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Abstract

Algorithmic stability is an important notion that has proven powerful for deriving
generalization bounds for practical algorithms. The last decade has witnessed an
increasing number of stability bounds for different algorithms applied on different
classes of loss functions. While these bounds have illuminated various properties
of optimization algorithms, the analysis of each case typically required a different
proof technique with significantly different mathematical tools. In this study, we
make a novel connection between learning theory and applied probability and
introduce a unified guideline for proving Wasserstein stability bounds for stochastic
optimization algorithms. We illustrate our approach on stochastic gradient descent
(SGD) and we obtain time-uniform stability bounds (i.e., the bound does not
increase with the number of iterations) for strongly convex losses and non-convex
losses with additive noise, where we recover similar results to the prior art or extend
them to more general cases by using a single proof technique. Our approach is
flexible and can be generalizable to other popular optimizers, as it mainly requires
developing Lyapunov functions, which are often readily available in the literature.
It also illustrates that ergodicity is an important component for obtaining time-
uniform bounds — which might not be achieved for convex or non-convex losses
unless additional noise is injected to the iterates. Finally, we slightly stretch our
analysis technique and prove time-uniform bounds for SGD under convex and
non-convex losses (without additional additive noise), which, to our knowledge, is
novel.

1 Introduction

With the development of modern machine learning applications, understanding the generalization
properties of stochastic gradient descent (SGD) has become a major challenge in statistical learning
theory. In this context, the main goal is to obtain computable upper-bounds on the population risk
associated with the output of the SGD algorithm that is given as follows: F'(6) := E,.p[f (0, x)],
where © € X’ denotes a random data point, D is the (unknown) data distribution defined on the data
space X, 0 denotes the parameter vector, and f : R? x X — R is an instantaneous loss function.

In a practical setting, directly minimizing F'(f) is not typically possible as D is unknown; yet one
typically has access to a finite data set X,, = {z1,...,2,} € X", where we assume each z; is
independent and identically distributed (i.i.d.) with the common distribution D. Hence, given X,,,
one can then attempt to minimize the empirical risk F(0, X,,) := LS f(6, ;) as a proxy for
F(0). In this setting, SGD has been one of the most popular optimization algorithms for minimizing
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F'(6) and is based on the following recursion:

~ A ~ 1
Op = O0p—1 — NV EFL (01, X,), VFi(0r-1,X,) := 3 Z Vf(Ok—1,2:), (I.D
i€

where 7 is the step-size, b is the batch-size, ()i, is the minibatch that is chosen randomly from the set
{1,2,...,n}, and its cardinality satisfies |Q;| = b.

One fruitful approach for estimating the population risk attained by SGD, i.e., F'(0y), is based on the
following simple decomposition:

F(0)) < F(6x) + |F(0k) — F(61), (1.2)

where the last term is called the generalization error. Once a computable upper-bound for the
generalization error can be obtained, this decomposition directly leads to a computable upper bound

for the population risk F'(6},), since F'(6;) can be computed thanks to the availability of X,,. Hence,

the challenge here is reduced to derive upper-bounds on |F'(6;,) — F(6},)], typically referred to as
generalization bounds.

Among many approaches for deriving generalization bounds, algorithmic stability [BE02] has
been one of the most fruitful notions that have paved the way to numerous generalization bounds
for stochastic optimization algorithms [HRS16, CJY18, MWZZ18, FV19, LY20, ZZB*22]. In a
nutshell, algorithmic stability measures how much the algorithm output differs if we replace one
data point in X, with a new sample. More precisely, in the context of SGD, given another data set
X, = {&1,. . &} = {21, ..., Xi1, &i, Tiy1, ... Ty} € X™ that differs from X, by at most one
element, we (theoretically) consider running SGD on Xn, ie.,

. S S 1 -
Op = Opr =1V E(Op-1, X)), VER(Ok-1,Xn) = o > Vi1, #),  (13)
i€y,

and we are interested in the discrepancy between 6 and 0y in some precise sense (to be formally
defined in the next section). The wisdom of algorithmic stability indicates that a smaller discrepancy

between 6 and 0 implies a smaller generalization error.

The last decade has witnessed an increasing number of stability bounds for different algorithms
applied on different classes of loss functions. In a pioneering study, [HRS16] proved a variety of
stability bounds for SGD, for strongly convex, convex, and non-convex problems. Their analysis
showed that, under strong convexity and bounded gradient assumptions, the generalization error of
SGD with constant step-size is of order n~!; whereas for general convex and non-convex problems,
their bounds diverged with the number of iterations (even with a projection step), unless a decreasing
step-size is used. In subsequent studies [LY20, KWS23] extended the results of [HRS16], by either
relaxing the assumptions or generalizing the setting to more general algorithms. However, their
bounds still diverged for constant step-sizes, unless strong convexity is assumed. In a recent study,
[BFGT20] proved stability lower-bounds for projected SGD when the loss is convex and non-smooth.
Their results showed for general non-smooth loss functions we cannot expect to prove time-uniform
(i.e., non-divergent with the number of iterations) stability bounds for SGD, even when a projection
step is appended.

In a related line of research, several studies investigated the algorithmic stability of the stochastic
gradient Langevin dynamics (SGLD) algorithm [WT11], which is essentially a ‘noisy’ version of
SGD that uses the following recursion: 6 = 0;_1 — nVF'k (Ok—1, Xy) + &k, where (&;)r>0 is a
sequence of i.i.d. Gaussian vectors, independent of 6;,_; and §2;. The authors of [RRT17, MWZZ18]
proved stability bounds for SGLD for non-convex losses, which were then extended to more general
(non-Gaussian) noise settings in [LLQ19]. While these bounds hinted at the benefits of additional
noise in terms of stability, they still increased with the number of iterations, which limited the impact
of their results. More recently, [FR21] proved the first time-uniform stability bounds for SGLD
under non-convexity, indicating that, with the presence of additive Gaussian noise, better stability
bounds can be achieved. Their time-uniform results were then extended to non-Gaussian, heavy-tailed
perturbations in [RBG*23, RZGS23] for quadratic and a class of non-convex problems.

While these bounds have illuminated various properties of optimization algorithms, the analysis of
each case typically required a different proof technique with significantly different mathematical



tools. Hence, it is not straightforward to extend the existing techniques to different algorithms with
different classes of loss functions. Moreover, currently, it is not clear how the noisy perturbations
affect algorithmic stability so that time-uniform bounds can be achieved, and more generally, it is not
clear in which circumstances one might hope for time-uniform stability bounds.

In this study, we contribute to this line of research and prove novel time-uniform algorithmic stability
bounds for SGD and its noisy versions. Our main contributions are as follows:

* We make a novel connection between learning theory and applied probability, and introduce a
unified guideline for proving Wasserstein stability bounds for stochastic optimization algorithms
with a constant step-size. Our approach is based on Markov chain perturbation theory [RS18],
which offers a three-step proof technique for deriving stability bounds: (i) showing the optimizer
is geometrically ergodic, (ii) obtaining a Lyapunov function for the optimizer and the loss, and
(iii) bounding the discrepancy between the Markov transition kernels associated with the chains
(0x) k>0 and (0 )k>0. We illustrate this approach on SGD and show that time-uniform stability
bounds can be obtained under a pseudo-Lipschitz-like condition for smooth strongly-convex losses
(we recover similar results to the ones of [HRS16]) and a class of non-convex losses (that satisfy a
dissipativity condition) when a noisy perturbation with finite variance (not necessarily Gaussian,
hence more general than [FR21]) is introduced. Our results shed more light on the role of the
additional noise in terms of obtaining time-uniform bounds: in the non-convex case the optimizer
might not be geometrically ergodic unless additional noise is introduced, hence the bound cannot be
obtained. Moreover, our approach is flexible and can be generalizable to other popular optimizers,
as it mainly requires developing Lyapunov functions, which are often readily available in the
literature [AFGO20, LRP16, FGO122, GRZ22, LGY20, AFGO19].

* We then investigate the case where no additional noise is introduced to the SGD recursion and the
geometric ergodicity condition does not hold. First, for non-convex losses, we prove a time-uniform
stability bound, where the bound converges to a positive number (instead of zero) as n — oo, and
this limit depends on the ‘level of non-convexity’. Then, we consider a class of (non-strongly)
convex functions and prove stability bounds for the stationary distribution of (6)x>0, which
vanish as n increases. To the best of our knowledge, these results are novel, and indicate that the
stability bounds do not need to increase with time even under non-convexity and without additional
perturbations; yet, they might have a different nature depending on the problem class.

One limitation of our analysis is that it requires Lipschitz surrogate loss functions and does not directly
handle the original loss function, due to the use of the Wasserstein distance [RRT ' 16]. Yet, surrogate
losses have been readily utilized in the recent stability literature (e.g., [RBG123, RZGS23]) and we
believe that our analysis might illuminate uncovered aspects of SGD even with this requirement. All
the proofs are provided in the Appendix.

2 Technical Background

2.1 The Wasserstein distance and Wasserstein algorithmic stability

Wasserstein distance. For p > 1, the p-Wasserstein distance between two probability measures g
and v on R? is defined as [Vil09]:

Wy (i1, v) = {inf E[| X — V[[P}'/?, @1

where the infimum is taken over all couplings of X ~ pand Y ~ v. In particular, the dual
representation for the 1-Wasserstein distance is given as [Vil09]:

/Rd h(z)p(dx) —/ h(z)v(dz)

Rd

Wi(p,v) = sup : (2.2)

heLip(1)

where Lip(1) consists of the functions h : R — R that are 1-Lipschitz.

Wasserstein algorithmic stability. Algorithmic stability is a crucial concept in learning theory that
has led to numerous significant theoretical breakthroughs [BE02, HRS16]. To begin, we will present
the definition of algorithmic stability as stated in [HRS16]:



Definition 2.1 ((HRS16], Definition 2.1). Let RV(Rd) denote the set of R%-valued random vectors.
For a (surrogate) loss function { : R x X — R, an algorithm A : Uy, " — RV(RY) is
e-uniformly stable if

sup sup E |[£(A(X),z) — L(A(X),2)| <e, (2.3)
XX 2€X
where Athe first supremum is taken over data X, X € X" that differ by one element, denoted by
X=X

In this context, we purposefully employ a distinct notation for the loss function ¢ (in contrast to f)
since our theoretical framework necessitates measuring algorithmic stability through a surrogate loss
function, which may differ from the original loss f. More precisely, our bounds will be based on
the 1-Wasserstein distance, hence, we will need the surrogate loss ¢ to be a Lipschitz continuous
function, as we will detail in (2.2). On the other hand, for the original loss f we will need some form
of convexity (e.g., strongly convex, convex, or dissipative) and we will need the gradient of f to be
Lipschitz continuous, in order to derive Wasserstein bounds. Unfortunately, under these assumptions,
we cannot further impose f itself to be Lipschitz, hence the need for surrogate losses. Nevertheless,
the usage of surrogate losses is common in learning theory, see e.g, [FR21, RZGS23], and we present
concrete practical examples in the Appendix.

Now, we present a result from [HRS16] that establishes a connection between algorithmic stability
and the generalization performance of a randomized algorithm. Prior to presenting the result, we
define the empirical and population risks with respect to the loss function ¢ as follows:

R(0,X,,) ::% > 00, x:), R() :=Eqpupll(0,z)).
i=1

Theorem 2.1 ((HRS16], Theorem 2.2). Suppose that A is an e-uniformly stable algorithm, then the
expected generalization error is bounded by

[Bax, [RAX.),X,) - RAX))]| <= e4)

For a randomized algorithm, if v and © denotes the law of A(X) and A(X) then for a L-Lipschitz
surrogate loss function ¢, we have the following generalization error guarantee,

‘]EA,Xn, [R(A(Xn),Xn) - R(A(Xn))” < L sup Wi (v, D). (2.5)
XX

The above result can be directly obtained from the combination of the results given in (2.2), Defini-
tion 2.1, and Theorem 2.1 (see also [RRT116]).

2.2 Perturbation theory for Markov chains

Next, we recall the Wasserstein perturbation bound for Markov chains from [RS18]. Let (0,,)52, be
a Markov chain with transition kernel P and initial distribution py, i.e., we have almost surely

P60, € Alby,--- ,0p—1) =P(0,, € Al0p,—1) = P(0—1, A), (2.6)

and po(A) = P(0y € A) for any measurable set A C R% and n € N. We assume that (6,,)3%,
is another Markov chain with transition kernel P and initial distribution py. We denote by p,, the

distribution of #,, and by p,, the distribution of én. By &g, we denote the Dirac delta distribution at 6,
i.e. the probability measure concentrated at §. For a measurable set A C R%, we also use the notation

3oP(A) == P(6, A).
Lemma 2.1 ([RS18], Theorem 3.1). Assume that there exist some p € [0,1) and C € (0, 00) such
that

P(8,-), P™(6, -
sup Wl( ( ’ )7~ ( ’ )) <
0,0cR:0£0 |0 — o
Sfor any n € N. Further assume that there exist some 6 € (0,1) and L € (0,00) and a measurable

Lyapunov function ViR - [1,00) of P such that for any 6 € R%:
(PV)(6) <6V () + L, (2.8)

Cp", 2.7



where (PV)(0) := [4u V(0)P(0, dB). Then, we have

Wilpnshn) < (" Walon.i) + (1= )22 ) @9)

59 P,6o P ~ A
where 7y 1= Supgcga W, K 1= max {fRd V(0)dpo(0), 1—55}

Lemma 2.1 provides a sufficient condition for the distributions p,, and p,, after n iterations to stay
close to each other given the initial distributions pg. Lemma 2.1 will provide a key role in helping us
derive the main results in Section 3.1 and Section 3.2. Later, in the Appendix, we will state and prove
a modification of Lemma 2.1 (see Lemma E.5 in the Appendix) that will be crucial to obtaining the
main result in Section 3.3.

3 Wasserstein Stability of SGD via Markov Chain Perturbations

In this section, we will derive time-uniform Wasserstein stability bounds for SGD by using the
perturbation theory presented in [RS18]. Before considering general losses that can be non-convex,
we first consider the simpler case of quadratic losses to illustrate our key ideas.

3.1 Warm up: quadratic case

To illustrate the proof technique, we start by considering a quadratic loss of the form: f(6, ;) :=
(a] 0 — y;)?/2 where, x; == (a;,y;) and Vf(0,2;) = a;(a] — y;). In this setting, the SGD
recursion takes the following form:

0, = (I — %HO 01+ %qk, where, Hj := ;; aiaiT, qr == ;; a;Y; - 3.1
7 k 2 k

The sequence (Hy, gx) are i.i.d. and for every k, (Hg, qx) is independent of 6.

Similarly, we can write down the iterates of SGD with a different data set Xn = {&1,...,2,} with
Z; = (i, 9; ), where X, differs from X,, with at most one element:
O — (I _ ng) fp_1 + %% where  Hj, i= Z aal, qr = 42 aii. (32)
1€Qg 1€Qg

Our goal is to obtain an algorithmic stability bound, through estimating the 1-Wasserstein distance

between the distribution of 6 and 85 and we will now illustrate the three-step proof technique that we
described in Section 1. To be able to apply the perturbation theory [RS18], we start by establishing
the geometric ergodicity of the Markov process (6y)x>o with transition kernel P(6, -), given in the
following lemma.

Lemma 3.1. Assume that p := E ||I - ngH < 1. Then, for any k € N, we have the following
inequality: W, (Pk(ﬁ, ), P* (@ )) < p*6—4|.

We note that since H; > 0, the assumption in Lemma 3.1 can be satisfied under mild assumptions,
for example when H; > 0 with a positive probability, which is satisfied for  small enough.

In the second step, we construct a Lyapunov function V that satisfies the conditions of Lemma 2.1.

Lemma 3.2. Let V(0) := 1+ ||||. Assume that p := E HI - %IAﬁH < 1. Then, we have

(PV)(6) < pV(6) + 1~ p+ Ella - (3.3)

In our third and last step, we estimate the perturbation gap based on the Lyapunov function V in
the form of (2.7), assuming that the data is bounded. Such bounded data assumptions have been
commonly made in the literature [Bac14, BM13].

Wi (80 P,60 P) < 2mD?

Lemma 3.3. If sup,cy ||z]| < D for some D < oo, then, we have supgepa 70) <=L



Note that Lemma 2.1 relies on three conditions: the Wasserstein contraction in (2.7), which is
obtained through Lemma 3.1, the drift condition for the Lyapunov function in (2.8), which is obtained
in Lemma 3.2 and finally the estimate on « in (2.9) which is about the one-step 1-Wasserstein
distance between two semi-groups that in our context are associated with two datasets that differ by
at most one element, which is obtained in Lemma 3.3. The only place the neighborhood assumption
(sup,ex ||| < D) is used is in the expression of 7y in equation (2.9). Now, having all the ingredients,
we can invoke Lemma 2.1 and we obtain the following result which provides a 1-Wasserstein bound
between the distribution of iterates when applied to datasets that differ by one point.

ForY € |Jo—, X™ and k > 0, let v(Y, k) denote the law of the k-th the SGD iterate when Y is
used as the dataset, i.e., (X, k) and (X, k) denote the distributions of 6}, and 6, obtained by the
recursions (3.1) and (3.2) respectively. As shorthand notation, set vy, := v(X, k) and 7y, := v(X, k).
Theorem 3.1. Assume 0y = éo = 0. We also assume that p := E ||I — %HlH < landp =
E HI - %I:IlH < landsup,cy ||z|| < D for some D < co. Then, we have

1— pk2onD? 1-p+ 1E|g
Wi (v, i) < —2- =1 maX{1+||9|,MM}. (3.4)
1—p 1-p
Proof. The result directly follows from Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 2.1. [

By a direct application of (2.5), we can obtain a generalization bound for an £-Lipschitz surrogate
loss function, as follows:
2 1R |G
Eax, [RAG), X0) ~ BAX)]| < 212 o {1 + 6], Wb]E”‘””} ,
’ 1—po n 1-—

where pg = supy [|[1 — $Hx|, Hx = Zieﬂk,ajex ajajT and X is a random set of n-data points
from the data generating distribution. The generalization bound obtained above does not include
the mean square error in the unbounded case but covers a larger class of surrogate loss functions.
Because of this incompatibility, a direct comparison is not possible; however, the rate obtained in
the equation above has the same dependence on the number of samples that were obtained in the
previous works [LY20]. For least squares, there are other works using integral operators that develop
generalization bounds for SGD under a capacity condition [LR17, PVRB18]. However, these bounds
only hold for the least square loss.

3.2 Strongly convex case

Next, we consider strongly convex losses. In the remainder of the paper, we will always assume that
forevery z € X, f(-, x) is differentiable.

Before proceeding to the stability bound, we first introduce the following assumptions.

Assumption 3.1. There exist constants K1, Ko > 0 such that for any 6, 6 € R and everyzr € X,

IVf(8,2) = VF(0,2)] < K1]|0 = 0|| + Kalx — 2| (|6 + 0] + 1) 3.5)
This assumption is a pseudo-Lipschitz-like condition on V f and is satisfied for various problems

such as GLMs [Bac14]. Next, we assume that the loss function f is strongly convex.

Assumption 3.2. There exists a universal constant j > 0 such that for any 01,0, € R and x € X,

<Vf(917$> - Vf(627$),91 - 92> > MHel - €2||2-

By using the same recipe as we used for quadratic losses, we obtain the following stability result.
Theorem 3.2. Let 0y = 0y = 6. Assume that Assumption 3.1 and Assumption 3.2 hold.
We also assume that n < min{ﬁ, m}, sup,ex ||zl < D for some D < oo, and

sup,cx IVf(0,2)|| < E for some E < oo. Let vy, and Dy, denote the distributions of 0y, and



0y respectively. Then, we have

8DK>(1 ;/51 — kY (25 . 1)

Wi (v, D) <

2E2

56 64
- max {1 +2/0)|2 + SRt gKf - 7’71)%(22 + =

HBDZKSEZ} . (3.6)

Similarly to the quadratic case, we can now directly obtain a bound on expected generalization error
using (2.5). More precisely, for an £-Lipschitz surrogate loss function ¢, we have

8DK(1 ;LS — kY (25 . 1)

Bax, [RAX.), X)-RAX)] | < £

2F? 56 64
- max {1 +2ll0)? + -2 — 1K? - 20 DK 4 3f7D2K§EZ} .
p p 1 1

The bound above has the same dependence on the number of samples as the ones of the previous sta-
bility analysis of (projected) SGD for strongly convex functions [HRS16, LLNT17, LY20]. However,
we have a worse dependence on the strong convexity parameter (.

3.3 Non-convex case with additive noise

Finally, we consider a class of non-convex loss functions. We assume that the loss function satisfies
the following dissipativity condition.

Assumption 3.3. There exist constants m > 0 and K > 0 such that for any 01,0, € R? and x € X,
<Vf(91,$) - Vf(eg,l‘),(gl — 92> Z m||91 — 92“2 — K.

The class of dissipative functions satisfying this assumption are the ones that admit some gradient
growth in radial directions outside a compact set. Inside the compact set though, they can have
quite general non-convexity patterns. As concrete examples, they include certain one-hidden-layer
neural networks [AS23]; they arise in non-convex formulations of classification problems (e.g. in
logistic regression with a sigmoid/non-convex link function); they can also arise in robust regression
problems, see e.g. [GGZ22]. Also, any function that is strongly convex outside of a ball of radius for
some will satisfy this assumption. Consequently, regularized regression problems where the loss is a
strongly convex quadratic plus a smooth penalty that grows slower than a quadratic will belong to
this class; a concrete example would be smoothed Lasso regression; many other examples are also
given in [EHZ22]. Dissipative functions also arise frequently in the sampling and Bayesian learning
and global convergence in non-convex optimization literature [RRT17, GGZ22].

Unlike the strongly-convex case, we can no longer obtain a Wasserstein contraction bound using the
synchronous coupling technique as we did in the proof of Theorem 3.2. To circumvent this problem,
in this setting, we consider a noisy version of SGD, with the following recursion:

- . ~ 1
Ok = Ok—1 — NV F(Or—1, Xn) + 1ék, VE(Ok—1,Xn) = 3 > VIO w), B
i€y
where &), are additional i.i.d. random vectors in R?, independent of 6;_; and (), satisfying the
following assumption.
Assumption 3.4. £, is random vector on R? with a continuous density p(x) that is positive everywhere,
i.e. p(x) > 0 forany x € R and E[¢1] =0, o2 :=E [||&1]]?] < oc.

Note that the SGLD algorithm [WT11] is a special case of this recursion, whilst our noise model can
accommodate non-Gaussian distributions with finite second-order moment.
Analogously, let us define the (noisy) SGD recursion with the data set Xn as
O = Op—1 — IV Ex(Or—1, X)) + 16,
and let p(6,0:) denote the probability density function of 61 = 6 — L7, Vf(0,2:) + né:.

Further let 6, be a minimizer of f?‘(-, X,,). Then, by following the same three-step recipe, we obtain
the following stability bound. Here, we do not provide all the constants explicitly for the sake of
clarity; the complete theorem statement is given in Theorem E.1 (Appendix E.1).



Theorem 3.3. Let 0y = 0y = 0. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4

%n, m} and sup,¢c y ||z|| < D for some D < oo
and sup,c |Vf(0,z)|| < E for some E < oo. For any 7 € (0,1), define M > 0 so that
B p(0,,01)d0y > /7 and for any R > 252 where K is defined in (E.2) so that
161 —6. | <M m

0,01 €RE:V (0)<R, |01 —0. || <M D(O,01)

hold. We also assume that n < min {

Let vy, and vy, denote the distributions of 0y, and ék respectively. Then, we have
. G -7%) 2b
T2+ )i n

where for anyno € (0,7) and o € (1 —mn + 27;1?0 ; 1>, V= R and i) = (1_(77_770))\/%-

The constant Cy = C1 (v, 0,1, R, Y0, K1, Ko, 02, D, E) is explicitly stated in the proof.

Wi (v, D) (3.9)

Contrary to our previous results, the proof technique for showing Wasserstein contraction (as in
Lemma 3.1) for this theorem relies on verifying the drift condition (Assumption B.1) and the
minorization condition (Assumption B.2) as given in [HM11]. Once these conditions are satisfied, we
invoke the explicitly computable bounds on the convergence of Markov chains developed in [HM11].

From equation (2.5), we directly obtain the following generalization error bound for £-Lipschitz
surrogate loss function,

; Ci(1 —7*) 2b
[, [A4Gn). X0~ ROAGD || < 25 YA+ (1—q) n’

where the constants are defined in Theorem 3.3!. The above result can be directly compared with the
result in [FR21, Theorem 4.1] that has the same dependence on n and b. However, our result is more
general in the sense that we do not assume our noise to be Gaussian noise. Note that [LLQ19] can
also accommodate non-Gaussian noise; however, their bounds increase with the number of iterations.

Remark 3.4. In Theorem 3.3, we can take R = %(1 + €) for some fixed € € (0, 1) so we can take

2

N . . p(ovol)

7 = | max < min / p(04,01)db, inf — (3.10)
M>0 61 —0. || <M 0,01€R% [0, —0, | <M D(O,01)

00,17 <250 (1+46) -1
Moreover, we can take 1y = g Yo =1— ", and ) = %LKO so that

N 1+€)n mne ~

7 = max _a 2ol w4 9n 3.11)

2’ 2_’_(1;75)77 dm +2(1 + e)iy’ '

provided that n < 1. Note that the parameter 1) in (3.10) appears in the upper bound in equation (3.9)
that controls the 1-Wasserstein algorithmic stability of the SGD. It is easy to see from equation (3.9)
that the smaller 7), the smaller the 1-Wasserstein bound. By the defintion of 1), the larger 1), the smaller
the 1-Wasserstein bound. As a result, we would like to choose 1) to be as large as possible, and the
equation (3.10) provides an explicit value that 7) can take, which is already the largest as possible.

Next, let us provide some explicitly computable lower bounds for 7 in (3.10). This is achievable if
we specify further the noise assumption. Under the assumption that £, are i.i.d. Gaussian distributed,
we have the following corollary.

'By using the decomposition (1.2), we can obtain excess risk bounds for SGLD by combining our results
with [XR17]: it was shown that gradient Langevin dynamics has the following optimization error is O(e +
d*?b= 4 \"1log 1/¢) after K = O(de ' A~ " log 1/¢) iterations, where b is the mini-batch size and \ is the
uniform spectral gap of the continuous-time Langevin dynamics. Similar results are given for SGLD in [XR17,
Theorem 3.6].



Corollary 3.5. Under the assumptions in Theorem 3.3, we further assume the noise &, are i.i.d.
Gaussian N (0, X)) so that E[||&1]]?] = tr(Z) = o2, We also assume that . < I,. Then, we have

2
) , exp(—3 (4 —sup,ex [V/(0s,2)])?)
n> max min 1-— ,
MZ>nsup, ¢~ IV f(0.,2)| det (Id — Z)

{ (1+K177) (250(1+€) B 1)1/2
exp{ — 2

1/2
. ((1 + K1m) (250(1 +e) — 1) +2 <M+77§1€12 ||Vf(0*,x)||) > }}} (3.12)

The above corollary provides an explicit lower bound for 7 (instead of the less transparent inequality
constraints in Theorem 3.3), and by combining with Remark 3.4 (see equation (3.11)) leads to an
explicit formula for 77 which is essential to characterize the Wasserstein upper bound in (3.9) in
Theorem 3.3.

1=~

4 Wasserstein Stability of SGD without Geometric Ergodicity

While the Markov chain perturbation theory enabled us to develop stability bounds for the case where
we can ensure geometric ergodicity in the Wasserstein sense (i.e., proving contraction bounds), we
have observed that such a strong ergodicity notion might not hold for non-strongly convex losses.
In this section, we will prove two more stability bounds for SGD, without relying on [RS18], hence
without requiring geometric ergodicity. To the best of our knowledge, these are the first uniform-time
stability bounds for the considered classes of convex and non-convex problems.

4.1 Non-convex case without additive noise

The stability result we obtained in Theorem 3.3 required us to introduce an additional noise (Assump-
tion 3.4) to be able to invoke Lemma 2.1. We will now show that it is possible to use a more direct
approach to obtain 2-Wasserstein algorithmic stability in the non-convex case under Assumption 3.3
without relying on [RS18]. However, we will observe that without geometric ergodicity will have a
non-vanishing bias term in the bound. Note that, since W (v, ) < W, (vk, ) for all p > 1, the
following bound still yields a generalization bound by (2.5).

Theorem 4.1. Assume 0y = 0y = 0. We also assume that Assumption 3.1 and Assump-
tion 3.3 hold and n < wmin { L, |
sup,ev |[VF(0,2)|| < E for some E < occ. Let vy, and vy, denote the distributions of 0y and 0y,
respectively. Then, we have

Wg(yk,ﬁk) < (1 -(1- nm)k) . <

and sup,cy ||z|| < D for some D < oo and

(1+5B)+ —
m
4.1

4D?*K3n(8B +2) N 4K2D(1 + K1n) 2K
bnm nm ’

where the constant B is explicitly defined in the proof.

While the bound (4.1) does not increase with the number of iterations, it is easy to see that it does not
vanish as n — 00, and it is small only when K from the dissipativity condition (Assumption 3.3) is
small. In other words, if we consider K to be the level of non-convexity (e.g., K = 0 corresponds to
strong convexity), as the function becomes ‘more non-convex’ the persistent term in the bound will
get larger. While this persistent term might make the bound vacuous when n — oo, for moderate n
the bound can be still informative as the persistent term might be dominated by the first two terms.

Moreover, discarding the persistent bias term, this bound leads to a generalization bound with rate
n~1/2, rather than n~! as before. This indicates that it is beneficial to add additional noise & in
SGD as in Theorem 3.3 in order for the dynamics to be geometrically ergodic that can lead to a sharp
bound as n — oo. Finally, we note that as Theorem 4.1 involves 2-Wasserstein distance, it can pave
the way for generalization bounds without requiring a surrogate loss. Yet, this is not immediate and
would require deriving uniform L? bounds for the iterates, e.g., [RRT17].



4.2 Convex case with additional geometric structure

We now present our final stability bound, where we consider relaxing the strong convexity assumption
(Assumption 3.2) to the following milder assumption.

Assumption 4.1. There exists universal constants j1 > 0 and p € (1,2) such that for any 61,6, € R?
andzx € X, <Vf(917$) — Vf(eg, $)7 01 — 02> > ,uH91 — QQHP.

Note that as p < 2, the function class can be seen as an intermediate class between convex and
strongly convex functions, and such a class of functions has been studied in the optimization literature
[Dun81, Berl15].

We analogously modify Assumption 3.1 and consider the following assumption.

Assumption 4.2. There exist constants K1, Ko > 0 and p € (1,2) such that for any 6, 6 € R and
everyz € X, |V f(0,2) = Vf(0,8)] < K1[10 = 0]|7 + Kalla — &[|(|6]*~* + [[0]/P~" + 1).

The next theorem establishes a stability bound for the considered class of convex losses in the
stationary regime of SGD.

Theorem 4.2. Let 0y = 6y = 6. Suppose Assumption 4.1 and Assumption 4.2 hold (with p € (1,2))
and 1 < jormtiprgz and sup,eyx ||z < D for some D < o0 and sup,ex [V f(0,2)|| < E
1 2

for some I < oo. Then vy and Uy, converge to the unique stationary distributions Vs, and Vs
respectively and moreover, we have
N Cy (s
Wg(l/oo,l/oo) S %4’?7 (42)
where the constants Cy = Co(n, p, Ko, D, E) and C35 = Cs(n, u, K1, Ko, D, E) are explicitly
stated in the proof.

While we have relaxed the geometric ergodicity condition for this case, in the proof of Theorem 4.2,
we show that the Markov chain (0});>0 is simply ergodic, i.e., limg_ oo W (v, Voo) = 0. Hence,
even though we still obtain a time-uniform bound, our bound holds asymptotically in k, due to the
lack of an explicit convergence rate for W, (Vk, Voo ). On the other hand, the lack of strong convexity
here results in a generalization bound with rate n~'/?, whereas for the strongly convex case, i.e.,
p = 2, we previously obtained a rate of n~'. This might be an indicator that there might be still room
for improvement in terms of the rate, at least for this class of loss functions.

5 Conclusion

We proved time-uniform Wasserstein-stability bounds for SGD and its noisy versions under different
strongly convex, convex, and non-convex classes of functions. By making a connection to Markov
chain perturbation results [RS18], we introduced a three-step guideline for proving stability bounds
for stochastic optimizers. As this approach required geometric ergodicity, we finally relaxed this
condition and proved two other stability bounds for a large class of loss functions.

The main limitation of our approach is that it requires Lipschitz surrogate loss functions, as it is
based on the Wasserstein distance. Hence, our natural next step will be to extend our analysis without
such a requirement. Finally, due to the theoretical nature of this study, it does not contain any direct
potential societal impacts.

Acknowledgments

Lingjiong Zhu is partially supported by the grants NSF DMS-2053454, NSF DMS-2208303, and a
Simons Foundation Collaboration Grant. Mert Giirbiizbalaban’s research are supported in part by the
grants Office of Naval Research Award Number N00014-21-1-2244, National Science Foundation
(NSF) CCF-1814888, NSF DMS-2053485. Anant Raj is supported by the a Marie Sklodowska-
Curie Fellowship (project NN-OVEROPT 101030817). Umut Simsekli’s research is supported by
the French government under management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P31A-0001 (PRAIRIE 3IA Institute) and the
European Research Council Starting Grant DYNASTY — 101039676.

10



References

[AFGO19]

[AFGO20]

[AS23]

[Bacl14]

[BEO2]

[Berl15]

[BFGT20]

[BM13]

[CGZ19]

[CJY18]

[Dun81]

[EHZ22]

[FGO'22]

[FR21]

[FV19]

[GG23]

Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar. A
universally optimal multistage accelerated stochastic gradient method. In Advances in
Neural Information Processing Systems, volume 32, 2019.

Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar.
Robust accelerated gradient methods for smooth strongly convex functions. SIAM
Journal on Optimization, 30(1):717-751, 2020.

Shunta Akiyama and Taiji Suzuki. Excess risk of two-layer ReLU neural networks
in teacher-student settings and its superiority to kernel methods. In International
Conference on Learning Representations, 2023.

Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong con-
vexity for logistic regression. Journal of Machine Learning Research, 15(1):595-627,
2014.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2(Mar):499-526, 2002.

Dimitri Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

Raef Bassily, Vitaly Feldman, Cristébal Guzman, and Kunal Talwar. Stability of stochas-
tic gradient descent on nonsmooth convex losses. In Advances in Neural Information
Processing Systems, volume 33, pages 4381-4391, 2020.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems,
volume 26, 2013.

Bugra Can, Mert Giirbiizbalaban, and Lingjiong Zhu. Accelerated linear convergence of
stochastic momentum methods in Wasserstein distances. In International Conference
on Machine Learning, pages 891-901. PMLR, 2019.

Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative
optimization algorithms. arXiv preprint arXiv:1804.01619, 2018.

Joseph C Dunn. Global and asymptotic convergence rate estimates for a class of
projected gradient processes. SIAM Journal on Control and Optimization, 19(3):368—
400, 1981.

Murat A. Erdogdu, Rasa Hosseinzadeh, and Matthew S. Zhang. Convergence of
Langevin Monte Carlo in Chi-squred and Rényi divergence. In Proceedings of the 25th
International Conference on Artificial Intelligence and Statistics (AISTATS), volume
151. PMLR, 2022.

Alireza Fallah, Mert Giirbiizbalaban, Asuman Ozdaglar, Umut Simsekli, and Lingjiong
Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent net-
works. Journal of Machine Learning Research, 23(1):9893-9988, 2022.

Tyler Farghly and Patrick Rebeschini. Time-independent generalization bounds for
SGLD in non-convex settings. In Advances in Neural Information Processing Systems,
volume 34, pages 19836—-19846, 2021.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly
stable algorithms with nearly optimal rate. In Conference on Learning Theory, pages
1270-1279. PMLR, 2019.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for
(stochastic) gradient methods. arXiv preprint arXiv:2301.11235, 2023.

11



[GGZ22] Xuefeng Gao, Mert Giirbiizbalaban, and Lingjiong Zhu. Global convergence of stochas-
tic gradient Hamiltonian Monte Carlo for nonconvex stochastic optimization: Nonasymp-
totic performance bounds and momentum-based acceleration. Operations Research,
70(5):2931-2947, 2022.

[GRZ22] Mert Giirbiizbalaban, Andrzej Ruszczynski, and Landi Zhu. A stochastic subgradient
method for distributionally robust non-convex and non-smooth learning. Journal of
Optimization Theory and Applications, 194(3):1014-1041, 2022.

[HM11] Martin Hairer and Jonathan C. Mattingly. Yet another look at Harris’ ergodic theorem
for Markov chains. In Seminar on Stochastic Analysis, Random Fields and Applications
VI, pages 109-118, Basel, 2011.

[HRS16] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, pages
1225-1234. PMLR, 2016.

[KWS23] Leo Kozachkov, Patrick M Wensing, and Jean-Jacques Slotine. Generalization as dynam-
ical robustness—The role of Riemannian contraction in supervised learning. Transactions
on Machine Learning Research, 4:1-25, 2023.

[LGY20] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient
descent with momentum. In Advances in Neural Information Processing Systems,
volume 33, pages 18261-18271, 2020.

[LLNT17] Tongliang Liu, Gdbor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability
and hypothesis complexity. In International Conference on Machine Learning, pages
2159-2167. PMLR, 2017.

[LLQ19] Jian Li, Xuanyuan Luo, and Mingda Qiao. On generalization error bounds of noisy
gradient methods for non-convex learning. arXiv preprint arXiv:1902.00621, 2019.

[LR17] Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient
methods. Journal of Machine Learning Research, 18(1):3375-3421, 2017.

[LRP16] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of opti-
mization algorithms via integral quadratic constraints. SIAM Journal on Optimization,
26(1):57-95, 2016.

[LY20] Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for
stochastic gradient descent. In International Conference on Machine Learning, volume

119, pages 5809-5819. PMLR, 2020.

[MT93] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. Com-
munications and Control Engineering Series. Springer-Verlag, London, 1993.

[MT94] Sean P. Meyn and Richard L. Tweedie. Computable bounds for geometric convergence
rates of Markov chains. Annals of Applied Probability, 4(4):981-1011, 1994.

[MWZZ18] Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of
SGLD for non-convex learning: Two theoretical viewpoints. In Conference on Learning
Theory, pages 605-638. PMLR, 2018.

[PVRB18] Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of
stochastic gradient descent on hard learning problems through multiple passes. In
Advances in Neural Information Processing Systems, volume 31, 2018.

[RBG"23] Anant Raj, Melih Barsbey, Mert Giirbiizbalaban, Lingjiong Zhu, and Umut Simgekli.
Algorithmic stability of heavy-tailed stochastic gradient descent on least squares. In
International Conference on Algorithmic Learning Theory, volume 201, pages 1292—
1342. PMLR, 2023.

[RRT+16] Maxim Raginsky, Alexander Rakhlin, Matthew Tsao, Yihong Wu, and Aolin Xu.
Information-theoretic analysis of stability and bias of learning algorithms. In 2016 I[EEE
Information Theory Workshop (ITW), pages 26-30. IEEE, 2016.

12



[RRT17]

[RS18]

[RZGS23]

[Vil09]
[WT11]

[XR17]

[22B*22]

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient Langevin dynamics: A nonasymptotic analysis. In Conference on
Learning Theory, pages 1674—1703. PMLR, 2017.

Daniel Rudolf and Nikolaus Schweizer. Perturbation theory for Markov chains via
Wasserstein distance. Bernoulli, 24(4A):2610-2639, 2018.

Anant Raj, Lingjiong Zhu, Mert Giirbiizbalaban, and Umut Simsekli. Algorithmic
stability of heavy-tailed SGD with general loss functions. In International Conference
on Machine Learning, volume 202, pages 28578-28597. PMLR, 2023.

Cédric Villani. Optimal Transport: Old and New. Springer, Berlin, 2009.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin

dynamics. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 681-688, 2011.

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capa-
bility of learning algorithms. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pingali, Chao Chen, and Mayank
Goswami. Stability of SGD: Tightness analysis and improved bounds. In Uncertainty
in Artificial Intelligence, pages 2364-2373. PMLR, 2022.

13



Uniform-in-Time Wasserstein Stability Bounds
for (Noisy) Stochastic Gradient Descent

APPENDIX
The Appendix is organized as follows:

* In Section A, we provide further details and examples about the usage of surrogate losses.

* In Section B, we provide technical background for the computable bounds for the conver-
gence of Markov chains which will be used to prove the results in Section 3.3 in the main

paper.
* In Section C, we provide technical proofs for 1-Wasserstein perturbation results for the
quadratic loss in Section 3.1 in the main paper.

* In Section D, we provide technical proofs for 1-Wasserstein perturbation results for the
strongly-convex loss in Section 3.2 in the main paper.

* In Section E, we provide technical proofs for 1-Wasserstein perturbation results for the
non-convex loss (with additive noise) in Section 3.3 in the main paper.

 In Section F, we provide technical proofs for 2-Wasserstein stability bounds for the non-
convex loss without additive noise in Section 4.1 in the main paper.

* In Section G, we provide technical proofs for p-Wasserstein stability bounds for the convex
loss with additional geometric structure in Section 4.2 in the main paper.

A On the Usage of Surrogate Losses

While the requirement of surrogate losses is a drawback of our framework, nevertheless our setup can
cover several practical settings. In this section, we will provide two such examples.

Example 1. We can choose the surrogate loss as the truncated loss, such that:
0(0,z) = min(f(6,x),C),

where C' > 0 is a chosen constant. This can be seen as a “robust” version of the original loss, which
has been widely used in robust optimization and is conceptually similar to adding a projection step to
the optimizer.

Example 2. Another natural setup for our framework is the ¢s-regularized Lipschitz loss that was
also used in [FR21]. As opposed to the previous case, for the sake of this example, let us consider ¢
as the true loss and f as the surrogate loss. Then, we can choose the pair f and ¢ as follows:

F(0,2) = £(0,2) + £ 1613,

where 1 > 0. Intuitively, this setting means that, we have a true loss ¢ which can be Lipschitz, but in
the optimization framework we consider a regularized version of the loss. In other words, we have a
loss £; however, we run the algorithm on the regularized loss f to have better convergence properties,
and finally, we would like to understand if the algorithm generalizes on ¢ or not, and we are typically
not interested if the algorithm generalizes well on the regularized loss f.

Next, we illustrate how a generalization bound for the loss f, i.e., ‘E[ﬁ'(@) - F(G)]‘ For this
example, a bound on the quantity can be obtained by building on our analysis. To obtain such a

bound, in addition to the bounds that we developed on ’IE[]%(@) — R(0)] ’, we would need to estimate
the following quantity:

For illustration purposes, assume that ¢ is convex and Lipschitz in the first parameter. Then, f is
p-strongly convex. Further consider that we initialize SGD from 0, i.e., 8y = 0 and set the batch

n

LS (0) — £ (0,2)

i=1

Eg,x,
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size b to 1. Denote 6 = 0, as the k-th iterate of SGD when applied on F (0,X,),i.e., (1.1). Further
define the minimum: A
0%, = arg mginF (0, X,).

We can now analyze the error induced by the surrogate loss as follows:

0—0% +0% |

1 ¢ H 2 _ M
Eg,x, ln ; (f(0,2;) — 5(9,»’51‘))1 ’ = §]E9,X7L||9H = §]E9,Xn

< uEo x, ||0 — 0%, |° + 1Ex, 0%, ]

2
< b, (1= 65, + 2o, | + e, 6,

=p((1- np)* + 1)Ex, ||0%, ||2 +2nEx, [ox,]-

Here, the second inequality follows from standard convergence analysis for SGD [GG23, Theorem
5.7] and we define o x,, as the stochastic gradient noise variance:

ox, = Var [Vf (G}H,xi)} ,

where for a random vector V' we define Var[V] := E||V — E[V]||?. Hence, we can see that the error
induced by the surrogate loss depends on the following factors:

* The regularization parameter (i,
* The expected norm of the minimizers,
* The step-size 7,

* The expected stochastic gradient noise variance.

These terms can be controlled by adjusting 1 and 7.

B Technical Background

B.1 Computable bounds for the convergence of Markov chains

Geometric ergodicity and convergence rate of Markov chains has been well studied in the literature
[MT93, MT94, HM11]. In this section, we state a result from [HM11] that provides an explicitly
computable bound on the Wasserstein contraction for the Markov chains that satisfies a drift condition
that relies on the construction of an appropriate Lyapunov function and a minorization condition.
Let P (0, -) be a Markov transition kernel for a Markov chain (6) on R?. For any measurable function
¢ : R? — [0, +00], we define:

Po)O) = [ ol0)P(6.40)

Assumption B.1 (Drift Condition). There exists a function V : R? — [0, 00) and some constants
K >0and~ € (0,1) so that

(PV)(0) <~V (0) + K,
forall § € R%.

Assumption B.2 (Minorization Condition). There exists some constant ) € (0, 1) and a probability
measure v so that

i D > Aul-
GeRd}gfg)SRP(ﬁ, ) > v (),

for some R > 2K /(1 — ).

We define the weighted total variation distance:

dylprogen) = [+l = pal d0),
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where ¢» > 0 and V' (0) is the Lyapunov function that satisfies the drift condition (Assumption B.1).
It is known that d,;, has the following alternative expression [HM11]:

Ayl = sw [ o) = m)(d9).

eillelly<1
where || - || is the weighted supremum norm such that for any ¢ > 0:

]
el = o v @y

It is also noted in [HM11] that d,; has yet another equivalent expression:

dy(p1, p2) = sup /Rd ©(0)(p1 — p2)(d8),

el llelllp <1
where

lplly = sup 12O —¢OI__
946 2+ YV (0) + 4V (0)
Lemma B.1 (Theorem 1.3. [HM11]). If the drift condition (Assumption B.1) and minorization
condition (Assumption B.2) hold, then there exists 7 € (0,1) and v > 0 so that

dy (P, Puz) < jdy (p1, p2)
for any probability measures i1, j12 on R%. In particular, for any ng € (0,79) andyo € (y+2K/R,1)
one can choose v = 1o /K and 7 = (1 — (1 —n9)) V (2 + Rypv)/(2 + Ry).

C Proofs of Wasserstein Perturbation Results: Quadratic Case

C.1 Proof of Lemma 3.1

Proof. Let P¥(6,-) denote the law of 6}, starting with 6y = 6 and P¥ (6, -) the law of 0,

o= (1= 1H) 0+, (1
with 6 = 6. Note that
= ( - EHk) Ok—1 + %Qk, (€2
b= (1= TH:) 0ot + Lar. (€3)
which implies that
Bl =] = B[ (7 - 1) (0 - ) |
<o oo el o] e
By iterating over j = k,k — 1,...1, we conclude that
Wi (PH(8,), PE(8,)) < Ellok — O]l < 0" 1160 — G0l = "0 — ] ©5)
This completes the proof. O
C.2 Proof of Lemma 3.2
Proof. First, we recall that
~ o _ Q A
O = (I ka) Or—1+ qum (C.6)
where H, 1= Zieﬂk a;a; and gy, = Zieﬂk a;9;. Therefore, starting with 6y = 6, we have
6, — (1 _ %Hl) 0+ ql, (C.7)
which implies that
(PV)(0) = EV(0:) = L+ E[|u]| < 1+ p|l6]| + E\Iqu =pV(O) +1-p+ nEquH (C8)
This completes the proof. O
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C.3 Proof of Lemma 3.3

Proof. Let us recall that

01 = (1-1m) 0+ 1oy, (C9)
Ao 7 Q ~
b, = (1 le) 0+ bql, (C.10)
which implies that
Wi (8P,60P) <E||H: — | T1611 + B a2 — . (1

Since X,, and X,, differ by at most one element and sup,, ¢ y ||:c|| < D for some D < oo, we have
(Hy,q1) = (Hy,q1) with probability =% and (H1,q,) # (H1, q1) with probability % and moreover

b b 2bD?
EHH1 —Hl‘ <2 max ||a;a] —aﬁH <2 max (Jlas|? + [las])?) < . (C12)
n 1<i<n n 1<i<n n
and
b b 2bD?
_ < = _ < =
Ello — arll < 2 max s - il < max (el + Jasllail) < == €13)
Hence, we conclude that
S9P, 69 P 2016 + 1)L 9y p2
ap WLBP.8P) (0] V2T 2 1
fcRd V(0) HEeRd L+ (0] n
This completes the proof. O

D Proofs of Wasserstein Perturbation Results: Strongly Convex Case

In order to obtain the algorithmic stability bound, that is a 1-Wasserstein distance between the

distribution of 6, and ék, we need to establish a sequence of technical lemmas. First, we show a
1-Wasserstein contraction rate in the following lemma.

Lemma D.1. Assume that Assumption 3.1 and Assumption 3.2 hold, and further assume that
n < min{l7 K2} Then, for any n € N,

Wi (P"(G, ), Pr (é, )) (1 - M) 16— 4. D.1)
Proof. Let P¥(f,-) denote the law of 0}, starting with 6y = 6:
O = Op—1 — NV Fr(0r—1, X, (D.2)
and P*(0,-) the law of 6y
O = Oy — NV Ey (ék,l, Xn) : (D.3)
with 50 = §. Note that
O = Or_1 — % 3 V(O ), (D.4)
e
b= O = > VI (i) (D.5)
i€

Therefore, we have
2

2ol =

E (6x-1 — 05— 1=y Z ( (Ok—1,2:) =V f (ékfhmi))

ver
Z (Vf(ek—l,mi) —-Vf (ékﬂ’xi))

1€y

2bnE <9k_1 ~ 01, Y (VI Orri20) ~ VS (ék_l,xi))> . (D.6)

1€Q

2
—EH9k 1 — 0 1” —|— ]E
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By applying Assumption 3.1 and Assumption 3.2, we get
2
Bl -]

>2

<(1-2nuE Hek—l - ék—lHQ + %;E (Z va(ak—hxi) -Vy <5k—1,1‘i>
1€Q

~ 2 ~ 2
< (1= 20)E [Bhr = B |+ P KEE|0 1 — O
2

<1 -nuE Hok—l - ék—l‘ ; (D.7)
provided that n < 7% By iterating over k = n,n — 1,...1, we conclude that
- 2 - 2
~ 12 112
< o < (1) o
(D.8)
This completes the proof. O
Next, we construct a Lyapunov function V and obtain a drift condition for the SGD (ék),;“;o.
Lemma D.2. Assume that Assumption 3.1 and Assumption 3.2 hold. Let V(G) = 2 where

0, is the minimizer of F(0,X,,) := LS Vf(0,2;). Assume that 7 < min {i, m

and sup,c y ||z|| < D for some D < co. Then, we have

(PV)(0) < (1 —nu)V(0) + 2np — K2 — 5602 D> K2 + 64 D K20, ||>.  (D.9)

Proof. First, we recall that

ék == ék,1 - = Z Vf (919 17.’L‘l) . (D.lO)

’LEQk

Therefore, starting with 90 = 6, we have

9170——2Vf

1€y
1 n
*0772Vf < Z f(0,2;) — Zw ) (D.11)
i=1 lEQl
Moreover, we have

DI

zte

] Z V£(6,3;). (D.12)

This implies that
(PV)(6)
=EV(f)=1+E H91

90 Zﬁ: £(0,%))

2

=1+ +17°E

LS Vi) -1 Y Vi

1_1 1€Q

(D.13)
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We can compute that

< (- 200 0. + %5 Z( =91 (0.,3))

=1

< (1—2nu+n*K7))|0 — 6.2 (D.14)

Moreover, we can compute that

n 2
S VI0.8) -5 3 V0.6
i=1

1€

By S (S vi6.8) - Vi@
j=1

1€Qq

Z Kr Z 12 — 25 ]1(2[10]] + 1)

zEQl
< AD*K3(2]|0]| + 1)
< 8D*K3(4)0]* + 1)
< 8D2KE (810 = 6.1 + 810, )2 + 1) (©.15)

Hence, we conclude that

(PV)(0) < (1 — 2nu + n°K?2 + 64> D2 K?) ‘

2p2 g2 (8||§*\|2 + 1)
= (1 - 2nu+n*K} + 640> D*K3) V(6)
+ 2 — P K? — 5602 D> K2 + 640> D K20,
< (L =)V () + 2np — ° K7 — 560> D* K3 + 640> D’ K3 |10..|%, (D.16)

provided that n < This completes the proof. O

Bk
KZ164D?KZ"

Next, we estimate the perturbation gap based on the Lyapunov function V.

Lemma D.3. Assume that Assumption 3.1 holds. Assume that sup,¢ y ||z|| < D for some D < cc.
Then, we have
Wi(8sP,60P) _ ADK. ;
sup WLOL00F) DKo 5. 1), (D.17)
oeR? V(0) n

where 0, is the minimizer of F'(0, X,,) := LN V0, 3).

Proof. Let us recall that

n
h=0-+ Z VIO, z:), (D.18)
1€
~ 77 R
bh=0-1 ; V0, ), (D.19)



which implies that

> VF0,x:) = V0, )

€0

Wy (5913, 5915) < %IE

i€y
< B Kol — & (216] + 1) (D.20)
1€Q

Since X,, and X, differ by at most one element and sup,cy ||z]| < D for some D < oo, we have
x; = &; for any ¢ € )y with probability "T’b and x; # &; for exactly one i € €y with probability %

and therefore
2D K>

n

. b
Wi (80P, P) < 122K, D(2)6) + 1) = 2]16]] + 1). (D21)

Hence, we conclude that
Wi (89 P, 59 P) ADKyny  |19] + 3
sup ——=———— < sup =
OcR? V(9) perd M 140 — 0.2
ADKyn 2||0 — 0] + 2], + 1
< sup =
oerd T L+ 10 — 6.
ADKom 2||0 — 0,]|(2]|6,] + 1
< sup A0 200~ 0.11(26.] + 1
perd T L+ [0 — 6.
4DK. N
< =21 (200, + 1) (D.22)
n

This completes the proof. O

Next, let us provide a technical lemma that upper bounds the norm of 6, and 6., which are the
minimizers of F'(6, X,,) := L 3" Vf(0,2;) and F(0,X,,) := 2 37| V f(6, &;) respectively.

T n

Lemma D.4. Under Assumption 3.2, we have ||0.] < isupwex IV £(0,z)|| and ||0.]] <
2 Supex [VF(0,2)].

Proof. Since f(0,x) is u-strongly convex in 6 for every z € X, we have

(VEO, X0) ~ V(6. X0),0 - 6.) =~ - S (V(0,1),0.)
i=1
= % D VO, 2:) = Vf(Ous2:),0 = 0.) > p 0],
i=1

(D.23)

which implies that
pllo.]* < sup [[V£(0, 2)| - [10.], (D.24)
TE

which yields that ||6.| < isupiex |V £(0,)|. Similarly, one can show that ||6,] <

i sup,cy [[Vf(0,2)|. This completes the proof. O

D.1 Proof of Theorem 3.2

Proof. By applying Lemma D.1, Lemma D.2, Lemma D.3 and Lemma 2.1, we obtain
SDK,(1 — (1 — 1)k .
npy

~max{1+H9—é*

Wi (vi, ) <

2 56 64 A
2T PUp2gs nD2K§9*||2} , (D25)
I I I
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where 0. is the minimizer of F'(0, X,,) := 1 S | V (0, ;). Finally, |0 — 0.]|> < 2[|0]|> +2]|0.]?
and by applying Lemma D.4, we complete the proof. O

E Proofs of Wasserstein Perturbation Bounds: Non-Convex Case

Lemma E.1. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4 hold. For any
71 € (0, 1). Define M > 0 so that fl\91|\<Mp(0*’ 61)df, > /N and any R > 0 so that R > % and

M > \/777’ (E.1)

inf
0.0, €R%:V (0)<R,[10: | <M p(Bs,01)

where
Ko :=2m —nK}? — 56nD*K2 + 64nD*K2 |0, ||> + 2K + no?. (E.2)
Then, for anyn € N,
Wi (P10, P"(0,)) < sty (55.67). (E3)
2y (1 + )

for any 0, 0 in R, where Sor any ny € (0,7) and o € (1 —mn+ 2"1?0, 1) one can choose

= n’}gﬂ andij=(1—(H—mno))V 2;fg$° and d.; is the weighted total variation distance defined
in Section B.1.

Proof. Our proof relies on a computable bound on the Wasserstein contraction for the Markov chains
by [HM11] that satisfies a drift condition (Assumption B.1) that relies on the construction of an
appropriate Lyapunov function and a minorization condition (Assumption B.2).

By applying Lemma E.3, we can immediately show that the following drift condition holds. Let
V(0) := 1+ [0 — 6.]|*, where 6, is the minimizer of 1 Y1 | Vf(6,2;). Assume that 5 <

min{ L ot

-~ K]TDQK%} and sup,¢c v ||z|| < D for some D < co. Then, we have

(PV)(0) < (1 =mn)V(0) + nko, (E4)
where
Ko = 2m — nK? — 56nD*K2 + 64nD?K2||6, || + 2K + no>. (E.5)
Thus, the drift condition (Assumption B.1) holds.
Next, let us show that the minorization condition (Assumption B.2) also holds. Let us recall that
6, =6 — Z; V0, 2:) + né. (E.6)

We denote p(0, 6 ) the probability density function of 6, with the emphasis on the dependence on the
initial point #. Then, to check that the minorization condition (Assumption B.2) holds, it suffices to
show that there exists some constant 7 € (0, 1)

inf 0,61) > nq(6 f 0, € R? E7
%Rd}‘r}(e)@p( ,01) = 7q(61), orany 6, € R, (E.7)

2nKo _ 2Ko
1-(1—-mn) — m >’

function on R, and (E.7) follows from Lemma E.2. Hence, by Lemma B.1, we have

for some R > where ¢(6;) is the density function of a probability distribution

dy (P"(0,), P"(8.)) < 7" dy(0,95),

for any 6,0 in R?, where for any 19 € (0,7) and o € (1 —mn + 2771?0, 1) one can choose

_ ~ 2+R
= i and 7 = (1 — (7 —no)) v 2500,
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Finally, by the Kantorovich-Rubinstein duality for the Wasserstein metric, we get for any two
probability measures i1, i3 on R%:

Wi(ja1, i2) = sup { [, 6001 = p)an) - 0 1-Lipschitz}
= sup {/Rd(qb(ﬁ) — ¢(0.))(u1 — p2)(dh) : ¢ is 1-Lipschitz}
< / 10— 0.1 — ol (d6)

< + V(0 do
> 2\/T¢ /]Rd 1/) |H1 2‘( )

= ————dy (1, p2)- (E.8)

2 1/)(1+1/f)
Hence, we conclude that
~ 1
Wi (P™(0,-),P"(0,-)) < ———=m7"dy(ds, 5).

(P8P (0)) < s du(0,89)

This completes the proof. O

The proof of Lemma E.1 relies on the following technical lemma, which is a reformulation of Lemma
35 in [CGZ19] that helps establish the minorization condition (Assumption B.2).

Lemma E.2. Forany i € (0,1) and M > 0 so that f\|91—6*||<M p(0,01)d0y > /Handany R > 0

so that (6.61)
p\v, 01 ~
— 1 > . E.9

9,916Rd:v(9)1§HR,H91—9*HSM p(0s,01) — \/5 (E9)

Then, we have

inf p(0,601) > 1q(61), for any 6, € RY, (E.10)
0€R®:V (0)<R

where

1
101 =04 (ISM

01) = p(0,,671) - . E.11
Q( 1) p( 1) ]]‘31,9*”9419(6*,01)«1!61 ( )

Proof. The proof is an adaptation of the proof of Lemma 35 in [CGZ19]. Let us take:

Lo, —o. <M
0,) = p(6,,0,) - = . E.12
q(01) = p(0x,01) Tior—o. <1 PO, 01)d0; (E.12)

Then, it is clear that ¢(6; ) is a probability density function on R<. It follows that (E.7) automatically
holds for ||6; — 6.|| > M. Thus, we only need to show that (E.7) holds for ||§; — 0. < M. Since
&1 has a continuous density, p(, 6;) is continuous in both § and 6;. Fix M, by continuity of p(6, 6;)
in both € and 6, there exists some 7’ € (0, 1) such that uniformly in ||¢; — 6. < M,

inf gg>’9*79 = Ngq(6,), E.13
eemd}g(e)g}zp( 01) 2 1p(0s,61) = 1q(61) 1

where we can take

= n’/ (0, 01)d0;. (E.14)
61 —0. || <M
In particular, for any fixed 7, we can take M > 0 such that
/ p(6..01)d6, > /7, (E.15)
61 —0.l|<M

and with fixed i and M, we take R > 0 such that uniformly in |6, — 6.| < M,
inf p(0,61) 04,01) E.16
GeRd}3(9)< 1 fp 1 ( )
This completes the proof. O
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Next, we construct a Lyapunov function V' and obtain a drift condition for the SGD (ék)gozo.

Lemma E.3. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4 hold. Let V(G) =
L[, where 0., is the minimizer of F(0,X,,) :== ~ 3" | Vf(0,%;). Assume that n <

: 1 m
min {H? W} and sup,¢c y ||z|| < D for some D < co. Then, we have

(PV)(0) < (1—mn)V (0)+2mn—n>K? —5602 D> K3 +64n° D> K3||0,|]>+2nK +n*c?. (E.17)

Proof. First, we recall that

b= Oy = 7 7 VF (Brdi) + i (E18)

zEQk

Therefore, starting with éo = 6, we have

é1:9—%zvf(9,ﬁi)+n£1

i€
1 n
9——2Vf +n<n;v1’(9, ;Vf >+n§1 (E.19)
Moreover, we have

ZVf 0, ;)

1691

] Z Vo (E.20)

This implies that
(PV)(6)
—EV()=1+E Hel

n 2 2
0—0.— 15" Vr0.2)| +nE Zw 0,d;) — - Z VI0.2:)| +nPo®.
n =1 zte
(E.21)
We can compute that
n 2
n N
0—0, — EZw(e,gcl)
i=1
n 2
_llp_p 1 Ay i 5
= lo-0.-2 ; (V.30 - Vf (0..21))
" 2
<( (VF0.2) =V (0..3:))
=1
< (1—2mn +n’K7) ’ (E22)
Moreover, by following the same arguments as in the proof of Lemma D.2, we have
1o 1 ’
= Vf(0,&) - Y V(O,d:)| <8D°K; (8 + 1) . (E23)
n i=1 b 1€Q
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Hence, we conclude that

(PV)(0) < (1 — 2mn + 2 K2 + 6402 D? K3) Ha _a°

+ 1+ 892 D2K3 (810,12 + 1) + 20K + 0’
= (1 —2mn+ K} + 640> D*K3) V(6)
+2mn — ? K} — 5602 D*K2 + 641> D*K2||6.|)* + 2nK + n?o?
< (1 —=mn)V(0) 4 2mn — n? K2 — 560> D*K2 + 64n° D*K2(|0,]]> + 2nK + n0?,
(E.24)
This completes the proof. O

m

provided that ) < g5imopes -

Next, we estimate the perturbation gap based on the Lyapunov function V.

Lemma E.4. Assume that Assumption 3.1 and Assumption 3.4 hold. Assume that sup,¢  ||z|| < D
for some D < oco. Then, we have

qup Q0P 60P)
ocre  V(0)

2
< ;bmax {w (44 8PKD),

1+ - (1 + 0% + (4+ 8772[(12)H9* — 9A*||2 + 4n? sug)( ||Vf(9*,x)||2> }, (E.25)
S

where 0, is the minimizer of LY | Vf(0,%;) and 0, is the minimizer of L 37" | V f(0,x;) and
dy, is the weighted total variation distance defined in Section B.1.

Proof. Let us recall that

b1 =0—13 Y VIO.2) + 6, (E.26)
1€Q

b1=0— % VIO.8) + 6, (E27)
i€y

which implies that

2
Ee, [V(01)] = 1 +Ee, [[01 — 0.]2] = 1+ 7202 + |0 — 0, — % SV . 28
i€y
where E¢, denotes expectations w.r.t. £ only, and we can further compute that
2
n
0—0.—+ Z V0, ;)
€0
2
2 2
<200 —60.° + =h Z V (0, :)
€0
2
2 29
< 2016 = 0.]1" + -5 DAV,
1€
2n? ’
<206 - 0.1 + 75 (Z IVF(0.2) = VF(b)]| + ||Vf<o*,:ci>||>
1E€Q
2n? 2
< 2[00 — 0.))* + o (bK1||9 — 0. + bsug ||Vf(t9*,x)||)
xre
< 2[|0 — 0.1 + 40 K7(|0 — 0.]1* + 45” sup ||V f(6s, 2)|*. (E.29)
reX
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Therefore, we have
Ee, [V(01)] < 1+n%0% + 210 — 0.|]> + 4° K7 |0 — 0.]|* + 4n? sup ||V (0., 2)||%.  (E.30)
reX

Similarly, we have

Ee,[V(01)] < 1+ 00" +2(10 — 0. + 4° K710 — 0.]|> + 4° sup IVf(O,2)?  (E3D)
xTE

Since X,, and X,, differ by at most one element and sup, . » ||z|| < D for some D < oo, we have
z; = &; for any i € Q; with probability “=2 and 2; # #; for exactly one i € ; with probability 2.
Therefore, we have
« 2b
s (202.50P) < 22 (140 (140702 4 @+ PRI - 0. + 07 sup (950,02 )
rEX

(E.32)
Hence, we conclude that

dy (89 P, 59 P
sup 7¢(? %)
6eRd V(0)
O L e U 59) A R Ut O G (RO
-n pcRrd 1 —+ HH — é*||2

2 {1+w(1+n2a2+<4+8n21<%>||9—é*|2)

IA

— sup =
N gcRrd 1+H9*0*”2

O ((4+ 8P E2)0. 0,12 + 40 sup, e IV £(60., )] }
+

L+ 16— 6.2

2
;bmax {w(ll + 8n*K?),

IN

1+ (1 +00” + (4 + 87 K7)[|0: — 0.|° + 4n* sup IIVf(9*793)|2> }
zeX

(E.33)
This completes the proof. O

It is worth noting that the Wasserstein contraction bound we obtained in Lemma E.1 in the non-convex
case differs from the one we obtained in the strongly-convex case (Lemma D.1) in the sense that the
right hand side of (E.3) is no longer ||§ — 6| so that Lemma 2.1 is not directly applicable. Instead,
in the following, we will provide a modification of Lemma 2.1, which will be used in proving
Theorem 3.3 in this paper. The definitions of the notations used in the following lemma can be found
in Section 2.2.

Lemma E.5. Assume that there exist some p € [0,1) and C € (0, 00) such that

P"(6,-), P™(0,-
sup Wl( (97 )7 (9, ))
0,0cR:0£0 dy (do, 5(5)

< Cp, (E.34)

for any n € N. Further assume that there exist some § € (0,1) and L € (0, 00) and a measurable
Lyapunov function V : R? — [1, 00) of P such that for any 6 € R%:

(PV)(0) <6V (0) + L. (E.35)
Then, we have
Wi (pn: bn) < C (Pndw(Po,ﬁo) +(1=p") ﬁ_’:) ; (E.36)
where R
v 1= sup W, K= max{ V(0)dpo(6), L} . (E.37)
9eRrd V(6) Rd 1-
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Proof. The proof is based on the modification of the proof of Lemma 2.1 (Theorem 3.1 in [RS18]).
By induction we have

n—1

B —Pn = (o — po) P + D b (15 - P) Pl el (E.38)
1=0
‘We have
dy (B:P.piP) < / dy (50P.00P) dpi(0) <~ | V(0)dpi0). (E.39)
]Rd ]Rd

Moreover, for any ¢ = 0, 1, 2,
L(1—46%)
1-9

L

VO)d50) = [ PVO)d0) < (V) + < max {ﬁom 1_5} . (E40)

Rd
so that we obtain dy,(p; P, piP) < k. Therefore, we have
Wi (ﬁiﬁP”_i_l, ;ﬁiPP”‘i‘l) < Cp"ild, (ﬁiP, @P) < Cph=i=lyg. (E41)

By the triangle inequality of the Wasserstein distance, we have

n—1

Wi (Pn, n) < Wi (poP™, oP™) + > W1 (ﬁippnfifl,ﬁippnfiﬂ)
i=0
n—1 4
< Cp"dw (p07150) +C Z p"_l_l’yli. (E.42)
i=0
This completes the proof. -

Next, let us provide a technical lemma that upper bounds the norm of 4, and 6., which are the
minimizers of F'(6, X,,) := L 3" Vf(0,2;) and F(0,X,,) := 2 37" | V f(6, &;) respectively.
Lemma E.6. Under Assumption 3.3, we have

sup,ex [ VF(0, 2)| + V/sup,en [VF(0, 2)]* + 4mK

10 < S (E.43)
. sup, Vf(0,z)] + /sup Vf(0,z)]|? +4mK
.1 < e IS0 /300 TOTON | .
Proof. By Assumption 3.3, we have
. . 1 —
VF(0,X,)—-VF(., X,),0— - (Vf(0,z;
(VE(0,X,) = VF(0.,X,),00. ) = 7 V(0.2
Z V1(0,2;) — Vf(0s,2i),0 —6,)
2m||9*||2— ) (E.45)
which implies that
mf.]* — K < sup [[V.£(0, 2)][ - 19, (E.46)
e
which yields that
sup, Vf(0,x)| + +/sup, Vf(0,2)||? +4mK
Similarly, one can show that
. sup, Vf(0,x)| + +/sup, Vf(0,2)||? +4mK
.l < Seex 1T+ b V0.2 | 1)
This completes the proof. O
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E.1 Proof of Theorem 3.3

Before going to the proof, let us restate the full version of Theorem 3.3 that we provide below.

Theorem E.1 (Complete Theorem 3.3). Let 0y = éo = 0. Assume that Assumption 3.1, As-

sumption 3.3 and Assumption 3.4 hold. We also assume that n < min {%, W and
1 2

sup,cx ||z|| < D for some D < oo and sup,cy ||Vf(0,2)| < E for some E < oo. For any
f € (0,1). Define M > 0 so that ﬁ‘0179*|‘<Mp(9*,91)d91 > /i and any R > 250 ywhere K is
defined in (E.2) so that -

P00 o (E.49)

111
0,01 €RE:V (0)<R, |01 —0. || <M D(O,01)

Let vy, and vy, denote the distributions of 0y, and ék respectively. Then, we have

Wl(ykaﬁk)
ok
< Skl M
291 +¢)(1—1)
2
. gbmax {¢(4+ SN2 K1),
2
2
1+w(1+n202+16(1+2n2K12) <E+ ”b; +4mK>
m

2m

E+\/E2+4mK>2 )}

+4n* | 2E? + 2K7 (

2
<E +VE? T 4mK>
2 b

-max{1+292+2
m

7"’*0’ R
2m m m

(E.50)

2
4 E+VEZ+imK\ 2K
o Mgz D00papez 040 "D2K§< tvo o ) + 1 52
m m m

where for any ng € (0,7) and vo € (1 —mn+ 277}?" , 1) one can choose 1 = nzgo and 7] =

(I—=(—mo))V % and dy, is the weighted total variation distance defined in Section B.1.

Proof. By applying Lemma E.1, Lemma E.3, Lemma E.4 and Lemma E.5, which is a modification
of Lemma 2.1, we obtain

Wl(ykﬂ}k)

< L7
2y/P(1+)(1—n)

. %bmax {¢(4 + 8n°K?),

1+ (1 + 170" + (4 + 87 K7)[|0. — 0.|* + 4n” sup IIVf(9*7x)|I2> }
zeX

A 4 S, 2K
. max {1 =GR 2— T2 S pege O gy 2K ”02} ,
m m m m m
(E51)

where for any o € (0,7) and 9 € (1 —mn+ 27’;{0 , 1) one can choose ¢ = n’}go and 77 =

(I=(—mo))V % and d, is the weighted total variation distance defined in Section B.1.
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Finally, let us notice that [|6, — 6.2 < 2||0.]|> + 2||0.]|% and [|6 — 6. ]|> < 2||0]|? + 2||0.||? and for
everyr € X,

IV £ (0., 2)[1* < 2V £(0,2)[P+2V £ (0, 2) =V £(0,2) > < 2|V f(0, 2) |*+2K7[|0.]*. (E.52)
By applying Lemma E.6, we complete the proof. O
E.2 Proof of Corollary 3.5

Proof. Under our assumptions, the noise &, are i.i.d. Gaussian NV(0, X2) so that E[[|&|?] = tr(2) =
o2. Moreoever, we have ¥ < I. Then p(f,, 0;) is the probability density function of

=L 3 V(b w) + o (E.53)
i€
Therefore,
/ (04, 01)dOy :P(‘ —% Z VO, z;) + né SM) . (E.54)
161—0.||I<M i€y
Notice that for any €24,
U Z Vb, x:)|| <nsup ||Vf(0., z)|. (E.55)
b 1€Qq zeX

Thus, we have

/ (9*,91 d91—1—IP’ > M
(161 =0 [[<M

(ngln > M s V70, >||)

— > V(B w) +

1691

1 (Jlal > 3 - sup ||Vf<e*,x>||) (E.56)
Since £ ~ N(0,X) and X < I, for any ~y <4 5, we have

B {w\au?] _ 1

det (I; — 29%)

By Chebychev’s inequality, letting v = 3, for any M > nsup,c ||V f (0, )|, we get

1 1 /M 2
p(Os,01)dby > 1 — ———c=exp | —5 (—sup Vb, x ) .
/010*|<M ( 1)dbs det (I4 — X) < 2\ 1 zex IV )l

Next, for any 0,6, € R? such that [|6; — 6,|| < M and [|6 — 0, |*> < 252(1 + ¢) — 1, we have
p(eael) _ Eq, [le (9791)]
p(bs,01)  Eq,[p, (6x,61)]

where Eq, denotes the expectation w.r.t. €2, and po, denotes the probability density function
conditional on £2;. For any given {21, we can compute that

P, (07 91)
pQ1 (9*7 01)

— exp {—Z;wl — 1(9)) N0, — u(6)) + #(91 —p(0.))TE (6 - u(ﬁ*))}, (E.58)

(E.57)

where

_n _n
7 9 i * = 7 9*7 7 E.5
; ;eﬂj V£(0,2:) ne ) ;ed\ V£(0,,z;) (E.59)
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Therefore, for any 0, 6; € R? such that ||6; — 6. < M and |6 — 6,[|> < 252(1 + €) — 1, we have

p91(9a01) 1 -
Do (0n.01) > exp {—WW(@) — (0 - I=7H (161 = (0)]) + 1161 — M(f)*)H)}

> exp {—27172|u(9) = @)1= (8) = (0] + 20162 — u(9*)|)} -

(E.60)
We can further compute that
1601 = 101 < 10 = 0.l + |7 D VHOu@)| < M+ nsup V@), ED
€0 z<
and
n
11(8) = p(@) <10 = 0.1+ 3 > (IVS (0, 2:) = V(b 0)]
1€Q
< (L4 Kin)[|o — 04|
9K, 1/2
< (14 Kin) (mo(l +€) — 1) : (E.62)
Hence, we have
9K 1/2
PQ, (9, 91) > expd — (1 + Kl"?) ( mo (1 + 6) — 1) ”271“
P, (0x,01) — 21?2
2K, 1/2
(s m (B2ara-1) 2 (0 9sel ) )
m rzeEX
(E.63)
Since it holds for every €21, we have
p(8.6,) (L+ Kyn) (a1 40 1)
S >expl — - (ol
p(0s,01) 2n
2K, 1/2
(e (2o 1) v2(Menswivse.ol) |
m zeX
(E.64)
Hence, we conclude that
1 (M 2
exp (4 (¥ - sup,cx IV56..01) )
n > max min< 1 — ,
M2nsup,ex [Vf(0.2)] det (I — ¥)
(L+ Ko (B4 -1)"
exp - s 1=
n
1/2 2
2K,
AQ+EKmn) | —0+e)—1) +2(M+nsup|Vf(b.,2)] .
m reX
(E.65)
This completes the proof. O
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F Proofs of Non-Convex Case without Additive Noise

F.1 Proof of Theorem 4.1

Proof. Let us recall that 6y = éo =@ and forany k € N,

O =1 — 3 > VI (Bor.), (E1)
1€Q
O =01 — % ;; VF(Or-1,;). (F.2)

Thus it follows that
5 _ g 5 U
O = Ok = Ok—1 — 01 — 4 > (Vf(ekfhxi) -Vf (91%1,%‘)) + 56k (F.3)

1€Qy

where R R
&= Y (VHGr.80) — I (B1,2:)). (F4)
ieQ
This implies that k

2
2

|61 + P

s b= (9500105 50
1€y

+2 <0k_1 01 =13 (VI Orer2) = VF (Do) ) Zé’k> . (E5)

1€EQ
By Assumption 3.1 and Assumption 3.3, we have
2

Or—1 — Op—1 — % Z (vf(ek*l’xi) —Vf (ékil?xi))

1€Qy

A 2 2 . 2
< (1-2nm) HQk—1 - 91@—1H +2nK + %Q (bK1 Hak—l - 9k—1H)
. 2
< (1 —nm) H9k71 - 91%1“ + 21K, (F.6)
provided that n < 5.
Since X,, and X,, differ by at most one element and sup,. v ||z|| < D for some D < oo, we have

x; = &; for any i € £ with probability % and xz; # ; for exactly one ¢ € €0y, with probability %
and therefore

E [I€* < %JE {(KﬂD (2011 + 1))2] < % (SENG- 1P +2),  E7)

and moreover,

E <9k—1 — O — % Z (Vf(lgk—hxi) -Vf (ék—hxi)) ; ng>

1€EQ

<1bp [(1 + K1n) ‘ Or—1 — ék—l” K52D (2||ék—1|| + 1)}

“bn

2](Ql)n ~ ~
< =220+ Kam)E (101l + 18-1) (2060111 +1)
2KsD 3 T A
< 22004 ) (14 SO l? + SEIO ). ©8)

where we used the inequality that

(a+b)(2b+1):2b2+2ab+a+b§1+ga2+%b2, (F.9)
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for any a, b € R. Therefore, we have
A 12 . 2 AD2 K202

|6~ 8|| < (1 - mm)E 0 — G|+ 2k 4 2202 (
4K5Dn

SE|0x1 1 +2)

3 T ia
+ 2220 K (14 JEI0 P+ GEIGIP). (RI0)

In Lemma E.3, we showed that under the assumption n < min{ L and

m
m’ Kf+64D2K§}
sup,cy ||z]| < D for some D < oo, we have that for every k € N,

EV(0) < (1 — npm)EV (Bx_1) + 2nm — n K? — 560> D> K3 + 64> D*K2 |6, | + 21K,
(E11)

where V(0) := 1 + || — 0.]|%, where 0, is the minimizer of F'(0, X,,) := LS L V£(0,2;). This
implies that

B[V (5))

. /a 2nm — n2K2 — 56n2D2K2 + 64n2D2K2||0, % + 2nK

1—(1—nm)
. 4 - 2K
<1002 r2— TRz prgz S pagea g0 | 2K (F.12)
m m m m

so that

A A ~ 12 A
EJ6,)? < 2E [0 — 0. + 206,11

2 2 112 128 . AK .
pa- g2 2 prpe2 y 22O p2E2)6 12 4 22 42|16, )2
m m m m

< 4)10]* + 4

2
E+VE?2 +4mK 2 112
( VeI T Am ) ya- g2 22 p2pe
2m m m

2 2
12 E+VEE+dmEK\ 4K E+ VEZ +AmK
+877D2K§< VR Am > ++2< R e ) =: B,

m 2m m 2m
(F.13)
where we applied Lemma E.6. Similarly, we can show that
E||6,]* < B. (F.14)
Since 0y = éo = 0, it follows from (F.10), (F.13) and (F.14) that
W22(Vk7 l)k)
12
<E |6 ~ b
4D?*K3n 4K5D 3 7 2K
<(1-(1—-gm)*) | ——=2'(8B+2 1+ Kin)(1+=B+-B)+—
< (1—( nm))( (8B +2) + ————(1+ m)( +5B+5 >+ m)
(F.15)
provided that < min { Kﬁ%, %, m } This completes the proof. O

G Proofs of Convex Case with Additional Geometric Structure

In the following technical lemma, we show that the p-th moment of 6 and ék can be bounded in the
following sense.
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Lemma G.1. Let 6y = 6, = 6. Suppose Assumption 4.1 and Assumption 4.2 hold and n <

m. Then, we have
o—0 8
ZEII@ 1= 0.7 < u §D2K§ (26,7 +5) (G.1)
o
8n R
EHG N p2gc2 (9p 14, |7 +5) G.2
kZ b o DR (260 +5) G2)

where 0, is the minimizer of L Y"1 | V (0, ;) and 0. is the minimizer of = 37| V £(8, ;).

Proof. First, we recall that

b =0y =7 D7 VF (Biri). (G3)

IEQk

Therefore, we have

O = Oy — Ziw (Os-1,25) +n ( Zw (041, :) - fg; 1 (b 1x)> .
(G4)
Moreover, we have
l > VF (hr.di) |- 1] = %Zn:w (94-12:) (G.5)
i =
This implies that

2
2

=E|§,_, — 0, + ZilVf (ékflai'i)

1=

N 2
+n’E %va (ék—l,i"i) - % > vy (ékflaj?i) (G.6)
i=1 i€y
We can compute that
N 2
Or_1— 0. + Z;Vf (ékq,fﬁi)
" 2
(B =0+ Y7 (VS (Orsdi) = VF (04))
i=1
" 2
< Zz > (VF (Bu-riie) = Vi (004))
~ ’L:IA ~ ||P
<6 2K s — 0 G.7)
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Moreover, we can compute that

:Livf (ékq,ﬁi) —% pRY (ékq,@z)

1€Qy

2

2

E % Z %zn:Vf (ék_l,i‘j) -Vf (ék—laii)
1€Q j=1
2

ZKanxl—wjn 2l ]P" +1)

ZEQk
< 4D*K3E [<2||9k_1||P-1 +17%]
< 8D2K3 (4 (|16 |27 0] +1)
<8D?K3 (4 [0 || +5)
< 8D?K3 (27 E||fk-1 — 0.7 + 2710, +5) (G.8)
Hence, by applying (G.7) and (G.8) to (G.6), we conclude that
P

Bt —d.| <Efd--d|

+ 80’ D?K3 (2

)

A~ ~ P N
<E e~ 0. + 8P DAKE (27107 +5), (G9)

2 N ~
—nukE H9kf1 — 0.

This implies that

1 12
prOVlded that n S W .

2

) ) E Hék,l —é, )
E Hak_l —a.| < + S prge (2721017 +5),  (G.10)
N 0
and hence
1< P 81
SNE6 —é*H o p2 2 (2p+1 0. 5)
< ‘ + 8—77D2K§ (2P+1||é*up + 5) . (G.11)
knp 1%
Similarly, we can show that
6—6.]°  8n
E|6;—1 — 6,]|F < 1 = 6. 1" + —D2K2 (2PFL)|6, P + 5) . G.12
kZ 16— 0,17 < T+ SIDR (20 6. P+ 5) (G.12)
This completes the proof. O

Next, let us provide a technical lemma that upper bounds the norm of 6, and 6., which are the
minimizers of F'(6, X,,) := L Y | Vf(0,2;) and F'(0, X,,) := 2 37" | V f(6, &;) respectively.
Lemma G.2. Under Assumption 4.1, we have

161 <

sup [|V.£(0, )| 7,
Mp* reX
and

10.]) < — sup [IV£(0,2) | 7.
eXx

ﬂp—l x
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Proof. Under Assumption 4.1, we have

n

. . 1
V0, X,) - VE@,, X, ,079*> — = SUVS(0,2:), 6.
(VE(0,X,) = VE(©., X,) 2 (VI 0.2:).0.)
1 n
= =D (VF0,2:) = V(s 20),0 = 0) >y 7,
i=1
(G.13)
where p € (1, 2), which implies that
pll0[P < sup [V £(0, )] - [[6«], (G.14)
reEX
which yields that
1 1
10411 < — sup [Vf(0, )] 7.
pur-1 zeX
Similarly, one can show that
- 1 1
10+]] < —= sup [V f(0,2)] 7.
pr—t zeXx
This completes the proof. O

Now, we are able to state the main result for the Wasserstein algorithmic stability.

Theorem G.1. Let 6 = 6, = 6. Suppose Assumption 4.1 and Assumption 4.2 hold and n <
m and sup,¢cy ||z|| < D for some D < oo and sup,cy |V f(0,2)| < E for some

FE < oco. Let vy, and Uy, denote the distributions of 0y, and ék respectively. Then, we have
1 k
T > WE(vio1, 0ia)
i=1

2
< 4D’K3n o2 (292 +2(E/p) 7T

+ %Dng (2p+1(E/u)ﬁ + 5))

- bnp knp
AD?K2 ,
o= 22T gp+2 <2P+2(E/u)ﬁ + 10)
bnu
ADK, (2024 2E/)TT 8n o (o e
+ 220 Ky -3 20 + Y p2g? (2? (B/pu) 7T + 5)
np knp I
ADK 202 + 2(E/p) 71 ,
F (14 Kyn) -7 2P +2AUB/WTE 80 e e (2”“(E/u)ﬁ +5>
nj knp Iz
ADK. ,
+ WZ(HKW) (10-21’*1(E/u)rl +5). (G.15)

Proof. Let us recall that 8y = éo = 0 and for any k € N,

O = 01 — % > Vi(Brerwa), (G.16)
1€Qy
~ - ~ T] ~ .
O = sy =5 > VT (B ). (G.17)
1€Q
Thus it follows that
o ~ 7 o
Op — 0 =01 — O—1 — E] (vf(ok—laxi) -Vf (91@—1,%’)) + %Ek, (G.18)
1€Q
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where

&= 3 (Y (Beri) = Vf (Ohrimi) ). (G.19)

i€
This implies that
2
2
HQk — O )2 = ||0k—1 — 01 — % > (Vf(ek—lyxi) -Vf (ék—l,xi)) + 27 €k
i€
+2 <9k1 — 01 — % > (vf(akflvxi) - Vf (ékq,xi» ; ng> .
e (G.20)

By Assumption 4.2 and Assumption 4.1, we have

2

s s 3 (91001 (01 )

1€Qy

< Hekq - équQ — 2np Hgkil _ ék—1Hp N Zé <bK1 H@k,l e 5)2

o 2 ~ P 27,9 A P
= H9k—1 - 91@—1H — 2np Hak—l - 91@—1H +n K7 H9k—1 - 9k—1H

N 2 ~ P
< H9k71 - 91@71H — N Hek—1 - 91@71‘

, (G.21)
provided that n < 5.
Since X,, and X,, differ by at most one element and sup,. v ||z|| < D for some D < oo, we have

x; = &; for any i € {2 with probability % and z; # ; for exactly one ¢ € €0y, with probability %
and therefore

b . 2
Ell” < 28| (Ka2D@ldialp + 1))’

AD2K2b (
n

IN

SE [Hék_l\\?(p*ﬂ +2)

< A0S (52 (16, 1P] + 10)

IN

AD2K2b A A A
SETRI0 (21’+21E||9k_1 — 0, + 2720, P + 10) : (G.22)
n

and moreover,

E <9k1 — 01 — % > (vf(ekflomi) -Vf (ékq,%)) ; ng>

1€Qy
<225 | ([Jon-s = | + B s = duca | ) a2 (21610 4 1)]
< 228N (14 Km0 — s | + Ean) (20l +1)]
< 2fo"(l + Kam)E | (106-1ll + 101l 4+ 1) (210177 +1)] - (G.23)

Notice that for any x,y > 0 and p € (1,2), we have xyP~! < 2P + P,y < y? + 1,2 < 2P + 1 and
yP~1 < yP + 1, which implies that

(+y+ D)2+ 1) =22yP L4 2P + 2P Loy +1<32P 4+ TyP +5. (G.24)
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Therefore, by applying (G.24) to (G.23), we have

zer

<9k 1= Ok 1= Z (Vf (Ok—1,2:) =V f (ék1,$i)>,zgk>

(1+ Kun) (3E 81| + TE 81" + 5)

IN

2DK2’I7
n

2DK.
L0+ Kan) (327 B0y — 0,7 + 3207 6.1
n

IN

£ 7 2P Ry — B, + 7 270, + 5). (G.25)
Hence, by applying (G.21), (G.22), (G.25) into (G.20), we conclude that

~ 12 ~ 2 N P
E Hek - 9k” <E Hak—l - 9k—1H —nuE Hek—l - 9k-1”
AD?K?2 .
| AD K (27K Hek 6, H + 2772617 + 10)
n
ADK.
+ 21+ Kam) (3- 27 B0y — 0.7 +3- 27 6.7

£ 7PV Gy — O.|P + 72270, + 5),
(G.26)

provided that n < 5% This, together with 0y = by =0, implies that

p

11*11

1k
52

4AD*K2p 1
< = 27 (opt2Z E|6;_
- bnp k‘;

p ~
Ll 2PT20.)P + 10)

k
ADK, 1
1+ K (3-21’*17 E||0;_1 — 0,]P +3- 207 1[0,
P K (32 Y B0 0+ 3270
1 k
-1 5 i 114
£ 72N B 0P 727 10,07 +5).  (G27)

In Lemma G.1, we showed that under the assumption 7 < W, we have
0 — 0,
ZEHHZ Ly < L0 I + 2 DK (210, 7 4 5) (G.28)
knpu t
2

1 ¢ Hg 8n A
AN N p2 g2 (21’“ A 5). G.29
E 2B ) DR (20 + (6.29)
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Hence, by plugging (G.28) and (G.29) into (G.27), we conclude that

P
0i—1 — 91'71H

2

272 0 —0,
§4D K3n op+2 H

8 A R
+ ZID2KE (270 + 5) | + 27267 + 10
bnp knu Iz

4DK,
ny

16 — 0.

_|_
knp

8
(1+K1n)-3-21’—1< +;”D2K§ (2p+1ll9*||”+5)>

4ADK ’ — 0.
+ 220+ Ky -7t L

8 R
+ =ID2KE (2710, P + 5)
np knp %

4D K,

np

Moreover, [|0 — 6, |2 < 2||0]|2 +2||6. |12, |0 — 6.]|*> < 2]|0]|> + 2||6,]|? and by applying Lemma G.2,
we obtain

1k:
=S R

AD?K2 202 + 2(E /)71 b
S 27 2p+2 0 + ( /u’) +8£D2K22 (2p+1(E//j/)Pj+5)
bnp knu Iz

+ (LK) (3210 +7- 21 6. ) +5) (G.30)

~ p
i—1 = ei—lH

+2PT2(E /)7 + 10)

202 + 2(E/p)7 1
knp

202 + 2(E/ )71
knp

| ADK,
np

| ADK,
ny

8
— (L Eum) 3.2 ( + ;77D2K22 (2”“(E/u)ﬁ + 5)>

——=(L+Kn)- 7207 (

4D K5

+ %"DQKZ? (2P+1(E/u)ﬁ + 5))

+

(1+ Kn) (10~2P-1(E/u)ﬁ +5). (G.31)

Finally, by the definition of p-Wasserstein distance, we have

k‘\»ﬁ

k
—ZW Vie1,0i1) < Z 1651 — 6. (G32)

This completes the proof. O

G.1 Proof of Theorem 4.2

Proof. First, let us show that the sequences 6, and 0y, are ergodic.

First, let us show that the limit 6, if exists, is unique. Consider two sequences 0,(:) and 91(;) starting
at 0(()1) and 9(()2) respectively with two limits 0L and 0. For any k € N,

o =0, 1Y v (0. @3)
IS M

62 =g 1 Z v (9122)1’ ) . (G.34)
lEQk
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By Assumption 4.2 and Assumption 4.1, we have

2
2
2) (1) 2 1 n 2
o2 00" = o2, o2, 1 5 (w7 (02 — 95 (000.))
1€Q
2 2

< [0 = 00| — 2|2 — 02|+ (bK |82, — o2 )

= 0](62—)1_0](4,‘1—)1“ 277NH9(2) 91(:_)1 2K2H9(2) _91(:_)1H

P
< 9£231—9£131“ |02, 04| (G.33)
provided that 7 < % This implies that
2 n||? 2 Rk 2 L
02 = 60| < 662 — 02" = 2 — 62| (G36)

provided that n < KL% Thus,

2 2
,(f) —6,(61)H < HB,(CQ_)l _9’(“1‘)1H for any k € N. Suppose

2
- 9](1_)1H > 1forevery j =1,2,...,k, then we have

2 2
Ha,@ e H < He(@ e H — knu, (G.37)

such that )
e = -

Nk

(G.38)

2
Hel(f) _ glil)“ <1, forany k > ko :=

Since p € (1,2),
@ _ ] @ _ a0 |?
H% — 0 H S(l—nu)H%,l—@k,l] : (G.39)

for any k > ko + 1, which implies that 0,(@2) — 9,&1) — 0 as kK — oo so that aé? = 9(()})).

Next, let us show that for any sequence 6y, it converges to a limit. It follows from (G.39) that

(2) (1)
‘0 - 0[’601

2

2
|07 = 07| < (1 =y : (G.40)

forany k > ko + 1. Let 9(()1) be a fixed initial value in R%, and let 9(()2 = 0§1) which is random yet

takes only finitely many values given 681) so that kg is bounded. Therefore, it follows from (G.40)
that

_ 2 2
W3 (vki1,1e) < (1 —p)"E [(1 — )~ o —oh 7] (GAL
where vy, denotes the distribution of 6, which implies that
> W (W1, i) < oc. (G42)

k=1

Thus, () is a Cauchy sequence in P, (R?) equipped with metric WV, and hence there exists some
Voo such that Wh (v, Voo ) — 0 as k — oo.

Hence, we showed that the sequence 6}, is ergodic. Similarly, we can show that the sequence 0y, is
ergodic.

Finally, by ergodic theorem and Fatou’s lemma, we have

0i—1 — éi1Hp1 < limsup — ZIE)

p
i — 6, 1H . (G43)

k—o0

A~ |IP . 1 k
o | < 13-
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We can then apply (G.31) from the proof of Theorem G.1 to obtain:

WE (Vg Do) < b% + % (G.44)
where
Cy = 4D2#K22” <2p+2 <8:D2K§ (2P+1(E/u)ﬁ + 5)) + 22 (B /) 7T + 10) , (G.45)
Cy = 32D:2K3’7(1 Km) 1027 (252 )7 4 5)
+ 4DK2(1 + K1n) (10 L2P~ V(B p) 7T +5). (G.46)
This completes the proof. O
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