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A B S T R A C T

In this paper we address the connections between the computational models of coupled flow
and mechanical deformation in soils at the Darcy-scale and pore-scale. At the Darcy scale the
Biot model requires data including permeability which is traditionally provided by experiments
and empirical measurements. At the pore-scale we consider the Discrete Element Method (DEM)
to generate physically realistic assemblies of the particles, and we follow up with the Stokes
flow model. Next we apply upscaling to obtain the permeabilities which we find dependent on
the deformation. We outline the workflow with its challenges and methods, and present results
which show, e.g., hysteretic dependence of the permeability and porosity on the load. We also
show how to incorporate the deformation dependent permeability in a nonlinear Biot model,
and illustrate with computational results.

1. Introduction

Coupled flow and deformation processes are important for a variety of applications spanning the multiphase multicomponent flow
odels in reservoir simulation [1–5], through subsidence and consolidation in soils [6,7], to the phenomena in human physiology
ncluding eye modeling [8], modeling bone fractures and prosthetics [9], and poro-elastic brain models [10]. We refer, e.g., to the
ecent collection [11] featuring extensive references to the rich variety of applications and methods.
These phenomena received considerable attention from computational scientists and modellers, and there is substantial work

devoted to the construction and analysis of numerical schemes as well as their analyses; see, e.g., the work in [4,10,12,13]. While
the construction or robust schemes is important, the predictive power of particular simulations depends primarily on the ability of
a model to represent a physical phenomenon and the availability of realistic data. Furthermore, the typical time and spatial scales
of such processes vary widely, which should be reflected in the model assumptions and data. In general, these time and spatial
scales are harder to predict for coupled systems than for individual process, and in particular are harder to find for the coupled
flow and deformation than for the flow alone. In this paper we propose a clear novel workflow to address the connection between
the pore- and Darcy-scales for flow and deformation. Our algorithms derive from the combined expertise in granular mechanics,
computational fluid dynamics (CFD), and upscaling.

Darcy scale flow and deformation model. In particular, in this paper we consider an extension of the well known linear Biot
model solved for the displacement 𝑢, pressure 𝑝, and flux 𝑞𝑓 in a Darcy scale domain 𝛺 ⊂ R𝑑

− ∇ ⋅ [𝜆(∇ ⋅ 𝑢)𝐼 + 2𝜇𝜖(𝑢)] + 𝛼∇𝑝 = 𝑓 + 𝜌̄𝐺∇𝐷, (1a)
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Table 1
Variables and parameters used throughout the article.
Variable Description/ SI Unit Preferred units

𝑈 Pore scale velocity [cm∕s]

𝑃 Pore scale pressure [Pa]

𝑣 Darcy scale velocity [m∕s] [m∕s]

𝑢 Darcy scale displacement [m] [m]

𝑝 Darcy scale pressure [Pa] [MPa]

𝑞𝑓 Flux [m∕s] [m∕hr]

𝜂𝑓 Total fluid content [−] [−]

𝐷 Depth [m] [m]

𝑓 Volumetric body force [N∕m3] [MPa∕m]

𝑔 Mass source rate [kg∕m3 s] [MPa h∕m2]

Parameter Typical value

𝐸 Young’s modulus [Pa] Sand (medium/fine): 12 − 20 [MPa] [14](Pg. 407)
Silt: 2–20 [MPa] [14](Pg. 407)
Clay (medium/firm): 15–50 [MPa] [14](Pg. 406)

𝜈 Poisson’s ratio [−] Sand (medium/ fine): 0.25 [14](Pg. 407)
Silt : 0.30–0.35 [14](Pg. 407)
Clay(medium/firm): 0.30 [14](Pg. 406)

𝜆 Lamé parameter [Pa]; 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

in simulation: 𝜆 = 𝜆0 = 2.8846 × 107 [Pa]

𝜇 Lamé parameter [Pa]; 𝐸
2(1 + 𝜈)

in simulation: 𝜇 = 𝜇0 = 1.9231 × 107 [Pa]

𝜌𝑓 Fluid density [kg∕m3] 998.21 [kg∕m3] (at 20 ◦C) [15]

𝜌𝑠 Solid particles density [kg∕m3] Sand: 2650 [kg∕m3] [16](Pg. 22)
Clay: 2700 [kg∕m3] [16](Pg. 22)

𝜂 Porosity [−] Sand(medium/fine): 0.30 − 0.35 [17](Pg. 74)
Silt: 0.4 − 0.5 [17](Pg. 74)
Clay: 0.45 − 0.55 [17](Pg. 74)

𝜌 Average density of media [kg∕m3]; 𝜌𝑓𝜙 + 𝜌𝑠(1 − 𝜙) −[kg∕m3]

𝛽𝑓 Fluid compressibility [1∕Pa]; 1
𝜌𝑓

𝜕𝜌𝑓
𝜕𝑝

4.16 × 10−4 [1∕MPa] [15]

𝜅 Permeability [m2] Sand: 10−13–10−11 [m2] (saturated) [14](Pg. 373)
Silt: 10−15–10−13 [m2] (saturated) [14](Pg. 373)
Clay: 10−18–10−15 [m2] (saturated) [14](Pg. 373)

𝜇𝑓 Fluid viscosity [Pa s] 2.7822 × 10−13 [MPa h] (at 20 ◦C) [15]

𝐺 Acceleration due to gravity [m∕s2] 1.27290528 × 108 [m∕h2] (at Anchorage, Alaska) [15]

Conversion factors: 1 [kg∕m3] = 10−6

36002
[MPa h2∕m2], 1 [m∕s2] = 36002 [m∕h2]

𝜕𝑡(𝑐0𝑝 + 𝛼∇ ⋅ 𝑢) + ∇ ⋅ 𝑞𝑓 = 𝑓𝑓 , (1b)

𝑞𝑓 = −𝜅𝜇𝑓−1(∇𝑝 − 𝜌𝑓𝐺∇𝐷), (1c)

complemented by appropriate initial and boundary conditions. The data for the problem include the Lamé coefficients 𝜆, 𝜇, the
specific storage coefficient 𝑐0 which involves the porosity 𝜂, the fluid viscosity 𝜇𝑓 and density 𝜌𝑓 , and permeability 𝜅. See Table 1
for notation. Typically the data 𝑐0, 𝜂, 𝜅 for modeling efforts of (1) at the Darcy scale are calibrated from experiments.

Data at Darcy scale from upscaling. Much work has been devoted to getting the Darcy scale model data 𝜂, 𝜅 via upscaling from
the pore-scale; see, e.g., well known homogenization efforts for pore-to-Darcy in [18–21] as well as our own work involving xray
micro-CT images in [22–26]. The imaging of some porous medium volume 𝜔 provides a grid with voxel resolution 𝑀𝑥 ×𝑀𝑦 ×𝑀𝑧
of the image of 𝜔, with each voxel assigned 1 or 0 depending on whether it is recognized as part of the rock 𝜔(𝑟) and fluid filled
𝜔(𝑓 ) subdomains, with the porosity 𝜂 = |𝜔(𝑓 )

|

|𝜔| . The workflow for such efforts typically involves the following steps

Imaging 𝜔 (2a)
→ pre−processing (2b)
→ CFD simulations (2c)
→ upscaling → (𝜂, 𝜅). (2d)

Such efforts are especially useful for the understanding of the changes in permeability when the pore-scale geometry is changing
due to some coupled process such as precipitation, microbial plugging, or phase transitions. The computational effort in (2) is
2
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typically dominated by the time spent on imaging the Representative Elementary Volume (REV) 𝜔 in (2a) and by the computational
complexity of CFD in (2c), which typically scales as 𝑂(𝑀2) due to the cost of a linear solver. (Here 𝑀 = 𝜂𝑀𝑥𝑀𝑦𝑀𝑧 is the number
of fluid cells of the computational grid covering the flow portion 𝜔(𝑓 ) of 𝜔.) This high computational complexity suggests to
keep the resolution of the grid covering the REV and/or the size of REV small. At the same time, the accuracy of the process
of upscaling [17,19] calls for the REV to be large enough to faithfully represent the average qualitative and quantitative processes,
while the accuracy of the CFD simulations calls for large enough 𝑀 . In the end, we work in practice with moderate 𝑀 = 𝑂(106).

In this paper we are interested in the modifications of the pore-scale domain 𝜔 due to the deformation and the associated change
of the permeability 𝜅

𝜅 = 𝜅 ( deformation ), (3)

while keeping other data for (1) including 𝜆, 𝜇, 𝑐0 fixed. In fact, in a saturated porous geologic material the bulk stiffnesses of the fluid
and the grains are many orders of magnitude greater than the bulk stiffness of the granular skeleton. Thus, changes in permeability
are dominated by rearrangement of the pore network in response to the deformation of the solid skeleton. A common strategy
to obtain (3) is to predict local changes in porosity 𝜂 due to deformation, and to infer (3) from the well-known Carman–Kozeny
elationship

𝜅(𝜂) = 𝜅0𝜂
𝛼𝐶𝐾 , (4)

n which 𝛼𝐶𝐾 is a positive parameter that needs to be determined, and 𝜅0 is the reference conductivity. In practice, the actual values
f 𝜅0, 𝛼𝐶𝐾 are assumed.
Once (3) is known, one can use it in a nonlinear extension of (1). There has been work on this particular direction, primarily

in the context of visco-elasticty in human tissue [8,27]. The specific form of (3) is typically postulated, e.g., with (4), rather than
derived. The exception is the work in [28–30] where the relationships are defined from the pore-scale problems under periodicity
assumptions. While these are useful from a theoretical standpoint, it is not easy to get the data for (3) from these pore-to Darcy-scale
efforts for the specific scenarios of interest.

In turn, in principle, a relationship such as (4) and in particular the value of 𝛼𝐶𝐾 could be found following the process (2) based
on a sufficiently rich collection of images of some REV 𝜔 under deformation. However, such imaging efforts under deformation are
usually not feasible. In this paper we propose instead to derive (3) or (4) for the Biot model (1) using the discrete element method
(DEM). The algorithms connecting DEM to (3) are the focus of this paper and the presentation of the practical algorithms and their
tests and results is our major goal.

Discrete element method (DEM) has been used successfully for a variety of predictive models to produce realistic assemblies of
porous grains, i.e, different REV 𝜔, in response to an external load, under various assumptions. DEM models are used to simulate the
emergent mechanical behavior of granular materials (e.g., sands, grains, powders) and bonded particulates (e.g., concrete, rock). In
a DEM simulation, the response of a particulate assembly to a physical excitation (body forces and boundary tractions) is predicted
based upon simultaneous solution of Newton’s equations of motion for every particle in the assembly subject to well-defined
interaction laws at particle contacts. That is, given an ensemble of 𝑁𝑝 interacting particles, a general computational approach
consists of a repetition of the following steps: (a) identification of the locations of all particle–particle contacts and computation
of the corresponding normal vector orientations; (b) application of the contact force–displacement law for determination of the
interaction forces between particles; and (c) time integration of the equations of motion to determine updated particle state. DEM
models are particularly well-suited for simulation of emergent phenomena that elude ready analytical or constitutive description,
such as the equilibration of a collection of spheres under gravity within a container. DEM is based on compatibility of particulate
displacements through simple contact relationships rather than an overarching constitutive law — only the basic interaction physics
and the compatibility criteria must be satisfied for a given time step.

Objectives of this work. In this paper we propose a ‘‘proof-of-concept’’ approach connecting the DEM to the upscaling efforts
in order to get (3). We do not aim to work with any particular granular material or soil. However, we employ realistic data and
realistic deformation scenarios.

In our approach we follow (2) but modify step (2a) to involve DEM instead of imaging:

DEM to generate 𝜔 (5a)
→ pre−processing (5b)
→ CFD simulations (5c)
→ upscaling → (𝜂, 𝜅). (5d)

Specifically, in (5a), we consider spherical particles of various sizes which are not individually deformable; we assume that the
particles are governed by Newton’s laws, and we use DEM to simulate the deformation of the solid phase corresponding to some
assumed deformation scenario. The set of particles forms the solid phase 𝜔(𝑟) which is found in step (5b), from which we also get
𝜂. Next, in step (5c) we use the well-known Marker and Cell (MAC) scheme to simulate the Stokes flow in 𝜔(𝑓 ). We obtain the
conductivity 𝐾 = 𝜇−1

𝑓 𝜅 by upscaling in step (5d) the fluid velocity and pressure found from step (5c).
Actually, to make our results meaningful, we repeat the entire process several times in response to some scenario of deformation,

and in the end we obtain a collection of DEM-derived assemblies (𝜔𝑘)𝑘, with each 𝜔𝑘 composed of some 𝑁𝑝 particles responding
3

to some given load, e.g., increasing the load between step 𝑘 and 𝑘 + 1. Typically, with increased load, the change from 𝜔𝑘 → 𝜔𝑘+1
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is due to either individual particles of the rock phase ‘‘settling’’, the rock phase undergoing deformation, or some combination of
both.

In the end for each 𝜔𝑘 we obtain the corresponding (𝜂𝑘, 𝜅𝑘). We can use their collection to calibrate some parametric model for (3)
e.g., (4), and carry out the simulations of Biot model (1) which we extend to allow the dependence of permeability on deformation.

In summary, the workflow (5) we propose has various advantages over other approaches including experimental. Collection
of real 3D pore geometry information is expensive and, for specimens constructed in the laboratory, still not guaranteed to
reproduce the intricacies of the pore structure that exists in-situ. Conversely, it is not always possible to demonstrate the physical
or thermodynamic admissibility of synthetic pore structures generated via artificial means. DEM simulations can bridge this gap
by computationally generating pore structures that are both physically realistic and have an appropriate level of geometric and
topological complexity. While the computational costs are non-negligible (hours to days for a single assembly of tens of thousands
of particles for DEM alone) followed by hours to days of CFD and upscaling, they can be performed largely unattended on very
inexpensive commodity workstations.

Outline. In Section 2 we describe DEM and its use for (5a). In Section 3 we describe the pre-processing step (5b). Section 4
s devoted to (5c) and solving the flow model, with particular attention paid to the workflow of obtaining the solutions on the
eometries 𝜔 generated by DEM. In Section 5 we outline the method of upscaling in step (5d) and provide the results. In Section 6
e use this data for Biot simulations. We conclude and summarize in Section 7. Appendix contains supporting data.

emark 1.1 (Notation).We adopt the following notation. For a set 𝐴 we denote by |𝐴| its measure, and by 𝐴̄ its closure: we annotate
he difference between 𝐴 and 𝐴̄ but occasionally when taking union or set differences we abuse the notation rather than annotate
he specific differences. In particular, the domains for PDEs such as 𝛺 in Biot model (1) or the flow domain 𝜔(𝑓 ) for the Stokes flow
model are open. However, to avoid clutter, we do not distinguish these from the computational domains, a union of computational
cells which are closed.

We denote by 𝑁𝑝 the number of particles 𝐵𝑝, 𝑝 = 1, 2,… , 𝑁𝑝 modeled by DEM which are closed balls whose union forms 𝜔(𝑟).

2. Generation of synthetic pore spaces with discrete element method

In this Section we describe step (5a) of creating realistic synthetic porous media microstructures using DEM simulations. We
start with literature overview, and next proceed to define the steps towards (5a).

2.1. Background on DEM

DEM has been used to simulate particulate assemblies in two (e.g., [31,32]) and three (e.g., [33–36]) dimensions, using spheres,
disks, ellipses, ellipsoids, and clumps to represent individual particles. A large number of physical processes have been simulated
using the DEM, including particle breakage (e.g., [37,38]), rock fracture [39,40], anisotropic continua [41], and fruit damage due
o impact [42]. One area in which the DEM has been heavily exploited is in the study of discrete material microstructure [33,43].
ecause many parameters may be tracked with DEM that are not readily observable in the laboratory (e.g., particle orientation, force
hains), the DEM is an excellent tool for studying and quantifying the microstructure of discontinuous systems. Previous studies
ave quantified the effects of particle shape on fabric evolution [44], the use of the anisotropy of contact orientations to predict
arge-strain shear strength [45], and particle rotations [46]. The DEM has been experimentally validated for the two-dimensional
roblem of fabric evolution in long rods subjected to boundary forces [47] and in three dimensions for regularly packed assemblies
f steel balls [48]. The DEM has also been used in conjunction with morphological and stereological methods to successfully quantify
volving microstructure in two dimensional particulate assemblies [49,50].
The global response of a particulate assembly in DEM is allowed to develop naturally based on element interactions, resulting in

he organic simulation of emergent phenomena. This is a significant advantage over continuum models (e.g., Finite Element Method)
or simulating problems with very large strains or discontinuities (e.g., fractures) because there is no numerical instability or need for
e-meshing in these cases. The number 𝑁𝑝 of particles considered in a simulation generally ranges from several thousand to several
ens of thousands but might be as high as tens of millions. There is no actual upper bound on the number of particles as memory
emands are modest; the limit is practical because computations are processor-bound and the cost scales steeper than linearly with
he number of particles.

.1.1. How to use DEM
Model inputs for DEM are largely comprised of well-known or readily accessible material properties for individual particles within

he assembly. For example, a sand grain might have the properties of pure quartz: specific gravity of 𝐺𝑠 = 2.65, shear modulus of
= 29 [GPa], Poisson ratio of 𝜈 = 0.31, and a coefficient of sliding friction of 𝜙 = 0.5. Remaining inputs include model geometry,
article size distribution, and boundary conditions, which can be defined to describe the problem of interest.
Assemblies of particles are generally equilibrated within the model domain subjected to a body force and then exposed to an

xternal stimulus (e.g., boundary tractions). During the simulation, the location of every particle and every contact is known, as
re the force, normal vector, and shear vector at every contact. This information can be combined and post-processed to quantify
ssembly fabric (microstructure) and stress state (local and global) — and, importantly, their evolution with time.
4
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2.2. Generation of geometries (𝜔𝑘)𝑘 in step (5a) with DEM

We describe now our use of DEM, assuming some specific parameters. The choices of parameters will be revisited in Section 2.3.
We select a model size (i.e., volume) and particle gradation that will produce a simulation having a number of particles

𝑁𝑝 ≈ 12, 000 that is reasonably tractable for steps (5b) and (5c) of our workflow.
In this paper we consider spherical particles 𝐵𝑝, 𝑝 = 1,… , 𝑁𝑝: each particle is defined by its radius 𝑟𝑝 and position 𝑥𝑝. In each

DEM simulation, a particle assembly is created by placing the individual spheres into a bounding cube X until a desired porosity is
reached. We draw particle radii from a log-linear distribution given by:

𝑟𝑝 = 𝑟𝑚𝑖𝑛

(

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

)𝛽
; 𝛽 ∼  (0, 1), (6)

here 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are minimum and maximum radii and  is the uniform distribution.
Similarly, the three Cartesian components of the particle centroids (𝑥𝑝)𝑝 are independently drawn from a uniform distribution

ver X with dimensions reduced by the mean particle radius at each face of the box to prevent particle escape. In this approach,
articles are ‘‘hard core’’ random: no measures are taken to prevent particle overlap, but no two centroids may occupy the same
oint in space. Since repulsive energy between spheres is proportional to overlap, significant contact forces are generated. The
ystem is gently relaxed by stepping forward in time while zeroing the kinetic energy of all particles every few time steps. Once
ufficient energy has been dissipated, the system is allowed to progress to equilibrium normally.
Once in equilibrium, the assembly has (nearly) exactly the specified porosity, but some non-prespecified stress state that is a

unction of the size distribution, particle mechanical properties, and contact force network topology. A numerical servo algorithm is
hen used to achieve a hydrostatic state of stress (𝜎0 = 50 [kPa] in our case). This numerical servomechanism constantly adjusts wall
elocity as a function of the difference between the actual and desired boundary stresses, while ensuring that the velocity remains
elow the value required for stability in any given timestep.
We note here that it is effectively not possible to create an assembly of particles that simultaneously possesses a specified

radation, specified porosity, and specified stress state — at least one of these requirements must be relaxed. Nonetheless, the
hange of porosity associated with achieving the desired stress state is small, typically < 1%. The system is now prepared for the
nsuing perturbations. We denote the location of the centroid of each particle at this state 𝑥0𝑝.
Starting from this initial equilibrium, we compress the system vertically under zero lateral strain conditions. The same servo

lgorithm mentioned previously is used to gradually achieve a vertical stress of 𝜎𝑣 = 100 [kPa] (±0.5%). The system is again cycled
o kinetic equilibrium, and the vertical stress is measured. If the equilibrated stress is more than ±0.5% from the specified value,
he position of the top face of the wall is adjusted until once again reaching the desired state of stress. This cycle is repeated until
he desired stress state is maintained once the system has reached kinetic equilibrium. The coordinates of all particle centroids (𝑥𝑘𝑝 )𝑝
re recorded at this point and the system is then taken to the next point of desired equilibrium. Specifically, we capture snapshots
f particle locations every 100 [kPa] up to 1000 [kPa] and then similarly back down to 100 [kPa] denoting each of these steps by
umbers 𝑘 = 1, 2,…. All simulations are performed in the absence of gravity. In other words, we have generated the snapshots
(𝑥𝑘𝑝 )

𝑁𝑝
𝑝=1)𝑘 with 𝑘 = 1, 2,… , 𝐾 = 19.
We use this same approach to explore six scenarios of assembly response of an assembly of spheres to applied boundary tractions

nder different assumptions. We describe these scenarios below numbered (A), (B1), (B2), (C), (D), (D.r).

.2.1. Case (A)
In this simulation, we start with an initial configuration of spheres in the bounding cube and simulate the bounding box as being

omprised of six perfectly smooth (i.e., frictionless) walls. We consider this to be the ‘‘baseline’’ simulation.

.2.2. Case (B1)
This simulation is the same as Case (A) except that a greater number of calculation cycles are allowed as the system seeks kinetic

quilibrium at each load level. This scenario is intended to confirm that the baseline state of equilibrium is sufficient for the ensuing
alculations.

.2.3. Case (B2)
This simulation is the same as Case (B1) except that a different value is used to seed the random number generator at the

eginning of the calculation. In this way, we confirm that system response is not unduly influenced by the values of the random
ariables so long as the same generation and equilibration procedures are used for every simulation.

.2.4. Case (C)
This simulation is the same as Case (A) except that the particle volumes are cut in half (i.e., 𝑟𝐶 = 𝑟𝐴∕21∕3), so this case has

𝑝 ≈ 24, 000 spheres instead of 𝑁𝑝 ≈ 12, 000 in Case (A). We use this scenario to confirm that the results of the simulations do not
epend on the size of the model, and that Case (A) has a significant enough number of spheres to constitute an REV.

.2.5. Case (D)
This simulation is the same as Case (A), except the walls used to form the bounding box are frictional. Frictional walls serve to
5

‘lock in’’ stresses during loading such that maximal hysteresis is observed during unloading.
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2.2.6. Case (D.r)
This case is not a new simulation but a further exploration of the results from Case (D). We take the snapshots from (D) and

emove spheres to increase the porosity of the synthetic porous media. For the snapshots at 100 [kPa], 500 [kPa], and 1000 [kPa]
(all taken from the sequence where the load is increasing), four sets of spheres were removed.

With the spheres in (D) labeled 𝐵𝑝, 𝑝 = 1, 2, 3,… , 12000, the first set of spheres to be removed corresponds to indices 𝛱 (1)
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 =

{𝑝(1)1 , 𝑝(1)2 , 𝑝(1)3 ,… , 𝑝(1)
𝑁 (1)

1

}, the second to 𝛱 (2)
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 = {𝑝(2)1 , 𝑝(2)2 , 𝑝(2)3 ,… , 𝑝(2)

𝑁 (2)
2

} and so on where 𝑁 (1)
1 < 𝑁 (2)

2 < 𝑁 (3)
3 < 𝑁 (4)

4 . These are

chosen so that the set of spheres removed is consistent across snapshots with 𝛱 (1)
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ⊂ 𝛱 (2)

𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ⊂ 𝛱 (3)
𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ⊂ 𝛱 (4)

𝑟𝑒𝑚𝑜𝑣𝑒𝑑 .
In the end, the scenarios listed above give each the data ((𝑥𝑘𝑝 )

𝑁𝑝
𝑝=1)𝑘 which constitutes complete geometrical information about

the corresponding REV 𝜔𝑘.

2.3. DEM simulation choices

We comment now on the specific choices of DEM parameters we made. These are based on our experience with a variety of
scenarios from which we selected those discussed above (A), (B1), (B2), (C), (D), (D.r).

First, particle-level mechanical properties such as 𝜙 influence the packing of the particles in the assembly and, consequently, the
contact force network in the solid phase of the system. Selection of different parameters would lead to different global porosities with
different local geometries, but they would be no more or less ‘‘correct’’ than those we used. That is, both are physically admissible,
they are just representative of different granular materials. In the end, then, we elected to use properties consistent with a silica
sand.

Next, the number of particles was selected to provide a balance between the required complexity and computational tractability.
The reasonableness of our selection may be justified through consideration of Case (A) with 𝑁𝑝 = 12000, and Case (C) with 𝑁𝑝 =
24000. Flow results from these two cases are nearly the same, implying that 𝑁𝑝 = 12000 is an appropriate REV.

The initial mean stress (i.e., 𝜎0 = 50[kPa]) was selected to be smaller than the initial stress 𝜎1 = 100[kPa] used for flow
calculations to avoid any stress history effects in the assemblies. Specifically, since all assemblies approach their first measurement
point of 100 [kPa] from an initial equilibrium of 50 [kPa], we can ensure that any stress effects associated with initial generation are
appropriately erased (see also Case (B2) relative to Case (B1).

The number 𝐾 = 19 and the range of loads for the snapshots was selected to be generally representative of near-surface geologic
stress conditions, corresponding to geostatic stresses at depths from approximately 10 to 100[m].

3. The pre-processing of DEM generated assemblies

In this Section we describe how to conduct the step (5b) following (5a).
After (5a) we know the position of all particles {{𝐵𝑝}

𝑁𝑝
𝑝=1} and we can prepare the computational grid for the flow solution in

𝜔(𝑓 ). By design 𝜔 = 𝜔(𝑓 ) ∪ 𝜔(𝑟), and clearly 𝜔(𝑟) should represent ⋃𝑝 𝐵𝑝. However, there are two practical concerns.
First, DEM uses a soft-contact approach to estimate the inter-particle forces. This introduces a slight overlap between some

pheres so that |𝜔(𝑟)
| <

∑

𝑝 |𝐵𝑝|. This overlap is not significant in practice: in our simulations, we have consistently approximately
only 0.01% of the domain occupied by overlapping spheres.

Second, for flow simulations we choose hexahedral grid over 𝜔

𝜔 =
⋃

𝑖𝑗𝑘
𝜔̂𝑖𝑗𝑘,

here each 𝜔𝑖𝑗𝑘 is a closed cube. This choice is natural for the workflow (2) and for the pore-scale domains obtained from imaging
here the data is provided in the form of voxels, i.e., binary values indicating for each voxel 𝜔̂𝑖𝑗𝑘 whether it belongs to 𝜔(𝑓 ) or 𝜔(𝑟).
In this paper we follow this choice also for (5) even though we cannot represent any sphere exactly on a hexahedral grid, and

ave to work with approximations to 𝐵𝑝. This choice is justified based on our prior experience for (2) working with synthetic data or
with spherical glass beads data forming 𝜔(𝑟), since with adequate resolution we encountered only negligible difference between the
use of hexahedral vs body-fitted grids, while the 𝑖𝑗𝑘 numbering and the simplicity of flow algorithms had significant advantages of
the former. Thus in the end we work with hexahedral grid approximations 𝜔(𝑟,′) to 𝜔(𝑟). In fact, an additional step of approximations
𝜔(𝑟,′) → 𝜔(𝑟,′′) is needed to make the flow simulations robust in the corresponding 𝜔(𝑓,′′); clearly, we attempt to make 𝜔(𝑟,′′) as close
as possible to the ‘‘true’’ 𝜔(𝑟) defined by ⋃

𝑝 𝐵𝑝.
We describe the workflow below. For simplicity we let 𝜔 = [0, 𝐿]3. Let 𝑁 be a fixed positive integer. We partition 𝜔 into 𝑁3

hexahedral cells 𝜔̂𝑛, (𝑛 = 1, 2,… , 𝑁3), numbered with 𝑛 rather than 𝑖𝑗𝑘 for brevity, and with uniform side length ℎ = 𝐿∕𝑁 .

3.1. Assigning grid cells to 𝜔(𝑓 ) and 𝜔(𝑟)

We now describe which cells should be considered part of 𝜔(𝑓,′) or 𝜔(𝑟,′). For the rules of this assignment, there are several factors
to consider. First, the discrete porosity |𝜔(𝑓,′)

|∕|𝜔| should be close to the true porosity |𝜔(𝑓 )
|∕|𝜔|. Second, the connectivity of the

discrete pore space should be similar to the connectivity of the true pore space. This second point becomes critical for assemblies
in 𝑑 = 3, as the complexity of the pore-space is substantial. Finally, the assignment rule should be consistent as we refine the grid,
6
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Fig. 1. Illustration of different strategies of assigning the cells 𝜔̂ ⊂ 𝜔 to 𝜔(𝑓 ) and 𝜔(𝑟) described in Section 3.1. Gray cells represent 𝜔(𝑟,′) and white cells represent
𝜔(𝑓,′). Contours of three particles 𝐵𝑝 are shown in black. To compare, it is useful to study in each scenario the assignment of the cell 𝜔̂ which is third from left
in the top row.

We now describe the assignment rules, i.e., how 𝜔(𝑟,′) and its complement 𝜔(𝑓,′) are defined. We illustrate several scenarios of
assignment (I, II, . . . , VI) in Fig. 1 for a coarse grid, and in Fig. 2 for a fine grid. Formally, we let

𝜔(𝑟,′) =
⋃

𝑛∈𝑆1

𝜔̂𝑛; 𝑆1 = {𝑛∶ the centroid of 𝜔̂𝑛 is in 𝜔(𝑟)} (7)

This rule corresponds to rule I in both figures, with the complementary definition

𝜔(𝑓,′) =
⋃

𝑛∈𝑆2

𝜔̂𝑛; 𝑆2 = {𝑛∶ 𝜔̂𝑛 ⊄ 𝜔(𝑟,′)}. (8)

After testing the strategies illustrated in Fig. 2, we found the strategy I to be the most robust and versatile. In particular, strategies
II–III overpredicted while IV underpredicted the porosity, and V–VI lacked symmetry.

However, after this first step of the assignment of cells, there might be so-called ‘‘dead’’ pores that are not connected to other
pores, and do not play a role in the global flow solution. This is handled next.

3.2. Adapting 𝜔(𝑟,′′) and 𝜔(𝑓,′′) by trimming and padding

The construction of 𝜔(𝑓,′) described above creates generous void space around the space occupied by the particles, since we start
with a bounding box designed to contain all the particles, and they are not always arranged close enough to the sides. Solving for
the flow in a domain with large void space around the particles would direct the flow around this domain and would give artificially
large conductivity after upscaling. To prevent this artifact, we trim a small percentage from each face of 𝜔. Let 𝑝1 ∈ [0, 1) such that
𝑝1𝑁 is an integer (our choice was 𝑝1 = 0.02) and set

𝜔𝑡𝑟𝑖𝑚 = [𝑝1𝐿, (1 − 𝑝1)𝐿]3. (9)

We then set

𝜔(𝑟,′′) =
⋃

𝑛∈𝑆3

𝜔̂𝑛; 𝑆3 = {𝑛∶ 𝜔̂𝑛 ⊂ 𝜔(𝑟,′) ∩ 𝜔𝑡𝑟𝑖𝑚}. (10)

In flow solutions, it is common to choose a parabolic inflow boundary condition. Following our prior experience in [22] we apply
he following strategy to make this assignment easy as well as to make the flow solutions comparable between different synthetic
eometries. We pad the trimmed 𝜔𝑡𝑟𝑖𝑚 by void space to use the portion of the new void space as the inlet boundary. Let 𝑝2 ≥ 0, such
that 𝑝2𝑁 is an integer number of cells we wish to pad with (our choice was 𝑝2 = 0.05) and set

𝜔 = [(𝑝 − 𝑝 )𝐿, 𝑝 𝐿] × [𝑝 𝐿, (1 − 𝑝 )𝐿]2. (11)
7
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4

Fig. 2. Follow-up on illustration in Fig. 1: working with a fine grid to assign the cells to 𝜔(𝑓 ) and 𝜔(𝑟). Gray cells represent 𝜔(𝑟,′) and white cells represent 𝜔(𝑓,′).

Then 𝜔𝑝𝑎𝑑 can be discretized into 𝑀 = 𝑝2(1 − 2𝑝1)2𝑁3 cells 𝜔̂𝑛 (𝑛 = 𝑁3 + 1,… , 𝑁3 +𝑀) with sidelength ℎ. We set

𝜔(𝑓,′′) =
⋃

𝑛∈𝑆4

𝜔̂𝑛; 𝑆4 = {𝑛∶ 𝜔̂𝑛 ⊂ 𝜔(𝑓,′) ∩ 𝜔𝑡𝑟𝑖𝑚 or 𝜔̂𝑛 ⊂ 𝜔𝑝𝑎𝑑}. (12)

3.3. Removing dead cells

It is possible that 𝜔(𝑓,′′) found in Section 3.2 is not connected. This would make solving the Stokes problem in 𝜔(𝑓,′′) ill-posed.
To circumvent this problem, we take another step in approximation of geometry in which we remove the cells not connected to the
inflow and outflow boundaries of 𝜔(𝑓,′′).

For example, define the inflow and outflow boundaries

𝛤𝑖𝑛 = {(𝑝1 − 𝑝2)𝐿} × [𝑝1𝐿, (1 − 𝑝1)𝐿]2, (13)
𝛤𝑜𝑢𝑡 =

(

{(1 − 𝑝1)𝐿} × [𝑝1𝐿, (1 − 𝑝1)𝐿]2
)
⋂

𝜕𝜔(𝑓,′′). (14)

We will now explain how to modify 𝜔(𝑓,′′) by introducing the notion of orthogonally connected cells. We will say that a cell 𝜔̂𝑖 ⊂ 𝜔(𝑓,′′)

is orthogonally connected to 𝜔̂𝑗 ⊂ 𝜔(𝑓,′′) if there is a sequence of cells 𝜔̂𝑖 = 𝜔̂𝑛1 , 𝜔̂𝑛2 ,… , 𝜔̂𝑛𝑚 = 𝜔̂𝑗 contained in 𝜔(𝑓,′′) such that each
pair 𝜔̂𝑛𝑙 and 𝜔̂𝑛𝑙+1 shares a common face for 𝑙 = 1, 2,… , 𝑚 − 1. We say that a cell 𝜔̂𝑖 is orthogonally connected to 𝛤𝑖𝑛 if there is at
least one cell 𝜔̂𝑗 ⊂ 𝜔(𝑓,′′) such that one face of 𝜔̂𝑗 is in 𝛤𝑖𝑛 and 𝜔̂𝑖 and 𝜔̂𝑗 are orthogonally connected. We now define

𝜔(𝑓 ) =
⋃

𝑛∈𝑆5

𝜔̂𝑛; 𝑆5 = {𝑛∶ 𝜔̂𝑛 ⊂ 𝜔(𝑓,′′) and 𝜔̂𝑛 is orthogonally connected to 𝛤𝑖𝑛}. (15)

An illustration of the concerns on connectivity is given in Fig. 3. The hatched cells are those in 𝜔(𝑓,′′) but not in 𝜔(𝑓 ) as they are
not orthogonally connected to 𝛤𝑖𝑛.

3.4. Summary how to obtain 𝜔(𝑓 )

Now we illustrate the first two steps in (5), first in a cartoon in Fig. 3. Next, Fig. 4 shows the set 𝜔(𝑟) =
⋃

𝑝 𝐵𝑝, as well as its
discretization into hexahedra, followed by the result of trimming and padding the domain, and finally by removal of any dead cells
to obtain 𝜔(𝑟,′′).

. Flow solutions at the pore-scale

In this Section we describe how to conduct the flow simulations in step (5c) following (5a)–(5b).
8
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Fig. 3. 2D illustration of the boundary conditions for Stokes flow as well as of the computational flow regions 𝜔(𝑓 ) described in Section 4. Top: domain 𝜔, with
fluid cells in 𝜔(𝑓 ) in white, rock cells in 𝜔(𝑟) in gray; the hatched cells are the fluid cells that must be eliminated from 𝜔(𝑓 ) since they are not connected to 𝛤𝑖𝑛.
Bottom: illustration of the process of obtaining 𝜔(𝑓 ) in 2D. From left: 𝜔(𝑓,′) found using strategy I from Fig. 1, 𝜔(𝑓,′′) obtained by trimming and padding, and the
final domain 𝜔(𝑓 ) obtained by elimination of dead-end cells.

Fig. 4. Illustration of first two steps in (5). From left to right: synthetic geometry as described in Section 2, discretization into hexahedra (𝜔(𝑟,′)) as described
in Section 3.1, and 𝜔(𝑓,′′) found after trimming and padding the discretization (𝜔(𝑟,′′)) as described in Section 3.2.

To model the fluid flow through the pore space 𝜔(𝑓 ) we use Stokes flow model given as

−𝜇𝑓𝛥𝑈 + ∇𝑃 = 0, in 𝜔(𝑓 ), (16a)

∇ ⋅ 𝑈 = 0, in 𝜔(𝑓 ), (16b)
𝑈 = 𝑈𝐷, on 𝛤𝑖𝑛, (16c)
𝑈 = 0, on 𝛤0, (16d)

(∇𝑈 − 𝑃𝐼) ⋅ 𝜈 = 0, on 𝛤𝑜𝑢𝑡, (16e)

where 𝑈 is the pore-scale velocity, 𝜇𝑓 is viscosity, 𝑃 is the pore-scale pressure, 𝜈 is the outward normal unit vector, 𝜔(𝑓 ) is the fluid
domain discretized into hexahedral cells.

The flow model (16a)–(16b) is supplemented with boundary conditions (16c)–(16e). It remains to identify the inflow, outflow,
and no-flow boundaries 𝛤𝑖𝑛, 𝛤𝑜𝑢𝑡, 𝛤0, respectively.

In this paper we conduct simulations of (16) for the needs of upscaling and thus require flow solutions corresponding to at least
three distinct flow solutions associated with each 𝜔(𝑓 ). We choose these flow directions to approximately align with 𝑥 or 𝑥 , or 𝑥
9
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𝜔

5

Fig. 5. Visualizations of numerical solutions to (16) described in Section 4 for geometries in experiment (A) and flow in the 𝑥1-coordinate direction. Left:
geometry at 100 [kPa] on the loading cycle. Right: geometry at 1000 [kPa] on the loading cycle..

directions. For each of these we set up the boundary conditions and simulate the flow, and thus obtain the solutions 𝑈 (𝑖), 𝑃 (𝑖) for
𝑖 = 1, 2, 3.

To be specific let 𝑖 = 1. We set 𝛤𝑖𝑛 as the inflow boundary that corresponds to the face of 𝜔(𝑓 ) with the least 𝑥1 value, 𝑈𝐷 = (𝑢𝐷, 0, 0)
is a specified parabolic profile in the 𝑥1-direction, 𝛤𝑜𝑢𝑡 is the outflow boundary that corresponds to the face of 𝜔(𝑓 ) with greatest 𝑥1
value, and 𝛤0 = 𝜕𝜔(𝑓 ) ⧵ 𝛤𝑖𝑛 ⧵ 𝛤𝑜𝑢𝑡. An illustration in 𝑑 = 2 of these sets is given in Fig. 3.

We follow an analogous process in the directions 𝑖 = 2 and 𝑖 = 3.

4.1. Numerical approximation to (16)

The hexahedral discretization of 𝜔(𝑓 ) lends itself to the well known marker and cell (MAC) scheme which delivers approximations
to 𝑈 and 𝑃 . A detailed description of the MAC scheme is given in [51], with a recent Ref. [52] applying MAC scheme to a more
complex problem than Stokes flow. It is also worth noting that the MAC scheme produces conservative approximations to 𝑈 which
are in the space 𝑅𝑇[0] popular in mixed finite element setting on hexahedral grids [53], with the approximations to 𝑃 in the space
of piecewise constants over the grid ℎ(𝜔(𝑓 )).

The MAC scheme introduces the degrees of freedom (DOFs) on the faces and centroids of each 𝜔̂𝑛 ⊂ 𝜔(𝑓 ) in the following manner.
The DOFs for 𝑃 are located at the centroid of each 𝜔̂𝑛 and the DOFs for 𝑈𝑖 (the 𝑖th component of 𝑈) are located on the faces of each
̂ 𝑛 that are orthogonal to the 𝑖th coordinate direction. After the finite difference approximation is written out for each component
of 𝑈 on a staggered grid involving grid edges, we obtain a linear system which is solved by an iterative solver with state-of-the-art
preconditioners [23]. The numerical solution (𝑈ℎ) is then extended to 𝜔(𝑟,′′) and the rest of 𝜔(𝑓,′′) by 0 on any cell not contained in
𝜔(𝑓 ).

In this paper we use the implementation of the MAC scheme adapted to the pore-scale geometry described in [23] and
implemented in HybGe-Flow3d [54].

We illustrate the solution to (16) in Fig. 5. This solution is next processed for upscaling as discussed in Section 5.

. Upscaling to conductivity

In this Section we describe how to conduct the upscaling step (5d) following (5a)–(5c). We assume (5c) is completed, and the
numerical approximations to (16) are available. We post-process these to obtain the conductivity 𝐾 = 𝜇−1

𝑓 𝜅, and give results.
Assume we have the approximations (𝑈ℎ,(𝑖), 𝑃 ℎ,(𝑖)), 𝑖 = 1, 2, 3 to the Stokes problem (16) as described in Section 4, with 𝑖 = 1, 2, 3

corresponding to each of the coordinate directions. We use their averages over the REV to calculate 𝜅. Below we describe the
pre-processing of (𝑈ℎ,(𝑖), 𝑃 ℎ,(𝑖)), 𝑖 = 1, 2, 3, next the actual method of averaging and fitting the results to the conductivity, followed
by the notes on scaling of the resulting conductivities. In Section 5.4 we present the results.
10
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I

Fig. 6. Diagram showing 𝜔𝐿𝑖
and 𝜔𝑅𝑖

used for upscaling discussed in Section 5.

5.1. Restricting (𝑈ℎ,(𝑖), 𝑃 ℎ,(𝑖)), 𝑖 = 1, 2, 3 to avoid numerical artifacts

Here we aim to remove various numerical artifacts that might be present in 𝑈ℎ,(𝑖).
In particular, the numerical solutions near the boundary of 𝜔𝑡𝑟𝑖𝑚 may exhibit certain boundary effects such as circulating flow

near 𝛤𝑜𝑢𝑡 or the impact of setting 𝑈 = 0 on the lateral boundaries of 𝜔(𝑓 ). In order to eliminate as many of these effects as possible,
we restrict the solutions (𝑈ℎ,(𝑖), 𝑃 ℎ,(𝑖)) defined on 𝜔(𝑓 ) to

𝜔𝑖𝑛𝑠𝑒𝑡 = [𝑝3𝑝1𝐿, (1 − 𝑝3)(1 − 𝑝1)𝐿]3. (17)

Here 𝑝3 ∈ [0, 1) is the fraction to further inset the domain; in practice, we set 𝑝3 = 0.09. This strategy was first applied in [22]
and refined in [24] where we found that it helps to avoid numerical artifacts. Regarding the modeling accuracy of this strategy,
in [22,24] we found that the conductivities 𝜅 depend mildly on the size of REV, i.e., on the value of 𝑝3. The choice 𝑝3 = 0.09 is a
compromise between the need to avoid numerical artifacts and the aim to keep the REV as large as possible.

5.2. Averaging to obtain 𝜅

First, recall Darcy’s law (1c) with ∇𝐷 = 0, 𝐾 = 𝜇−1
𝑓 𝜅

𝑣 = −𝐾∇𝑝, (18)

where 𝐾 is conductivity and 𝑣 and 𝑝 are the Darcy scale velocity and pressure respectively. This law can be derived via
homogenization of the Stokes equation [18–21]. The process of homogenization involves periodic boundary conditions and an
impulse forcing term 𝑒𝑖 (the 𝑖th standard basis vector in R𝑑) in (16a) as well as averaging of ∇𝑈 . However, quality results can be
obtained with a simpler process for the flow driven by inflow boundary conditions (i.e., (16) as written) [22,55].

We follow the upscaling method from [55] which we now summarize. Given the solutions (𝑈ℎ,(𝑖), 𝑃 ℎ,(𝑖)) to (16) over 𝜔𝑖𝑛𝑠𝑒𝑡, we
identify their averages with 𝑣 and ∇𝑝 as follows. Fix the coordinate direction 𝑖, and bisect 𝜔𝑖𝑛𝑠𝑒𝑡 perpendicularly to 𝑥𝑖 into sets 𝜔𝐿𝑖
and 𝜔𝑅𝑖

such that:

(1) Each 𝜔𝐿𝑖
and 𝜔𝑅𝑖

is a rectangular prism.
(2) For each 𝑖, 𝜔𝐿𝑖

and 𝜔𝑅𝑖
are disjoint with the exception of sharing a common face.

(3) For each 𝑖, 𝜔𝐿𝑖
∪ 𝜔𝑅𝑖

= 𝜔𝑖𝑛𝑠𝑒𝑡 (see Fig. 6).

We now define 𝛿𝑋𝑖 as the distance in the 𝑖th coordinate direction between the centroids of 𝜔𝐿𝑖
and 𝜔𝑅𝑖

and define the averages

∇ℎ𝑝
(𝑖)
𝑚 =

(

⟨

𝑃 (𝑖)⟩
𝑅𝑚

−
⟨

𝑃 (𝑖)⟩
𝐿𝑚

)

∕𝛿𝑋𝑚; (19a)

⟨

𝑃 ℎ,(𝑖)⟩
𝐿𝑖

= 1
|𝜔𝐿𝑖

|
∫𝜔𝐿𝑖

𝑃 ℎ,(𝑖),
⟨

𝑃 ℎ,(𝑖)⟩
𝑅𝑖

= 1
|𝜔𝑅𝑖

|
∫𝜔𝑅𝑖

𝑃 ℎ,(𝑖)

𝑣(𝑖) =
⟨

𝑈ℎ,(𝑖)⟩ = 1
|𝜔𝑖𝑛𝑠𝑒𝑡| ∫𝜔𝑖𝑛𝑠𝑒𝑡

𝑈ℎ,(𝑖). (19b)

n general each of the terms in (19) is a vector of 𝑑 components.
Now we use (18) to obtain the system of 𝑑 × 𝑑 linear equations

𝑣(𝑖)𝑗 =
∑

𝐾𝑗𝑚∇ℎ𝑝
(𝑖)
𝑚 , (20)
11
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which can then be solved for 𝐾𝑗𝑚. Here 𝑣
(𝑖)
𝑗 is the 𝑗th component of 𝑣(𝑖) and 𝐾 = (𝐾𝑗𝑚). For the experiments we described, typically,

(𝑖)
𝑗 as well as ∇ℎ𝑝

(𝑖)
𝑗 are close to zero when 𝑖 ≠ 𝑗. Thus, while the full tensor 𝐾 could be computed, in this paper we only calculate and

eport only the main diagonal values 𝐾11, 𝐾22, 𝐾33 of 𝐾 found from (20) for 𝑖 = 𝑗 = 1, 2, 3. This approach is sufficient for geometries
hat are either nearly isotropic or for which the anisotropy is aligned with the coordinate axes.

.3. Notes on scaling and units

We make several observations which help to set up simulations of a physical system in non-dimensional units and translate
hese later to a physical set-up with a fixed grain size so that we can obtain a corresponding permeability value given in the usual
nits [m2]. In our prior experience from [22,24] the process delivers the values 𝜅 agreeing with typical permeability values found
xperimentally for porous media with the given grain size. We note that the methods outlined in Sections 4 and 5.2 are most useful
o find the relative conductivity in response to deformation; these relative values are independent of the particular scaling process.

.3.1. Inflow boundary condition
Let (𝑈, 𝑃 ) be the solution to (16) and (𝑈, 𝑃 ) the solution when the boundary condition (16c) is replaced with 𝑈𝐷 = 𝑐𝑈𝐷 for

ome 𝑐 ≠ 0. One can verify that 𝑈 = 𝑐𝑈 and 𝑃 = 𝑐𝑃 . If the solution (𝑈, 𝑃 ) is upscaled by the method in Section 5, then one arrives
t the system of Eqs. (20) with both sides multiplied by 𝑐 so that the same upscaled conductivity 𝐾 = 𝐾 is found.

.3.2. Viscosity
Let (𝑈, 𝑃 ) be the solution to (16) and (𝑈, 𝑃 ) the solution to the flow model −𝜇𝑓𝛥𝑈 −∇𝑃 = 0 replacing (16a), with the boundary

ondition 𝑈𝐷 = (𝜇𝑓∕𝜇𝑓 )𝑈𝐷 in (16c). One can verify that 𝑈 = (𝜇𝑓∕𝜇𝑓 )𝑈 and 𝑃 = 𝑃 . Upscaling the solution (𝑈, 𝑃 ) results in the
onductivity 𝐾 = (𝜇𝑓∕𝜇𝑓 )𝐾.

.3.3. Length scale
Let (𝑈, 𝑃 ) be the solution to (16) and (𝑈, 𝑃 ) the solution on 𝜔(𝑓 ) which is congruent to 𝜔(𝑓 ) but scaled by a factor 𝑐 = 𝐿̃∕𝐿 for

ome 𝐿̃ > 0 (i.e., 𝑈 and 𝑃 are defined on 𝑥 ∈ 𝜔(𝑓 ) = 𝑐𝜔(𝑓 ) and we use the boundary condition 𝑈𝐷(𝑥) = 𝑈𝐷(𝑥∕𝑐), which corresponds
o a change of variables 𝑥 = 𝑐𝑥). Then 𝑈 (𝑥) = 𝑈 (𝑥∕𝑐) and 𝑃 (𝑥) = 𝑃 (𝑥∕𝑐)∕𝑐. Upscaling the solution (𝑈, 𝑃 ) produces the conductivity
̃ = 𝑐2𝐾 after noting that 𝛿𝑋𝑚 = 𝑐𝛿𝑋𝑚 so that ∇ℎ𝑝

(𝑖)
𝑚 = ∇ℎ𝑝(𝑖)∕𝑐2.

.4. Upscaling results

We apply the process described above in Sections 5.1–5.3 to the assemblies found in Section 3 for each of the scenarios in
ection 2.2. We obtain conductivities for each of these scenarios, with focus on the relative changes in the conductivities associated
ith the scenarios of the geometries undergoing a loading and unloading cycle.
As a by-product of pre-processing step which delivers 𝜔(𝑓,′′) described in Section 3 we obtain the porosities 𝜂. The changes in 𝜂

or the 𝑘 = 1,… , 𝐾 scenarios can be correlated to the relative conductivities.
In upscaling, we set the length scale to 𝐿 = 1 [cm so that the particles are on the order of 10−4 [m] in diameter and the computed

pscaled conductivities are in the units of [Pa−1 s−1 cm2].
Below we present an overview followed by a detailed discussion; the raw data tables are given in the Appendix in Appendix A.1.

n Section 5.4.3 we conclude with a discussion how the upscaled data can be used in a Darcy scale model.

.4.1. Overview of upscaling results
An overview of results is given in Fig. 7, with detailed results given in Section 5.4.2.
First, we see that the process we described in (5) with details in Sections 2–5.3 is robust. We also see, as expected, that

he conductivities have order of magnitude reasonably matching the conductivities measured experimentally [17]. Furthermore,
enerally, conductivities and porosities decrease with load by about maximum 20% within the range considered. Additionally, the
onductivity tensors corresponding to these geometries are essentially isotropic (insofar as it is difficult to definitively say that they
re anisotropic). These observations are consistent across all the scenarios in Section 2.2.
The values across the different scenarios generally match, with the exception of scenario (C) which features conductivities smaller

y a factor of about 2.2. Recalling that this scenario involves more particles, the smaller conductivity can be explained by the fact
hat we are packing more particles to the roughly similar box size. This is exacerbated by the use of the same fix grid resolution 𝑁 ;
n the other hand, scenario (C) generally enables tighter packing, somewhat smaller porosity, and more tortuous flow paths which
esult in lower conductivity.
Lastly, we discuss a certain common trend present in all results. For example, consider results plotted in Fig. 13 for scenario (D).

Here we can see hysteresis in the conductivity, i.e., values following a different path at loading than at unloading. It appears however
that this hysteresis is arises in the load–porosity relationship rather than appears as standalone hysteresis in the load–conductivity
relationship. The phase plane of porosity vs conductivity shows much less sensitivity to the direction (loading or unloading).
12
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Fig. 7. Load–porosity–conductivity relationships for the geometries described in Sections 2.2.1–2.2.5. Top row: load [kPa] vs conductivity [Pa−1 s−1 cm2]. Bottom
ow: porosity [−] vs conductivity [Pa−1 s−1 cm2]. The data is discussed in Section 5.4.2. Data points in white correspond to snapshots taken during unloading.

Fig. 8. Results from experiment (B1) as described in Section 2.2.2 and recorded in Table 6. Markers in white denote unloading.

5.4.2. Detailed upscaling results

Now we provide detailed discussion of the upscaling results.

Results from the experiment (A) described in Section 2.2.1 are plotted in Fig. 14 and given in Table 5. Overall, as expected, we
ee that the conductivities and the porosity decrease with load. In addition, we see hysteresis in the values when we switch from
oading to unloading. This observation of hysteresis is consistent across all experiments.
13
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Fig. 9. Results from experiment (B2) as described in Section 2.2.3 and recorded in Table 7. Markers in white denote unloading.

Fig. 10. Results from experiment (C) as described in Section 2.2.4 and recorded in Table 8. Markers in white denote unloading.

Fig. 11. Results from experiment (D) as described in Section 2.2.5 and recorded in Table 9. Markers in white denote unloading.

In Fig. 8 we give plots for (B1) described in Section 2.2.2, with data in Table 6. We see the same hysteretic trend as (A), but it
is more exaggerated. Additionally, there is an outlying data point for 𝐾22 at 500 [kPa] on the unloading cycle. We hypothesize that
there is some local irregularity in the geometry that caused difficulty for the Stokes solver for flow in the 𝑥2-coordinate direction.

The results for (B2) described in Section 2.2.3 are plotted in Fig. 9, with data in Table 7. The conductivity values in this
xperiment are more tightly grouped than in (B1). However, the Stokes solver failed to converge for the geometry at 800 [kPa]
n the loading cycle for all flow orientations.
14
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Fig. 12. Results from experiment (D.r) as described in Section 2.2.6 and recorded in Table 10. Data from the geometries in experiment (D) that were used to
enerate the 𝛱 (𝑖) geometries is included for comparison.

Fig. 13. Load–porosity–conductivity relationships for the geometries (D) described in Section 2.2.5. White markers denote data in the unloading cycle.

In Table 8 we see the results for (C) described in Section 2.2.4, in which we increased 𝑁𝑝 to 24,000. Increasing the number of
spheres decreased conductivities and porosities as compared to other experiments, but we see the same qualitative trends. On the
other hand, the iterative solver for the Stokes flow model failed to converge for the geometry at 200 [kPa] on the unloading cycle
for all flow orientations. Results from this experiment are plotted in Fig. 10.

Lastly, we discuss the experiment (D) from Section 2.2.5. The general trends that are seen in the other experiments are also
een here. In particular, there is an interesting ‘‘bump’’ in the conductivities in the 700–800 [kPa] range for both the loading and
nloading cycles. Results from this experiment are plotted in Fig. 11.
We continue next with data from (D), but we remove some of the particles; the case is recorded as (D.r) described in Section 2.2.6.

emoving spheres results in an increase of the porosity as well as of the conductivity as one should expect; see the results plotted
n Fig. 12.
15
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Fig. 14. Results from experiment (A) as described in Section 2.2.1 and recorded in Table 5. Markers in white denote unloading.

Table 2
Fit of conductivity to 𝐾 = 𝐶1𝜂𝛼1 (non-normalized) 𝐾 = 𝐶2(𝜂∕𝜂0)𝛼2 (normalized). Normalization was done to data at load 100 [kPa]
on the loading (L) cycle. The data for the (D.r) fit was normalized by the same data as the (D) case. The cases are described in
Section 2.2 and fitted to the data discussed in Section 5.4.2.
Case 𝐶1 × 103 [Pa−1 s−1 cm2] 𝛼1 𝐶2 × 107 [Pa−1 s−1 cm2] 𝛼2 𝜂0
(A) 0.329 6.14 9.51 6.61 0.385195
(B1) 1.294 7.58 9.59 8.12 0.385648
(B2) 1.058 7.38 9.23 7.41 0.385201
(C) 1.145 8.46 3.31 9.16 0.380594
(D) 0.814 7.10 9.35 7.04 0.385318
(D.r) 0.285 6.06 9.35 5.72 0.385318

5.4.3. Use of upscaled conductivity values and carman–kozeny fit
In the end, we need the upscaled conductivities to be useful in a Darcy model for flow and deformation. In particular, it is not

ractical to imagine we could be solving a new (5a)–(5d) experiment each time a load changes at the Darcy scale so as to determine
he new conductivities.
For this reason, we collect the results in a look-up table such as the Tables in Appendix A.1. Furthermore, we attempt a fit of

he data in these look-up tables.
We focus here on the porosity–conductivity relationship which follows a power law (i.e., Carman–Kozeny) for each geometry, as

an be seen in Fig. 15 and Table 2. It is interesting to note that the exponent in Carman–Kozeny relationship (4) does not change
uch when the spheres are removed as described in Section 2.2.6 and shown in Fig. 12 and Fig. 15.
Thus the load–conductivity data can be used as follows: we determine porosity for a new load, then find the conductivity for

hat porosity from Carman–Kozeny law or from a look-up table.

. Darcy scale simulations with Biot model

In this section we illustrate how to use the data found in the steps (5a)–(5d) of (5) in a Darcy scale model for flow and
deformation.

To this aim we consider the linear Biot model of poro-elasticity which we modify. In particular, we introduce the dependence
of the conductivity 𝐾 = 𝜇−1

𝑓 𝜅 on the deformation, and in fact we account for this through the porosity 𝜂 as an intermediate step.
The quasi-static Biot model is well known. See [56](Pg. 114) for the formulation and [57] for the well-posedness. For notation,

we follow closely [58]. We recall now the model (1) for ease of exposition neglecting the gravity terms.
We let 𝛺 = (0, 1) ⊂ R represent a porous medium that is fully saturated with water. We recall the model (1) for convenience,

and we set ∇𝐷 = 0, 𝑓 = 0 in (1) focusing on the influence of 𝑓𝑓 ≠ 0. The elastic deformation and flow equations read, respectively,

− ∇ ⋅ [𝜆(∇ ⋅ 𝑢)𝐼 + 2𝜇𝜖(𝑢)] + 𝛼∇𝑝 = 0, (21a)
𝜕𝑡(𝑐0𝑝 + 𝛼∇ ⋅ 𝑢) + ∇ ⋅ 𝑞𝑓 = 𝑓𝑓 , (21b)

where 𝑢 is the displacement [m], 𝑝 is the pressure [Pa], 𝜆, 𝜇 are the Lamé coefficients [Pa], 𝜖(𝑢) is the linearized strain tensor, and 𝐼
16

is the identity matrix. In the flow equation 𝑐0 = 𝜂0𝛽𝑓 is the specific storage coefficient [1∕Pa], with fluid compressibility 𝛽𝑓 [1∕Pa]
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Fig. 15. Fitted curves of average conductivity as a function of porosity. The plotted curves are from Table 2 for geometry (D) (top) and (D.r) (bottom). Data
for both normalized fits were normalized to the data at load 100 [kPa] on the loading cycle from geometry (D).

and porosity 𝜂 [−]. The flux is given by Darcy’s law

𝑞𝑓 = −𝜅𝜇𝑓−1(∇𝑝), (21c)

here 𝜅 is the permeability [m2] of the media and 𝜇𝑓 is the viscosity [Pa s] of liquid water. The physical parameters used in (21) are
iven in Table 1. We also have the Biot constant 𝛼 which as usual we set 𝛼 = 1 [−]. We shall also impose the following boundary
onditions

𝑢(𝑥, 𝑡)|𝜕𝛺 = 0, 𝑡 > 0 (21d)
𝑝(𝑎, 𝑡) = 0, 𝜅∇𝑝 ⋅ 𝜈|𝐿 = 0, 𝑡 > 0 (21e)

inally, the model (21) requires also initial conditions on the fluid content 𝑐0𝑝+𝛼∇⋅𝑢 which we simplify assuming initial equilibrium
⋅ 𝑢|𝑡=0 = 0 and require

𝑝(𝑥, 0) = 𝑝𝑖𝑛𝑖𝑡(𝑥), 𝑥 ∈ 𝛺 (21f)

nder the assumptions that 𝜆, 𝜇, 𝜇𝑓 , 𝑐0 are positive, and that 𝜅 is a symmetric uniformly positive definite tensor, the problem (21)
s well posed [57].

.1. Nonlinear dependence of 𝜅 on the mechanical deformation

We focus now on the dependence of 𝜅 on the mechanical deformation. First, we replace the direct dependence of 𝜅 on the
eformation, e.g., on strain 𝜅 = 𝜅(∇ ⋅ 𝑢) by

𝜅 = 𝜅(𝜂). (22)
17
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Table 3
Results of Example 6.1 found with the numerical model (25a) and 𝑀 = 50, 𝜏 = 0.01. We present the magnitude of
displacements and pressures, impact on porosity at 𝑡 = 3 when the injection stops. Also, we present the time 𝑇𝑒𝑞
to equilibrium defined as the earliest time 𝑡𝑛 when max𝑥 𝑝(𝑥, 𝑡𝑛) < 1. Generally the more dramatic modification
corresponds to the more influence on 𝑝. The impact on the displacements 𝑢 and the porosities 𝜂 is milder but
also visible.
Exponent ‖𝑢(⋅, 3)‖∞ ‖𝑝(⋅, 3)‖∞ [𝜂𝑚𝑖𝑛 , 𝜂𝑚𝑎𝑥 at 𝑡 = 3] 𝑇𝑒𝑞
0 0.957264 599.713 0.345280,0.350900 8.56
5 0.972214 617.497 0.345138,0.350913 8.58
7 0.978359 625.019 0.345078,0.350918 8.59

Table 4
Results of Example 6.3 at 𝑡 = 3 found with the numerical model (25a) and 𝑀 = 50, 𝜏 = 0.01, 𝛼𝐶𝐾 = 7 when varying
stiffness properties 𝜆, 𝜇 of the medium. Reported are maximum displacement 𝑢 and pressure 𝑝 and minimum and
maximum porosity 𝜂𝑚𝑖𝑛 , 𝜂𝑚𝑎𝑥.
10−7𝜆 10−7𝜇 [Pa] 𝑢 [mm] 𝑝 [kPa] 𝜂𝑚𝑖𝑛 𝜂𝑚𝑎𝑥
𝜆0 = 2.8846 𝜇0 = 1.9231 0.978359 625.019 0.3451 0.3509
𝜆1 = 1.5 𝜇1 = 1 1.882993 626.0367 0.4927 0.5014
𝜆2 = 6 𝜇2 = 4 0.462791 605.9685 0.4982 0.5003

For (22) to be useful, we need 𝜂(𝑥, 𝑡) as well as the actual relationship 𝜅(𝜂) itself. The latter is identified as part of results in
ection 5.4.3.
The former, the knowledge of the current porosity 𝜂(𝑥, 𝑡) follows from the porosity equation given in [59](Eq. (18)), [7](eq.(3b)).

𝜕𝑡𝜂 − ∇ ⋅ ((1 − 𝜂)𝜕𝑡𝑢) = 0, 𝜂(𝑥, 0) = 𝜂𝑖𝑛𝑖𝑡(𝑥). (23)

emark 6.1. We note that the porosity value given in (23) is the macroscopic variable relevant at the Darcy scale; this quantity
hanges locally with the deformation. The porosity variable maintains the interpretation as the local value |𝜔(𝑓 )

|

|𝜔| but this connection
to any specific 𝜔(𝑓 )(𝑥) or to the local deformation of particles found by DEM is not maintained.

6.2. Numerical scheme

Numerical schemes and simulations for the Biot model have been the subject of intense research for a variety of applications.
See e.g. the results in [2,4,5,12] for some of the numerical schemes and simulation results which have directly informed our work
in this paper.

To define the discrete Biot model, we use the well known three-field formulation which approximates 𝑝, 𝑞𝑓 using mixed finite
element method of lowest order 𝑅𝑇[0] implemented as cell centered finite differences (CCFD). For the displacements we use piecewise
linears. These choices are the same as in [2,4]. For implementation we adapt the code in our Biot capsule [60].

Let 𝑈𝑛, 𝑃 𝑛, 𝑄𝑛
𝑓 the degrees of freedom of the approximations to 𝑢, 𝑝, 𝑞𝑓 at time 𝑡𝑛 to the solutions to (21). We seek these as the

olutions to

(𝑈𝑛)

⎡

⎢

⎢

⎢

⎣

𝑈𝑛

𝑃 𝑛

𝑄𝑓
𝑛

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐴𝑢𝑢 −𝛼𝐴𝑝𝑢 0

𝛼𝐴𝑇
𝑝𝑢 𝑀𝑝𝑝 𝜏𝐴𝑞𝑓 𝑝

0 −𝐴𝑇
𝑞𝑓 𝑝

𝑀𝑞𝑓 𝑞𝑓 (𝑈
𝑛)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑈𝑛

𝑃 𝑛

𝑄𝑓
𝑛

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑛

𝑛

𝑛

⎤

⎥

⎥

⎥

⎦

, (24)

where the matrices {𝐴𝑢𝑢, 𝐴𝑝𝑢, 𝐴𝑞𝑓 𝑝,𝑀𝑝𝑝,𝑀𝑞𝑓 𝑞𝑓 } and vectors {
𝑛,𝑛,𝑛} are found in the usual way; see, e.g., [58].

In particular, the matrix 𝑀−1
𝑞𝑓 𝑞𝑓

is made of the cell-wise transmissibilities directly computed from the conductivities 𝜅
𝜇𝑓

arranged
n a diagonal. Thus the entries of matrix 𝑀−1

𝑞𝑓 𝑞𝑓
are proportional to 𝜅, i.e., in turn,  depends on 𝑈 . We denote this by writing

𝑞𝑓 𝑞𝑓 (𝑈
𝑛) in (24). In the end the problem (24) is nonlinear.

To close, we now require the particular relationship (3) as well as a solver capable of solving the resulting system (24). As we
aid we will follow a sequential approach as well as (22).

.2.1. Incorporating 𝜅 = 𝜅(𝜂)
In this paper we take the following approach. We resolve the nonlinearity in (24) by time-lagging in a sequential approach, with

he porosity treated as an auxiliary variable. We linearize (24) by time-lagging and replacing (𝑈𝑛) by (𝜂𝑛−1).
Concretely, we proceed as follows. When entering time step 𝑛, we assume 𝜂|𝑡𝑛−1 is known. (When 𝑛 = 0 we use 𝜂0). With this

e evaluate 𝜅𝑛−1 = 𝜅(𝜂𝑛−1) cell-wise. From this step we obtain the transmissibilities and recalculate the 𝑀𝑞𝑓 𝑞𝑓 (𝜅
𝑛−1) component of

(𝜂𝑛−1). Next we solve the linearized version of (24)

(𝜂𝑛−1)
⎡

⎢

⎢

𝑈𝑛

𝑃 𝑛

𝑛

⎤

⎥

⎥

=
⎡

⎢

⎢

𝑛

𝑛
𝑛

⎤

⎥

⎥

. (25a)
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Fig. 16. Results from Example 6.1 illustrate the dynamics of the Biot model (21). The plots of 𝑢, 𝑝, 𝜂, 𝜅 corresponding to 𝑀 = 100, 𝜏 = 0.001 are given at 𝑡 = 0.2
early transient), at 𝑡 = 3 (when the injection stops), and at 𝑡 = 5 when the excess fluid has almost completely drained.

Once the new values (𝑃 𝑛, 𝑈𝑛, 𝑄𝑛
𝑔) are known, we update the value of porosity from the time-discrete explicit approximation to (23)

𝜂𝑛 = 𝜂𝑛−1 + (1 − 𝜂𝑛−1)∇ℎ ⋅ (𝑢𝑛 − 𝑢𝑛−1). (25b)

hich is straightforward, since the displacements in this 𝑑 = 1 model have degrees of freedom at the grid’s vertices, and porosities
re associated with the cell centers.
With the new cell-wise values of 𝜂𝑛 known, we evaluate

𝜅|𝑡𝑛 = 𝜅(𝜂𝑛) (25c)
19

o be used in the next time step. Here we use a look up table or a Carman–Kozeny relationship that we obtain in Section 5.4.3.
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Fig. 17. Results from Example 6.2 illustrate the difference between the solutions corresponding to the permeability modified with Carman–Kozeny law (4) and
the exponent 𝛼𝐶𝐾 = 0, 5, 7 (from top to bottom). We see a significant impact in the conductivity 𝜅 and some impact on the pressure 𝑝 and displacement 𝑢.

In principle, one could iterate on 𝜂 in (25a) to obtain a consistent solution to (24). Alternatively, one could also implement a
faster solver such as Newton’s method. This approach is however very complicated, and not warranted by the typical characteristic
time of flow (fast) versus the deformation (slow).

6.3. Examples of Biot model with nonlinear data 𝜅 from upscaling (5)

We illustrate the strategy given above by a suite of examples. We do not aim to use any particular DEM results, but rather show
how the simulations are affected by the choice of data, and in particular, by the parameters 𝛼 in (4).
20
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Table 5
Data from experiment (A) as described in Section 2.2.1. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. Data in this table is
plotted in Fig. 14.
Load [kPa] Load/unload Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 L 0.385195 9.75 9.48 9.30
200 L 0.382732 9.25 8.83 8.98
300 L 0.380655 9.30 8.63 8.75
400 L 0.378662 8.43 8.23 8.48
500 L 0.376786 8.27 7.85 8.29
600 L 0.374999 7.91 7.67 8.05
700 L 0.373716 7.84 7.31 7.88
800 L 0.372107 7.65 7.16 7.60
900 L 0.370375 7.36 7.33 7.42
1000 L 0.368699 7.17 7.41 7.22
900 U 0.369448 7.31 7.58 7.26
800 U 0.370612 7.38 7.48 7.47
700 U 0.372217 7.53 7.62 7.62
600 U 0.373203 7.81 7.49 7.75
500 U 0.375142 8.05 7.76 8.03
400 U 0.376814 8.33 7.93 8.15
300 U 0.378864 8.70 8.23 8.42
200 U 0.381185 9.00 8.64 8.70
100 U 0.384485 9.28 9.20 9.16

Table 6
Data from experiment (B1) as described in Section 2.2.2. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. Data in this table is
plotted in Fig. 8.
Load [kPa] Load/unload Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 L 0.385648 9.45 9.92 9.40
200 L 0.383388 9.18 8.89 9.04
300 L 0.381468 8.81 8.63 8.69
400 L 0.379665 8.85 8.83 8.39
500 L 0.377973 8.02 8.26 8.21
600 L 0.376845 7.90 7.95 8.06
700 L 0.374740 7.57 7.43 7.79
800 L 0.373871 7.52 7.37 7.44
900 L 0.372417 7.12 7.10 7.31
1000 L 0.370882 6.90 7.05 7.00
900 U 0.371205 7.06 6.98 6.86
800 U 0.371823 7.25 7.00 6.93
700 U 0.372548 7.28 7.41 7.15
600 U 0.373992 7.64 7.71 7.39
500 U 0.375347 7.70 8.76 7.58
400 U 0.377045 7.97 7.72 7.77
300 U 0.379344 8.22 8.14 8.10
200 U 0.382380 8.95 8.86 8.58
100 U 0.385973 9.50 8.88 9.22

Example 6.1. We consider 𝛺 = (0, 1) with 𝜂|𝑡=0 = 0.35, 𝜇𝑓 = 10−3 [Pa s], 𝑐0 = 10−6, 𝜆 = 2.8446 × 107, 𝜇 = 1.9231 × 107, 𝛼 = 1,
𝜅 = 10−9[m2] (corresponds to 𝐾 = 𝜅

𝜇𝑓
= 10−6[m2 Pa s] ≈ 10−2[m∕s]). We impose 𝑢|𝜕𝛺 = 0, and 𝑝(0, 𝑡) = 0, 𝜅∇𝑝 ⋅ 𝜈|𝑥=1 = 0, and start

rom initial equilibrium with 𝑝𝑖𝑛𝑖𝑡(𝑥) = 0, 𝑢𝑖𝑛𝑖𝑡 = 0. The dynamics is driven by fluid injection from 𝑓 (𝑥, 𝑡) = 10 for 𝑡 ∈ (0, 3]. For 𝑡 > 3
there are no sources, but the fluid can drain freely through the boundary at 𝑥 = 0.

For numerical discretization we employ a uniform grid with ℎ = 1
𝑀 , and uniform time-stepping with 𝜏 = 0.1 or less. We first run

he simulation to understand the dynamics, and to test the grid convergence.
As expected, we find that during the initial transients 𝑡 < 0.3 we see an increase of the pressure 𝑝(𝑥, 𝑡) close to the injection

egion, and the displacements and porosities react appropriately. This means that the injected fluid will cause pressure to increase
nd displacements to vary until equilibrium is attained around 𝑡 = 3. Then the transients stabilize, and about 𝑡 = 3 the solutions are
close to some steady state: the injected fluid is almost completely drained at any time through the boundary 𝑥 = 0. We turn off the
fluid source at 𝑡 = 3, and the fluid now drains until the pressures and displacements stabilize towards the new steady state. At 𝑡 > 9
the pressures are very close to 𝑝 ≈ 0. In these simulations we do not allow 𝜅 to change.

We also study sensitivity of the model to the choice of spatial and time grid. We choose 𝑀 = 50,100 and various time steps 𝜏. In
Fig. 16 we present the results of𝑀 = 100, 𝜏 = 0.001 at three separate time steps 𝑡 = 0.2, 𝑡 = 3, 𝑡 = 5 corresponding to initial transients,
quasi-equilibrium, and long-term equilibrium. The results show that for a grid finer than 𝑀 = 100, 𝑡 = 0.001 the numerical solution
is almost the same as that for 𝑀 = 100, 𝑡 = 0.001. In other studies we choose therefore a slightly coarser grid 𝑀 = 50, 𝑡 = 0.01.
21
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Table 7
Data from experiment (B2) as described in Section 2.2.3. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. Data in this table is
plotted in Fig. 9.
Load [kPa] Load/unload Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 L 0.385201 9.41 9.30 8.99
200 L 0.382791 9.01 9.14 8.79
300 L 0.380846 8.61 8.40 8.48
400 L 0.378973 8.30 8.21 8.26
500 L 0.377310 8.10 7.88 8.00
600 L 0.376009 7.84 7.71 7.74
700 L 0.373783 7.52 7.28 7.44
– – – – – –
900 L 0.371229 6.93 7.01 7.12
1000 L 0.369755 6.76 6.81 6.99
900 U 0.370036 6.77 6.85 6.90
800 U 0.37065 6.94 6.77 7.02
700 U 0.371462 7.01 7.00 6.93
600 U 0.373079 7.34 7.22 7.27
500 U 0.374633 7.64 7.41 7.59
400 U 0.376510 7.66 8.08 7.66
300 U 0.378860 8.19 8.12 7.94
200 U 0.381855 8.56 8.65 8.27
100 U 0.385511 9.24 9.27 9.02

Table 8
Data from experiment (C) as described in Section 2.2.4. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. Data in this table is
plotted in Fig. 10.
Load [kPa] Load/unload Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 L 0.380594 3.26 3.44 3.23
200 L 0.378294 3.19 3.62 3.10
300 L 0.376437 3.00 2.76 2.95
400 L 0.374654 2.98 2.91 2.72
500 L 0.373035 2.70 2.87 2.73
600 L 0.371325 2.65 2.58 2.72
700 L 0.370182 2.52 2.56 2.63
800 L 0.368577 2.53 2.55 2.58
900 L 0.366990 2.59 2.25 2.54
1000 L 0.365520 2.44 2.21 2.43
900 U 0.365794 2.44 2.15 2.38
800 U 0.366479 2.48 1.88 2.31
700 U 0.367378 2.44 2.49 2.29
600 U 0.368907 2.55 2.39 2.29
500 U 0.370054 2.61 2.56 2.36
400 U 0.372673 2.86 2.75 2.56
300 U 0.374996 2.89 2.77 2.43
– – – – – –
100 U 0.381075 3.29 3.07 3.04

Example 6.2. Next we run the simulation setup from Example 6.1 using (hypothetical) models (4) with exponents 𝛼𝐶𝐾 = 5 and
𝛼𝐶𝐾 = 7 and we compare these to that when 𝜅 is fixed. Results are given in Fig. 17 and in Table 3.

Based on this example we see some dependence of the solutions {𝑢, 𝑝, 𝜅} on the choice of the model for the altered permeability
𝜅 = 𝜅(𝜂), with the largest impact on the pressures. We see that the pressure values are sensitive to the specific modification of
conductivity 𝜅 with difference of up to 5%, while the displacements and porosities differ by about 1% to 0.1%, respectively. We
also see some impact on the time to equilibrium included in Table 3.

Example 6.3. Finally we address the issue of stiffness, i.e., the sensitivity of the model to the assumed Lame parameters 𝜆, 𝜇. We
alter these in the simulation setup from Example 6.1; recall these are 𝜆0 = 2.8846 × 107 [Pa] 𝜇0 = 1.9231 × 107 [Pa]. Then we set
𝜆1 = 1.5 × 107, 𝜇1 = 107 [Pa] corresponding to about twice smaller 𝐸, solve the problem for the corresponding, 𝑢(1), 𝑝(1) as well as
porosity and permeability changes. Next we consider a ‘‘stiffer’’ case where 𝜆2 = 6107, 𝜇2 = 4107 [Pa] are about twice stiffer than
𝜆0, 𝜇0, respectively, and solve the problem for 𝑢(2), 𝑝(2). The results are given in Table 4.

The results of Example 6.3 are qualitatively similar to those in Example 6.1, thus we do not plot these. However, Table 4
shows that there is a noticeable quantitative difference between the displacements, pressures, and porosity change. In particular,
as expected, the change of stiffness by a factor of 2 results in an inversely proportional dependence of the displacement, with an
22

interesting significant difference on the porosity changes not correlated to the factor 2 or 0.5.
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Table 9
Data from experiment (D) as described in Section 2.2.5. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. Data in this table is
plotted in Fig. 11.
Load [kPa] Load/unload Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 L 0.385318 9.31 9.39 9.36
200 L 0.383105 9.11 9.02 9.06
300 L 0.381335 8.83 8.30 8.71
400 L 0.379422 8.48 9.29 8.46
500 L 0.377819 7.99 8.03 8.22
600 L 0.376208 7.78 7.92 7.94
700 L 0.374890 7.80 7.86 7.76
800 L 0.373400 7.51 7.70 7.58
900 L 0.371885 7.19 7.16 7.37
1000 L 0.370414 6.72 6.83 7.05
900 U 0.370725 7.07 7.10 7.13
800 U 0.371259 7.09 7.60 7.05
700 U 0.372112 7.26 7.35 7.18
600 U 0.373510 7.46 7.88 7.49
500 U 0.374983 7.80 8.14 7.70
400 U 0.376791 8.12 8.28 7.74
300 U 0.379038 8.32 8.02 8.27
200 U 0.382123 8.69 8.64 8.58
100 U 0.385694 9.44 9.75 8.98

Table 10
Data from experiment (D.r) as described in Section 2.2.6. Conductivities 𝐾𝑖𝑖 are reported in [Pa−1 s−1 cm2]. All
loads are on the loading cycle (as opposed to unloading). Data in this table is plotted in Fig. 12.
Load [kPa] 𝛱 (𝑖) Porosity 𝐾11 × 107 𝐾22 × 107 𝐾33 × 107

100 1 0.391437 9.61 11.2 9.88
100 2 0.415988 13.3 13.7 13.9
100 3 0.446773 22.1 22.5 20.7
100 4 0.477407 32.5 36.8 31.1
500 1 0.384005 8.37 9.87 8.38
500 2 0.408859 11.5 12.2 11.4
500 3 0.44003 19.6 19.7 18.5
500 4 0.471032 29.6 33.8 28.8
1000 1 0.376672 7.01 8.56 7.86
1000 2 0.401804 10.1 10.7 10.8
1000 3 0.433352 17.6 17.3 17.6
1000 4 0.46472 27.1 30.2 26.6

In summary, we see that the Biot model responds to the altered permeability as well as to the changes in mechanical parameters.
n general, the pressures respond more strongly to the permeability changes, and the displacements respond more strongly to the
tiffness changes. More studies are needed in the future.

. Summary and future work

In this paper we presented our efforts on connecting the pore-scale models of flow and deformation to the Darcy scale.
pecifically, we considered generation of physically realistic pore-scale geometries in response to some mechanical load using DEM.
ext we applied a pore-scale flow model and obtained upscaled values of conductivity 𝜅 corresponding to these loads. In the end

we used this data in a Biot model which has been altered to allow the incorporation of the evolving 𝜅.
We have various conclusions.
First, we believe that our process and first attempt to connect DEM, upscaling and Biot model, was successful. However, it also

ame with various challenges. We simulated physical realistic assembles of particles with DEM, but, while we wanted to include as
any particles as possible, we faced restrictions from subsequent steps. Now, as in any upscaling, we aim for the size of REV 𝜔 to
e adequate and large. However, we are limited by the resolution of flow simulations. In particular, to resolve the geometry around
he particles appropriately, we required a grid of 2003 over 𝜔; such resolution creates difficulties for the flow solver, requiring a
obust iterative large scale linear solver able to handle about #DOF ≈ 𝑂(𝜂 × 107) unknowns. Since we are not able at present to
simulate Stokes flow on significantly larger grids than with this #DOF, these constraints restrict the number 𝑁𝑝 of particles in the
assemblies to 𝑁𝑝 = 𝑂(104). On the other hand, this 𝑁𝑝 seemed sufficient from the mechanical standpoint and produced reasonably
dependable predictions.

Second, the originally linear Biot model becomes nonlinear when we use the relationship (3) between conductivity and
deformation. At the same time the DEM simulations describe the evolution of the pore-scale due to the deformation; the DEM
results we see (and use) do not quite fit within an elastic response unlike that prescribed by the Biot model. In particular, we
23

see hysteretic behavior apparent in the porosity and conductivity changes due to the load which cannot be accounted for by our
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current version of the Biot model. We also note an apparent sensitivity of the solutions to the mechanical properties assumed in
the simulations. These features suggest the need to define a process to obtain more constitutive data from DEM or other methods
consistent with a particular DEM generated assembly of particles and the considered scenarios.

We plan to address the challenges and questions raised above in future work.
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ppendix

.1. Data from upscaling

In this section we provide the numerical results from experiments.
These are given as follows: Table 5 is for the experiment (A), Table 6 is for the experiment (B1), Table 7 is for the experiment

B2), Table 8 is for the experiment (C), Table 9 is for the experiment (D), and Table 10 is for the experiment (D.r).
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