second-order optimal (see
Appendix B.II). Despite the order-wise dependence of the rate
of convergence on L, (1) grows so slowly with L that it
suggests little benefit to choosing a large L. For example, when
L =4, \/Nlog,_1)(IV) behaves very similarly to O(V'N)
for practical values of N (e.g., N € [10%,10°]). Notice,
however, that the given achievability result provides a lower
bound on the benefit of increasing L; bounding the benefit
from above requires a converse result. We note, however, that
the numerical results in [30] support our conclusion from
the asymptotic achievability bound (1) that indicates that the
improvement over achievable log M from L to L+1 decoding
times diminishes as L increases.

For the PPC and MAC, the feedback rate of our code is
n% if the decoding time is ng; for the RAC, that rate becomes
(kfln)k# if the decoding time is n . In both cases, our
feedback rate approaches 0 as the decoding time grows. In
contrast, VLSF codes like in [8], [17] use feedback rate 1 bit
per channel use. In VLSF codes for the RAC, the decoder
decodes at one of the available times ny 1, ng,2, . .., 7, if it
estimates that the number of active transmitters is k # 0; we
reserve a single decoding time ng for decoding the possibility
that no active transmitters are active. Theorem 6 extends the
RAC code in [28] from L =1 to any L > 2.

The converse result in Theorem 3 shows that in order to
achieve (1) with evenly spaced decoding times, one needs
atleastL:Q( m
our optimized codes achieve (1) with a finite L that does not
grow with the average decoding time /N, which highlights the
importance of optimizing the values of decoding times in a
VLSF code.

decoding times. In contrast,

Table I summarizes the literature on VLSF codes and the
new results from this work, showing how they vary with the
number of decoding times and the channel type.

In what follows, Section II gives notation and definitions.
Sections III-VI introduce variable-length sparse stop-feedback
codes for the DM-PPC, DM-MAC, DM-RAC, and the Gaus-
sian PPC, respectively, and present our main theorems for
those channel models; Section VII concludes the paper. The
proofs appear in the Appendix.



TABLE I

THE PERFORMANCE OF VLSF CODES ACCORDING TO THE NUMBER OF DECODING TIMES L AND THE CHANNEL TYPE

Second-order term
Number of decoding times | Channel type First-order term
Lower bound Upper bound
Fixed-length, no-feedback
¢ DM-PPC NC —VNVQ~Ye) [13] —VNVQ~e) [13]
(L=1)
Variable-length NC %
DM-PPC Ne —y/Nlog(;_1)(N){%  (Theorem 2) +0(1) 8]
(1< L< )
Variable-length NC
DM-PPC Ne —log N +0O(1) [8] +0(1) 8]
(L = o0)
Fixed-length, no-feedback
DM-MAC NIk —V/NVkQ~1(e) [37] +O(VN) [38]
(L=1)
Variable-length NI %
DM-MAC e —y/Nlog_1)(N)1£  (Theorem 5) +0(1) [20]
(1< L < o)
Variable-length NI
DM-MAC Dl —log N4+ 0(1) eq. (44) +0(1)  [20]
(L = o)
Variable-length Gaussian MAC
TCEA —O(VN) [20] +0(1)  [20]
(L = o0) (average power)
(L=1 DM-RAC NI VN VeQ 7 (ex) 28] +O(VNi)  [38]
Gaussian RAC
(L=1) N C(kP) —/NeVie(PYQ ™ (er)  [39] +O(v/Ng) [38]
(maximal power)
NIy Vi
(1< L< o) DM-RAC T —\/Nk log(r,—1)(Nk) 7=,  (Theorem 6) +0(1) [20]
Variable-length Gaussian PPC
NC(P) —y/Nlogp_1y(MEE2 (Theorem 7) +O(1)  [19]
(1< L< ) (maximal power)
Variable-length Gaussian PPC
- e —log N +0(1) [19] +0(1) [19]
(L = o) (average power)
II. PRELIMINARIES if lim, o |f(n)/g(n)| > 0. The distribution of a random
A Notation variable X is denoted by Px; N (p,V) denotes the Gaussian
. o 1 and 4] o [y gn A distribution with mean p and covariance matrix V, Q(-)
( or any ;;osm(;/e igteAge(rs and 7, [k] _) {1}}’1 o ’11 },t'x _f represents the complementary standard Gaussian cumulative
T1,...,%Tn), and 7 = (x4, Tq+1, .- ., Tp). The collection o distributi . N 1 oo { t2}
) . . istribution function ) = — expy—5% ¢ dt, and
length-n vectors from the transmitter index set A is denoted by Q(z) Var J. z XD 2

" £ (2: a € A); we drop the superscript n if n = 1, i.e.,
xy = z.4. The collection of non-empty strict subsets of a set
A is denoted by P(A) £ {B: B C A,0 < |B| < |A]}. All-
zero and all-one vectors are denoted by 0 and 1, respectively;
dimension is determined from the context. The sets of positive
integers and non-negative integers are denoted by Z and Z,
respectively. We write 2" = y™ if there;,T exists a permutation

7 of 2™ such that w(2") = y™, and ™ # y" if such a permu-
tation does not exist. The identity matrix of dimension 7 is
denoted by |,,. The Euclidean norm of vector ™ is denoted by
lz"|| £ /> i, 2. Unless specified otherwise, all logarithms
and exponents have base e. Information is measured in nats.
The standard O(:), o(:), and €(-) notations are defined as
f(n) = Olg(n)) if limsup,, ., |f(n)/gn)| < oo, f(n) =
o(g(n)) if lim, o |£(n)/g(n)] = 0, and f(n) = Q(g(n))

Q~1(-) is its functional inverse. We define the nested logarithm
function

log(x) ifL=1 >0
log(log(_1y(z)) if L >2, log_q(z) > 0;
)

1>

10%@)(117)

log(1,)(x) is undefined for all other (L, x) pairs.

We denote the Radon-Nikodym derivative of distribution
P with respect to distribution @ by g—g. We denote the
relative entropy and relative entropy variance between P

and @ by D(P|Q) = E[log45(X)| and V(P|Q) =
Var [1og %(X )] , respectively, where X ~ P. The o-algebra

generated by random variable X is denoted by F(X). A
random variable X is called arithmetic if there exists some



d > 0 such that P[X € dZ] = 1. The largest d that
satisfies this condition is called the span. If such a d does
not exist, then the random variable is non-arithmetic. Denote
X+ £ max{0, X} and X~ £ —min{0, X} for any random
variable X.

B. Discrete Memoryless Channel and Information Density

A DM-PPC is defined by the triple (X, Py x,Y), where
A& is the finite input alphabet, Py-x is the channel tran-
sition kernel, and ) is the finite output alphabet. The n-
letter input-output relationship of the channel is given by
Py xn (y"|2"™) = TTi; Py|x (yilz:) for all n, 2™, and y".

The n-letter information density of a channel Py |x under
input distribution Pxn~ is defined as

Pyn ‘Xn (yn|xn)
Pyn(ym)
where Py« is the Y™ marginal of Pxn» Pyn xn. If the inputs

Wz";y") = log

3)

X1, Xo,..., X, are independently and identically distributed
(i.i.d.) according to Px, then
Wa™sy") = o), )
i=1

where the single-letter information density is given by

Pyix(ylz)
N Y|x\Y
(zyy) = log —————, zekX,ye). (5)
() Py (y)
The mutual information and dispersion are defined as
I(X:;Y) £ER(X;Y)] ©)
V(X3Y) = Var ol(X;Y)], )

respectively, where (X,Y) ~ Px Py x.
Let P denote all distributions on the alphabet X'. The
capacity of the DM-PPC is

C= I(X;Y 8
fax I{X;Y), (®)

and the dispersion of the DM-PPC is
V= min V(X;Y). 9)

PxeP: I(X;Y)=C

ITII. VLSF CODES FOR THE DM-PPC
A. VLSF Codes with L Decoding Times

We consider VLSF codes with a finite number of potential
decoding times n; < ng < --- < nr over a DM-PPC. The
receiver chooses to end the transmission at the first time ny €
{n1,...,nz} that it is ready to decode. The transmitter learns
of the receiver’s decision via a single bit of feedback at each of
times nq,...,ny. Feedback bit “0” at time n; means that the
receiver is not yet ready to decode, and transmission should
continue; feedback bit “1” means that the receiver can decode
at time n;, which signals the transmitter to stop. Using this
feedback, the transmitter and the receiver are synchronized and
aware of the current state of the transmission at all times. Since
ny is the last decoding time available, the receiver always
makes a final decision if time ny, is reached. Unlike [7], [25],
[32], we do not allow re-transmission of the message after

time ny. Since the transmitter and the receiver both know
the values of decoding times, the receiver does not need to
send feedback at the last available time n;. We assume that
the transmitter and the receiver know the channel transition
kernel Py |x. We employ average decoding time and average
error probability constraints. Definition 1, below, formalizes
our code description.

Definition 1: Fix ¢ € (0,1), positive integers L and M,
and a positive scalar N. An (N, L, M, €)-VLSF code for the
DM-PPC comprises

1) non-negative integer-valued decoding times n; < ... <
nr,

2) afinite alphabet ¢/ and a probability distribution Py on U
defining a common randomness random variable U that
is revealed to both the transmitter and the receiver before
the start of the transmission,’

3) an encoding function f,,: U x [M] — X, for each n =
1,...,np, that assigns a codeword

fu,m)"t & (f(u,m), ...

sfnp (u,m))  (10)

to each message m € [M] and common randomness

instance u € U,

4) a non-negative integer-valued random stopping time 7 €
{n1,...,nr} for the filtration generated by {U, Y™}~ |
that satisfies an average decoding time constraint

E[r] <N, 1D

5) and a decoding function g,,: U x Y™ — [M] U {e}
for each ¢ € [L] (where e is the erasure symbol used
to indicate that the receiver is not ready to decode),
satisfying an average error probability constraint

Plg-(U,YT) # W] <, (12)
where the message W is equiprobably distributed on the
set [M], and X7 = f(U, W)".

Recall that Definition 1 with L = 1 recovers the fixed-
length no-feedback codes in [13]. As in [8], [21], [28], we here
need common randomness because the traditional random-
coding argument does not prove the existence of a single
(deterministic) code that simultaneously satisfies conditions
(11) and (12) on the code. Therefore, randomized codes
are necessary for our achievability argument; here, || < 2
suffices [28, Appendix D].

We define the maximum achievable message set size
M*(N, L,¢) with L decoding times, average decoding time
N, and average error probability € as

M*(N,L,¢) 2 max{M: an (N,L, M,e)

VLSF code exists}. (13)

The maximum achievable message set size for VLSF codes
with L decoding times ny, ..., ny, that are restricted to belong
to a subset N C Z> is denoted by M*(N, L, e, N).

I'The realization u of U specifies the codebook.



B. Related Work

The following discussion summarizes prior asymptotic ex-
pansions of the maximum achievable message set size for the
DM-PPC.

a) M*(N,1,e): For L = 1 and € € (0,1/2), Polyanskiy er
al. [13, Th. 49] show that

log M*(N,1,¢) = NC — VNVQ () + O(log N). (14)

For € € [1/2,1), the dispersion V in (9) is replaced by

the maximum dispersion V. = max V(X;Y).
Px: (X;Y)=C

The O(log N) term is lower bounded by O(1) and upper
bounded by 1 log N + O(1). For nonsingular DM-PPCs,
i.e., the channels that satisfy E[Var[o(X;Y)|Y]] > 0
for the distributions that achieve the capacity C and the
dispersion V, the O(log N) term is equal to & log N+O(1)
[40]. Moulin [41] derives lower and upper bounds on the
O(1) term in the asymptotic expansion when the channel
is nonsingular with non-lattice information density.

b) M*(N,o00,¢): For VLSF codes with L = np.x = oo,
Polyanskiy et al. [8, Th. 2] show that for € € (0, 1),
NC
log M™*(N, 00, €) > T~ log N + O(1) (15)
—€
N h
log M*(N, 00, €) < I ¢ + 1b(6), (16)
—¢€ —¢€

where hy(e) £ —eloge — (1 — €)log(1 — €) is the binary
entropy function (in nats). The bounds in (15)—(16) indicate
that the e-capacity (the first-order achievable term) is

1
lim inf — log M*(N = . 17
im inf - log (NN, 00,€) T a7)
The achievable dispersion term is zero, i.e., the second-
order term in the fundamental limit in (15)—(16) is o(v/N).

C. Our Achievability Bounds

Theorem 1, below, is our non-asymptotic achievability
bound for VLSF codes with L decoding times.

Theorem 1: Fix a constant 7y, decoding times n; < --- <
nr, and a positive integer M. For any positive number N and
e € (0,1), there exists an (N, L, M,€)-VLSF code for the
DM-PPC (X, Py|x,)) with

e SPLX"Y™) <q]+ (M —1)exp{—v}, (18)
L—1

N <ni+ Y (g —n)Pp(X"5Y™) <9, (19)
=1

where Px». is a product of distributions of L sub-vectors of
lengths n; —n;_1, j € [L], ie.,

L
Pxnp (a"%) = [ Pynyoaerm; (@7719),(20)
j=1

where ng = 0.

Proof sketch:  Polyanskiy et al. [13] interpret the
information-density threshold test for a fixed-length code as
a collection of hypothesis tests aimed at determining whether
the channel output is (Hy) or is not (H;) dependent on a given

codeword. In our coding scheme, we use SHTs in a similar
way. The strategy is as follows.

The VLSF decoder at each time nq,...,ny runs M SHTs
between a hypothesis H; that the channel output results
from transmission of the m-th codeword, m € [M], and the
hypothesis H; that the channel output is drawn from the un-
conditional channel output distribution. The former indicates
that the decoder hypothesizes that message m is the sent
message. The latter indicates that the decoder hypothesizes
that message m has not been sent and thus can be removed
from the list of possible messages to decode. Transmission
stops at the first time n; that hypothesis Hj is accepted for
some message m or the first time n; that hypothesis H; is
accepted for all m. If the latter happens, decoding fails and
we declare an error. Transmission continues as long as one of
the SHTs has not accepted either Hy or Hy. If Hy is declared
for multiple messages at the same decoding time, then we stop
and declare an error. Since ny, is the last available decoding
time, the SHTs are forced to decide between H, and H; at
time nr. Once Hy or H; is decided for some message, the
decision cannot be reversed at a later time.

The optimal SHT has the form of a two-sided information
density threshold rule, where the thresholds depend on the
individual decision times [36, Th. 3.2.3]. To simplify the
analysis, we employ sub-optimal SHTs for which the upper
threshold is set to a value v € R that is independent of the
decoding times and the lower thresholds are set to —oo for
ng < nr and to v for ny = nr. That is, we declare H;
for a message if and only if the corresponding information
density never reaches 7y at any of decoding times ni,...,nr.
Theorem 1 analyzes the error probability and the average
decoding time of the sub-optimal SHT-based decoder above,
and extends the achievability bound in [8, Th. 3] that considers
L = oo to the scenario where only a finite number of decoding
times is allowed. The bound on the average decoding time (19)
is obtained by expressing the bound on the average decoding
time in [8, eq. (27)] using the fact that the stopping time T
is in {ny,...,nr}. When we compare Theorem 1 with [8,
Th. 3], we see that the error probability bound in (18) has
an extra term P [¢(X™;Y"%) < ~]. This term appears since
transmission always stops at or before time n .

Theorem 1 is related to [24, Lemma 1], which similarly
treats L < oo but requires nyy; — ny = d for some constant
d > 1, and [25, Cor. 2], where the transmitter retransmits

the message if decoding attempts at times ni,...,ny are
unsuccessful.
See Appendix A for the proof details.
|

Theorem 2, stated next, is our second-order achievability
bound for VLSF codes with L = O(1) decoding times over
the DM-PPC. The proof of Theorem 2 builds upon the non-
asymptotic bound in Theorem 1.

Theorem 2: Fix an integer L = O(1) > 2 and real numbers
N > 0 and € € (0,1). For the DM-PPC with V' > 0, the
maximum message set size (13) achievable by (N, L, M, ¢)-
VLSF codes satisfies

%

N
log M* (N, L,¢) > RS \/Nlog(Ll)(N)—
1—e€ 1—e€



N
+ 0 —rlll I 21
< 1Og(L—l) (N)> @D

The decoding times {n1,...,ny} that achieve (21) satisfy the

equations

log M = n,C — \/ng log(z—¢41)(ne)V —logne + O(1)
(22)

for £ €{2,...,L}, and ny = 0.

Proof sketch: Inspired by [8, Th. 2], the proof employs
a time-sharing strategy between an (N', L —1, M, €,y )-VLSF
code whose smallest decoding time is nonzero and a simple
“stop-at-time-zero” procedure that does not involve any code
and decodes an error at time 0. Specifically, we set the VLSF
code as the one that achieves the bound in Theorem 1, and we
use the VLSF code and the stop-at-time-zero procedure with
probabilities 1 — p and p, respectively, where p and €y satisfy

e’N:; (23)
v N'log N’
€—€y
= 24
p ey (24)

The error probability of the resulting code is bounded by e,
and the average decoding time is

/ AT/ N’
N_N(1—p)_N(1—e)+o<,/10g—N,>. (25)

For the scenario where L = 0o, we again use time-sharing with
the stop-at-time-zero procedure in the achievability bound in
[8, Th. 2] with €y = % instead of (23). In the asymptotic
regime L = O(1), the choice in (23) results in a better second-
order term than that achieved by € = %

In the analysis of Theorem 1, we need to bound the
probability P [¢(X™L; YE) < v] = € (1 — o(1)). Since this
probability decays sub-exponentially to zero due to (23), we
use a moderate deviations result from [42, Ch. 8] to bound
this probability. Such a tool was not needed in the proof of
[8, Th. 2] for L = oo because when n; = oo, the term
Po(X™E;Y™E) < v] disappears from (18), and the average
decoding time is bounded via martingale analysis instead of
(19). Finally, we apply Karush-Kuhn-Tucker conditions to
show that the decoding times in (22) yield a value of log M
that is the maximal value achievable by the non-asymptotic

bound up to terms of order O (4 /W). The details of
|

the proof appear in Appendix B.

The non-asymptotic achievability bounds obtained from the
coding scheme described in the proof sketch of Theorem 2
are illustrated for the BSC in Fig. 1. For L € {2,3,4}, the
decoding times nq,...,ny are chosen as described in (22)
with the O(1) term ignored, and €/ in the stop-at-time-zero
procedure is replaced with the right-hand side of (18). For
L =1, Fig. 1 shows the random coding union bound in [13,
Th. 16], which is a non-asymptotic achievability bound for
fixed-length no-feedback codes. For L = oo, Fig. 1 shows the
non-asymptotic bound in [8, eq. (102)]. The curves for L = 1
and L = 2 cross because the choice of decoding times in (22)
requires € > ﬁ and is optimal only as N — oo. In

[30], Yang et al. construct a computationally intensive integer
program for the numerical optimization of the decoding times
for finite N. If such a precise optimization is desired, our
approximate decoding times in (22) can be used as starting
locations for that integer program.

Replacing the information-density-based decoding rule in
the proof sketch with the optimal SHT would improve the
performance achieved on the right-hand side of (21) by only
o(1).

Since any (N, L, M, €)-VLSF code is also an (V, oo, M, €)-
VLSF code, (16) provides an upper bound on log M*(N, L, ¢)
for an arbitrary L. The order of the second-order term,
—\/N log(Lfl)(N)%, depends on the number of decoding
times L. The larger L, the faster the achievable rate converges
to the capacity. However, the dependence on L is weak since
log(;,_1)(IV) grows very slowly in IV even if L is small. For
example, for L = 4 and N = 1000, log;,_ (V) ~ 0.659. For
a finite L, this bound falls short of the —log N achievability
bound in (16) achievable with L. = oo. Whether the second-
order term achieved in Theorem 2 is tight remains an open
problem.

The following theorem gives achievability and converse
bounds for VLSF codes with decoding times uniformly spaced
as {0, dN, 2dN, SN }

Theorem 3: Fix € € (0,1). Let dy = o(N) with dy — oo,
and let Py x be any DM-PPC. Then, it holds that

NC _dnC _ log N + o(dn).

1—¢ 2
(26)
If the DM-PPC Py |x is a Cover-Thomas symmetric DM-
PPC [43, p. 190] i.e., the rows (and resp. the columns) of the

transition probability matrix are permutations of each other,
then

10gM*(N, OO,E,dNZZ) >

log M* (N, 00,€,dnZ>) < 1NC€ - % + o(dn).

Proof Sketch: The achievability bound (26) employs the
sub-optimal SHT in the proof sketch of Theorem 2. To
prove the converse in (27), we first derive in Theorem 9, in
Appendix C below, the meta-converse bound for VLSF codes.
The meta-converse bound in Theorem 9 bounds the error
probability of any given VLSF code from below by the mini-
mum achievable type-II error probability of the corresponding
SHT; it is an extension and a tightening of Polyanskiy et
al’s converse in (16) since for dy = 1, weakening it by
applying a loose bound on the performance of SHTs from
[36, Th. 3.2.2] recovers (16). The Cover-Thomas symmetry
assumption allows us to circumvent the maximization of that
minimum type-II error probability over codes since the log-
likelihood ratio log Pyp‘yxig)lm) is the same regardless of the
channel input x for that channel class. In both bounds in
(26)—-(27), we use the expansions for the average stopping
time and the type-II error probability from [36, Ch. 2-3]. See
Appendix C for details. [ ]

Theorem 3 establishes that when liﬁ — 00, the second-
order term of the logarithm of maximum achievable message
set size among VLSF codes with uniformly spaced decoding

27)
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Fig. 1. The non-asymptotic achievability bounds obtained from Theorems 1 and 2 and the non-asymptotic converse bound (16) for the maximum achievable

rate log M™*(N,L,e)

times is —%. Theorem 3 implies that in order to achieve the
same performance as achieved in (21) with L decoding times,

one needs on average Q( uniformly spaced

stop-feedback instances, suggesting that the optimization of
available decoding times considered in Theorem 2 is crucial
for attaining the second-order term in (21).

The case where dy = () is not as interesting as the
case where dy = o(NN) since analyzing Theorem 9 using
Chernoff bound would yield a bound on the probability that
the optimal SHT makes a decision at times other than n; =0
and % (140(1)). Since that probability decays exponentially
with N, the scenario where L is unbounded and dy = Q(N)
is asymptotically equivalent to L = 2. For example, for dy =

%ﬁé 1+0 7@ ) for some ¢ € Z,, the right-hand

side of (21) is tight up to the second-order term.

IV. VLSF CODES FOR THE DM-MAC

We begin by introducing the definitions used for the multi-
transmitter setting.

A. Definitions

A K-transmitter DM-MAC is defined by a triple
(Hszl Xio, Py | X e J)KP, where X}, is the finite input alpha-
bet for transmitter k € [K|, Vi is the finite output alphabet of
the channel, and Py, |x ., is the channel transition probability.

In what follows, the subscript and superscript indicate the
corresponding transmitter indices and the codeword lengths,

N are shown for the BSC with crossover probability 0.11, L € {1,2,3,4,00}, and ¢ = 0.05. The curves that L = 1 and L = oo are
Polyanskiy et al.’s achievability bounds from [13, Th. 16] and [8, eq. (102)], respectively.

respectively. Let Py,  denote the marginal output distribution
induced by the input distribution Px,,. The unconditional
and conditional information densities are defined for each non-
empty A C [K] as

Py, x4 (lza)
Py, (y)

Py 1x e Wl )

Py x e (Y] ac)’

where A¢ = [K] \ A. Note that in (28)—(29), the information
density functions depend on the transmitter set .4 unless fur-
ther symmetry conditions are assumed (e.g., in some cases we
assume that the components of Px,, are i.i.d., and Py, |x
is invariant to permutations of the inputs X|g).

The corresponding mutual informations under the input dis-
tribution Px,, and the channel transition probability Py, | x .,
are defined as

1k (z45y) = log (28)

e (a3 ylwac) £ log (29)

]

I (X3 Y) 2 Bl (Xa; Yic)] (30)
I (X4 Y| X ae) 2 B g (X 45 Y| X ae)] . (31)

The dispersions are defined as
VK(XA;YK) L Var [ZK(XA;YK)] (32)
VK(XA;YKlXAC) éVar [’LK(XA;YK|XAc)] . (33)

For brevity, we define

IKéIK(X[K];YK) (34)
VK = Var [ZK(X[K];YK)] . (35)



A VLSF code for the MAC with K transmitters is defined
similarly to the VLSF code for the PPC.

Definition 2: Fix € € (0,1), N € (0,00), and positive
integers My, k € [K]. An (N, L, M{k, €)-VLSF code for the
MAC comprises

1) non-negative integer-valued decoding times n; < - <

nr,

2) K finite alphabets Uy, k € [K], defining common

randomness random variables Uy, ..., Uk,

3) K sequences of encoding functions £ 2 Uy, x [My] —

Xi, k € [K],
4) a stopping time 7 € {nq,...,n} for the filtration gen-
erated by {Us,...,Uk,Yi'} L |, satisfying an average
decoding time constraint (11), and

5) L decoding functions g,,: Uix) x Vg' — H [M] U

{e} for ¢ € [L], satisfying an average error probablhty
constraint

P [g-(Uk), Y&) # Wik <,

where the independent messages Wi,..., Wk are uni-
formly distributed on the sets [Mi], ..., [Mk], respec-
tively.

(36)

B. Our Achievability Bounds

Our main results are second-order achievability bounds for
the rates approaching a point on the sum-rate boundary of the
MAC achievable region expanded by a factor of ﬁ

Theorem 4, below, is a non-asymptotic achievability bound
for any DM-MAC with K transmitters and L decoding times.

Theorem 4: Fix constants € € (0,1), v € R, \(A) > 0 for
A € P([K)), integers 0 < ny < --- < ny, and distributions
Px,, k € [K]. For any DM-MAC with K transmitters
(ITx=1 Xks Py |xp)s Vic), there exists an (N, L, Mgy, €)-
VLSF code with

e <P [ (X[it: Vi) < 1 (37)
K
+ [T (M5, = 1) exp{—} (38)
k=1
L
+3 P[0 (X35 YR) > N(Ik(Xa5Y) + A2
(=1 AeP([K])
(39)
£ ¥ (Ton-v)
AeP([K]) \keAc
exp{— + NI (X4; Yi) + NAX} (40)
L—-1
N <m0 (e = ne)P [ (X5 Vi) < (A1)
=1

Proof sketch: The proof of Theorem 4 uses a random coding
argument that employs K independent codebook ensembles,
each with distribution Py”, k € [K]. The receiver employs
L decoders that operate by comparing an information density
15 (T pme; y™*) for each possible transmitted codeword set to
a threshold. At time n,, decoder g,,, computes the information

densities 25 (X [7;(]( (k]); Yg*); if there exists a unique mes-
sage vector 1k satisfying zK( () (110 [K]) ') > v, then
the receiver decodes to the message vector m[ K15 1f there exists
multiple such message vectors, then the receiver stops the
transmission and decodes an error. If no such message vectors
exist at time ny, then the receiver emits output e and passes the
decoding time n, without decoding if n, < nr, and decodes an
error if ny = ny. The term (37) bounds the probability that
the information density corresponding to the true messages
is below the threshold for all decoding times; (38) bounds
the probability that all messages are decoded incorrectly; and
(39)-(40) bound the probability that the messages from the
transmitter index set A C [K] are decoded incorrectly, and
the messages from the index set A° are decoded correctly.
The proof of Theorem 4 appears in Appendix D. [ ]

Theorem 35, below, is a second-order achievability bound in
the asymptotic regime L = O(1) for any DM-MAC. It follows
from an application of Theorem 4.

Theorem 5: Fix € € (0,1), an integer L = O(1) > 2, and
distributions Py, , k € [K]. For any K-transmitter DM-MAC
(Hszl Xk,PyK‘X[K],yK), there exists a K-tuple M[g and
an (N, L, Mg}, €)-VLSF code satisfying

Ve
> long——_\/Nlog(L (N1
ke[K]
N
+0 — . (42)
< 1Og(L—1)(N)>
Proof: See Appendix D. [ ]

In the application of Theorem 4 to prove Theorem 5, we
choose the parameters A and + so that the terms in (39)-
(40) decay exponentially with N, which become negligible
compared to (37) and (38). Between (37) and (38), the term
(37) is dominant when L does not grow with NV, and (38) is
dominant when L grows linearly with N.

Like the single-threshold rule from [28] for the RAC, the
single-threshold rule employed in the proof of Theorem 4
differs from the decoding rules employed in [20] for VLSF
codes over the Gaussian MAC with expected power constraints
and in [23] for the DM-MAC. In both [20] and [23], L =
Nmax = 00, and the decoder employs 2K _ 1 simultaneous
threshold rules for each of the boundaries that define the
achievable region of the MAC with K transmitters. Those rules
fix thresholds v*), A € P([K]), and decode messages mx]
if for all A € P([K]), the codeword for m k) satisfies

e (X5 (ma); Vi | X 0t (mae)) > 4™, (43)

for some 7, A € P([K]). Our decoder can be viewed as
a special case of (43) obtained by setting v() = —oo for
A # [K].

Analyzing Theorem 4 in the asymptotic regime L = Q(N),
we determine that there exists a K-tuple Mg} and an
(N, 00, Mg, €)-VLSF code satisfying

Z log M, = ivi —log N 4+ O(1). (44)
ke[K] €



Both (42) and (44) are achieved at rate points that approach
a point on the sum-rate boundary of the K-MAC achievable
region expanded by a factor of ﬁ

For any VLSF code, L. = oo case can be treated as
L = Q(N) regardless of the number of transmitters since
if we truncate an infinite-length code at time ny.x = 2N, by
Chernoff bound, the resulting penalty term added to the error
probability decays exponentially with N, whose effect in (44)
is o(1). See Appendix D.III for the proof of (44).

For L = ny.x = oo, Trillingsgaard and Popovski [23]
numerically evaluate their non-asymptotic achievability bound
for a DM-MAC while Truong and Tan [20] provide an
achievability bound with second-order term —O(v/N) for
the Gaussian MAC with average power constraints. Applying
our single-threshold rule and analysis to the Gaussian MAC
with average power constraints improves the second-order
term in [20] from —O(v/N) to —log N 4 O(1) for all non-
corner points in the achievable region. The main challenge
in [20] is to derive a tight bound on the expected value of
the maximum over A C [K] of stopping times 7(Y) for the
corresponding threshold rules in (43). In our analysis, we avoid
that challenge by employing a single-threshold decoder whose
average decoding time is bounded by E [T([K D}.

Under the same model and assumptions on L, to achieve
non-corner rate points that do not lie on the sum-rate boundary,
we modify our single-threshold rule to (43), where A is the
transmitter index set corresponding to the capacity region’s
active sum-rate bound at the (non-corner) point of interest.
Following steps similar to the proof of (44) gives second-
order term — log N +O(1) for those points as well. For corner
points, more than one boundary is active?; therefore, more than
one threshold rule in (43) is needed at the decoder. In this
case, again for L = oo, [20] proves an achievability bound
with a second-order term —O(y/N). Whether this bound can
be improved to —log N 4+ O(1) as in (44) remains an open
problem.

V. VLSF CoDES FOR THE DM-RAC WITH AT MOST K
TRANSMITTERS

Definition 3 (Yavas et al. [28, eq. (1)]): A permutation-
invariant, reducible DM-RAC for the maximal number of
transmitters K < oo }? defined by a family of DM-MACs
{(Xk, Py, 1x yk)} , where the k-th DM-MAC defines
the channel for & activlé:t(%ansmitters.

By assumption, each of the DM-MACs satisfies the
permutation-invariance condition

PYk\X[k] (y|x[k]) = PYk|X[k] (y|$ﬂ'[k]) (45)

for all permutations 7[k] of [k], and y € Y, and the
reducibility condition

Py, 1x,, (W) = Py x g (Wles), 077%) (46)

2The capacity region of a K -transmitter MAC is characterized by the region
bounded by 2% — 1 planes. By definition of a corner point, at least two
inequalities corresponding to these planes are active at a corner point.
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forall s < k, xp € X[S], and y € )s, where 0 € X specifies a
unique “‘silence” symbol that is transmitted when a transmitter
is silent.

The permutation-invariance (45) and reducibility (46) con-
ditions simplify the presentation and enable us to show, using a
single-threshold rule at the decoder [28], that the symmetrical
rate point (R, R,..., R) at which the code operates lies on
the sum-rate boundary of each of the underlying DM-MACs,

The VLSF RAC code defined here combines our rateless
communication strategy from [28] with the sparse feedback
VLSF PPC and MAC codes with optimized average decoding
times described above. Specifically, the decoder estimates the
value of k at time ng. If the estimate k is not zero, it decodes
at one of the L decoding times nj, < nj, < --- < nj
(rather than just the single time n; used in [28], [39]). For
every k € [K], the locations of the L decoding times are
optimized to attain the minimum average decoding delay.
As in [28], we do not assume any probability distribution
on the user activity pattern. We seek instead to optimize
the rate-reliability trade-off simultaneously for all possible
activity patterns. (By the permutation-invariance assumption,
there are only K distinguishable activity patterns to consider
here indexed by the number of active transmitters.) If the
decoder concludes that no transmitters are active, then it ends
the transmission at time ny decoding no messages. At each
time n; 0, ¢ < 12:, the receiver broadcasts “0” to the transmitters,
signaling that they should continue to transmit. At time N, o>
the receiver broadcasts feedback bit “1” to the transmitters if it
is able to decode k messages; otherwise, it outputs an erasure
symbol “e” and sends feedback bit “0”, again signaling that
decoding has not occurred and transmission should continue.

As in [28], [39], we assume that the transmitters know
nothing about the set A except their own membership and the
receiver’s feedback at potential decoding times. We employ
identical encoding [44], that is, all transmitters use the same
codebook. This implies that the RAC code operates at the
symmetrical rate point, i.e., M; = M for i € [K]. As in [28],
[44], the decoder is required to decode the list of messages
transmitted by the active transmitters but not the identities of
these transmitters.

To deal with the scenario where the number of transmitters
in the RAC grows linearly with the blocklength, i.e., K =
Q(N), [44] employs the per-user error probability (PUPE)
constraint rather than the joint error probability used here and
in the analysis of the MAC (e.g., [20], [28], [39]). The PUPE
is a weaker error probability constraint since, under PUPE, an
error at one decoder does not count as an error at all other
decoders. In [28], it is shown that when K = O(1), PUPE and
joint error probability constraints have the same second-order
performance for random access coding. As a result, there is
no advantage to using PUPE rather than the more stringent
joint error criterion when K = O(1). Therefore, we employ
the joint error probability constraint throughout.

We formally define VLSF codes for the RAC as follows.

Definition 4: Fix €g,...,ex € (0,1) and Ny,...,Ng €
(0,00). An ({ Ny}, L, M, {e } ,)-VLSF code with iden-
tical encoders comprises

1) a set of integers N 2 {no} U {np: k € [K],¢ € [L]}



(without loss of generality, we assume that ng , is the
largest available decoding time),

2) a common randomness random variable U on an alpha-
bet U,

3) a sequence of encoding functions f,: U x [M] — X,
n=1,2,...,nk,, defining M length-nx ; codewords,

4) K non-negative integer-valued random stopping times
7, € N for the filtration generated by {U,Y"}nen,
satisfying

E[Tk] < N “@7n

if k € {0} U [K] transmitters are active, and

5) KL + 1 decoding functions gy, : U x Y3° — {0} U {e}
and gy, ,: Ux Y™ — [M]*U{e}, k € [K] and { € [L],
satisfying an average error probability constraint

P g1 (U, Yka) 75 W[k] S €k (48)

when £ € [K] messages W, = (W1,..., W}) are trans-
mitted, where W, ..., W}, are independent and equiprob-
able on the set [M], and

Plgr, (U, Yy") # 0] < €0

when no transmitters are active.

(49)

To guarantee that the symmetrical rate point arising from
identical encoding lies on the sum-rate boundary for all
k € [K], following [28], we assume that there exists an input
distribution Py that satisfies the interference assumptions

PX[t]‘Yk # PX[S]IY]C PX[S+1:t]|Yk VS <t S k S K. (50)

Permutation-invariance (45), reducibility (46), and interference
(50) together imply that the mutual information per transmitter,
%, strictly decreases with increasing k (see [28, Lemma 1]).
This property guarantees the existence of decoding times
satisfying ng, ¢, < N, ¢, for any k1 < ko and 1,45 € [L].

In order to be able to detect the number of active transmit-
ters using the received symbols Y ™*¢ but not the codewords
themselves, we require that the input distribution Px satisfies
the distinguishability assumption

Pykl 75Py,62 Vkl#kQE{O}U[K],

where Py, is the marginal output distribution under the k-
transmitter DM-MAC with input distribution Px,, = (Px)k.
An example of a permutation-invariant and reducible DM-
RAC that satisfies interference (50) and distinguishability (51)
assumptions is the adder-erasure RAC in [28], [45]

k
i Xiu
Yk — { Z’L:l
e

where X; € {0,1}, Y € {0,...,k}U{e}, and § € (0,1).
Theorem 6: Fix ¢ € (0,1), finite integers K > 1

and L > 2, and a distribution Px satisfying (50)—(51).

For any permutation-invariant (45) and reducible (46)

K
DM-RAC {(X’“, Py, x40 Vk) }kf

(N}, L, M, {ex} < )-VLSF code satisfying

(51

wp.1—9 (52)
w.p. 4,

, there exists an

Vi
1_€k

NiI
Flog M = ¢ Rk

- \/Nk log(_1)(Nk)

— €L
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+0 < (53)

for k € [K], and
Ny = clog N7 + o(log Ny)

_ Nk
log () (Nk)

(54)

for some ¢ > 0.

Proof sketch: The coding strategy to prove Theorem 6 is
as follows. The decoder applies a (K + 1)-ary hypothesis test
using the output sequence Y™ and decides an estimate k of
the number of active transmitters & € {0,1,..., K}. If the
hypothesis test declares that k = 0, then the receiver stops the
transmission at time ng, decoding no messages. If k # 0,
then the receiver decodes k messages at one of the times
Njgr- g, using the VLSF code in Theorem 5 for the k-
transmitter DM-MAC with L decoding times. If the receiver
decodes at time N, o> then it sends feedback bit ‘0’ at all
previous decoding times {n € N: n < nlﬂ} and feedback
bit ‘1’ at time N ¢ Note that alternatively, the receiver can
send its estimate & using [logy(K + 1)] + L bits at time ny,
informing the transmitters that it will decode at some time
{”1;,17 .. .,nkyL}; in this case, the number of feedback bits
decreases from the worst-case KL + 1 that results from the
strategy described above. The details of the proof appear in
Appendix E. [ ]

VI. VLSF CODES FOR THE GAUSSIAN PPC wiTH
MAXIMAL POWER CONSTRAINTS

A. Gaussian PPC

The output of a memoryless, Gaussian PPC of blocklength
n in response to the input X™ € R"™ is

Yr = X" 4 2m, (55)

where 71, ..
of X™.
The channel’s capacity C'(P) and dispersion V' (P) are

., Zy, are drawn i.i.d. from A(0,1), independent

C(P) = %log(l +P) (56)
_ P(P+2)
V(P) = m (57)

B. Related Work on the Gaussian PPC

We first introduce the maximal and average power con-
straints on VLSF codes for the PPC. Given a VLSF code with
L decoding times nq,...,nr, the maximal power constraint
requires that the length-n prefixes, n € {n1,...,np}, of each
codeword all satisfy a power constraint P, i.e.,

[[f(u, m)™||> < neP forall m e [M],ueld, ¢¢c]L]. (58)

The average power constraint on the length-n;, codewords, as

defined by [20, Def. 1], is

E|IfU, Wy |F] < NP (59)

The definitions of (N, L, M, €, P)max and (N, L, M, €, P)aye-
VLSF codes for the Gaussian PPC are similar to Definition 1
with the addition of maximal (58) and average (59) power



constraints, respectively. Similar to (13), M*(N, L, €, P)max
(resp. M*(N, L,¢€, P)ave) denotes the maximum achievable
message set size with L decoding times, average decoding time
N, average error probability €, and maximal (resp. average)
power constraint P.

In the following, we discuss prior asymptotic expansions of
M*(N,L,€e,P)max and M*(N, L, ¢, P)aye for the Gaussian
PPC, where L € {1,00}.

a) M*(N,1,¢, P)yax: For L = 1, P > 0, and € € (0, 1),

Tan and Tomamichel [35, Th. 1] and Polyanskiy et al. [13,

Th. 54] show that

log M*(N,1,¢€, P)max
= NC(P) —/NV(P)Q '(e) + %logN +O(1). (60)

The converse for (60) is derived in [13, Th. 54] and the
achievability for (60) in [35, Th. 1]. The achievability
scheme in [35, Th. 1] generates i.i.d. codewords uniformly
distributed on the n-dimensional sphere with radius \/ﬁ,
and applies maximum likelihood (ML) decoding. These
results imply that random codewords uniformly distributed
on a sphere and ML decoding are, together, third-order
optimal, meaning that the gap between the achievability
and converse bounds in (60) is O(1).

b) M*(N,1,¢,P)aye: For L = 1 with an average-power-
constraint, Yang et al. show in [46] that

P
1—e€
P
- \/NlogNV <1—) +O(VN).
— €
Yang et al. use a power control argument to show

the achievability of (61). They divide the messages into
disjoint sets A and [M] \ A, where |[A] = M(1 —

log M*(N,1,¢,P)aye = NC (

(61)

€)(1 — o(1)). For the messages in .4, they use an
N,1,|A|,ﬁ,%(1—0(1)))-VLSF code with a

single decoding time N. The codewords are generated
i.i.d. uniformly on the sphere with center at O and radius

N+£(1 - 0(1)). The messages in [M]\ A are assigned
the all-zero codeword. The converse for (61) follows from
an application of the meta-converse [13, Th. 26].

¢) M*(N,o0,€, P)aye: For VLSF codes with L = nyax = 00
and average power constraint (59), Truong and Tan show
in [19, Th. 1] that for € € (0,1) and P > 0,

log M*(N, 00, €, P)aye > NlCi(P) —log N +O(1) (62)
—€

log M*(N, 50, €, P)ave < Nlc—(P) + i“’—(e) 63)
—€ —€

where h; is the binary entropy function. The results in
(62)—(63) are analogous to the fundamental limits for DM-
PPCs (15)—(16) and follow from arguments similar to
those in [8]. Since the information density «+(X;Y") for
the Gaussian channel is unbounded, bounding the expected
value of the decoding time in the proof of [19, Th. 1]
requires different techniques from those applicable to DM-
PPCs [8].
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Table II combines the L = 1 summary from [47, Table I]
with the corresponding results for L > 1 to summarize the
performance of VLSF codes for the Gaussian channel in
different communication scenarios.

C. Main Result

The theorem below is our main result for the Gaussian PPC
under the maximal power constraint (58).

Theorem 7: Fix an integer L = O(1) > 2 and real numbers
P > 0 and ¢ € (0,1). For the Gaussian channel with
maximal power constraint (58), the maximum message set size
achievable by (N, L, M, e, P)-VLSF codes satisfies

NC(P)

— €

N
o ( 1Og(L—1)(N)> .

The decoding times that achieve (64) satisfy the equations
log M* (N, L,¢, P)

=n,C(P) — \/ng log(,—¢11)(ne)V(P) —logne + O(1)
(65)

- \/N 10%(1:71)(]\])@

— €

log M* (N, L,¢, P) >

max —

(64)

for £ €{2,...,L}, and ny = 0.

Proof: See Appendix F. [ ]

Note that the achievability bound in Theorem 7 has the same
form as the one in Theorem 2 with C' and V replaced with the
Gaussian capacity C'(P) and the Gaussian dispersion V(P),
respectively. The bound in (64) holds for the average power
constraint as well since any code that satisfies the maximal
power constraint also satisfies the average power constraint.

From Shannon’s work in [48], it is known that for the
Gaussian channel with a maximal power constraint, drawing
1.i.d. Gaussian codewords yields a performance inferior to that
achieved by the uniform distribution on the power sphere. As
a result, almost all tight achievability bounds for the Gaussian
channel in the fixed-length regime under a variety of settings
(e.g., all four combinations of the maximal/average power
constraint and feedback/no feedback [14], [35], [46], [47]
in Table I) employ random codewords drawn uniformly at
random on the power sphere. A notable exception is Truong
and Tan’s result in (62) [19, Th. 1], which considers VLSF
codes with an average power constraint; that result employs
ii.d. Gaussian inputs. The Gaussian distribution works in
this scenario because when L = oo, the usually dominant
term P[o(X"E;Y"™E) < 4] in (18) disappears. The second
term (M — 1)exp{—~} in (18) is not affected by the input
distribution. Unfortunately, the approach from [19, Th. 1]
does not work here since drawing codewords i.i.d. A(0, P)
satisfies the average power constraint (59) but not the maximal
power constraint (58). When L = O(1) and the probability
P[o(X"™F;Y") < +] dominates, using i.i.d. N (0, P) inputs
achieves a worse second-order term in the asymptotic expan-
sion (64) of the maximum achievable message set size. For the
case L = O(1), we draw codewords according to the rule that
the sub-codewords indexed from n;_; + 1 to n; are drawn
uniformly on the (n; — n;_1)-dimensional sphere of radius
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TABLE I
THE PERFORMANCE OF VLSF CODES FOR THE GAUSSIAN CHANNEL IN SCENARIOS DISTINGUISHED BY THE NUMBER OF AVAILABLE DECODING TIMES
L, THE TYPE OF THE POWER CONSTRAINT, AND THE PRESENCE OF FEEDBACK.

Second-order term
First-order term
Lower Bound Upper Bound
Max. power NC(P) —/NV(P)Q~1(e) ([13], [35]) —/NV(P)Q~1(e) ([13])
No Feedback
Fixed-length Ave. power NC (155) —1/Nlog NV (1—1;) (461 —4/Nlog NV (11j€> ([46])
(L=1) Max. power NC(P) —/NV(P)Q~1(e) ([13], [35]) —/NV(P)Q~1(e) ([14]
Feedback
Ave. power | NC (lfje) ~O(log(1)(N)) (147D +,/Nlog NV (1%) (147))
Variable-length Max. power Nlcf(f) —\/N log(;,_1y(N) Vl(f? (Theorem 7) +0(1) (19D
(L < o0) Ave. power Nch(f) —\/N log(,_1y(N) ‘q(i) (Theorem 7) +0(1) (19D
Variable-length Max. power NOP) —O(V/N) (1] +0(1) ([19])
(L = Namax = 00) Ave. power NOP) —logN  ([19]) +0(1) ([19])

/(nj —nj_1)P for j € [L], independently of each other.
Note that this input distribution is dispersion-achieving for the
fixed-length no-feedback case, i.e., L = 1 [13] and is superior
to choosing codewords i.i.d. A'(0, P), even under the average
power constraint. In particular, i.i.d. M'(0, P) inputs achieve
(21), where the dispersion V (P) is replaced by the variance
V(P) = =5 of «(X;Y) when X ~ N(0, P); here V(P)
is greater than the dispersion V' (P) for all P > 0 (see [49,
eq. (2.56)]). Whether or not our input distribution is optimal

in the second-order term remains an open question.

VII. CONCLUSIONS

This paper investigates the maximum achievable message
set size for sparse VLSF codes over the DM-PPC (Theorem 2),
DM-MAC (Theorem 5), DM-RAC (Theorem 6), and Gaussian
PPC (Theorem 7) in the asymptotic regime where the number
of decoding times L is constant as the average decoding time
N grows without bound. Under our second-order achievability
bounds, the performance improvement due to adding more
decoding time opportunities to our code quickly diminishes
as L increases. For example, for the BSC with crossover
probability 0.11, at average decoding time N = 2000, our
VLSF coding bound with only L = 4 decoding times achieves
96% of the rate of Polyanskiy et al.’s VLSF coding bound
for L = oo. Incremental redundancy automatic repeat request
codes, which are some of the most common feedback codes,
employ only a small number of decoding times and stop
feedback. Our analysis shows that such a code design is not
only practical but also has performance competitive with the
best known dense feedback codes.

In all channel types considered, the first-order term in
our achievability bounds is iv—f;, where N is the average
decoding time, € is the error probability, and C' is the capacity
(or the sum-rate capacity in the multi-transmitter case), and

the second-order term is O 1/Nlog(L_l)(N)). For DM-

PPCs, there is a mismatch between the second-order term
of our achievability bound for VLSF codes with L = O(1)
decoding times (Theorem 2) and the second-order term of
the best known converse bound (16); the latter applies to
L = oo, and therefore to any L. Towards closing the gap
between the achievability and converse bounds, in Theorem 9
in Appendix C, below, we derive a non-asymptotic converse
bound that links the error probability of a VLSF code with
the minimum achievable type-II error probability of an SHT.
However, since the threshold values of the optimal SHT with
L decoding times do not have a closed-form expression [36,
pp- 153-154], analyzing the non-asymptotic converse bound in
Theorem 9 is a difficult task. Whether the second-order term
in Theorem 2 is optimal is a question left to future work.

In sparse VLSF codes, optimizing the values of L avail-
able decoding times is important since to achieve the same
performance as L = O(1) optimized decoding times (Theo-

rem 2), one needs ()

N .
( m) unlformly spaced de-
coding times (Theorem g).

APPENDIX A
PROOF OF THEOREM 1

In this section, we derive an achievability bound based on
a general SHT, which we use to prove Theorem 1.

A.L. A General SHT-based Achievability Bound

1) SHT definitions: We begin by formally defining an SHT.
We extend the definition in [36, Ch. 3] to allow non-i.i.d.
distributions and finitely many testing times. Let {Z;}'"
be the observed sequence. Consider two hypotheses for the
distribution of Z"™*

Hoi zZnr NPO
H12 zZnr Npl,

(66)
(67)



where Py and P, are distributions on a common alphabet
Zme Let N C {0,1,2,...,np} be the set of times that the
hypothesis is tested. Let PZ-(W) denote the marginal distribution
of the first ny symbols in P;, i € {0,1}. At time n, € N,
we either decide Hy: Z" ~ P™), Hy: Zn¢ ~ P™) or
we wait until the next available time nyy1 in A/. Let 7 be a
stopping time adapted to the filtration {F(X™)}nen. Let 6
be a {0,1}-valued, F(7)-measurable function. An SHT is a
triple (8, 7, '), where § is called the decision rule, 7 is called
the stopping time, and A is the set of available decision times.
Type-I and type-II error probabilities are defined as

a2 P[5 =1|H)
BEP[S =0|H,].

(68)
(69)

Below, we derive an achievability using a general SHT.

2) Achievability Bound: Given some input distribution
Pxn ., define the common randomness random variable U on
RM7z with the distribution

PU:PXnL XPXnLX~-~><PXnL. (70)

Mtimes

The realization of U defines M length-n; codewords
X" (1), X" (2),..., X (M). Denote the set of available
decoding times by

Né{nl,...

Let {(6m, T, N)}M_, be M copies of an SHT that distin-
guishes between the hypotheses

;nL}. (71)

Ho: (X™,Y™) ~ Pxny x Py (72)
Hy: (X™,Y") ~ Pxn, X Pyny (73)

for each message m € [M], where the type-I and type-II error
probabilities are o and 3, respectively. Define for m € [M]

and j € {0,1},
;s )Tm
" 00

Theorem 8, below, is an achievability bound that employs an
arbitrary SHT with L decoding times.

Theorem 8: Fix L < oo, integers M > 0 and 0 < n; <
ng < --- < ny < oo, a distribution Pxn»; as in (70), and
M copies of an SHT { (0, T, {71, ... })}M_; asin (72)-
(74). There exists an (N, L, M, €)-VLSF code for the DM-PPC
(X,Py‘x,y) with

if 5, =
" Om = (74)
otherwise.

e<a+(M-1)8 (75)
N <E [min {mnel%}\lﬂ {T,%} ’n?é?ﬁ] {T,ln}H . (76)

Proof: We generate M 1i.i.d. codewords according to (70).
For each of M messages, we run the hypothesis test given
in (72)—-(73). We decode at the earliest time that one of the
following events happens

e Hj is declared for some message m € [M],
e Hj is declared for all m € [M].
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The decoding output is m if Hy is declared for m; if there
exist more than one such m or if there exists no such m, the
decoder declares an error.

Mathematically, the random decoding time of this code is
expressed as

7" = min {mng%]r\}] {7'31} , max] {T,ln}} .

(77)
me[M

Note that 7* is bounded by nj by construction. The average
decoding time bound in (76) immediately follows from (77).
The decoder output is

wald™
error

Since the messages are equiprobable, without loss of gener-
ality, assume that message m = 1 is transmitted. An error
occurs if and only if H; is decided for m = 1 or if Hy is
decided for some m # 1, giving

e:P[{élzl}U{Lj\j{ém:O}H. (79)

Applying the union bound to (79) shows (75). [ ]

if E!mlé [M]s. t. 7% =710, (78)
otherwise.

A.Il. Proof of Theorem 1

Theorem 1 particularizes the SHT in Theorem 8 as an
information density threshold rule.

In addition to the random code design in (70), let Px»p
satisfy (20). We here specify the stopping rule 7, and the
decision rule d,,, for the SHT in (72)—(73).

Define the information density for message m and decoding
time ny as

Sy = 1(X™(m); Y™) for m € [M], £ € [L]. (80)

Note that S, ,,, is the log-likelihood ratio between the distri-
butions in hypotheses Hy and H;. We fix a threshold v € R
and construct the SHT's

Tm = inf{nge € N': Sppn, > 7} 8D
%m = min{Tm7 nL} (82)
' . >
I N (83)
1 if Smyﬁ,*-m <7y

for all m € [M], that is, we decide H, for message m at the

first time n, that S, ,, passes 7; if this never happens for

ng € {n1,...,nr}, then we decide H; for m. Without loss

of generality, assume that message 1 is transmitted.
Bounding (76) from above, we get

N < E[min{r,n}] (84)

= ZP [min{7,np} > n] (85)
" L—1

=n1 + Z(nprl — nz)]P) [7’1 > nz] . (86)
{=1



The probability P [y > n,] is further bounded as

SIaLCRE

<P [Z(X"’f( );Y™) <Al

Combining (86) and (88) proves (19).
We bound the type-I error probability of the given SHT as

P > ng] ) Y™) <~} (87)

(88)

2P = 1] (89)

=P ﬂ{ (X™(1);Y™) <~} 1)
Jj=1

S PR(X™(1);Y7™) <], (92)

where (91) uses the definition of the decision rule (83). The

type-II error probability is bounded as

P02 = 0] (93)

P < oo] (94)

— B fexp{—o( X" (1 V" )} {n < o0} (95)

= E [exp{—o(X7(1); Y7)}1{n < o0}] (96)

< exp{—7}, o7)

where (95) follows from changing measure from

PX"L(Q)Y"L = Pxny Pynp to PX"L(l),Y"L = Pxnyp PY\X
Equality (96) uses the same arguments as in [8, eq. (111)-
(118)] and the fact that {exp{—2(X"™¢(1); Y"™)}: ny € N'} is
a martingale due to the product distribution in (20). Inequality
(97) follows from the definition of 7 in (81). Applying (75)
together with (92) and (97) proves (18). &

In his analysis of the error exponent regime, Forney [17]
uses a slightly different threshold rule than the one in (81).
Specifically, he uses a maximum a posteriori threshold rule,
which can also be written as

Pyngjxne (V™[ X" (m))
M .
21 21 Prnejxone (Y| X1 ()

whose denominator is the output distribution induced by the
code rather than by the random codeword distribution Py*.

log >, (98)

APPENDIX B
PROOF OF THEOREM 2

The proof uses an idea that is similar to that in [13, Th. 2],
which combines the achievability bound of a VLSF code with
a sub-exponentially decaying error probability with the stop-
at-time-zero procedure. The difference is that we set the sub-

. . oqe / _ 1
exponentially decaying error probability as € = NoarTY
while [13, Th. 2] sets it to % This modification yields a
better second-order term for finite L.

Inverting (25), we get

N 1
N=— (140 ——— . 99
l—e( (leogN)) ©9)
Next, we particularize the decision rules in the SHT
at times ng,...,ny to the information density threshold
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rule. Lemma 1, below, is an achievability bound for an
(N , L, M, ﬁ)-VLSF code that employs the informa-

tion density threshold rule with the optimized decoding times
and the threshold value.

Lemma 1: Fix an integer L = O(1) > 1. For the DM-PPC
with V' > 0, the maximum message set size (13) achievable

by (N, L, M, ﬁ)-VLSF codes satisfies

> NC —

log M* N,L,i1 >
Nlog N

N
o, )———].
< 10g(L)(N)>
(100)

The decoding times nq, ..., ny that achieve (100) satisfy the

equations
log M = n,C — \/m log(r—¢+1)(ne)V —logn, + O(1)
(101)

for ¢ € [L].

Proof: Lemma 1 analyzes Theorem 1. See Appendix B.I,
below. For L = O(1), the proof is significantly different than
the corresponding result in [8, eq. (102)] for L = oo because
the dominant error probability term P [¢(X™2;Y") < ~] in
(18) disappears when L = co. [ ]

We use the average decoding time NN and average error
probability € of a VLSF code in Lemma 1 in the places of
N’ and €y in (23). By Lemma 1, there exists an (N', L —
1, M, €’y)-VLSF code with

log M = N'C — \/N’ log(;_1)(N") V

N/
0 — .
( log(z—1)(N') )

Plugging (99) into (102) and applying the necessary Taylor
series expansions complete the proof. [ ]
Lemma 1 is an achievability bound in the moderate devia-
tions regime since the error probability m decays sub-
exponentially to zero. The fixed-length scenario in Lemma 1,
e, L = 1, is recovered by [50], which investigates the
moderate deviations regime in channel coding. A comparison
between the right-hand side of (100) and [50, Th. 2] highlights
the benefit of using VLSF codes in the moderate deviations
regime. The second-order rate achieved by a VLSF code with
L > 2 decoding times, average decoding time NN, and error
probability \/% is achieved by a fixed-length code with

(102)

blocklength N and error probability o ]1\])1 —
(—1) (V) log(,)

In the remainder of the appendix, we prove Lemma 1 and
show the second-order optimality of the parameters used in the
proof of Theorem 2 including the decoding times set in (22).

B.I. Proof of Lemma 1

We first present two lemmas used in the proof of Lemma 1
(step 1). We then choose the distribution Py* of the random
codewords (step 2) and the parameters ni,...,nr,y in The-
orem 1 (step 3). Finally, we analyze the bounds in Theorem 1
using the supporting lemmas (step 4).



1) Supporting lemmas: Lemma 2, below, is the moderate
deviations result that bounds the probability that a sum of n
zero-mean i.i.d. random variables is above a function of n that
grows at most as quickly as n?/3.

Lemma 2 (Petrov [42, Ch. 8, Th. 4]): Let Zy,...,Z, be
i.i.d. random variables. Let E[Z;] = 0, 02 = Var[Z;], and
ps = E[Z3]. Suppose that the moment generating function
E [exp{tZ}] is finite in the neighborhood of ¢ = 0. (This
condition is known as Cramér’s condition.) Let 0 < z, =
O(n'/®). As n — oo, it holds that

P iZi > 2,0v/n
i=1

3
ZnH3

= Q(za) exp { 6o’ } o (% o {_; }2103>

Lemma 3, below, gives the asymptotic expansion of the
root of an equation. We use Lemma 3 to find the asymptotic
expansion for the gap between two consecutive decoding times
Ny and Ne+1-

Lemma 3: Let f(x) be a differentiable increasing function
that satisfies f/(x) — 0 as 2 — oo. Suppose that

x+ f(z) =y. (104)
Then, as x — oo it holds that
z=y— f(y)(1—o(1)). (105)

Proof of Lemma 3: Define the function F'(z) £ 24 f(x)—y.
Applying Newton’s method with the starting point x¢p = y
yields

€1 =T — 5,((5; (;)) (106)
f(y)

T 1+ f(y) (107

=y— A - f'(y)+O(f (y)*). (108)

Recall that f'(y) = o(l) by assumption. Equality (108)

follows from the Taylor series expansion of the function ——

14+x
around z = 0. Let

et =y = fy)(1 = o(1)). (109)
From Taylor’s theorem, it follows that
f@) = fy) = (o) f(y)(1 = o(1)), (110)

for some yo € [y — f(y)(1 — o(1)),y]. Therefore, f'(yo) =
o(1), and f(z*) = f(y)(1 — o(1)). Putting (109)—(110) in
(104), we see that x* is a solution to the equality in (104).
|
2) Random encoder design: We set the distribution of the
random codewords Pxn. as the product of P%’s, where P is
the capacity-achieving distribution with minimum dispersion,
ie.,

Pxny = (Px)"™" (111)
Py = argnlgin{V(X;Y): I(X;Y)=C}. (112)
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threshold ~ and decoding times
..,nr, so that the equalities

3) Choosing the
ni,...,nr:. We choose v,nq, .

v =mnC — \/W log(z,_g11)(ne)V

hold for all ¢ € [L]. This choice minimizes our upper bound
(19) on the average decoding time up to the second-order term
in the asymptotic expansion. See Appendix B.II for the proof.
Applying Lemma 3 with

(113)

T = Mgl (114)
1
Yy =ng— 5\/71@ log_ i)V (115)
1
f(x) = —Fy/nesrlogr g (nes1)V (116)

for £ € {1,...,L — 1}, gives the following gaps between
consecutive decoding times

1
Mer1 =T = (\/ne log(1,_¢)(ne)V
— \/nilog( 41y (no)V ) (1 +o(1).

4) Analyzing the bounds in Theorem 1: The information
density +(X;Y) of a DM-PPC is a bounded random vari-
able. Therefore, +(X;Y") satisfies Cramér’s condition (see
Lemma 2).> For each ¢ € [L], applying Lemma 2 with
v,n1,...,nr, satisfying (113) gives

P (XY ™) < 4]

<Q ( IOg(L—Hl)(W)) exp{

(117)

—(log (1 —g11)(ne))* 2 3
NTEE

+0 (Lewp {1 ars
<1 L .
T Vor \/log(L_g)(ne) \/log(L_e+1)(ne)
_ <1 o <<1og<L_¢3;_ine>><3/2>>> (119)
for ¢ < L, where
ps £ E[((X;Y) = O)°] < oo, (120

and (119) follows from the Taylor series expansion exp{z} =
14+z+ O(:CQ) as ¢ — 0, and the well-known bound (e.g.,
[42, Ch. 8, eq. (2.46)])

2
Qa) < Llexp{—%} for z > 0. (121)

Varx

For ¢/ = L, Lemma 2 gives

P(X"EY"E) < ]

1 11 M))
Smmm(”( e )) 1

3Here, Cramér’s condition is the bottleneck that determines whether our
proof technique applies to a specific DM-PPC. For DM-PPCs with infinite
input or output alphabets, Cramér’s condition may or may not be satisfied.
Our proof technique applies to any DM-PPC for which the information density
satisfies Cramér’s condition.



By Theorem 1, there exists a VLSF code with L decoding
times n; < ng < --- < nr such that the expected decoding
time is bounded as

L-1
N <ni+ Y (ne —n)PR(X™Y™) <9, (123)
=1
By (117), we have ng+1 = ng(1 + o(1)) for £ € [L — 1J.
Multiplying these asymptotic equations, we get
ne =n1(1+ o(1)) (124)

for ¢ € [L]. Plugging (117), (119), and (124) into (123), we
get

Nem Y

(1+0(1)). (125)
" VERC fiaginy )
Applying Lemma 3 to (125), we get
vV VN
ny > N — (1+0(1)). (126)
T VT g, ()

Comparing (126) and (117), we observe that for n; large
enough,

n <N <ng<---<np. (127)
Further, from (113) and (125), we have
nL:N<1+O< 1°gN>>. (128)
N
Finally, we set message set size M such that
log M =~ —log N. (129)

Plugging (122) and (129) into (18), we bound the error
probability as

Ple-W,y")£W

SPRX™; Y™ ) <q]+ (M —1)exp{—v} (130)
11 1 1

S\/ﬂ nL\/log_nL(l—i—o(l))—f—N (131)
111 1

< on VN ﬁlogN(l—i_O(l))—i_N’ (132)

where (132) follows from (127). Inequality (132) implies that
the error probability is bounded by for N large
enough. Plugging (126) and (129) into (113) Wlth =1, we

conclude that there exists an (N L, M, \/ﬁ) -VLSF code
with
log M > NC — /Nlogy(N)V
1 NV
(I+o0(1)) —logN, (133)
\/ log L)( )
which completes the proof. ]
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B.II. Second-order optimality of the decoding times in Theo-
rem 2

From the code construction described in Theorems 1-2, the
average decoding time is

N(na,...,np,v) =N'(1—€)——, (134)
1—¢€y
where
L—-1
N'=ny+ Y (niy1 —n)Pp(X™Y™) <q] (135
=2
en =PR(X" Y™ ) <4+ M exp{—7}. (136)

We here show that given a fixed M, the parameters
ng,N3,...,nr,7y chosen according to (113) and (129) (and
also the error value €y, chosen in (23) since €’y is a function
of (nr,v)) minimize the average decoding time in (134) in
the sense that the second-order expansion of log M in terms
of N is maximized. That is, our parameter choice optimizes
our bound on our code construction.

1) Optimality of na,...,nr_1: We first set ny and ~v to
satisfy the equations

1
—— =P (X" Y < M—-1 —
N [o( ) <A+ ( ) exp{—7}
(137)
log M =~ —lognr, (138)

and optimize the values of no,...,ny_1 under (137)-(138).
Section B.II12 proves the optimality of the choices in (137)—
(138).

Under (137)—(138), the optimization problem in (134)—(136)
reduces to

min  N'(na,...,np_1)
L—1
=ng+ ¥ (nip1 — ) P(X"5Y™) < 4]
i=2 (139)
1 nr. nr
+ (M — 1) exp{—7}.
Next, we define the functions
mméfﬁf (140)
F(n) £ Q(~g(n)) =1-Q(g(n)) (141)
N _ g(”)Q ’
fn) 2 w—ﬁfm{-z}(m (142)

Assume that v = 7, is such that g(n) = O(n 1/6), and
lim g(n) = oco. Then by Lemma 2, P[s(X™;Y") < 4],
nwﬁlocoh is a step-wise constant function of n, is approximated
by differentiable function 1 — F'(n) as

PL(X™Y") <v] = (1 = F(n))(1 +o(1)).

Taylor series expansions give

BRI TP i G 0
e { -2 b a o) s

(1= F(n))g(n)g'(n)(1 + o(1))

(143)

1—F(n)=

f(n) = (145)



¢
vnV

Let n* = (n3,...,n} _,) denote the solution to the opti-
mization problem in (139) with P [o(X™; Y™) < ~] replaced
by (1— F(n)). Then n* must satisfy the Karush-Kuhn-Tucker

g'(n) = (14 o(1)). (146)

conditions VN’(n*) = 0, giving
ON’
| = Fmy) - (- np)f(n5) =0 (147)
N2 |p=n~*
aN/ * * * * *
on = F(n;) = F(ng 1) — (npyy —ng) f(ng) =0
¢ | pen=
(148)
for{=3,...,L—1.

Let n = (’ng,...,
(113). We evaluate

fip—1) be the decoding times chosen in

9(f) = y/log(_p11)(72e) (1 + o(1)) (149)
1 1
1- F(n 14+ 0(1 150
_ 1 g ( )
- 151
00 = 75 o) (b
_ _ g(fesa)
N1 — Ty = g’(fu) (1+0(1)) (152)
for ¢ =2,..., L—1.Plugging (149)-(152) into (147)-(148)
for g_]v/’ > we get
foay _ 1 _ 1 _ 1 _ 1
VN'(n) = (1 T T T m)
(14 0(1)). (153)
Our goal is to find a vector An = (Ang,...,Any_1) such
that
VN'(i + An) = 0, (154)

Assume that An = O(y/n). By plugging n+ An into (144)-
(146) and using the Taylor series expansion of g(n+ An), we
get

1— F(n+An) = (1—F(n))
-exp{—Ang(n)g'(n)}(1+o(1)) (155)
f(n+ An) = f(n) exp{—Ang(n)g'(n)}(1 + o(1)).

(156)

Using (155)—(156), and putting nn + An in (147)—(148), we
solve (154) as

log\/ﬂ
Ang = ——— 1+o(1 157
"= g ) ) e
- —\/Vl‘égm Ve 1 4o1) (158)
IOg(L—l)(ﬁQ)
1 g(Ria)?
An; = 2 309 () = 0(Ans)(1+0(1)) (159)
for i = 3,...,L — 1. Hence, i + An satisfies the optimality

criterion, and n* = n + An.
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It remains only to evaluate the gap N'(n*)
have

— N'(n). We

)= N'@)
<An2 + Z i1 — 7)Qg (i)

(exp{—Ang(A)g (7)) — 1) ) 1+o(1)  (160)

1 1 =
— <An2 + (1 — \/ﬁ) S ) — ; Am)

“(1+0(1)) (161)

=-B—Y"2___(1+0(1)), (162)
log(,_1)(72)

where B = (1og V2T + f — 1) YV s a positive constant.

From the relationship between ny and no in (124) and the
equality (162), we get

N'(n*)
g(z—1)(N'(n*))

(14 0(1)).

N'(n) = N'(n*) + B
\/10
(163)
Plugging (163) into our VLSF achievability bound (133) gives

log M = N'(n")C = /N'(n*) log (N’ (n"))V

B N'(n*)
X <\/ 1og<“><zv/<n*>>> |

(164)

Comparing (164) and (133), note that the decoding times
chosen in (113) have the optimal second-order term in the
asymptotic expansion of the maximum achievable message set
size within our code construction. Moreover, the order of the
third-order term in (164) is the same as the order of the third-
order term in (133). &

The method of approximating the probability
P[(X™;Y™) > ~], which is an upper bound for P [r < n]
(see (86)), by a differentiable function F'(n) is introduced
in [26, Sec. III] for the optimization problem in (139). In
[26], Vakilinia et al. approximate the distribution of the
random stopping time 7 by the Gaussian distribution, where
E[r] and Var[r] are found empirically. They derive the
Karush-Kuhn-Tucker conditions in (147)-(148), which is
known as the SDO algorithm. A similar analysis appears in
[27] for the binary erasure channel. The analyses in [26], [27]
use the SDO algorithm to numerically solve the equations
(147)—(148) for a fixed L, M, and €. Unlike [26], [27], we
find the analytic solution to (147)—(148) as decoding times
ng,...,nr approach infinity, and we derive the achievable
rate in Theorem 2 as a function of L.

2) Optimality of np and -~: Let (n**) =
(nd,...,n%,~v*) be the solution to VN(n*,v*) = 0 in
(134). Section A finds the values of n3,nj,...,n}_; that
minimize N’. Minimizing N’ also minimizes N in (134)
since ¢ depends only on n; and 7, and € is a constant.



Therefore, to minimize N, it only remains to find (nz,v*)
such that

ON
FT =0 (165)
"L l(n,7)=(n* 7*)

T lmy=m~)

Consider the case where L > 2. Solving (165) and (166) using
(147)—(152) gives

g(n) = \flogn +logey) () + log(s) (nf) + O(1)

(167)
*\2
0=co+ N’( —oxp {_9(";) } (1+0(1))
L
- Mexp{-}). (168)

where ¢ is a positive constant. Solving (167)—(168) simulta-
neously, we obtain

log M =~* —logn} + O(1). (169)
Plugging (167) and (169) into (136), we get
e = o (1+0(1)), (170)
\/"1 10g () (n}) logny,
where ¢ is a constant. Let (n,%) = (fg,.. ﬁK, %) be the
parameters chosen in (l 13) and (129). Note that €% is order-

wise different than ¢ in (23). Following steps s1rn11aI to
(160)—(162), we compute

n*
N(n*,v*) = N(d,7) = — L 171
(n*,7") = N(n,9) 0( lognz> (171)
Plugging (171) into (21) gives
log M — N(n*,y*)C
1—c¢
- \/N(n*,’Y*)log(L1)(N(n*,’7*))1 —
N(n*,~%)
+0 . (172)
(\/1Og(L—1)(N(n*a ’W)))

Comparing (21) and (172), we see that although (23) and
(170) are different, the parameters (n,) chosen in (113)
and (129) have the same second-order term in the asymptotic
expansion of the maximum achievable message set size as the
parameters (n*,~v*) that minimize the average decoding time
in the achievability bound in Theorem 1.

For L = 2, the summation term in (135) disappears; in this
case, the solution to (165) gives

c2
\/nj logni
for some constant cy. Following the steps in (171)—(172), we

conclude that the parameter choices in (113) and (129) are
second-order optimal for L = 2 as well.

1%
EN =

(1+0(1)) (173)

19

APPENDIX C
PROOF OF THEOREM 3
Let Py and P; be two distributions. Let Z £ log 55 4By be the
log-likelihood ratio, and let

Yz
=1

where Z;’s are ii.d. and have the same distribution as Z.
For ¢ € {0,1}, we denote the probability measures and
expectations under distribution P; by PP; and E;, respectively.
Given a threshold a¢ € R, define the stopping time

(174)

T 2inf{n >1: 5, > ao} (175)

and the overshoot
§o = St — ap.

The following lemma from [36], which gives the refined
asymptotics for the stopping time 7, is the main tool to prove
our bounds.

Lemma 4 ( [36, Cor. 2.3.1, Th. 2.3.3, Th. 2.5.3,
Lemma 3.1.1]): Suppose that Eq[(Z;")?] < oo, and Z; is non-
arithmetic. Then, as a — oo, it holds that

(176)

1
Eo[T] = m(ao + Eo[éo]) (177)
_ 1 Eo[Z7]
~ D(RIP) ( DT
-y %]EO[S ]+ 0(1)>, (178)
n=1
and
Po[T < o0] = 1 (179)
Pi[T < o] = e “Eqgle *50] (180)
—Xéo01 1 + 0 > l ,)\SJr
Eole™™] = )\D(POHPl ; n Eole
(181)

C.I. Achievability Proof

Let Px be a capacity-achieving distribution of the DM-PPC.
Define the hypotheses

Hy: (X, ydn)
Hy: (X, ydn)>

~ P57 = ((Px % 1DY|X)dN)00
~ P = ((Px x Py)™)>,

(182)
(183)

and the random variables

d
W, & ilog dPyY (X(i—l)dN-i-l:idN’Y(i—l)dN-i-l:idN)
dy 7 APy
(184)
— LZ(X(i_l)dN'Fl?idN;Y(i_l)dN"l‘l:idN) (185)

dn

for ¢ € N. Note that under Hy, Eo[W;] =
Wi in the place of Z; in (174). Define

C. Here, we use

(186)



and

T & inf{k > 1: Sy > ag/dn}
TédNT.

(187)
(188)

We employ the stop-at-time-zero procedure described in
the proof sketch of Theorem 2 with € = ﬁ and the
information density threshold rule (80)—(83) from the proof
of Theorem 1, where the threshold + is set to ag. Here, T is
as in (175). We set M and ag so that

1
MP[T < 0] < Me ™™ =éy = ——

189
o]’ (189)

where the inequality follows from (180). Following steps
identical to (99), and noting that Py[T" = oco] = 0, we get

N = (1 — e)Eo[T] + O(1), (190)

and the average error probability of the code is bounded by e.
To evaluate Eo[T], we use Lemma 4 with W; in place of
Z;. A straightforward calculation yields

dn

1
Eo[W2] = Eo[W1]? — Var i ;z(xi; Y;) (191)
o2~ Lvar [1(X1;Y7)]. (192)

dn

Next, we have that
_ 1 1
Eo[S,, ] = —ndNE | —S,1{ —S5, <0¢|, (193)
ndN ndN

where S,, = Z;’if 1(X;;Y;). Applying the saddlepoint ap-
proximation (e.g., [51, eq. (1.2)]) to ——S,,, we get

ndN

0

Eo[S; ] = ndy / c(z)y/ndye mdva@Hosz gy (194)

— 00

where ¢(x) and g(x) are bounded from below a positive
constant for all z € (—o0, 0]. Applying the Laplace’s integral
[51, eq. (2.5)] to (194), we get

Eo[S, ] = emndnentolndn) (195)

for all n € Z, where each ¢, is a positive constant depending
on n. Putting (192) and (195) into (178) and (188), we get

_ %0, O
Eo[T] = c + B + o(dn). (196)
From (189)—(190), we get
N
Eo[T] = < +0(1) (197)
log M = ag — log N. (198)

Putting (196)—(198) together completes the proof of (26).
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C.II. Converse Proof

Recall the definition of an SHT (4,7,N) from Ap-
pendix A.I1 that tests the hypotheses
Hy: Z* ~ P

Hy: Z* ~ Py,

(199)
(200)

where Py and P; are distributions on a common alphabet Z>°.
Here, Z>® £ (Zy, Zs,...) denotes a vector of infinite length
whose joint distribution is either Py or P;, which need not
be product distributions in general. We define the minimum
achievable type-II error probability, subject to a type-I error
probability bound and a maximal expected decoding time
constraint, with decision times restricted to the set N as

Bie.n ) (Po, Pr) & (J,T,Nﬁ%ior[la:uge, Py[0 =0], (201)
max{Eo[7],E1[T]}<N
which is the SHT version of the [3.-function defined for the
fixed-length binary hypothesis test [13].

The following theorem extends the meta-converse bound
[13, Th. 27], which is a fundamental theorem used to show
converse results in fixed-length channel coding without feed-
back and many other applications.

Theorem 9: Fix any set N' C Z>, a real number N > 0,
and a DM-PPC Py |x. Then, it holds that

log M*(N, V], &, A)
< lgup inf —log e, n Ay (Pxo X P{?TX,PXOO X Qy).
oo Wy oo
(202)

Proof: The proof is similar to that in [13]. Let W denote
a message equiprobably distributed on [M], and let W be
its reconstruction. Given any VLSF code with the set of
available decoding times N, average decoding time N, error
probability €, and codebook size M, let PXoo denote the
input distribution induced by the code’s codebook. The code
operation creates a Markov chain W — X — Y — w.
As full feedback breaks this Markov chain, stop feedback does
not since the channel inputs are conditionally independent of
the channel outputs given the message W. Fix an arbitrary
output distribution Q)y -, and consider the SHT

Hp: (X,Y™) ~ Pxo x P (203)
Hi: (X°,Y) ~ Pxoo x Qyw (204)
with a test § = 1{IW # W}, where (W, W) are generated by
the (potentially random) encoder-decoder pair of the VLSF

code. The type-I and type-II error probabilities of this code-
induced SHT are

a:n»o[a:uzp[vi/;éw}ge (205)
f=Bils=0]= . (206)

where (206) follows since the sequence Y °° is independent
of X°° under H;. The stopping time of this SHT under Hj
or H; is bounded by N by the definition of a VLSF code.
Since the error probabilities in (205)—-(206) cannot be better
than that of the optimal SHT, it holds that

log M



< —10g Be.nn)(Px= X Py, Px= x Qy=)  (207)
< dnf —log B v n)(Px= X Pix, Px x Qy=) (208)

< sup inf —log B na)(Pxe X Py|X,PXoo X Qyoo),

Pyoo Qvoo
(209)
where (208) follows since the choice (Jy is arbitrary. |
To prove (27), we apply Theorem 9 and get
IOgM < _logﬁ(e,N,N)(P)(}\)Xupﬁgo)v (210)

where Py is the capacity-achieving output distribution, and
N = {0,dn,2dn,...}. The reduction from Theorem 9 to
(210) follows since logp’;.@‘yxig,/)m has the same distribution
for all x € X for Cover—Thomas symmetric channels [43,
p. 190]. In the remainder of the proof, we derive an upper
bound for the right-hand side of (210).

Consider any SHT (8, 7,N') with Eg[r] < N and E;[7] <
N. Our definition in (201) is slightly different than the
classical SHT definition from [52] since our definition allows
one to make a decision at time 0. Notice that at time 0, any
test has three choices: decide Hy, decide H1, or decide to start
taking samples. When the test decides to start taking samples,
the remainder of the procedure becomes a classical SHT. From
this observation, any test satisfies

@211)
212)

e>a=¢+(l—¢—e)d >e
B=e+(1—e—e€)B > (1—e)p,

where at time O, the test decides H; with probability €;_;,
and o/ and ' are the type-I and type-II error probabilities
conditioned on the event that the test decides to take samples
at time 0, which occurs with probability 1 — ey — €;.

Let 7/ denote the average stopping time of the test with
error probabilities (o, 5'). We have

Eo[7r] = (1 — €9 — €1)Eo[7’] (213)
=(1—e)(Bo[r] +e PNy <N (214)
Ei[7] = (1 — €o — €1)Eq[7] (215)
=(1—e)(Er[r] +e M) <N (216)

since [ decays exponentially with Eg[7].
The following argument is similar to that in [53, Sec. V-C].
Set an arbitrary v > 0 and the thresholds

- N

aO—C<1_€O—7—o(dN)+V) (217)

- N d

a1 = D(Py || Py|x=z) (1 i TN —o(dn)+v ),
218)

where x € X is arbitrary, and let (0,7,N) be the SPRT
associated with the thresholds (—aj, ao), and type-I and type-
II error probabilities & and B .

Applying [36, eq. (3.56)] to (196), we get

Eo[7] = "—g + %N + o(dn) (219)
E[7] = i Gy o(dn). (220)

D(Py||Py|x=2) 2
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Combining (217)—(220) gives
N
1-— €0
N
1-— €0

Letting v = O (&), it follows from (213)~(216) and (221)-
(222) that

Eo[7] > +v (221)

E, [7] > +u. (222)

Eo[7] > Eo[r]
Eq[7] > Eq[7']

(223)
(224)

for a large enough N. Using Wald and Wolfowitz’s SPRT
optimality result [54], we get

jo)

(225)
(226)

I\/ I\/

je

Oé
e
Now it only remains to lower bound B. Applying [36, Th.
3.1.2, 3.1.3] and (181) gives

B = (e (1 +0(1)), (227)

- =1
CZ dN—C <exp{—; EPO[S” < O] +P1[Sn > O]}) )
(228)

and S,, is as in (186). Since S,, is a sum of ndy — oo ii.d.
random variables, where the summands have a non-zero mean,
the Chernoff bound implies that each of the probabilities in
(228) decays exponentially with dpy. Thus,

(= 51 +o). (229)
From (217) and (229), we get
~logB=C ( N _dv_ o(dn) + o(log dN)> (230)
1-— €0 2
=C (176 - d7N — o(dy) +o<long)) , (231)

where (231) follows from (211). Inequalities (212), (226), and
(231) imply (27).

APPENDIX D
PROOFS FOR THE DM-MAC

In this section, we prove our main results for the DM-MAC,
beginning with Theorem 4, which is used to prove Theorem 5.

D.I. Proof of Theorem 4

For each transmitter k, k € [K|, we generate My nj-
dimensional codewords i.i.d. from P;];: Codewords for dis-
tinct transmitters are drawn independently of each other.
Denote the codeword for transmitter k£ and message mj by
X" (my) for k € [K] and my, € [Mj]. The proof extends the
DM-PPC achievability bound in Theorem 1 that is based on
a sub-optimal SHT to the DM-MAC. Below, we explain the
differences.



Without loss of generality, assume that mx) = 1 is
transmitted. The hypothesis test in (72)—(73) is replaced by

K

Ho: (X3, Yieb) ~ <H P}}:) Py x (232)
k=1
K

Hy: (X[, Yh) ~ <H P;;) P (233)
k=1

K
which is run for every message tuple mx) € ] [Mg]. The

k=1
information density (80), the stopping times (81)—(82), and the
decision rule (83) are extended to the DM-MAC as

Smaeyme = 1 (X[ (mi)); Yi°) (234)
T 2 f{ng € Nt Sipyme =70 (235)
7~—m[K] = min{Tm[K]an} (236)

0 if Sy e >
Ompse) = 1 iome =7 (237)
1 if Sm[K],"e < y

for every message tuple mg| and decoding time ng. For
brevity, let (X [”’f] Y, X [%) be drawn i.i.d. according to the
joint distribution

Px o ¥ie X (1K) Y5 T K]
(238)

K
= Pyyexye Wlz) T P () P ()
k=1

Expected decoding time analysis: Following steps identical
to (84)—(86), we get (41).

Error probability analysis: The following error analysis
extends the PPC bounds in (79) and (89)-(97) to the DM-
MAC.

In the analysis below, for brevity, we write m4 # 1 to
denote that m; # 1 for i € A. The error probability is bounded
as

e< ]P’[ U {7 <11 < oo} U{Tl = oo}} (239)
mg]#1
<Plr=o00l+P| |J {7y <o} (240)
(K] 71
+P U {Tmpy < 0} (241)
m[K];él: Ji€[K]

mi:l

where (240)—(241) apply the union bound to separate the
probabilities of the following error events:

1) the information density of the true message tuple does
not satisfy the threshold test for any available decoding
time;

2) the information density of a message tuple in which all
messages are incorrect satisfies the threshold test for some
decoding time;

3) the information density of a message tuple in which
the messages from some transmitters are correct and
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the messages from the other transmitters are incorrect
satisfies the threshold test for some decoding time.

The terms in (240) are bounded using steps identical to
(89)-(97) as

P[r = o] <P [ic(X[35: Vir) <] (242)

K
P| | {mmu <0} < H (My, — 1) exp{—}. (243)
mix)#1 k=1
For the cases where at least one message is decoded
correctly, we delay the application of the union bound. Let
A € P([K]) be the set of transmitters whose messages are

decoded correctly. Define

MO 2 {mr) € [M)*:my, =1fork € A,
my # 1 for k € A} (244)
MA L e M)A my £ 1 for ke A}, (245)

We first bound the probability term in (241) by applying the
union bound according to which subset A of the transmitter
set [K] is decoded correctly, and get

P U {Tm[K] < oo}
< Z P U {Tm[K] < OO} (246)
AEP(K]) | mpmje M

- > U
AEP(KD) | maeest4®
L neeN

Lo (X7 (mae), XTG Y) > v}

(247)

where Xﬁ’é (m 4<) refers to the random sample from the code-
books of transmitter set .A°, independent from the codewords
X'ie transmitted by the transmitters A° and the received
output Y.

We bound the right-hand side of (247) using the same
method as in [28, eq. (65)—(66)]. This step is crucial in
enabling the single-threshold rule for the rate vectors ap-
proaching a point on the sum-rate boundary. Set an arbitrary
AA) > 0. Define two events

E(A) £ U {ZK(X_Z[;Y;@) > NI (X4;YE)+ N,\(A)}
neeN
(248)
FAE (X ma), X535 V) = 7}
m ge €AY
neeN
(249)
Define the threshold
A £y — NIie(Xa; Yie) = NAWY (250)
We have
PF(A)]



= P[F(A) NE(A)] + P [F(A) N E(A)] (251)
<P[E(A)]
+P U {ZK(X% (mae); Y| X)) = W(A’} ]
mpc EM(AC)
neeN
(252)
< 30 P (X55 V) > Nlie(Xa Yie) + NAAY|
ngeN
+ [T i - 1)1@[ U {zK(X;ﬁ;quXzf) > W"}]
ke Ac neeN
(253)
<Y P [ZK(XW;Y;@) > NI (Xa:Yi) +N/\(A)}
ngeN
+ [T (Mi = 1) exp{—71}, (254)
ke Ac

where inequality (252) uses the chain rule for mutual informa-
tion, (253) applies the union bound, and (254) follows from
[20, eq. (88)].

Applying the bound in (254) to each of the probabilities in
(247) and plugging (242), (243), and (247) into (240)—(241),
we complete the proof of Theorem 4.

D.II. Proof of Theorem 5

We employ the stop-at-time-zero procedure in the proof
sketch of Theorem 2 with e’N = m. Therefore, we first
show that there exists an (N, L, M{gj,1//Nlog N)-VLSF

code satisfying

K
> log My = NI — /Nlog ;) (N)Vk
k=1

NV
+0 — . (255)
< 10g(L)(N)>
We set the parameters
v = nelx — \/ng log(,_¢in)(ne)Vie VEE[L] (256
K
= Z log My, 4 log N (257)
k=1
NIg(Xae; Y| Xa) — . log M,
A Mre e VielX) = 2 penclos My ey,
2N
(258)

Note that A(4)’s are bounded below by a positive constant for
rate points lying on the sum-rate boundary.

By Theorem 4, there exists a VLSF code with L decoding
times n; < ng < --- < nr, such that the average decoding
time is bounded as

L-1
N <ni + Z(nf-i-l —nyg)P [zK(X[’}?];
(=1

Y < ﬂ . (259)

Following the analysis in (125)—(128), we conclude that
ne = N(1+ o(1)) (260)

23

for all £ € [L]. Applying the Chernoff bound to the probability
terms in (39)—(40) using (256) and (260), we get that the sum
of the terms in (39)—(40) is bounded by exp{—NE} for some
E > 0.

Applying Lemma 2 to the probability in (37) with (256)
gives
1 1 1

= Var vz Viogns
(3/2)
| <1+O <<lognL> ))
(261)

VL
Applying Theorem 4 with (257), (261), and the exponential
bound on the sum of the terms in (39)-(40), we bound the
error probability as

P o (X3 Vo

)<7}

P e (UY") # Wi
(3/2)
< 11 1 .<1+O<(logN) ))
V2r VN Vg N VN
+ % +exp{~NE}, (262)

1

which is further bounded by —=— for N large enough.
Following steps identical to (155)—((%133), we prove the exis-
tence of a VLSF code that satisfies (255) for the DM-MAC
with L decoding times and error probability \/ﬁ.
Finally, invoking (255) with L replaced by L — 1 and the
stop-at-time-zero procedure in the proof sketch of Theorem 2
with €y = m, we complete the proof of Theorem 5.

D.III. Proof of (44)

The proof of (44) follows steps similar to those in the proof
of [8, Th. 2]. Below, we detail the differences between the
proofs of (44), Theorem 5, and [8, Th. 2].

1) In (44), we choose c¢N + 1 decoding times as n; = ¢ — 1
fori =1,...,cN+1 for a sufficiently large constant ¢ >
1. This differs from Theorem 5 where L does not grow
with N (L = O(1)) and the gaps between consecutive
decoding times can differ. In [8, Th. 2], any integer time
is available for decoding, giving L = nyax = 00.

We here set the parameter v differently from how it was
set in (256) and (257). The difference accounts for the
error event that some of the messages are decoded incor-
rectly and some of the messages are decoded correctly.
Specifically, we set

2)

vy=NIg —a (263)
K

= Z log My, +log N + b, (264)
k=1

where a is an upper bound on the information density
1 (X[k]; Y ), and b is a positive constant to be deter-
mined later. Since the number of decoding times L grows
linearly with N and ¢ > 1, applying the Chernoff bound
gives

(37) + (39) + (40) < exp{—NE} (265)



for some E > 0 and N large enough. Hence, the error
probability € in Theorem 4 is bounded by w +
exp{—NE}, which can be further bounded by 3 by
appropriately choosing the constant b.
The term (37) disappears in [8, Th. 2] because ny = oo;
the terms (39) and (40) disappear in [8, Th. 2] because
the channel is point-to-point. Therefore, b is set to 0 in
[8, Th. 2].
3) We bound the average decoding time E [77] as
E[r] < Y+a
Ik
using Doob’s optional stopping theorem as used in [8,
eq. (106)-(107)] while E [7*] in the proof of Theorem 5
is bounded by bounding the tail probability of information

=N

(266)

density.
The steps above show the achievability of an
(N,eN, Mig),1/N) code with
K
Z log My, = NIx —log N + O(1). (267)
k=1

4) Lastly, as in [8, Th. 2], we invoke the stop-at-time-zero

procedure from the proof sketch of Theorem 2 with €}, =
1
W .

APPENDIX E
PROOF OF THEOREM 6

In Theorem 6, we employ a multiple hypothesis test at some
early time ng to estimate the number of active transmitters
followed by a VLSF MAC coding. Since VLSF MAC code-
word design employed in Theorem 5 is unchanged (up to the
coding dimension), the VLSF MAC code employs a single
nested codebook, as described in the proof below. If the test
decides that the number of active transmitters is k = 0, then
the decoder declares no active transmitters at time 7y and stops
the transmission at that time. If the estimated number of active
transmitters is k = 0, then the decoder decides to decode at
one of the available times ng ,, ..., ni. 1, using the decoder

for the MAC with k transmitters.

E.I. Encoding and decoding

Encoding: As in the DM-PPC and DM-MAC cases, the
codewords are generated i.i.d. from the distribution Py""".

Decoding: The decoder combines a (K + 1)-ary hypothesis
test and the threshold test that is used for the DM-MAC.

Multiple hypothesis test: Given distributions Py,, k €
{0,..., K} where Yk is the common alphabet, we test the
hypotheses

Hy: Y™ ~ P, ke0,....K}. (268)

The error probability constraints of our test are

P [Decide Hs where s # 0|Hp] < € (269)

<e€
P [Decide Hs where s # k|Hy] < exp{—noE + o(no)}
(270)

for k € [K], where E > 0 is a constant.
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Due to the asymmetry in (269)—(270), we employ a com-
posite hypothesis testing to decide whether Hj is true; that is,
the test declares Hj if
By (y™)

> s
)

1 -0 7
Og P;So (yno

271)
for all s € [K], where the threshold values 7, s € [K], are
chosen to satisfy (269). If the condition in (271) is not satisfied,
then the test applies the maximum likelihood decoding rule,
i.e., the output is Hg, where

s = arg max Py°(y"°). (272)

SE[K] g
From the asymptotics of the error probability bound for
composite hypothesis testing in [28, Th. 5], the maximum
type-1I error of the composite hypothesis test is bounded as

max P [Decide Ho|H}]
ke[K]

< exp {—no krél[i% D(Py, || Py,) + O(\/n_o)} . (273)

If Py, is not absolutely continuous with respect to Py, , (273)
remains valid when D(Py, || Py, ) = oo since in that case, we
can achieve arbitrarily large type-II error probability exponent
(see [13, Lemmas 57-58].)

From [55], the maximum likelihood test yields

max [P [Decide Hy|Hy] < exp{—nEc +o(n)}, (274)
(k,s)€[K]?

where

Ec =min min log Y Py (y)' Py, ()

(275)
ks XE(0]) 7 o

is the minimum Chernoff distance between the pairs
(Py,,Py,), k # s € [K|. Combining (273) and (275), the
conditions in (269)-(270) are satisfied with
E= min{ min D(Py, || Py,), Ec} > 0. (276)
kE[K]

If the hypothesis test declares the hypothesis H;, k # 0,
then the receiver decides to decode k messages at one of the
decoding times in {n; ,,...,n; ,} using the VLSF code in
Section D for the l%-MAC, where nj , is set to ng.

E.Il. Error analysis

We here bound the probability of error for the RAC code
in Definition 4.

No active transmitters: For k = 0, the only error event is
that the composite hypothesis test at time ng does not declare
Hy given that Hj is true. By (269), the probability of this
event is bounded by ¢p.

k > 1 active transmitters: When there is at least one active
transmitter, there is an error if and only if at least one of the
following events occurs:

o 8,; 2k The number of active transmitters is estimated

incorrectly at time ng, i.e., k # k, which results in
decoding of k£ messages instead of k messages.



o Emes: A list of messages mfk] # myy is decoded at one
of the times in {nk1,...,n% L}
In the following discussion, we bound the probability of these
events separately, and apply the union bound to combine them.
Since the encoders are identical, the event Eyp = {W; =
W, for some i # j}, where two or more transmitters send the
same yields a dependence with transmitted codewords. Since
transmitted codewords are usually independent, treating &;cp
as an error simplifies the analysis. By the union bound, we
have

k(k—1)

<
IED [grep] — 2M

(277)

Applying the union bound, we bound the error probability
as

ek <P [Eup] +P[ES,] P [5,; iU Emes srcep}
<P [l + P [0 |E0 | + P [EmesfEion E2,, ] - 278)

By (270), the probability P {5

8;;4 is bounded as

E#£k

P [& (279)

Ercep} < exp{—noE + o(ng)}.

Since the number of active transmitters % is not available
at the decoder at time 0, we here slightly modify the stop-
at-time-zero procedure from the proof sketch of Theorem 2.
We set the smallest decoding time n; 1 to ng # 0 for all j €
[K]. Given the estimate & of the number of active transmitters
k, we employ the stop-at-time-zero procedure with the triple
(N, €, €y) replaced by (Né,e,;,eNé).

Let &op denote the event that the decoder chooses to stop
at time ny 1 = ng. We bound P [Emeslc‘:r‘ép N Ezik} as

P [l E0 061 0] < P [l N7
P |Eaoplip N L, | P [ Emes| €50 N EE L, NESey -
(280)

By Theorem 4, when the RAC decoder decodes decode a
list of k& messages from [M] at time ny ¢, we get

[anes £y NES,, N ssiop} (281)

<P (X Yo s) < ) (282)
M—k

+ < . ) exp{—1} (283)

53>

=2 AeP([K))

P [ (X505 Y) > N{IK(Xa5 Vi) + NA® |

(284)
+ = (YY)
AeP([k]) A
exp{—y 4+ NjI1(X.4; Vi) + NpABA L (285)
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where N; is the average decoding time given £g,,, and 7y

and \(*4) are constants chosen to satisfy the equations

Vi = g el — \/nk,l log(L,g+1)(nk7g)Vk (286)
= klog M +log N;, + O(1) (287)
forall ¢ € {2,...,L}, and
NI (X pe; Yi| X a) — | A°| log M
(k,A) _ HYEIE\AA TE A
A o ,  AecP([k]).
(288)

The fact that each A*4) is bounded below by a positive
constant follows from (287), [28, Lemma 1], and the symmetry
assumptions on the RAC.

Following the analysis in Appendix D.II, we conclude that

klog M = N.I; — \/N,; log(,_1)(N})Va

NV,
O )—2t__ (289)
IOg(Lfl)(Nk)
C C C 1
[gmes £y NE N 5swp] S e (290)

Note that by (277) and (289), the bound on PP [E,] decays
exponentially with Nj. A consequence of (286) and (289) is
that

N,; = nk_’g(l + 0(1))

for all £ > 2 and k € [K].
Note that from (289), the right-hand side of (277) is
bounded by ﬁ for Nj large enough. We set the time ng so
k

(291)

that the right-hand side of (279) is bounded by ——A——
44/ N/ log N/
for all k € [K]. This condition is satisfied if c
1
no = 5 log Ny, + o(log Ny,). (292)
The above arguments imply that
1
P —HP’[& s;;}gi 293
[Erep] W A (293)

for N}, large enough. As in the DM-MAC case, we set

€, — 1
A/ N! log N/
pEP |:€St0P|€rep N Ez#k} = 1_—’“1g" (294)
\/Nj log Nj,
where
, 1
€, = € — (295)

2,/N] log N]
Combining (278), (280), (290), and (293)-(294), the error
probability of the RAC code is bounded by

P [Ep] + P [ €100 |E50] + P [Sunl€ip N €L, ]
P |l N €L, | P [ Emes €0 NEE L, NEGy|  (296)
1 1
S et (1 - D) = 297
N AT s varrs v
= . (298)



The average decoding time of the code is bounded as

N <E [Tk |Efzr U 5rep} P {5,;# Y grep}

+E [, nes| PlEL N @99
Ngk.L y
———————— 4+ nop+ N (1 —p). 300
=2 /N[l V] op A p) (300)
From (291) and (294)-(295), we get
Ni 1
N, = 140 ——— . 301
g, ( " (\/NklogNk)> (0D

Plugging (301) into (289) completes the proof.

APPENDIX F
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The non-asymptotic achievability bound in Theorem 1 ap-
plies to the Gaussian PPC with maximal power constraint P
(58) with the modification that the error probability (18) has
an additional term for power constraint violations

P [U {1X)* > neP}

{=1

(302)

The proof follows similarly to the proof of Theorem 2 as
we employ the stop-at-time-zero procedure in the proof sketch
of Theorem 2. We extend Lemma 1 to the Gaussian PPC,
showing

log M* <N’L’\/%g]\77p)
N
> NC(P) = [ Nlog 1, (N) V(P) + O < W) |
(303)

The input distribution Px». used in the proof of (303) differs
from the one used in the proof of Lemma 1, causing changes
in the analysis on the probability P [o(X"™L; Y™L) < ~] and the
threshold v in (113). Below, we detail these differences.

1) The input distribution Pxn~.: We choose the distri-
bution of the random codewords, Pxn;, in Theorem 1 as
follows. Set ng = 0. For each codeword, independently
draw sub-codewords X"i-1T17  j € [L] from the uniform
distribution on the (n; — n;_1)-dimensional sphere of radius
\/(nj —nj_1)P. Let Pxn. denote the distribution of the
length-n;, random codewords described above. Since code-
words chosen under Px~; never violate the power constraint
(58), the power violation probability in (302) is 0. Further-
more, the power constraint is satisfied with equality at each
of the dimensions ni,...,nr; our analysis in [39] shows that
for any finite L, and sufficiently large increments ny, — ng_1
for all ¢ € [L], using this restricted subset instead of the
entire ny-dimensional power sphere results in no change in
the asymptotic expansion (60) for the fixed-length no-feedback
codes up to the third-order term.
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2) Bounding the probability of the information density
random variable: We begin by bounding the probability

P(X"Y™) <~], (e]L], (304)
that appears in Theorem | under the input distribution de-
scribed above. Under this choice of Px~; , the random variable
1(X™;Y™) is not a sum of n, ii.d. random variables. We
wish to apply the moderate deviations result in Lemma 2. To
do this, we first introduce the following lemma from [56],
which uniformly bounds the Radon-Nikodym derivative of
the channel output distribution in response to the uniform
distribution on a sphere as compared to the channel output
distribution in response to i.i.d. Gaussian inputs.

Lemma 5 (MolavianJazi and Laneman [56, Prop. 2]): Let
X™ be distributed uniformly over the n-dimensional sphere
of radius v/nP. Let X" ~ N(0,Pl,). Let Pyn and P;,
denote the channel output distributions in response to Pxn
and Pg.,, respectively, where Py« x» is the point-to-point
Gaussian channel (55). Then there exists an ng € N such that
for all n > ng and y™ € R", it holds that

dPYn (yn) A T 1 + P

——< < J(P) =27 - —F/—. 305

dPy.(y") — (P) 81+ 2P (305)
Let P2 be N'(0, (14 P)ly, ). By Lemma 5, we bound (304)

as

P (X5 Y™) < 4]

APy, one (Y74 X70) APy (Y70)
1 Jog Syl 306
[Og AP, (Vi) 1Tl gy | (300
dpyn”an (Y”lﬁlX’ﬂl) :|
<Pllo <+ llogJ(P)| . (307)
[ Py, (V1) (P)

where J(P) is the constant given in (305), and (307) follows
from the fact that Py, is the product of ¢ output distributions
of dimensions n; —nj_1,j € [¢], each induced by a uniform
distribution over a sphere of the corresponding radius. As
argued in [13], [35], [39], [56], by spherical symmetry, the
distribution of the random variable

dPyn, X (Yne |Xn/z)
dPyn, (Y)

log (308)

depends on X™ only through its norm | X™¢|. Since

IX ”’f|| = ngP with probability 1, any choice of 2™ such
that ||z"||* = n; P for i € [£] gives
dPY"e |X"/z (Yre|xme) ]
P |lo <~+LllogJ(P)| =
o P <7+ o ()
dpyne|Xn£ (Y’ﬂ£|X”l2)
Pl llog J(P)| X™ = a™¢| .
{og Py (V) <+ Llog J(P) z

(309)

We set 2™ = (\/ﬁ, VP, ..., \/ﬁ) = +/P1 to obtain an i.i.d.
sum in (309). Given X™ = v/P1, the distribution of (308) is
the same as the distribution of the sum

>
i=1

(310)



of ny i.i.d. random variables

P 2
Ai=CP)+ s (1 - Z24+ =7 ), i :
()+2(1—|—P)< 1+\/]_3 > i € [ny)
(311)
where 71, ..., Z,, are drawn independently from N (0, 1) (see

e.g., [13, eq. (205)]). The mean and variance of A; are

E[A:]=C(P) (312)
Var [A;] = V(P). (313)
From (307)-(310), we get
Pu(X"Y™) <9] <P > A; <v+Llog J(P)
= (314)

To verify that Lemma 2 is applicable to the right-hand side
of (314), it only remains to show that E [(4; — C(P))?] is
finite, and A; —C(P) satisfies Cramér’s condition, that is, there
exists some ¢y > 0 such that E [exp{t(4; — C(P))}] < o0
for all |t| < to. From (311), (A1 — C(P))? has the same
distribution as a 6-degree polynomial of the Gaussian random
variable Z ~ N(0, 1). This polynomial has a finite mean since
all moments of Z are finite. Let ¢ £ 2(1—ip), f e %, and
t' £ te. To show that Cramér’s condition holds, we compute

E [exp{t(A1 — C(P))}]

=E [exp{t'(1 — Z* + f2)}] (315)

2
exp {—% F(1- 2%+ fa:)} dr  (316)

[

_ 1 / t'f
= 1_'_Zt/exp{t +2(1+2t’)}' (317)
Thus, E [exp{t(4; — C(P))}] < oo for t’ > —3, and ¢y =

% > ( satisfies Cramér’s condition.
3) The threshold ~: We set ~y,nq,..
equalities

7 = neC(P) = \[nelog(_y11)(ne)V (P) = Clog J(P)
(318)

.,ny, so that the

hold for all ¢ € [L].
The rest of the proof follows identically to (118)—(133) with
C and V replaced by C(P) and V(P), respectively, giving

\/N log(,(N)V (P)

(1+0(1)) —log N — Llog J(P),

(319)

which completes the proof.
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