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ARTICLE INFO ABSTRACT

Keywords: In this paper we consider computational challenges associated with thermo-hydro-mechanical
Thermo-hydro-mechanical models models for simulation of subsidence due to permafrost thaw. The model we outline couples
Heterogeneous permafrost heat conduction with phase change and thermal advection to Biot’s poroelasticity equations

Heat conduction with phase change

o with attention paid to the dependence of the constitutive parameters on temperature. Our
Poroelasticity

Mixed finite elements numerical scheme uses the lowest order mixed finite elements for discretization of thermal and

Nonlinear constitutive relationships hydrological flow, and Galerkin finite elements for mechanics, and uses an implicit-explicit

Iterative solvers time stepping. We set up an iterative solver that solves the thermal subproblem followed by
the hydro-mechanical subproblem, and demonstrate its robustness in practical heterogeneous
permafrost scenarios. We also identify the challenges associated with the roughness of the
dependence of mechanical parameters on the temperature.

1. Introduction

In this paper we study and address some of the computational mathematics challenges associated with thermo-hydro-mechanical
(TpHM) models used to simulate freezing and thawing scenarios in permafrost. In particular, we focus on scenarios involving ground
subsidence due to permafrost thaw.

Permafrost is defined as ground that remains frozen for two or more years [1,2]. An increase in global climate temperatures has
accelerated thawing of permafrost, and this leads to damage of man-made infrastructure and degradation of natural landscapes. For
example, buildings, railway tracks, and pipelines in permafrost regions are affected by the ground subsidence, while the thawing of
ground ice and ice-rich terrain features such as pingos leads to the formation of large marshy lakes called thermokarsts [1].

Simulating ground subsidence in thawing permafrost is far from trivial. A holistic approach typically involves the study
of multiphysics models that consider the thermal (Tp), hydrological (H), and mechanical (M) aspects of permafrost and their
intricate coupling. We use the abbreviation “TpHM” for thermo-hydro-mechanical models, where the “p” serves to emphasize the
mathematical complexity due to phase transitions.

We mention two major characteristics for thermo-hydro-mechanical models: (i) the complexity of the governing system of
equations and (ii) the complexity of the computational scheme for numerical approximation. For (i), the standard approach is to
develop the models for the Tp, H, and M aspects individually using first principles, and then define constitutive relationships to reflect
the coupled dynamics of frozen soils. For example, frozen soils have lower hydraulic permeability and increased mechanical strength
at subzero temperatures than completely thawed soils [1,3,4]. These relationships are typically obtained empirically after conducting
in situ or laboratory experiments, and they are given by nonlinear algebraic expressions. For (ii) an appropriate computational
scheme has to be implemented carefully to efficiently and accurately solve the fully coupled TpHM model, and not all schemes
available for the individual subproblems work well together.
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Concerning (i), various TpHM models have been implemented in the applications literature; see for example [5-13]. The models
are more or less consistent between each other, insofar the governing systems of equations are concerned. At the Darcy scale, these
include heat conduction with phase change (Tp), equations of conservation of mass for the different phases and components (H),
and the balance of momentum equations (M). However, the fully coupled TpHM models presented in literature feature different
constitutive relationships employed by different authors to represent or emphasize particular attributes of permafrost.

Regarding (ii), a computational scheme has two crucial components: the discretization and the nonlinear solver. For discretiza-
tion, Galerkin finite elements (P1) are used most commonly for all Tp, H, and M components; see for example [9,11,14]. While
P1 based schemes are easy to implement, they are not conservative, an aspect which is especially important in heterogeneous
media such as permafrost where the thermal and hydrological fluxes play an important part. Approaches that respect conservation
properties include, for example, lowest order mixed finite element methods are used in [15], finite volumes in [16] and mimetic
finite differences in [17] for TpH. For thermo-poroelasticity THM models (in the absence of phase change), discontinuous Galerkin
method has been used in [18].

Following the numerical discretization, the other important aspect of computational schemes is the nonlinear solver. For example,
monolithic solvers in [9,14] use Picard’s and Newton’s methods, respectively, for fully implicit coupling. However, the computational
complexity of monolithic approaches may be inefficient for larger systems, and does not allow to use well tested robust versions of
individual model components. An alternative is a sequential (or staggered, or explicit) approach. In this approach, the fully coupled
system is broken into subproblems that are solved one after the other (say, the thermal subproblem may be solved first, followed
by the hydro-mechanical or vice-versa). The efficiency of such a sequential approach in isothermal fluid flow and geomechanical
modeling has been demonstrated in [19]. Sequential approaches may be more efficient and more flexible to implement, but they
might also only be conditionally stable. A sequential approach may iterated further at each time step until the solution converges
within a specified tolerance. This is commonly known as an iteratively coupled approach, and the solution obtained is, in principle,
the same as the that obtained using a monolithic approach.

Although in the applications literature TPpHM models have been successfully implemented to simulate practical scenarios, the
questions related to the well-posedness or robustness of the computational schemes are not addressed. Quite often, rather few details
regarding the scheme are provided, with only a mention of some commercially available software used for implementation. In the
mathematical community, such questions have been taken up, but their focus has been on thermo-poroelasticity models [15,20,21].
Moreover, most existing work on thermo-poroelasticity is done in the absence of phase change and by assuming linear constitutive
relationships, features which do not completely define TpHM models.

In this paper, we concern ourselves with the challenges raised by point (ii) above and provide a first step towards addressing
some of these challenges by building a robust conservative iterative solver for TPpHM models. We have introduced and demonstrated
the use of the lowest order mixed finite elements for heat conduction models in [22,23], and we now focus on extending their use
to the hydro-mechanical aspect of permafrost. More specifically, we approximate the temperature, enthalpy, and pressure in the
space of piecewise-constants (P0), the thermal and hydrological flux in the lowest order Raviart-Thomas space RTj, (RTO0), and the
displacements in the space of continuous bilinear elements (Q1).

Our iterative solver first applies our existing PO-PO scheme for heat conduction models, followed by a monolithic PO-RT0-Q1
solver for the hydro-mechanical subproblem. More specifically, our PO-PO solver for the thermal subproblem is implemented using
an implicit-explicit approach via operator splitting, where the thermal advection step is solved explicitly using upwinding, and
then the diffusion step is solved implicitly [24]. For our PO-RT0-Q1 hydro-mechanical solver, our implementation is based on a
monolithic scheme.

The lowest order mixed finite elements are celebrated for their mass conservation properties and ease of implementation as a cell-
centered-finite-difference scheme [25,26]. For isothermal hydro-mechanical systems, PO-RT0-Q1 elements have been widely studied
for Biot’s system of poroelasticity for single phase systems [27-29] and they are known to lead to spurious pressure oscillations in
scenarios where the liquid is nearly incompressible and the hydraulic permeability or time step is small, and may also suffer from
Poisson locking when the elastic material reaches the incompressibile limit [28,30,31]. However, in mathematical literature such
numerical artifacts have only been highlighted through the use of rather special and sometimes artificially constructed non-physical
examples with extreme parameter values that are usually not relevant to practical scenarios. In this paper we demonstrate the use
of the PO-RT0-Q1 elements in our permafrost modeling applications and show that for practical grid and time step sizes our models
do not suffer from the aforementioned artifacts.

Our contributions in this paper are as follows. We first present the TpHM model from first principles and then (a) draw
comparisons between the TpHM system and Biot’s poroelasticity equations. We highlight the role of the densities of the different
permafrost components. (b) We provide a review of the existing numerical methods for TpHM models, and isolate the potential
challenges with their extension to TpHM models. (c) We then introduce our iterative solver and prove its convergence. We show
that our solver is robust in heterogeneous scenarios and does not suffer from well-known numerical artifacts such as non-physical
oscillations or Poisson-locking. (d) Through our numerical experiments, we also identify the importance of Lipschitz continuous
regularization of dependence of elasticity parameters on the temperature for convergence of our iterative solver, and the impact of
its Lipschitz constant. We further investigate the use of equal and unequal ice and water densities which leads to different solution
dynamics in typical permafrost scenarios. To our knowledge, this is a first work undertaking study of computational mathematics
aspects of TpHM models.

In this paper we focus on permafrost thaw, and we ignore the effects predominantly associated with freezing such as frost heave
and cryosuction. Moreover, we also ignore the effects of mechanics on the heat conduction, since we expect the overburden pressures
to be small in permafrost soil scenarios. The study of these aspects is deferred to a future work.
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The outline of the paper is as follows. In Section 2 we provide details of the governing equations and constitutive relationships
of the TpHM model. In Section 3 we give details of the mixed finite element discretization. Next in Section 4 we review existing
numerical methods for TpHM models. In Section 5 we provide the details of our iterative solver and in Section 6 we demonstrate
the robustness of our solver in practical permafrost scenarios. We summarize in Section 7, and list acknowledgments of support in
Section “Acknowledgements”.

2. Model description

In this section we develop the physical models and make precise various constitutive relationships. We also state the assumptions
to be used in our analysis.

Let Q2 c RY be an open bounded connected set representing a heterogeneous domain that is occupied by permafrost. We denote
by v, the normal to dQ2. We further assume that Q is occupied by N, different non-overlapping domains 2V, with each Q) occupied
by a particular soil type or rock with its own physical parameters.

We use the subscripts /,i and r to denote liquid water, ice, and rock grain, respectively. A list of the different parameters used
in this paper is tabulated in Table 1.

We denote the function spaces M = L*(Q2), V = (H (2))/, and X = H,,,(2), where

(Hy()! = {f € (H' Q)" | floq =0}
Hyo(2) = {f € (LA | V- f € LX(Q)}.

The L? inner product is denoted by (f, f,) = [, f1/, for scalar-valued f,, f, € L*(Q) or vector-valued f,, f, € (L*(€2)), and we
1
denote the L? norm by ||f]l, = (f, f)2, Vf € L*(Q), (L*(2)). Additionally, we will make use of the following norms

1/ llos = sup (/ |f(z,x)|dx>,erL°°<0,T;L1(Q)), (1a)
t€[0,T] kej
1
I/ oz = sup ( / |f(t,x)|2dx>2,erL""(o,T;LZ(Q)), (1b)
t€[0,T] Q
T 5
I|f||2,2=< / / |f(z,x>|2dxdr> , Vf € L2(0,T; L*(2)), 10
0 Q0

for some T > 0. More details on the computation of the norms given by (1) in our numerical experiments are provided in
Appendix A.2.
We start with an assumption regarding the densities of the permafrost components.

Assumption 2.1. The density of liquid water, ice, and rock grains is constant, i.e., Ppn = const, ph € {1,i,r}, where the constants
are not necessarily equal to the same value.

The above assumption implies that liquid water, ice, and rock grains are incompressible, as is frequently assumed for permafrost
models; see, e.g., [5-7,13,14,16,32]. However, in [12], p, is assumed to depend linearly on the pressure and quadratically on the
temperature; this seems relevant for the hydrate applications studied therein. In [17], the authors consider temperature dependent
p;» p; in their TpH models of permafrost, and study the effects of assuming p; = p;. We study this aspect in numerical experiments.

2.1. Heat conduction model (Tp)
We now provide details of the thermal subproblem. We start by making the following assumption on the thermal parameters.

Assumption 2.2. The thermal parameters of liquid water, ice, and rock grains of all soil types are constants and uniformly bounded
by positive constants, i.e., 3c,,;,, C,nox € R such that
0 < cpin L ¢75¢1,0.(%) L Cpgx < 00, 0< ki < kyy ki k(X)) < kpyye < 00, Vx € Q.
We also assume that the latent heat satisfies L > 0.
Heat conduction with phase change and convection in permafrost is modeled as follows [33]
w—=V-(kVO)+V - (c;0q) = f, w=a(x,0,n), 2)

where 6 is the temperature, w is the enthalpy per unit volume, k = k(x,0) is the thermal conductivity, ¢, is the volumetric heat
capacity of liquid water, g, is the hydrological flux describing the movement of unfrozen liquid water (see Section 2.2), 7 is the
porosity of the soil, f is an external source term, and « is the nonlinear temperature-enthalpy relationship.

The nonlinear relationship a(0) is defined as

0
a(x,0,n) = / c(x, 8)ds + Ly (x,0), c(x,0) = cp(x) + (c,(x) — ¢ (x)) (%, 0), 3)

*

3
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Table 1
A list of the different variables, parameters, and relationships used in
this paper.

Notation Description/SI Unit

{l,i,r} Liquid water /, ice i, and rock grains r
Variable Description/SI Unit

0 Temperature [°C]

w Enthalpy per unit volume [J/m’]

X Water fraction [——]

4o Thermal flux [J/m? s]

p Pressure [Pa]

q Hydrological flux of liquid water [m/s]
Uy Velocity of phase/component ph € {I,i,r} [m/s]
u Displacement [m]

Parameter Description/SI Unit

0, Freezing point depression [°C]

c Heat capacity per unit volume [J/m’ °C]
k Thermal conductivity [J/m s °C]

n Porosity [——]

K Permeability [m?]

Hi Viscosity [Pas]

K Hydraulic conductivity [m/s]

A Fluid compressibility [1/Pa]

P Density [kg/m’]

7 Density ratio y =1 —p,;/p,

¢ Specific storage coefficient [1/Pa]

E Young’s modulus [Pa]

v Poisson’s ratio [——]

Ay Lamé parameters [Pa]

G Acceleration due to gravity [m/s]
Function Description

a Temperature-enthalpy function; w = a(0)
¢ £0) =1-yn(l - x,(0))

where ¢, (x) = n(x)¢; + (1 = n(x))c,(x) and ¢/ (x) = n(x)c; + (1 —n(x))c,(x) are the heat capacities of “unfrozen” (completely thawed) and
“frozen” soils, y; = y,(x, 0) is the volumetric water fraction given by the empirically determined soil type specific soil freezing curve
(SEC) (see Section 2.4.1). The freezing point depression 6, is the temperature above which water exists only in the liquid phase.
Here we choose 6, = 0 [°C].

In (2), we take the thermal conductivity k = k(x, 0) to be the harmonic weighted average

1- 1—n]7"
n;(1+'1( ;{,)+ n

k; k; k

1 r

(€]

but other choices include arithmetic, geometric average weighting or upscaling; see the discussion in [34]. Regardless, from
Assumption 2.2, it follows that

i < k(x,0) < Kppor» VX € 2, 0 ER, (5)

We refer the reader to [22,23,34] for complete details on heat conduction models in permafrost, including our results on upscaling
the Stefan problem and connecting it to permafrost models.

2.2. Hydro-mechanical model (HM)

We approximate frozen soils as poroelastic materials, and begin by reviewing the linear Biot’s poroelasticity equations used for
modeling isothermal flow and deformation in saturated porous media.

2.2.1. Linear poroelasticity for single phase system
Suppose £ is completely saturated with liquid water. In isothermal conditions, Biot’s system of poroelasticity is given by [35,36]

8 (6a)
=V -[AV -ul +2ue@)] +agVp = 1+ [pyn+ p,(1 - )] G, (6b)

cy0;p+ago,(V-u)+V-gq

where u is the displacement, p is the pressure, A, 4 are the Lamé coefficients, e(u) = % (Vu + VuT) is the linearized strain tensor,

ap is the Biot-Willis constant, ¢, is the specific storage coefficient, I is the identity matrix, and g and / are external source and
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force terms, and G is the acceleration due to gravity. The hydrological flux ¢, = —xu,~'(Vp — p;GV D) is defined using Darcy’s law,
where « is the permeability of the porous media and ; is the viscosity of water, and D = D(x) is the depth at x. For example, if
Q = (a, b) represents a column of soil with x = a representing its top and x = b its bottom, then D(x) = x — a. We also denote by
o = AV -ul +2ue(u) — pl the total stress tensor.

For an elastic material, the Lamé parameters 4 and x in (6b) are determined using the Young’s modulus E and Poisson’s ratio v
[371(Pg. 146)

Ev E

A= Toa-m VT iy )

Remark 2.1. Note that in (6a), it is assumed that rock grains are incompressible but liquid water is slightly compressible with a
non-constant density p; = p,(p). The specific storage coefficient is defined as ¢, = 5, [381(Pg. 122, Eq. 33d) [39]Pg. 170, where
B, is the compressibility of liquid water g, = pl,da%' For liquid water ¢, ~ O(10~°) [1/Pa] [40]. If the liquid water is assumed to be
incompressible, then ¢, = 0 in (6a).

Remark 2.2. In this paper we set the Biot-Willis constant a = 1, consistent with Assumption 2.1 [38](Pg. 122).

2.2.2. Flow and deformation in frozen soils

We now provide the equations for flow and deformation in frozen soils. We closely follow the presentation in [14] and fill in
the details. We will assume Assumption 2.1.

Let 2 be occupied by permafrost. The equations for conservation of mass of liquid water, ice, and rock grains are given by

[141(Eq. (3))

o)+ V - (ppxv) = p (8a)

O pin(1 = )+ V- (pn(1 = yvy) = —p @8b)

9 (p, (1 =)+ V - (p,(1 —mv,) = 0, (80)

where v,,,, ph € {1,i,r} is the velocity of phase/component ph, and j [kg/m’ s] is the rate of mass exchange between liquid water

and ice. We assume v; = v,, i.e., that the ice moves with the same velocity of rock grains v,, and that v, = o,u [14](Pg. 5).
Adding (8a), (8b), and (8c) after dividing them by p,, p; and p,, respectively, we get

alnzy +n(l= 2+ =1+ - Inzo +n(1 = 2o, + (1= o] = f - pﬂ ©
i i
The first term in (9) is 0,(1) = 0, and further rearranging the terms we get [14]1(Eq. (4))

Vb = o)l + Vo, = =y 2, (10)

i

where y =1 — p;/p; ~ 0.09 is a constant. Now, we divide (8b) by p; to get

= 2 =001 = )+ V- (11 = ). an
Substituting (11) into (10) and using v; = v, we get

V(@ —v)+ Vv =7 0,01 = 1)+ V- (1 = xpv,)] - (12)
Rearranging terms in (12) gives us

V- [d=yn = x)o] + V- I (v, — vl = 70, [n(1 = 1) (13)

This can be obtained also using ¢, = ny,(v; — v,) [411(Eq. (7)) and v, = d,u

Ve [ =yn(l = y))ou] + V- g = v9, [n(1 - x) a4
Following notation similar to [14](Pg. 7), and by denoting
{=1-ynl =y, (15)

we get from (14)
V- (ouw)+V-q =yoln(1-x)l+g, (16)

where we have included an additional source term g.
For mechanics in permafrost, we consider linear elasticity [11](Eq. 18)

— V- [AV -ul +2ue)] + Vp =1+ 3G, a7

where p = piny, + pin(1 — x) + p(1 — ), and 4, y now depend on the temperature.
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Table 2
List of primary unknowns as well as the interdependence of Tp, H, and M components through the
coupling terms in TpHM model (20).

Tp

Variable 0

Coupling terms g, from H, » from M, f (source)

H

Variable p

Coupling terms n from M, o,u from M, {(x,60,n), x(x,6,n) (data), y,(x,0) (data), g (source)
M

Variable u

Coupling terms Vp from H, A(x,0) (data), u(x,0) (data), pG from Tp, ! (source)

The system (16)—(17) is closed with Darcy’s law ¢, = —x (6, n)yl‘l(Vp — p;GV D). Here we assume the permeability to also depend
on the temperature and the porosity, and the equation for the porosity which is obtained after dividing (8c) by p, [14]1(Eq. 18)

on—=V-[(1-=n)oul=0. (18)

Before proceeding further, it is worthwhile to draw comparisons between (16) and (6a). In the region where y, = 1
(i.e., completely thawed soils), Eq. (16) reduces to Eq. (6a) in Biot’s system with ¢, = 0. Similarly, if the density variation between
ice and liquid water is ignored, i.e., if we assume p;, = p;, then y = 0, and consequently (16) reduces to (6a) with ¢, = 0. This
observation makes it clear that any computational challenges associated with isothermal flow and deformation modeling using (6)
are expected to arise for frozen soils as well. We discuss this further in Section 4.

Another interesting observation comes from comparing (16) to its counterpart in thermo-hydrological models. For thermo-
hydrological model in nondeformable media, the conservation of mass equation is given by [33,42]

K
Vg =-ynox, q= —”—(VP - p GV D). (19)
I

That is the effect of density variation acts only as a source in the conservation of mass equation. Whereas in (16), apart from the
source term yd, [;1(1 - ;(,)], y also leads to the coefficient ¢ in {o,u.

2.3. Fully coupled thermo-hydro-mechanical model (TpHM)

We now summarize our fully coupled TpHM model. We consider

dw—V - (k(x,0)V0) +V - (¢,0q) = f. w=a(x,0,n), (20a)

V(0 0,mom) + V- g —v0, [n(1 = 1] = &, (20b)

=V [Ax,0)V - ul +2u(x,0)e(w)]+ Vp = | + pG, (20c)

om—V - [(1 =nou] =0, (20d)

where the hydrological flux is given by ¢, = —«(x,6, n),ul“(Vp — p,GVD). For exposition purposes, we list the variables and

interdependent parameters in (20) in the Tp, H, and M regimes in Table 2.

2.4. Constitutive relationships

In this section we provide details of the constitutive relationships used in our TpHM model (20).

2.4.1. Soil freezing curve
In frozen soils the dependence of the water fraction y; on temperature 0 is expressed by the soil freezing curve (SFC). For our
numerical experiments we consider the following expression adapted from [5]

1; 0>0,
X = (21

Xres + (1 - ){res)eb(g_g*); o< 0*’

where y,., [-1.b 1/°[C], and 6, [°C] are parameters that depend on the soil type. More precisely, 6, denotes the temperature
above which water only exists in the liquid phase (typically 6, ~ 0 [°C]), x,.s denotes the residual water fraction at extremely low
temperatures, and b controls the steepness of the curve.

For other SFC expressions, illustrations and comparisons, the reader is referred to [23].
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2.4.2. Permeability

The permeability « of partially frozen soils decreases with water fraction which decreases with 6 [1,3,43], and is somewhat
analogous to that observed when water fraction decreases in multiphase flow, e.g., in Richards’ equation. There is also a dependence
of k¥ on the mechanical deformation frequently modeled with the dependence on the porosity 7.

We make the following assumption.

Assumption 2.3. The permeability tensor k : 2xRx[0, 1] — R¥*¢ is symmetric, uniformly bounded, and elliptic, i.€., 3&,> Kpax > 0
such that Vx € 2, 0 e R, € [0, 1]
Kninll€115 < ETR(x. 0.1 < K115 VE € R, £#0, (22)

1
where in (22) ||- ||, now denotes the standard /> norm on R? defined as ||&||, = (Z/ | |5]|2) *E= 1,8, ..., &). Further, we assume
x~! is entry-wise Lipschitz in 6, i.e., 3L, > 0 such that x € 2, V6,,6, € R, n € [0, 1]

K,.jj‘(x, 0,,1) — K;j‘(x,ol,n) <L-1|0,-06,], V1 <i,j<d. (23)

For our simulations we blend the Carman-Kozeny model [9] with impedance model [44]

3 2

n A = Ainir)

K(x,0,n) = ko Koy —— ———1, (24a)
A= il

where «,, = K ,(x) € R is the intrinsic permeability of thawed soil, «,,, = k,,/(x,0) € R is the relative permeability

(x,0) ; 6>, (24b)
K. (x,0) =

rel max { (}(l(x, 0))3 > €xin } ; 0L0,,

and #n;,, is the initial porosity, and ¢, =~ > 0 is a constant [44]. For our numerical experiments, we choose ¢, ~ = 10~ -6

in (24b) [42,44]. We further assume y; to be a constant. The reader is referred to [45] for a comprehensive list of the different
expressions of the permeability.

Note that the porosity is determined using (20d), which does not place any constraints on its maximum or minimum value. For
practical purposes, we require n € (0, 1), but as n — 0 or 1, from (24a) we see that k¥ — 0 or oo, respectively. Hence, we make the
following a-priori assumption on the porosity.

Assumption 2.4. The porosity n : 2 xR — [0, 1] is uniformly bounded
0 < pin S N1) S Ay <1, Vx € 2,1> 0. 25)
Using Assumption 2.4, we can establish the boundedness of the permeability given by (24a)

S n?m'n a- ”init)z’

ol - nmiﬂ)z ninit3
o (1= 1i0)?
~Mmas)? Miie® .
Moreover, the Lipschitz continuity assumption (23) is satisfied by (24a) due to the Lipschitz continuity of y, in 6 [23], and the lower
bound «,,; > ¢, >0.

rel Kmin

(26a)

(26b)

Kmax = KO,M(I

Remark 2.3. In order to ensure Assumption 2.4 is satisfied, we place additional checks on the porosity in our numerical
implementation. In practice, however, we observe that the variations in porosity are very small, and Assumption 2.4 is satisfied
without any additional checks.

2.4.3. Elasticity parameters

The mechanical strength of frozen soils increases with decreasing temperature [1,4]. However, in literature, expressions for the
dependence of elasticity parameters of frozen soil on temperature or water fraction are scarce. In fact, it is common to consider
complex models beyond linear elasticity to simulate the complex mechanics in permafrost. For example, elasto-plastic models are
used in [6,7,9,10] and viscoelasticity is considered in [8].

In this paper we consider only elastic properties, and need to identify an appropriate relationship for the Young’s modulus E in
non-isothermal soils. In literature, piecewise constant E(0) = E,, V0 > 6., E(0) = E;, V0 < 0, are frequently assumed, where E, and
E, denote the Young’s modulus of unfrozen and frozen soil, respectively. For example, in [7], E, = 1000 [kPa] and E, = 5000 [kPa]
are considered for a sandy-silt soil. In [14], the authors consider E, = E = E €[2,20] [MPa], but with different values of E for soils
under compression and tension. In turn, in [1](Pg. 129), affine expressions E(9) = E +(1+aldl), 6 <0 are provided for temperatures
6 € [0,—10] [°C], and under pressures of 100 [kPa]. Similar expressions are provided in [4], with an emphasis on the effect of the
pressures under which the data is obtained.
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The Poisson’s ratio is also affected by the temperature in frozen soils [1](Pg. 130) [4]. For example, it is reported that for frozen
sands, v decreases from 0.2 to 0.1 but no parametric model is given [1](Pg. 130). In experimental results reported in [4] we see
v = 0.5 as § —» 07, however no model is given.

In summary, following [1,4], we consider the following expression

E,(x); 0>0,
Ey(x,0) = (27)
E;(x) (1+ax)|0-6,]); 6<6,,

where {E,, E,,a} [Pa] are soil specific constants.
However, the discontinuity of E, in (27) causes difficulties for our iterative solver, and its unboundedness causes difficulties for
some theoretical estimates to be established. To address this, we consider a bounded regularization of Ej(0) ~ E;(6) defined as

E,; 0>0,

o E,+(E;+E;a— E)%2; 00, -5.0,]

5@ = E;(1+al0-0,1); 00,0, - 5) 8
Ef(1+a|§—9*|); 0<9,

where § [°C] > 0 is the regularization parameter and 8 < 6, — & is chosen to have a large absolute value. In practise 8 can be chosen
outside the range of temperature values considered in our examples, thus we ignore it in practice.
We are now ready to make the following assumptions regarding the elastic soil parameters.

Assumption 2.5. The Young’s modulus E : 2 xR — R and the Poisson’s ratio v : 2 — R are uniformly bounded

0 < Epiy < E(x,0) € Eppy < 00, 0< Vi S WUX) £V < 0.5, Vx € 2,60 ER. (29)

max max

Further, E is Lipschitz in 6, i.e., 3Ly > 0 such that Vx € 2, 6,,6, € R
|E(x,0,) — E(x,0,)| < L6, - 6,]. (30)
Now from Assumption 2.5 and (7) it follows that 1 = A(x,0) and u = u(x, ) are bounded in Q x R and Lipschitz in 0
0 < Apin < A%, 0) < Ay < 00, 0 < pin < (%, 0) <ty < 00, VX € 2, 0 ER. (31

We further denote the Lipschitz constants of 1 and u by L, and L,, respectively.
We see E,(6) is not Lipschitz, but from (28), the regularized expression Es(6) is, with

Ly, = (E;+Efas - E,) 67", (32)
3. Numerical scheme

We now provide details of our numerical scheme. We first rewrite the fully coupled TpHM model (20) in a mixed form as

Gw+V-qy = f, w=a(x,0,n), (33a)
kg, + V0 —k7'c,0q, = 0, (33b)
V- @ow + Vg —v0, [n(1 - )] = g (330)
-1
[5] 4 +(Vp—pGVD) = 0, (33d)
Hi
— V- [AV - ul +2ue(u)]+ Vp = 1 + pG, (33e)
o=V - [(1 =nou] =0, (339

where ¢, in (33a)-(33b) represents the conductive and convective heat flux g, = —kV0 + ¢q,0.

For simplicity of the presentation of the scheme, we assume below homogeneous Dirichlet boundary conditions 6|,, = 0
and ul,o = 0, plyo = 0. We also assume that w(x,0) = w;,,(x) € L*(2) [22], u(x,0) = u;,;,(x) € H'(2)? [46](Pg. 148), and
n(x,0) = n;,;; € L*(£2). Note that a different initial condition V - u,,;, € L*(2) is used in [36] for the well-posedness of (6).

The continuous in time variational formulation for (33) is as follows: Vi > 0 we seek 0(7), w(t) € M, q,(t) € X, u(t) €V, p(t) € M,
q,(1) € X, and n(r) € M such that

Qw,m)+ (V- qy,m) = (f,m), Vme M, w = a(x,0,n), (34a)
k' g y) — (0, V - w) — (k(0) "' )0, w) = 0, Vy € X, (34b)
(V- €©)u),m) + (V - gjm) = (v9, [n(1 = )] ,m) (340)

+(g,m), Vme M,
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-1
([ﬂ qw) — .V w) = (pGVD.y;) = 0, ¥y € X, (34d)
1
a,0,u,) = (p,V-$) = (I +9G,¢), VO €V, (34e)
©@m,m)y— (V- [(1=n)oul,m) =0, V¥me M, (34)

where the bilinear form g, : RxV XV — R is defined as
a,(0,u, p) = / Ax, )V - u)(V - ¢)+/ 2u(x, 0)e(w) : (), (35)
Q Q
with A : B= Y}, A, ;B;; denoting the double dot product of tensors. We recall now Korn’s inequality [47] which yields

ACkorm > 0 = lle@lly = Cxprpllull g1, Yu e V. (36)

Further, from (31) and (36), for a given # € R, the bilinear form a,(é,-,-) is continuous, symmetric, and coercive on V x V,
ie,VOeER, uev

010> [ 1k 006 £ €2 sy Ciy 11 @7
Q

Remark 3.1. Note that we implicitly assume that 0, u, and # are smooth enough such that the product {o,u € X in (34c) and
(1 —mou € X in (34f).

Numerical discretization. We now present the numerical discretization of (34) working in the finite dimensional subspaces
M, c M, X, C X, and ¥, C V. For simplicity of exposition, we consider d = 2 spatial dimensions and we closely follow the
notation in our work [22,23]. Let 2 C R? be covered by a rectangular grid 7" with N, cells w; ; such that Q= U; jo; ;- Each cell o; ;
has width 4, ; and h,; in the x and y direction, respectively. We denote the midpoint of the cell w;; by (x;,y;) and its four nodes
by (x,_ 1 V. 1), (x,_ I y 1), (x, +1 'Y 1), and (x, 15 Y, 1), listed clockwise starting from the bottom left node. We also denote by

2
Vil y, LYl and Vit the four sides of o, ; flsted ‘clockwise starting from the left edge. We consider a time grid 7, =1,_; +7,,

where T, >0 is the time step
We denote by M;, C M as the space of piecewise-constants (P0), by X, = RT|5; C X the lowest-order Raviart-Thomas space
(RTO), and by ¥V, c V the space of continuous bilinear elements (Q1). We also denote by (-,-), the use of the Trapezoidal-Midpoint
quadrature for numerical integration [25,26]. We also denote || f |, = (f, f)2 and || f|l, = (/. f)h, VfeM.
The basis functions of M, are the indicator functions 1, . For any 6,,w;, € M,, we denote by 6, ; = 9h|ww_ and W, ; = wy| oy
The elements of X, are vector-valued functions, and we denote the basis of X, by v, for the first cornponent and W, 1. For any
4n = (apy>4qn,) € X, we denote by 0,1 qh1|y ey and Qlﬁ? = qhzly,,+

¢. 1 . 1,and for any u, € V, we denote by Uity 1' = uhl(x M Finally, we let the vectors ©, W, P,Q, and U collect the degrees
2

1151

. For the space V,,, the basis functions are denoted by

of freedom of 0, wy,, pp» 4, and uy, in their respectlve basis. We w1ll also use an appropriate superscript to denote the time step and
iterate, and we suppress the notation of spatial heterogeneity dependence of the parameters and relationships. For example, instead
of k = k(x;,;,0;;) we simply write k = k(6),).

We now state the fully discretized scheme for (34) based on operator splitting [24,48] for the thermal equation. Given
or-twi~t € My, pi~! € My, ul™t € V), we seek 07, wh € My, g7 € X, p} € My, g/} € Xp, u} €V}, such that

Wi, mp) = i m) + 7, (V- F, (007 qh)  my) = 0,Ym;, € My, (38a)
(Wh,mp) +7,(V - goh, mp) — (Wi, my) = 7,(f",my), Ymy € M, (38b)
wy, = a0y, 1),
()" aghw), = @3V ) = 0.V € X, (38¢)
@IV -l mp) + 7, (V gyt my) = PV o d T my) =yl ot = ) my) (38d)
+1,(8", my),Ymy, € My,
KZ -1
<[M_] qlz,llfh> - (172, V.y,) = (pGVD,y;) = 0, Vy,, € X, (38e)
1
h
@, Oy, p) = D,V - ) = (" + 5" G, by, Yeby € Vi, (380
ut — un—]
pmy) = (i~ my) — 1, <(1 -V - <%> ,mh> =0, Vm, € M, (38g)
n

9
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where ki = k(0})), x, = 00, & = COn) = 1 —ym( = xp), kp = &@pm), 1 = 1), & = gG.ty), I" = I(,t1,),
7= oty xiy + ety (L= x4) + p,(1 — ), and Fy (92",q,’;l) € X, is the upwind flux defined on each edge V41 @S
> 2

ij+s

—1 .
CI@;’J Ql:’,j-*—%’ an l >0
- (39)

Fy (92_]’ ‘117.),-,,4% =

ol o 5 0" | <0,
ij+s

i+1,j ij+ %
with the similar extension to edges {yij+ 1}

Note that in (38a) and (38b) w,"‘t denotes the intermediate enthalpy that is calculated explicitly using (38a). In practice (38a) and
(38b) may be merged into one equation, but here we list them as separate equations for the sake of readability of the algorithm.
Further in (38b)-(38c¢), the thermal flux qg;’l now only represents the conductive flux, as opposed to conductive and advective
in (33a)-(33b).

Remark 3.2. Note that in (38d) since {p € My, we have V - (Cpup) = ¢V - uy in each cell o, ; € 7", Similarly, with N, € My,
in (38g) we approximate V - [(1 — )y — u;’l’l)] =1 -n)V - (up - uZ’l). Ideally, an appropriate numerical flux, such as the upwind
flux, should be used to handle the terms V - ({(d,u) and V - [(1 — )o,u], but we handle these terms approximately.

The system (38) is implicit in time and nonlinear, with the many couplings and interdependencies given in Table 2. A monolithic
approach to solve this system is possible but would require a computationally expensive and implementation intensive nonlinear
solver. For example, the use of Newton’s method would require the explicit calculation of the Jacobian of the system, which
is inefficient due to the dependencies of the hydro-mechanical constitutive relationships on temperature. To work around this
inefficiency, we consider a sequential approach and an iterative solver in Section 5 which allow to use the individual components
of Tp and HM models implemented separately.

4. Literature review of computational schemes for TpHM and THM

In this section we review some relevant literature on numerical methods for TpHM models.

The works on TpHM are primarily from the geotechnical and geophysics literature and focus on the applications to realistic
scenarios but do not provide or analyze the details of the computational models. In turn, computational mathematics literature is
rather scarce and has focused so far on THM models not involving phase change.

There are many aspects of computational schemes that need to be addressed including well-posedness (solvability) of the discrete
system, properties of approximations including conservation, stability, convergence of approximations and of iterative schemes, and
efficiency of implementation. In Section 4.1 we overview the literature results on TpHM and THM with regard to these aspects.

The scarcity of literature on the analysis of TpHM models in literature makes it important to study the challenges associated
with the thermal Tp and with the hydro-mechanical HM subproblems. This study helps to systematically build a robust solver for
the fully coupled system. Since we provide an extensive study of Tp models in permafrost in [22,23], in this paper we focus on the
hydro-mechanical models as part of TpHM; we review the relevant literature in Section 4.2. We provide a summary overview of
some of the computational schemes used in literature in the Appendix in Table A.10.

4.1. Literature overview

Below we discuss several aspects of computational schemes considered in literature.

Discretization and approximation spaces. In applications literature, most computational schemes involve the use of Galerkin
finite elements [8-11,14]. The discrete system is solved monolithically using a nonlinear solver, such as Newton’s method [9,10] or
Picard’s method [14]. Other iterative approaches have also been used; for example in [13] a splitting is followed where the thermal
subproblem is solved first followed by the hydro-mechanical subproblem.

In turn, the need for conservative schemes is recognized as crucial. In [15,19,27] conservative approaches for the flow (mixed
finite elements) are combined with Galerkin approaches for the mechanics. In particular [27,46] offer the analysis of the use of
PO-RTO0-Q1 finite elements for HM.

Well-posedness. To our knowledge, no well-posedness results exist yet for the fully coupled system (20), but there is work
towards this result, even if formulated under various assumptions. In [49], the semidiscrete Galerkin formulation is considered along
with a nonlinear temperature dependent viscosity y;(6) and thermal conductivity k(0): the authors prove the well-posedness of the
semidiscrete formulation under boundedness and growth assumptions on the y; and k. For the fully implicit in time discretization
of system (34) for thermo-poroelasticity models, the existence of a solution is shown in [15] in the absence of phase change. The
authors consider thermal advection given by ¢;q, - V6, and further use an appropriate bounded Lipschitz “cut-off” operator M to
approximate M (gy) - VO ~ VO - q;. Moreover, physical parameters are considered to be dimensionless constants.

Stability. An important aspect of iterative schemes is stability. For example, in isothermal linear poroelasticity, such schemes
may first solve the mechanics problem followed by the flow problem (undrained and drained split), or the other way around (fixed
strain or stress split). The stability of these different schemes has been analyzed in [50] for the two-field formulation of (6) using
P0-Q1 elements. The convergence and application of these schemes for (6) using PO-RT0-Q1 elements has also been analyzed
in [51,52]. In [53], an iteratively coupled approach for the PO-RT0-Q1 scheme is analyzed for linear poroelasticity, where the

10
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system is decoupled around the mean stress. In [54], the undrained and fixed stress approaches have been extended to include
the thermal subproblem, and their stability has been analyzed using the finite volume method for thermo-hydrological flow and
P1 elements for mechanics. Specifically, unconditional stability of solving the thermo-hydrological subproblem followed by the
mechanical subproblem is proved.

Iterative schemes. Another class of iterative approaches are based on the linearization method called the L-scheme [55]; for
example, the application of the L-scheme in proving the convergence of fixed stress splits using PO-RT0-Q1 elements has been
analyzed for heterogeneous [56] and nonlinear [57] poroelasticity systems. In [15], the authors present and analyze multiple
iteratively coupled schemes for (38) in the absence of phase transition. These iterative schemes are based on the L-scheme, and
their convergence is proved.

Limitations of known schemes for TpHM models. The schemes mentioned above are reported efficient, but they do not directly
apply for the TpHM model (33). For example, the scheme presented in [53] for hydro-mechanical systems is only convergent if the
liquid is assumed to be compressible and its compressibility is large enough. Convergence issues regarding the incompressibile
assumption of liquid have also been noted in [54] for thermo-poroelasticity models. Moreover, solvers based on the L-schemes
introduce a consistency error and are also only linearly convergent. The existing L-scheme approaches for thermo-poroelasticity
have also been largely presented and analyzed for models with constant physical parameters, and for linear thermal scenarios,
i.e., in the absence of phase transitions [15]. For TpHM models, however, there is an additional dependence of the hydro-mechanical
parameters on the temperature and this precludes the extension of existing convergence results of iterative schemes when applied
to TpHM models.

4.2. Challenges for hydro-mechanical problems

We discuss now some known difficulties of computational schemes for HM models. These may arise also in TpHM when the
temperature is not fixed. Of particular interest to us are the challenges for the schemes based on PO-RT0-Q1 finite elements.

For isothermal hydro-mechanical systems in the incompressible liquid case, i.e., when ¢, = 0 in (6), spurious pressure oscillations
are known to exist for low permeability « or small time step size = [30,31,58,59]. For the PO-RT0-Q1 discretization, these oscillations
are linked to the incompatibility of Q1 and PO spaces, that is, the violation of the inf-sup stability condition [28,29]. In [59], they
have been linked to the deficiency of the monotonicity of the discretization. Another well-known challenge is Poisson locking [28,31]
associated with the loss of coercivity of a, in (35) when 4 — oo. This leads to poor approximation of the displacement when coarse
spatial meshes are used.

These challenges are well-studied, and are typically handled by an appropriate numerical discretization. For example, the use
of discontinuous Galerkin [30] and Bernardi and Raugel [28] element for displacements is shown to eliminate spurious pressure
oscillations as well as Poisson locking. In [31], a non-conforming approach using Mardal-Tai-Winther elements for displacement is
considered, and the robustness with respect Poisson locking is demonstrated. In [29], a stabilized PO-RT0-Q1 approach is provided
where the displacements are bubble-enriched; this approach is shown to be robust with respect to low permeability. In [60], suitable
preconditioners are analyzed for the PO-RT0-Q1 scheme.

Path forward for HM in permafrost TpHM models. In this paper we show robustness of the PO-RT0-Q1 elements for the HM
portion of TpHM in handling practical permafrost scenarios without any need for special techniques to avoid the aforementioned
numerical artifacts. In particular, we demonstrate that unphysical oscillations may arise in dimensions d > 2, but that this happens
for the time steps not relevant in practical scenarios.

5. Iterative solver

In this section we provide details of our iterative solver to seek a numerical solution to (38). At ¢t = ¢,, given w’,;*l € M, and
u';l‘l €V, we take the following steps. We denote by superscript n, (m) the iterate (m) at time step n.

Step 1: PO-PO solver for Tp. First, we solve the thermal subproblem: given q,:l’('"_” € X, we calculate w;’('") € M, as
@ my) = @i my) = 5, (V- By (") ) g € M, (402)
Next we seek w;'l’('"), 0 € M), and qe;"’('") € X,, such that
W™ mp) + 7,V - gg ™ omy) = @, my) + 7,(f"my), (40b)
Vmy, € My, W™ = a@™ i),
K qgr ™ ) = 07V - y) = 0, Yy, € X, (40¢)

where we use time-lagging and set k = k;’[‘]. Note that (40b)-(40c) gives rise to a nonlinear system of equations and here w';l’('">, 0;’[’(”’)

and qHZ"('") denotes the solution to (40b)—(40c) obtained after using the PO-PO solver. The PO-PO solver for the thermal implicit
diffusion substep (40b)—(40c) is given in Appendix A.1, and involves a separate inner iteration at each iteration (m).
Step 2: PO-RT0-Q1 solver for HM. Next we solve for the hydro-mechanical subproblem (38d)—(38f): given 92’(”') € M, after

e My, q,';z"(’") € X, and u;’('") € V, such that

solving Step 1, we seek p,

@V d ™ my) + 7, (Vg omy) = GVl my) + (41a)

11
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ra T G = my) + 1,8 my,), Ymy, € My,
-1

K".(m)
[ ;L a "o | = GEV -y = (0, GV D), Yy, € X, (41b)
1
h
a, 07" " ) = PV ) = "+ Gl y). Vb, €V, (41¢)

where ¢/ = ¢(@7 ™ i),

Iteration. We iterate Step 1 and Step 2 till convergence (see Section 5.1 for details). We skip this step if we only aim to have a
sequential scheme.
Step 3: Porosity update. We update the porosity as follows: we seek #; € M, such that

Tn

-1 -1 u;lz_u;'z_l
(ysmp) =@, mp)+ 7, | L=m" V| ——— ), my, |, Vm;, € M), (42)

The value 7} is needed in Step 1 and Step 2 to seek a solution at time step #,,,. Here we also ensure that the bound 7} < #,,,,
required in Assumption 2.4 and discussed in Remark 2.3 holds. If not, we cut the time step 7,,, and redo Steps 1-2.

5.1. Implementation details for the iterative algorithm

The algorithm in Steps 1-2 presented by (40)-(41) is sequential: given {62‘1, pZ“,qIZ‘l,uZ“ }, it produces {9;, pZ, ql;'!,u;'!}.

We can also iterate Steps 1-2 at each time step n as follows.

Iteration of Steps 1-2: We set the initial guess for {0;’(0>,q,2’(0)u2’(0)} from {02_1"712_1’ u';z‘l ).

In each iteration m = 1,2, ... we start with {62'('"_1), pZ’(”'_]),q,Z’(m_]),uZ’(m_])} and after Steps 1-2 we obtain {6’2‘(”’), p;’l‘('"),q,:('”),
u:'l’(m)}.
We iterate until we reach an absolute or relative tolerance, i.e.,
max { leg™ . el 1€l €01l } < €qpes o, (43a)
(m) (m)
lleg”lly  lley™lla leg ™,
max R R R < €reps (43b)
oy llp™elly ™ g™y~ [lumtm]l,
where
X (m—1 : (m—1
e(gm) - 9’"1 (m) _ .9; (m )’ e;m) — pZ(M) _pz(m )’ (44)
(m) _ , n(m) n(m=1) (m) _  n(m) n,(m—1)
eq'[" =q,;,"" —d, , el =u,"" —u, .
We also denote by
_ J(m) (m=1)  (m) _  n,(m) (m=1)  (m) _ o, (m) w,(m—1)
e = ™ = a0 = =, ) = - . “5)

If the number of iterations crosses a threshold of m,,,, = 30, we report no convergence. In practice, in (43) we choose ¢,,, = 10712
and ¢,, = 107°.

The simulations in Section 6.3 are done using our implementation based on the library deal.Il [61], the C++ software library used
for finite element code modeling. In deal.Il, we use the sparse direct solver UMFPACK which is part of the SuiteSparse library [62]
when solving the linear system generated by (41).

5.2. Existence of solution at each iteration

We now prove that at each iteration (m) the system (40)-(41) is well-posed under a specific assumption. Since (42) and (40a)
are explicit, the existence and uniqueness of wZ’('") and ’7;:“ follows trivially.

For the proof for the existence of a solution to (40b)-(40c) for the Stefan problem, see [22](Lemma 7.1). This proof can be
adapted to the permafrost models considered here, since « is strictly monotone in 6 [23].

We are left with the existence and uniqueness of a solution to (41). We first rewrite (41) in the absence of external sources and

gravity in matrix-vector form

o, -% bt 0 ymm 0
V4 %’zu 0 1, By || P | =|F |, (46)
T 72 n,(m)
0 '%tn,p V4 o (o] 0

where the matrix blocks in (46) are obtained as follows from the terms in
a, (9;’!‘“"), W, ¢h) - o umm,

(p;:’('n)’ V : ¢h> - ‘%p,u PnY(M)

12
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(V q[n( m) mh) N _!%;thQInA,(m)’

Kn (m) 1
f —
[ ] q;’,(m) vp| - %q,QI"’(m),
Hi
h

where a, is the bilinear form (35), Z is the diagonal matrix with entries corresponding to ¢y (m) , and the vector & = Z .%T Ul 4+
yH" (y (@" ) — x; (™)), with H" being the diagonal matrix with entries corresponding to #;. The matrix T, o 18 dlagonal with
entries consisting of the transmissibilities due to the use of the trapezoidal-midpoint rule [26,63].

n,(m)

Lemma 5.1. Assume that y = 0. Then, for any given 6, M = M,, the system (41) has a unique solution " € My, q,;'l’(”') € X, and

U™ e v,

Proof. Since g, is symmetric and coercive, the matrix &/, is symmetric and invertible. Similarly, from Assumption 2.3, the diagonal
matrix .% has positive entries and is invertible. Hence, we can rewrite (46) after eliminating Q,"(’") as

o, —‘%’p‘u unm] 0

T T aom | T |F | (47)

2B}, 7By Ty, Tt | [P
We can further rewrite (47) as
[ JZ{“ _‘%pu Un,(m) |: 0 ]
= . (48)

_gT _z7- T m) _ 1
-], 27 (5B, @w) prn z7F

Note that the matrix in (48) is of a generalized nonsymmetric saddle point form. Under the assumption y = 0, we have Z = I (the
identity matrix), and we can further eliminate U from (48) to get

pu

(@T A, B+ 1, By Koy ggT )P"’<'">=$ (49)

Now in (49), the matrices 93;“!%_1%,;,“ and (%, p% 99 ) are both square, and symmetric positive semidefinite and
symmetric positive definite, respectively. Hence the matrix in (49) is symmetric positive definite and thus invertible, which

establishes the existence and uniqueness of P™("), and consequently of U™ and Q,™. []

Remark 5.1. We acknowledge that the assumption of y = 0 in Lemma 5.1 is rather limiting, and we plan to include the proof of
the general case in a future work. For the case of y > 0, Lemma 5.1 still holds if I — Z is small enough compared to the smallest
eigenvalue of Y = Tn‘%q,,p“%NqI _lﬁT To see this, let X = @T ' B,, and C = ZX +Y. Then, C is linear and thus Lipschitz.
Further, rewriting C = —(I - Z)X + X +Y, and recalling that the entries of I — Z are bounded pointwise below by 0 and above by y#,
C is strongly monotone if y5|| X ||, is sufficiently small compared with the smallest eigenvalues of Y. Following this, its nonsignularity
follows from [64](Thm. 5.1.4), and thus Lemma 5.1 holds in this case.

The preceding discussion shows the theoretical sensitivity of the nonsignularity of C to the value of y. However, in practice, we

have not observed C to be nonsingular for the physical value of y ~ 0.09.
Corollary 5.1. Under the assumption y = 0, the system (40)-(42) has a unique solution at each time step n and iteration (m).
Remark 5.2. As in the derivation of (34), the results here are proven for homogeneous Dirichlet boundary conditions, but can be

extended to the mixed boundary conditions, with Dirichlet conditions imposed on at least on some portion of d£2, for each of H and
M problems.

5.3. Stability of time stepping scheme and convergence of the iterative solver.

We first address stability of the explicit steps and then prove convergence of our iterative solver from Section 5.1.
Stability of explicit steps. The implicit-explicit time stepping scheme (38a)-(38b) is stable as long as the following CFL
condition is respected [48]

< min; ;{h,;. hy;} , (50)
max {sup |9,,F, |, sup |3, F,|}
where F = (Fj, F,) is the convective flux F(§) = c1q,h0 Using 0 = a~!(w), we get
1 1
0,F (w) = ———¢q,},, 0,F(w) = ————¢,q,} . (51)
wl' o (a—l(w)) 149115 Cwl2 o (a—l(w)) 191 pp

13
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Now we use the bounds ¢, < |&'| < ¢,y + LyL, which follow from the property proven in [23](Lemma 2.1) that « is monotone
with bounded derivatives. Here L, is the LlpSChltZ constant of y;, and ¢; > c,,;, from 2.2. We get

min

Cminqlzl mianZQ
sup 9, Fi| > . sup |0, Fp| > (52)

* max + LnL w max + L”L

Substituting (52) into (50) and using # < 1 from Assumpuon 2.4, we get
Cpax + LL min; ;{h,;, }
z, < < maxc X > INASAS N yj (53)
min max {sup'qlzl

,Sllp|41’,;2‘}

In practice the CFL condition (53) is not a significant restriction due to the low order of magnitude of the hydrological flux in
permafrost scenarios.
For the porosity update (42) we first rewrite (20d) as

o,(1=m+ V- (1 —mou) =0. (54
and now check that the CFL-like condition involving d,u}, = (u}, — uZ") /7, holds
min; ; {hy;, hy;}

max{suplau |sup|&u |}

T, <

7, <

(55)

If either of the conditions (53) or (55) is not satisfied, we reduce the time step and repeat Steps 1-2 until these hold. In practice,
however, we observe neither of these conditions presents a significant restriction.

Convergence of iteration of Steps 1-2 from Section 5.1.

Our proof has similar setup as that in [15]. However, a direct application of the approach from [15] does not apply due to
E = E(0) in our model. We provide a proof which is similar but not identical to that in [15]. For the purpose of the proof, we
consider the Egs. (40)—(41) in Steps 1-2 to be in a dimensionless form.

We start by proving a simple estimate for the upwind flux (39). In what follows, for simplicity we assume a uniform square grid
Th, ie., hy;=h,;=h, Vi, j. We also assume a uniform time step 7z, = zVn.

Lemma 5.2. Let 6, € M. Then Vq,,r;, € X, we have on each edge y, ;
2
Fy (0, q5)

- Fh(eh’rh)pr% ;| S ellfnlle

i+3.j ‘QH%J - Ri+%,j ’ (56)
where Qi+%’j = thm%,j and Ri+%,j = rhlm%‘j' The estimate (56) holds for all edges 7,'-%,," Vel G well.

S

Proof. For simplicity of exposition, we present the proof for an interior edge 7,, Suppose 0,1 /_,R[_+ 1,2 0. Then it follows
2 2

trivially that

FypOn>an); 1 ;= FnOporp)iy 1 | = |Qyy Ny ;60— R,1.,0;;

i+3

(57)

i+5.J

<¢ H}3X{|@i,j|} |Qi+%’j -R.1

Now suppose QH%J > 0 and RH%J < 0. Then

=¢ QH_%J@;,] - R[+% i

(58)

|Fh(9h qh)H_ ¥ 1‘7.(‘9»’},),+ J

<c’|@ljl t+ WJ i+l oJ +|R

+alOul R, 1 ‘ < ¢;max{|0,1, 10,11} <'Q

)

Similar steps can be followed for the remaining cases Ay and Vijels This proves the result. []
3 .

i+1.j

<4 max{l@,jl} ( ey +(_Ri+%,j)> =a H}f}x{l@i»/” |Q[+%J -R

1
i+3.J

-2
We next prove an auxiliary intermediate result.

Lemma 5.3. At time step n and for each iteration (m), the following estimate holds

6’ ||
(m) (m) 7€ (m) 2 TC ” (m 1) (m—l)) v
’(eW*’eg )‘ = 2 He9 ”2 n2e, Ca % po el > 0. 9

Proof. Taking the difference of the consecutive iterates in (40a) we get

() =< (91 (7.0 < 1 o))

Using m;, = ('") in (60) we get after taking using the Cauchy-Schwarz and Young inequality
‘(eﬁ,e;'"))‘ =le(v-m (o an ") - A (05 0] ,e;'"))‘ (61)

14
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V. [Fh <0n 1 n(m 1>) F, (en 1 n(m 2))] ?

TE 2
<7 [
2 2

B

for any ¢, > 0. Now on each cell w; ; we have
[v- [ (o a) - 1 o) |

- 1 — ,(m—2
<wt ¥ |m (ot an ) - B (o) |

feow;

—1 — L(m—1 (m=2
<allog o™ D Jan ™l a7

f€w;
1

— — 1 2,

<2105 ek | D Jarh ™ = | 62)
f€ow;

where we have used Lemma 5.2 in the second last inequality, and in the last inequality we have used the arithmetic-quadratic mean
inequality. Thus, we get from (62)

Hv. 7 (05 ™) = Fu (05 0] i

2
-Zfef i) o)
wi,j

2

SR el e D Y P P e ( R
@ j feaww
= 220" 12 h2 (ef]'l"’l), eg',"*”)h . (63)
Substituting (63) into (61) we get
(m) (m) TEL || (m) ””‘9 e 110yl 1
(e 5 e = o

which proves the result. []
We now proceed to the convergence proof of the iterative solver.

Theorem 5.1. Assume the following.

(1) The parameter y =0 and G = 0.
(2) The volumetric strain and strain tensors are uniformly bounded at each time step, i.e.,

L (m)
[v- 4.

€ <uZ’(m))H <M, Vm, (65)

for some M, > 0.
(3) The hydrological fluxes are uniformly bounded at each time step, i.e.,

gy ™ lleo < M,,, Vm, (66)
for some M, > 0.
Then, the iterative solver from Section 5.1 iterating Steps 1-2 (40)—(41) converges provided

o= N Ve TG B MGLE ML (©7)
min hzlll 2 4Amin 2”min .

Proof. We take difference of the consecutive iterates in (40b)-(40c) to get

" mp) + (V- e, my) = (), my), (68a)
(%“eﬁ,';),wh)h = ()", V- yp). (68b)

Taking mj, = ) in (68a) and vy, = e<’") in (68b), and adding the resulting equations we get
e ('")) +7T ( e, e ;:)) = (", ). (69)

15
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We now use the monotonicity of « [23](Lemma 2.1), Assumption 2.2, and the estimate given by Lemma 5.3 to get

05
em (m) m) e || m|? . T4 ” e lO N5y ey
con 67 i (), < 5 s+ ST 70
where we choose ¢, > 0 later in the proof.
The difference of the consecutive iterates of (41) gives
(Ve my) +o(V - &, my) = 0, (71a)
n(m) ]! nm 17!
[K ] ™" - [K—] @™ " Dy | =,V ), (71b)
Hi Hi A
/ (Amy . gyrm) _ grm=y =Dy g . g, (710)
Q

" / (”n,(i)e (uz.(m)) — pm=Dg (uz.(m—l))> s e(dy) = (e;i)’ V),
Q

where A" = 3 (0;’;“’”) and "™ =y (92’(”')). Choosing m), = e\ in (71a), y, = e\ in (71b), and ¢, = e in (71c), and adding
the equations we get

n(m ]! n(m 17!
T [K ] 41n’(m) = [K ] qz"’(mfl),e‘(]'[")
Hi Hi h

+ / (/‘ln,(m)v Ly _ gn(m=Dyy uﬂ,(m—l)) V. e
u
Q

+2/ (Mn,(m)e (“Zm)) AR (“Z'(m_l)))  e(e™) = 0. 72)
Q

After some algebraic manipulations (72) can be rewritten as

-1

K™ ) m) )y . Hm) (m) () (M) o o)

T([ Hy ] eqr[n’equn + (MY e Vo) + 2 (i Mee™), ee™)) =
h

-1 -1
B O Y i B sl B DERCS
1 H Ih ]
h
_ ((An.(m) _ An,(m—l)) V. uZ.(m—l)’ V. eZ,(m))

_2 ((”rl,(m) _ ’un,(m—l)) c <u;zl,(m—1)) P (82,(,"))) . (73)

Now, using Assumptions 2.3 and 2.5, the LHS of (73) is non-negative and can be bounded from below by

T[%] | (m)H +
Hi

The absolute value of the RHS of (73) can be bounded from above from Assumption 2.5, Assumption 2.3, and the uniform
bounds (65)-(66) by

e (e 74

V.- e(m)“ +2/4mm

1
() om) 2| ,m
TH Mo Ly < a % >h ”69 Hz

ML [V e, 2mt e ()] 57, 5

Using Young’s inequality for the first term in (75) we get

w My Lo (&7, g{m)i les™, < oMy Lo < E (m)H - ” & ) (76)

Finally, adding (70) to (73) and using the estimates (74), (75) and (76) we get

o [+ wn e ex] e
+ i ||V - € e(e(m))”2
e+ 2 w0, Lo oo

h2€1

Lo mml?
voudty Lo (2 o]+ 5 e

(m) (m)
ML V-] o5, Mt e @] 5,

16
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Rearranging terms in (77) and completing the squares we get

272 272
i _re My Lo ML ML ” (m)” +k!
" 2 2€2 4’1min 2:umin max

-1
K
+T<[M] - M, L _1—>” (m)”
H

(m)H
h

2
(ool - 22 ,) o2 (Vb - S )
< T . o
1

-1
We now choose ¢; = (4c2 (10712 kg J(h2))!, € = (Mq,LK_l ,c,,m) to get

L85 IS MZL 272
(con - Tt et B Y ot
+% [K ] ” (M)” ( min ||V - e(’")” MLA H <m>”>
+2<W e(eﬁ'"))(’z—;\d/“TLT’;“e;m)m) max] " (m)” | -
Assuming that
- 2
- 2TC/2||9£2:4|I|20KMGX ~ T M, z Ky 1:32:5 ) J;’Ijjf Y N
we have from (78),
” (M)H B H N I)H | (80)
and thus
e, > 0as m = e )

and there is a limit of the sequence {g,"("™},, which we call ¢," » € X;,. Thus the right hand side of (77) vanishes in the limit, and

H(M) Z(M) and pn .(m)

thus we obtain existence of the limits of 0, , which we call 0y, uj, and P respectively. []

Before we proceed to the numerical experiments, we make a few remarks. The quantity in (67) is considered in its dimensionless
form and we show that the estimate (67) is satisfied for practical permafrost scenarios, however, we observe that in our numerical
experiments the maximum number of iterations required by the solver increases with a decreasing time step, even if the average
number of iterations decreases with smaller time step. The first feature seems contrary to what the estimate (67) dictates, but is
perhaps rather due to the enhanced coupling enabled for smaller time steps.

6. Numerical experiments

In this section, we verify the basic properties of our algorithm; this is done in Section 6.1.

Next we apply our solver to practical permafrost scenarios. We consider practical one-dimensional soil consolidation scenarios
using homogeneous and heterogeneous domains; this is done in Section 6.2. Through these examples we demonstrate the robustness
of the solver. We also study the role of regularization of Young’s modulus E = E(6). We also study the importance of p; # p;.

Finally, in Section 6.3 we consider a two-dimensional isothermal soil consolidation example, where we demonstrate the
robustness of our solver with respect to numerical artifacts such as nonphysical pressure oscillations or Poisson locking.

6.1. Order of convergence
We start with a convergence study to obtain the order of convergence of our fully discrete scheme by adapting an example
from [15]. Our example features a known analytic solution, is not connected to any physical scenario, and we do not consider any

particular physical units.

Example 6.1 (Order of convergence in the absence of phase transition with manufactured solutions). Let x € 2 = (0, 1),7 > 0, and assume
that the temperature, pressure, and displacement profiles are given by

0(x,1) = tx(1 —x)+1, (82a)

17
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Table 3

Physical parameters in Example 6.1.
Parameter Value
Cons PR E (L i,r} 1
L 0
Kpn» ph e {l,i,r} 1
Ninit 0.5
Ky 1
Ppn> PR € {1,i,r} 1
14 0
G 0

Table 4

Results for Example 6.1 showing errors and convergence rates obtained using our scheme and iterative solver.
h T 16crllco2 16 llco,1 161122
2x1072 1x 107! 1.3047 x 1073 9.9090 x 10~ 8.6609 x 10~*
1x1072 5% 1072 6.1370 x 107* 4.7019 x 10~* 3.9582x 107*
5x 1073 25%x 1072 29751 x 1074 2.2947 x 1074 1.8906 x 10~*
Rate 1.06 1.05 1.09
h T 1Perrllco,2 [1Perrllo,1 1Perrlla2
2x1072 1x 107! 6.8927 x 1073 5.3755x 107> 4.1168 x 10
1x 1072 5x 1072 2.5580 % 1073 2.1143x 1073 1.6728 x 107°
5%x1073 2.5% 1072 1.2053 x 1075 1.0319 x 1073 7.8455 x 1076
Rate 1.25 1.19 1.19
h T 1) ¢ o 161 01 Nl oot 11617, 1122
2x1073 1x 107! 2.5407 x 10~* 2.2274 x 10~* 1.3625 x 10~
1x1072 5x 1072 7.6339 x 1073 5.8784 x 1073 42855 x 1073
5%x1073 2.5% 1072 2.8702 x 1075 2.1753 x 1073 1.7291 x 1073
Rate 1.57 1.67 1.48
h T Neterrlco 2 Heter N oot et 1122
2x1072 1x 107! 1.2029 x 10~* 1.0883 x 10+ 8.4838 x 1073
1x1072 5% 1072 3.7250 x 1073 3.0097 x 1073 2.6039 x 1073
5x1073 2.5% 1072 1.3951x 1073 1.0389 x 1073 9.6545 x 107°
Rate 1.55 1.69 1.56

u(x,t) = tx(1 —x)+ 1, (82b)
x,t) = tx(1 —=x)+ 1, (82¢)
p

We consider the Young’s modulus and the permeability as
2
E(x,0) = 5%, v(x,8) = 025, k(x,0) = 0%, Vx € 2, § € R. (83)

Consider other data listed in Table 3; in addition, assume 5 = #;,;, = 0.5 in the thermal model. Further, take y, = 1 and assume no
phase transition. We consider homogeneous Dirichlet boundary conditions for all t > 0

6(0,1) = 6(1,1) =1, (84a)
p0,1) = p(1,1) =1, (84b)
u(0,1) = u(l,1) =1, (84c)
and initial conditions 6,,;, = 1, and u;,;; = 1. The sources are calculated accordingly
FO,0) = x(1 = x) + 2t = 3[tx(1 = x) + 12[1(1 = 2x)1> + 20)[tx(1 = x) + 1], (85a)
g(x, 1) = (1 —2x) = 2tx(1 — x)[t(1 = 2x)]> + @O)[1x(1 — x) + 117, (85b)
I(x,1) = =2tx(1 = 0)[(1 = 2x)1* + 2Otx(1 — x) + 117 + (1 = 2x). (85¢)
We let r € (0,1) and compute the order of convergence of 6, p,u,q; in the || - [, || - [, @nd || - I, with results tabulated in
Table 4.

We see that we obtain order at least 1 for 0, p, ¢;, and u.
6.2. One-dimensional soil consolidation

We now test robustness of our solver in scenarios involving subsidence due to the permafrost thaw. Such scenarios have
applications for structures constructed on ground underlain with permafrost [1,4,9]. In our examples, we do not include gravity

18
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Table 5
Physical parameters used in Example 6.2. Units are as in Table 1.

Parameter Value Reference

o 4.19 x 10° [65](Section 4)

¢ 1.90 x 10° [65]1(Section 4)

c, 2.385 % 10° [431(Pg. 90)

L 306 x 10° [65](Section 4)

k; 0.58 [65](Section 4)

k; 2.30 [65](Section 4)

k, 2.92 [43]1(Pg. 90)

SFC parameters in (21): {b,0,, z,.,} = {02, 0,0.2}

E E,=20x10° [66](Pg. 407, Table 14.2)
E, =400 x 10°, a =35 [1]1(Pg. 129)
6=0.1 [°C]

v 0.30 [66](Pg. 407, Table 14.2)

it 0.45 [391(Pg. 74)

Kou 10713 [39]1(Pg. 119)

I 1.0005 x 1073 [40] at 20 [°C]

i 0 (incompressible assumption)

P 1000 [43]1(Pg. 90)

pi 917 [43]1(Pg. 90)

Py 2650 [43]1(Pg. 90)

terms to avoid having to adjust boundary and initial conditions: we focus on consolidation due to the external traction alone. We
start with a homogeneous soil example and next move to a heterogeneous case.

6.2.1. Homogeneous domain

Here the goal is to test the robustness of our solver with respect to different spatial and temporal grid sizes, and depending on
the degree of the regularization of Young’s modulus E(6) measured by its Lipschitz constant. We also compare the iterative vs the
sequential approach for (40)-(41).

Example 6.2 (One-dimensional homogeneous soil consolidation). Let £ = (0, 1) [m] be occupied by a soil with parameters as in Table 5.
For the thermal component Tp, we consider the boundary and initial conditions

6(0,1) = 10, 6(1,1) = -5, (86a)

Oiniy(¥) = =5 [°C] (86b)

For the flow and deformation model HM we consider mixed boundary conditions

50,1)v, = 10°, u(1,1) =0, (87a)
p0,0 =0, g1, v, =0, (87b)
Ujpis(x) = 0. (87¢)

The simulation is run over 7 € (0,30) [day], and we show some simulation results in Fig. 1. We report on the number of iterations
taken by the iterative solver with respect to the regularization parameter 6 in Table 6 and different discretization parameters.

We see that the solver performs robustly and converges within an average of 3—4 iterations for the grid sizes h € {1,2,4}x1072 [m]
and the time steps z € {1,24,120} [hr]. The smooth evolution of the solution can be observed, without any spurious nonphysical
oscillations.

However, the solver does not converge for small time step sizes when E(0) is discontinuous (27), but it does converge for
sufficiently smooth regularization when E = E;(0) with 6 > 0.01.

With this evidence, we now examine the convergence from Theorem 5.1. We recall now that the only potentially troublesome
terms in the assumption (79) are the last two terms which depend on the data (elasticity parameters), and the others can be made
arbitrarily small with an appropriately small z. Hence, we need in practice

272 272
o % _ M > ¢y > 0. (88)

min 2”min

C,

We check now if these are realistic. From Example 6.2, we observe that M, = O(10~3). Further, from Table 5, we have c,,, = 0(10°),
Amin = Hpmin = 0(107), and L, = L,=0( 10%). With this data, we see that (88) is satisfied, and the result of Theorem 5.1 holds.
We next study the role of the parameter y in (20).

Example 6.3. We consider the same scenario as in Example 6.2, and we re-run the simulation by setting y = 0. We plot the
hydrological fluxes to compare the results with those obtained from Example 6.2.
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Fig. 1. Results for Example 6.2 showing the solution profiles at different times (units of ¢ in the legend are [day]). Top row: temperature (left), water fraction
(middle) and enthalpy (right). Bottom row: pressure (left) and hydrological flux (middle), and displacement (right). Here we have used h = 0.02 [m] and

7 =24 [hr].
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Fig. 2. Results for Example 6.2 showing the effect of y on the flux g,. Top row: flux profiles at r = 1 (left), = 15 (middle), and r = 30 (right) when y > 0
Bottom row: flux profiles at r =1 (left), = 15 (middle), and 7 = 30 (right) when y = 0. Here we have used 4 =0.02 [m] and 7 = 24 [hr].

The results are shown in Fig. 2. When y = 0, we see that the water moves out of Q through the boundary x = 0, However, when
y # 0, the opposite happens. This is due to the fact as the frozen soil thaws, 9,7, > 0, and thus the change in the volume of ice and
liquid water acts as a negative source term in (20b) nonzero only when y # 0.

Next we study effectiveness of iterative coupling over sequential coupling (i.e., iterative coupling with only one iteration) as

well as the effect of regularization Ej(9).

Example 6.4. Consider the same scenario as in Example 6.2. We re-run our simulation allowing only one iteration in (40a)—(41)
at each time step, i.e., we consider sequential coupling only. We also use E,(6) given by (27). We denote this solution {5,17,5, als
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Table 6

Results for Example 6.2 and Example 6.5 showing the number of iterations taken by the iterative solver for regularized E; (28)
or when using a discontinuous E, (27). Note that the solver performs robustly for the homogeneous and heterogeneous cases,
but does not converge for 6 small, or when using E,.

Example 6.2 (homogeneous case) Example 6.5 (heterogeneous case)
h [m] 7 [hr] Convergence? Max/min/mean iter. Convergence Max/min/mean iter.
E,
4x1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 5/3/3.6
1 No ~/~/= No ~/~/=
2% 1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.5 Yes 5/3/3.7
1 No ~/~/= No ~/~/=
1x 1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.3 Yes 5/3/3.6
1 No ~/~/= No ~/~/=
E; with 6 =1
4x1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 5/3/3.7
1 Yes 7/3/3.0 Yes 5/2/3.0
2x1072 120 Yes 4/4/4 Yes 5/3/3.6
24 Yes 5/3/3.4 Yes 5/3/3.6
1 Yes 6/3/3.1 Yes 5/2/3.0
1x1072 120 Yes 4/3/3.8 Yes 5/3/3.6
24 Yes 4/3/3.2 Yes 5/3/3.6
1 Yes 6/2/3.1 Yes 5/2/3.1
E; with 6§ =0.1
4x1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 6/3/3.7
1 Yes 9/3/3.0 Yes 9/2/3.0
2x 1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 5/3/3.5 Yes 7/3/3.7
1 Yes 6/3/3.1 Yes 8/2/3.0
1x1072 120 Yes 4/3/3.8 Yes 5/3/3.7
24 Yes 4/3/3.2 Yes 7/3/3.6
1 Yes 7/3/3.1 No —/=/=
E; with 6 =0.01
4x1072 120 Yes 4/4/4 Yes 5/3/3.8
24 Yes 4/3/3.6 Yes 5/3/3.6
1 No ~/=/- No ~/=/-
2x 1072 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.5 Yes 6/3/3.7
1 Yes 13/3/3.0 No ~/=/-
1x1072 120 Yes 4/4/4 Yes 6/3/3.7
24 Yes 4/3/3.3 Yes 9/3/3.6
1 Yes 12/3/3.1 No 15/2/3.0

and next we compare with the solution {0, p,u, ¢;} of Example 6.2. We study the difference
Af
1/ Nl so,00

The results tabulated in Table 7 show that the difference between the solutions is only significant for small time step z = 1 [hr].
Further, maximum difference is observed in p and g;.

Af =11f = Mloowor Af rer(%) = x 100, f =6, p,q;,u. (89)

6.2.2. Heterogeneous domain
We now consider scenarios to demonstrate the robustness of the solver in heterogeneous domains.

Example 6.5 (One-dimensional heterogeneous soil consolidation). Let 2 = (0,2) [m] be occupied by sand in Q) = (0,0.4) [m] and clay
in Q® = (0.4,2) [m] with physical parameters as in Table 8. For the thermal component,
. 7 o _
0(0,1) = —2.5+ 17.5sin (275 (z + E)) +% on, 02,1) = -8, (90a)
0,/ (x) = =8. (90b)
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Table 7
Results for Example 6.4 comparing the solution obtained using iterative (with Ej;) and sequential (with E;) coupling. The
quantities presented are defined in (89). The difference is most prominent in the pressure and only when 7 is small.

h [m] 7 [hr] 4p [Pa], Ap,,(%) Aq; m/s), Aq,, (%) Au [m], Au,, (%) 46 [°Cl, 40,,(%)
4x1072 120 1.33x 1071, 0.21 2.29x 107", 0.14 7.51 x 1078, 0.003 2.57x 1072, 0.26
24 1.60, 1.95 3.12x1071°, 0.88 2.62% 107, 1.25 2.22x 1072, 0.23
1 2.13x 102, 194.75 3.92x 1078, 22.23 141 x 1074, 6.73 6.69x 1072, 0.69
2x1072 120 1.46 x 107!, 0.23 2.74x 107", 0.17 1.68 x 1077, 0.008 2.51x 1072, 0.25
24 1.90, 2.32 3.37x 1079, 0.93 2.83x 1073, 1.30 2.50x 1072, 0.25
1 1.13 x 10%, 141.43 1.98 x 1078, 11.79 7.05x 1075, 3.26 3.86x 1072, 0.39
1x1072 120 1.65x 107", 0.26 4.28x 10711, 0.27 1.89 x 107, 0.90 2.54x 1072, 0.25
24 6.39x 107!, 0.78 1.35x 10719, 0.37 1.12x 1075, 0.52 2.39x 1072, 0.24
1 5.44x10', 71.87 9.97x 107, 5.73 3.52x 1075, 1.62 2.52x 1072, 0.25
Table 8
Physical parameters used in Example 6.5. Units are as in Table 1.
Parameter Value Reference
Sand
¢, 2.128 x 10° [43]1(Pg. 90) (Quartz)
k, 8.80 [43](Pg. 90)
Py 2660 [43](Pg. 90)
SFC parameters in (21): {b,0,, z,.,} = {0.5,0,0}
E E, =20x10° [661(Pg. 407)
E; =500 x 10%, a=4.2 [1]1(Pg. 129)
6=1
v 0.25 [66](Pg. 407)
Kou 1071 [391(Pg. 119)
Ninit 0.4 [39](Pg. 74)
Clay
¢, 2.385 x 10° [43]1(Pg. 90)
k, 2.92 [43](Pg. 90)
P 2650 [43](Pg. 90)
SFC parameters in (21): {b,0,, z,.,} = {0.15,0,0.2}
E E,=15x10° [661(Pg. 406)
E; =500x10°, =046 [1](Pg. 129)
=1
v 0.30 [66](Pg. 406)
Kou 10-14 [39]1(Pg. 119)
Hinit 0.50 [391(Pg. 74)

Here # ~ N(0, 1) in (90a) is the Gaussian noise added to replicate the oscillatory nature of the in situ measured surface temperature
data; see Fig. 3 for a plot of the surface temperature. For flow and deformation, we consider the boundary and initial conditions

50,1, = 10°, u2,t)=0 (91a)
p(0,1) = 100, ¢,(2,1) - v, =0, (91b)
Ujpis(x) = 0. (910)

where the Dirichlet pressure condition on x = 0 imitates rainfall of approximately 10 [mm].

We run the simulation over ¢ € (0, 12) [month], where we take 1 [month] = 30 [day], and some plots are included in Fig. 4. We
observe no nonphysical oscillations in any of the solution profiles.

We also tabulate the number of iterations taken for different 4 and 7 in Table 6. It appears that the solver struggles to converge
when E, or E; with small 6, are used. Convergence is achieved within an average of 3—4 iterations for § > 0.1, similarly to the
homogeneous case in Example 6.2.

6.3. Two-dimensional isothermal soil consolidation

At this time we are not able to report on simulations of TpHM in d = 2, since our current work on TpH is ongoing [33]. In
this paper we report only our preliminary results on robustness of HM for heterogeneous soils. We expect this aspect to be most
significant when considering partially frozen and thawed soil layers when their material properties dramatically change.

In particular, we investigate the robustness of the PO-RT0-Q1 formulation for an example of HM featuring heterogeneity, with
focus on the appropriate time step choice. The goal is to study the possible appearance of Poisson locking or spurious pressure
oscillations. We consider a two-dimensional isothermal soil consolidation problem.
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Fig. 3. Illustration for Example 6.5 showing the surface temperature Dirichlet boundary condition.
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Fig. 4. Results for Example 6.5. Top row: the temperature (left), water fraction (middle), and enthalpy (right) profiles at different times. Bottom row: the pressure
(left), flux (middle), and displacement (right) profiles at different times. The units of time in the legend are in [month] = 30[day]. Here we use h =4 X 1072 [m]
and 7 =1 [day].

Example 6.6 (Two-dimensional heterogeneous isothermal soil consolidation). Let 2 = (0, 1) x (0, 1) [m]? be occupied by thawed sand in
QM =(0,1) x (0.5,1) [m]*> and frozen clay in 2@ = (0,1) x (0,0.5) [m]?; see Fig. 5. We consider physical parameters as in Table 8,
and consider frozen clay in 2@ to be at § = —10 [°C], and thawed sand to be at § = 5 [°C].

We consider mixed boundary conditions as follows

—10%; (x,y) €(0,0.5)x {1}

oV, = (922)

0; (x,3) € 0.5, ) x {1}, (x,y) € {0} x(0,1),
u(L,y) =0, ye(0,1), ux,00=0, x € (0,1), (92b)
p(x, 1) =0, x€(0,1), (92¢)
4/0,)-v, = 0, g(1,y)-v, =0, y€ (0, 1), g;(x,0)- v, =0, x € (0, 1), (92d)
Uinir(x,y) = 0. (92e)

We run the simulation using different grid sizes h,. h, and time steps 7. Since locking effects are most prominent near r = 0, we
run the simulation over one time step as done in [28,30].

In Fig. 6 we show solution plots corresponding to h, = h, = 3.125 x 1072 [m] and 7 = 1 [hr]: the solution profiles do not feature
oscillations. Similarly, no oscillations were observed for z € [1, 120] [hr]. However, when 7 < 1072 [s], pressure oscillations do appear;
this is shown in Fig. 7; this is a well known effect discussed, e.g., in [28,30].
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1[m]

Fig. 5. Illustration for Example 6.6 showing the domain Q.
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Fig. 6. Illustration for Example 6.6 showing the plots of the pressure p (left) and displacement components u, (middle) and u, (right) at the 7 = 1 [hr]. Here
he=h,=3.125x10" [m] and 7 =1 [hr].
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Fig. 7. Results for Example 6.6. Here we compare coarse grid (h, = h, = 3.125x 107?) and fine grid (h, = h, = 3.90625 x 107) solutions, with 7 = 107, Left:
the pressure profile is shown at the first time step when using coarse grid. Note the oscillations in the profile near the lower left corner and the interface
y = 0.5. Right: pressure profile plotted along the line x = 1073 at the first time step. It can be seen that applying spatial mesh refinement eliminates the pressure
oscillations.

To investigate further the occurrence of Poisson locking, we consider the displacement u}l(O.S,O.S) values for different grid sizes;
see Table 9. We see that no abrupt change in the displacement values occurs.

Although the pressure oscillations do arise, as anticipated, at small time steps O(1072) [s], such small time steps are infeasible for
practical permafrost simulations; usually, only the time steps of O(1) [hr]—O(1) [day] are practical, with the dynamics of thermal and
hydrological processes being fairly slow in usual scenarios [17]. We recall also that as is well known [28,30], for the cases when
small time step is required, spatial mesh refinement can be used as a remedy. We illustrate this feature in Fig. 7. For this particular
example, when the grid size is refined down to h, = h, = 3.90625 x 10~3 [m], the pressure oscillations disappear.

6.4. Summary notes regarding performance of the iterative solver
We now summarize our observations following from the tests of performance of our iterative solver (40)-(41). We see that we
can expect our TpHM solver to perform robustly in homogeneous and heterogeneous permafrost scenarios, without any non-physical

oscillations and locking.
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Table 9

Results for Example 6.6 showing the effect of grid sizes
on the displacement u:‘(045,0,5). It can be observed that
the scenarios does not suffer from any significant Poisson
locking. In the case of locking, an abrupt change in the
values would be observed, as expected from the results
reported in [28]. Here z =1 [hr].

hy = h, [m] upy = (U, tyy) [m]

1/4 (~1.00337 x 1075, -2.31849 x 10~%)
1/8 (=1.10757 x 1073, -2.39167 x 10~%)
1/16 (=1.13748 X 1073, -2.41439 x 10~%)
1/32 (—1.14727 x 1075, -2.42196 x 1073)
1/64 (=1.15060 x 1075, -2.42457 x 10~%)
1/128 (=1.15178 X 1073, -2.42549 x 10~%)
1/256 (=1.15221 X 1075, -2.42581 x 10~%)

In particular, we observe that we can successfully use reasonable grid sizes of 4 € [1 x 1072,4 x 1072] [m] and time steps
7 € [1,120] [hr] to simulate realistic scenarios involving TpHM in permafrost. With these, the solver converges within 3—4 iterations
on average. However, there are difficulties with convergence when using a discontinuous Young’s modulus E(6), or a regularization
E; of E, with a small ¢ resulting in a large Lipschitz constant L, . This practical experience agrees with the theory in Theorem 5.1.
On the plus side, using a discontinuous Young’s modulus E; and a sequential algorithm may be effective when a coarse time step
and grid size is used. This is exemplified by Example 6.4 where we compare the solution obtained using our iterative solver and a
sequential approach. In this particular example, we observe that the difference between the approaches is prominent only for a fine
grid size h = 1 x 1072 [m] and a small time step = = 1 [hr]. This also informs us that for finer grids using a sequential approach with
a discontinuous Young’s modulus may not be accurate.

More work remains to study the delicate aspects of the coupled dynamics and the iterative solver. In particular, we see that
occasionally the maximum number of iterations at some time steps increases with a decreasing time step, even if the average
iterations count decreases. These effects are exacerbated when E|, is used.

7. Summary and conclusion

In this paper we propose a discretization scheme and a solver in two variants: sequential and iterative for thermo-hydro-
mechanical models to simulate ground subsidence due to permafrost thaw. We also recommend regularization for the elastic
parameters which seems to aid the solver.

Although there are no a-priori results regarding the order of convergence of the numerical scheme, we provide a convergence
study where we show orders of convergence typical for the approximating polynomial orders when applied to the individual model
components.

We prove convergence of the iterative solver and demonstrate its robustness in practical heterogeneous soil consolidation
scenarios. We show that the use of discontinuous Young’s modulus causes difficulties for the iterative solver, but for a regularized
model with a sufficiently small Lipschitz constant, convergence is achieved.

We also compare the solutions of the iterative (with Es) and sequential (with E;) variants of the algorithm. We observe that
the difference between the two approaches is significant only for small time steps, which is surprising. Furthermore, we investigate
the effects of assuming equal liquid water and ice densities in soil consolidation scenarios, and show that the difference is seen
predominantly in the hydrological fluxes alone.

Finally, we show that the solver does not suffer from numerical artifacts such as nonphysical pressure oscillations and locking,
which are anticipated when using mixed finite elements for hydro-mechanical systems.

More work is needed to investigate the convergence of the solver. In this paper we have provided a convergence proof under
certain assumptions, which could be perhaps relaxed or lifted. In particular, we considered equal liquid water and ice densities, and
boundedness of the displacement and flux. We also do not see significant effects of the decrease in permeability in (67) directly on
the solver either theoretically or in practice, but this aspect deserves further investigation.

For the governing equations of the thermo-hydro-mechanical model, our future work involves including the effects of cryosuction
and frost heave. We also plan to consider the variations of the density of liquid water with pressure and temperature.

Lastly, in this paper we only consider rectangular meshes, partly due to the easiness of connecting this work at Darcy work to
our pore-scale work and the use of voxel geometries from xray-CT tomography. However, we plan to consider unstructured meshes
in the future work to accommodate more complicated geometries if they arise in practical scenarios.
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Appendix

A.1. Details of the PO-PO solver for Tp

Here we provide details of our PO-PO solver for solving the system of equations
Whmp) +7,(V - g mp) = ,(f.mp) + @i my), (93a)
(K agpewn), =@V -w) = 0. (93b)
where & = k(G;’l‘]). We first rewrite (93) in matrix—vector form. Let the matrices ./ , B, 0.0° and 5[;; be obtained as follows
(wh,my) — MW"
(V- agpmp) = =By, 000"
(I_I%Zslllh)h - %Qz,

where 0y collects the degrees of freedom of gp}, In its basis. Then, we can rewrite (93) as

MW" — 7, B, 0O = T, F" + MW", W" = a(0"), (94a)
r —
B, 00" + Ky Qf = 0, (94b)

or after eliminating Oy as
MW" 4+ 1,40" = MW" + 7, F", (95)

—
where o = ngﬁwg%% 9?;; 0 and F” € RMo collects the entries (f”, 1,“’/_). To seek a solution W" 0" to (95), we consider the

following algorithm [22,23]. We obtain a sequence {@""}; as follows
ROy = #a(@=D) 4 1, 0"~V — W=t — 7, F", ()
M gV 4 o oysemD = —R(@™I-D), (b) (96)
@n,(i) - Qn,(i—l) + 5@n,(i), (C)
where f;’(’;l) € 0a(0™(~D) is a diagonal matrix. We denote by da the Clarke’s generalized Jacobian, which is defined as the convex
hull da = co(dza), with the B-subdifferential
dga(@)={J, €eR|3{0,}, € D,.6, — 6, ((x)’(é'k) - J. ) 97)

where D, C R is the set where « admits a Fréchet derivative. In our implementation, we use da(f) = a/(0),V6 # 0., and we set
da(f,) = c,.

In (96), we set @0 = @"~! and we iterate till the residuals R achieve an absolute tolerance of 10712 or a relative tolerance of
10 (with respect to the first iterate).

A.2. Error norms

In Section 6.1, we compute the norms || - ||, 4. ¢ € {1,2} and || - ||, as follows
N[U
(f-8)= ) fx)g(x))h;, (98a)
j=1

1 1

N 2 N, 2
||f||2,2=<Zr,,||f<~,r,,>||§> : ||f<-,tn>||z=( h,-|f<x,-,r,,>|2> : (98b)
=1

n=1 j

J
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Table A.10
A brief review of the various computational schemes for thermo-hydro-mechanical problems.
Reference Governing equations Discretization Nonlinear solver
Nicolsky et al.” 08 [14] TpHM Galerkin finite elements Monolithic, Picard’s method
Nishimura et al.” 09 [10] TpHM Galerkin finite elements Monolithic, Newton’s method,
CODE_BRIGHT framework
Thomas et al.” 09 [11] TpHM Galerkin finite elements Monolithic; COMPASS
framework
Zhang, Michalowski’ 15 [6] TpHM - ABAQUS 6.12
Zhang et al.’16 [8] TpHM - COMSOL Multiphysics
Liu et al.’19 [7] TpHM Quadratic Lagrange for Tp, H; COMSOL Multiphysics
quadratic serendipity for M
Yu et al.’20 [13] TpHM Galerkin finite elements Sequential; MATLAB code
Shastri et al.” 21 [9] TpHM Galerkin finite elements Monolithic; CODE_BRIGHT
framework
Liu et al.” 09 [18] THM Discontinuous Galerkin Direct iteration
Brun et al.” 20 [15] THM Mixed finite elements Iterative L-scheme; Python code
Beddrich et al.” 22 [16] TpH Finite volumes Monolithic, semismooth

Newton’s method;
DUNE-PDELab framework

<n<N

N
1/ o = max 21 mlfGpale ) g€ 1,2y, (98¢)
=

where x; is the center of the cell ®; and h; = |w,| is the size of the cell.

A.3. Literature review table

Here we provide a brief overview of the different numerical discretizations and nonlinear solvers used for TpHM models. See
Table A.10.
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