
Reimagining Essential Computing Content for

High School Students

Abstract

There are several changes anticipated in computer science (CS) education over the next decade,
including updated student standards, rapidly changing impacts of artificial intelligence (AI), and
an increasing number of school systems requiring a CS class for graduation. In order to prepare
for these changes – as well as to address the equity issues that have plagued CS since its inception
– we engaged in a project designed to reimagine content and pathways for high school CS
education. As a collaborative project, we hosted multiple events for relevant parties (including
K-12 educators and administrators, higher education faculty, industry professionals, state and
district CS supervisors, and CS education researchers). These events were designed to
collaboratively seek input for the creation of a series of reports recommending what a CS course
that satisfies a high school graduation requirement should include, how that course should align
with Advanced Placement (AP) and post-secondary CS instruction, and what pathways should
exist for students after that introductory high school course.

The portion of the project highlighted in this article contains an analysis of data collected from
focus groups (n = 21), interviews (n = 10), and an in-person convening of participants from
K-12, post-secondary, industry, and administrative roles (n = 35). The data is centered on
determining what CS content is essential for all high school students. Participants considered
knowledge, skills, and dispositions across a range of CS and CS-adjacent topics and, through a
variety of activities, described what new content should be taught when viewing through the lens
of teaching CS to high school students in the year 2030 and what content should be prioritized.
Our analysis sought to delineate and synthesize their sentiments. Six major priorities emerged
from our analysis: societal impacts and ethical issues, algorithmic thinking, data and analysis,
inclusive computing culture, AI, and career knowledge. The significance of our findings is that
they present a broad overview of what a variety of relevant parties consider to be the most
important CS content for high school students; this information is important for educators,
administrators, and those who develop curriculum, standards, and/or teaching tools.

1 Introduction and Background

The field of computer science (CS) has undergone rapid changes in the last decade as new tools
and technologies have come to prominence and as computing has expanded its reach into new
areas, such as autonomous vehicles. Further, the effort to encourage CS for all students has
resulted in an increased diversity in the population of high school students who study CS; it has
also led these students to have more pre-high school CS experience than was previously the case.
This trend is likely to continue: in recent years, eight states have adopted CS graduation

requirements, and it is a pending policy priority in many others [1]. More changes are anticipated
as generative AI changes how people – including software developers – interact with computers
and as other technologies are developed. All of these changes – including the ones that are
difficult to anticipate – can impact how and what CS should be taught to students in high
school.

Over half of U.S. states now require CS to be taught in all of their high schools, with the majority
of those states requiring it in their elementary schools as well [1]. And, students enjoy CS and
want to learn it. More high school students like CS classes than any other subject outside the arts
[2]. As younger generations are born into and raised in a technologically advanced society,
today’s students understand that CS will be crucial for their careers and lives [3]. As a result,
more than half (58%) of high schools in the US offer a foundational CS course, representing
significant growth (from 35% in 2018) [4] in a subject that is critical to the nation’s economic and
security health.

There is now unprecedented support from business, nonprofit, and community leaders advocating
for CS education. In July 2022, a letter encouraging governors and education leaders to make CS
part of the standard K-12 curriculum across the U.S. was released with more than 800 signatories
(a full list can be found at www.CEOsforCS.com). An excerpt of the letter follows:

The undersigned commit our support by collectively creating employment
opportunities for CS students in every city in the USA, and in every sector, from
manufacturing to banking, from agriculture to healthcare. Many of us offer
internships to help these students find their career pathway. Many of us have funded
efforts in CS education, to support underserved communities. But there is only so
much industry can do by ourselves [5].

This project seeks to align these various groups, at a time when momentum is on CS education’s
side and the College Board is likely to revisit its course frameworks, to create an updated version
of its courses that could increase access, participation, high school and college course credits, and
have it aligned to industry needs. This effort can broaden participation at numerous levels across
the CS education field.

To achieve this, our team gathered input from a variety of relevant parties to articulate what CS
content is essential for high school students in the next five to ten years, with follow on work
focused on defining pathways for CS study beyond an initial high school CS course. The
recommendations generated by this project will be used to inform future CS standards and course
alignment. This paper describes the first portion of the project’s effort: to define essential CS
content for all high school students, including in settings where a CS course is a graduation
requirement.

2 Methods

To ensure a collaborative process, we leveraged four strategies: engaging with participants at
in-person convenings, in virtual focus groups of participants who did not attend the in-person
convenings, with undergraduate students, and by providing opportunities for others to review our
findings asynchronously.

For the professional participants, we recruited through a variety of avenues. Participants could

select how they wanted to be engaged: attend the in-person convenings, participate in focus
groups, and/or review interim and final reports. We invited participants via a variety of
professional associations for those working in high school and higher education CS education
roles; we received about 300 applications for participation. From that group, we selected
participants for the focus groups and for the in-person convenings, seeking to create participant
pools that were diverse in terms of demographics, professional roles, and areas of expertise.

In addition, we conducted three focus groups in the fall of 2023: one each for high school CS
teachers, higher education CS faculty, and those with experience working in industry. Participants
in the focus groups were not attending the convenings. Each focus group met three times, for one
hour each. Most of the time was devoted to facilitated discussion, but other activities – such as an
exercise in choosing a limited set of content for a high school CS course – were used to prompt
thought and discussion. Focus group meetings were recorded, and the recordings were transcribed
and analyzed; the focus of the analysis was to determine what CS content participants prioritized
for a foundational high school CS course.

To ensure that student perspectives were also included in our findings, we asked in-person
convening participants to share an invitation to college students studying CS asking them to
participate in an interview; of the four dozen student applicants, about one dozen were invited to
participate, and nine were interviewed. One CS faculty member who could not attend the focus
groups was also interviewed.

Professional participants were not compensated, but many were provided with travel support to
attend the convening. Student participants were offered a $20 gift card for their
participation.

2.1 Focus Groups

We hosted three different focus groups (one each for high school, higher education, and industry
professionals), with each group holding three one-hour virtual meetings in the fall of 2023.
Sessions focused on discussion between participants, with some variation between the groups
based on participant expertise. For example, the industry group considered what skills employers
were likely to need in the coming years, while high school teachers explored the characteristics of
an exemplary CS class. All groups discussed what CS content they did (and did not) believe to be
essential for all high school students.

Audio and video recordings of the sessions were created and later transcribed. These
transcriptions were coded abductively [6], following the process for abductive thematic analysis
articulated by Thompson [7]. We centered the analysis on identifying (1) what CS content
participants prioritized for a required high school CS course and (2) disagreements and tensions
between participants about those priorities.

2.2 Convenings

We selected 35 convening participants; their primary roles are shown in Figure 1 and their
experience in Figure 2 (note that participants may have indicated experience in more than one
area). Participants were chosen to represent a diversity of demographic groups and experiences
(68% identified as women; 51% identified with a racial/ethnic group other than white, and 14%
identified as disabled).

Figure 1: Primary role of convening participants.

Figure 2: Experience of convening participants.

Figure 3: One of the personas used at the convening to frame the discussion of essential high
school computer science content

The in-person convening was held over two days in November, 2023. The event was framed
around a set of a dozen personas, each depicting a person one decade into the future. The
personas featured a diverse set of individuals, working in a variety of careers, with different
interests and backgrounds. Figure 3 shows one of the personas.

Participants used the personas to consider what high school CS content would have best prepared
each persona for their professional and personal pursuits. Then, participants generated, organized,
and prioritized that content. The result was a listing of over 200 possible topics to cover in a
foundational high school CS course. A variety of artifacts, including digital feedback and
physical votes, were collected and analyzed from the convening.

2.3 Student Interviews

The student interviews (n = 9) involved students who had taken at least one CS course in college.
Table 2.3 contains demographic information about the students who were interviewed; note that
the gender and race/ethnicity were free response questions in the application form, so the
categories chosen reflect participants’ self-designation.

Participant Gender Race/Ethnicity

1 Female Hispanic
2 Female White
3 Male Hispanic
4 Male Asian
5 Female White
6 (Transgender) Female Caucasian
7 Male White
8 Male Black African
9 Male Asian

Table 1: Student interview participant self-designations for gender and race/ethnicity.

These interviews focused on exploring what CS courses the participant had taken in high school

and in college, including how prepared they felt for these courses. Each interview was 20 - 30
minutes long. Students were also asked whether they thought a CS course should be required in
high school and, if so, what content it should include. These interviews were recorded,
transcribed, and analyzed.

2.4 Asynchronous Reviews

We invited those who applied to participate but who were not selected for the in-person
convenings or for the focus groups to provide asynchronous feedback. We invited this group to
provide feedback in the form of voting on what they would choose at the top priorities for a
foundational high school CS course from dozens of items that were generated by the focus groups
and/or are part of current CS standards (participants could also add their own items). Respondents
(n = 138) were each given 10 votes to apply to any combination of content items (i.e., they could
apply more than one vote to an item). Items garnering at least 40 votes are shown in Table
2.4.

Item Vote Count

Understand basic principles of computational thinking 71
Define and demonstrate sequence, iteration, and selection 54
Complete an individual programming project 49
Debug a program 46
Be persistent in solving computing problems 45
Work collaboratively with peers on computing problems 44
Create, test, and refine computational artifacts 43
Be familiar with different branches of computer science 42
Identify computer science terminology 41
Recognize, define, and analyze computational problems 40

Table 2: Items earning at least 40 votes in asynchronous feedback.

3 Results

We identified six major themes as described below.

1. Societal impacts and ethical issues

Particularly for the participants at the in-person convening, CS content related to the impacts of
computing on society and ethical issues related to computing technologies were heavily
prioritized, more so than any other topic. This broad topic includes content related to equity,
social justice, and ethics, among other concerns. Content related to societal impacts and ethics
was prioritized both as its own topic and as integrated into other topic areas.

2. Algorithmic thinking

Algorithmic thinking is defined by Lockwood et al. as “a logical, organized way of thinking used
to break down a complicated goal into a series of (ordered) steps using available tools” [8]. More
specifically, it can be conceptualized as a set of skills for addressing a problem that includes
analysis, specification, determining needed actions, algorithm construction, special case (e.g.,
edge case) consideration, and efforts to improve solution efficiency [9]. While basic programming

skills (e.g., the use of conditionals) were included by participants in the prioritized content,
algorithmic thinking skills were generally given a higher priority.

3. Data and analysis

Handling data (including cleaning and processing) and analyzing it were topics prioritized by
participants. This prioritization reflects how data is increasingly generated, gathered, and
analyzed in a variety of contexts, including those with serious societal implications (e.g., facial
recognition in policing).

4. Inclusive computing culture

Participants consistently prioritized the development of an inclusive computing culture as key
content for a foundational high school CS course. This topic covered a variety of knowledge and
skills, including developing accessible computing artifacts, recognizing and addressing biases,
and respecting diverse perspectives.

5. Artificial intelligence

In contrast to other topics, AI was not prioritized as a discrete topic but rather was often included
in other topic areas, particularly data analysis, algorithms, ethics and impacts, and programming.
AI was referenced as both a tool and as a subdomain of CS. That is, the skill to use AI tools (e.g.,
Copilot) to aid in computing was prioritized, as was AI as a subdomain of CS (similar to how
cybersecurity is considered a subdomain of CS).

6. Career knowledge

Participants prioritized content that exposed students to careers – both those within computing as
well as those in other fields that are likely to involve computing skills. This prioritization may
reflect the burgeoning variety of careers in computing in addition to ways in which computing
technologies (e.g., generative AI) are likely to be used in non-technical roles.

During the in-person convening, we asked participants to compare how what is currently taught in
foundational high school CS courses compares to what CS content is essential for all high school
graduates in 5 - 10 years. The results are shown in Figure 4.

4 Discussion

Figure 5 is a visualization of the content prioritized by participants, particularly participants of the
in-person convening. Surrounding all other content is dispositions; the dispositions identified as
particularly important include persistence, reflectiveness, creativity, curiosity, critical thinking, a
sense of belonging in computing, and resourcefulness.

Surrounding the five topic areas are four cross-cutting concepts; these concepts are not taught on
their own but rather are integrated into all topic areas. These concepts are:

• Impacts and Ethics involves discussions of societal impacts of computing, ethical issues in
computing, social justice issues, access and equity concerns, ensuring that computing
benefits all members of society (especially the most vulnerable), and safety and privacy
issues.

Figure 4: In-person convening participants’ sense of the similarity between (1) what is currently
taught and (2) what content is essential in the near future.

Figure 5: Participants’ recommendations for essential content

• Inclusive Collaboration, in the words of one participant, is to “engage with diverse
perspectives with respect and empathy.” It includes:

– awareness and empathy with others, including accommodating a variety of identities
and perspectives (including from those with disabilities and/or from different cultural
backgrounds), recognizing and mitigating personal biases, providing services to other

people and groups via computing, supporting the learning of others, and designing and
developing with accessibility in mind.

– collaboration skills, including recognizing different roles on a team and being able to
assume different roles, seeking out and using feedback from others, providing others
with constructive feedback, advocating for the needs of others, using appropriate tools
(including digital tools) for collaboration, using a variety of models and methods for
collaboration (including pair programming), being able to communicate about
technology in a variety of contexts and with those with limited technical knowledge,
being able to document products and processes, applying principles of digital
citizenship (including data security, responsible communication, information
evaluation, and respect for intellectual property).

• Computational Thinking includes practices such as abstraction, decomposition, and pattern
recognition.

• Human-Centered Design involves the following skills: understanding principles of effective
design, including identifying problems and understanding underlying causes; empathizing
with those impacted by problems, including applying strategies for accessible design;
thinking of everything and approaching solutions as a system; ideating to solve the
identified problems; prototyping, testing, and iterating; and understanding how design
decisions shape computing.

The five topic areas are Computing Systems and Security, Data and Analysis, Preparation for the
Future, Algorithms, and Programming. We used Bloom’s Revised Taxonomy [10], including the
application of the taxonomy specific to computing education developed by Tang et al. [11]. Table
3 contains the content associated with each topic area.

In general, participants’ priorities overlapped substantially with content commonly included in
foundational CS courses (e.g., in the CSTA K-12 Standards), particularly for the in-person
participants. The main divergence from this trend is the prioritization that in-person participants
placed on knowledge of careers, which is a topic not widely covered in other efforts to define
essential CS content. It may be that framing the convening around personas led participants to
think more directly about the issue of careers, especially since most of the personas did not work
in tech roles (e.g., software developer). It may also be the case that career changes anticipated in
the wake of generative AI made the topic of careers more salient to participants.

We note two main challenges to this work. First, participants frequently expressed that it was
difficult to project a decade into the future and determine what CS content would be beneficial;
this made articulating CS course content difficult. Second, it was difficult for both participants
and for the project team to organize prioritized content into categories in a way that minimized
gaps and duplication.

5 Conclusion

Future work on this project will involve two additional convenings, which will explore pathways
for students beyond the foundational CS course and refine work on essential content and
pathways. We will also seek input from interested parties on interim reports of the convening, in
preparation for issuing recommendations for a foundational course and for CS pathways.

The significance of our findings thus far is that they present a broad overview of what a variety of
relevant parties consider to be the most important CS content for high school students; this
information is important for educators, administrators, and those who develop curriculum,
standards, and/or teaching tools.

6 Acknowledgements

This material is based upon work supported by the U.S. National Science Foundation under Grant
No. 2311746. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.

References

[1] Code.org, CSTA, and ECEP Alliance. 2023 state of computer science education, 2023. URL
https://advocacy.code.org/stateofcs.

[2] Hadi Partovi. What classes do students like the most?, June 16 2016. URL
https://blog.code.org/post/146020540698/whatclassesdostudentslikethe-most.
Code.org Blog.

[3] Google and Gallup. Computer science learning: Closing the gap: Rural and small-town school districts results
from the 2015-2016 Google-Gallup study of computer science in U.S. K-12 schools (issue brief no. 4), 2017.
URL https://services.google.com/fh/files/misc/

computer-sciencelearningclosingthegapruralsmalltownbrief.pdf.

[4] Code.org, CSTA, and ECEP Alliance. 2022 state of computer science education: Understanding our national
imperative, 2022. URL https://advocacy.code.org/stateofcs.

[5] CEOS for CS. A message from over 800 business and nonprofit leaders. URL
https://www.ceosforcs.com.

[6] Stefan Timmermans and Iddo Tavory. Theory construction in qualitative research: From grounded theory to
abductive analysis. Sociological theory, 30(3):167–186, 2012.

[7] Jamie Thompson. A guide to abductive thematic analysis. 2022.

[8] Elise Lockwood, Anna F DeJarnette, Autumn Asay, and Matthew Thomas. Algorithmic thinking: An initial
characterization of computational thinking in mathematics. North American Chapter of the International Group

for the Psychology of Mathematics Education, 2016.

[9] Gerald Futschek. Algorithmic thinking: the key for understanding computer science. In International

conference on informatics in secondary schools-evolution and perspectives, pages 159–168. Springer, 2006.

[10] Mary Forehand et al. Bloom’s taxonomy: Original and revised. Emerging perspectives on learning, teaching,

and technology, 8:41–44, 2005.

[11] Cara Tang, Markus Geissler, and Christian Servin. Bloom’s for computing: crafting learning outcomes with
enhanced verb lists for computing competencies. Journal of Computing Sciences in Colleges, 38(1):114–115,
2022.

Algorithms
Remember Define algorithm and explain what algorithms are used for

Recognize that computational solutions take in information, store and process it, and produce a result
Understand Describe the difference between traditional and AI/ML algorithms and, at a high level, describe how AI/ML algorithms work

Explain why/how sequence matters in an algorithm
Describe patterns/commonalities in problems, data, and programs
Interpret algorithms

Apply Modify an algorithm (e.g., to add functionality)
Apply strategies for learning what is inside of an opaque system when it is necessary to do so

Analyze Decompose a problem into multiple subproblems

Evaluate Evaluate (at a high level) the trade-offs (e.g., speed) of different algorithms
Evaluate the appropriateness, reasonableness, and/or effectiveness of an algorithm for a specific task, including via algorithmic auditing
Assess societal impacts of the application of computational thinking and related ethical issues (e.g., use of AI algorithms to choose job
candidates, use of abstraction to obscure important context)

Create Compose algorithms using sequence, selection, and iteration
Create a variety of abstractions and models to represent a system
Programming

Remember Locate common programming constructs (e.g., using online tools)
Understand Convert an algorithm to code
Apply Apply programming skills in text-based and non-text-based programming contexts (e.g., block-based, kiosk, prompt engineering)

Modify a program (e.g., to add functionality or improve usability or accessibility)

Use programming assistive technologies (e.g., Copilot) to plan, write, test, and debug code
Analyze Articulate whether a program solves a given problem
Evaluate Systematically test and debug a program, including the use of skills such as code tracing

Evaluate whether and how computation can or cannot help to solve a problem

Assess societal impacts of programming and related ethical issues (e.g., how might modifications to a program impact various groups
of users?)

Create Develop programs using sequencing, selection, and iteration

Data and Analysis
Remember Identify and define data types (e.g., string, numeric, Boolean)

Identify basic data formats (e.g., tables, schemas, JSON)
Understand Describe, at a high level, the role of data in AI/ML applications

Understand the difference between data and metadata
Apply Manipulate (e.g., normalize, transform, clean) data
Analyze Trace how data moves through a program
Evaluate Evaluate approaches to cleaning data in a given context

Assess whether and how a given question can be answered with data, and what specific data is needed

Assess societal impacts of data analysis and related ethical issues (e.g., biased data used to train AI systems, attribution related to

products of generative AI)

Evaluate data visualizations for clarity, potential biases, etc.
Create Select, organize, interpret, and visualize large data sets from multiple sources to support a claim and/or communicate information

Devise plans for using data to solve a problem
Computing Systems and Security

Remember Identify various types of hardware (including components) and software (including operating systems)
Enumerate security practices (e.g., safe passwords, two-factor authentication)

Understand Describe why cybersecurity is important
Explain what networks (including the Internet) are and how they work

Explain how an operating system, other software, and hardware work together

Apply Manipulate operating systems and other software settings to achieve goals
Apply knowledge of the structure and function of various technologies (e.g., cloud computing, sensors, GPS, embedded/IoT,
phones/tablets, gaming consoles, medical devices, VR, robotics) to optimize their use (for example: explain why GPS can be used
without Internet access)
Use documentation and other resources to guide tasks such as installation and troubleshooting

Analyze Detect vulnerabilities in networks
Analyze a problem to determine appropriate troubleshooting strategies

Evaluate Assess societal impacts of networks and related ethical issues (e.g., digital divide)
Create Design projects that combine hardware and software that collect and exchange data

Preparing for the Future
Remember Identify pathways and careers that involve computing

Understand Explain how computing enables emerging technologies such as autonomous vehicles and how these emerging technologies are applied
in various industries

Apply Apply computing concepts to other disciplines
Analyze Examine how emerging technologies are impacting a variety of practices (e.g., use of facial recognition in policing, AI-generated news

products)
Evaluate Assess societal impacts and related ethical issues of emerging and future developments in computing (e.g., the impact of quantum

computing on security)
Evaluate the use of emerging technologies (e.g., generative AI) for accuracy (e.g., detect hallucinations) and to meet specific needs

Create Plan how an emerging technology could meet a need
Generate a personal career plan that involves computing

Table 3: Prioritized content by level of Bloom’s Revised Taxonomy; italics indicate top priorities.

