
Uniform-in-Time Wasserstein Stability Bounds

for (Noisy) Stochastic Gradient Descent

Lingjiong Zhu
1
, Mert Gürbüzbalaban

2,3
, Anant Raj

4,5
, Umut Şimşekli

5

1: Dept. of Mathematics, Florida State University
2: Dept. of Management Science and Information Systems, Rutgers Business School

3: Center for Statistics and Machine Learning, Princeton University
4: Coordinated Science Laboratory, University of Illinois Urbana-Champaign

5: Inria Paris, CNRS, Ecole Normale Supérieure, PSL Research University

Abstract

Algorithmic stability is an important notion that has proven powerful for deriving
generalization bounds for practical algorithms. The last decade has witnessed an
increasing number of stability bounds for different algorithms applied on different
classes of loss functions. While these bounds have illuminated various properties
of optimization algorithms, the analysis of each case typically required a different
proof technique with significantly different mathematical tools. In this study, we
make a novel connection between learning theory and applied probability and
introduce a unified guideline for proving Wasserstein stability bounds for stochastic
optimization algorithms. We illustrate our approach on stochastic gradient descent
(SGD) and we obtain time-uniform stability bounds (i.e., the bound does not
increase with the number of iterations) for strongly convex losses and non-convex
losses with additive noise, where we recover similar results to the prior art or extend
them to more general cases by using a single proof technique. Our approach is
flexible and can be generalizable to other popular optimizers, as it mainly requires
developing Lyapunov functions, which are often readily available in the literature.
It also illustrates that ergodicity is an important component for obtaining time-
uniform bounds – which might not be achieved for convex or non-convex losses
unless additional noise is injected to the iterates. Finally, we slightly stretch our
analysis technique and prove time-uniform bounds for SGD under convex and
non-convex losses (without additional additive noise), which, to our knowledge, is
novel.

1 Introduction

With the development of modern machine learning applications, understanding the generalization
properties of stochastic gradient descent (SGD) has become a major challenge in statistical learning
theory. In this context, the main goal is to obtain computable upper-bounds on the population risk

associated with the output of the SGD algorithm that is given as follows: F (✓) := Ex⇠D[f(✓, x)],
where x 2 X denotes a random data point, D is the (unknown) data distribution defined on the data
space X , ✓ denotes the parameter vector, and f : Rd

⇥ X ! R is an instantaneous loss function.

In a practical setting, directly minimizing F (✓) is not typically possible as D is unknown; yet one
typically has access to a finite data set Xn = {x1, . . . , xn} 2 X

n, where we assume each xi is
independent and identically distributed (i.i.d.) with the common distribution D. Hence, given Xn,
one can then attempt to minimize the empirical risk F̂ (✓, Xn) :=

1
n

Pn
i=1 f(✓, xi) as a proxy for

F (✓). In this setting, SGD has been one of the most popular optimization algorithms for minimizing

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

F̂ (✓) and is based on the following recursion:

✓k = ✓k�1 � ⌘r̃F̂k(✓k�1, Xn), r̃F̂k(✓k�1, Xn) :=
1

b

X

i2⌦k

rf(✓k�1, xi), (1.1)

where ⌘ is the step-size, b is the batch-size, ⌦k is the minibatch that is chosen randomly from the set
{1, 2, . . . , n}, and its cardinality satisfies |⌦k| = b.

One fruitful approach for estimating the population risk attained by SGD, i.e., F (✓k), is based on the
following simple decomposition:

F (✓k)  F̂ (✓k) + |F̂ (✓k)� F (✓k)|, (1.2)

where the last term is called the generalization error. Once a computable upper-bound for the
generalization error can be obtained, this decomposition directly leads to a computable upper bound
for the population risk F (✓k), since F̂ (✓k) can be computed thanks to the availability of Xn. Hence,
the challenge here is reduced to derive upper-bounds on |F̂ (✓k) � F (✓k)|, typically referred to as
generalization bounds.

Among many approaches for deriving generalization bounds, algorithmic stability [BE02] has
been one of the most fruitful notions that have paved the way to numerous generalization bounds
for stochastic optimization algorithms [HRS16, CJY18, MWZZ18, FV19, LY20, ZZB+22]. In a
nutshell, algorithmic stability measures how much the algorithm output differs if we replace one
data point in Xn with a new sample. More precisely, in the context of SGD, given another data set
X̂n = {x̂1, . . . , x̂n} = {x1, . . . , xi�1, x̂i, xi+1, . . . xn} 2 X

n that differs from Xn by at most one
element, we (theoretically) consider running SGD on X̂n, i.e.,

✓̂k = ✓̂k�1 � ⌘r̃F̂k(✓̂k�1, X̂n), r̃F̂k(✓̂k�1, X̂n) :=
1

b

X

i2⌦k

rf(✓̂k�1, x̂i), (1.3)

and we are interested in the discrepancy between ✓k and ✓̂k in some precise sense (to be formally
defined in the next section). The wisdom of algorithmic stability indicates that a smaller discrepancy
between ✓k and ✓̂k implies a smaller generalization error.

The last decade has witnessed an increasing number of stability bounds for different algorithms
applied on different classes of loss functions. In a pioneering study, [HRS16] proved a variety of
stability bounds for SGD, for strongly convex, convex, and non-convex problems. Their analysis
showed that, under strong convexity and bounded gradient assumptions, the generalization error of
SGD with constant step-size is of order n�1; whereas for general convex and non-convex problems,
their bounds diverged with the number of iterations (even with a projection step), unless a decreasing
step-size is used. In subsequent studies [LY20, KWS23] extended the results of [HRS16], by either
relaxing the assumptions or generalizing the setting to more general algorithms. However, their
bounds still diverged for constant step-sizes, unless strong convexity is assumed. In a recent study,
[BFGT20] proved stability lower-bounds for projected SGD when the loss is convex and non-smooth.
Their results showed for general non-smooth loss functions we cannot expect to prove time-uniform
(i.e., non-divergent with the number of iterations) stability bounds for SGD, even when a projection
step is appended.

In a related line of research, several studies investigated the algorithmic stability of the stochastic
gradient Langevin dynamics (SGLD) algorithm [WT11], which is essentially a ‘noisy’ version of
SGD that uses the following recursion: ✓k = ✓k�1 � ⌘r̃F̂k(✓k�1, Xn) + ⇠k, where (⇠k)k�0 is a
sequence of i.i.d. Gaussian vectors, independent of ✓k�1 and ⌦k. The authors of [RRT17, MWZZ18]
proved stability bounds for SGLD for non-convex losses, which were then extended to more general
(non-Gaussian) noise settings in [LLQ19]. While these bounds hinted at the benefits of additional
noise in terms of stability, they still increased with the number of iterations, which limited the impact
of their results. More recently, [FR21] proved the first time-uniform stability bounds for SGLD
under non-convexity, indicating that, with the presence of additive Gaussian noise, better stability
bounds can be achieved. Their time-uniform results were then extended to non-Gaussian, heavy-tailed
perturbations in [RBG+23, RZGŞ23] for quadratic and a class of non-convex problems.

While these bounds have illuminated various properties of optimization algorithms, the analysis of
each case typically required a different proof technique with significantly different mathematical

2

tools. Hence, it is not straightforward to extend the existing techniques to different algorithms with
different classes of loss functions. Moreover, currently, it is not clear how the noisy perturbations
affect algorithmic stability so that time-uniform bounds can be achieved, and more generally, it is not
clear in which circumstances one might hope for time-uniform stability bounds.

In this study, we contribute to this line of research and prove novel time-uniform algorithmic stability
bounds for SGD and its noisy versions. Our main contributions are as follows:

• We make a novel connection between learning theory and applied probability, and introduce a
unified guideline for proving Wasserstein stability bounds for stochastic optimization algorithms
with a constant step-size. Our approach is based on Markov chain perturbation theory [RS18],
which offers a three-step proof technique for deriving stability bounds: (i) showing the optimizer
is geometrically ergodic, (ii) obtaining a Lyapunov function for the optimizer and the loss, and
(iii) bounding the discrepancy between the Markov transition kernels associated with the chains
(✓k)k�0 and (✓̂k)k�0. We illustrate this approach on SGD and show that time-uniform stability
bounds can be obtained under a pseudo-Lipschitz-like condition for smooth strongly-convex losses
(we recover similar results to the ones of [HRS16]) and a class of non-convex losses (that satisfy a
dissipativity condition) when a noisy perturbation with finite variance (not necessarily Gaussian,
hence more general than [FR21]) is introduced. Our results shed more light on the role of the
additional noise in terms of obtaining time-uniform bounds: in the non-convex case the optimizer
might not be geometrically ergodic unless additional noise is introduced, hence the bound cannot be
obtained. Moreover, our approach is flexible and can be generalizable to other popular optimizers,
as it mainly requires developing Lyapunov functions, which are often readily available in the
literature [AFGO20, LRP16, FGO+22, GRZ22, LGY20, AFGO19].

• We then investigate the case where no additional noise is introduced to the SGD recursion and the
geometric ergodicity condition does not hold. First, for non-convex losses, we prove a time-uniform
stability bound, where the bound converges to a positive number (instead of zero) as n ! 1, and
this limit depends on the ‘level of non-convexity’. Then, we consider a class of (non-strongly)
convex functions and prove stability bounds for the stationary distribution of (✓k)k�0, which
vanish as n increases. To the best of our knowledge, these results are novel, and indicate that the
stability bounds do not need to increase with time even under non-convexity and without additional
perturbations; yet, they might have a different nature depending on the problem class.

One limitation of our analysis is that it requires Lipschitz surrogate loss functions and does not directly
handle the original loss function, due to the use of the Wasserstein distance [RRT+16]. Yet, surrogate
losses have been readily utilized in the recent stability literature (e.g., [RBG+23, RZGŞ23]) and we
believe that our analysis might illuminate uncovered aspects of SGD even with this requirement. All
the proofs are provided in the Appendix.

2 Technical Background

2.1 The Wasserstein distance and Wasserstein algorithmic stability

Wasserstein distance. For p � 1, the p-Wasserstein distance between two probability measures µ
and ⌫ on Rd is defined as [Vil09]:

Wp(µ, ⌫) = {inf EkX � Y k
p
}
1/p

, (2.1)

where the infimum is taken over all couplings of X ⇠ µ and Y ⇠ ⌫. In particular, the dual
representation for the 1-Wasserstein distance is given as [Vil09]:

W1(µ, ⌫) = sup
h2Lip(1)

����
Z

Rd

h(x)µ(dx)�

Z

Rd

h(x)⌫(dx)

���� , (2.2)

where Lip(1) consists of the functions h : Rd
! R that are 1-Lipschitz.

Wasserstein algorithmic stability. Algorithmic stability is a crucial concept in learning theory that
has led to numerous significant theoretical breakthroughs [BE02, HRS16]. To begin, we will present
the definition of algorithmic stability as stated in [HRS16]:

3

Definition 2.1 ([HRS16], Definition 2.1). Let RV(Rd) denote the set of Rd
-valued random vectors.

For a (surrogate) loss function ` : Rd
⇥ X ! R, an algorithm A :

S1
n=1 X

n
! RV(Rd) is

"-uniformly stable if

sup
X⇠=X̂

sup
z2X

E
h
`(A(X), z)� `(A(X̂), z)

i
 ", (2.3)

where the first supremum is taken over data X, X̂ 2 X
n

that differ by one element, denoted by

X ⇠= X̂ .

In this context, we purposefully employ a distinct notation for the loss function ` (in contrast to f)
since our theoretical framework necessitates measuring algorithmic stability through a surrogate loss
function, which may differ from the original loss f . More precisely, our bounds will be based on
the 1-Wasserstein distance, hence, we will need the surrogate loss ` to be a Lipschitz continuous
function, as we will detail in (2.2). On the other hand, for the original loss f we will need some form
of convexity (e.g., strongly convex, convex, or dissipative) and we will need the gradient of f to be
Lipschitz continuous, in order to derive Wasserstein bounds. Unfortunately, under these assumptions,
we cannot further impose f itself to be Lipschitz, hence the need for surrogate losses. Nevertheless,
the usage of surrogate losses is common in learning theory, see e.g, [FR21, RZGŞ23], and we present
concrete practical examples in the Appendix.

Now, we present a result from [HRS16] that establishes a connection between algorithmic stability
and the generalization performance of a randomized algorithm. Prior to presenting the result, we
define the empirical and population risks with respect to the loss function ` as follows:

R̂(✓, Xn) :=
1

n

nX

i=1

`(✓, xi), R(✓) := Ex⇠D[`(✓, x)].

Theorem 2.1 ([HRS16], Theorem 2.2). Suppose that A is an "-uniformly stable algorithm, then the

expected generalization error is bounded by
���EA,Xn

h
R̂(A(Xn), Xn)�R(A(Xn))

i���  ". (2.4)

For a randomized algorithm, if ⌫ and ⌫̂ denotes the law of A(X) and A(X̂) then for a L-Lipschitz
surrogate loss function `, we have the following generalization error guarantee,

���EA,Xn

h
R̂(A(Xn), Xn)�R(A(Xn))

i���  L sup
X⇠=X̂

W1(⌫, ⌫̂). (2.5)

The above result can be directly obtained from the combination of the results given in (2.2), Defini-
tion 2.1, and Theorem 2.1 (see also [RRT+16]).

2.2 Perturbation theory for Markov chains

Next, we recall the Wasserstein perturbation bound for Markov chains from [RS18]. Let (✓n)1n=0 be
a Markov chain with transition kernel P and initial distribution p0, i.e., we have almost surely

P(✓n 2 A|✓0, · · · , ✓n�1) = P(✓n 2 A|✓n�1) = P (✓n�1, A), (2.6)

and p0(A) = P(✓0 2 A) for any measurable set A ✓ Rd and n 2 N. We assume that (✓̂n)1n=0

is another Markov chain with transition kernel P̂ and initial distribution p̂0. We denote by pn the
distribution of ✓n and by p̂n the distribution of ✓̂n. By �✓, we denote the Dirac delta distribution at ✓,
i.e. the probability measure concentrated at ✓. For a measurable set A ✓ Rd, we also use the notation
�✓P (A) := P (✓, A).
Lemma 2.1 ([RS18], Theorem 3.1). Assume that there exist some ⇢ 2 [0, 1) and C 2 (0,1) such

that

sup
✓,✓̃2Rd:✓ 6=✓̃

W1(Pn(✓, ·), Pn(✓̃, ·))

k✓ � ✓̃k
 C⇢

n
, (2.7)

for any n 2 N. Further assume that there exist some � 2 (0, 1) and L 2 (0,1) and a measurable

Lyapunov function V̂ : Rd
! [1,1) of P̂ such that for any ✓ 2 Rd

:

(P̂ V̂)(✓)  �V̂ (✓) + L, (2.8)

4

where (P̂ V̂)(✓) :=
R
Rd V̂ (✓̂)P̂ (✓, d✓̂). Then, we have

W1(pn, p̂n)  C

✓
⇢
n
W1(p0, p̂0) + (1� ⇢

n)
�

1� ⇢

◆
, (2.9)

where � := sup✓2Rd
W1(�✓P,�✓P̂)

V̂ (✓)
,  := max

nR
Rd V̂ (✓)dp̂0(✓),

L
1��

o
.

Lemma 2.1 provides a sufficient condition for the distributions pn and p̂n after n iterations to stay
close to each other given the initial distributions p0. Lemma 2.1 will provide a key role in helping us
derive the main results in Section 3.1 and Section 3.2. Later, in the Appendix, we will state and prove
a modification of Lemma 2.1 (see Lemma E.5 in the Appendix) that will be crucial to obtaining the
main result in Section 3.3.

3 Wasserstein Stability of SGD via Markov Chain Perturbations

In this section, we will derive time-uniform Wasserstein stability bounds for SGD by using the
perturbation theory presented in [RS18]. Before considering general losses that can be non-convex,
we first consider the simpler case of quadratic losses to illustrate our key ideas.

3.1 Warm up: quadratic case

To illustrate the proof technique, we start by considering a quadratic loss of the form: f(✓, xi) :=
(a>i ✓ � yi)2/2 where, xi := (ai, yi) and rf(✓, xi) = ai(a>i ✓ � yi). In this setting, the SGD
recursion takes the following form:

✓k =
⇣
I �

⌘

b
Hk

⌘
✓k�1 +

⌘

b
qk, where, Hk :=

X

i2⌦k

aia
>
i , qk :=

X

i2⌦k

aiyi . (3.1)

The sequence (Hk, qk) are i.i.d. and for every k, (Hk, qk) is independent of ✓k�1.

Similarly, we can write down the iterates of SGD with a different data set X̂n := {x̂1, . . . , x̂n} with
x̂i = (âi, ŷi), where X̂n differs from Xn with at most one element:

✓̂k =
⇣
I �

⌘

b
Ĥk

⌘
✓̂k�1 +

⌘

b
q̂k, where Ĥk :=

X

i2⌦k

âiâ
>
i , q̂k :=

X

i2⌦k

âiŷi . (3.2)

Our goal is to obtain an algorithmic stability bound, through estimating the 1-Wasserstein distance
between the distribution of ✓k and ✓̂k and we will now illustrate the three-step proof technique that we
described in Section 1. To be able to apply the perturbation theory [RS18], we start by establishing
the geometric ergodicity of the Markov process (✓k)k�0 with transition kernel P (✓, ·), given in the
following lemma.
Lemma 3.1. Assume that ⇢ := E

��I � ⌘
bH1

�� < 1. Then, for any k 2 N, we have the following

inequality: W1

⇣
P

k(✓, ·), P k
⇣
✓̃, ·

⌘⌘
 ⇢

k
k✓ � ✓̃k.

We note that since H1 ⌫ 0, the assumption in Lemma 3.1 can be satisfied under mild assumptions,
for example when H1 � 0 with a positive probability, which is satisfied for ⌘ small enough.

In the second step, we construct a Lyapunov function V̂ that satisfies the conditions of Lemma 2.1.

Lemma 3.2. Let V̂ (✓) := 1 + k✓k. Assume that ⇢̂ := E
���I � ⌘

b Ĥ1

��� < 1. Then, we have

(P̂ V̂)(✓)  ⇢̂V̂ (✓) + 1� ⇢̂+
⌘

b
Ekq̂1k. (3.3)

In our third and last step, we estimate the perturbation gap based on the Lyapunov function V̂ in
the form of (2.7), assuming that the data is bounded. Such bounded data assumptions have been
commonly made in the literature [Bac14, BM13].

Lemma 3.3. If supx2X kxk  D for some D < 1, then, we have sup✓2Rd
W1(�✓P,�✓P̂)

V̂ (✓)


2⌘D2

n .

5

Note that Lemma 2.1 relies on three conditions: the Wasserstein contraction in (2.7), which is
obtained through Lemma 3.1, the drift condition for the Lyapunov function in (2.8), which is obtained
in Lemma 3.2 and finally the estimate on � in (2.9) which is about the one-step 1-Wasserstein
distance between two semi-groups that in our context are associated with two datasets that differ by
at most one element, which is obtained in Lemma 3.3. The only place the neighborhood assumption
(supx2X kxk  D) is used is in the expression of � in equation (2.9). Now, having all the ingredients,
we can invoke Lemma 2.1 and we obtain the following result which provides a 1-Wasserstein bound
between the distribution of iterates when applied to datasets that differ by one point.

For Y 2
S1

n=1 X
n and k � 0, let ⌫(Y, k) denote the law of the k-th the SGD iterate when Y is

used as the dataset, i.e., ⌫(X, k) and ⌫(X̂, k) denote the distributions of ✓k and ✓̂k obtained by the
recursions (3.1) and (3.2) respectively. As shorthand notation, set ⌫k := ⌫(X, k) and ⌫̂k := ⌫(X̂, k).

Theorem 3.1. Assume ✓0 = ✓̂0 = ✓. We also assume that ⇢ := E
��I � ⌘

bH1

�� < 1 and ⇢̂ :=

E
���I � ⌘

b Ĥ1

��� < 1 and supx2X kxk  D for some D < 1. Then, we have

W1(⌫k, ⌫̂k) 
1� ⇢

k

1� ⇢

2⌘D2

n
max

⇢
1 + k✓k,

1� ⇢̂+ ⌘
bEkq̂1k

1� ⇢̂

�
. (3.4)

Proof. The result directly follows from Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 2.1.

By a direct application of (2.5), we can obtain a generalization bound for an L-Lipschitz surrogate
loss function, as follows:
���EA,Xn

h
R̂(A(Xn), Xn)�R(A(Xn))

i��� 
L

1� ⇢0

2⌘D2

n
max

⇢
1 + k✓k,

1� ⇢0 +
⌘
bEkq̂1k

1� ⇢0

�
,

where ⇢0 = supX k1 � ⌘
bHXk, HX =

P
i2⌦k,aj2X aja

>
j and X is a random set of n-data points

from the data generating distribution. The generalization bound obtained above does not include
the mean square error in the unbounded case but covers a larger class of surrogate loss functions.
Because of this incompatibility, a direct comparison is not possible; however, the rate obtained in
the equation above has the same dependence on the number of samples that were obtained in the
previous works [LY20]. For least squares, there are other works using integral operators that develop
generalization bounds for SGD under a capacity condition [LR17, PVRB18]. However, these bounds
only hold for the least square loss.

3.2 Strongly convex case

Next, we consider strongly convex losses. In the remainder of the paper, we will always assume that
for every x 2 X , f(·, x) is differentiable.

Before proceeding to the stability bound, we first introduce the following assumptions.

Assumption 3.1. There exist constants K1,K2 > 0 such that for any ✓, ✓̂ 2 Rd
and every x 2 X ,

krf(✓, x)�rf(✓̂, x̂)k  K1k✓ � ✓̂k+K2kx� x̂k(k✓k+ k✓̂k+ 1). (3.5)

This assumption is a pseudo-Lipschitz-like condition on rf and is satisfied for various problems
such as GLMs [Bac14]. Next, we assume that the loss function f is strongly convex.
Assumption 3.2. There exists a universal constant µ > 0 such that for any ✓1, ✓2 2 Rd

and x 2 X ,

hrf(✓1, x)�rf(✓2, x), ✓1 � ✓2i � µk✓1 � ✓2k
2
.

By using the same recipe as we used for quadratic losses, we obtain the following stability result.

Theorem 3.2. Let ✓0 = ✓̂0 = ✓. Assume that Assumption 3.1 and Assumption 3.2 hold.

We also assume that ⌘ < min
n

1
µ ,

µ
K2

1+64D2K2
2

o
, supx2X kxk  D for some D < 1, and

supx2X krf(0, x)k  E for some E < 1. Let ⌫k and ⌫̂k denote the distributions of ✓k and

6

✓̂k respectively. Then, we have

W1(⌫k, ⌫̂k) 
8DK2(1� (1� ⌘µ

2)k)

nµ

✓
2E

µ
+ 1

◆

·max

⇢
1 + 2k✓k2 +

2E2

µ2
, 2�

⌘

µ
K

2
1 �

56⌘

µ
D

2
K

2
2 +

64⌘

µ3
D

2
K

2
2E

2

�
. (3.6)

Similarly to the quadratic case, we can now directly obtain a bound on expected generalization error
using (2.5). More precisely, for an L-Lipschitz surrogate loss function `, we have
���EA,Xn

h
R̂(A(Xn), Xn)�R(A(Xn))

i���  L ·
8DK2(1� (1� ⌘µ

2)k)

nµ

✓
2E

µ
+ 1

◆

·max

⇢
1 + 2k✓k2 +

2E2

µ2
, 2�

⌘

µ
K

2
1 �

56⌘

µ
D

2
K

2
2 +

64⌘

µ3
D

2
K

2
2E

2

�
.

The bound above has the same dependence on the number of samples as the ones of the previous sta-
bility analysis of (projected) SGD for strongly convex functions [HRS16, LLNT17, LY20]. However,
we have a worse dependence on the strong convexity parameter µ.

3.3 Non-convex case with additive noise

Finally, we consider a class of non-convex loss functions. We assume that the loss function satisfies
the following dissipativity condition.
Assumption 3.3. There exist constants m > 0 and K > 0 such that for any ✓1, ✓2 2 Rd

and x 2 X ,

hrf(✓1, x)�rf(✓2, x), ✓1 � ✓2i � mk✓1 � ✓2k
2
�K.

The class of dissipative functions satisfying this assumption are the ones that admit some gradient
growth in radial directions outside a compact set. Inside the compact set though, they can have
quite general non-convexity patterns. As concrete examples, they include certain one-hidden-layer
neural networks [AS23]; they arise in non-convex formulations of classification problems (e.g. in
logistic regression with a sigmoid/non-convex link function); they can also arise in robust regression
problems, see e.g. [GGZ22]. Also, any function that is strongly convex outside of a ball of radius for
some will satisfy this assumption. Consequently, regularized regression problems where the loss is a
strongly convex quadratic plus a smooth penalty that grows slower than a quadratic will belong to
this class; a concrete example would be smoothed Lasso regression; many other examples are also
given in [EHZ22]. Dissipative functions also arise frequently in the sampling and Bayesian learning
and global convergence in non-convex optimization literature [RRT17, GGZ22].

Unlike the strongly-convex case, we can no longer obtain a Wasserstein contraction bound using the
synchronous coupling technique as we did in the proof of Theorem 3.2. To circumvent this problem,
in this setting, we consider a noisy version of SGD, with the following recursion:

✓k = ✓k�1 � ⌘r̃F̂k(✓k�1, Xn) + ⌘⇠k, r̃F̂k(✓k�1, Xn) :=
1

b

X

i2⌦k

rf(✓k�1, xi), (3.7)

where ⇠k are additional i.i.d. random vectors in Rd, independent of ✓k�1 and ⌦k, satisfying the
following assumption.
Assumption 3.4. ⇠1 is random vector on Rd

with a continuous density p(x) that is positive everywhere,

i.e. p(x) > 0 for any x 2 Rd
and E[⇠1] = 0, �

2 := E
⇥
k⇠1k

2
⇤
< 1.

Note that the SGLD algorithm [WT11] is a special case of this recursion, whilst our noise model can
accommodate non-Gaussian distributions with finite second-order moment.

Analogously, let us define the (noisy) SGD recursion with the data set X̂n as

✓̂k = ✓̂k�1 � ⌘r̃F̂k(✓̂k�1, X̂n) + ⌘⇠k,

and let p(✓, ✓1) denote the probability density function of ✓1 = ✓ �
⌘
b

P
i2⌦1

rf(✓, xi) + ⌘⇠1.
Further let ✓⇤ be a minimizer of F̂ (·, Xn). Then, by following the same three-step recipe, we obtain
the following stability bound. Here, we do not provide all the constants explicitly for the sake of
clarity; the complete theorem statement is given in Theorem E.1 (Appendix E.1).

7

Theorem 3.3. Let ✓0 = ✓̂0 = ✓. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4

hold. We also assume that ⌘ < min
n

1
m ,

m
K2

1+64D2K2
2

o
and supx2X kxk  D for some D < 1

and supx2X krf(0, x)k  E for some E < 1. For any ⌘̂ 2 (0, 1), define M > 0 so thatR
k✓1�✓⇤kM p(✓⇤, ✓1)d✓1 �

p
⌘̂ and for any R >

2K0
m where K0 is defined in (E.2) so that

inf
✓,✓12Rd:V (✓)R,k✓1�✓⇤kM

p(✓, ✓1)

p(✓⇤, ✓1)
�

p
⌘̂. (3.8)

Let ⌫k and ⌫̂k denote the distributions of ✓k and ✓̂k respectively. Then, we have

W1(⌫k, ⌫̂k) 
C1(1� ⌘̄

k)

2
p
 (1 +)(1� ⌘̄)

·
2b

n
, (3.9)

where for any ⌘0 2 (0, ⌘̂) and �0 2

⇣
1�m⌘ + 2⌘K0

R , 1
⌘

, = ⌘0
⌘K0

and ⌘̄ = (1�(⌘̂�⌘0))_
2+R �0
2+R .

The constant C1 ⌘ C1(, ⌘, ⌘̂, R, �0,K1,K2,�
2
, D,E) is explicitly stated in the proof.

Contrary to our previous results, the proof technique for showing Wasserstein contraction (as in
Lemma 3.1) for this theorem relies on verifying the drift condition (Assumption B.1) and the
minorization condition (Assumption B.2) as given in [HM11]. Once these conditions are satisfied, we
invoke the explicitly computable bounds on the convergence of Markov chains developed in [HM11].

From equation (2.5), we directly obtain the following generalization error bound for L-Lipschitz
surrogate loss function,

���EA,Xn

h
R̂(A(Xn), Xn)�R(A(Xn))

i���  L ·
C1(1� ⌘̄

k)

2
p
 (1 +)(1� ⌘̄)

·
2b

n
,

where the constants are defined in Theorem 3.31. The above result can be directly compared with the
result in [FR21, Theorem 4.1] that has the same dependence on n and b. However, our result is more
general in the sense that we do not assume our noise to be Gaussian noise. Note that [LLQ19] can
also accommodate non-Gaussian noise; however, their bounds increase with the number of iterations.
Remark 3.4. In Theorem 3.3, we can take R = 2K0

m (1 + ✏) for some fixed ✏ 2 (0, 1) so we can take

⌘̂ =

0

BB@max
M>0

8
>><

>>:
min

8
>><

>>:

Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1, inf

✓,✓12Rd:k✓1�✓⇤kM

k✓�✓⇤k2 2K0
m (1+✏)�1

p(✓, ✓1)

p(✓⇤, ✓1)

9
>>=

>>;

9
>>=

>>;

1

CCA

2

. (3.10)

Moreover, we can take ⌘0 = ⌘̂
2 , �0 = 1� m⌘✏

2 , and = ⌘̂
2⌘K0

, so that

⌘̄ = max

(
1�

⌘̂

2
,
2 + (1+✏)⌘̂

m (1� m⌘✏
2)

2 + (1+✏)⌘̂
m

)
= 1�

m⌘✏(1 + ✏)⌘̂

4m+ 2(1 + ✏)⌘̂
, (3.11)

provided that ⌘  1. Note that the parameter ⌘̂ in (3.10) appears in the upper bound in equation (3.9)
that controls the 1-Wasserstein algorithmic stability of the SGD. It is easy to see from equation (3.9)
that the smaller ⌘̄, the smaller the 1-Wasserstein bound. By the defintion of ⌘̄, the larger ⌘̂, the smaller

the 1-Wasserstein bound. As a result, we would like to choose ⌘̂ to be as large as possible, and the

equation (3.10) provides an explicit value that ⌘̂ can take, which is already the largest as possible.

Next, let us provide some explicitly computable lower bounds for ⌘̂ in (3.10). This is achievable if
we specify further the noise assumption. Under the assumption that ⇠k are i.i.d. Gaussian distributed,
we have the following corollary.

1By using the decomposition (1.2), we can obtain excess risk bounds for SGLD by combining our results
with [XR17]: it was shown that gradient Langevin dynamics has the following optimization error is O(" +
d
3/2

b
�1/4

�
�1 log 1/") after K = O(d"�1

�
�1 log 1/") iterations, where b is the mini-batch size and � is the

uniform spectral gap of the continuous-time Langevin dynamics. Similar results are given for SGLD in [XR17,
Theorem 3.6].

8

Corollary 3.5. Under the assumptions in Theorem 3.3, we further assume the noise ⇠k are i.i.d.

Gaussian N (0,⌃) so that E[k⇠1k2] = tr(⌃) = �
2
. We also assume that ⌃ � Id. Then, we have

⌘̂ � max
M�⌘ supx2X krf(✓⇤,x)k

(
min

(
1�

exp(� 1
2 (

M
⌘ � supx2X krf(✓⇤, x)k)2)
p
det (Id � ⌃)

!2

,

exp

(
�

(1 +K1⌘)
�
2K0
m (1 + ✏)� 1

�1/2

⌘2
k⌃�1

k

·

(1 +K1⌘)

✓
2K0

m
(1 + ✏)� 1

◆1/2

+ 2

✓
M + ⌘ sup

x2X
krf(✓⇤, x)k

◆!)))
. (3.12)

The above corollary provides an explicit lower bound for ⌘̂ (instead of the less transparent inequality
constraints in Theorem 3.3), and by combining with Remark 3.4 (see equation (3.11)) leads to an
explicit formula for ⌘̄ which is essential to characterize the Wasserstein upper bound in (3.9) in
Theorem 3.3.

4 Wasserstein Stability of SGD without Geometric Ergodicity

While the Markov chain perturbation theory enabled us to develop stability bounds for the case where
we can ensure geometric ergodicity in the Wasserstein sense (i.e., proving contraction bounds), we
have observed that such a strong ergodicity notion might not hold for non-strongly convex losses.
In this section, we will prove two more stability bounds for SGD, without relying on [RS18], hence
without requiring geometric ergodicity. To the best of our knowledge, these are the first uniform-time
stability bounds for the considered classes of convex and non-convex problems.

4.1 Non-convex case without additive noise

The stability result we obtained in Theorem 3.3 required us to introduce an additional noise (Assump-
tion 3.4) to be able to invoke Lemma 2.1. We will now show that it is possible to use a more direct
approach to obtain 2-Wasserstein algorithmic stability in the non-convex case under Assumption 3.3
without relying on [RS18]. However, we will observe that without geometric ergodicity will have a
non-vanishing bias term in the bound. Note that, since W1(⌫k, ⌫̂k)  Wp(⌫k, ⌫̂k) for all p � 1, the
following bound still yields a generalization bound by (2.5).

Theorem 4.1. Assume ✓0 = ✓̂0 = ✓. We also assume that Assumption 3.1 and Assump-

tion 3.3 hold and ⌘ < min
n

1
m ,

m
K2

1+64D2K2
2

o
and supx2X kxk  D for some D < 1 and

supx2X krf(0, x)k  E for some E < 1. Let ⌫k and ⌫̂k denote the distributions of ✓k and ✓̂k

respectively. Then, we have

W
2
2 (⌫k, ⌫̂k) 

�
1� (1� ⌘m)k

�
·

✓
4D2

K
2
2⌘(8B + 2)

bnm
+

4K2D(1 +K1⌘)

nm
(1 + 5B) +

2K

m

◆
,

(4.1)

where the constant B is explicitly defined in the proof.

While the bound (4.1) does not increase with the number of iterations, it is easy to see that it does not
vanish as n ! 1, and it is small only when K from the dissipativity condition (Assumption 3.3) is
small. In other words, if we consider K to be the level of non-convexity (e.g., K = 0 corresponds to
strong convexity), as the function becomes ‘more non-convex’ the persistent term in the bound will
get larger. While this persistent term might make the bound vacuous when n ! 1, for moderate n

the bound can be still informative as the persistent term might be dominated by the first two terms.

Moreover, discarding the persistent bias term, this bound leads to a generalization bound with rate
n
�1/2, rather than n

�1 as before. This indicates that it is beneficial to add additional noise ⇠k in
SGD as in Theorem 3.3 in order for the dynamics to be geometrically ergodic that can lead to a sharp
bound as n ! 1. Finally, we note that as Theorem 4.1 involves 2-Wasserstein distance, it can pave
the way for generalization bounds without requiring a surrogate loss. Yet, this is not immediate and
would require deriving uniform L

2 bounds for the iterates, e.g., [RRT17].

9

4.2 Convex case with additional geometric structure

We now present our final stability bound, where we consider relaxing the strong convexity assumption
(Assumption 3.2) to the following milder assumption.
Assumption 4.1. There exists universal constants µ > 0 and p 2 (1, 2) such that for any ✓1, ✓2 2 Rd

and x 2 X , hrf(✓1, x)�rf(✓2, x), ✓1 � ✓2i � µk✓1 � ✓2k
p
.

Note that as p < 2, the function class can be seen as an intermediate class between convex and
strongly convex functions, and such a class of functions has been studied in the optimization literature
[Dun81, Ber15].

We analogously modify Assumption 3.1 and consider the following assumption.

Assumption 4.2. There exist constants K1,K2 > 0 and p 2 (1, 2) such that for any ✓, ✓̂ 2 Rd
and

every x 2 X , krf(✓, x)�rf(✓̂, x̂)k  K1k✓ � ✓̂k
p
2 +K2kx� x̂k(k✓kp�1 + k✓̂k

p�1 + 1).

The next theorem establishes a stability bound for the considered class of convex losses in the
stationary regime of SGD.

Theorem 4.2. Let ✓0 = ✓̂0 = ✓. Suppose Assumption 4.1 and Assumption 4.2 hold (with p 2 (1, 2))
and ⌘ 

µ
K2

1+2p+4D2K2
2

and supx2X kxk  D for some D < 1 and supx2X krf(0, x)k  E

for some E < 1. Then ⌫k and ⌫̂k converge to the unique stationary distributions ⌫1 and ⌫̂1
respectively and moreover, we have

W
p
p (⌫1, ⌫̂1) 

C2

bn
+

C3

n
, (4.2)

where the constants C2 ⌘ C2(⌘, µ,K2, D,E) and C3 ⌘ C3(⌘, µ,K1,K2, D,E) are explicitly

stated in the proof.

While we have relaxed the geometric ergodicity condition for this case, in the proof of Theorem 4.2,
we show that the Markov chain (✓k)k�0 is simply ergodic, i.e., limk!1 Wp(⌫k, ⌫1) = 0. Hence,
even though we still obtain a time-uniform bound, our bound holds asymptotically in k, due to the
lack of an explicit convergence rate for Wp(⌫k, ⌫1). On the other hand, the lack of strong convexity
here results in a generalization bound with rate n

�1/p, whereas for the strongly convex case, i.e.,
p = 2, we previously obtained a rate of n�1. This might be an indicator that there might be still room
for improvement in terms of the rate, at least for this class of loss functions.

5 Conclusion

We proved time-uniform Wasserstein-stability bounds for SGD and its noisy versions under different
strongly convex, convex, and non-convex classes of functions. By making a connection to Markov
chain perturbation results [RS18], we introduced a three-step guideline for proving stability bounds
for stochastic optimizers. As this approach required geometric ergodicity, we finally relaxed this
condition and proved two other stability bounds for a large class of loss functions.

The main limitation of our approach is that it requires Lipschitz surrogate loss functions, as it is
based on the Wasserstein distance. Hence, our natural next step will be to extend our analysis without
such a requirement. Finally, due to the theoretical nature of this study, it does not contain any direct
potential societal impacts.

Acknowledgments

Lingjiong Zhu is partially supported by the grants NSF DMS-2053454, NSF DMS-2208303, and a
Simons Foundation Collaboration Grant. Mert Gürbüzbalaban’s research are supported in part by the
grants Office of Naval Research Award Number N00014-21-1-2244, National Science Foundation
(NSF) CCF-1814888, NSF DMS-2053485. Anant Raj is supported by the a Marie Sklodowska-
Curie Fellowship (project NN-OVEROPT 101030817). Umut Şimşekli’s research is supported by
the French government under management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and the
European Research Council Starting Grant DYNASTY – 101039676.

10

References

[AFGO19] Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar. A
universally optimal multistage accelerated stochastic gradient method. In Advances in

Neural Information Processing Systems, volume 32, 2019.

[AFGO20] Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar.
Robust accelerated gradient methods for smooth strongly convex functions. SIAM

Journal on Optimization, 30(1):717–751, 2020.

[AS23] Shunta Akiyama and Taiji Suzuki. Excess risk of two-layer ReLU neural networks
in teacher-student settings and its superiority to kernel methods. In International

Conference on Learning Representations, 2023.

[Bac14] Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong con-
vexity for logistic regression. Journal of Machine Learning Research, 15(1):595–627,
2014.

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine

Learning Research, 2(Mar):499–526, 2002.

[Ber15] Dimitri Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

[BFGT20] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochas-
tic gradient descent on nonsmooth convex losses. In Advances in Neural Information

Processing Systems, volume 33, pages 4381–4391, 2020.

[BM13] Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems,
volume 26, 2013.

[CGZ19] Bugra Can, Mert Gürbüzbalaban, and Lingjiong Zhu. Accelerated linear convergence of
stochastic momentum methods in Wasserstein distances. In International Conference

on Machine Learning, pages 891–901. PMLR, 2019.

[CJY18] Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative
optimization algorithms. arXiv preprint arXiv:1804.01619, 2018.

[Dun81] Joseph C Dunn. Global and asymptotic convergence rate estimates for a class of
projected gradient processes. SIAM Journal on Control and Optimization, 19(3):368–
400, 1981.

[EHZ22] Murat A. Erdogdu, Rasa Hosseinzadeh, and Matthew S. Zhang. Convergence of
Langevin Monte Carlo in Chi-squred and Rényi divergence. In Proceedings of the 25th

International Conference on Artificial Intelligence and Statistics (AISTATS), volume
151. PMLR, 2022.

[FGO+22] Alireza Fallah, Mert Gürbüzbalaban, Asuman Ozdaglar, Umut Şimşekli, and Lingjiong
Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent net-
works. Journal of Machine Learning Research, 23(1):9893–9988, 2022.

[FR21] Tyler Farghly and Patrick Rebeschini. Time-independent generalization bounds for
SGLD in non-convex settings. In Advances in Neural Information Processing Systems,
volume 34, pages 19836–19846, 2021.

[FV19] Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly
stable algorithms with nearly optimal rate. In Conference on Learning Theory, pages
1270–1279. PMLR, 2019.

[GG23] Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for
(stochastic) gradient methods. arXiv preprint arXiv:2301.11235, 2023.

11

[GGZ22] Xuefeng Gao, Mert Gürbüzbalaban, and Lingjiong Zhu. Global convergence of stochas-
tic gradient Hamiltonian Monte Carlo for nonconvex stochastic optimization: Nonasymp-
totic performance bounds and momentum-based acceleration. Operations Research,
70(5):2931–2947, 2022.

[GRZ22] Mert Gürbüzbalaban, Andrzej Ruszczyński, and Landi Zhu. A stochastic subgradient
method for distributionally robust non-convex and non-smooth learning. Journal of

Optimization Theory and Applications, 194(3):1014–1041, 2022.

[HM11] Martin Hairer and Jonathan C. Mattingly. Yet another look at Harris’ ergodic theorem
for Markov chains. In Seminar on Stochastic Analysis, Random Fields and Applications

VI, pages 109–118, Basel, 2011.

[HRS16] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, pages
1225–1234. PMLR, 2016.

[KWS23] Leo Kozachkov, Patrick M Wensing, and Jean-Jacques Slotine. Generalization as dynam-
ical robustness–The role of Riemannian contraction in supervised learning. Transactions

on Machine Learning Research, 4:1–25, 2023.

[LGY20] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient
descent with momentum. In Advances in Neural Information Processing Systems,
volume 33, pages 18261–18271, 2020.

[LLNT17] Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability
and hypothesis complexity. In International Conference on Machine Learning, pages
2159–2167. PMLR, 2017.

[LLQ19] Jian Li, Xuanyuan Luo, and Mingda Qiao. On generalization error bounds of noisy
gradient methods for non-convex learning. arXiv preprint arXiv:1902.00621, 2019.

[LR17] Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient
methods. Journal of Machine Learning Research, 18(1):3375–3421, 2017.

[LRP16] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of opti-
mization algorithms via integral quadratic constraints. SIAM Journal on Optimization,
26(1):57–95, 2016.

[LY20] Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for
stochastic gradient descent. In International Conference on Machine Learning, volume
119, pages 5809–5819. PMLR, 2020.

[MT93] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. Com-
munications and Control Engineering Series. Springer-Verlag, London, 1993.

[MT94] Sean P. Meyn and Richard L. Tweedie. Computable bounds for geometric convergence
rates of Markov chains. Annals of Applied Probability, 4(4):981–1011, 1994.

[MWZZ18] Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of
SGLD for non-convex learning: Two theoretical viewpoints. In Conference on Learning

Theory, pages 605–638. PMLR, 2018.

[PVRB18] Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of
stochastic gradient descent on hard learning problems through multiple passes. In
Advances in Neural Information Processing Systems, volume 31, 2018.

[RBG+23] Anant Raj, Melih Barsbey, Mert Gürbüzbalaban, Lingjiong Zhu, and Umut Şimşekli.
Algorithmic stability of heavy-tailed stochastic gradient descent on least squares. In
International Conference on Algorithmic Learning Theory, volume 201, pages 1292–
1342. PMLR, 2023.

[RRT+16] Maxim Raginsky, Alexander Rakhlin, Matthew Tsao, Yihong Wu, and Aolin Xu.
Information-theoretic analysis of stability and bias of learning algorithms. In 2016 IEEE

Information Theory Workshop (ITW), pages 26–30. IEEE, 2016.

12

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient Langevin dynamics: A nonasymptotic analysis. In Conference on

Learning Theory, pages 1674–1703. PMLR, 2017.

[RS18] Daniel Rudolf and Nikolaus Schweizer. Perturbation theory for Markov chains via
Wasserstein distance. Bernoulli, 24(4A):2610–2639, 2018.

[RZGŞ23] Anant Raj, Lingjiong Zhu, Mert Gürbüzbalaban, and Umut Şimşekli. Algorithmic
stability of heavy-tailed SGD with general loss functions. In International Conference

on Machine Learning, volume 202, pages 28578–28597. PMLR, 2023.

[Vil09] Cédric Villani. Optimal Transport: Old and New. Springer, Berlin, 2009.

[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 681–688, 2011.

[XR17] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capa-
bility of learning algorithms. In Advances in Neural Information Processing Systems,
volume 30, 2017.

[ZZB+22] Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pingali, Chao Chen, and Mayank
Goswami. Stability of SGD: Tightness analysis and improved bounds. In Uncertainty

in Artificial Intelligence, pages 2364–2373. PMLR, 2022.

13

Uniform-in-Time Wasserstein Stability Bounds

for (Noisy) Stochastic Gradient Descent

APPENDIX

The Appendix is organized as follows:

• In Section A, we provide further details and examples about the usage of surrogate losses.
• In Section B, we provide technical background for the computable bounds for the conver-

gence of Markov chains which will be used to prove the results in Section 3.3 in the main
paper.

• In Section C, we provide technical proofs for 1-Wasserstein perturbation results for the
quadratic loss in Section 3.1 in the main paper.

• In Section D, we provide technical proofs for 1-Wasserstein perturbation results for the
strongly-convex loss in Section 3.2 in the main paper.

• In Section E, we provide technical proofs for 1-Wasserstein perturbation results for the
non-convex loss (with additive noise) in Section 3.3 in the main paper.

• In Section F, we provide technical proofs for 2-Wasserstein stability bounds for the non-
convex loss without additive noise in Section 4.1 in the main paper.

• In Section G, we provide technical proofs for p-Wasserstein stability bounds for the convex
loss with additional geometric structure in Section 4.2 in the main paper.

A On the Usage of Surrogate Losses

While the requirement of surrogate losses is a drawback of our framework, nevertheless our setup can
cover several practical settings. In this section, we will provide two such examples.

Example 1. We can choose the surrogate loss as the truncated loss, such that:

`(✓, x) = min(f(✓, x), C),

where C > 0 is a chosen constant. This can be seen as a “robust” version of the original loss, which
has been widely used in robust optimization and is conceptually similar to adding a projection step to
the optimizer.

Example 2. Another natural setup for our framework is the `2-regularized Lipschitz loss that was
also used in [FR21]. As opposed to the previous case, for the sake of this example, let us consider `
as the true loss and f as the surrogate loss. Then, we can choose the pair f and ` as follows:

f(✓, x) = `(✓, x) +
µ

2
k✓k

2
2,

where µ > 0. Intuitively, this setting means that, we have a true loss ` which can be Lipschitz, but in
the optimization framework we consider a regularized version of the loss. In other words, we have a
loss `; however, we run the algorithm on the regularized loss f to have better convergence properties,
and finally, we would like to understand if the algorithm generalizes on ` or not, and we are typically
not interested if the algorithm generalizes well on the regularized loss f .

Next, we illustrate how a generalization bound for the loss f , i.e.,
���E[F̂ (✓)� F (✓)]

���. For this
example, a bound on the quantity can be obtained by building on our analysis. To obtain such a
bound, in addition to the bounds that we developed on

���E[R̂(✓)�R(✓)]
���, we would need to estimate

the following quantity: �����E✓,Xn

"
1

n

nX

i=1

(f (✓, xi)� ` (✓, xi))

#����� .

For illustration purposes, assume that ` is convex and Lipschitz in the first parameter. Then, f is
µ-strongly convex. Further consider that we initialize SGD from 0, i.e., ✓0 = 0 and set the batch

14

size b to 1. Denote ✓ = ✓k as the k-th iterate of SGD when applied on F̂ (✓, Xn), i.e., (1.1). Further
define the minimum:

✓
?
Xn

= argmin
✓

F̂ (✓, Xn) .

We can now analyze the error induced by the surrogate loss as follows:
�����E✓,Xn

"
1

n

nX

i=1

(f (✓, xi)� ` (✓, xi))

#����� =
µ

2
E✓,Xnk✓k

2 =
µ

2
E✓,Xn

��✓ � ✓
?
Xn

+ ✓
?
Xn

��2

 µE✓,Xn

��✓ � ✓
?
Xn

��2 + µEXn

��✓?Xn

��2

 µEXn


(1� ⌘µ)k

��✓?Xn

��2 + 2⌘

µ
�Xn

�
+ µEXn

��✓?Xn

��2

= µ
�
(1� ⌘µ)k + 1

�
EXn

��✓?Xn

��2 + 2⌘EXn [�Xn] .

Here, the second inequality follows from standard convergence analysis for SGD [GG23, Theorem
5.7] and we define �Xn as the stochastic gradient noise variance:

�Xn := Var
⇥
rf

�
✓
?
Xn

, xi

�⇤
,

where for a random vector V we define Var[V] := EkV � E[V]k2. Hence, we can see that the error
induced by the surrogate loss depends on the following factors:

• The regularization parameter µ,
• The expected norm of the minimizers,
• The step-size ⌘,
• The expected stochastic gradient noise variance.

These terms can be controlled by adjusting µ and ⌘.

B Technical Background

B.1 Computable bounds for the convergence of Markov chains

Geometric ergodicity and convergence rate of Markov chains has been well studied in the literature
[MT93, MT94, HM11]. In this section, we state a result from [HM11] that provides an explicitly
computable bound on the Wasserstein contraction for the Markov chains that satisfies a drift condition
that relies on the construction of an appropriate Lyapunov function and a minorization condition.

Let P(✓, ·) be a Markov transition kernel for a Markov chain (✓k) on Rd. For any measurable function
' : Rd

! [0,+1], we define:

(P')(✓) =

Z

Rd

'(✓̃)P(✓, d✓̃).

Assumption B.1 (Drift Condition). There exists a function V : Rd
! [0,1) and some constants

K � 0 and � 2 (0, 1) so that

(PV)(✓)  �V (✓) +K,

for all ✓ 2 Rd
.

Assumption B.2 (Minorization Condition). There exists some constant ⌘̂ 2 (0, 1) and a probability

measure ⌫ so that

inf
✓2Rd:V (✓)R

P(✓, ·) � ⌘̂⌫(·),

for some R > 2K/(1� �).

We define the weighted total variation distance:

d (µ1, µ2) =

Z

Rd

(1 + V (✓))|µ1 � µ2|(d✓),

15

where > 0 and V (✓) is the Lyapunov function that satisfies the drift condition (Assumption B.1).
It is known that d has the following alternative expression [HM11]:

d (µ1, µ2) = sup
':k'k 1

Z

Rd

'(✓)(µ1 � µ2)(d✓),

where k · k is the weighted supremum norm such that for any > 0:

k'k := sup
✓2Rd

|'(✓)|

1 + V (✓)
.

It is also noted in [HM11] that d has yet another equivalent expression:

d (µ1, µ2) = sup
':|k'k| 1

Z

Rd

'(✓)(µ1 � µ2)(d✓),

where

|k'k| := sup
✓ 6=✓̃

|'(✓)� '(✓̃)|

2 + V (✓) + V (✓̃)
.

Lemma B.1 (Theorem 1.3. [HM11]). If the drift condition (Assumption B.1) and minorization

condition (Assumption B.2) hold, then there exists ⌘̄ 2 (0, 1) and > 0 so that

d (Pµ1,Pµ2)  ⌘̄d (µ1, µ2)

for any probability measures µ1, µ2 on Rd
. In particular, for any ⌘0 2 (0, ⌘̂) and �0 2 (�+2K/R, 1)

one can choose = ⌘0/K and ⌘̄ = (1� (⌘̂ � ⌘0)) _ (2 +R �0)/(2 +R).

C Proofs of Wasserstein Perturbation Results: Quadratic Case

C.1 Proof of Lemma 3.1

Proof. Let P k(✓, ·) denote the law of ✓k starting with ✓0 = ✓ and P
k(✓̃, ·) the law of ✓̃k:

✓̃k =
⇣
I �

⌘

b
Hk

⌘
✓̃k�1 +

⌘

b
qk, (C.1)

with ✓̃0 = ✓̃. Note that

✓k =
⇣
I �

⌘

b
Hk

⌘
✓k�1 +

⌘

b
qk, (C.2)

✓̃k =
⇣
I �

⌘

b
Hk

⌘
✓̃k�1 +

⌘

b
qk, (C.3)

which implies that

E
���✓k � ✓̃k

��� = E
���
⇣
I �

⌘

b
Hk

⌘⇣
✓k�1 � ✓̃k�1

⌘���

 E
h���I �

⌘

b
Hk

���
���✓k�1 � ✓̃k�1

���
i
= ⇢E

���✓k�1 � ✓̃k�1

��� . (C.4)

By iterating over j = k, k � 1, . . . 1, we conclude that

W1

⇣
P

k(✓, ·), P k(✓̃, ·)
⌘
 Ek✓k � ✓̃kk  ⇢

n
k✓0 � ✓̃0k = ⇢

k
k✓ � ✓̃k. (C.5)

This completes the proof.

C.2 Proof of Lemma 3.2

Proof. First, we recall that
✓̂k =

⇣
I �

⌘

b
Ĥk

⌘
✓̂k�1 +

⌘

b
q̂k, (C.6)

where Ĥk :=
P

i2⌦k
âiâ

>
i and q̂k :=

P
i2⌦k

âiŷi. Therefore, starting with ✓̂0 = ✓, we have

✓̂1 =
⇣
I �

⌘

b
Ĥ1

⌘
✓ +

⌘

b
q̂1, (C.7)

which implies that

(P̂ V̂)(✓) = EV̂ (✓̂1) = 1 + Ek✓̂1k  1 + ⇢̂k✓k+
⌘

b
Ekq̂1k = ⇢̂V̂ (✓) + 1� ⇢̂+

⌘

b
Ekq̂1k. (C.8)

This completes the proof.

16

C.3 Proof of Lemma 3.3

Proof. Let us recall that

✓1 =
⇣
I �

⌘

b
H1

⌘
✓ +

⌘

b
q1, (C.9)

✓̂1 =
⇣
I �

⌘

b
Ĥ1

⌘
✓ +

⌘

b
q̂1, (C.10)

which implies that

W1

⇣
�✓P, �✓P̂

⌘
 E

���H1 � Ĥ1

���
⌘

b
k✓k+

⌘

b
E kq1 � q̂1k . (C.11)

Since Xn and X̂n differ by at most one element and supx2X kxk  D for some D < 1, we have
(H1, q1) = (Ĥ1, q1) with probability n�b

n and (H1, q1) 6= (Ĥ1, q1) with probability b
n and moreover

E
���H1 � Ĥ1

��� 
b

n
max
1in

��aia>i � âiâ
>
i

�� 
b

n
max
1in

�
kaik

2 + kâik
2
�


2bD2

n
, (C.12)

and

E kq1 � q̂1k 
b

n
max
1in

kaiyi � âiŷik 
b

n
max
1in

(kaikkqik+ kâikkq̂ik) 
2bD2

n
. (C.13)

Hence, we conclude that

sup
✓2Rd

W1(�✓P, �✓P̂)

V̂ (✓)
 sup
✓2Rd

⌘
b (k✓k+ 1) 2bD

2

n

1 + k✓k
=

2⌘D2

n
. (C.14)

This completes the proof.

D Proofs of Wasserstein Perturbation Results: Strongly Convex Case

In order to obtain the algorithmic stability bound, that is a 1-Wasserstein distance between the
distribution of ✓k and ✓̂k, we need to establish a sequence of technical lemmas. First, we show a
1-Wasserstein contraction rate in the following lemma.
Lemma D.1. Assume that Assumption 3.1 and Assumption 3.2 hold, and further assume that

⌘ < min
n

1
µ ,

µ
K2

1

o
. Then, for any n 2 N,

W1

⇣
P

n(✓, ·), Pn
⇣
✓̃, ·

⌘⌘


⇣
1�

⌘µ

2

⌘n
k✓ � ✓̃k. (D.1)

Proof. Let P k(✓, ·) denote the law of ✓k starting with ✓0 = ✓:
✓k = ✓k�1 � ⌘r̃F̂k(✓k�1, Xn), (D.2)

and P
k(✓̃, ·) the law of ✓̃k:

✓̃k = ✓̃k�1 � ⌘r̃F̂k

⇣
✓̃k�1, Xn

⌘
, (D.3)

with ✓̃0 = ✓̃. Note that
✓k = ✓k�1 �

⌘

b

X

i2⌦k

rf(✓k�1, xi), (D.4)

✓̃k = ✓̃k�1 �
⌘

b

X

i2⌦k

rf

⇣
✓̃k�1, xi

⌘
. (D.5)

Therefore, we have

E
���✓k � ✓̃k

���
2
= E

�����✓k�1 � ✓̃k�1 �
⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̃k�1, xi

⌘⌘�����

2

= E
���✓k�1 � ✓̃k�1

���
2
+
⌘
2

b2
E
�����
X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̃k�1, xi

⌘⌘�����

2

�
2⌘

b
E
*
✓k�1 � ✓̃k�1,

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̃k�1, xi

⌘⌘+
. (D.6)

17

By applying Assumption 3.1 and Assumption 3.2, we get

E
���✓k � ✓̃k

���
2

 (1� 2⌘µ)E
���✓k�1 � ✓̃k�1

���
2
+
⌘
2

b2
E

2

4

X

i2⌦k

���rf(✓k�1, xi)�rf

⇣
✓̃k�1, xi

⌘���

!2
3

5

 (1� 2⌘µ)E
���✓k�1 � ✓̃k�1

���
2
+ ⌘

2
K

2
1E
���✓k�1 � ✓̃k�1

���
2

 (1� ⌘µ)E
���✓k�1 � ✓̃k�1

���
2
, (D.7)

provided that ⌘ 
µ
K2

1
. By iterating over k = n, n� 1, . . . 1, we conclude that

⇣
W1

⇣
P

n(✓, ·), Pn(✓̃, ·)
⌘⌘2



⇣
W2

⇣
P

n(✓, ·), Pn(✓̃, ·)
⌘⌘2

 E
���✓n � ✓̃n

���
2
 (1� ⌘µ)n

���✓0 � ✓̃0

���
2


⇣
1�

⌘µ

2

⌘2n ���✓ � ✓̃

���
2
.

(D.8)

This completes the proof.

Next, we construct a Lyapunov function V̂ and obtain a drift condition for the SGD (✓̂k)1k=0.

Lemma D.2. Assume that Assumption 3.1 and Assumption 3.2 hold. Let V̂ (✓) := 1+k✓�✓̂⇤k
2
, where

✓̂⇤ is the minimizer of F̂ (✓, X̂n) := 1
n

Pn
i=1 rf(✓, x̂i). Assume that ⌘ < min

n
1
µ ,

µ
K2

1+64D2K2
2

o

and supx2X kxk  D for some D < 1. Then, we have

(P̂ V̂)(✓)  (1� ⌘µ)V̂ (✓) + 2⌘µ� ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2
. (D.9)

Proof. First, we recall that

✓̂k = ✓̂k�1 �
⌘

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘
. (D.10)

Therefore, starting with ✓̂0 = ✓, we have

✓̂1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, x̂i)

= ✓ �
⌘

n

nX

i=1

rf(✓, x̂i) + ⌘

1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

!
. (D.11)

Moreover, we have

E
"
1

b

X

i2⌦1

rf(✓, x̂i)
���✓
#
=

1

n

nX

i=1

rf(✓, x̂i). (D.12)

This implies that

(P̂ V̂)(✓)

= EV̂ (✓̂1) = 1 + E
���✓̂1 � ✓̂⇤

���
2

= 1 +

�����✓ � ✓̂⇤ +
⌘

n

nX

i=1

rf(✓, x̂i)

�����

2

+ ⌘
2E
�����
1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

�����

2

. (D.13)

18

We can compute that
�����✓ � ✓̂⇤ +

⌘

n

nX

i=1

rf(✓, x̂i)

�����

2

=

�����✓ � ✓̂⇤ +
⌘

n

nX

i=1

⇣
rf(✓, x̂i)�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2

 (1� 2⌘µ)k✓ � ✓̂⇤k
2 +

⌘
2

n2

�����

nX

i=1

⇣
rf(✓, x̂i)�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2

 (1� 2⌘µ+ ⌘
2
K

2
1)k✓ � ✓̂⇤k

2
. (D.14)

Moreover, we can compute that

E
�����
1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

�����

2

= E

������
1

b

X

i2⌦1

0

@ 1

n

nX

j=1

rf(✓, x̂j)�rf(✓, x̂i)

1

A

������

2

= E

0

@1

b

X

i2⌦1

K2
1

n

nX

j=1

kx̂i � x̂jk(2k✓k+ 1)

1

A
2

 4D2
K

2
2 (2k✓k+ 1)2

 8D2
K

2
2 (4k✓k

2 + 1)

 8D2
K

2
2

⇣
8k✓ � ✓̂⇤k

2 + 8k✓̂⇤k
2 + 1

⌘
. (D.15)

Hence, we conclude that

(P̂ V̂)(✓) 
�
1� 2⌘µ+ ⌘

2
K

2
1 + 64⌘2D2

K
2
2

� ���✓ � ✓̂⇤

���
2
+ 1 + 8⌘2D2

K
2
2

⇣
8k✓̂⇤k

2 + 1
⌘

=
�
1� 2⌘µ+ ⌘

2
K

2
1 + 64⌘2D2

K
2
2

�
V̂ (✓)

+ 2⌘µ� ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2

 (1� ⌘µ)V̂ (✓) + 2⌘µ� ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2
, (D.16)

provided that ⌘ 
µ

K2
1+64D2K2

2
. This completes the proof.

Next, we estimate the perturbation gap based on the Lyapunov function V̂ .

Lemma D.3. Assume that Assumption 3.1 holds. Assume that supx2X kxk  D for some D < 1.

Then, we have

sup
✓2Rd

W1(�✓P, �✓P̂)

V̂ (✓)


4DK2⌘

n
(2k✓̂⇤k+ 1), (D.17)

where ✓̂⇤ is the minimizer of F̂ (✓, X̂n) :=
1
n

Pn
i=1 rf(✓, x̂i).

Proof. Let us recall that

✓1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, xi), (D.18)

✓̂1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, x̂i), (D.19)

19

which implies that

W1

⇣
�✓P, �✓P̂

⌘

⌘

b
E
�����
X

i2⌦1

rf(✓, xi)�rf(✓, x̂i)

�����


⌘

b
E
"
X

i2⌦1

krf(✓, xi)�rf(✓, x̂i)k

#


⌘

b
E
"
X

i2⌦1

K2 kxi � x̂ik (2k✓k+ 1)

#
(D.20)

Since Xn and X̂n differ by at most one element and supx2X kxk  D for some D < 1, we have
xi = x̂i for any i 2 ⌦1 with probability n�b

n and xi 6= x̂i for exactly one i 2 ⌦1 with probability b
n

and therefore

W1

⇣
�✓P, �✓P̂

⌘

⌘

b

b

n
2K2D(2k✓k+ 1) =

2DK2⌘

n
(2k✓k+ 1). (D.21)

Hence, we conclude that

sup
✓2Rd

W1(�✓P, �✓P̂)

V̂ (✓)
 sup
✓2Rd

4DK2⌘

n

k✓k+ 1
2

1 + k✓ � ✓̂⇤k2

 sup
✓2Rd

4DK2⌘

n

2k✓ � ✓̂⇤k+ 2k✓̂⇤k+ 1

1 + k✓ � ✓̂⇤k2

 sup
✓2Rd

4DK2⌘

n

2k✓ � ✓̂⇤k(2k✓̂⇤k+ 1)

1 + k✓ � ✓̂⇤k2


4DK2⌘

n

⇣
2k✓̂⇤k+ 1

⌘
. (D.22)

This completes the proof.

Next, let us provide a technical lemma that upper bounds the norm of ✓⇤ and ✓̂⇤, which are the
minimizers of F̂ (✓, Xn) :=

1
n

Pn
i=1 rf(✓, xi) and F̂ (✓, X̂n) :=

1
n

Pn
i=1 rf(✓, x̂i) respectively.

Lemma D.4. Under Assumption 3.2, we have k✓⇤k 
1
µ supx2X krf(0, x)k and k✓̂⇤k 

1
µ supx2X krf(0, x)k.

Proof. Since f(✓, x) is µ-strongly convex in ✓ for every x 2 X , we have
D
rF̂ (0, Xn)�rF̂ (✓⇤, Xn), 0� ✓⇤

E
= �

1

n

nX

i=1

hrf(0, xi), ✓⇤i

=
1

n

nX

i=1

hrf(0, xi)�rf(✓⇤, xi), 0� ✓⇤i � µk✓⇤k
2
,

(D.23)
which implies that

µk✓⇤k
2
 sup

x2X
krf(0, x)k · k✓⇤k, (D.24)

which yields that k✓⇤k 
1
µ supx2X krf(0, x)k. Similarly, one can show that k✓̂⇤k 

1
µ supx2X krf(0, x)k. This completes the proof.

D.1 Proof of Theorem 3.2

Proof. By applying Lemma D.1, Lemma D.2, Lemma D.3 and Lemma 2.1, we obtain

W1(⌫k, ⌫̂k) 
8DK2(1� (1� ⌘µ

2)k)

nµ

⇣
2k✓̂⇤k+ 1

⌘

·max

⇢
1 +

���✓ � ✓̂⇤

���
2
, 2�

⌘

µ
K

2
1 �

56⌘

µ
D

2
K

2
2 +

64⌘

µ
D

2
K

2
2k✓̂⇤k

2

�
, (D.25)

20

where ✓̂⇤ is the minimizer of F̂ (✓, X̂n) :=
1
n

Pn
i=1 rf(✓, x̂i). Finally, k✓� ✓̂⇤k2  2k✓k2+2k✓̂⇤k2

and by applying Lemma D.4, we complete the proof.

E Proofs of Wasserstein Perturbation Bounds: Non-Convex Case

Lemma E.1. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4 hold. For any

⌘̂ 2 (0, 1). Define M > 0 so that
R
k✓1kM p(✓⇤, ✓1)d✓1 �

p
⌘̂ and any R > 0 so that R >

2K0
m and

inf
✓,✓12Rd:V (✓)R,k✓1kM

p(✓, ✓1)

p(✓⇤, ✓1)
�

p
⌘̂, (E.1)

where

K0 := 2m� ⌘K
2
1 � 56⌘D2

K
2
2 + 64⌘D2

K
2
2k✓⇤k

2 + 2K + ⌘�
2
. (E.2)

Then, for any n 2 N,

W1

⇣
P

n(✓, ·), Pn(✓̃, ·)
⌘


1

2
p
 (1 +)

⌘̄
n
d (�✓, �✓̃), (E.3)

for any ✓, ✓̃ in Rd
, where for any ⌘0 2 (0, ⌘̂) and �0 2

⇣
1�m⌘ + 2⌘K0

R , 1
⌘

one can choose

 = ⌘0
⌘K0

and ⌘̄ = (1� (⌘̂ � ⌘0)) _
2+R �0
2+R and d is the weighted total variation distance defined

in Section B.1.

Proof. Our proof relies on a computable bound on the Wasserstein contraction for the Markov chains
by [HM11] that satisfies a drift condition (Assumption B.1) that relies on the construction of an
appropriate Lyapunov function and a minorization condition (Assumption B.2).

By applying Lemma E.3, we can immediately show that the following drift condition holds. Let
V (✓) := 1 + k✓ � ✓⇤k

2, where ✓⇤ is the minimizer of 1
n

Pn
i=1 rf(✓, xi). Assume that ⌘ <

min
n

1
m ,

m
K1+64D2K2

2

o
and supx2X kxk  D for some D < 1. Then, we have

(PV)(✓)  (1�m⌘)V (✓) + ⌘K0, (E.4)

where
K0 := 2m� ⌘K

2
1 � 56⌘D2

K
2
2 + 64⌘D2

K
2
2k✓⇤k

2 + 2K + ⌘�
2
. (E.5)

Thus, the drift condition (Assumption B.1) holds.

Next, let us show that the minorization condition (Assumption B.2) also holds. Let us recall that

✓1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, xi) + ⌘⇠1. (E.6)

We denote p(✓, ✓1) the probability density function of ✓1 with the emphasis on the dependence on the
initial point ✓. Then, to check that the minorization condition (Assumption B.2) holds, it suffices to
show that there exists some constant ⌘̂ 2 (0, 1)

inf
✓2Rd:V (✓)R

p(✓, ✓1) � ⌘̂q(✓1), for any ✓1 2 Rd
, (E.7)

for some R >
2⌘K0

1�(1�m⌘) = 2K0
m , where q(✓1) is the density function of a probability distribution

function on Rd, and (E.7) follows from Lemma E.2. Hence, by Lemma B.1, we have

d

⇣
P

n(✓, ·), Pn(✓̃, ·)
⌘
 ⌘̄

n
d (�✓, �✓̃),

for any ✓, ✓̃ in Rd, where for any ⌘0 2 (0, ⌘̂) and �0 2

⇣
1�m⌘ + 2⌘K0

R , 1
⌘

one can choose

 = ⌘0
⌘K0

and ⌘̄ = (1� (⌘̂ � ⌘0)) _
2+R �0
2+R .

21

Finally, by the Kantorovich-Rubinstein duality for the Wasserstein metric, we get for any two
probability measures µ1, µ2 on Rd:

W1(µ1, µ2) = sup

⇢Z

Rd

�(✓)(µ1 � µ2)(d✓) : � is 1-Lipschitz
�

= sup

⇢Z

Rd

(�(✓)� �(✓⇤))(µ1 � µ2)(d✓) : � is 1-Lipschitz
�



Z

Rd

k✓ � ✓⇤k|µ1 � µ2|(d✓)


1

2
p
 (1 +)

Z

Rd

(1 + V (✓))|µ1 � µ2|(d✓)

=
1

2
p
 (1 +)

d (µ1, µ2). (E.8)

Hence, we conclude that

W1

⇣
P

n(✓, ·), Pn(✓̃, ·)
⌘


1

2
p
 (1 +)

⌘̄
n
d (�✓, �✓̃).

This completes the proof.

The proof of Lemma E.1 relies on the following technical lemma, which is a reformulation of Lemma
35 in [CGZ19] that helps establish the minorization condition (Assumption B.2).
Lemma E.2. For any ⌘̂ 2 (0, 1) and M > 0 so that

R
k✓1�✓⇤kM p(✓⇤, ✓1)d✓1 �

p
⌘̂ and any R > 0

so that

inf
✓,✓12Rd:V (✓)R,k✓1�✓⇤kM

p(✓, ✓1)

p(✓⇤, ✓1)
�

p
⌘̂. (E.9)

Then, we have

inf
✓2Rd:V (✓)R

p(✓, ✓1) � ⌘̂q(✓1), for any ✓1 2 Rd
, (E.10)

where

q(✓1) = p(✓⇤, ✓1) ·
1k✓1�✓⇤kMR

k✓1�✓⇤kM p(✓⇤, ✓1)d✓1
. (E.11)

Proof. The proof is an adaptation of the proof of Lemma 35 in [CGZ19]. Let us take:

q(✓1) = p(✓⇤, ✓1) ·
1k✓1�✓⇤kMR

k✓1�✓⇤kM p(✓⇤, ✓1)d✓1
. (E.12)

Then, it is clear that q(✓1) is a probability density function on Rd. It follows that (E.7) automatically
holds for k✓1 � ✓⇤k > M . Thus, we only need to show that (E.7) holds for k✓1 � ✓⇤k  M . Since
⇠1 has a continuous density, p(✓, ✓1) is continuous in both ✓ and ✓1. Fix M , by continuity of p(✓, ✓1)
in both ✓ and ✓1, there exists some ⌘0 2 (0, 1) such that uniformly in k✓1 � ✓⇤k  M ,

inf
✓2Rd:V (✓)R

p(✓, ✓1) � ⌘
0
p(✓⇤, ✓1) = ⌘̂q(✓1), (E.13)

where we can take
⌘̂ := ⌘

0
Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1. (E.14)

In particular, for any fixed ⌘̂, we can take M > 0 such that
Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1 �

p
⌘̂, (E.15)

and with fixed ⌘ and M , we take R > 0 such that uniformly in k✓1 � ✓⇤k  M ,

inf
✓2Rd:V (✓)R

p(✓, ✓1) �
p
⌘̂p(✓⇤, ✓1). (E.16)

This completes the proof.

22

Next, we construct a Lyapunov function V̂ and obtain a drift condition for the SGD (✓̂k)1k=0.

Lemma E.3. Assume that Assumption 3.1, Assumption 3.3 and Assumption 3.4 hold. Let V̂ (✓) :=
1 + k✓ � ✓̂⇤k

2
, where ✓̂⇤ is the minimizer of F̂ (✓, X̂n) := 1

n

Pn
i=1 rf(✓, x̂i). Assume that ⌘ <

min
n

1
m ,

m
K2

1+64D2K2
2

o
and supx2X kxk  D for some D < 1. Then, we have

(P̂ V̂)(✓)  (1�m⌘)V̂ (✓)+2m⌘�⌘2K2
1�56⌘2D2

K
2
2+64⌘2D2

K
2
2k✓̂⇤k

2+2⌘K+⌘2�2
. (E.17)

Proof. First, we recall that

✓̂k = ✓̂k�1 �
⌘

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘
+ ⌘⇠k. (E.18)

Therefore, starting with ✓̂0 = ✓, we have

✓̂1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, x̂i) + ⌘⇠1

= ✓ �
⌘

n

nX

i=1

rf(✓, x̂i) + ⌘

1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

!
+ ⌘⇠1. (E.19)

Moreover, we have

E
"
1

b

X

i2⌦1

rf(✓, x̂i)
���✓
#
=

1

n

nX

i=1

rf(✓, x̂i). (E.20)

This implies that

(P̂ V̂)(✓)

= EV̂ (✓̂1) = 1 + E
���✓̂1 � ✓̂⇤

���
2

= 1 +

�����✓ � ✓̂⇤ �
⌘

n

nX

i=1

rf(✓, x̂i)

�����

2

+ ⌘
2E
�����
1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

�����

2

+ ⌘
2
�
2
.

(E.21)

We can compute that
�����✓ � ✓̂⇤ �

⌘

n

nX

i=1

rf (✓, x̂i)

�����

2

=

�����✓ � ✓̂⇤ �
⌘

n

nX

i=1

⇣
rf (✓, x̂i)�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2

 (1� 2m⌘)
���✓ � ✓̂⇤

���
2
+ 2⌘K +

⌘
2

n2

�����

nX

i=1

⇣
rf(✓, x̂i)�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2


�
1� 2m⌘ + ⌘

2
K

2
1

� ���✓ � ✓̂⇤

���
2
+ 2⌘K. (E.22)

Moreover, by following the same arguments as in the proof of Lemma D.2, we have

E
�����
1

n

nX

i=1

rf(✓, x̂i)�
1

b

X

i2⌦1

rf(✓, x̂i)

�����

2

 8D2
K

2
2

✓
8
���✓ � ✓̂⇤

���
2
+ 8k✓̂⇤k

2 + 1

◆
. (E.23)

23

Hence, we conclude that

(P̂ V̂)(✓) 
�
1� 2m⌘ + ⌘

2
K

2
1 + 64⌘2D2

K
2
2

� ���✓ � ✓̂⇤

���
2

+ 1 + 8⌘2D2
K

2
2

⇣
8k✓̂⇤k

2 + 1
⌘
+ 2⌘K + ⌘

2
�
2

=
�
1� 2m⌘ + ⌘

2
K

2
1 + 64⌘2D2

K
2
2

�
V̂ (✓)

+ 2m⌘ � ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2 + 2⌘K + ⌘
2
�
2

 (1�m⌘)V̂ (✓) + 2m⌘ � ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2 + 2⌘K + ⌘
2
�
2
,

(E.24)
provided that ⌘ 

m
K2

1+64D2K2
2

. This completes the proof.

Next, we estimate the perturbation gap based on the Lyapunov function V̂ .
Lemma E.4. Assume that Assumption 3.1 and Assumption 3.4 hold. Assume that supx2X kxk  D

for some D < 1. Then, we have

sup
✓2Rd

d (�✓P, �✓P̂)

V̂ (✓)


2b

n
max

(
 · (4 + 8⌘2K2

1),

1 + ·

✓
1 + ⌘

2
�
2 + (4 + 8⌘2K2

1)k✓⇤ � ✓̂⇤k
2 + 4⌘2 sup

x2X
krf(✓⇤, x)k

2

◆)
, (E.25)

where ✓̂⇤ is the minimizer of
1
n

Pn
i=1 rf(✓, x̂i) and ✓⇤ is the minimizer of

1
n

Pn
i=1 rf(✓, xi) and

d is the weighted total variation distance defined in Section B.1.

Proof. Let us recall that

✓1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, xi) + ⌘⇠1, (E.26)

✓̂1 = ✓ �
⌘

b

X

i2⌦1

rf(✓, x̂i) + ⌘⇠1, (E.27)

which implies that

E⇠1 [V (✓1)] = 1 + E⇠1
⇥
k✓1 � ✓⇤k

2
⇤
= 1 + ⌘

2
�
2 +

�����✓ � ✓⇤ �
⌘

b

X

i2⌦1

rf(✓, xi)

�����

2

, (E.28)

where E⇠1 denotes expectations w.r.t. ⇠1 only, and we can further compute that
�����✓ � ✓⇤ �

⌘

b

X

i2⌦1

rf(✓, xi)

�����

2

 2k✓ � ✓⇤k
2 +

2⌘2

b2

�����
X

i2⌦1

rf(✓, xi)

�����

2

 2k✓ � ✓⇤k
2 +

2⌘2

b2

X

i2⌦1

krf(✓, xi)k

!2

 2k✓ � ✓⇤k
2 +

2⌘2

b2

X

i2⌦1

krf(✓, xi)�rf(✓⇤, xi)k+ krf(✓⇤, xi)k

!2

 2k✓ � ✓⇤k
2 +

2⌘2

b2

✓
bK1k✓ � ✓⇤k+ b sup

x2X
krf(✓⇤, x)k

◆2

 2k✓ � ✓⇤k
2 + 4⌘2K2

1k✓ � ✓⇤k
2 + 4⌘2 sup

x2X
krf(✓⇤, x)k

2
. (E.29)

24

Therefore, we have
E⇠1 [V (✓1)]  1 + ⌘

2
�
2 + 2k✓ � ✓⇤k

2 + 4⌘2K2
1k✓ � ✓⇤k

2 + 4⌘2 sup
x2X

krf(✓⇤, x)k
2
. (E.30)

Similarly, we have

E⇠1 [V (✓̂1)]  1 + ⌘
2
�
2 + 2k✓ � ✓⇤k

2 + 4⌘2K2
1k✓ � ✓⇤k

2 + 4⌘2 sup
x2X

krf(✓⇤, x)k
2
. (E.31)

Since Xn and X̂n differ by at most one element and supx2X kxk  D for some D < 1, we have
xi = x̂i for any i 2 ⌦1 with probability n�b

n and xi 6= x̂i for exactly one i 2 ⌦1 with probability b
n .

Therefore, we have

d

⇣
�✓P, �✓P̂

⌘


2b

n

✓
1 +

✓
1 + ⌘

2
�
2 + (2 + 4⌘2K2

1)k✓ � ✓⇤k
2 + 4⌘2 sup

x2X
krf(✓⇤, x)k

2

◆◆
.

(E.32)
Hence, we conclude that

sup
✓2Rd

d (�✓P, �✓P̂)

V̂ (✓)


2b

n
sup
✓2Rd

1 +
�
1 + ⌘

2
�
2 + (2 + 4⌘2K2

1)k✓ � ✓⇤k
2 + 4⌘2 supx2X krf(✓⇤, x)k2

�

1 + k✓ � ✓̂⇤k2


2b

n
sup
✓2Rd

(
1 +

⇣
1 + ⌘

2
�
2 + (4 + 8⌘2K2

1)k✓ � ✓̂⇤k
2
⌘

1 + k✓ � ✓̂⇤k2

+

⇣
(4 + 8⌘2K2

1)k✓⇤ � ✓̂⇤k
2 + 4⌘2 supx2X krf(✓⇤, x)k2

⌘

1 + k✓ � ✓̂⇤k2

)


2b

n
max

(
 (4 + 8⌘2K2

1),

1 +

✓
1 + ⌘

2
�
2 + (4 + 8⌘2K2

1)k✓⇤ � ✓̂⇤k
2 + 4⌘2 sup

x2X
krf(✓⇤, x)k

2

◆)
.

(E.33)

This completes the proof.

It is worth noting that the Wasserstein contraction bound we obtained in Lemma E.1 in the non-convex
case differs from the one we obtained in the strongly-convex case (Lemma D.1) in the sense that the
right hand side of (E.3) is no longer k✓ � ✓̃k so that Lemma 2.1 is not directly applicable. Instead,
in the following, we will provide a modification of Lemma 2.1, which will be used in proving
Theorem 3.3 in this paper. The definitions of the notations used in the following lemma can be found
in Section 2.2.
Lemma E.5. Assume that there exist some ⇢ 2 [0, 1) and C 2 (0,1) such that

sup
✓,✓̃2Rd:✓ 6=✓̃

W1(Pn(✓, ·), Pn(✓̃, ·))

d (�✓, �✓̃)
 C⇢

n
, (E.34)

for any n 2 N. Further assume that there exist some � 2 (0, 1) and L 2 (0,1) and a measurable

Lyapunov function V̂ : Rd
! [1,1) of P̂ such that for any ✓ 2 Rd

:

(P̂ V̂)(✓)  �V̂ (✓) + L. (E.35)
Then, we have

W1(pn, p̂n)  C

✓
⇢
n
d (p0, p̂0) + (1� ⇢

n)
�

1� ⇢

◆
, (E.36)

where

� := sup
✓2Rd

d (�✓P, �✓P̂)

V̂ (✓)
,  := max

⇢Z

Rd

V̂ (✓)dp̂0(✓),
L

1� �

�
. (E.37)

25

Proof. The proof is based on the modification of the proof of Lemma 2.1 (Theorem 3.1 in [RS18]).
By induction we have

p̃n � pn = (p̃0 � p0)P
n +

n�1X

i=0

p̃i

⇣
P̃ � P

⌘
P

n�i�1
, n 2 N. (E.38)

We have
d

⇣
p̃iP, p̃iP̃

⌘


Z

Rd

d

⇣
�✓P, �✓P̃

⌘
dp̃i(✓)  �

Z

Rd

Ṽ (✓)dp̃i(✓). (E.39)

Moreover, for any i = 0, 1, 2, . . .,
Z

Rd

Ṽ (✓)dp̃i(✓) =

Z

Rd

P̃
i
Ṽ (✓)dp̃0(✓)  �

i
p̃0(Ṽ) +

L(1� �
i)

1� �
 max

⇢
p̃0(Ṽ),

L

1� �

�
, (E.40)

so that we obtain d (p̃iP, p̃iP̃)  �. Therefore, we have

W1

⇣
p̃iP̃P

n�i�1
, p̃iPP

n�i�1
⌘
 C⇢

n�i�1
d

⇣
p̃iP, p̃iP̃

⌘
 C⇢

n�i�1
�. (E.41)

By the triangle inequality of the Wasserstein distance, we have

W1(pn, p̃n)  W1 (p0P
n
, p̃0P

n) +
n�1X

i=0

W1

⇣
p̃iP̃P

n�i�1
, p̃iPP

n�i�1
⌘

 C⇢
n
d (p0, p̃0) + C

n�1X

i=0

⇢
n�i�1

�. (E.42)

This completes the proof.

Next, let us provide a technical lemma that upper bounds the norm of ✓⇤ and ✓̂⇤, which are the
minimizers of F̂ (✓, Xn) :=

1
n

Pn
i=1 rf(✓, xi) and F̂ (✓, X̂n) :=

1
n

Pn
i=1 rf(✓, x̂i) respectively.

Lemma E.6. Under Assumption 3.3, we have

k✓⇤k 
supx2X krf(0, x)k+

p
supx2X krf(0, x)k2 + 4mK

2m
, (E.43)

k✓̂⇤k 
supx2X krf(0, x)k+

p
supx2X krf(0, x)k2 + 4mK

2m
. (E.44)

Proof. By Assumption 3.3, we have
D
rF̂ (0, Xn)�rF̂ (✓⇤, Xn), 0� ✓⇤

E
= �

1

n

nX

i=1

hrf(0, xi), ✓⇤i

=
1

n

nX

i=1

hrf(0, xi)�rf(✓⇤, xi), 0� ✓⇤i

� mk✓⇤k
2
�K, (E.45)

which implies that
mk✓⇤k

2
�K  sup

x2X
krf(0, x)k · k✓⇤k, (E.46)

which yields that

k✓⇤k 
supx2X krf(0, x)k+

p
supx2X krf(0, x)k2 + 4mK

2m
. (E.47)

Similarly, one can show that

k✓̂⇤k 
supx2X krf(0, x)k+

p
supx2X krf(0, x)k2 + 4mK

2m
. (E.48)

This completes the proof.

26

E.1 Proof of Theorem 3.3

Before going to the proof, let us restate the full version of Theorem 3.3 that we provide below.
Theorem E.1 (Complete Theorem 3.3). Let ✓0 = ✓̂0 = ✓. Assume that Assumption 3.1, As-

sumption 3.3 and Assumption 3.4 hold. We also assume that ⌘ < min
n

1
m ,

m
K2

1+64D2K2
2

o
and

supx2X kxk  D for some D < 1 and supx2X krf(0, x)k  E for some E < 1. For any

⌘̂ 2 (0, 1). Define M > 0 so that
R
k✓1�✓⇤kM p(✓⇤, ✓1)d✓1 �

p
⌘̂ and any R >

2K0
m where K0 is

defined in (E.2) so that

inf
✓,✓12Rd:V (✓)R,k✓1�✓⇤kM

p(✓, ✓1)

p(✓⇤, ✓1)
�

p
⌘̂. (E.49)

Let ⌫k and ⌫̂k denote the distributions of ✓k and ✓̂k respectively. Then, we have

W1(⌫k, ⌫̂k)


1� ⌘̄

k

2
p
 (1 +)(1� ⌘̄)

·
2b

n
max

(
 (4 + 8⌘2K2

1),

1 +

1 + ⌘

2
�
2 + 16(1 + 2⌘2K2

1)

E +

p
E2 + 4mK

2m

!2

+ 4⌘2

0

@2E2 + 2K2
1

E +

p
E2 + 4mK

2m

!2
1

A
!)

·max

(
1 + 2✓2 + 2

E +

p
E2 + 4mK

2m

!2

,

2�
⌘

m
K

2
1 �

56⌘

m
D

2
K

2
2 +

64⌘

m
D

2
K

2
2

E +

p
E2 + 4mK

2m

!2

+
2K

m
+
⌘

m
�
2

)
,

(E.50)

where for any ⌘0 2 (0, ⌘̂) and �0 2

⇣
1�m⌘ + 2⌘K0

R , 1
⌘

one can choose = ⌘0
⌘K0

and ⌘̄ =

(1� (⌘̂ � ⌘0)) _
2+R �0
2+R and d is the weighted total variation distance defined in Section B.1.

Proof. By applying Lemma E.1, Lemma E.3, Lemma E.4 and Lemma E.5, which is a modification
of Lemma 2.1, we obtain

W1(⌫k, ⌫̂k)


1� ⌘̄

k

2
p
 (1 +)(1� ⌘̄)

·
2b

n
max

(
 (4 + 8⌘2K2

1),

1 +

✓
1 + ⌘

2
�
2 + (4 + 8⌘2K2

1)k✓⇤ � ✓̂⇤k
2 + 4⌘2 sup

x2X
krf(✓⇤, x)k

2

◆)

·max

⇢
1 + k✓ � ✓̂⇤k

2
, 2�

⌘

m
K

2
1 �

56⌘

m
D

2
K

2
2 +

64⌘

m
D

2
K

2
2k✓̂⇤k

2 +
2K

m
+
⌘

m
�
2

�
,

(E.51)

where for any ⌘0 2 (0, ⌘̂) and �0 2

⇣
1�m⌘ + 2⌘K0

R , 1
⌘

one can choose = ⌘0
⌘K0

and ⌘̄ =

(1� (⌘̂ � ⌘0)) _
2+R �0
2+R and d is the weighted total variation distance defined in Section B.1.

27

Finally, let us notice that k✓⇤ � ✓̂⇤k
2
 2k✓⇤k2 + 2k✓̂⇤k2 and k✓ � ✓̂⇤k

2
 2k✓k2 + 2k✓̂⇤k2 and for

every x 2 X ,

krf(✓⇤, x)k
2
 2krf(0, x)k2+2krf(✓⇤, x)�rf(0, x)k2  2krf(0, x)k2+2K2

1k✓⇤k
2
. (E.52)

By applying Lemma E.6, we complete the proof.

E.2 Proof of Corollary 3.5

Proof. Under our assumptions, the noise ⇠k are i.i.d. Gaussian N (0,⌃) so that E[k⇠1k2] = tr(⌃) =
�
2. Moreoever, we have ⌃ � Id. Then p(✓⇤, ✓1) is the probability density function of

✓⇤ �
⌘

b

X

i2⌦1

rf(✓⇤, xi) + ⌘⇠1. (E.53)

Therefore,
Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1 = P

 ������
⌘

b

X

i2⌦1

rf(✓⇤, xi) + ⌘⇠1

�����  M

!
. (E.54)

Notice that for any ⌦1,
�����
⌘

b

X

i2⌦1

rf(✓⇤, xi)

�����  ⌘ sup
x2X

krf(✓⇤, x)k. (E.55)

Thus, we have
Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1 = 1� P

 ������
⌘

b

X

i2⌦1

rf(✓⇤, xi) + ⌘⇠1

����� > M

!

� 1� P
✓
k⌘⇠1k > M � ⌘ sup

x2X
krf(✓⇤, x)k

◆

= 1� P
✓
k⇠1k >

M

⌘
� sup

x2X
krf(✓⇤, x)k

◆
. (E.56)

Since ⇠ ⇠ N (0,⌃) and ⌃ � Id, for any � 
1
2 , we have

E
h
e
�k⇠1k2

i
=

1p
det (Id � 2�⌃)

.

By Chebychev’s inequality, letting � = 1
2 , for any M � ⌘ supx2X krf(✓⇤, x)k, we get

Z

k✓1�✓⇤kM
p(✓⇤, ✓1)d✓1 � 1�

1p
det (Id � ⌃)

exp

�
1

2

✓
M

⌘
� sup

x2X
krf(✓⇤, x)k

◆2
!
.

Next, for any ✓, ✓1 2 Rd such that k✓1 � ✓⇤k  M and k✓ � ✓⇤k
2


2K0
m (1 + ✏)� 1, we have

p(✓, ✓1)

p(✓⇤, ✓1)
=

E⌦1 [p⌦1(✓, ✓1)]

E⌦1 [p⌦1(✓⇤, ✓1)]
, (E.57)

where E⌦1 denotes the expectation w.r.t. ⌦1, and p⌦1 denotes the probability density function
conditional on ⌦1. For any given ⌦1, we can compute that

p⌦1(✓, ✓1)

p⌦1(✓⇤, ✓1)

= exp

⇢
�

1

2⌘2
(✓1 � µ(✓))>⌃�1(✓1 � µ(✓)) +

1

2⌘2
(✓1 � µ(✓⇤))

>⌃�1(✓1 � µ(✓⇤))

�
, (E.58)

where
µ(✓) := ✓ �

⌘

b

X

i2⌦1

rf(✓, xi), µ(✓⇤) := ✓⇤ �
⌘

b

X

i2⌦1

rf(✓⇤, xi). (E.59)

28

Therefore, for any ✓, ✓1 2 Rd such that k✓1 � ✓⇤k  M and k✓ � ✓⇤k
2


2K0
m (1 + ✏)� 1, we have

p⌦1(✓, ✓1)

p⌦1(✓⇤, ✓1)
� exp

⇢
�

1

2⌘2
kµ(✓)� µ(✓⇤)k · k⌃

�1
k (k✓1 � µ(✓)k+ k✓1 � µ(✓⇤)k)

�

� exp

⇢
�

1

2⌘2
kµ(✓)� µ(✓⇤)k · k⌃

�1
k (kµ(✓)� µ(✓⇤)k+ 2k✓1 � µ(✓⇤)k)

�
.

(E.60)

We can further compute that

k✓1 � µ(✓⇤)k  k✓1 � ✓⇤k+

�����
⌘

b

X

i2⌦1

rf(✓⇤, xi)

�����  M + ⌘ sup
x2X

krf(✓⇤, x)k, (E.61)

and

kµ(✓)� µ(✓⇤)k  k✓ � ✓⇤k+
⌘

b

X

i2⌦1

krf(✓, xi)�rf(✓⇤, xi)k

 (1 +K1⌘)k✓ � ✓⇤k

 (1 +K1⌘)

✓
2K0

m
(1 + ✏)� 1

◆1/2

. (E.62)

Hence, we have

p⌦1(✓, ✓1)

p⌦1(✓⇤, ✓1)
� exp

(
�

(1 +K1⌘)
�
2K0
m (1 + ✏)� 1

�1/2

2⌘2
k⌃�1

k

·

(1 +K1⌘)

✓
2K0

m
(1 + ✏)� 1

◆1/2

+ 2

✓
M + ⌘ sup

x2X
krf(✓⇤, x)k

◆!)
.

(E.63)

Since it holds for every ⌦1, we have

p(✓, ✓1)

p(✓⇤, ✓1)
� exp

(
�

(1 +K1⌘)
�
2K0
m (1 + ✏)� 1

�1/2

2⌘2
k⌃�1

k

·

(1 +K1⌘)

✓
2K0

m
(1 + ✏)� 1

◆1/2

+ 2

✓
M + ⌘ sup

x2X
krf(✓⇤, x)k

◆!)
.

(E.64)

Hence, we conclude that

⌘̂ �

max

M�⌘ supx2X krf(✓⇤,x)k

(
min

(
1�

exp

✓
�

1
2

⇣
M
⌘ � supx2X krf(✓⇤, x)k

⌘2◆

p
det (Id � ⌃)

,

exp

(
�

(1 +K1⌘)
�
2K0
m (1 + ✏)� 1

�1/2

2⌘2
k⌃�1

k

·

(1 +K1⌘)

✓
2K0

m
(1 + ✏)� 1

◆1/2

+ 2

✓
M + ⌘ sup

x2X
krf(✓⇤, x)k

◆!)))!2

.

(E.65)

This completes the proof.

29

F Proofs of Non-Convex Case without Additive Noise

F.1 Proof of Theorem 4.1

Proof. Let us recall that ✓0 = ✓̂0 = ✓ and for any k 2 N,

✓k = ✓k�1 �
⌘

b

X

i2⌦k

rf(✓k�1, xi), (F.1)

✓̂k = ✓̂k�1 �
⌘

b

X

i2⌦k

rf(✓̂k�1, x̂i). (F.2)

Thus it follows that

✓k � ✓̂k = ✓k�1 � ✓̂k�1 �
⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
+
⌘

b
Ek, (F.3)

where
Ek :=

X

i2⌦k

⇣
rf(✓̂k�1, x̂i)�rf

⇣
✓̂k�1, xi

⌘⌘
. (F.4)

This implies that

���✓k � ✓̂k

���
2
=

�����✓k�1 � ✓̂k�1 �
⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘�����

2

+
⌘
2

b2
kEkk

2

+ 2

*
✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
,
⌘

b
Ek

+
. (F.5)

By Assumption 3.1 and Assumption 3.3, we have
�����✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘�����

2

 (1� 2⌘m)
���✓k�1 � ✓̂k�1

���
2
+ 2⌘K +

⌘
2

b2

⇣
bK1

���✓k�1 � ✓̂k�1

���
⌘2

 (1� ⌘m)
���✓k�1 � ✓̂k�1

���
2
+ 2⌘K, (F.6)

provided that ⌘ 
m
K2

1
.

Since Xn and X̂n differ by at most one element and supx2X kxk  D for some D < 1, we have
xi = x̂i for any i 2 ⌦k with probability n�b

n and xi 6= x̂i for exactly one i 2 ⌦k with probability b
n

and therefore

E kEkk
2


b

n
E
⇣

K22D
⇣
2k✓̂k�1k+ 1

⌘⌘2�


4D2
K

2
2b

n

⇣
8Ek✓̂k�1k

2 + 2
⌘
, (F.7)

and moreover,

E
*
✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
,
⌘

b
Ek

+


⌘

b

b

n
E
h
(1 +K1⌘)

���✓k�1 � ✓̂k�1

���K22D
⇣
2k✓̂k�1k+ 1

⌘i


2K2D⌘

n
(1 +K1⌘)E

h⇣
k✓k�1k+ k✓̂k�1k

⌘⇣
2k✓̂k�1k+ 1

⌘i


2K2D⌘

n
(1 +K1⌘)

✓
1 +

3

2
Ek✓k�1k

2 +
7

2
Ek✓̂k�1k

2

◆
, (F.8)

where we used the inequality that

(a+ b)(2b+ 1) = 2b2 + 2ab+ a+ b  1 +
3

2
a
2 +

7

2
b
2
, (F.9)

30

for any a, b 2 R. Therefore, we have

E
���✓k � ✓̂k

���
2
 (1� ⌘m)E

���✓k�1 � ✓̂k�1

���
2
+ 2⌘K +

4D2
K

2
2⌘

2

bn

⇣
8Ek✓̂k�1k

2 + 2
⌘

+
4K2D⌘

n
(1 +K1⌘)

✓
1 +

3

2
Ek✓k�1k

2 +
7

2
Ek✓̂k�1k

2

◆
. (F.10)

In Lemma E.3, we showed that under the assumption ⌘ < min
n

1
m ,

m
K2

1+64D2K2
2

o
and

supx2X kxk  D for some D < 1, we have that for every k 2 N,

EV̂ (✓̂k)  (1� ⌘m)EV̂ (✓̂k�1) + 2⌘m� ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2 + 2⌘K,

(F.11)

where V̂ (✓) := 1 + k✓ � ✓̂⇤k
2, where ✓̂⇤ is the minimizer of F̂ (✓, X̂n) :=

1
n

Pn
i=1 rf(✓, x̂i). This

implies that

E
h
V̂

⇣
✓̂k

⌘i

 (1� ⌘m)kE
h
V̂

⇣
✓̂0

⌘i
+

2⌘m� ⌘
2
K

2
1 � 56⌘2D2

K
2
2 + 64⌘2D2

K
2
2k✓̂⇤k

2 + 2⌘K

1� (1� ⌘m)

 1 + k✓ � ✓̂⇤k
2 + 2�

⌘

m
K

2
1 �

56⌘

m
D

2
K

2
2 +

64⌘

m
D

2
K

2
2k✓̂⇤k

2 +
2K

m
, (F.12)

so that

Ek✓̂kk2  2E
���✓̂k � ✓̂⇤

���
2
+ 2k✓̂⇤k

2

 2
���✓ � ✓̂⇤

���
2
+ 4�

2⌘

m
K

2
1 �

112⌘

m
D

2
K

2
2 +

128⌘

m
D

2
K

2
2k✓̂⇤k

2 +
4K

m
+ 2k✓̂⇤k

2

 4k✓k2 + 4

E +

p
E2 + 4mK

2m

!2

+ 4�
2⌘

m
K

2
1 �

112⌘

m
D

2
K

2
2

+
128⌘

m
D

2
K

2
2

E +

p
E2 + 4mK

2m

!2

+
4K

m
+ 2

E +

p
E2 + 4mK

2m

!2

=: B,

(F.13)

where we applied Lemma E.6. Similarly, we can show that

Ek✓kk2  B. (F.14)

Since ✓0 = ✓̂0 = ✓, it follows from (F.10), (F.13) and (F.14) that

W
2
2 (⌫k, ⌫̂k)

 E
���✓k � ✓̂k

���
2


�
1� (1� ⌘m)k

�✓4D2
K

2
2⌘

bnm
(8B + 2) +

4K2D

nm
(1 +K1⌘)

✓
1 +

3

2
B +

7

2
B

◆
+

2K

m

◆
,

(F.15)

provided that ⌘ < min
n

m
K2

1
,

1
m ,

m
K2

1+64D2K2
2

o
. This completes the proof.

G Proofs of Convex Case with Additional Geometric Structure

In the following technical lemma, we show that the p-th moment of ✓k and ✓̂k can be bounded in the
following sense.

31

Lemma G.1. Let ✓0 = ✓̂0 = ✓. Suppose Assumption 4.1 and Assumption 4.2 hold and ⌘ 
µ

K2
1+2p+4D2K2

2
. Then, we have

1

k

kX

i=1

E k✓i�1 � ✓⇤k
p


k✓ � ✓⇤k
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

�
2p+1

k✓⇤k
p + 5

�
, (G.1)

1

k

kX

i=1

E
���✓̂i�1 � ✓̂⇤

���
p


���✓ � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
, (G.2)

where ✓̂⇤ is the minimizer of
1
n

Pn
i=1 rf(✓, x̂i) and ✓⇤ is the minimizer of

1
n

Pn
i=1 rf(✓, xi).

Proof. First, we recall that

✓̂k = ✓̂k�1 �
⌘

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘
. (G.3)

Therefore, we have

✓̂k = ✓̂k�1 �
⌘

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘
+ ⌘

1

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘
�

1

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘!
.

(G.4)

Moreover, we have

E
"
1

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘ ���✓̂k�1

#
=

1

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘
. (G.5)

This implies that

E
���✓̂k � ✓̂⇤

���
2
= E

�����✓̂k�1 � ✓̂⇤ +
⌘

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘�����

2

+ ⌘
2E
�����
1

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘
�

1

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘�����

2

. (G.6)

We can compute that

�����✓̂k�1 � ✓̂⇤ +
⌘

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘�����

2

=

�����✓̂k�1 � ✓̂⇤ +
⌘

n

nX

i=1

⇣
rf

⇣
✓̂k�1, x̂i

⌘
�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2



���✓̂k�1 � ✓̂⇤

���
2
� 2⌘µ

���✓̂k�1 � ✓̂⇤

���
p
+
⌘
2

n2

�����

nX

i=1

⇣
rf

⇣
✓̂k�1, x̂i

⌘
�rf

⇣
✓̂⇤, x̂i

⌘⌘�����

2



���✓̂k�1 � ✓̂⇤

���
2
� 2⌘µ

���✓̂k�1 � ✓̂⇤

���
p
+ ⌘

2
K

2
1

���✓̂k�1 � ✓̂⇤

���
p
. (G.7)

32

Moreover, we can compute that

E
�����
1

n

nX

i=1

rf

⇣
✓̂k�1, x̂i

⌘
�

1

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘�����

2

= E

������
1

b

X

i2⌦k

0

@ 1

n

nX

j=1

rf

⇣
✓̂k�1, x̂j

⌘
�rf

⇣
✓̂k�1, x̂i

⌘
1

A

������

2

= E

0

@1

b

X

i2⌦k

K2
1

n

nX

j=1

kx̂i � x̂jk(2k✓̂k�1k
p�1 + 1)

1

A
2

 4D2
K

2
2E
h
(2k✓̂k�1k

p�1 + 1)2
i

 8D2
K

2
2

⇣
4E
h
k✓̂k�1k

2(p�1)
i
+ 1
⌘

 8D2
K

2
2

⇣
4E
h
k✓̂k�1k

p
i
+ 5
⌘

 8D2
K

2
2

⇣
2p+1Ek✓̂k�1 � ✓̂⇤k

p + 2p+1
k✓̂⇤k

p + 5
⌘
. (G.8)

Hence, by applying (G.7) and (G.8) to (G.6), we conclude that

E
���✓̂k � ✓̂⇤

���
2
 E

���✓̂k�1 � ✓̂⇤

���
2
� 2⌘µE

���✓̂k�1 � ✓̂⇤

���
p
+ ⌘

2
K

2
1E
���✓̂k�1 � ✓̂⇤

���
p

+ 8⌘2D2
K

2
2

✓
2p+1E

���✓̂k�1 � ✓̂⇤

���
2
+ 2p+1

k✓̂⇤k
2 + 5

◆

 E
���✓̂k�1 � ✓̂⇤

���
2
� ⌘µE

���✓̂k�1 � ✓̂⇤

���
p
+ 8⌘2D2

K
2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
, (G.9)

provided that ⌘ 
µ

K2
1+2p+4D2K2

2
. This implies that

E
���✓̂k�1 � ✓̂⇤

���
p


E
���✓̂k�1 � ✓̂⇤

���
2
� E

���✓̂k � ✓̂⇤

���
2

⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
, (G.10)

and hence

1

k

kX

i=1

E
���✓̂i�1 � ✓̂⇤

���
p


���✓̂0 � ✓̂⇤

���
2
� E

���✓̂k � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘



���✓ � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
. (G.11)

Similarly, we can show that

1

k

kX

i=1

E k✓i�1 � ✓⇤k
p


k✓ � ✓⇤k
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

�
2p+1

k✓⇤k
p + 5

�
. (G.12)

This completes the proof.

Next, let us provide a technical lemma that upper bounds the norm of ✓⇤ and ✓̂⇤, which are the
minimizers of F̂ (✓, Xn) :=

1
n

Pn
i=1 rf(✓, xi) and F̂ (✓, X̂n) :=

1
n

Pn
i=1 rf(✓, x̂i) respectively.

Lemma G.2. Under Assumption 4.1, we have

k✓⇤k 
1

µ
1

p�1

sup
x2X

krf(0, x)k
1

p�1 ,

and

k✓̂⇤k 
1

µ
1

p�1

sup
x2X

krf(0, x)k
1

p�1 .

33

Proof. Under Assumption 4.1, we have

D
rF̂ (0, Xn)�rF̂ (✓⇤, Xn), 0� ✓⇤

E
= �

1

n

nX

i=1

hrf(0, xi), ✓⇤i

=
1

n

nX

i=1

hrf(0, xi)�rf(✓⇤, xi), 0� ✓⇤i � µk✓⇤k
p
,

(G.13)

where p 2 (1, 2), which implies that

µk✓⇤k
p
 sup

x2X
krf(0, x)k · k✓⇤k, (G.14)

which yields that

k✓⇤k 
1

µ
1

p�1

sup
x2X

krf(0, x)k
1

p�1 .

Similarly, one can show that

k✓̂⇤k 
1

µ
1

p�1

sup
x2X

krf(0, x)k
1

p�1 .

This completes the proof.

Now, we are able to state the main result for the Wasserstein algorithmic stability.

Theorem G.1. Let ✓0 = ✓̂0 = ✓. Suppose Assumption 4.1 and Assumption 4.2 hold and ⌘ 
µ

K2
1+2p+4D2K2

2
and supx2X kxk  D for some D < 1 and supx2X krf(0, x)k  E for some

E < 1. Let ⌫k and ⌫̂k denote the distributions of ✓k and ✓̂k respectively. Then, we have

1

k

kX

i=1

W
p
p (⌫i�1, ⌫̂i�1)


4D2

K
2
2⌘

bnµ
· 2p+2

·

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+
4D2

K
2
2⌘

bnµ
· 2p+2

⇣
2p+2(E/µ)

p
p�1 + 10

⌘

+
4DK2

nµ
(1 +K1⌘) · 3 · 2

p�1

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+
4DK2

nµ
(1 +K1⌘) · 7 · 2

p�1

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+
4DK2

nµ
(1 +K1⌘)

⇣
10 · 2p�1(E/µ)

p
p�1 + 5

⌘
. (G.15)

Proof. Let us recall that ✓0 = ✓̂0 = ✓ and for any k 2 N,

✓k = ✓k�1 �
⌘

b

X

i2⌦k

rf(✓k�1, xi), (G.16)

✓̂k = ✓̂k�1 �
⌘

b

X

i2⌦k

rf

⇣
✓̂k�1, x̂i

⌘
. (G.17)

Thus it follows that

✓k � ✓̂k = ✓k�1 � ✓̂k�1 �
⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
+
⌘

b
Ek, (G.18)

34

where

Ek :=
X

i2⌦k

⇣
rf

⇣
✓̂k�1, x̂i

⌘
�rf

⇣
✓̂k�1, xi

⌘⌘
. (G.19)

This implies that

���✓k � ✓̂k

���
2
=

�����✓k�1 � ✓̂k�1 �
⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘�����

2

+
⌘
2

b2
kEkk

2

+ 2

*
✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
,
⌘

b
Ek

+
.

(G.20)

By Assumption 4.2 and Assumption 4.1, we have
�����✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘�����

2



���✓k�1 � ✓̂k�1

���
2
� 2⌘µ

���✓k�1 � ✓̂k�1

���
p
+
⌘
2

b2

✓
bK1

���✓k�1 � ✓̂k�1

���
p
2

◆2

=
���✓k�1 � ✓̂k�1

���
2
� 2⌘µ

���✓k�1 � ✓̂k�1

���
p
+ ⌘

2
K

2
1

���✓k�1 � ✓̂k�1

���
p



���✓k�1 � ✓̂k�1

���
2
� ⌘µ

���✓k�1 � ✓̂k�1

���
p
, (G.21)

provided that ⌘ 
µ
K2

1
.

Since Xn and X̂n differ by at most one element and supx2X kxk  D for some D < 1, we have
xi = x̂i for any i 2 ⌦k with probability n�b

n and xi 6= x̂i for exactly one i 2 ⌦k with probability b
n

and therefore

E kEkk
2


b

n
E
⇣

K22D(2k✓̂k�1k
p�1 + 1)

⌘2�


4D2

K
2
2b

n

⇣
8E
h
k✓̂k�1k

2(p�1)
i
+ 2
⌘


4D2

K
2
2b

n

⇣
8E
h
k✓̂k�1k

p
i
+ 10

⌘


4D2

K
2
2b

n

⇣
2p+2Ek✓̂k�1 � ✓̂⇤k

p + 2p+2
k✓̂⇤k

p + 10
⌘
, (G.22)

and moreover,

E
*
✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
,
⌘

b
Ek

+


⌘

b

b

n
E
✓���✓k�1 � ✓̂k�1

���+K1⌘

���✓k�1 � ✓̂k�1

���
p
2

◆
K22D

⇣
2k✓̂k�1k

p�1 + 1
⌘�


2DK2⌘

n
E
h⇣

(1 +K1⌘)
���✓k�1 � ✓̂k�1

���+K1⌘

⌘⇣
2k✓̂k�1k

p�1 + 1
⌘i


2DK2⌘

n
(1 +K1⌘)E

h⇣
k✓k�1k+ k✓̂k�1k+ 1

⌘⇣
2k✓̂k�1k

p�1 + 1
⌘i

. (G.23)

Notice that for any x, y � 0 and p 2 (1, 2), we have xyp�1
 x

p + y
p, y  y

p + 1, x  x
p + 1 and

y
p�1

 y
p + 1, which implies that

(x+ y + 1)(2yp�1 + 1) = 2xyp�1 + 2yp + 2yp�1 + x+ y + 1  3xp + 7yp + 5. (G.24)

35

Therefore, by applying (G.24) to (G.23), we have

E
*
✓k�1 � ✓̂k�1 �

⌘

b

X

i2⌦k

⇣
rf(✓k�1, xi)�rf

⇣
✓̂k�1, xi

⌘⌘
,
⌘

b
Ek

+


2DK2⌘

n
(1 +K1⌘)

⇣
3Ek✓k�1k

p + 7Ek✓̂k�1k
p + 5

⌘


2DK2⌘

n
(1 +K1⌘)

⇣
3 · 2p�1Ek✓k�1 � ✓⇤k

p + 3 · 2p�1
k✓⇤k

p

+ 7 · 2p�1Ek✓̂k�1 � ✓̂⇤k
p + 7 · 2p�1

k✓̂⇤k
p + 5

⌘
. (G.25)

Hence, by applying (G.21), (G.22), (G.25) into (G.20), we conclude that

E
���✓k � ✓̂k

���
2
 E

���✓k�1 � ✓̂k�1

���
2
� ⌘µE

���✓k�1 � ✓̂k�1

���
p

+
4D2

K
2
2⌘

2

bn

⇣
2p+2E

���✓̂k�1 � ✓̂⇤

���
p
+ 2p+2

k✓̂⇤k
p + 10

⌘

+
4DK2⌘

n
(1 +K1⌘)

⇣
3 · 2p�1Ek✓k�1 � ✓⇤k

p + 3 · 2p�1
k✓⇤k

p

+ 7 · 2p�1Ek✓̂k�1 � ✓̂⇤k
p + 7 · 2p�1

k✓̂⇤k
p + 5

⌘
,

(G.26)

provided that ⌘ 
µ
K2

1
. This, together with ✓0 = ✓̂0 = ✓, implies that

1

k

kX

i=1

E
���✓i�1 � ✓̂i�1

���
p


4D2

K
2
2⌘

bnµ

2p+2 1

k

kX

i=1

E
���✓̂i�1 � ✓̂⇤

���
p
+ 2p+2

k✓̂⇤k
p + 10

!

+
4DK2

nµ
(1 +K1⌘)

⇣
3 · 2p�1 1

k

kX

i=1

Ek✓i�1 � ✓⇤k
p + 3 · 2p�1

k✓⇤k
p

+ 7 · 2p�1 1

k

kX

i=1

Ek✓̂i�1 � ✓̂⇤k
p + 7 · 2p�1

k✓̂⇤k
p + 5

⌘
. (G.27)

In Lemma G.1, we showed that under the assumption ⌘ 
µ

K2
1+2p+4D2K2

2
, we have

1

k

kX

i=1

E k✓i�1 � ✓⇤k
p


k✓ � ✓⇤k
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

�
2p+1

k✓⇤k
p + 5

�
, (G.28)

1

k

kX

i=1

E
���✓̂i�1 � ✓̂⇤

���
p


���✓ � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
. (G.29)

36

Hence, by plugging (G.28) and (G.29) into (G.27), we conclude that

1

k

kX

i=1

E
���✓i�1 � ✓̂i�1

���
p


4D2

K
2
2⌘

bnµ

0

B@2p+2

0

B@

���✓ � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
1

CA+ 2p+2
k✓̂⇤k

p + 10

1

CA

+
4DK2

nµ
(1 +K1⌘) · 3 · 2

p�1

k✓ � ✓⇤k

2

k⌘µ
+

8⌘

µ
D

2
K

2
2

�
2p+1

k✓⇤k
p + 5

�
!

+
4DK2

nµ
(1 +K1⌘) · 7 · 2

p�1

0

B@

���✓ � ✓̂⇤

���
2

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1

k✓̂⇤k
p + 5

⌘
1

CA

+
4DK2

nµ
(1 +K1⌘)

⇣
3 · 2p�1

k✓⇤k
p + 7 · 2p�1

k✓̂⇤k
p + 5

⌘
. (G.30)

Moreover, k✓� ✓̂⇤k2  2k✓k2+2k✓̂⇤k2, k✓� ✓⇤k2  2k✓k2+2k✓⇤k2 and by applying Lemma G.2,
we obtain

1

k

kX

i=1

E
���✓i�1 � ✓̂i�1

���
p


4D2

K
2
2⌘

bnµ

2p+2

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+ 2p+2(E/µ)
p

p�1 + 10

!

+
4DK2

nµ
(1 +K1⌘) · 3 · 2

p�1

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+
4DK2

nµ
(1 +K1⌘) · 7 · 2

p�1

2✓2 + 2(E/µ)

2
p�1

k⌘µ
+

8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘!

+
4DK2

nµ
(1 +K1⌘)

⇣
10 · 2p�1(E/µ)

p
p�1 + 5

⌘
. (G.31)

Finally, by the definition of p-Wasserstein distance, we have

1

k

kX

i=1

W
p
p (⌫i�1, ⌫̂i�1) 

1

k

kX

i=1

E k✓i�1 � ✓⇤k
p
. (G.32)

This completes the proof.

G.1 Proof of Theorem 4.2

Proof. First, let us show that the sequences ✓k and ✓̂k are ergodic.

First, let us show that the limit ✓1, if exists, is unique. Consider two sequences ✓(1)k and ✓(2)k starting
at ✓(1)0 and ✓(2)0 respectively with two limits ✓(1)1 and ✓(2)1 . For any k 2 N,

✓
(1)
k = ✓

(1)
k�1 �

⌘

b

X

i2⌦k

rf

⇣
✓
(1)
k�1, xi

⌘
, (G.33)

✓
(2)
k = ✓

(2)
k�1 �

⌘

b

X

i2⌦k

rf

⇣
✓
(2)
k�1, xi

⌘
. (G.34)

37

By Assumption 4.2 and Assumption 4.1, we have

���✓(2)k � ✓
(1)
k

���
2
=

�����✓
(2)
k�1 � ✓

(1)
k�1 �

⌘

b

X

i2⌦k

⇣
rf

⇣
✓
(2)
k�1, xi

⌘
�rf

⇣
✓
(1)
k�1, xi

⌘⌘�����

2



���✓(2)k�1 � ✓
(1)
k�1

���
2
� 2⌘µ

���✓(2)k�1 � ✓
(1)
k�1

���
p
+
⌘
2

b2

✓
bK1

���✓(2)k�1 � ✓
(1)
k�1

���
p
2

◆2

=
���✓(2)k�1 � ✓

(1)
k�1

���
2
� 2⌘µ

���✓(2)k�1 � ✓
(1)
k�1

���
p
+ ⌘

2
K

2
1

���✓(2)k�1 � ✓
(1)
k�1

���
p



���✓(2)k�1 � ✓
(1)
k�1

���
2
� ⌘µ

���✓(2)k�1 � ✓
(1)
k�1

���
p
, (G.35)

provided that ⌘ 
µ
K2

1
. This implies that

���✓(2)k � ✓
(1)
k

���
2


���✓(2)k�1 � ✓
(1)
k�1

���
2
� ⌘µ

���✓(2)k�1 � ✓
(1)
k�1

���
p
, (G.36)

provided that ⌘ 
µ
K2

1
. Thus,

���✓(2)k � ✓
(1)
k

���
2



���✓(2)k�1 � ✓
(1)
k�1

���
2

for any k 2 N. Suppose
���✓(2)j�1 � ✓

(1)
j�1

���
2
� 1 for every j = 1, 2, . . . , k, then we have

���✓(2)k � ✓
(1)
k

���
2


���✓(2)0 � ✓
(1)
0

���
2
� k⌘µ, (G.37)

such that
���✓(2)k � ✓

(1)
k

���
2
 1, for any k � k0 :=

���✓(2)0 � ✓
(1)
0

���
2
� 1

⌘µ
. (G.38)

Since p 2 (1, 2), ���✓(2)k � ✓
(1)
k

���
2
 (1� ⌘µ)

���✓(2)k�1 � ✓
(1)
k�1

���
2
, (G.39)

for any k � k0 + 1, which implies that ✓(2)k � ✓
(1)
k ! 0 as k ! 1 so that ✓(2)1 = ✓

(1)
1 .

Next, let us show that for any sequence ✓k, it converges to a limit. It follows from (G.39) that
���✓(2)k � ✓

(1)
k

���
2
 (1� ⌘µ)k�dk0e

���✓(2)dk0e � ✓
(1)
dk0e

���
2
, (G.40)

for any k � k0 + 1. Let ✓(1)0 be a fixed initial value in Rd, and let ✓(2)0 = ✓
(1)
1 which is random yet

takes only finitely many values given ✓(1)0 so that k0 is bounded. Therefore, it follows from (G.40)
that

W
2
2 (⌫k+1, ⌫k)  (1� ⌘µ)kE


(1� ⌘µ)�dk0e

���✓(2)dk0e � ✓
(1)
dk0e

���
2
�
, (G.41)

where ⌫k denotes the distribution of ✓k, which implies that
1X

k=1

W
2
2 (⌫k+1, ⌫k) < 1. (G.42)

Thus, (⌫k) is a Cauchy sequence in P2(Rd) equipped with metric W2 and hence there exists some
⌫1 such that W2(⌫k, ⌫1) ! 0 as k ! 1.

Hence, we showed that the sequence ✓k is ergodic. Similarly, we can show that the sequence ✓̂k is
ergodic.

Finally, by ergodic theorem and Fatou’s lemma, we have

E
���✓1 � ✓̂1

���
p
= E

"
lim
k!1

1

k

kX

i=1

���✓i�1 � ✓̂i�1

���
p
#
 lim sup

k!1

1

k

kX

i=1

E
���✓i�1 � ✓̂i�1

���
p
. (G.43)

38

We can then apply (G.31) from the proof of Theorem G.1 to obtain:

W
p
p (⌫1, ⌫̂1) 

C2

bnµ
+

C3

n
, (G.44)

where

C2 :=
4D2

K
2
2⌘

µ

✓
2p+2

✓
8⌘

µ
D

2
K

2
2

⇣
2p+1(E/µ)

p
p�1 + 5

⌘◆
+ 2p+2(E/µ)

p
p�1 + 10

◆
, (G.45)

C3 :=
32D3

K
3
2⌘

µ2
(1 +K1⌘) · 10 · 2

p�1
⇣
2p+1(E/µ)

p
p�1 + 5

⌘

+
4DK2

µ
(1 +K1⌘)

⇣
10 · 2p�1(E/µ)

p
p�1 + 5

⌘
. (G.46)

This completes the proof.

39

