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ABSTRACT

Causal mediation analysis has increasingly become a popular practice in various

clinical trials and epidemiological applications to evaluate whether an intermediate

variable is on the pathway between the exposure of interest and a response. Previous

mediation analyses in the literature mainly focused on settings with a single or low–

dimensional mediators and single–level data. In this article, we propose a Bayesian

causal mediation analysis method that can handle our multilevel intergenerational

epigenetic mechanisms study (IEMS) with high–dimensional mediators. Specifically,

we develop a Bayesian hierarchical model for data with such complexity, and then

employ the Bayesian spike–and–slab priors on the exposure–mediator–outcome effect

pathway to identify active mediators involved in mediation. We derive the natural

indirect and direct effects based on our hierarchical model and provide statistical

inference based on Markov chain Monte Carlo (MCMC) methods. Our simulation

study demonstrates that our proposed Bayesian method outperforms other alterna-

tive methods in various scenarios. We further illustrate the utility of our method

to IEMS to assess the causal mechanisms between maternal exposure to climate
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extremes and offspring’s growth outcomes through DNA methylation.
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1. Introduction

In clinical trials and epidemiological studies, it is often of interest to evaluate an overall

treatment or exposure effect on a response. Of even greater interest is to explain the

underlying mechanism by which the effect of an exposure on the outcome is mediated

through a casual intermediate variable or mediator. In practice, mediation analysis

utilizes one or more measured mediators hypothesized to lie on the causal pathway

between the exposure and the outcome. Typically, the mediation analysis involves

the decomposition of the overall exposure effect into an indirect (mediation) effect,

which is the effect of an exposure explained by a mediator, and a direct effect, which

is the effect of an exposure unexplained by that mediator. The two commonly used

approaches of mediation analysis include linear regression models within the frame-

work of linear structural equation modeling (SEM) [5, 32, 33], and causal mediation

analysis based on the counterfactual framework [1, 43]. Recent advances in causal in-

ference have generalized and extended the mediation model intuitively developed in

the SEM approach by precisely defining the indirect and direct effects using potential

outcomes, giving the identification conditions of these effects, and lastly incorporating

nonlinearities and interactions [19, 38, 40, 49, 53, 54].

To date most research in mediation analysis has been devoted to the case of a single

mediator, with some attention given to the case of low dimensional mediators, mean-

ing that there are typically only one or few mediators [2, 10, 20, 52]. However, high

dimensional mediators often exist in substantive research. This article is motivated by

an intergenerational epigenetic mechanisms study (IEMS) of the effects of maternal

exposure to climate extremes such as drought on offspring DNA methylation (DNAm)

in the Samburu people of northern Kenya [46], which is assessed by using the Infinium

MethylationEPIC BeadChip array to measure methylation at about 850,000 cytosine–
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phosphate-guanine (CpG) sites, resulting in high–dimensional data (see Figure 1).

When the mediator space is high–dimensional, with larger numbers of mediators and

correlation among them, estimating individual path coefficients in the standard way

is not feasible because of difficulties modeling the appropriate relationship between

variables in this setting [6]. Moreover, the standard estimation procedure becomes un-

stable when the number of mediators significantly exceeds the number of observations,

known as a small–N–large–P problem. This is because the sample covariance matrix

is singular, with at least P −N of the smallest eigenvalues estimated to be zero, so its

inverse will not exist, resulting in an over–inflated standard error[14, 23].

Some recent researchers have proposed methods to accommodate high-dimensional

mediators. Zhang et al. [57] demonstrates the practical performance of the combina-

tion of the Sure Independent Screening approach (SIS)[11], Minimax Concave Penalty

(MCP) techniques, and multiple testing procedure with controlled False Discovery

Rate (FDR), to identify the subset of DNA methylation sites that mediate the asso-

ciation between smoking and reduced lung function. This method was implemented

in R package HIMA and later was updated to HIMA2 with the de-biased LASSO

procedure to estimate the regression parameters [41]. To estimate and select many

pathways effects simultaneously, Zhao and Luo [58] introduced a pathway LASSO

method, a convex relaxation of the non-convex product function, for a sparse medi-

ation model with structural equation modeling approach. Song et al. [45] developed

a Bayesian inference method using Bayesian Sparse Linear Mixed Model (BSLMM),

which imposes continuous shrinkage priors to identify the inactive and active media-

tors [59]. To account for the possible correlation among the mediators that mediate

the association between exposure and outcome, Song et al. later [44] proposed two

Bayesian hierarchical models, one with a Gaussian mixture prior for correlated media-

tor selection, and the other with a Potts mixture prior. However, the existing methods

are not readily applicable with multilevel data.

What makes high–dimensional mediation analysis even more challenging is the com-

plex structure of data. Multilevel data is often encountered in many disciplines such

as medicine where patients are nested within hospital, education where students are

nested within schools, or children within mother in our IEMS data (Figure 2). This
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type of multilevel data violates the assumption of independence for traditional regres-

sion methods, so it will lead to biased estimates. Several mediation analysis methods

[25–27, 56] for multilevel data are based on the frequentist approach and single or

low dimensional mediators. Therefore, in this paper, we aim to develop a Bayesian

causal mediation analysis method that can handle multilevel and high–dimensional

mediators, for IEMS data.

Specifically, in the high-dimensional mediation setting, we propose a novel mediator

identification procedure to detect active mediators that are involved in mediation by

adopting Bayesian shrinkage priors to capture the sparsity of the exposure–mediator

and mediator–outcome effect pathways. Our Bayesian approach serves as an extension

of [45], and naturally adapts to hierarchically correlated effects from multilevel data

through conditionally specified hierarchical priors, such as specifying the likelihood

of the data given unknown random individual effects, determining the density of the

population of random effects, and then providing priors (or hyperpriors) on the pa-

rameters of the population density. Note that the parameters obtained from random

effects models do not necessarily have the same interpretation as under marginal or

population–averaged models [15, 29, 37]. We focus on conditionally specified hierar-

chical and random effect models, and on MCMC estimation via conditional likelihood

with random effects as part of the parameter set [9].

The paper is organized as follows. In Section 2, we introduce notation and briefly

review the single mediator analysis. In Section 3, we present our proposed Bayesian

causal mediation analysis for multilevel data with high-dimensional mediators. Next

we evaluate and compare the performance of our method with univariate mediation

analysis and other existing methods via numerical simulations in Section 4. We then

apply our method to the IEMS dataset, and the discussion and conclusion are provided

in Section 5. The proofs and algorithms are provided in the Supplemental materials.

2. A brief review of single mediator case

We first briefly review the standard causal mediation analysis with a single mediator

(see [18] for a more detailed explanation). Let Yi be an observed outcome for an
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individual i, Ti denote a binary exposure or treatment, which equals one if individual

i receives the treatment/exposed and is zero otherwise. Let Mi be an observed value

of the mediator that may be on the pathway from the treatment to the outcome

(as shown in Figure 3). Moreover, let Yi(t,m) denote the potential outcome under

the treatment Ti = t and the mediator Mi = m, and likewise, Mi(t) is a potential

mediator value with the observed treatment t. Under the formal causal mediation

analysis [39, 43], the causal mediation effect or natural indirect effect for individual i

given the treatment status t ∈ {0, 1} is defined as NIEi(t) = Yi(t,Mi(1))−Yi(t,Mi(0)),

which compares the potential outcome that would be observed when the individual i

under treatment t and mediator is changed from M(0) to M(1). The unit–level direct

effect of treatment T on outcome Y is NDEi(t) = Yi(1,Mi(t)) − Yi(0,Mi(t)), which

compares the potential outcome under treatment and control while the mediator M is

at its natural level under treatment t. The total effect is the sum of the natural direct

and indirect effect, i.e.

Yi(1)− Yi(0) = Yi(1,Mi(1))− Yi(0,Mi(0)) = NIEi(t) + NDEi(1− t).

From these unit–level quantities of interest, we can define the population average effect

for each quantity such as ANIE(t) = E [NIEi(t)], and ANDE(t) = E [NDEi(t)]. The

goal of casual mediation analysis is, therefore, to decompose the total treatment effect

into the direct and indirect effects, and these effects can be parameterized with two

linear regressions separately,

Mi = α0 + αTTi +αXαXαX
TXiXiXi + ϵMi

, (1)

Yi = β0 + βTTi + βMMi + βXβXβX
TXiXiXi + ϵYi

, (2)

where XiXiXi is a c × 1 vector of observed pre–treatment confounders, and ϵMi
and ϵYi

are normally distributed, independent random noise variables. The effects αT , βM and

βT are illustrated in Figure 3. After fitting these two models, we can obtain α̂T β̂M

as an estimate of the ANIE(t), whereas the estimated coefficient β̂T is an estimate

of ANDE(t). A good property of natural effects is that we can compute the ratio of
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indirect effect and total effect to estimate the proportion of the effect that goes through

the mediator. This is very useful in explaining how a specific intervention works.

In practice, we do not observe all the potential outcomes for each individual, so the

individual level effects cannot be identified. Imai et al.[19] showed that the population

average effects can be identified under the following sequential ignorability assumption,

{Yi(t∗,m), Mi(t)} ⊥ Ti|XiXiXi, (3)

Yi(t
∗,m) ⊥ Mi(t)|Ti = t,XiXiXi. (4)

The assumption (3) states that given the observed pre–treatment confounders, there

is no confounding between the outcome and exposure, and there is no unmeasured

confounding between all mediators and the exposure. The second assumption (4) im-

plies that there is no confounding between the outcome–mediator relationship after

controlling for the exposure. For a high–dimensional mediator, researchers can fit two

linear regressions (1) and (2) for each mediator. However, high–dimensional mediators

should be fit in a single model rather than one at a time to improve power [52]. There-

fore, we introduce our proposed Bayesian approach for the high–dimensional mediators

in the following section.

3. Bayesian hierarchical model for multilevel data with high–dimensional

mediators (BHMM)

Our focus is on the 1–1–1 mediation model [28], in which three variables, response

Y , mediator M and exposure T , are measured at level–1 (see Figure 2). Suppose

that we observe a data from N children (level–1) and for each child i = 1, . . . , n in

mother j = 1, . . . , N (level–2), we observe the data Dij = (Tij ,MijMijMij , Yij ,XijXijXij), where

Tij represents the exposure indicator, MijMijMij = (Mij,1, . . . ,Mij,p)
T is a p × 1 vector of

continuous DNAm mediators, Yij the continuous outcomes of interest and XijXijXij is a

c× 1 vector of measured pre–exposure confounders.
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The level one model can be expressed as follows:

MijMijMij = α0j
α0jα0j

+αTαTαTTij +αXαXαXXijXijXij + ϵMij
ϵMijϵMij

, (5)

Yij = β0j
+ βTTij + βMβMβM

TMijMijMij + βXβXβX
TXijXijXij + ϵYij

, (6)

where ϵYij
∼ N(0, σ2

Y ) denotes a random error, and a random error vector ϵMij
ϵMijϵMij

is

assumed to have a multivariate normal distribution (MVN), i.e. MVN(000,ΣMΣMΣM ). Here,

ΣMΣMΣM captures the correlation structure among the mediators. Furthermore, we assume

that ϵYij
and ϵMij

ϵMijϵMij
are independent.

At level 2, the models for the coefficients in Equation 5 and (6) are as follows:

α0j
α0jα0j

= α0α0α0 + νjνjνj , (7)

β0j
= β0 + µj , (8)

where µj ∼ N(0, σ2
β0
) and νjνjνj ∼ MVN(000,Σα0

Σα0Σα0
) denote the error of intercepts. For simplic-

ity and from our previous analysis of IEMS in [46, 48], we focus on a random intercept

model, but one can easily incorporate other multilevel structures and include random

slopes.

Assume that there are no interactions between exposure and mediators in Equation

(5). Under the sequential ignorability conditions [52], we showed the detailed proof

in the Supplemental materials that the conditional ANDE, conditional ANIE and
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conditional ATE can be expressed as follows.

ANDE = E [NDEij(t)|α0jα0jα0j , β0j ,XijXijXij ]

= E [Yij(1,MijMijMij(t))− Yij(0,MijMijMij(t))|α0jα0jα0j , β0j ,XijXijXij ]

= βT , (9)

ANIE = E [NIEij(t)|α0jα0jα0j , β0j ,XijXijXij ]

= E [Yij(t,MijMijMij(1))− Yij(t,MijMijMij(0))|α0jα0jα0j , β0j ,XijXijXij ]

= αTαTαT
TβMβMβM , (10)

ATE = E [TEij(t)|α0jα0jα0j , β0j ,XijXijXij ]

= E [NDEij(t)|α0jα0jα0j , β0j ,XijXijXij ] + E [NIEij(t)|α0jα0jα0j , β0j ,XijXijXij ]

= βT +αTαTαT
TβMβMβM . (11)

Equation 10 shows that the ANIE is the sum of the product of αT,k and βM,k

for k = 1, . . . , p, and this product does not correspond to the NIE of a single kth

mediator due to interrelated mediators. The kth mediator is an active mediator when

both αT,k and βM,k are non-zero, so there are three situations where the kth mediator

will be identified as an inactive mediator: (1) αT,k is non-zero but βM,k is zero; (2)

αT,k is zero but βM,k is non-zero; and (3) both αT,k and βM,k are zero. Selecting the

active mediators turns out to be a variable selection problem. Next, we introduce the

Bayesian approach to identifying active mediators in the mediation models (5) and

(6).

3.1. Prior Specification

In Bayesian framework, a spike–and–slab prior is used for variable selection or shrink-

age estimation [22]. George and McCulloch [13] introduced a mixture of two normal

distributions with a Bernoulli latent variable d. For example, the priors of the kth

coefficient regression αT,k in αTαTαT as follows

αT,k|dα,k
i.i.d∼ dα,kN(0, σ

2
αT,1

) + (1− dα,k)N(0, σ2
αT,0

), k = 1, . . . , p, (12)
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where dα,k ∼ Bernoulli(θα,k), and the two normal distributions have the same zero

mean but different variances, such as σ2
αT,1

has a large value while σ2
αT,0

is suitably

small. Under this prior, if the kth mediator is active, αT,k will be drawn from a zero–

mean normal distribution with large variance, and the opposite occurs when αT,k

will be drawn from a point mass at 0, e.g. a zero–mean normal distribution with

extremely small variance. The prior hierarchy for αT,k is completed by choosing a

prior for θα,k, and a common choice for this hyperparameter is beta distribution, i.e.

θα,k ∼ Beta(aα,k, bα,k). The values of aα,k and bα,k depend on our prior belief whether

the corresponding mediator is active or not. For example, when aα,k = bα,k = 1, it

leads to a non-informative prior, and thus we do not have favor for αT,k being drawn

from normal distribution with large variance or small variance and allow the data to

determine. When aα,k is large and bα,k is small, we favor αT,k to be kept in the model.

We also assign the spike and slab prior to kth coefficient regression βM,k in βMβMβM as

below

βM,k|dβ,k
i.i.d∼ dβ,kN(0, σ

2
βM,1

) + (1− dβ,k)N(0, σ2
βM,0

), k = 1, . . . , p, (13)

where dβ,k ∼ Bernoulli(θβ,k) and θβ,k ∼ Beta(aβ,k, bβ,k). Under this prior specifica-

tion, βM,k exhibits properties similar to those of αT,k.

For hierarchical models, the use of a flat or excessively diffuse prior may lead to an

improper posterior distribution [17]. To ensure propriety of the joint posterior distri-

bution, we choose weakly informative prior distributions for the remaining parame-

ters. For example, normal priors with zero mean and large variance for the regression

coefficients and inverse–gamma priors with small parameter values for the variance

components. For ℓ = 1, · · · , c, the prior distributions of {αX,ℓαX,ℓαX,ℓ,α0α0α0} are taken to be

a multivariate normal distribution; normal distributions for {βT , βX,ℓ, β0}; inverse–

gamma distributions for
{
σ2
αT,1

, σ2
αT,0

, σ2
βM,1

, σ2
βM,0

, σ2
β0
, σ2

Y

}
; and inverse–Wishart dis-

tributions for Σα0
Σα0Σα0

and ΣMΣMΣM . We will later discuss the specified prior distributions in

our simulation study (Section 4).
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3.2. Posterior Sampling Strategy

Based on the prior specifications in the previous sections, we employ the Gibbs

sampling method based on fully conditional probability with conjugate distribution

to obtain the posterior samples for our proposed BHMM. Latent variable dβ , dα

could be sampled from Bernoulli distribution with inclusion probability P (dα,k =

1|θα,k, αT,k, σ
2
αT,0

, σ2
αT,1

) and P (dβ,k = 1|θβ,k, βM,k, σ
2
βT,0

, σ2
βT,1

) using conditional prob-

ability given the observed data and the other parameters [13]. We then adopt the

posterior inclusion probability (PIP) which provides the probability of αT,k and βM,k

coming from the normal distribution with a larger variance (the slab). The PIP of

αT,k and βM,k can be estimated by averaging the inclusion probability [34].

Under the Bayesian variable selection framework, the kth mediator is active when

both αT,k and βM,k are from the normal distribution with larger variance, so both PIP

of αT,k and βM,k are at large value. Mediators with either or both PIP of αT,k and βM,k

are small will be identified as inactive mediator. In order to establish the appropriate

thresholds of αT,k and βM,k, we first sort PIPs of αT,k and βM,k in the descending

order. The threshold values are then determined based on the PIP of αT,k and βM,k

that will ensure an overall false positive rate (FPR), the ratio between the number of

false positive (FP) mediators and the true inactive mediators, i.e. True Negative (TN)

+ False Positive (FP) mediators (see Table 1 for mediator classification), is controlled

at certain value, i.e., 0.05 [55]. FPR controls the number of the mis–classification of the

true inactive mediators. If both αT,k and βM,k are greater than the threshold, the kth

mediator will be determined as active. Algorithm 1 presents the posterior sampling

algorithm for parameters and latent variables for a total of R iterations (excluding B

draws as burn–in). Detailed descriptions of the sampling distributions are provided in

Supplemental materials (Section 2).

4. Simulation Study

We perform simulation studies to examine the performance of our proposed models.

We generate data by mimicking the motivating IEMS data. In particular, the number

of mother (level 2) is N = 100, and for each mother j for j = 1, ...N , there are
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Algorithm 1 BHMM Posterior Sampling Algorithm

for each iteration from 1 to R do
Step 1: for kth mediator from 1 to p do

draw latent variable dα,k from f(dα,k|θα,k, αT,k, σ
2
αT,0

, σ2
αT,1

).
draw hyperparameter θα,k ∼ Beta(aα,k + dα,k, bα,k + 1− dα,k).
draw latent variable dβ,k from f(dβ,k|θβ,k, βM,k, σ

2
βT,0

, σ2
βT,1

).

draw hyperparameter θβ,k ∼ Beta(aβ,k + dβ,k, bβ,k + 1− dβ,k).
end for

Step 2: Sample parameters in Equation 5 and 7.
draw (α0j

α0jα0j
,αTαTαT ,αXαXαX ,ΣMΣMΣM ).

draw (α0α0α0,Σα0
Σα0Σα0

).
draw variance components (σ2

αT,0
, σ2

αT,1
) in spike–and–slab prior.

Step 3: Sample parameters in Equation 6 and 8.
draw (β0j

, βT ,βMβMβM ,βXβXβX , σ2
Y ).

draw (β0, σ
2
β0
).

draw variance components (σ2
βM,0

, σ2
βM,1

) in spike–and–slab prior.
end for

two children (level 1) n = 2 with one non-exposed subject T1j = 0 and one exposed

subject T2j = 1. We consider two covariates XijXijXij = (Xij,1, Xij,2)
T , where Xij,1, Xij,2

are independently generated from N(0, 1).

Given the exposure and covariates, the p mediators MijMijMij = (Mij,1, . . . ,Mij,p)
T are

generated from Equation 5. We examine mediators under different correlations, which

is achieved by simulating ϵMij
ϵMijϵMij

from multivariate normal distribution with mean of 000

and variance-covariance structure ΣMΣMΣM as follows

ΣMΣMΣM = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ · · · ρ 1


,

where σ2 denotes the variance of mediators, and ρ represents the correlation between

different mediators. We first examine the setting with ρ = 0, where the mediators

are generated independently, then further increase ρ to 0.05, 0.1 and 0.2. Among

p mediators, we assume 10% of them are true active mediators that mediate the

association between exposure T and outcome Y , i. e., both αT,k and βM,k are non-zero.

The rest of inactive mediators are generated as below: 10% mediators with non-zero
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αT,k and zero βM,k; 10% mediators with zero αT,k and non-zero βM,k; 70% mediators

with zero for both αT,k and βM,k.

For each scenario of correlation ρ ∈ {0, 0.05, 0.1, 0.2}, two sets of effect size are

considered for comparison, i.e., effect size A: αT,k = βM,k = 1, and effect size B:

αT,k = βM,k = 0.3. Here the setting of effect size B are based on previous estimated

coefficient in our previous paper [46, 47]. Moreover, we set σ2 = 0.01, and assume that

the random intercept α0jα0jα0j are generated from multivariate normal distribution with

mean α0α0α0 = 111, variance-covariance matrix of Σα0
Σα0Σα0

= 0.01IpIpIp, where IpIpIp denotes the p by

p identity matrix. Finally, we generate outcome from Equation 6, where error terms

ϵYij
∼ N(0, 0.01), and random intercept β0j ∼ N(β0, 0.01), where β0 = 1. We set other

regression coefficients αXαXαX as a p by c matrix of 1 in Equation 5, βX as a vector of 1,

and βT as 1 in Equation 6.

For random error terms in the Equation 5 and 7, we assume ΣMΣMΣM , Σα0
Σα0Σα0

∼

Inverse-Wishart(p,IpIpIp), and σ2
β0
, σ2

Y ∼ inverse–gamma(10−4, 10−4). For the remain-

ing regression coefficients, we assign the non–informative multivariate normal pri-

ors MVN(000, 104IpIpIp) for α0α0α0, αX,ℓαX,ℓαX,ℓ, and a normal prior N(0, 104) for β0, βT , βββXXX,ℓ, for

ℓ = 1, . . . , c. For the specification of hyperparameters, they are chosen to reflect vague

prior knowledge about the parameters. Particularly, we set Beta(1, 1) prior for θα,k,

θβ,k associated with the spike-and-slab priors, an inverse–gamma(2, 1) for σ2
αT,1

, σ2
βM,1

,

and an inverse–gamma(2, 10−4) for σ2
αT,0

, σ2
βM,0

. To assess the impact of these hyper-

parameter choices on the BHMM’s performance, we further conducted a sensitivity

analysis. As shown in Section 3 of Supplemental materials, the analysis results are not

sensitive to different hyperparameter values in term of power. Our MCMC implemen-

tation as described in Algorithm 1 is run for a total of R = 120, 000 iterations with

the first B = 40, 000 samples discarded as burn–in.

For comparison, we consider the following relevant alternative approaches: (1) the

Horseshoe prior [8], (2) the Bayesian Sparse Linear Mixed Model (BSLMM); and (3)

the conventional univariate mediation analysis (UMA). We employ the horseshoe prior

in our BHMM, instead of the spike–and–slab prior, for handling sparsity. The horseshoe

prior assumes a global parameter that shrinks all the parameters towards zero and a

half–Cauchy prior on the local shrinkage parameter that allows some parameters to
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escape the global shrinkage. The full prior specification for βM,k is

βM,k|λM,k, τβ ∼ N(0, λ2
M,kτ

2
β), (14)

λM,k, τβ ∼ Half–Cauchy(0, 1), (15)

where the scale parameter of 1 for the half–Cauchy distribution as the default choice

given in Carvalho et al. [8]. We use similar prior specification for αT,k. BSLMM is a

Bayesian shrinkage approach for high dimension mediator by using continuous shrink-

age priors to the indirect effects [45], but it does not account for correlation among

observations within a cluster. The UMA approach is a frequentist approach by fitting

two linear regressions (defined in Equations 5 and 6) for each mediator individually.

We use the R package bama to perform BSLMM model, and the mediation package

to run UMA approach (using quasi-Bayesian Monte Carlo method with 5000 sample

draws for variance estimation [45, 50]).

To evaluate the performance of these methods, we compute the power of BHMM,

Horseshoe, UMA, and BSLMM via the true positive rate (TPR), which is the ratio

between the number of TP mediators and the true active mediators, i.e. TP + FN

mediators (Table 1), at a controlled FPR of 0.05. To determine the threshold for

UMA, we rank the p–value for average indirect effect of each mediator in the ascending

order, and then select the p–value threshold that will control the overall FPR at 0.05.

Mediator with p–value less than the threshold will be determined as active. With low–

dimensional mediators p = 100 and high–dimensional mediators p = {200, 500, 1000},

the power are computed over 100 simulated data sets at FPR of 0.05.

Figure 4 shows that our BHMM model using spike–and–slab prior has comparable

performance to the horseshoe prior for the number of mediators p = 100, 200, and has

greater power than the horseshoe for a larger number of mediators p = 500, 1000. It is

noticed that the powers of four methods decrease as p increases. Moreover, the BSLMM

and UMA are inferior to our proposed BHMM model and horseshoe prior across all

scenarios, especially for higher dimension of mediators. For example, under the settings

ρ = 0, p = 1000 and small effect size B, the powers of BHMM and horseshoe are 0.62

and 0.6, while the BSLMM and UMA yields lower power of 0.32 and 0.40, respectively.
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Comparing the cases with the same effect size but different correlation ρ, our pro-

posed approach is observed to have competitive performance with the horseshoe prior,

and our BHMM outperforms the BSLMM and UMA. It is noticed that BSLMM yields

smaller power than UMA as the effect size increases. For a small effect size B, the higher

correlation ρ may lead to relatively worse performance in BSLMM and UMA because

these methods ignore the correlation among observations within a cluster, resulting in

underestimated standard errors and thus inflation of the Type I error rate. With the

largest ρ = 0.2, we observe a tendency for the UMA to increase the number of false

negative because UMA tests βM,k at very small significance levels to reduce the large

number of false positives, resulting in dramatically reduced power and an increased

number of false negatives. When the FPR is controlled at 0.05, all mediators will be

detected as inactive mediators.

In Supplemental documents (Section 3 and 4), the convergence of the MCMC chain

is assessed by examining the trace and density plots of individual parameters, and

the MCMC chain has converged. For computational costs, our proposed method is

competitive with other Bayesian methods, and our method’s computation is affordable

for high–dimensional setting p = 1000 (3.936 seconds). Overall, our simulation results

show that the BHMM achieves highest power (greater than 0.6), and our proposed

BHMM yields greater power than other alternative methods when there is correlation

between mediators.

5. BHMM Application to IEMS

We apply our proposed method to the same IEMS dataset as that in our previous

papers [46–48], which provide more detailed information on data collection and data

description. Our interest is to investigate whether the DNA methylation (DNAm)

would mediate the association between maternal exposure to extreme drought and

child body weight, as well as the association between maternal exposure to hotter

subregion and child tibial length. In the analysis of [46, 48], they first carried out a

screening step to obtain candidate mediators by running mediator–exposure regression

for each mediator and selecting mediators whose coefficients of exposure has p–values
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less than 0.05 after adjustment for multiple testing. The authors then performed UMA

on these candidate mediators to identify which CpG mediates the relationship between

the maternal exposure to climate extremes and child growth.

For the relationship between maternal exposure to drought and child body weight,

Straight et al.[48] found that among 16 candidate CpGs, cg03771070 at gene AKAP7

is identified as an active mediator, which is involved in insulin secretion and cardiac

function, among other functions [3, 7]. In our analysis, our outcome is child body

weight z score, the exposure variable is drought indicator (1=drought exposed, 0=

unexposed), and we consider the following confounding covariates as in [48]: age, sex,

two cell-type proportions (Epithelial (Epi) and Fibroblast (Fib)), and three stress

variables of forced work (husbands or male kin forcing women to work too hard during

pregnancy), denied food (denying them food during pregnancy), and mother’s lifetime

maternal trauma. The estimated unadjusted Intraclass Correlation Coefficient (ICC)

suggests that mother accounts for 19% of the variance of child body weight [30]. We

then apply the proposed BHMM to analyze the data with a natural choice of 0.5 as PIP

threshold [4, 36], and we also detect cg03771070 as an active mediator. The estimated

ANIE is −0.29 with the 95% highest posterior density (HPD) interval (−0.48,−0.11),

and estimated ANDE is −0.22 with 95% HPD interval (−0.64, 0.19), resulting in 57%

of the total effect effect of maternal exposure to drought on the child body weight that

can be explained by DNAm. Figure 5 is an illustration of mediation between maternal

exposure to drought and child body weight through cg03771070. Figure S2 (as depicted

in Section 6 of the Supplemental materials) shows the trace and density plots of the

posterior draws for the natural indirect effect via cg03771070, and it indicates that

the MCMC chain has converged.

For the relationship between maternal exposure to hotter subregion and offspring

tibial length, the outcome is child tibial length z score, an exposure variable is sub-

region (1=hotter subregion, 0=cooler subregion), and using the same confounders as

in the drought model. We found 33% variance of child tibial length outcome were

explained by mother. Among 639 candidate mediators, we found six CpGs as active

mediators: cg10928038, cg19699973, cg22882310, cg23990814 are hypermethylated be-

tween hotter versus cooler subregion; and another two cg08290892, cg13735602 are
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hypomethylated. Note that cg23990814 is also detected as significant mediator in [47].

The estimated ANIE is −0.32 with 95% HPD (−0.54,−0.12), while the estimated

ANDE is 0.80 with 95% HPD (0.35, 1.24) for ANDE. The estimated indirect effect

and direct effect have the opposite sign, indicating the inconsistent mediation where

the total effect of maternal exposure to hotter subregion on child tibial length is sup-

pressed by the DNAm patterns [31]. Figure 6 is an illustration of mediation between

maternal exposure to hotter subregion and child tibial length through six active CpGs.

Table 2 presents estimated ANIE of each mediator with 95% HPD and nearest gene

of the identified CpGs and the corresponding biological interpretation of each active

CpG mediator. Figure S3 (as depicted in Section 6 of the Supplemental materials)

shows the convergence of the MCMC chains for the natural indirect effect mediated

by active CpG sites. In addition, we compute the mean absolute percent error (MAPE)

to measure the model assessment performance of BHMM and UMA. The results are

summarized in Section 5 of the Supplemental materials. In our previous work using

UMA [47], we identified eight significant mediators impacting the relationship between

subregion and child tibial length Z score. The MAPE values range from 7.69 to 49.55

for the mediator models, and vary from 125.13 to 182.41 for the outcome models.

With the BHMM, we detected six significant mediators, and the MAPE is 35.16 for

the mediator model and 152.31 for the outcome model.

6. Discussion

In this paper, we develop a Bayesian causal mediation analysis for multilevel data with

high–dimensional mediators. We demonstrate through simulation study that the pro-

posed BHMM outperforms other alternative methods in various scenarios, especially

for correlated mediators. We also applied our methods to IEMS dataset, we found that

cg03771070 at gene AKAP7 mediates the association between in utero exposure to

severe drought and offspring body weight, and six CpG sites mediate the association

between hotter versus cooler climate and child tibial growth.

The advantages of our proposed BHMM are: (1) Model simplicity and efficiency.

Multilevel data is easily modeled under the Bayesian hierarchical framework, which si-
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multaneously incorporates both individual-level and group-level models. It is more effi-

cient in inference for parameters by compromising between complete pooling all groups

and no–pooling. Moreover, since hierarchical modeling combines information from mul-

tilevel variations, it is feasible to use all the data to perform inference for groups with

small sample size; (2) Estimation simplicity. Utilization of MCMC makes it possi-

ble to obtain the estimation of parameters in complex multilevel models. Through

Gibbs sampling method with conjugate prior distributions, one can derive posterior

distribution of parameters based on fully conditional distribution given data and other

parameters. (3) Shrinkage efficiency. When the number of mediators is greater than

sample size, and under the assumption that only a small proportion of the mediators

are active, the Bayesian spike–and–slab prior approach can efficiently capture the spar-

sity and shrink the inactive ones towards zero, thus it gains more power than UMA in

the sense of detecting active mediators. (4) Joint indirect effect. Our proposed method

simultaneously analyzes the multiple mediators, allowing one to account for the cor-

relation among the mediators, and makes it possible to examine the joint direct effect

of exposure explained by selected active mediators without making any path-specific

or ordering assumptions on mediators. Compared to the frequentist approach, which

is based on the asymptotic properties of the data, the main advantage of our hier-

archical Bayesian framework is that it allows inferences in each cluster to be driven

by all the data rather than only the data in that particular cluster. Therefore, each

cluster helps to increase the precision of the estimates of the other clusters and of the

overall population. Moreover, our Bayesian approach can integrate information and

prior knowledge available at different scales and provide a flexible Bayesian model

to explicitly quantify the modeling uncertainty of the outcome, which accounts for

smaller sample sizes and complex structures such as multilevel data [35].

Although our method can jointly analyze high dimensional mediators in the mul-

tilevel data setting, indirect effect is assessed at one level rather than multiple levels.

One may hope to extend our method to more complex multilevel setting so that

the mediation effect could decomposed into upper/group level mediation effect, and

lower/individual level mediation effect. With more random effect introduced to the

model, the number of parameters needed to be estimated will significantly increase,

17



so will the computation cost. Future development of new algorithms/models are nec-

essary to effectively characterize the hierarchy and sparsity of the mediation effect,

efficiently identify the active mediators and estimate the regression coefficient when

sample size is much lower than the number of parameters.

The proposed high-dimensional multilevel mediation analysis relies on the coun-

terfactual framework of mediation, and estimates natural direct and indirect effect

under the sequential ignorability assumptions. Our future work will develop sensitiv-

ity analyses to quantify the degree to which violation of the assumption would change

the results. One possible approach is to perform sensitivity analysis of the correlation

between the residual of mediator model and outcome model. Under the sequential ig-

norability, the correlation is expected to be zero, thus the magnitude of this correlation

denotes the departure from ignorability assumption [19].

7. Software

The simulation studies and data analysis were carried out using R version 4.0.2. The

R code seamlessly integrated by C++ using R package Rcpp is available on Github

(https://github.com/XiQiao2023/BHMM).
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Table 1. Classification of mediators identification.

True Active Mediators True Inactive Mediators

Identified Active Mediators True Positive (TP)a False Positive (FP)b

Identified Inactive Mediators False Negative (FN)c True Negative (TN)d
aThe TP mediators are the ones truly mediating the association between exposure and out-
come and are successfully identified as active by our model. bThe FP mediators are defined
as the ones with true mediation effect of zero and are incorrectly identified as active. cThe
FN mediators are the ones truly mediating the association between exposure and outcome
but are incorrectly identified as inactive mediators. dThe TN mediators are the ones with
true mediation effect of zero and are successfully identified as inactive mediators.

Table 2. Active mediators between maternal exposure to hotter/cooler subregion and child tibial length.

IlmnID Estimate 95% HPD Nearest Gene Biological Function

cg08290892 -0.07 (-0.15, -0.01) WNT11 WNT11 (Wingless-Type MMTV Integration
Site Family, Member 11) is a highly conserved
gene and member of the secreted signaling pro-
tein encoding WNT family. It is thought to
play a role in the development of the skeleton,
as well as the kidney, heart, and lung [51].

cg10928038 -0.04 (-0.13, -0.01) PKNOX2 PKNOX2 (Knotted 1 Homeobox 2 Protein) is
a highly conserved gene and a member of the
three-amino-acid loop extension (TALE). It is
thought to serve as a nuclear transcription fac-
tor (regulating other genes) [21].

cg13735602 -0.12 (-0.23, -0.02) Not Available Not Available
cg19699973 0.05 (0.01, 0.11) TNRC6C TNRC6C (Trinucleotide Repeat-Containing

Gene 6C Protein) is a scaffolding protein in-
volved in miRNA-mediated gene silencing. It
is thought to play a substantial role in gene
expression but more research is needed [24].

cg22882310 -0.05 (-0.12, -0.01) NRXN3 NRXN3 (Neurexin 3) plays a role in nervous
system function and has been linked to body
mass index, waist circumference, and obesity
in genome-wide association studies [12, 16].

cg23990814a -0.11 (-0.21,-0.02) MICALL2 MICAL-like protein 2 is involved in cellular
processes, including actin cytoskeleton organi-
zation [42].

acg23990814 is also identified as significant mediator between subregion of residence and
tibial length in [47]
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Figure 1. An illustration of high–dimensional mediation analysis.
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Figure 2. An illustration of multilevel data.
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Figure 3. An illustration of single mediation model.
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Figure 4. Power comparison of four methods BHMM, Horseshoe, BSLMM, UMA. The power are summarized
over 100 simulated data sets at false positive rate (FPR) of 0.05.
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Figure 5. An illustration of estimated indirect effect and direct effect of maternal exposure to drought on
child body weight through cg03771070.
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Figure 6. An illustration of estimated indirect effect and direct effect of maternal exposure to hotter/cooler

subregion on child tibial length through six identified mediators.
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