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A B S T R A C T

In this paper we consider computational challenges associated with thermo-hydro-mechanical
models for simulation of subsidence due to permafrost thaw. The model we outline couples
heat conduction with phase change and thermal advection to Biot’s poroelasticity equations
with attention paid to the dependence of the constitutive parameters on temperature. Our
numerical scheme uses the lowest order mixed finite elements for discretization of thermal and
hydrological flow, and Galerkin finite elements for mechanics, and uses an implicit–explicit
time stepping. We set up an iterative solver that solves the thermal subproblem followed by
the hydro-mechanical subproblem, and demonstrate its robustness in practical heterogeneous
permafrost scenarios. We also identify the challenges associated with the roughness of the
dependence of mechanical parameters on the temperature.

1. Introduction

In this paper we study and address some of the computational mathematics challenges associated with thermo-hydro-mechanical
TpHM) models used to simulate freezing and thawing scenarios in permafrost. In particular, we focus on scenarios involving ground
ubsidence due to permafrost thaw.
Permafrost is defined as ground that remains frozen for two or more years [1,2]. An increase in global climate temperatures has

accelerated thawing of permafrost, and this leads to damage of man-made infrastructure and degradation of natural landscapes. For
example, buildings, railway tracks, and pipelines in permafrost regions are affected by the ground subsidence, while the thawing of
ground ice and ice-rich terrain features such as pingos leads to the formation of large marshy lakes called thermokarsts [1].

Simulating ground subsidence in thawing permafrost is far from trivial. A holistic approach typically involves the study
of multiphysics models that consider the thermal (Tp), hydrological (H), and mechanical (M) aspects of permafrost and their
intricate coupling. We use the abbreviation ‘‘TpHM’’ for thermo-hydro-mechanical models, where the ‘‘p’’ serves to emphasize the
mathematical complexity due to phase transitions.

We mention two major characteristics for thermo-hydro-mechanical models: (i) the complexity of the governing system of
equations and (ii) the complexity of the computational scheme for numerical approximation. For (i), the standard approach is to
develop the models for the Tp, H, and M aspects individually using first principles, and then define constitutive relationships to reflect
the coupled dynamics of frozen soils. For example, frozen soils have lower hydraulic permeability and increased mechanical strength
at subzero temperatures than completely thawed soils [1,3,4]. These relationships are typically obtained empirically after conducting
in situ or laboratory experiments, and they are given by nonlinear algebraic expressions. For (ii) an appropriate computational
scheme has to be implemented carefully to efficiently and accurately solve the fully coupled TpHM model, and not all schemes
available for the individual subproblems work well together.
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Concerning (i), various TpHM models have been implemented in the applications literature; see for example [5–13]. The models
re more or less consistent between each other, insofar the governing systems of equations are concerned. At the Darcy scale, these
nclude heat conduction with phase change (Tp), equations of conservation of mass for the different phases and components (H),
nd the balance of momentum equations (M). However, the fully coupled TpHM models presented in literature feature different
onstitutive relationships employed by different authors to represent or emphasize particular attributes of permafrost.
Regarding (ii), a computational scheme has two crucial components: the discretization and the nonlinear solver. For discretiza-

ion, Galerkin finite elements (P1) are used most commonly for all Tp, H, and M components; see for example [9,11,14]. While
1 based schemes are easy to implement, they are not conservative, an aspect which is especially important in heterogeneous
edia such as permafrost where the thermal and hydrological fluxes play an important part. Approaches that respect conservation
roperties include, for example, lowest order mixed finite element methods are used in [15], finite volumes in [16] and mimetic
inite differences in [17] for TpH. For thermo-poroelasticity THM models (in the absence of phase change), discontinuous Galerkin
ethod has been used in [18].
Following the numerical discretization, the other important aspect of computational schemes is the nonlinear solver. For example,
onolithic solvers in [9,14] use Picard’s and Newton’s methods, respectively, for fully implicit coupling. However, the computational
omplexity of monolithic approaches may be inefficient for larger systems, and does not allow to use well tested robust versions of
ndividual model components. An alternative is a sequential (or staggered, or explicit) approach. In this approach, the fully coupled
ystem is broken into subproblems that are solved one after the other (say, the thermal subproblem may be solved first, followed
y the hydro-mechanical or vice-versa). The efficiency of such a sequential approach in isothermal fluid flow and geomechanical
odeling has been demonstrated in [19]. Sequential approaches may be more efficient and more flexible to implement, but they
ight also only be conditionally stable. A sequential approach may iterated further at each time step until the solution converges
ithin a specified tolerance. This is commonly known as an iteratively coupled approach, and the solution obtained is, in principle,
he same as the that obtained using a monolithic approach.
Although in the applications literature TpHM models have been successfully implemented to simulate practical scenarios, the

uestions related to the well-posedness or robustness of the computational schemes are not addressed. Quite often, rather few details
egarding the scheme are provided, with only a mention of some commercially available software used for implementation. In the
athematical community, such questions have been taken up, but their focus has been on thermo-poroelasticity models [15,20,21].
oreover, most existing work on thermo-poroelasticity is done in the absence of phase change and by assuming linear constitutive
elationships, features which do not completely define TpHM models.
In this paper, we concern ourselves with the challenges raised by point (ii) above and provide a first step towards addressing

ome of these challenges by building a robust conservative iterative solver for TpHM models. We have introduced and demonstrated
he use of the lowest order mixed finite elements for heat conduction models in [22,23], and we now focus on extending their use
o the hydro-mechanical aspect of permafrost. More specifically, we approximate the temperature, enthalpy, and pressure in the
pace of piecewise-constants (P0), the thermal and hydrological flux in the lowest order Raviart–Thomas space 𝑅𝑇[0] (RT0), and the
displacements in the space of continuous bilinear elements (Q1).

Our iterative solver first applies our existing P0-P0 scheme for heat conduction models, followed by a monolithic P0-RT0-Q1
solver for the hydro-mechanical subproblem. More specifically, our P0-P0 solver for the thermal subproblem is implemented using
an implicit–explicit approach via operator splitting, where the thermal advection step is solved explicitly using upwinding, and
then the diffusion step is solved implicitly [24]. For our P0-RT0-Q1 hydro-mechanical solver, our implementation is based on a
monolithic scheme.

The lowest order mixed finite elements are celebrated for their mass conservation properties and ease of implementation as a cell-
centered-finite-difference scheme [25,26]. For isothermal hydro-mechanical systems, P0-RT0-Q1 elements have been widely studied
for Biot’s system of poroelasticity for single phase systems [27–29] and they are known to lead to spurious pressure oscillations in
scenarios where the liquid is nearly incompressible and the hydraulic permeability or time step is small, and may also suffer from
Poisson locking when the elastic material reaches the incompressibile limit [28,30,31]. However, in mathematical literature such
numerical artifacts have only been highlighted through the use of rather special and sometimes artificially constructed non-physical
examples with extreme parameter values that are usually not relevant to practical scenarios. In this paper we demonstrate the use
of the P0-RT0-Q1 elements in our permafrost modeling applications and show that for practical grid and time step sizes our models
do not suffer from the aforementioned artifacts.

Our contributions in this paper are as follows. We first present the TpHM model from first principles and then (a) draw
comparisons between the TpHM system and Biot’s poroelasticity equations. We highlight the role of the densities of the different
permafrost components. (b) We provide a review of the existing numerical methods for TpHM models, and isolate the potential
challenges with their extension to TpHM models. (c) We then introduce our iterative solver and prove its convergence. We show
that our solver is robust in heterogeneous scenarios and does not suffer from well-known numerical artifacts such as non-physical
oscillations or Poisson-locking. (d) Through our numerical experiments, we also identify the importance of Lipschitz continuous
regularization of dependence of elasticity parameters on the temperature for convergence of our iterative solver, and the impact of
its Lipschitz constant. We further investigate the use of equal and unequal ice and water densities which leads to different solution
dynamics in typical permafrost scenarios. To our knowledge, this is a first work undertaking study of computational mathematics
aspects of TpHM models.

In this paper we focus on permafrost thaw, and we ignore the effects predominantly associated with freezing such as frost heave
and cryosuction. Moreover, we also ignore the effects of mechanics on the heat conduction, since we expect the overburden pressures
2

to be small in permafrost soil scenarios. The study of these aspects is deferred to a future work.
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The outline of the paper is as follows. In Section 2 we provide details of the governing equations and constitutive relationships
f the TpHM model. In Section 3 we give details of the mixed finite element discretization. Next in Section 4 we review existing
umerical methods for TpHM models. In Section 5 we provide the details of our iterative solver and in Section 6 we demonstrate
he robustness of our solver in practical permafrost scenarios. We summarize in Section 7, and list acknowledgments of support in
ection ‘‘Acknowledgements’’.

. Model description

In this section we develop the physical models and make precise various constitutive relationships. We also state the assumptions
o be used in our analysis.
Let 𝛺 ⊂ R𝑑 be an open bounded connected set representing a heterogeneous domain that is occupied by permafrost. We denote

y 𝜈𝑛 the normal to 𝜕𝛺. We further assume that 𝛺 is occupied by 𝑁𝑟 different non-overlapping domains 𝛺(𝑗), with each 𝛺(𝑗) occupied
y a particular soil type or rock with its own physical parameters.
We use the subscripts 𝑙, 𝑖 and 𝑟 to denote liquid water, ice, and rock grain, respectively. A list of the different parameters used

n this paper is tabulated in Table 1.
We denote the function spaces 𝑀 = 𝐿2(𝛺), 𝑉 = (𝐻1

0 (𝛺))𝑑 , and 𝑋 = 𝐻𝑑𝑖𝑣(𝛺), where

(𝐻1
0 (𝛺))𝑑 = {𝑓 ∈ (𝐻1(𝛺))𝑑 ∣ 𝑓 |𝜕𝛺 = 0},

𝐻𝑑𝑖𝑣(𝛺) = {𝑓 ∈ (𝐿2(𝛺))𝑑 ∣ ∇ ⋅ 𝑓 ∈ 𝐿2(𝛺)}.

he 𝐿2 inner product is denoted by (𝑓1, 𝑓2) = ∫𝛺 𝑓1𝑓2 for scalar-valued 𝑓1, 𝑓2 ∈ 𝐿2(𝛺) or vector-valued 𝑓1, 𝑓2 ∈ (𝐿2(𝛺))𝑑 , and we
enote the 𝐿2 norm by ‖𝑓‖2 = (𝑓, 𝑓 )

1
2 , ∀𝑓 ∈ 𝐿2(𝛺), (𝐿2(𝛺))𝑑 . Additionally, we will make use of the following norms

‖𝑓‖∞,1 = sup
𝑡∈[0,𝑇 ]

(

∫𝛺
|𝑓 (𝑡, 𝑥)|𝑑𝑥

)

, ∀𝑓 ∈ 𝐿∞(0, 𝑇 ;𝐿1(𝛺)), (1a)

‖𝑓‖∞,2 = sup
𝑡∈[0,𝑇 ]

(

∫𝛺
|𝑓 (𝑡, 𝑥)|2𝑑𝑥

)
1
2
, ∀𝑓 ∈ 𝐿∞(0, 𝑇 ;𝐿2(𝛺)), (1b)

‖𝑓‖2,2 =
(

∫

𝑇

0 ∫𝛺
|𝑓 (𝑡, 𝑥)|2𝑑𝑥𝑑𝑡

)

1
2
, ∀𝑓 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)), (1c)

for some 𝑇 > 0. More details on the computation of the norms given by (1) in our numerical experiments are provided in
Appendix A.2.

We start with an assumption regarding the densities of the permafrost components.

Assumption 2.1. The density of liquid water, ice, and rock grains is constant, i.e., 𝜌𝑝ℎ = 𝑐𝑜𝑛𝑠𝑡, 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟}, where the constants
are not necessarily equal to the same value.

The above assumption implies that liquid water, ice, and rock grains are incompressible, as is frequently assumed for permafrost
models; see, e.g., [5–7,13,14,16,32]. However, in [12], 𝜌𝑙 is assumed to depend linearly on the pressure and quadratically on the
temperature; this seems relevant for the hydrate applications studied therein. In [17], the authors consider temperature dependent
𝜌𝑙 , 𝜌𝑖 in their TpH models of permafrost, and study the effects of assuming 𝜌𝑙 = 𝜌𝑖. We study this aspect in numerical experiments.

2.1. Heat conduction model (Tp)

We now provide details of the thermal subproblem. We start by making the following assumption on the thermal parameters.

Assumption 2.2. The thermal parameters of liquid water, ice, and rock grains of all soil types are constants and uniformly bounded
by positive constants, i.e., ∃𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 ∈ R such that

0 < 𝑐𝑚𝑖𝑛 ≤ 𝑐𝑙 , 𝑐𝑖, 𝑐𝑟(𝑥) ≤ 𝑐𝑚𝑎𝑥 <∞, 0 < 𝑘𝑚𝑖𝑛 ≤ 𝑘𝑙 , 𝑘𝑖, 𝑘𝑟(𝑥) ≤ 𝑘𝑚𝑎𝑥 <∞, ∀𝑥 ∈ 𝛺.

We also assume that the latent heat satisfies 𝐿 ≥ 0.

Heat conduction with phase change and convection in permafrost is modeled as follows [33]

𝜕𝑡𝑤 − ∇ ⋅ (𝑘∇𝜃) + ∇ ⋅ (𝑐𝑙𝜃𝑞𝑙) = 𝑓, 𝑤 = 𝛼(𝑥, 𝜃, 𝜂), (2)

where 𝜃 is the temperature, 𝑤 is the enthalpy per unit volume, 𝑘 = 𝑘(𝑥, 𝜃) is the thermal conductivity, 𝑐𝑙 is the volumetric heat
capacity of liquid water, 𝑞𝑙 is the hydrological flux describing the movement of unfrozen liquid water (see Section 2.2), 𝜂 is the
porosity of the soil, 𝑓 is an external source term, and 𝛼 is the nonlinear temperature-enthalpy relationship.

The nonlinear relationship 𝛼(𝜃) is defined as

𝛼(𝑥, 𝜃, 𝜂) =
𝜃
𝑐(𝑥, 𝑠)𝑑𝑠 + 𝐿𝜂𝜒𝑙(𝑥, 𝜃), 𝑐(𝑥, 𝜃) = 𝑐𝑓 (𝑥) + (𝑐𝑢(𝑥) − 𝑐𝑓 (𝑥))𝜒𝑙(𝑥, 𝜃), (3)
3
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Table 1
A list of the different variables, parameters, and relationships used in
this paper.
Notation Description/SI Unit

{𝑙, 𝑖, 𝑟} Liquid water 𝑙, ice 𝑖, and rock grains 𝑟

Variable Description/SI Unit

𝜃 Temperature [◦C]
𝑤 Enthalpy per unit volume [J/m3]
𝜒𝑙 Water fraction [−−]
𝑞𝜃 Thermal flux [J/m2 s]
𝑝 Pressure [Pa]
𝑞𝑙 Hydrological flux of liquid water [m∕s]
𝑣𝑝ℎ Velocity of phase/component 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟} [m∕s]
𝑢 Displacement [m]

Parameter Description/SI Unit

𝜃∗ Freezing point depression [◦C]
𝑐 Heat capacity per unit volume [J/m3 ◦C]
𝑘 Thermal conductivity [J/m s ◦C]
𝜂 Porosity [−−]
𝜅 Permeability [m2]
𝜇𝑙 Viscosity [Pas]
𝐾 Hydraulic conductivity [m∕s]
𝛽𝑙 Fluid compressibility [1∕Pa]
𝜌 Density [kg/m3]
𝛾 Density ratio 𝛾 = 1 − 𝜌𝑖∕𝜌𝑙
𝑐0 Specific storage coefficient [1∕Pa]
𝐸 Young’s modulus [Pa]
𝜈 Poisson’s ratio [−−]
𝜆, 𝜇 Lamé parameters [Pa]
𝐺 Acceleration due to gravity [m/s2]

Function Description

𝛼 Temperature-enthalpy function; 𝑤 = 𝛼(𝜃)
𝜁 𝜁 (𝜃) = 1 − 𝛾𝜂(1 − 𝜒𝑙(𝜃))

where 𝑐𝑢(𝑥) = 𝜂(𝑥)𝑐𝑙 +(1− 𝜂(𝑥))𝑐𝑟(𝑥) and 𝑐𝑓 (𝑥) = 𝜂(𝑥)𝑐𝑖+(1− 𝜂(𝑥))𝑐𝑟(𝑥) are the heat capacities of ‘‘unfrozen’’ (completely thawed) and
‘‘frozen’’ soils, 𝜒𝑙 = 𝜒𝑙(𝑥, 𝜃) is the volumetric water fraction given by the empirically determined soil type specific soil freezing curve
(SFC) (see Section 2.4.1). The freezing point depression 𝜃∗ is the temperature above which water exists only in the liquid phase.
Here we choose 𝜃∗ = 0 [◦C].

In (2), we take the thermal conductivity 𝑘 = 𝑘(𝑥, 𝜃) to be the harmonic weighted average

𝑘 =
[

𝜂𝜒𝑙
𝑘𝑙

+
𝜂(1 − 𝜒𝑙)

𝑘𝑖
+

1 − 𝜂
𝑘𝑟

]−1
. (4)

but other choices include arithmetic, geometric average weighting or upscaling; see the discussion in [34]. Regardless, from
Assumption 2.2, it follows that

𝑘𝑚𝑖𝑛 ≤ 𝑘(𝑥, 𝜃) ≤ 𝑘𝑚𝑎𝑥, ∀𝑥 ∈ 𝛺, 𝜃 ∈ R, (5)

We refer the reader to [22,23,34] for complete details on heat conduction models in permafrost, including our results on upscaling
the Stefan problem and connecting it to permafrost models.

2.2. Hydro-mechanical model (HM)

We approximate frozen soils as poroelastic materials, and begin by reviewing the linear Biot’s poroelasticity equations used for
modeling isothermal flow and deformation in saturated porous media.

2.2.1. Linear poroelasticity for single phase system
Suppose 𝛺 is completely saturated with liquid water. In isothermal conditions, Biot’s system of poroelasticity is given by [35,36]

𝑐0𝜕𝑡𝑝 + 𝛼𝐵𝜕𝑡(∇ ⋅ 𝑢) + ∇ ⋅ 𝑞𝑙 = 𝑔, (6a)
− ∇ ⋅ [𝜆∇ ⋅ 𝑢𝐼 + 2𝜇𝜖(𝑢)] + 𝛼𝐵∇𝑝 = 𝑙 +

[

𝜌𝑙𝜂 + 𝜌𝑟(1 − 𝜂)
]

𝐺, (6b)

where 𝑢 is the displacement, 𝑝 is the pressure, 𝜆, 𝜇 are the Lamé coefficients, 𝜖(𝑢) = 1
2

(

∇𝑢 + ∇𝑢𝑇
)

is the linearized strain tensor,
𝛼 is the Biot–Willis constant, 𝑐 is the specific storage coefficient, 𝐼 is the identity matrix, and 𝑔 and 𝑙 are external source and
4
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force terms, and 𝐺 is the acceleration due to gravity. The hydrological flux 𝑞𝑙 = −𝜅𝜇𝑙−1(∇𝑝 − 𝜌𝑙𝐺∇𝐷) is defined using Darcy’s law,
where 𝜅 is the permeability of the porous media and 𝜇𝑙 is the viscosity of water, and 𝐷 = 𝐷(𝑥) is the depth at 𝑥. For example, if
𝛺 = (𝑎, 𝑏) represents a column of soil with 𝑥 = 𝑎 representing its top and 𝑥 = 𝑏 its bottom, then 𝐷(𝑥) = 𝑥 − 𝑎. We also denote by
̃ = 𝜆∇ ⋅ 𝑢𝐼 + 2𝜇𝜖(𝑢) − 𝑝𝐼 the total stress tensor.

For an elastic material, the Lamé parameters 𝜆 and 𝜇 in (6b) are determined using the Young’s modulus 𝐸 and Poisson’s ratio 𝜈
[37](Pg. 146)

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜈 = 𝐸
2(1 + 𝜈)

. (7)

Remark 2.1. Note that in (6a), it is assumed that rock grains are incompressible but liquid water is slightly compressible with a
non-constant density 𝜌𝑙 = 𝜌𝑙(𝑝). The specific storage coefficient is defined as 𝑐0 = 𝜂𝛽𝑙 [38](Pg. 122, Eq. 33d) [39]Pg. 170, where
𝛽𝑙 is the compressibility of liquid water 𝛽𝑙 =

1
𝜌𝑙
𝜕𝜌𝑙
𝜕𝑝 . For liquid water 𝑐0 ≈ 𝑂(10−9) [1∕Pa] [40]. If the liquid water is assumed to be

incompressible, then 𝑐0 = 0 in (6a).

Remark 2.2. In this paper we set the Biot-Willis constant 𝛼𝐵 = 1, consistent with Assumption 2.1 [38](Pg. 122).

2.2.2. Flow and deformation in frozen soils
We now provide the equations for flow and deformation in frozen soils. We closely follow the presentation in [14] and fill in

the details. We will assume Assumption 2.1.
Let 𝛺 be occupied by permafrost. The equations for conservation of mass of liquid water, ice, and rock grains are given by

[14](Eq. (3))

𝜕𝑡(𝜌𝑙𝜂𝜒𝑙) + ∇ ⋅ (𝜌𝑙𝜂𝜒𝑙𝑣𝑙) = 𝜌̂ (8a)
𝜕𝑡(𝜌𝑖𝜂(1 − 𝜒𝑙)) + ∇ ⋅ (𝜌𝑖𝜂(1 − 𝜒𝑙)𝑣𝑖) = −𝜌̂ (8b)

𝜕𝑡(𝜌𝑟(1 − 𝜂)) + ∇ ⋅ (𝜌𝑟(1 − 𝜂)𝑣𝑟) = 0, (8c)

here 𝑣𝑝ℎ, 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟} is the velocity of phase/component 𝑝ℎ, and 𝜌̂ [kg∕m3 s] is the rate of mass exchange between liquid water
nd ice. We assume 𝑣𝑖 = 𝑣𝑟, i.e., that the ice moves with the same velocity of rock grains 𝑣𝑟, and that 𝑣𝑟 = 𝜕𝑡𝑢 [14](Pg. 5).
Adding (8a), (8b), and (8c) after dividing them by 𝜌𝑙 , 𝜌𝑖 and 𝜌𝑟, respectively, we get

𝜕𝑡[𝜂𝜒𝑙 + 𝜂(1 − 𝜒𝑙) + (1 − 𝜂)] + ∇ ⋅ [𝜂𝜒𝑙𝑣𝑙 + 𝜂(1 − 𝜒𝑙)𝑣𝑟 + (1 − 𝜂)𝑣𝑟] =
𝜌̂
𝜌𝑙

−
𝜌̂
𝜌𝑖
. (9)

The first term in (9) is 𝜕𝑡(1) = 0, and further rearranging the terms we get [14](Eq. (4))

∇ ⋅ [𝜂𝜒𝑙(𝑣𝑙 − 𝑣𝑟)] + ∇ ⋅ 𝑣𝑟 = −𝛾
𝜌̂
𝜌𝑖
, (10)

where 𝛾 = 1 − 𝜌𝑖∕𝜌𝑙 ≈ 0.09 is a constant. Now, we divide (8b) by 𝜌𝑖 to get

−
𝜌̂
𝜌𝑖

= 𝜕𝑡(𝜂(1 − 𝜒𝑙)) + ∇ ⋅ (𝜂(1 − 𝜒𝑙)𝑣𝑖). (11)

Substituting (11) into (10) and using 𝑣𝑖 = 𝑣𝑟 we get

∇ ⋅ (𝜂𝜒𝑙(𝑣𝑙 − 𝑣𝑟)) + ∇ ⋅ 𝑣𝑟 = 𝛾
[

𝜕𝑡(𝜂(1 − 𝜒𝑙)) + ∇ ⋅ (𝜂(1 − 𝜒𝑙)𝑣𝑟)
]

. (12)

Rearranging terms in (12) gives us

∇ ⋅
[

(1 − 𝛾𝜂(1 − 𝜒𝑙))𝑣𝑟
]

+ ∇ ⋅ [𝜂𝜒𝑙(𝑣𝑙 − 𝑣𝑟)] = 𝛾𝜕𝑡
[

𝜂(1 − 𝜒𝑙)
]

(13)

This can be obtained also using 𝑞𝑙 = 𝜂𝜒𝑙(𝑣𝑙 − 𝑣𝑟) [41](Eq. (7)) and 𝑣𝑟 = 𝜕𝑡𝑢

∇ ⋅
[

(1 − 𝛾𝜂(1 − 𝜒𝑙))𝜕𝑡𝑢
]

+ ∇ ⋅ 𝑞𝑙 = 𝛾𝜕𝑡
[

𝜂(1 − 𝜒𝑙)
]

(14)

Following notation similar to [14](Pg. 7), and by denoting

𝜁 = 1 − 𝛾𝜂(1 − 𝜒𝑙), (15)

we get from (14)

∇ ⋅ (𝜁𝜕𝑡𝑢) + ∇ ⋅ 𝑞𝑙 = 𝛾𝜕𝑡[𝜂(1 − 𝜒𝑙)] + 𝑔, (16)

where we have included an additional source term 𝑔.
For mechanics in permafrost, we consider linear elasticity [11](Eq. 18)

− ∇ ⋅ [𝜆∇ ⋅ 𝑢𝐼 + 2𝜇𝜖(𝑢)] + ∇𝑝 = 𝑙 + 𝜌𝐺, (17)

where 𝜌 = 𝜌 𝜂𝜒 + 𝜌 𝜂(1 − 𝜒 ) + 𝜌 (1 − 𝜂), and 𝜆, 𝜇 now depend on the temperature.
5

𝑙 𝑙 𝑖 𝑙 𝑟



Results in Applied Mathematics 22 (2024) 100439N. Vohra and M. Peszynska
Table 2
List of primary unknowns as well as the interdependence of Tp, H, and M components through the
coupling terms in TpHM model (20).
Tp

Variable 𝜃
Coupling terms 𝑞𝑙 from H, 𝜂 from M, 𝑓 (source)

H

Variable 𝑝
Coupling terms 𝜂 from M, 𝜕𝑡𝑢 from M, 𝜁 (𝑥, 𝜃, 𝜂), 𝜅(𝑥, 𝜃, 𝜂) (data), 𝜒𝑙(𝑥, 𝜃) (data), 𝑔 (source)

M

Variable 𝑢
Coupling terms ∇𝑝 from H, 𝜆(𝑥, 𝜃) (data), 𝜇(𝑥, 𝜃) (data), 𝜌𝐺 from Tp, 𝑙 (source)

The system (16)–(17) is closed with Darcy’s law 𝑞𝑙 = −𝜅(𝜃, 𝜂)𝜇−1𝑙 (∇𝑝− 𝜌𝑙𝐺∇𝐷). Here we assume the permeability to also depend
on the temperature and the porosity, and the equation for the porosity which is obtained after dividing (8c) by 𝜌𝑟 [14](Eq. 18)

𝜕𝑡𝜂 − ∇ ⋅ [(1 − 𝜂)𝜕𝑡𝑢] = 0. (18)

Before proceeding further, it is worthwhile to draw comparisons between (16) and (6a). In the region where 𝜒𝑙 = 1
(i.e., completely thawed soils), Eq. (16) reduces to Eq. (6a) in Biot’s system with 𝑐0 = 0. Similarly, if the density variation between
ice and liquid water is ignored, i.e., if we assume 𝜌𝑖 = 𝜌𝑙, then 𝛾 = 0, and consequently (16) reduces to (6a) with 𝑐0 = 0. This
observation makes it clear that any computational challenges associated with isothermal flow and deformation modeling using (6)
are expected to arise for frozen soils as well. We discuss this further in Section 4.

Another interesting observation comes from comparing (16) to its counterpart in thermo-hydrological models. For thermo-
hydrological model in nondeformable media, the conservation of mass equation is given by [33,42]

∇ ⋅ 𝑞𝑙 = −𝛾𝜂𝜕𝑡𝜒𝑙 , 𝑞𝑙 = − 𝜅
𝜇𝑙

(∇𝑝 − 𝜌𝑙𝐺∇𝐷). (19)

That is the effect of density variation acts only as a source in the conservation of mass equation. Whereas in (16), apart from the
source term 𝛾𝜕𝑡

[

𝜂(1 − 𝜒𝑙)
]

, 𝛾 also leads to the coefficient 𝜁 in 𝜁𝜕𝑡𝑢.

2.3. Fully coupled thermo-hydro-mechanical model (TpHM)

We now summarize our fully coupled TpHM model. We consider

𝜕𝑡𝑤 − ∇ ⋅ (𝑘(𝑥, 𝜃)∇𝜃) + ∇ ⋅ (𝑐𝑙𝜃𝑞𝑙) = 𝑓, 𝑤 = 𝛼(𝑥, 𝜃, 𝜂), (20a)
∇ ⋅ (𝜁 (𝑥, 𝜃, 𝜂)𝜕𝑡𝑢) + ∇ ⋅ 𝑞𝑙 − 𝛾𝜕𝑡

[

𝜂(1 − 𝜒𝑙)
]

= 𝑔, (20b)

− ∇ ⋅ [𝜆(𝑥, 𝜃)∇ ⋅ 𝑢𝐼 + 2𝜇(𝑥, 𝜃)𝜖(𝑢)] + ∇𝑝 = 𝑙 + 𝜌𝐺, (20c)
𝜕𝑡𝜂 − ∇ ⋅ [(1 − 𝜂)𝜕𝑡𝑢] = 0, (20d)

where the hydrological flux is given by 𝑞𝑙 = −𝜅(𝑥, 𝜃, 𝜂)𝜇−1𝑙 (∇𝑝 − 𝜌𝑙𝐺∇𝐷). For exposition purposes, we list the variables and
interdependent parameters in (20) in the Tp, H, and M regimes in Table 2.

2.4. Constitutive relationships

In this section we provide details of the constitutive relationships used in our TpHM model (20).

2.4.1. Soil freezing curve
In frozen soils the dependence of the water fraction 𝜒𝑙 on temperature 𝜃 is expressed by the soil freezing curve (SFC). For our

numerical experiments we consider the following expression adapted from [5]

𝜒𝑙 =

⎧

⎪

⎨

⎪

⎩

1; 𝜃 > 𝜃∗

𝜒𝑟𝑒𝑠 + (1 − 𝜒𝑟𝑒𝑠)𝑒𝑏(𝜃−𝜃∗); 𝜃 ≤ 𝜃∗,
(21)

where 𝜒𝑟𝑒𝑠 [−], 𝑏 1∕◦[C], and 𝜃∗ [◦C] are parameters that depend on the soil type. More precisely, 𝜃∗ denotes the temperature
above which water only exists in the liquid phase (typically 𝜃∗ ≈ 0 [◦C]), 𝜒𝑟𝑒𝑠 denotes the residual water fraction at extremely low
temperatures, and 𝑏 controls the steepness of the curve.
6

For other SFC expressions, illustrations and comparisons, the reader is referred to [23].
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2.4.2. Permeability
The permeability 𝜅 of partially frozen soils decreases with water fraction which decreases with 𝜃 [1,3,43], and is somewhat

analogous to that observed when water fraction decreases in multiphase flow, e.g., in Richards’ equation. There is also a dependence
of 𝜅 on the mechanical deformation frequently modeled with the dependence on the porosity 𝜂.

We make the following assumption.

ssumption 2.3. The permeability tensor 𝜅 ∶ 𝛺×R×[0, 1] → R𝑑×𝑑 is symmetric, uniformly bounded, and elliptic, i.e., ∃𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥 > 0
such that ∀𝑥 ∈ 𝛺, 𝜃 ∈ R, 𝜂 ∈ [0, 1]

𝜅𝑚𝑖𝑛‖𝜉‖
2
2 ≤ 𝜉𝑇 𝜅(𝑥, 𝜃, 𝜂)𝜉 ≤ 𝜅𝑚𝑎𝑥‖𝜉‖

2
2, ∀𝜉 ∈ R𝑑 , 𝜉 ≠ 0, (22)

here in (22) ‖ ⋅‖2 now denotes the standard 𝑙2 norm on R𝑑 defined as ‖𝜉‖2 =
(

∑𝑑
𝑗=1 |𝜉𝑗 |

2
)

1
2 , 𝜉 = (𝜉1, 𝜉2,… , 𝜉𝑑 ). Further, we assume

𝜅−1 is entry-wise Lipschitz in 𝜃, i.e., ∃𝐿𝜅−1 > 0 such that 𝑥 ∈ 𝛺, ∀𝜃2, 𝜃1 ∈ R, 𝜂 ∈ [0, 1]
|

|

|

𝜅−1𝑖,𝑗 (𝑥, 𝜃2, 𝜂) − 𝜅
−1
𝑖,𝑗 (𝑥, 𝜃1, 𝜂)

|

|

|

≤ 𝐿𝜅−1 |𝜃2 − 𝜃1|, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑑. (23)

For our simulations we blend the Carman–Kozeny model [9] with impedance model [44]

𝜅(𝑥, 𝜃, 𝜂) = 𝜅0,𝑢𝜅𝑟𝑒𝑙
𝜂3

(1 − 𝜂)2
(1 − 𝜂𝑖𝑛𝑖𝑡)2

𝜂𝑖𝑛𝑖𝑡3
𝐼, (24a)

where 𝜅0,𝑢 = 𝜅0,𝑢(𝑥) ∈ R is the intrinsic permeability of thawed soil, 𝜅𝑟𝑒𝑙 = 𝜅𝑟𝑒𝑙(𝑥, 𝜃) ∈ R is the relative permeability

𝜅𝑟𝑒𝑙(𝑥, 𝜃) =

⎧

⎪

⎨

⎪

⎩

1; 𝜃 > 𝜃∗
max

{

(

𝜒𝑙(𝑥, 𝜃)
)3 , 𝜖𝜅𝑚𝑖𝑛

}

; 𝜃 ≤ 𝜃∗,
(24b)

and 𝜂𝑖𝑛𝑖𝑡 is the initial porosity, and 𝜖𝜅𝑚𝑖𝑛 > 0 is a constant [44]. For our numerical experiments, we choose 𝜖𝜅𝑚𝑖𝑛 = 10−6

in (24b) [42,44]. We further assume 𝜇𝑙 to be a constant. The reader is referred to [45] for a comprehensive list of the different
xpressions of the permeability.
Note that the porosity is determined using (20d), which does not place any constraints on its maximum or minimum value. For

ractical purposes, we require 𝜂 ∈ (0, 1), but as 𝜂 → 0 or 1, from (24a) we see that 𝜅 → 0 or ∞, respectively. Hence, we make the
ollowing a-priori assumption on the porosity.

ssumption 2.4. The porosity 𝜂 ∶ 𝛺 × R → [0, 1] is uniformly bounded

0 < 𝜂𝑚𝑖𝑛 ≤ 𝜂(𝑥, 𝑡) ≤ 𝜂𝑚𝑎𝑥 < 1, ∀𝑥 ∈ 𝛺, 𝑡 > 0. (25)

Using Assumption 2.4, we can establish the boundedness of the permeability given by (24a)

𝜅𝑚𝑖𝑛 = 𝜅0,𝑢𝜖𝜅𝑚𝑖𝑛
𝜂3𝑚𝑖𝑛

(1 − 𝜂𝑚𝑖𝑛)2
(1 − 𝜂𝑖𝑛𝑖𝑡)2

𝜂𝑖𝑛𝑖𝑡3
, (26a)

𝜅𝑚𝑎𝑥 = 𝜅0,𝑢
𝜂3𝑚𝑎𝑥

(1 − 𝜂𝑚𝑎𝑥)2
(1 − 𝜂𝑖𝑛𝑖𝑡)2

𝜂𝑖𝑛𝑖𝑡3
. (26b)

oreover, the Lipschitz continuity assumption (23) is satisfied by (24a) due to the Lipschitz continuity of 𝜒𝑙 in 𝜃 [23], and the lower
ound 𝜅𝑟𝑒𝑙 ≥ 𝜖𝜅𝑚𝑖𝑛 > 0.

emark 2.3. In order to ensure Assumption 2.4 is satisfied, we place additional checks on the porosity in our numerical
mplementation. In practice, however, we observe that the variations in porosity are very small, and Assumption 2.4 is satisfied
without any additional checks.

2.4.3. Elasticity parameters
The mechanical strength of frozen soils increases with decreasing temperature [1,4]. However, in literature, expressions for the

dependence of elasticity parameters of frozen soil on temperature or water fraction are scarce. In fact, it is common to consider
complex models beyond linear elasticity to simulate the complex mechanics in permafrost. For example, elasto-plastic models are
used in [6,7,9,10] and viscoelasticity is considered in [8].

In this paper we consider only elastic properties, and need to identify an appropriate relationship for the Young’s modulus 𝐸 in
on-isothermal soils. In literature, piecewise constant 𝐸(𝜃) = 𝐸𝑢, ∀𝜃 > 𝜃∗, 𝐸(𝜃) = 𝐸𝑓 , ∀𝜃 < 𝜃∗ are frequently assumed, where 𝐸𝑢 and
𝑓 denote the Young’s modulus of unfrozen and frozen soil, respectively. For example, in [7], 𝐸𝑢 = 1000 [kPa] and 𝐸𝑓 = 5000 [kPa]
re considered for a sandy-silt soil. In [14], the authors consider 𝐸𝑢 = 𝐸𝑓 = 𝐸 ∈ [2, 20] [MPa], but with different values of 𝐸 for soils
nder compression and tension. In turn, in [1](Pg. 129), affine expressions 𝐸(𝜃) = 𝐸𝑓 (1+ 𝑎|𝜃|), 𝜃 < 0 are provided for temperatures
∈ [0,−10] [◦C], and under pressures of 100 [kPa]. Similar expressions are provided in [4], with an emphasis on the effect of the
ressures under which the data is obtained.
7
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The Poisson’s ratio is also affected by the temperature in frozen soils [1](Pg. 130) [4]. For example, it is reported that for frozen
ands, 𝜈 decreases from 0.2 to 0.1 but no parametric model is given [1](Pg. 130). In experimental results reported in [4] we see
→ 0.5 as 𝜃 → 0−, however no model is given.
In summary, following [1,4], we consider the following expression

𝐸0(𝑥, 𝜃) =

⎧

⎪

⎨

⎪

⎩

𝐸𝑢(𝑥); 𝜃 > 𝜃∗

𝐸𝑓 (𝑥)
(

1 + 𝑎(𝑥)|𝜃 − 𝜃∗|
)

; 𝜃 ≤ 𝜃∗,
(27)

here {𝐸𝑢, 𝐸𝑓 , 𝑎} [Pa] are soil specific constants.
However, the discontinuity of 𝐸0 in (27) causes difficulties for our iterative solver, and its unboundedness causes difficulties for

some theoretical estimates to be established. To address this, we consider a bounded regularization of 𝐸0(𝜃) ≈ 𝐸𝛿(𝜃) defined as

𝐸𝛿(𝜃) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐸𝑢; 𝜃 > 𝜃∗

𝐸𝑢 + (𝐸𝑓 + 𝐸𝑓 𝑎𝛿 − 𝐸𝑢)
(𝜃∗−𝜃)
𝛿 ; 𝜃 ∈ [𝜃∗ − 𝛿, 𝜃∗]

𝐸𝑓
(

1 + 𝑎|𝜃 − 𝜃∗|
)

; 𝜃 ∈ [𝜃, 𝜃∗ − 𝛿)

𝐸𝑓
(

1 + 𝑎|𝜃 − 𝜃∗|
)

; 𝜃 < 𝜃,

(28)

here 𝛿 [◦C] > 0 is the regularization parameter and 𝜃 < 𝜃∗−𝛿 is chosen to have a large absolute value. In practise 𝜃 can be chosen
outside the range of temperature values considered in our examples, thus we ignore it in practice.

We are now ready to make the following assumptions regarding the elastic soil parameters.

Assumption 2.5. The Young’s modulus 𝐸 ∶ 𝛺 × R → R and the Poisson’s ratio 𝜈 ∶ 𝛺 → R are uniformly bounded

0 < 𝐸𝑚𝑖𝑛 ≤ 𝐸(𝑥, 𝜃) ≤ 𝐸𝑚𝑎𝑥 <∞, 0 < 𝜈𝑚𝑖𝑛 ≤ 𝜈(𝑥) ≤ 𝜈𝑚𝑎𝑥 < 0.5, ∀𝑥 ∈ 𝛺, 𝜃 ∈ R. (29)

urther, 𝐸 is Lipschitz in 𝜃, i.e., ∃𝐿𝐸 > 0 such that ∀𝑥 ∈ 𝛺, 𝜃1, 𝜃2 ∈ R

|

|

𝐸(𝑥, 𝜃2) − 𝐸(𝑥, 𝜃1)|| ≤ 𝐿𝐸 |𝜃2 − 𝜃1|. (30)

Now from Assumption 2.5 and (7) it follows that 𝜆 = 𝜆(𝑥, 𝜃) and 𝜇 = 𝜇(𝑥, 𝜃) are bounded in 𝛺 × R and Lipschitz in 𝜃

0 < 𝜆𝑚𝑖𝑛 ≤ 𝜆(𝑥, 𝜃) ≤ 𝜆𝑚𝑎𝑥 < ∞, 0 < 𝜇min ≤ 𝜇(𝑥, 𝜃) ≤ 𝜇𝑚𝑎𝑥 <∞, ∀𝑥 ∈ 𝛺, 𝜃 ∈ R. (31)

We further denote the Lipschitz constants of 𝜆 and 𝜇 by 𝐿𝜆 and 𝐿𝜇 , respectively.
We see 𝐸0(𝜃) is not Lipschitz, but from (28), the regularized expression 𝐸𝛿(𝜃) is, with

𝐿𝐸𝛿 =
(

𝐸𝑓 + 𝐸𝑓 𝑎𝛿 − 𝐸𝑢
)

𝛿−1. (32)

3. Numerical scheme

We now provide details of our numerical scheme. We first rewrite the fully coupled TpHM model (20) in a mixed form as

𝜕𝑡𝑤 + ∇ ⋅ 𝑞𝜃 = 𝑓, 𝑤 = 𝛼(𝑥, 𝜃, 𝜂), (33a)
𝑘−1𝑞𝜃 + ∇𝜃 − 𝑘−1𝑐𝑙𝜃𝑞𝑙 = 0, (33b)

∇ ⋅ (𝜁𝜕𝑡𝑢) + ∇ ⋅ 𝑞𝑙 − 𝛾𝜕𝑡
[

𝜂(1 − 𝜒𝑙)
]

= 𝑔, (33c)
[

𝜅
𝜇𝑙

]−1
𝑞𝑙 + (∇𝑝 − 𝜌𝑙𝐺∇𝐷) = 0, (33d)

− ∇ ⋅ [𝜆∇ ⋅ 𝑢𝐼 + 2𝜇𝜖(𝑢)] + ∇𝑝 = 𝑙 + 𝜌𝐺, (33e)
𝜕𝑡𝜂 − ∇ ⋅

[

(1 − 𝜂)𝜕𝑡𝑢
]

= 0, (33f)

where 𝑞𝜃 in (33a)–(33b) represents the conductive and convective heat flux 𝑞𝜃 = −𝑘∇𝜃 + 𝑐𝑙𝑞𝑙𝜃.
For simplicity of the presentation of the scheme, we assume below homogeneous Dirichlet boundary conditions 𝜃|𝜕𝛺 = 0

and 𝑢|𝜕𝛺 = 0, 𝑝|𝜕𝛺 = 0. We also assume that 𝑤(𝑥, 0) = 𝑤𝑖𝑛𝑖𝑡(𝑥) ∈ 𝐿2(𝛺) [22], 𝑢(𝑥, 0) = 𝑢𝑖𝑛𝑖𝑡(𝑥) ∈ 𝐻1(𝛺)𝑑 [46](Pg. 148), and
𝜂(𝑥, 0) = 𝜂𝑖𝑛𝑖𝑡 ∈ 𝐿2(𝛺). Note that a different initial condition ∇ ⋅ 𝑢𝑖𝑛𝑖𝑡 ∈ 𝐿2(𝛺) is used in [36] for the well-posedness of (6).

The continuous in time variational formulation for (33) is as follows: ∀𝑡 > 0 we seek 𝜃(𝑡), 𝑤(𝑡) ∈𝑀 , 𝑞𝜃(𝑡) ∈ 𝑋, 𝑢(𝑡) ∈ 𝑉 , 𝑝(𝑡) ∈𝑀 ,
𝑞𝑙(𝑡) ∈ 𝑋, and 𝜂(𝑡) ∈𝑀 such that

(𝜕𝑡𝑤,𝑚) + (∇ ⋅ 𝑞𝜃 , 𝑚) = (𝑓, 𝑚), ∀𝑚 ∈𝑀, 𝑤 = 𝛼(𝑥, 𝜃, 𝜂), (34a)
(𝑘−1𝑞𝜃 , 𝜓) − (𝜃,∇ ⋅ 𝜓) − (𝑘(𝜃)−1𝑐𝑙𝜃𝑞𝑙 , 𝜓) = 0, ∀𝜓 ∈ 𝑋, (34b)

(∇ ⋅ (𝜁 (𝜃)𝜕𝑡𝑢), 𝑚) + (∇ ⋅ 𝑞𝑙 , 𝑚) = (𝛾𝜕𝑡
[

𝜂(1 − 𝜒𝑙)
]

, 𝑚) (34c)
8

+ (𝑔, 𝑚), ∀𝑚 ∈𝑀,
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T

(

[

𝜅
𝜇𝑙

]−1
𝑞𝑙 , 𝜓

)

− (𝑝,∇ ⋅ 𝜓) − (𝜌𝑙𝐺∇𝐷,𝜓ℎ) = 0, ∀𝜓 ∈ 𝑋, (34d)

𝑎𝑢(𝜃, 𝑢, 𝜙) − (𝑝,∇ ⋅ 𝜙) = (𝑙 + 𝜌𝐺, 𝜙), ∀𝜙 ∈ 𝑉 , (34e)
(𝜕𝑡𝜂, 𝑚) −

(

∇ ⋅ [(1 − 𝜂)𝜕𝑡𝑢], 𝑚
)

= 0, ∀𝑚 ∈𝑀, (34f)

where the bilinear form 𝑎𝑢 ∶ R × 𝑉 × 𝑉 → R is defined as

𝑎𝑢(𝜃, 𝑢, 𝜙) = ∫𝛺
𝜆(𝑥, 𝜃)(∇ ⋅ 𝑢)(∇ ⋅ 𝜙) + ∫𝛺

2𝜇(𝑥, 𝜃)𝜖(𝑢) ∶ 𝜖(𝜙), (35)

ith 𝐴 ∶ 𝐵 =
∑

𝑖,𝑗 𝐴𝑖,𝑗𝐵𝑖,𝑗 denoting the double dot product of tensors. We recall now Korn’s inequality [47] which yields

∃𝐶𝐾𝑜𝑟𝑛 > 0 ∶ ‖𝜖(𝑢)‖2 ≥ 𝐶𝐾𝑜𝑟𝑛‖𝑢‖𝐻1 , ∀𝑢 ∈ 𝑉 . (36)

urther, from (31) and (36), for a given 𝜃 ∈ R, the bilinear form 𝑎𝑢(𝜃, ⋅, ⋅) is continuous, symmetric, and coercive on 𝑉 × 𝑉 ,
.e., ∀𝜃 ∈ R, 𝑢 ∈ 𝑉

𝑎𝑢(𝜃, 𝑢, 𝑢) ≥ ∫𝛺
𝜇(𝑥, 𝜃)𝜖(𝑢) ∶ 𝜖(𝑢) ≥ 𝜇𝑚𝑖𝑛𝐶

2
𝐾𝑜𝑟𝑛‖𝑢‖

2
𝐻1 . (37)

emark 3.1. Note that we implicitly assume that 𝜃, 𝑢, and 𝜂 are smooth enough such that the product 𝜁𝜕𝑡𝑢 ∈ 𝑋 in (34c) and
1 − 𝜂)𝜕𝑡𝑢 ∈ 𝑋 in (34f).

Numerical discretization. We now present the numerical discretization of (34) working in the finite dimensional subspaces
ℎ ⊂ 𝑀 , 𝑋ℎ ⊂ 𝑋, and 𝑉ℎ ⊂ 𝑉 . For simplicity of exposition, we consider 𝑑 = 2 spatial dimensions and we closely follow the
otation in our work [22,23]. Let 𝛺 ⊂ R2 be covered by a rectangular grid  ℎ with 𝑁𝜔 cells 𝜔𝑖,𝑗 such that 𝛺 = ∪𝑖,𝑗𝜔𝑖,𝑗 . Each cell 𝜔𝑖,𝑗
has width ℎ𝑥,𝑖 and ℎ𝑦,𝑗 in the 𝑥 and 𝑦 direction, respectively. We denote the midpoint of the cell 𝜔𝑖,𝑗 by (𝑥𝑖, 𝑦𝑗 ) and its four nodes
y (𝑥𝑖− 1

2
, 𝑦𝑗− 1

2
), (𝑥𝑖− 1

2
, 𝑦𝑗+ 1

2
), (𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2
), and (𝑥𝑖+ 1

2
, 𝑦𝑗− 1

2
), listed clockwise starting from the bottom left node. We also denote by

𝛾𝑖− 1
2 ,𝑗
, 𝛾𝑖,𝑗+ 1

2
, 𝛾𝑖+ 1

2 ,𝑗
, and 𝛾𝑖,𝑗− 1

2
the four sides of 𝜔𝑖,𝑗 listed clockwise starting from the left edge. We consider a time grid 𝑡𝑛 = 𝑡𝑛−1+ 𝜏𝑛,

where 𝜏𝑛 > 0 is the time step.
We denote by 𝑀ℎ ⊂ 𝑀 as the space of piecewise-constants (P0), by 𝑋ℎ = 𝑅𝑇[0] ⊂ 𝑋 the lowest-order Raviart–Thomas space

(RT0), and by 𝑉ℎ ⊂ 𝑉 the space of continuous bilinear elements (Q1). We also denote by (⋅, ⋅)ℎ the use of the Trapezoidal-Midpoint

quadrature for numerical integration [25,26]. We also denote ‖𝑓‖2 = (𝑓, 𝑓 )
1
2 and ‖𝑓‖ℎ = (𝑓, 𝑓 )

1
2
ℎ , ∀𝑓 ∈𝑀 .

The basis functions of 𝑀ℎ are the indicator functions 𝟏𝜔𝑖,𝑗 . For any 𝜃ℎ, 𝑤ℎ ∈ 𝑀ℎ, we denote by 𝛩𝑖,𝑗 = 𝜃ℎ|𝜔𝑖,𝑗 and 𝑊𝑖,𝑗 = 𝑤ℎ|𝜔𝑖,𝑗 .
he elements of 𝑋ℎ are vector-valued functions, and we denote the basis of 𝑋ℎ by 𝜓𝑖± 1

2 ,𝑗
for the first component and 𝜓𝑖,𝑗± 1

2
. For any

𝑞ℎ = (𝑞ℎ1, 𝑞ℎ2) ∈ 𝑋ℎ, we denote by 𝑄𝑖± 1
2 ,𝑗

= 𝑞ℎ1|𝛾
𝑖± 1

2 ,𝑗
and 𝑄𝑖,𝑗± 1

2
= 𝑞ℎ2|𝛾𝑖,𝑗± 1

2
. For the space 𝑉ℎ, the basis functions are denoted by

𝜙𝑖± 1
2 ,𝑗±

1
2
, and for any 𝑢ℎ ∈ 𝑉ℎ we denote by 𝑈𝑖± 1

2 ,𝑗±
1
2
= 𝑢ℎ|(𝑥

𝑖± 1
2
,𝑦
𝑗± 1

2
). Finally, we let the vectors 𝛩,𝑊 , 𝑃 ,𝑄𝑙 and 𝑈 collect the degrees

of freedom of 𝜃ℎ, 𝑤ℎ, 𝑝ℎ, 𝑞𝑙ℎ and 𝑢ℎ in their respective basis. We will also use an appropriate superscript to denote the time step and
iterate, and we suppress the notation of spatial heterogeneity dependence of the parameters and relationships. For example, instead
of 𝑘 = 𝑘(𝑥𝑖, 𝑦𝑗 , 𝛩𝑖𝑗 ) we simply write 𝑘 = 𝑘(𝜃ℎ).

We now state the fully discretized scheme for (34) based on operator splitting [24,48] for the thermal equation. Given
𝜃𝑛−1ℎ , 𝑤𝑛−1ℎ ∈𝑀ℎ, 𝑝𝑛−1ℎ ∈𝑀ℎ, 𝑢𝑛−1ℎ ∈ 𝑉ℎ, we seek 𝜃𝑛ℎ, 𝑤

𝑛
ℎ ∈𝑀ℎ, 𝑞𝜃𝑛ℎ ∈ 𝑋ℎ, 𝑝𝑛ℎ ∈𝑀ℎ, 𝑞𝑙𝑛ℎ ∈ 𝑋ℎ, 𝑢𝑛ℎ ∈ 𝑉ℎ such that

(𝑤∗
ℎ, 𝑚ℎ) − (𝑤𝑛−1ℎ , 𝑚ℎ) + 𝜏𝑛

(

∇ ⋅ 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛
ℎ
)

, 𝑚ℎ
)

= 0,∀𝑚ℎ ∈𝑀ℎ, (38a)

(𝑤𝑛ℎ, 𝑚ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝜃
𝑛
ℎ, 𝑚ℎ) − (𝑤∗

ℎ, 𝑚ℎ) = 𝜏𝑛(𝑓 𝑛, 𝑚ℎ), ∀𝑚ℎ ∈𝑀ℎ, (38b)

𝑤𝑛ℎ = 𝛼(𝜃𝑛ℎ, 𝜂
𝑛
ℎ),

(

(𝑘𝑛ℎ)
−1𝑞𝜃

𝑛
ℎ, 𝜓ℎ

)

ℎ
− (𝜃𝑛ℎ,∇ ⋅ 𝜓ℎ) = 0,∀𝜓ℎ ∈ 𝑋ℎ, (38c)

(𝜁𝑛ℎ∇ ⋅ 𝑢𝑛ℎ, 𝑚ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝑙
𝑛
ℎ, 𝑚ℎ) − (𝜁𝑛ℎ∇ ⋅ 𝑢𝑛−1ℎ , 𝑚ℎ) = 𝛾(𝜂𝑛ℎ(𝜒𝑙

𝑛−1
ℎ − 𝜒𝑙𝑛ℎ), 𝑚ℎ) (38d)

+ 𝜏𝑛(𝑔𝑛, 𝑚ℎ),∀𝑚ℎ ∈𝑀ℎ,
(

[𝜅𝑛ℎ
𝜇𝑙

]−1

𝑞𝑙
𝑛
ℎ, 𝜓ℎ

)

ℎ

− (𝑝𝑛ℎ,∇ ⋅ 𝜓ℎ) − (𝜌𝑙𝐺∇𝐷,𝜓ℎ) = 0, ∀𝜓ℎ ∈ 𝑋ℎ, (38e)

𝑎𝑢(𝜃𝑛ℎ, 𝑢
𝑛
ℎ, 𝜙ℎ) − (𝑝𝑛ℎ,∇ ⋅ 𝜙ℎ) = (𝑙𝑛 + 𝜌𝑛𝐺,𝜙ℎ), ∀𝜙ℎ ∈ 𝑉ℎ, (38f)

(𝜂𝑛ℎ, 𝑚ℎ) − (𝜂𝑛−1ℎ , 𝑚ℎ) − 𝜏𝑛

(

(1 − 𝜂𝑛ℎ)∇ ⋅

(

𝑢𝑛ℎ − 𝑢
𝑛−1
ℎ

)

, 𝑚ℎ

)

= 0, ∀𝑚ℎ ∈𝑀ℎ, (38g)
9
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where 𝑘𝑛ℎ = 𝑘(𝜃𝑛ℎ), 𝜒𝑙
𝑛
ℎ = 𝜒𝑙(𝜃𝑛ℎ), 𝜁

𝑛
ℎ = 𝜁 (𝜃𝑛ℎ, 𝜂

𝑛
ℎ) = 1 − 𝛾𝜂𝑛ℎ(1 − 𝜒𝑙𝑛ℎ), 𝜅

𝑛
ℎ = 𝜅(𝜃𝑛ℎ, 𝜂

𝑛
ℎ), 𝑓

𝑛 = 𝑓 (⋅, 𝑡𝑛), 𝑔𝑛 = 𝑔(⋅, 𝑡𝑛), 𝑙𝑛 = 𝑙(⋅, 𝑡𝑛),
𝜌𝑛 = 𝜌𝑙𝜂𝑛ℎ𝜒𝑙

𝑛
ℎ + 𝜌𝑖𝜂

𝑛
ℎ(1 − 𝜒𝑙

𝑛
ℎ) + 𝜌𝑟(1 − 𝜂

𝑛
ℎ), and 𝐹ℎ

(

𝜃𝑛−1ℎ , 𝑞𝑙𝑛ℎ
)

∈ 𝑋ℎ is the upwind flux defined on each edge 𝛾𝑖,𝑗+ 1
2
as

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛
ℎ
)

𝑖,𝑗+ 1
2
=

⎧

⎪

⎨

⎪

⎩

𝑐𝑙𝛩𝑛−1𝑖,𝑗 𝑄𝑙
𝑛
𝑖,𝑗+ 1

2

; 𝑄𝑙𝑛𝑖,𝑗+ 1
2

≥ 0

𝑐𝑙𝛩𝑛−1𝑖+1,𝑗𝑄𝑙
𝑛
𝑖,𝑗+ 1

2

; 𝑄𝑙𝑛𝑖,𝑗+ 1
2

< 0,
(39)

with the similar extension to edges {𝛾𝑖,𝑗+ 1
2
}𝑖,𝑗 .

Note that in (38a) and (38b) 𝑤∗
ℎ denotes the intermediate enthalpy that is calculated explicitly using (38a). In practice (38a) and

38b) may be merged into one equation, but here we list them as separate equations for the sake of readability of the algorithm.
urther in (38b)–(38c), the thermal flux 𝑞𝜃𝑛ℎ now only represents the conductive flux, as opposed to conductive and advective
n (33a)–(33b).

emark 3.2. Note that in (38d) since 𝜁𝑛ℎ ∈ 𝑀ℎ, we have ∇ ⋅ (𝜁𝑛ℎ𝑢
𝑛
ℎ) = 𝜁𝑛ℎ∇ ⋅ 𝑢𝑛ℎ in each cell 𝜔𝑖,𝑗 ∈  ℎ. Similarly, with 𝜂𝑛ℎ ∈ 𝑀ℎ,

n (38g) we approximate ∇ ⋅
[

(1 − 𝜂𝑛ℎ)(𝑢
𝑛
ℎ − 𝑢

𝑛−1
ℎ )

]

= (1 − 𝜂𝑛ℎ)∇ ⋅ (𝑢𝑛ℎ − 𝑢
𝑛−1
ℎ ). Ideally, an appropriate numerical flux, such as the upwind

lux, should be used to handle the terms ∇ ⋅ (𝜁𝜕𝑡𝑢) and ∇ ⋅ [(1 − 𝜂)𝜕𝑡𝑢], but we handle these terms approximately.

The system (38) is implicit in time and nonlinear, with the many couplings and interdependencies given in Table 2. A monolithic
pproach to solve this system is possible but would require a computationally expensive and implementation intensive nonlinear
olver. For example, the use of Newton’s method would require the explicit calculation of the Jacobian of the system, which
s inefficient due to the dependencies of the hydro-mechanical constitutive relationships on temperature. To work around this
nefficiency, we consider a sequential approach and an iterative solver in Section 5 which allow to use the individual components
f Tp and HM models implemented separately.

. Literature review of computational schemes for TpHM and THM

In this section we review some relevant literature on numerical methods for TpHM models.
The works on TpHM are primarily from the geotechnical and geophysics literature and focus on the applications to realistic

cenarios but do not provide or analyze the details of the computational models. In turn, computational mathematics literature is
ather scarce and has focused so far on THM models not involving phase change.
There are many aspects of computational schemes that need to be addressed including well-posedness (solvability) of the discrete

ystem, properties of approximations including conservation, stability, convergence of approximations and of iterative schemes, and
fficiency of implementation. In Section 4.1 we overview the literature results on TpHM and THM with regard to these aspects.
The scarcity of literature on the analysis of TpHM models in literature makes it important to study the challenges associated

ith the thermal Tp and with the hydro-mechanical HM subproblems. This study helps to systematically build a robust solver for
he fully coupled system. Since we provide an extensive study of Tp models in permafrost in [22,23], in this paper we focus on the
ydro-mechanical models as part of TpHM; we review the relevant literature in Section 4.2. We provide a summary overview of
ome of the computational schemes used in literature in the Appendix in Table A.10.

.1. Literature overview

Below we discuss several aspects of computational schemes considered in literature.
Discretization and approximation spaces. In applications literature, most computational schemes involve the use of Galerkin

inite elements [8–11,14]. The discrete system is solved monolithically using a nonlinear solver, such as Newton’s method [9,10] or
icard’s method [14]. Other iterative approaches have also been used; for example in [13] a splitting is followed where the thermal
ubproblem is solved first followed by the hydro-mechanical subproblem.
In turn, the need for conservative schemes is recognized as crucial. In [15,19,27] conservative approaches for the flow (mixed

inite elements) are combined with Galerkin approaches for the mechanics. In particular [27,46] offer the analysis of the use of
0-RT0-Q1 finite elements for HM.
Well-posedness. To our knowledge, no well-posedness results exist yet for the fully coupled system (20), but there is work

owards this result, even if formulated under various assumptions. In [49], the semidiscrete Galerkin formulation is considered along
ith a nonlinear temperature dependent viscosity 𝜇𝑙(𝜃) and thermal conductivity 𝑘(𝜃): the authors prove the well-posedness of the
emidiscrete formulation under boundedness and growth assumptions on the 𝜇𝑙 and 𝑘. For the fully implicit in time discretization
f system (34) for thermo-poroelasticity models, the existence of a solution is shown in [15] in the absence of phase change. The
uthors consider thermal advection given by 𝑐𝑙𝑞𝑙 ⋅ ∇𝜃, and further use an appropriate bounded Lipschitz ‘‘cut-off’’ operator 𝑀 to
pproximate 𝑀(𝑞𝑙) ⋅ ∇𝜃 ≈ ∇𝜃 ⋅ 𝑞𝑙. Moreover, physical parameters are considered to be dimensionless constants.
Stability. An important aspect of iterative schemes is stability. For example, in isothermal linear poroelasticity, such schemes
ay first solve the mechanics problem followed by the flow problem (undrained and drained split), or the other way around (fixed
train or stress split). The stability of these different schemes has been analyzed in [50] for the two-field formulation of (6) using
0-Q1 elements. The convergence and application of these schemes for (6) using P0-RT0-Q1 elements has also been analyzed
10

n [51,52]. In [53], an iteratively coupled approach for the P0-RT0-Q1 scheme is analyzed for linear poroelasticity, where the
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system is decoupled around the mean stress. In [54], the undrained and fixed stress approaches have been extended to include
the thermal subproblem, and their stability has been analyzed using the finite volume method for thermo-hydrological flow and
P1 elements for mechanics. Specifically, unconditional stability of solving the thermo-hydrological subproblem followed by the
mechanical subproblem is proved.

Iterative schemes. Another class of iterative approaches are based on the linearization method called the L-scheme [55]; for
xample, the application of the L-scheme in proving the convergence of fixed stress splits using P0-RT0-Q1 elements has been
nalyzed for heterogeneous [56] and nonlinear [57] poroelasticity systems. In [15], the authors present and analyze multiple
teratively coupled schemes for (38) in the absence of phase transition. These iterative schemes are based on the L-scheme, and
their convergence is proved.

Limitations of known schemes for TpHMmodels. The schemes mentioned above are reported efficient, but they do not directly
apply for the TpHM model (33). For example, the scheme presented in [53] for hydro-mechanical systems is only convergent if the
liquid is assumed to be compressible and its compressibility is large enough. Convergence issues regarding the incompressibile
assumption of liquid have also been noted in [54] for thermo-poroelasticity models. Moreover, solvers based on the L-schemes
introduce a consistency error and are also only linearly convergent. The existing L-scheme approaches for thermo-poroelasticity
have also been largely presented and analyzed for models with constant physical parameters, and for linear thermal scenarios,
i.e., in the absence of phase transitions [15]. For TpHM models, however, there is an additional dependence of the hydro-mechanical
parameters on the temperature and this precludes the extension of existing convergence results of iterative schemes when applied
to TpHM models.

4.2. Challenges for hydro-mechanical problems

We discuss now some known difficulties of computational schemes for HM models. These may arise also in TpHM when the
temperature is not fixed. Of particular interest to us are the challenges for the schemes based on P0-RT0-Q1 finite elements.

For isothermal hydro-mechanical systems in the incompressible liquid case, i.e., when 𝑐0 = 0 in (6), spurious pressure oscillations
are known to exist for low permeability 𝜅 or small time step size 𝜏 [30,31,58,59]. For the P0-RT0-Q1 discretization, these oscillations
are linked to the incompatibility of Q1 and P0 spaces, that is, the violation of the inf-sup stability condition [28,29]. In [59], they
have been linked to the deficiency of the monotonicity of the discretization. Another well-known challenge is Poisson locking [28,31]
associated with the loss of coercivity of 𝑎𝑢 in (35) when 𝜆→ ∞. This leads to poor approximation of the displacement when coarse
spatial meshes are used.

These challenges are well-studied, and are typically handled by an appropriate numerical discretization. For example, the use
of discontinuous Galerkin [30] and Bernardi and Raugel [28] element for displacements is shown to eliminate spurious pressure
oscillations as well as Poisson locking. In [31], a non-conforming approach using Mardal–Tai–Winther elements for displacement is
considered, and the robustness with respect Poisson locking is demonstrated. In [29], a stabilized P0-RT0-Q1 approach is provided
where the displacements are bubble-enriched; this approach is shown to be robust with respect to low permeability. In [60], suitable
preconditioners are analyzed for the P0-RT0-Q1 scheme.

Path forward for HM in permafrost TpHM models. In this paper we show robustness of the P0-RT0-Q1 elements for the HM
portion of TpHM in handling practical permafrost scenarios without any need for special techniques to avoid the aforementioned
numerical artifacts. In particular, we demonstrate that unphysical oscillations may arise in dimensions 𝑑 ≥ 2, but that this happens
for the time steps not relevant in practical scenarios.

5. Iterative solver

In this section we provide details of our iterative solver to seek a numerical solution to (38). At 𝑡 = 𝑡𝑛, given 𝑤𝑛−1ℎ ∈ 𝑀ℎ, and
𝑢𝑛−1ℎ ∈ 𝑉ℎ, we take the following steps. We denote by superscript 𝑛, (𝑚) the iterate (𝑚) at time step 𝑛.

Step 1: P0-P0 solver for Tp. First, we solve the thermal subproblem: given 𝑞𝑙
𝑛,(𝑚−1)
ℎ ∈ 𝑋ℎ, we calculate 𝑤

∗,(𝑚)
ℎ ∈𝑀ℎ as

(𝑤∗,(𝑚), 𝑚ℎ) = (𝑤𝑛−1ℎ , 𝑚ℎ) − 𝜏𝑛
(

∇ ⋅ 𝐹ℎ
(

𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

, 𝑚ℎ
)

, ∀𝑚ℎ ∈𝑀ℎ, (40a)

Next we seek 𝑤𝑛,(𝑚)ℎ , 𝜃𝑛ℎ ∈𝑀ℎ and 𝑞𝜃
𝑛,(𝑚)
ℎ ∈ 𝑋ℎ such that

(𝑤𝑛,(𝑚)ℎ , 𝑚ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝜃
𝑛,(𝑚)
ℎ , 𝑚ℎ) = (𝑤∗,(𝑚), 𝑚ℎ) + 𝜏𝑛(𝑓 𝑛, 𝑚ℎ), (40b)

∀𝑚ℎ ∈𝑀ℎ, 𝑤
𝑛,(𝑚)
ℎ = 𝛼(𝜃𝑛,(𝑚)ℎ , 𝜂𝑛−1ℎ ),

(𝑘̃−1𝑞𝜃
𝑛,(𝑚)
ℎ , 𝜓ℎ)ℎ − (𝜃𝑛,(𝑚)ℎ ,∇ ⋅ 𝜓ℎ) = 0, ∀𝜓ℎ ∈ 𝑋ℎ, (40c)

where we use time-lagging and set 𝑘̃ = 𝑘𝑛−1ℎ . Note that (40b)–(40c) gives rise to a nonlinear system of equations and here 𝑤𝑛,(𝑚)ℎ , 𝜃𝑛,(𝑚)ℎ
and 𝑞𝜃

𝑛,(𝑚)
ℎ denotes the solution to (40b)–(40c) obtained after using the P0-P0 solver. The P0-P0 solver for the thermal implicit

iffusion substep (40b)–(40c) is given in Appendix A.1, and involves a separate inner iteration at each iteration (𝑚).
Step 2: P0-RT0-Q1 solver for HM. Next we solve for the hydro-mechanical subproblem (38d)–(38f): given 𝜃𝑛,(𝑚)ℎ ∈ 𝑀ℎ after

olving Step 1, we seek 𝑝𝑛,(𝑚)ℎ ∈𝑀ℎ, 𝑞𝑙
𝑛,(𝑚)
ℎ ∈ 𝑋ℎ, and 𝑢

𝑛,(𝑚)
ℎ ∈ 𝑉ℎ such that

𝑛,(𝑚) 𝑛,(𝑚) 𝑛,(𝑚) 𝑛,(𝑚) 𝑛−1
11

(𝜁ℎ ∇ ⋅ 𝑢ℎ , 𝑚ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝑙ℎ , 𝑚ℎ) = (𝜁ℎ ∇ ⋅ 𝑢ℎ , 𝑚ℎ) + (41a)
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𝛾(𝜂𝑛−1ℎ (𝜒𝑙𝑛−1ℎ − 𝜒𝑙
𝑛,(𝑚)
ℎ ), 𝑚ℎ) + 𝜏𝑛(𝑔𝑛, 𝑚ℎ), ∀𝑚ℎ ∈𝑀ℎ,

⎛

⎜

⎜

⎝

[

𝜅𝑛,(𝑚)ℎ
𝜇𝑙

]−1

𝑞𝑙
𝑛,(𝑚)
ℎ , 𝜓ℎ

⎞

⎟

⎟

⎠ℎ

− (𝑝𝑛,(𝑚)ℎ ,∇ ⋅ 𝜓ℎ) = (𝜌𝑙𝐺∇𝐷,𝜓ℎ), ∀𝜓ℎ ∈ 𝑋ℎ. (41b)

𝑎𝑢(𝜃
𝑛,(𝑚)
ℎ , 𝑢𝑛,(𝑚)ℎ , 𝜙ℎ) − (𝑝𝑛,(𝑚)ℎ ,∇ ⋅ 𝜙ℎ) = (𝑙𝑛 + 𝜌𝑛,(𝑚)𝐺,𝜙ℎ), ∀𝜙ℎ ∈ 𝑉ℎ, (41c)

where 𝜁𝑛,(𝑚)ℎ = 𝜁 (𝜃𝑛,(𝑚)ℎ , 𝜂𝑛−1ℎ ).
Iteration. We iterate Step 1 and Step 2 till convergence (see Section 5.1 for details). We skip this step if we only aim to have a

equential scheme.
Step 3: Porosity update. We update the porosity as follows: we seek 𝜂𝑛ℎ ∈𝑀ℎ such that

(𝜂𝑛ℎ, 𝑚ℎ) = (𝜂𝑛−1ℎ , 𝑚ℎ) + 𝜏𝑛

(

(1 − 𝜂𝑛−1ℎ )∇ ⋅

(

𝑢𝑛ℎ − 𝑢
𝑛−1
ℎ

𝜏𝑛

)

, 𝑚ℎ

)

, ∀𝑚ℎ ∈𝑀ℎ. (42)

The value 𝜂𝑛ℎ is needed in Step 1 and Step 2 to seek a solution at time step 𝑡𝑛+1. Here we also ensure that the bound 𝜂
𝑛
ℎ ≤ 𝜂𝑚𝑎𝑥

required in Assumption 2.4 and discussed in Remark 2.3 holds. If not, we cut the time step 𝜏𝑛, and redo Steps 1–2.

5.1. Implementation details for the iterative algorithm

The algorithm in Steps 1–2 presented by (40)–(41) is sequential: given {𝜃𝑛−1ℎ , 𝑝𝑛−1ℎ , 𝑞𝑙𝑛−1ℎ , 𝑢𝑛−1ℎ }, it produces {𝜃𝑛ℎ, 𝑝
𝑛
ℎ, 𝑞𝑙

𝑛
ℎ, 𝑢

𝑛
ℎ}.

We can also iterate Steps 1–2 at each time step 𝑛 as follows.
Iteration of Steps 1-2: We set the initial guess for {𝜃𝑛,(0)ℎ , 𝑞𝑙

𝑛,(0)
ℎ 𝑢𝑛,(0)ℎ } from {𝜃𝑛−1ℎ , 𝑞𝑙𝑛−1ℎ , 𝑢𝑛−1ℎ }.

In each iteration 𝑚 = 1, 2,… we start with {𝜃𝑛,(𝑚−1)ℎ , 𝑝𝑛,(𝑚−1)ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ , 𝑢𝑛,(𝑚−1)ℎ } and after Steps 1–2 we obtain {𝜃𝑛,(𝑚)ℎ , 𝑝𝑛,(𝑚)ℎ , 𝑞𝑙

𝑛,(𝑚)
ℎ ,

𝑢𝑛,(𝑚)ℎ }.
We iterate until we reach an absolute or relative tolerance, i.e.,

max
{

‖𝑒(𝑚)𝜃 ‖2, ‖𝑒
(𝑚)
𝑝 ‖2, ‖𝑒

(𝑚)
𝑞𝑙

‖2, ‖𝑒
(𝑚)
𝑢 ‖2

}

≤ 𝜖𝑎𝑏𝑠, or, (43a)

max

{

‖𝑒(𝑚)𝜃 ‖2

‖𝜃𝑛,(𝑚)‖2
,
‖𝑒(𝑚)𝑝 ‖2

‖𝑝𝑛,(𝑚)‖2
,

‖𝑒(𝑚)𝑞𝑙 ‖2

‖𝑞𝑙𝑛,(𝑚)‖2
,
‖𝑒(𝑚)𝑢 ‖2

‖𝑢𝑛,(𝑚)‖2

}

≤ 𝜖𝑟𝑒𝑙 , (43b)

here

𝑒(𝑚)𝜃 = 𝜃𝑛,(𝑚)ℎ − 𝜃𝑛,(𝑚−1)ℎ , 𝑒(𝑚)𝑝 = 𝑝𝑛,(𝑚)ℎ − 𝑝𝑛,(𝑚−1)ℎ , (44)

𝑒(𝑚)𝑞𝑙
= 𝑞𝑙

𝑛,(𝑚)
ℎ − 𝑞𝑙

𝑛,(𝑚−1)
ℎ , 𝑒(𝑚)𝑢 = 𝑢𝑛,(𝑚)ℎ − 𝑢𝑛,(𝑚−1)ℎ .

e also denote by

𝑒(𝑚)𝑞𝜃
= 𝑞𝜃

𝑛,(𝑚)
ℎ − 𝑞𝜃

𝑛,(𝑚−1)
ℎ , 𝑒(𝑚)𝑤 = 𝑤𝑛,(𝑚)ℎ −𝑤𝑛,(𝑚−1)ℎ , 𝑒(𝑚)𝑤∗ = 𝑤∗,(𝑚)

ℎ −𝑤∗,(𝑚−1)
ℎ . (45)

If the number of iterations crosses a threshold of 𝑚𝑚𝑎𝑥 = 30, we report no convergence. In practice, in (43) we choose 𝜖𝑎𝑏𝑠 = 10−12

nd 𝜖𝑟𝑒𝑙 = 10−6.
The simulations in Section 6.3 are done using our implementation based on the library deal.II [61], the C++ software library used

or finite element code modeling. In deal.II, we use the sparse direct solver UMFPACK which is part of the SuiteSparse library [62]
hen solving the linear system generated by (41).

.2. Existence of solution at each iteration

We now prove that at each iteration (𝑚) the system (40)–(41) is well-posed under a specific assumption. Since (42) and (40a)
re explicit, the existence and uniqueness of 𝑤∗,(𝑚)

ℎ and 𝜂𝑛+1ℎ follows trivially.
For the proof for the existence of a solution to (40b)–(40c) for the Stefan problem, see [22](Lemma 7.1). This proof can be

adapted to the permafrost models considered here, since 𝛼 is strictly monotone in 𝜃 [23].
We are left with the existence and uniqueness of a solution to (41). We first rewrite (41) in the absence of external sources and

gravity in matrix–vector form

⎡

⎢

⎢

⎢

⎣

𝒜𝑢 −ℬ𝑝,𝑢 0

𝑍ℬ𝑇
𝑝,𝑢 0 −𝜏𝑛ℬ𝑞𝑙 ,𝑝

0 ℬ𝑇
𝑞𝑙 ,𝑝

𝒦𝑞𝑙

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑈𝑛,(𝑚)

𝑃 𝑛,(𝑚)

𝑄𝑙𝑛,(𝑚)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0

ℱ

0

⎤

⎥

⎥

⎥

⎦

, (46)

where the matrix blocks in (46) are obtained as follows from the terms in

𝑎𝑢
(

𝜃𝑛,(𝑚)ℎ , 𝑢𝑛,(𝑚)ℎ , 𝜙ℎ
)

→ 𝒜𝑢𝑈
𝑛,(𝑚),

(

𝑝𝑛,(𝑚),∇ ⋅ 𝜙
)

→ ℬ 𝑃 𝑛,(𝑚)
12

ℎ ℎ 𝑝,𝑢



Results in Applied Mathematics 22 (2024) 100439N. Vohra and M. Peszynska

𝛾

𝑢

P
m

W

N
i

N
s
e

R
t
e
F
𝐶
f

h

C

R
e
M

5

c

(

∇ ⋅ 𝑞𝑙
𝑛,(𝑚)
ℎ , 𝑚ℎ

)

→ −ℬ𝑞𝑙 ,𝑝𝑄𝑙
𝑛,(𝑚),

⎛

⎜

⎜

⎝

[

𝜅𝑛,(𝑚)ℎ
𝜇𝑙

]−1

𝑞𝑙
𝑛,(𝑚)
ℎ , 𝜓ℎ

⎞

⎟

⎟

⎠ℎ

→ 𝒦𝑞𝑙𝑄𝑙
𝑛,(𝑚),

where 𝑎𝑢 is the bilinear form (35), 𝑍 is the diagonal matrix with entries corresponding to 𝜁𝑛,(𝑚)ℎ , and the vector ℱ = 𝑍ℬ𝑇
𝑝,𝑢𝑈

𝑛−1 +
𝐻𝑛 (𝜒𝑙

(

𝛩𝑛−1
)

− 𝜒𝑙
(

𝛩𝑛,(𝑚)
))

, with 𝐻𝑛 being the diagonal matrix with entries corresponding to 𝜂𝑛ℎ. The matrix 𝒦𝑞𝑙 is diagonal with
entries consisting of the transmissibilities due to the use of the trapezoidal-midpoint rule [26,63].

Lemma 5.1. Assume that 𝛾 = 0. Then, for any given 𝜃𝑛,(𝑚)ℎ ∈ 𝑀ℎ, the system (41) has a unique solution 𝑝𝑛,(𝑚)ℎ ∈ 𝑀ℎ, 𝑞𝑙
𝑛,(𝑚)
ℎ ∈ 𝑋ℎ, and

𝑛,(𝑚)
ℎ ∈ 𝑉ℎ.

roof. Since 𝑎𝑢 is symmetric and coercive, the matrix 𝒜𝑢 is symmetric and invertible. Similarly, from Assumption 2.3, the diagonal
atrix 𝒦𝑞𝑙 has positive entries and is invertible. Hence, we can rewrite (46) after eliminating 𝑄𝑙

𝑛,(𝑚) as

⎡

⎢

⎢

⎣

𝒜𝑢 −ℬ𝑝,𝑢

𝑍ℬ𝑇
𝑝,𝑢 𝜏𝑛ℬ𝑞𝑙 ,𝑝𝒦𝑞𝑙

−1
ℬ𝑇
𝑞𝑙 ,𝑝

⎤

⎥

⎥

⎦

[

𝑈𝑛,(𝑚)

𝑃 𝑛,(𝑚)

]

=
[

0
ℱ

]

. (47)

e can further rewrite (47) as

⎡

⎢

⎢

⎣

𝒜𝑢 −ℬ𝑝,𝑢

−ℬ𝑇
𝑝,𝑢 −𝑍−1

(

𝜏𝑛ℬ𝑞𝑙 ,𝑝𝒦𝑞𝑙
−1
ℬ𝑇
𝑞𝑙 ,𝑝

)

⎤

⎥

⎥

⎦

[

𝑈𝑛,(𝑚)

𝑃 𝑛,(𝑚)

]

=

[

0

−𝑍−1ℱ

]

. (48)

ote that the matrix in (48) is of a generalized nonsymmetric saddle point form. Under the assumption 𝛾 = 0, we have 𝑍 = 𝐼 (the
dentity matrix), and we can further eliminate 𝑈𝑛,(𝑚) from (48) to get

(

ℬ𝑇
𝑝,𝑢𝒜𝑢

−1ℬ𝑝,𝑢 + 𝜏𝑛ℬ𝑞𝑙 ,𝑝𝒦𝑞𝑙
−1
ℬ𝑇
𝑞𝑙 ,𝑝

)

𝑃 𝑛,(𝑚) = ℱ. (49)

ow in (49), the matrices
(

ℬ𝑇
𝑝,𝑢𝒜𝑢

−1ℬ𝑝,𝑢

)

and
(

ℬ𝑞𝑙 ,𝑝𝒦𝑞𝑙
−1
ℬ𝑇
𝑞𝑙 ,𝑝

)

are both square, and symmetric positive semidefinite and
ymmetric positive definite, respectively. Hence the matrix in (49) is symmetric positive definite and thus invertible, which
stablishes the existence and uniqueness of 𝑃 𝑛,(𝑚), and consequently of 𝑈𝑛,(𝑚) and 𝑄𝑙𝑛,(𝑚). □

emark 5.1. We acknowledge that the assumption of 𝛾 = 0 in Lemma 5.1 is rather limiting, and we plan to include the proof of
he general case in a future work. For the case of 𝛾 > 0, Lemma 5.1 still holds if 𝐼 − 𝑍 is small enough compared to the smallest
igenvalue of 𝑌 = 𝜏𝑛ℬ𝑞𝑙 ,𝑝𝒦𝑞𝑙

−1
ℬ𝑇
𝑞𝑙 ,𝑝
. To see this, let 𝑋 = ℬ𝑇

𝑝,𝑢𝒜𝑢
−1ℬ𝑝,𝑢 and 𝐶 = 𝑍𝑋 + 𝑌 . Then, 𝐶 is linear and thus Lipschitz.

urther, rewriting 𝐶 = −(𝐼−𝑍)𝑋+𝑋+𝑌 , and recalling that the entries of 𝐼−𝑍 are bounded pointwise below by 0 and above by 𝛾𝜂,
is strongly monotone if 𝛾𝜂‖𝑋‖2 is sufficiently small compared with the smallest eigenvalues of 𝑌 . Following this, its nonsignularity

ollows from [64](Thm. 5.1.4), and thus Lemma 5.1 holds in this case.
The preceding discussion shows the theoretical sensitivity of the nonsignularity of 𝐶 to the value of 𝛾. However, in practice, we

ave not observed 𝐶 to be nonsingular for the physical value of 𝛾 ≈ 0.09.

orollary 5.1. Under the assumption 𝛾 = 0, the system (40)–(42) has a unique solution at each time step 𝑛 and iteration (𝑚).

emark 5.2. As in the derivation of (34), the results here are proven for homogeneous Dirichlet boundary conditions, but can be
xtended to the mixed boundary conditions, with Dirichlet conditions imposed on at least on some portion of 𝜕𝛺, for each of H and
problems.

.3. Stability of time stepping scheme and convergence of the iterative solver.

We first address stability of the explicit steps and then prove convergence of our iterative solver from Section 5.1.
Stability of explicit steps. The implicit–explicit time stepping scheme (38a)–(38b) is stable as long as the following CFL

ondition is respected [48]

𝜏𝑛 ≤
min𝑖,𝑗{ℎ𝑥,𝑖, ℎ𝑦,𝑗}

max
{

sup |
|

𝜕𝑤𝐹1|| , sup ||𝜕𝑤𝐹2||
} , (50)

where 𝐹 = (𝐹1, 𝐹2) is the convective flux 𝐹 (𝜃) = 𝑐𝑙𝑞𝑙𝑛ℎ𝜃. Using 𝜃 = 𝛼−1(𝑤), we get

𝜕𝑤𝐹1(𝑤) =
1

′
(

−1
) 𝑐𝑙𝑞𝑙

𝑛
ℎ1, 𝜕𝑤𝐹2(𝑤) =

1
′
(

−1
) 𝑐𝑙𝑞𝑙

𝑛
ℎ2. (51)
13

𝛼 𝛼 (𝑤) 𝛼 𝛼 (𝑤)
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Now we use the bounds 𝑐𝑚𝑖𝑛 ≤ |𝛼′| ≤ 𝑐𝑚𝑎𝑥 + 𝐿𝜂𝐿𝜒𝑙 which follow from the property proven in [23](Lemma 2.1) that 𝛼 is monotone
with bounded derivatives. Here 𝐿𝜒𝑙 is the Lipschitz constant of 𝜒𝑙, and 𝑐𝑙 ≥ 𝑐𝑚𝑖𝑛 from 2.2. We get

sup |𝜕𝑤𝐹1| ≥
𝑐𝑚𝑖𝑛𝑞𝑙𝑛ℎ1

𝑐𝑚𝑎𝑥 + 𝐿𝜂𝐿𝜒𝑙
, sup |𝜕𝑤𝐹2| ≥

𝑐𝑚𝑖𝑛𝑞𝑙𝑛ℎ2
𝑐𝑚𝑎𝑥 + 𝐿𝜂𝐿𝜒𝑙

. (52)

Substituting (52) into (50) and using 𝜂 < 1 from Assumption 2.4, we get

𝜏𝑛 ≤
( 𝑐𝑚𝑎𝑥 + 𝐿𝐿𝜒𝑙

𝑐𝑚𝑖𝑛

) min𝑖,𝑗{ℎ𝑥,𝑖, ℎ𝑦,𝑗}

max
{

sup ||
|

𝑞𝑙𝑛ℎ1
|

|

|

, sup ||
|

𝑞𝑙𝑛ℎ2
|

|

|

} (53)

n practice the CFL condition (53) is not a significant restriction due to the low order of magnitude of the hydrological flux in
ermafrost scenarios.
For the porosity update (42) we first rewrite (20d) as

𝜕𝑡(1 − 𝜂) + ∇ ⋅ ((1 − 𝜂)𝜕𝑡𝑢) = 0. (54)

nd now check that the CFL-like condition involving 𝜕𝑡𝑢𝑛ℎ = (𝑢𝑛ℎ − 𝑢
𝑛−1
ℎ )∕𝜏𝑛 holds

𝜏𝑛 ≤
min𝑖,𝑗{ℎ𝑥,𝑖, ℎ𝑦,𝑗}

max{sup |𝜕𝑡𝑢𝑛ℎ1|, sup |𝜕𝑡𝑢
𝑛
ℎ2|}

, (55)

If either of the conditions (53) or (55) is not satisfied, we reduce the time step and repeat Steps 1–2 until these hold. In practice,
however, we observe neither of these conditions presents a significant restriction.

Convergence of iteration of Steps 1–2 from Section 5.1.
Our proof has similar setup as that in [15]. However, a direct application of the approach from [15] does not apply due to

𝐸 = 𝐸(𝜃) in our model. We provide a proof which is similar but not identical to that in [15]. For the purpose of the proof, we
consider the Eqs. (40)–(41) in Steps 1–2 to be in a dimensionless form.

We start by proving a simple estimate for the upwind flux (39). In what follows, for simplicity we assume a uniform square grid
 ℎ, i.e., ℎ𝑥,𝑖 = ℎ𝑦,𝑗 = ℎ, ∀𝑖, 𝑗. We also assume a uniform time step 𝜏𝑛 = 𝜏∀𝑛.

Lemma 5.2. Let 𝜃ℎ ∈𝑀ℎ. Then ∀𝑞ℎ, 𝑟ℎ ∈ 𝑋ℎ we have on each edge 𝛾𝑖+ 1
2 ,𝑗

|

|

|

|

𝐹ℎ(𝜃ℎ, 𝑞ℎ)𝑖+ 1
2 ,𝑗

− 𝐹ℎ(𝜃ℎ, 𝑟ℎ)𝑖+ 1
2 ,𝑗

|

|

|

|

≤ 𝑐𝑙‖𝜃ℎ‖∞
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗

− 𝑅𝑖+ 1
2 ,𝑗

|

|

|

|

, (56)

where 𝑄𝑖+ 1
2 ,𝑗

= 𝑞ℎ|𝛾
𝑖+ 1

2 ,𝑗
and 𝑅𝑖+ 1

2 ,𝑗
= 𝑟ℎ|𝛾

𝑖+ 1
2 ,𝑗
. The estimate (56) holds for all edges 𝛾𝑖− 1

2 ,𝑗
, 𝛾𝑖,𝑗± 1

2
as well.

Proof. For simplicity of exposition, we present the proof for an interior edge 𝛾𝑖+ 1
2 ,𝑗
. Suppose 𝑄𝑖+ 1

2 ,𝑗
, 𝑅𝑖+ 1

2 ,𝑗
≥ 0. Then it follows

trivially that
|

|

|

|

𝐹ℎ(𝜃ℎ, 𝑞ℎ)𝑖+ 1
2 ,𝑗

− 𝐹ℎ(𝜃ℎ, 𝑟ℎ)𝑖+ 1
2 ,𝑗

|

|

|

|

= 𝑐𝑙
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗
𝛩𝑖,𝑗 − 𝑅𝑖+ 1

2 ,𝑗
𝛩𝑖,𝑗

|

|

|

|

≤ 𝑐𝑙 max
𝑖,𝑗

{|𝛩𝑖,𝑗 |}
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗

− 𝑅𝑖+ 1
2 ,𝑗

|

|

|

|

. (57)

Now suppose 𝑄𝑖+ 1
2 ,𝑗

> 0 and 𝑅𝑖+ 1
2 ,𝑗

< 0. Then

|

|

|

|

𝐹ℎ(𝜃ℎ, 𝑞ℎ)𝑖+ 1
2 ,𝑗

− 𝐹ℎ(𝜃ℎ, 𝑟ℎ)𝑖+ 1
2 ,𝑗

|

|

|

|

= 𝑐𝑙
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗
𝛩𝑖,𝑗 − 𝑅𝑖+ 1

2 ,𝑗
𝛩𝑖+1,𝑗

|

|

|

|

(58)

≤ 𝑐𝑙|𝛩𝑖,𝑗 |
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗

|

|

|

|

+ 𝑐𝑙|𝛩𝑖+1,𝑗 |
|

|

|

|

𝑅𝑖+ 1
2 ,𝑗

|

|

|

|

≤ 𝑐𝑙 max{|𝛩𝑖,𝑗 |, |𝛩𝑖+1,𝑗 |}
(

|

|

|

|

𝑄𝑖+ 1
2 ,𝑗

|

|

|

|

+
|

|

|

|

𝑅𝑖+ 1
2 ,𝑗

|

|

|

|

)

≤ 𝑐𝑙 max
𝑖,𝑗

{|𝛩𝑖,𝑗 |}
(

𝑄𝑖+ 1
2 ,𝑗

+ (−𝑅𝑖+ 1
2 ,𝑗

)
)

= 𝑐𝑙 max
𝑖,𝑗

{|𝛩𝑖,𝑗 |}
|

|

|

|

𝑄𝑖+ 1
2 ,𝑗

− 𝑅𝑖+ 1
2 ,𝑗

|

|

|

|

Similar steps can be followed for the remaining cases 𝛾𝑖− 1
2 ,𝑗

and 𝛾𝑖,𝑗± 1
2
. This proves the result. □

We next prove an auxiliary intermediate result.

Lemma 5.3. At time step 𝑛 and for each iteration (𝑚), the following estimate holds

|

|

|

|

(

𝑒(𝑚)𝑤∗ , 𝑒
(𝑚)
𝜃

)

|

|

|

|

≤
𝜏𝜖1
2

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+
𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞

ℎ2𝜖1

(

𝑒(𝑚−1)𝑞𝑙
, 𝑒(𝑚−1)𝑞𝑙

)

ℎ
, ∀𝜖1 > 0. (59)

Proof. Taking the difference of the consecutive iterates in (40a) we get
(

𝑒(𝑚)𝑤∗ , 𝑚ℎ
)

= −𝜏
(

∇ ⋅
[

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

− 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
ℎ

)]

, 𝑚ℎ
)

. (60)

Using 𝑚ℎ = 𝑒(𝑚)𝜃 in (60) we get after taking using the Cauchy–Schwarz and Young inequality
|

|

(

𝑒(𝑚)∗ , 𝑒
(𝑚)

)

|

| =
|

|𝜏
(

∇ ⋅
[

𝐹
(

𝜃𝑛−1, 𝑞 𝑛,(𝑚−1)
)

− 𝐹
(

𝜃𝑛−1, 𝑞 𝑛,(𝑚−2)
)]

, 𝑒(𝑚)
)

|

| (61)
14

|

|

𝑤 𝜃 |

|

|

|

ℎ ℎ 𝑙ℎ ℎ ℎ 𝑙ℎ 𝜃 |

|



Results in Applied Mathematics 22 (2024) 100439N. Vohra and M. Peszynska

w

T

T

T

≤
𝜏𝜖1
2

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+ 𝜏

2𝜖1

‖

‖

‖

‖

∇ ⋅
[

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

− 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
ℎ

)]

‖

‖

‖

‖

2

2
,

for any 𝜖1 > 0. Now on each cell 𝜔𝑖,𝑗 we have

|

|

|

|

∇ ⋅
[

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

− 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
ℎ

)]

|

|

|

|

≤ ℎ−1
∑

𝑓∈𝜕𝜔𝑖,𝑗

|

|

|

|

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

|𝑓 − 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
𝑗

)

|𝑓
|

|

|

|

≤ 𝑐𝑙‖𝜃
𝑛−1
ℎ ‖∞ℎ

−1
∑

𝑓∈𝜕𝜔𝑖,𝑗

|

|

|

𝑞𝑙
𝑛,(𝑚−1)
ℎ |𝑓 − 𝑞𝑙

𝑛,(𝑚−2)
ℎ |𝑓

|

|

|

≤ 2𝑐𝑙‖𝜃𝑛−1ℎ ‖∞ℎ
−1

⎛

⎜

⎜

⎝

∑

𝑓∈𝜕𝜔𝑖,𝑗

|

|

|

𝑞𝑙
𝑛,(𝑚−1)
ℎ |𝑓 − 𝑞𝑙

𝑛,(𝑚−2)
ℎ |𝑓

|

|

|

2⎞
⎟

⎟

⎠

1
2

, (62)

where we have used Lemma 5.2 in the second last inequality, and in the last inequality we have used the arithmetic-quadratic mean
inequality. Thus, we get from (62)

‖

‖

‖

‖

∇ ⋅
[

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

− 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
ℎ

)]

‖

‖

‖

‖

2

2

=
∑

𝜔𝑖,𝑗

|

|

|

|

∇ ⋅
[

𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−1)
ℎ

)

− 𝐹ℎ
(

𝜃𝑛−1ℎ , 𝑞𝑙
𝑛,(𝑚−2)
ℎ

)]

|

|

|

|

2
ℎ2

≤ 4𝑐2𝑙 ‖𝜃
𝑛−1
ℎ ‖

2
∞ℎ

−2
∑

𝜔𝑖,𝑗

∑

𝑓∈𝜕𝜔𝑖,𝑗

|

|

|

𝑞𝑙
𝑛,(𝑚−1)
ℎ |𝑓 − 𝑞𝑙

𝑛,(𝑚−2)
ℎ |𝑓

|

|

|

2
ℎ2

= 2𝑐2𝑙 ‖𝜃
𝑛−1
ℎ ‖

2
∞ℎ

−2
(

𝑒(𝑚−1)𝑞𝑙
, 𝑒(𝑚−1)𝑞𝑙

)

ℎ
. (63)

Substituting (63) into (61) we get

|

|

|

|

(

𝑒(𝑚)𝑤∗ , 𝑒
(𝑚)
𝜃

)

|

|

|

|

≤
𝜏𝜖1
2

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+
𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞

ℎ2𝜖1
‖

‖

‖

𝑒(𝑚−1)𝑞𝑙
‖

‖

‖

2

ℎ
, (64)

hich proves the result. □

We now proceed to the convergence proof of the iterative solver.

heorem 5.1. Assume the following.

(1) The parameter 𝛾 = 0 and 𝐺 = 0.
(2) The volumetric strain and strain tensors are uniformly bounded at each time step, i.e.,

‖

‖

‖

∇ ⋅ 𝑢𝑛,(𝑚)ℎ
‖

‖

‖∞
,
‖

‖

‖

‖

𝜖
(

𝑢𝑛,(𝑚)ℎ

)

‖

‖

‖

‖∞
≤𝑀𝑢, ∀𝑚, (65)

for some 𝑀𝑢 > 0.
(3) The hydrological fluxes are uniformly bounded at each time step, i.e.,

‖𝑞𝑙
𝑛,(𝑚)
ℎ ‖∞ ≤𝑀𝑞𝑙 , ∀𝑚, (66)

for some 𝑀𝑞𝑙 > 0.

hen, the iterative solver from Section 5.1 iterating Steps 1–2 (40)–(41) converges provided

𝑐𝑚𝑖𝑛 −
2𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞𝜅𝑚𝑎𝑥

ℎ2𝜇𝑙
−
𝜏𝜇𝑙𝑀2

𝑞𝑙
𝐿2
𝜅−1
𝜅𝑚𝑎𝑥

2
−
𝑀2

𝑢𝐿
2
𝜆

4𝜆𝑚𝑖𝑛
−
𝑀2

𝑢𝐿
2
𝜇

2𝜇𝑚𝑖𝑛
> 0. (67)

Proof. We take difference of the consecutive iterates in (40b)–(40c) to get

(𝑒(𝑚)𝑤 , 𝑚ℎ) + 𝜏(∇ ⋅ 𝑒(𝑚)𝑞𝜃
, 𝑚ℎ) = (𝑒(𝑚)𝑤∗ , 𝑚ℎ), (68a)

(𝑘̃−1𝑒(𝑚)𝑞𝜃
, 𝜓ℎ)ℎ = (𝑒(𝑚)𝜃 ,∇ ⋅ 𝜓ℎ). (68b)

aking 𝑚ℎ = 𝑒(𝑚)𝜃 in (68a) and 𝜓ℎ = 𝑒(𝑚)𝑞𝜃 in (68b), and adding the resulting equations we get

(𝑒(𝑚)𝑤 , 𝑒(𝑚)𝜃 ) + 𝜏
(

𝑘̃−1𝑒(𝑚)𝑞 , 𝑒(𝑚)𝑞

)

= (𝑒(𝑚)𝑤∗ , 𝑒
(𝑚)
𝜃 ). (69)
15

𝜃 𝜃 ℎ
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t

T

U

F

We now use the monotonicity of 𝛼 [23](Lemma 2.1), Assumption 2.2, and the estimate given by Lemma 5.3 to get

𝑐𝑚𝑖𝑛
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+ 𝜏𝑘−1𝑚𝑎𝑥

(

𝑒(𝑚)𝑞𝜃
, 𝑒(𝑚)𝑞𝜃

)

ℎ
≤
𝜏𝜖1
2

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+
𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞

ℎ2𝜖1
‖

‖

‖

𝑒(𝑚−1)𝑞𝑙
‖

‖

‖

2

ℎ
, (70)

where we choose 𝜖1 > 0 later in the proof.
The difference of the consecutive iterates of (41) gives

(∇ ⋅ 𝑒(𝑚)𝑢 , 𝑚ℎ) + 𝜏(∇ ⋅ 𝑒(𝑚)𝑞𝑙
, 𝑚ℎ) = 0, (71a)

(

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
𝑞𝑙
𝑛,(𝑚) −

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
𝑞𝑙
𝑛,(𝑚−1), 𝜓ℎ

)

ℎ

= (𝑒(𝑚)𝑝 ,∇ ⋅ 𝜓ℎ), (71b)

∫𝛺

(

𝜆𝑛,(𝑚)∇ ⋅ 𝑢𝑛,(𝑚) − 𝜆𝑛,(𝑚−1)∇ ⋅ 𝑢𝑛,(𝑚−1)
)

∇ ⋅ 𝜙ℎ (71c)

+ ∫𝛺

(

𝜇𝑛,(𝑖)𝜖
(

𝑢𝑛,(𝑚)ℎ

)

− 𝜇𝑛,(𝑚−1)𝜖
(

𝑢𝑛,(𝑚−1)ℎ

))

∶ 𝜖(𝜙ℎ) = (𝑒(𝑖)𝑝 ,∇ ⋅ 𝜙ℎ),

here 𝜆𝑛,(𝑚) = 𝜆
(

𝜃𝑛,(𝑚)ℎ

)

and 𝜇𝑛,(𝑚) = 𝜇
(

𝜃𝑛,(𝑚)ℎ

)

. Choosing 𝑚ℎ = 𝑒(𝑚)𝑝 in (71a), 𝜓ℎ = 𝑒(𝑚)𝑞𝑙 in (71b), and 𝜙ℎ = 𝑒(𝑚)𝑢 in (71c), and adding
he equations we get

𝜏

(

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
𝑞𝑙
𝑛,(𝑚) −

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
𝑞𝑙
𝑛,(𝑚−1), 𝑒(𝑚)𝑞𝑙

)

ℎ

+ ∫𝛺

(

𝜆𝑛,(𝑚)∇ ⋅ 𝑢𝑛,(𝑚) − 𝜆𝑛,(𝑚−1)∇ ⋅ 𝑢𝑛,(𝑚−1)
)

∇ ⋅ 𝑒(𝑚)𝑢

+2∫𝛺

(

𝜇𝑛,(𝑚)𝜖
(

𝑢𝑛,(𝑚)ℎ

)

− 𝜇𝑛,(𝑚−1)𝜖
(

𝑢𝑛,(𝑚−1)ℎ

))

∶ 𝜖(𝑒(𝑚)𝑢 ) = 0. (72)

After some algebraic manipulations (72) can be rewritten as

𝜏

(

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
𝑒(𝑚)𝑞𝑙

, 𝑒(𝑚)𝑞𝑙

)

ℎ

+
(

𝜆𝑛,(𝑚)∇ ⋅ 𝑒(𝑚)𝑢 ,∇ ⋅ 𝑒(𝑚)𝑢
)

+ 2
(

𝜇𝑛,(𝑚)𝜖(𝑒(𝑚)𝑢 ), 𝜖(𝑒(𝑚)𝑢 )
)

=

− 𝜏

((

[

𝜅𝑛,(𝑚)

𝜇𝑙

]−1
−
[

𝜅𝑛,(𝑚−1)

𝜇𝑙

]−1
)

𝑞𝑙
𝑛,(𝑚−1)
ℎ , 𝑒(𝑚)𝑞𝑙

)

ℎ

−
(

(

𝜆𝑛,(𝑚) − 𝜆𝑛,(𝑚−1)
)

∇ ⋅ 𝑢𝑛,(𝑚−1)ℎ ,∇ ⋅ 𝑒𝑛,(𝑚)𝑢

)

−2
(

(

𝜇𝑛,(𝑚) − 𝜇𝑛,(𝑚−1)
)

𝜖
(

𝑢𝑛,(𝑚−1)ℎ

)

, 𝜖
(

𝑒𝑛,(𝑚)𝑢
)

)

. (73)

Now, using Assumptions 2.3 and 2.5, the LHS of (73) is non-negative and can be bounded from below by

𝜏
[

𝜅𝑚𝑎𝑥
𝜇𝑙

]−1
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
+ 𝜆𝑚𝑖𝑛

‖

‖

‖

∇ ⋅ 𝑒(𝑚)𝑢
‖

‖

‖

2

2
+ 2𝜇𝑚𝑖𝑛

‖

‖

‖

𝜖
(

𝑒(𝑚)𝑢
)

‖

‖

‖

2

2
. (74)

he absolute value of the RHS of (73) can be bounded from above from Assumption 2.5, Assumption 2.3, and the uniform
bounds (65)–(66) by

𝜏𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1
(

𝑒(𝑚)𝑞𝑙
, 𝑒(𝑚)𝑞𝑙

)
1
2

ℎ

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2

+𝑀𝑢𝐿𝜆
‖

‖

‖

∇ ⋅ 𝑒(𝑚)𝑢
‖

‖

‖2
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2
+ 2𝑀𝑢𝐿𝜇

‖

‖

‖

𝜖
(

𝑒(𝑚)𝑢
)

‖

‖

‖2
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2
. (75)

sing Young’s inequality for the first term in (75) we get

𝜏𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1
(

𝑒(𝑚)𝑞𝑙
, 𝑒(𝑚)𝑞𝑙

)
1
2

ℎ

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2
≤ 𝜏𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1

(

𝜖2
2

‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
+ 1

2𝜖2
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2

)

. (76)

inally, adding (70) to (73) and using the estimates (74), (75) and (76) we get

𝑐𝑚𝑖𝑛
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+ 𝜏𝑘−1𝑚𝑎𝑥

‖

‖

‖

𝑒(𝑚)𝑞𝜃
‖

‖

‖

2

ℎ
+ 𝜏

[

𝜅𝑚𝑎𝑥
𝜇𝑙

]−1
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ

+ 𝜆𝑚𝑖𝑛
‖

‖

‖

∇ ⋅ 𝑒(𝑚)𝑢
‖

‖

‖

2

2
+ 𝜇𝑚𝑖𝑛

‖

‖

‖

𝜖(𝑒(𝑚)𝑢 )‖‖
‖

2

2

≤
𝜏𝜖1
2

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+
𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞

ℎ2𝜖1
‖

‖

‖

𝑒(𝑚−1)𝑞𝑙
‖

‖

‖

2

ℎ

+ 𝜏𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1
(

𝜖2
2

‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
+ 1

2𝜖2
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2

)

+𝑀 𝐿 ‖∇ ⋅ 𝑒(𝑚)‖ ‖𝑒(𝑚)‖ +𝑀 𝐿 ‖𝜖
(

𝑒(𝑚)
)

‖ ‖𝑒(𝑚)‖
16

𝑢 𝜆 ‖
‖

𝑢 ‖

‖2
‖

‖

𝜃 ‖

‖2 𝑢 𝜇 ‖
‖

𝑢 ‖

‖2
‖

‖

𝜃 ‖

‖2
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Rearranging terms in (77) and completing the squares we get
(

𝑐𝑚𝑖𝑛 −
𝜏𝜖1
2

−
𝜏𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1

2𝜖2
−
𝑀2

𝑢𝐿
2
𝜆

4𝜆𝑚𝑖𝑛
−
𝑀2

𝑢𝐿
2
𝜇

2𝜇𝑚𝑖𝑛

)

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+ 𝜏𝑘−1𝑚𝑎𝑥

‖

‖

‖

𝑒(𝑚)𝑞𝜃
‖

‖

‖

2

ℎ

+ 𝜏

(

[

𝜅𝑚𝑎𝑥
𝜇𝑙

]−1
− 𝜇𝑙𝑀𝑞𝑙𝐿𝜅−1

𝜖2
2

)

‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ

+

(

√

𝜆𝑚𝑖𝑛
‖

‖

‖

∇ ⋅ 𝑒(𝑚)𝑢
‖

‖

‖2
−

𝑀𝑢𝐿𝜆
2
√

𝜆𝑚𝑖𝑛

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2

)2

+ 2

(

√

𝜇𝑚𝑖𝑛
‖

‖

‖

𝜖(𝑒(𝑚)𝑢 )‖‖
‖2

−
𝑀𝑢𝐿𝜇
2
√

𝜇𝑚𝑖𝑛
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2

)2

≤
𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞

ℎ2𝜖1
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
. (77)

We now choose 𝜖1 = (4𝑐2𝑙 ‖𝜃
𝑛−1
ℎ ‖

2
∞𝜅𝑚𝑎𝑥)(ℎ

2𝜇𝑙)−1, 𝜖2 =
(

𝑀𝑞𝑙𝐿𝜅−1𝜅𝑚𝑎𝑥
)−1

to get
(

𝑐𝑚𝑖𝑛 −
2𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞𝜅𝑚𝑎𝑥

ℎ2𝜇𝑙
−
𝜏𝜇𝑙𝑀2

𝑞𝑙
𝐿2
𝜅−1
𝜅𝑚𝑎𝑥

2
−
𝑀2

𝑢𝐿
2
𝜆

4𝜆𝑚𝑖𝑛
−
𝑀2

𝑢𝐿
2
𝜇

2𝜇𝑚𝑖𝑛

)

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖

2

2
+ 𝜏𝑘−1𝑚𝑎𝑥

‖

‖

‖

𝑒(𝑚)𝑞𝜃
‖

‖

‖

2

ℎ

+ 𝜏
2

[

𝜅𝑚𝑎𝑥
𝜇𝑙

]−1
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
+

(

√

𝜆𝑚𝑖𝑛
‖

‖

‖

∇ ⋅ 𝑒(𝑚)𝑢
‖

‖

‖2
−

𝑀𝑢𝐿𝜆
2
√

𝜆𝑚𝑖𝑛

‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2

)2

+2

(

√

𝜇𝑚𝑖𝑛
‖

‖

‖

𝜖(𝑒(𝑚)𝑢 )‖‖
‖2

−
𝑀𝑢𝐿𝜇
2
√

𝜇𝑚𝑖𝑛
‖

‖

‖

𝑒(𝑚)𝜃
‖

‖

‖2

)2

≤ 𝜏
4

[

𝜅𝑚𝑎𝑥
𝜇𝑙

]−1
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
. (78)

ssuming that

𝑐𝑚𝑖𝑛 −
2𝜏𝑐2𝑙 ‖𝜃

𝑛−1
ℎ ‖

2
∞𝜅𝑚𝑎𝑥

ℎ2𝜇𝑙
−
𝜏𝜇𝑙𝑀2

𝑞𝑙
𝐿2
𝜅−1
𝜅𝑚𝑎𝑥

2
−
𝑀2

𝑢𝐿
2
𝜆

4𝜆𝑚𝑖𝑛
−
𝑀2

𝑢𝐿
2
𝜇

2𝜇𝑚𝑖𝑛
> 0, (79)

we have from (78),
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖

2

ℎ
≤ 1

2
‖

‖

‖

𝑒(𝑚−1)𝑞𝑙
‖

‖

‖

2

ℎ
, (80)

and thus
‖

‖

‖

𝑒(𝑚)𝑞𝑙
‖

‖

‖ℎ
→ 0 as 𝑚 → ∞, (81)

and there is a limit of the sequence {𝑞𝑙𝑛,(𝑚)}𝑚 which we call 𝑞𝑙𝑛ℎ ∈ 𝑋ℎ. Thus the right hand side of (77) vanishes in the limit, and
thus we obtain existence of the limits of 𝜃𝑛,(𝑚)ℎ , 𝑢𝑛,(𝑚)ℎ and 𝑝𝑛,(𝑚)ℎ , which we call 𝜃𝑛ℎ, 𝑢

𝑛
ℎ, and 𝑝

𝑛
ℎ, respectively. □

Before we proceed to the numerical experiments, we make a few remarks. The quantity in (67) is considered in its dimensionless
orm and we show that the estimate (67) is satisfied for practical permafrost scenarios, however, we observe that in our numerical
xperiments the maximum number of iterations required by the solver increases with a decreasing time step, even if the average
umber of iterations decreases with smaller time step. The first feature seems contrary to what the estimate (67) dictates, but is
erhaps rather due to the enhanced coupling enabled for smaller time steps.

. Numerical experiments

In this section, we verify the basic properties of our algorithm; this is done in Section 6.1.
Next we apply our solver to practical permafrost scenarios. We consider practical one-dimensional soil consolidation scenarios

sing homogeneous and heterogeneous domains; this is done in Section 6.2. Through these examples we demonstrate the robustness
f the solver. We also study the role of regularization of Young’s modulus 𝐸 = 𝐸(𝜃). We also study the importance of 𝜌𝑙 ≠ 𝜌𝑖.
Finally, in Section 6.3 we consider a two-dimensional isothermal soil consolidation example, where we demonstrate the

obustness of our solver with respect to numerical artifacts such as nonphysical pressure oscillations or Poisson locking.

.1. Order of convergence

We start with a convergence study to obtain the order of convergence of our fully discrete scheme by adapting an example
rom [15]. Our example features a known analytic solution, is not connected to any physical scenario, and we do not consider any
articular physical units.

xample 6.1 (Order of convergence in the absence of phase transition with manufactured solutions). Let 𝑥 ∈ 𝛺 = (0, 1), 𝑡 > 0, and assume
hat the temperature, pressure, and displacement profiles are given by
17

𝜃(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥) + 1, (82a)
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Table 3
Physical parameters in Example 6.1.
Parameter Value

𝑐𝑝ℎ , 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟} 1
𝐿 0
𝑘𝑝ℎ , 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟} 1
𝜂𝑖𝑛𝑖𝑡 0.5
𝜅0 1
𝜌𝑝ℎ , 𝑝ℎ ∈ {𝑙, 𝑖, 𝑟} 1
𝛾 0
𝐺 0

Table 4
Results for Example 6.1 showing errors and convergence rates obtained using our scheme and iterative solver.
ℎ 𝜏 ‖𝜃𝑒𝑟𝑟‖∞,2 ‖𝜃𝑒𝑟𝑟‖∞,1 ‖𝜃𝑒𝑟𝑟‖2,2
2 × 10−2 1 × 10−1 1.3047 × 10−3 9.9090 × 10−4 8.6609 × 10−4

1 × 10−2 5 × 10−2 6.1370 × 10−4 4.7019 × 10−4 3.9582 × 10−4

5 × 10−3 2.5 × 10−2 2.9751 × 10−4 2.2947 × 10−4 1.8906 × 10−4

Rate 1.06 1.05 1.09

ℎ 𝜏 ‖𝑝𝑒𝑟𝑟‖∞,2 ‖𝑝𝑒𝑟𝑟‖∞,1 ‖𝑝𝑒𝑟𝑟‖2,2
2 × 10−2 1 × 10−1 6.8927 × 10−5 5.3755 × 10−5 4.1168 × 10−5

1 × 10−2 5 × 10−2 2.5580 × 10−5 2.1143 × 10−5 1.6728 × 10−5

5 × 10−3 2.5 × 10−2 1.2053 × 10−5 1.0319 × 10−5 7.8455 × 10−6

Rate 1.25 1.19 1.19

ℎ 𝜏 ‖𝑞𝑙 𝑒𝑟𝑟‖∞,2 ‖𝑞𝑙 𝑒𝑟𝑟‖∞,1 ‖𝑞𝑙 𝑒𝑟𝑟‖2,2
2 × 10−3 1 × 10−1 2.5407 × 10−4 2.2274 × 10−4 1.3625 × 10−4

1 × 10−2 5 × 10−2 7.6339 × 10−5 5.8784 × 10−5 4.2855 × 10−5

5 × 10−3 2.5 × 10−2 2.8702 × 10−5 2.1753 × 10−5 1.7291 × 10−5

Rate 1.57 1.67 1.48

ℎ 𝜏 ‖𝑢𝑒𝑟𝑟‖∞,2 ‖𝑢𝑒𝑟𝑟‖∞,1 ‖𝑢𝑒𝑟𝑟‖2,2
2 × 10−2 1 × 10−1 1.2029 × 10−4 1.0883 × 10−4 8.4838 × 10−5

1 × 10−2 5 × 10−2 3.7250 × 10−5 3.0097 × 10−5 2.6039 × 10−5

5 × 10−3 2.5 × 10−2 1.3951 × 10−5 1.0389 × 10−5 9.6545 × 10−6

Rate 1.55 1.69 1.56

𝑢(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥) + 1, (82b)
𝑝(𝑥, 𝑡) = 𝑡𝑥(1 − 𝑥) + 1, (82c)

e consider the Young’s modulus and the permeability as

𝐸(𝑥, 𝜃) = 5𝜃2
6
, 𝜈(𝑥, 𝜃) = 0.25, 𝜅(𝑥, 𝜃) = 𝜃2, ∀𝑥 ∈ 𝛺, 𝜃 ∈ R. (83)

Consider other data listed in Table 3; in addition, assume 𝜂 = 𝜂𝑖𝑛𝑖𝑡 = 0.5 in the thermal model. Further, take 𝜒𝑙 = 1 and assume no
phase transition. We consider homogeneous Dirichlet boundary conditions for all 𝑡 > 0

𝜃(0, 𝑡) = 𝜃(1, 𝑡) = 1, (84a)
𝑝(0, 𝑡) = 𝑝(1, 𝑡) = 1, (84b)
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 1, (84c)

and initial conditions 𝜃𝑖𝑛𝑖𝑡 ≡ 1, and 𝑢𝑖𝑛𝑖𝑡 ≡ 1. The sources are calculated accordingly

𝑓 (𝑥, 𝑡) = 𝑥(1 − 𝑥) + 2𝑡 − 3[𝑡𝑥(1 − 𝑥) + 1]2[𝑡(1 − 2𝑥)]2 + (2𝑡)[𝑡𝑥(1 − 𝑥) + 1]3, (85a)
𝑔(𝑥, 𝑡) = (1 − 2𝑥) − 2𝑡𝑥(1 − 𝑥)[𝑡(1 − 2𝑥)]2 + (2𝑡)[𝑡𝑥(1 − 𝑥) + 1]2, (85b)
𝑙(𝑥, 𝑡) = −2𝑡𝑥(1 − 𝑥)[𝑡(1 − 2𝑥)]2 + (2𝑡)[𝑡𝑥(1 − 𝑥) + 1]2 + 𝑡(1 − 2𝑥). (85c)

We let 𝑡 ∈ (0, 1) and compute the order of convergence of 𝜃, 𝑝, 𝑢, 𝑞𝑙 in the ‖ ⋅ ‖∞,2, ‖ ⋅ ‖∞,1, and ‖ ⋅ ‖2,2, with results tabulated in
able 4.
We see that we obtain order at least 1 for 𝜃, 𝑝, 𝑞𝑙, and 𝑢.

.2. One-dimensional soil consolidation

We now test robustness of our solver in scenarios involving subsidence due to the permafrost thaw. Such scenarios have
pplications for structures constructed on ground underlain with permafrost [1,4,9]. In our examples, we do not include gravity
18
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Table 5
Physical parameters used in Example 6.2. Units are as in Table 1.
Parameter Value Reference

𝑐𝑙 4.19 × 106 [65](Section 4)
𝑐𝑖 1.90 × 106 [65](Section 4)
𝑐𝑟 2.385 × 106 [43](Pg. 90)
𝐿 306 × 106 [65](Section 4)
𝑘𝑙 0.58 [65](Section 4)
𝑘𝑖 2.30 [65](Section 4)
𝑘𝑟 2.92 [43](Pg. 90)

SFC parameters in (21): {𝑏, 𝜃∗ , 𝜒𝑟𝑒𝑠} = {0.2, 0, 0.2}

𝐸 𝐸𝑢 = 20 × 106 [66](Pg. 407, Table 14.2)
𝐸𝑓 = 400 × 106 , 𝑎 = 3.5 [1](Pg. 129)
𝛿 = 0.1 [◦C]

𝜈 0.30 [66](Pg. 407, Table 14.2)
𝜂𝑖𝑛𝑖𝑡 0.45 [39](Pg. 74)
𝜅0,𝑢 10−13 [39](Pg. 119)
𝜇𝑙 1.0005 × 10−3 [40] at 20 [◦C]
𝛽𝑙 0 (incompressible assumption)
𝜌𝑙 1000 [43](Pg. 90)
𝜌𝑖 917 [43](Pg. 90)
𝜌𝑟 2650 [43](Pg. 90)

terms to avoid having to adjust boundary and initial conditions: we focus on consolidation due to the external traction alone. We
start with a homogeneous soil example and next move to a heterogeneous case.

6.2.1. Homogeneous domain
Here the goal is to test the robustness of our solver with respect to different spatial and temporal grid sizes, and depending on

he degree of the regularization of Young’s modulus 𝐸(𝜃) measured by its Lipschitz constant. We also compare the iterative vs the
sequential approach for (40)–(41).

Example 6.2 (One-dimensional homogeneous soil consolidation). Let 𝛺 = (0, 1) [m] be occupied by a soil with parameters as in Table 5.
For the thermal component Tp, we consider the boundary and initial conditions

𝜃(0, 𝑡) = 10, 𝜃(1, 𝑡) = −5, (86a)
𝜃𝑖𝑛𝑖𝑡(𝑥) = −5 [◦C] (86b)

For the flow and deformation model HM we consider mixed boundary conditions

𝜎(0, 𝑡)𝜈𝑛 = 105, 𝑢(1, 𝑡) = 0, (87a)
𝑝(0, 𝑡) = 0, 𝑞𝑙(1, 𝑡) ⋅ 𝜈𝑛 = 0, (87b)
𝑢𝑖𝑛𝑖𝑡(𝑥) = 0. (87c)

The simulation is run over 𝑡 ∈ (0, 30) [day], and we show some simulation results in Fig. 1. We report on the number of iterations
aken by the iterative solver with respect to the regularization parameter 𝛿 in Table 6 and different discretization parameters.
We see that the solver performs robustly and converges within an average of 3–4 iterations for the grid sizes ℎ ∈ {1, 2, 4}×10−2 [m]

nd the time steps 𝜏 ∈ {1, 24, 120} [hr]. The smooth evolution of the solution can be observed, without any spurious nonphysical
scillations.
However, the solver does not converge for small time step sizes when 𝐸(𝜃) is discontinuous (27), but it does converge for

ufficiently smooth regularization when 𝐸 = 𝐸𝛿(𝜃) with 𝛿 ≥ 0.01.
With this evidence, we now examine the convergence from Theorem 5.1. We recall now that the only potentially troublesome

erms in the assumption (79) are the last two terms which depend on the data (elasticity parameters), and the others can be made
rbitrarily small with an appropriately small 𝜏. Hence, we need in practice

𝑐𝑚𝑖𝑛 −
𝑀2

𝑢𝐿
2
𝜆

4𝜆𝑚𝑖𝑛
−
𝑀2

𝑢𝐿
2
𝜇

2𝜇𝑚𝑖𝑛
≥ 𝑐0 > 0. (88)

We check now if these are realistic. From Example 6.2, we observe that 𝑀𝑢 = 𝑂(10−3). Further, from Table 5, we have 𝑐𝑚𝑖𝑛 = 𝑂(106),
𝑚𝑖𝑛 = 𝜇𝑚𝑖𝑛 = 𝑂(107), and 𝐿𝜆 = 𝐿𝜇 = 𝑂(108). With this data, we see that (88) is satisfied, and the result of Theorem 5.1 holds.
We next study the role of the parameter 𝛾 in (20).

Example 6.3. We consider the same scenario as in Example 6.2, and we re-run the simulation by setting 𝛾 = 0. We plot the
19

hydrological fluxes to compare the results with those obtained from Example 6.2.
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Fig. 1. Results for Example 6.2 showing the solution profiles at different times (units of 𝑡 in the legend are [day]). Top row: temperature (left), water fraction
middle) and enthalpy (right). Bottom row: pressure (left) and hydrological flux (middle), and displacement (right). Here we have used ℎ = 0.02 [m] and
= 24 [hr].

Fig. 2. Results for Example 6.2 showing the effect of 𝛾 on the flux 𝑞𝑙 . Top row: flux profiles at 𝑡 = 1 (left), 𝑡 = 15 (middle), and 𝑡 = 30 (right) when 𝛾 > 0.
Bottom row: flux profiles at 𝑡 = 1 (left), 𝑡 = 15 (middle), and 𝑡 = 30 (right) when 𝛾 = 0. Here we have used ℎ = 0.02 [m] and 𝜏 = 24 [hr].

The results are shown in Fig. 2. When 𝛾 = 0, we see that the water moves out of 𝛺 through the boundary 𝑥 = 0, However, when
𝛾 ≠ 0, the opposite happens. This is due to the fact as the frozen soil thaws, 𝜕𝑡𝜒𝑙 > 0, and thus the change in the volume of ice and
liquid water acts as a negative source term in (20b) nonzero only when 𝛾 ≠ 0.

Next we study effectiveness of iterative coupling over sequential coupling (i.e., iterative coupling with only one iteration) as
well as the effect of regularization 𝐸𝛿(𝜃).

Example 6.4. Consider the same scenario as in Example 6.2. We re-run our simulation allowing only one iteration in (40a)–(41)
t each time step, i.e., we consider sequential coupling only. We also use 𝐸 (𝜃) given by (27). We denote this solution {𝜃, 𝑝, 𝑢̃, 𝑞 },
20
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Table 6
Results for Example 6.2 and Example 6.5 showing the number of iterations taken by the iterative solver for regularized 𝐸𝛿 (28)
or when using a discontinuous 𝐸0 (27). Note that the solver performs robustly for the homogeneous and heterogeneous cases,
but does not converge for 𝛿 small, or when using 𝐸0.

Example 6.2 (homogeneous case) Example 6.5 (heterogeneous case)

ℎ [m] 𝜏 [hr] Convergence? Max/min/mean iter. Convergence Max/min/mean iter.

𝐸0

4 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 5/3/3.6
1 No –/–/– No –/–/–

2 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.5 Yes 5/3/3.7
1 No –/–/– No –/–/–

1 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.3 Yes 5/3/3.6
1 No –/–/– No –/–/–

𝐸𝛿 with 𝛿 = 1

4 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 5/3/3.7
1 Yes 7/3/3.0 Yes 5/2/3.0

2 × 10−2 120 Yes 4/4/4 Yes 5/3/3.6
24 Yes 5/3/3.4 Yes 5/3/3.6
1 Yes 6/3/3.1 Yes 5/2/3.0

1 × 10−2 120 Yes 4/3/3.8 Yes 5/3/3.6
24 Yes 4/3/3.2 Yes 5/3/3.6
1 Yes 6/2/3.1 Yes 5/2/3.1

𝐸𝛿 with 𝛿 = 0.1

4 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.6 Yes 6/3/3.7
1 Yes 9/3/3.0 Yes 9/2/3.0

2 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 5/3/3.5 Yes 7/3/3.7
1 Yes 6/3/3.1 Yes 8/2/3.0

1 × 10−2 120 Yes 4/3/3.8 Yes 5/3/3.7
24 Yes 4/3/3.2 Yes 7/3/3.6
1 Yes 7/3/3.1 No –/–/–

𝐸𝛿 with 𝛿 = 0.01

4 × 10−2 120 Yes 4/4/4 Yes 5/3/3.8
24 Yes 4/3/3.6 Yes 5/3/3.6
1 No –/–/– No –/–/–

2 × 10−2 120 Yes 4/4/4 Yes 5/3/3.7
24 Yes 4/3/3.5 Yes 6/3/3.7
1 Yes 13/3/3.0 No –/–/–

1 × 10−2 120 Yes 4/4/4 Yes 6/3/3.7
24 Yes 4/3/3.3 Yes 9/3/3.6
1 Yes 12/3/3.1 No 15/2/3.0

and next we compare with the solution {𝜃, 𝑝, 𝑢, 𝑞𝑙} of Example 6.2. We study the difference

𝛥𝑓 = ‖𝑓 − 𝑓‖∞,∞, 𝛥𝑓 𝑟𝑒𝑙(%) =
𝛥𝑓

‖𝑓‖∞,∞
× 100, 𝑓 = 𝜃, 𝑝, 𝑞𝑙 , 𝑢. (89)

The results tabulated in Table 7 show that the difference between the solutions is only significant for small time step 𝜏 = 1 [hr].
Further, maximum difference is observed in 𝑝 and 𝑞𝑙.

6.2.2. Heterogeneous domain
We now consider scenarios to demonstrate the robustness of the solver in heterogeneous domains.

Example 6.5 (One-dimensional heterogeneous soil consolidation). Let 𝛺 = (0, 2) [m] be occupied by sand in 𝛺(1) = (0, 0.4) [m] and clay
in 𝛺(2) = (0.4, 2) [m] with physical parameters as in Table 8. For the thermal component,

𝜃(0, 𝑡) = −2.5 + 17.5 sin
(

2𝜋
(

𝑡 + 7
12

))

+ℱ on , 𝜃(2, 𝑡) = −8, (90a)

𝜃 (𝑥) = −8. (90b)
21
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Table 7
Results for Example 6.4 comparing the solution obtained using iterative (with 𝐸𝛿) and sequential (with 𝐸0) coupling. The
quantities presented are defined in (89). The difference is most prominent in the pressure and only when 𝜏 is small.
ℎ [m] 𝜏 [hr] 𝛥𝑝 [Pa], 𝛥𝑝𝑟𝑒𝑙(%) 𝛥𝑞𝑙 [m∕s], 𝛥𝑞𝑙 𝑟𝑒𝑙(%) 𝛥𝑢 [m], 𝛥𝑢𝑟𝑒𝑙(%) 𝛥𝜃 [◦C], 𝛥𝜃𝑟𝑒𝑙(%)

4 × 10−2 120 1.33 × 10−1, 0.21 2.29 × 10−11, 0.14 7.51 × 10−8, 0.003 2.57 × 10−2, 0.26
24 1.60, 1.95 3.12 × 10−10, 0.88 2.62 × 10−5, 1.25 2.22 × 10−2, 0.23
1 2.13 × 102, 194.75 3.92 × 10−8, 22.23 1.41 × 10−4, 6.73 6.69 × 10−2, 0.69

2 × 10−2 120 1.46 × 10−1, 0.23 2.74 × 10−11, 0.17 1.68 × 10−7, 0.008 2.51 × 10−2, 0.25
24 1.90, 2.32 3.37 × 10−10, 0.93 2.83 × 10−5, 1.30 2.50 × 10−2, 0.25
1 1.13 × 102, 141.43 1.98 × 10−8, 11.79 7.05 × 10−5, 3.26 3.86 × 10−2, 0.39

1 × 10−2 120 1.65 × 10−1, 0.26 4.28 × 10−11, 0.27 1.89 × 10−5, 0.90 2.54 × 10−2, 0.25
24 6.39 × 10−1, 0.78 1.35 × 10−10, 0.37 1.12 × 10−5, 0.52 2.39 × 10−2, 0.24
1 5.44 × 101, 71.87 9.97 × 10−9, 5.73 3.52 × 10−5, 1.62 2.52 × 10−2, 0.25

Table 8
Physical parameters used in Example 6.5. Units are as in Table 1.
Parameter Value Reference

Sand

𝑐𝑟 2.128 × 106 [43](Pg. 90) (Quartz)
𝑘𝑟 8.80 [43](Pg. 90)
𝜌𝑟 2660 [43](Pg. 90)

SFC parameters in (21): {𝑏, 𝜃∗ , 𝜒𝑟𝑒𝑠} = {0.5, 0, 0}

𝐸 𝐸𝑢 = 20 × 106 [66](Pg. 407)
𝐸𝑓 = 500 × 106 , 𝑎 = 4.2 [1](Pg. 129)
𝛿 = 1

𝜈 0.25 [66](Pg. 407)
𝜅0,𝑢 10−10 [39](Pg. 119)
𝜂𝑖𝑛𝑖𝑡 0.4 [39](Pg. 74)

Clay

𝑐𝑟 2.385 × 106 [43](Pg. 90)
𝑘𝑟 2.92 [43](Pg. 90)
𝜌𝑟 2650 [43](Pg. 90)

SFC parameters in (21): {𝑏, 𝜃∗ , 𝜒𝑟𝑒𝑠} = {0.15, 0, 0.2}

𝐸 𝐸𝑢 = 15 × 106 [66](Pg. 406)
𝐸𝑓 = 500 × 106 , 𝑎 = 0.46 [1](Pg. 129)
𝛿 = 1

𝜈 0.30 [66](Pg. 406)
𝜅0,𝑢 10−14 [39](Pg. 119)
𝜂𝑖𝑛𝑖𝑡 0.50 [39](Pg. 74)

Here ℱ ∼ 𝑁(0, 1) in (90a) is the Gaussian noise added to replicate the oscillatory nature of the in situ measured surface temperature
ata; see Fig. 3 for a plot of the surface temperature. For flow and deformation, we consider the boundary and initial conditions

𝜎(0, 𝑡)𝜈𝑛 = 105, 𝑢(2, 𝑡) = 0 (91a)
𝑝(0, 𝑡) = 100, 𝑞𝑙(2, 𝑡) ⋅ 𝜈𝑛 = 0, (91b)
𝑢𝑖𝑛𝑖𝑡(𝑥) = 0. (91c)

here the Dirichlet pressure condition on 𝑥 = 0 imitates rainfall of approximately 10 [mm].

We run the simulation over 𝑡 ∈ (0, 12) [month], where we take 1 [month] = 30 [day], and some plots are included in Fig. 4. We
bserve no nonphysical oscillations in any of the solution profiles.
We also tabulate the number of iterations taken for different ℎ and 𝜏 in Table 6. It appears that the solver struggles to converge

hen 𝐸0, or 𝐸𝛿 with small 𝛿, are used. Convergence is achieved within an average of 3–4 iterations for 𝛿 ≥ 0.1, similarly to the
omogeneous case in Example 6.2.

.3. Two-dimensional isothermal soil consolidation

At this time we are not able to report on simulations of TpHM in 𝑑 = 2, since our current work on TpH is ongoing [33]. In
his paper we report only our preliminary results on robustness of HM for heterogeneous soils. We expect this aspect to be most
ignificant when considering partially frozen and thawed soil layers when their material properties dramatically change.
In particular, we investigate the robustness of the P0-RT0-Q1 formulation for an example of HM featuring heterogeneity, with

ocus on the appropriate time step choice. The goal is to study the possible appearance of Poisson locking or spurious pressure
22

scillations. We consider a two-dimensional isothermal soil consolidation problem.
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Fig. 3. Illustration for Example 6.5 showing the surface temperature Dirichlet boundary condition.

Fig. 4. Results for Example 6.5. Top row: the temperature (left), water fraction (middle), and enthalpy (right) profiles at different times. Bottom row: the pressure
(left), flux (middle), and displacement (right) profiles at different times. The units of time in the legend are in [month] = 30[day]. Here we use ℎ = 4 × 10−2 [m]
and 𝜏 = 1 [day].

Example 6.6 (Two-dimensional heterogeneous isothermal soil consolidation). Let 𝛺 = (0, 1) × (0, 1) [m]2 be occupied by thawed sand in
(1) = (0, 1) × (0.5, 1) [m]2 and frozen clay in 𝛺(2) = (0, 1) × (0, 0.5) [m]2; see Fig. 5. We consider physical parameters as in Table 8,
nd consider frozen clay in 𝛺(2) to be at 𝜃 = −10 [◦C], and thawed sand to be at 𝜃 = 5 [◦C].
We consider mixed boundary conditions as follows

𝜎𝜈𝑛 =

⎧

⎪

⎨

⎪

⎩

−105; (𝑥, 𝑦) ∈ (0, 0.5) × {1}

0; (𝑥, 𝑦) ∈ (0.5, 1) × {1}, (𝑥, 𝑦) ∈ {0} × (0, 1),
(92a)

𝑢1(1, 𝑦) = 0, 𝑦 ∈ (0, 1), 𝑢(𝑥, 0) = 0, 𝑥 ∈ (0, 1), (92b)
𝑝(𝑥, 1) = 0, 𝑥 ∈ (0, 1), (92c)

𝑞𝑙(0, 𝑦) ⋅ 𝜈𝑛 = 0, 𝑞𝑙(1, 𝑦) ⋅ 𝜈𝑛 = 0, 𝑦 ∈ (0, 1), 𝑞𝑙(𝑥, 0) ⋅ 𝜈𝑛 = 0, 𝑥 ∈ (0, 1), (92d)
𝑢𝑖𝑛𝑖𝑡(𝑥, 𝑦) = 0. (92e)

We run the simulation using different grid sizes ℎ𝑥, ℎ𝑦 and time steps 𝜏. Since locking effects are most prominent near 𝑡 = 0, we
un the simulation over one time step as done in [28,30].
In Fig. 6 we show solution plots corresponding to ℎ𝑥 = ℎ𝑦 = 3.125 × 10−2 [m] and 𝜏 = 1 [hr]: the solution profiles do not feature

scillations. Similarly, no oscillations were observed for 𝜏 ∈ [1, 120] [hr]. However, when 𝜏 ≲ 10−2 [s], pressure oscillations do appear;
23

his is shown in Fig. 7; this is a well known effect discussed, e.g., in [28,30].
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Fig. 5. Illustration for Example 6.6 showing the domain 𝛺.

Fig. 6. Illustration for Example 6.6 showing the plots of the pressure 𝑝 (left) and displacement components 𝑢1 (middle) and 𝑢2 (right) at the 𝑡 = 1 [hr]. Here
ℎ𝑥 = ℎ𝑦 = 3.125 × 10−2 [m] and 𝜏 = 1 [hr].

Fig. 7. Results for Example 6.6. Here we compare coarse grid (ℎ𝑥 = ℎ𝑦 = 3.125 × 10−2) and fine grid (ℎ𝑥 = ℎ𝑦 = 3.90625 × 10−3) solutions, with 𝜏 = 10−3. Left:
he pressure profile is shown at the first time step when using coarse grid. Note the oscillations in the profile near the lower left corner and the interface
= 0.5. Right: pressure profile plotted along the line 𝑥 = 10−3 at the first time step. It can be seen that applying spatial mesh refinement eliminates the pressure
scillations.

To investigate further the occurrence of Poisson locking, we consider the displacement 𝑢1ℎ(0.5, 0.5) values for different grid sizes;
see Table 9. We see that no abrupt change in the displacement values occurs.

Although the pressure oscillations do arise, as anticipated, at small time steps 𝑂(10−2) [s], such small time steps are infeasible for
ractical permafrost simulations; usually, only the time steps of 𝑂(1) [hr]−𝑂(1) [day] are practical, with the dynamics of thermal and
ydrological processes being fairly slow in usual scenarios [17]. We recall also that as is well known [28,30], for the cases when
mall time step is required, spatial mesh refinement can be used as a remedy. We illustrate this feature in Fig. 7. For this particular
xample, when the grid size is refined down to ℎ𝑥 = ℎ𝑦 = 3.90625 × 10−3 [m], the pressure oscillations disappear.

.4. Summary notes regarding performance of the iterative solver

We now summarize our observations following from the tests of performance of our iterative solver (40)–(41). We see that we
an expect our TpHM solver to perform robustly in homogeneous and heterogeneous permafrost scenarios, without any non-physical
scillations and locking.
24
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Table 9
Results for Example 6.6 showing the effect of grid sizes
on the displacement 𝑢1ℎ(0.5, 0.5). It can be observed that
the scenarios does not suffer from any significant Poisson
locking. In the case of locking, an abrupt change in the
values would be observed, as expected from the results
reported in [28]. Here 𝜏 = 1 [hr].
ℎ𝑥 = ℎ𝑦 [m] 𝑢1ℎ = (𝑢ℎ11 , 𝑢ℎ

1
2) [m]

1∕4 (−1.00337 × 10−5 ,−2.31849 × 10−5)
1∕8 (−1.10757 × 10−5 ,−2.39167 × 10−5)
1∕16 (−1.13748 × 10−5 ,−2.41439 × 10−5)
1∕32 (−1.14727 × 10−5 ,−2.42196 × 10−5)
1∕64 (−1.15060 × 10−5 ,−2.42457 × 10−5)
1∕128 (−1.15178 × 10−5 ,−2.42549 × 10−5)
1∕256 (−1.15221 × 10−5 ,−2.42581 × 10−5)

In particular, we observe that we can successfully use reasonable grid sizes of ℎ ∈ [1 × 10−2, 4 × 10−2] [m] and time steps
𝜏 ∈ [1, 120] [hr] to simulate realistic scenarios involving TpHM in permafrost. With these, the solver converges within 3–4 iterations
on average. However, there are difficulties with convergence when using a discontinuous Young’s modulus 𝐸0(𝜃), or a regularization
𝐸𝛿 of 𝐸0 with a small 𝛿 resulting in a large Lipschitz constant 𝐿𝐸𝛿 . This practical experience agrees with the theory in Theorem 5.1.
On the plus side, using a discontinuous Young’s modulus 𝐸0 and a sequential algorithm may be effective when a coarse time step
and grid size is used. This is exemplified by Example 6.4 where we compare the solution obtained using our iterative solver and a
equential approach. In this particular example, we observe that the difference between the approaches is prominent only for a fine
rid size ℎ = 1× 10−2 [m] and a small time step 𝜏 = 1 [hr]. This also informs us that for finer grids using a sequential approach with
discontinuous Young’s modulus may not be accurate.
More work remains to study the delicate aspects of the coupled dynamics and the iterative solver. In particular, we see that

ccasionally the maximum number of iterations at some time steps increases with a decreasing time step, even if the average
terations count decreases. These effects are exacerbated when 𝐸0 is used.

. Summary and conclusion

In this paper we propose a discretization scheme and a solver in two variants: sequential and iterative for thermo-hydro-
echanical models to simulate ground subsidence due to permafrost thaw. We also recommend regularization for the elastic
arameters which seems to aid the solver.
Although there are no a-priori results regarding the order of convergence of the numerical scheme, we provide a convergence

tudy where we show orders of convergence typical for the approximating polynomial orders when applied to the individual model
omponents.
We prove convergence of the iterative solver and demonstrate its robustness in practical heterogeneous soil consolidation

cenarios. We show that the use of discontinuous Young’s modulus causes difficulties for the iterative solver, but for a regularized
odel with a sufficiently small Lipschitz constant, convergence is achieved.
We also compare the solutions of the iterative (with 𝐸𝛿) and sequential (with 𝐸0) variants of the algorithm. We observe that

he difference between the two approaches is significant only for small time steps, which is surprising. Furthermore, we investigate
he effects of assuming equal liquid water and ice densities in soil consolidation scenarios, and show that the difference is seen
redominantly in the hydrological fluxes alone.
Finally, we show that the solver does not suffer from numerical artifacts such as nonphysical pressure oscillations and locking,

hich are anticipated when using mixed finite elements for hydro-mechanical systems.
More work is needed to investigate the convergence of the solver. In this paper we have provided a convergence proof under

ertain assumptions, which could be perhaps relaxed or lifted. In particular, we considered equal liquid water and ice densities, and
oundedness of the displacement and flux. We also do not see significant effects of the decrease in permeability in (67) directly on
he solver either theoretically or in practice, but this aspect deserves further investigation.
For the governing equations of the thermo-hydro-mechanical model, our future work involves including the effects of cryosuction

nd frost heave. We also plan to consider the variations of the density of liquid water with pressure and temperature.
Lastly, in this paper we only consider rectangular meshes, partly due to the easiness of connecting this work at Darcy work to

ur pore-scale work and the use of voxel geometries from xray-CT tomography. However, we plan to consider unstructured meshes
n the future work to accommodate more complicated geometries if they arise in practical scenarios.
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ppendix

.1. Details of the P0-P0 solver for Tp

Here we provide details of our P0-P0 solver for solving the system of equations

(𝑤𝑛ℎ, 𝑚ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝜃
𝑛
ℎ, 𝑚ℎ) = 𝜏𝑛(𝑓, 𝑚ℎ) + (𝑤𝑛−1ℎ , 𝑚ℎ), (93a)

(

𝑘̃−1𝑞𝜃
𝑛
ℎ, 𝜓ℎ

)

ℎ
− (𝜃𝑛ℎ,∇ ⋅ 𝜓ℎ) = 0, (93b)

here 𝑘̃ = 𝑘(𝜃𝑛−1ℎ ). We first rewrite (93) in matrix–vector form. Let the matrices ℳ,ℬ𝑞𝜃 ,𝜃 , and 𝒦𝑞𝜃 be obtained as follows

(𝑤𝑛ℎ, 𝑚ℎ) → ℳ𝑊 𝑛

(∇ ⋅ 𝑞𝜃
𝑛
ℎ, 𝑚ℎ) → −ℬ𝑞𝜃 ,𝜃𝑄𝜃

𝑛

(𝑘̃−1𝑞𝜃𝑛ℎ, 𝜓ℎ)ℎ → 𝒦𝑞𝜃𝑄
𝑛
𝜃 ,

where 𝑄𝑛𝜃 collects the degrees of freedom of 𝑞𝜃𝑛ℎ in its basis. Then, we can rewrite (93) as

ℳ𝑊 𝑛 − 𝜏𝑛ℬ𝑞𝜃 ,𝜃𝑄
𝑛
𝜃 = 𝜏𝑛𝐹

𝑛 +ℳ𝑊 𝑛−1, 𝑊 𝑛 = 𝛼(𝛩𝑛), (94a)

ℬ
𝑇

𝑞𝜃 ,𝜃
𝛩𝑛 +𝒦𝑞𝜃𝑄

𝑛
𝜃 = 0, (94b)

or after eliminating 𝑄𝑛𝜃 as

ℳ𝑊 𝑛 + 𝜏𝑛𝒜𝛩𝑛 = ℳ𝑊 𝑛−1 + 𝜏𝑛𝐹 𝑛, (95)

where 𝒜 = ℬ𝑞𝜃 ,𝜃𝒦𝑞𝜃
−1
ℬ𝑇
𝑞𝜃 ,𝜃

, and 𝐹 𝑛 ∈ R𝑁𝜔 collects the entries (𝑓 𝑛, 1𝜔𝑖,𝑗 ). To seek a solution 𝑊 𝑛, 𝛩𝑛 to (95), we consider the
following algorithm [22,23]. We obtain a sequence {𝛩𝑛,(𝑖)}𝑖 as follows

⎧

⎪

⎨

⎪

⎩

𝑅(𝛩𝑛,(𝑖−1)) = ℳ𝛼(𝛩𝑛,(𝑖−1)) + 𝜏𝑛𝒜𝛩𝑛,(𝑖−1) −ℳ𝑊 𝑛−1 − 𝜏𝑛𝐹 𝑛, (a)

(ℳ𝒥𝑛,(𝑖−1)
𝛼 + 𝜏𝑛𝒜)𝛿𝛩𝑛,(𝑖) = −𝑅(𝛩𝑛,(𝑖−1)), (b)

𝛩𝑛,(𝑖) = 𝛩𝑛,(𝑖−1) + 𝛿𝛩𝑛,(𝑖), (c)
(96)

where 𝒥𝑛,(𝑖−1)
𝛼 ∈ 𝜕𝛼(𝛩𝑛,(𝑖−1)) is a diagonal matrix. We denote by 𝜕𝛼 the Clarke’s generalized Jacobian, which is defined as the convex

hull 𝜕𝛼 = co(𝜕𝐵𝛼), with the B-subdifferential

𝜕𝐵𝛼(𝜃) = {𝐽𝛼 ∈ R | ∃{𝜃𝑘}𝑘 ∈ 𝐷𝛼 , 𝜃𝑘 → 𝜃, (𝛼)′(𝜃𝑘) → 𝐽𝛼}, (97)

where 𝐷𝛼 ⊂ R is the set where 𝛼 admits a Fréchet derivative. In our implementation, we use 𝜕𝛼(𝜃) = 𝛼′(𝜃),∀𝜃 ≠ 𝜃∗, and we set
𝜕𝛼(𝜃∗) = 𝑐𝑢.

In (96), we set 𝛩𝑛,(0) = 𝛩𝑛−1, and we iterate till the residuals 𝑅 achieve an absolute tolerance of 10−12 or a relative tolerance of
10−6 (with respect to the first iterate).

A.2. Error norms

In Section 6.1, we compute the norms ‖ ⋅ ‖∞,𝑞 , 𝑞 ∈ {1, 2} and ‖ ⋅ ‖2,2 as follows

(𝑓, 𝑔) =
𝑁𝜔
∑

𝑗=1
𝑓 (𝑥𝑗 )𝑔(𝑥𝑗 )ℎ𝑗 , (98a)

‖𝑓‖2,2 =

( 𝑁
∑

𝜏𝑛‖𝑓 (⋅, 𝑡𝑛)‖22

)

1
2

, ‖𝑓 (⋅, 𝑡𝑛)‖2 =

(𝑁𝜔
∑

ℎ𝑗 |𝑓 (𝑥𝑗 , 𝑡𝑛)|
2

)

1
2

, (98b)
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Table A.10
A brief review of the various computational schemes for thermo-hydro-mechanical problems.
Reference Governing equations Discretization Nonlinear solver

Nicolsky et al.’ 08 [14] TpHM Galerkin finite elements Monolithic, Picard’s method
Nishimura et al.’ 09 [10] TpHM Galerkin finite elements Monolithic, Newton’s method,

CODE_BRIGHT framework
Thomas et al.’ 09 [11] TpHM Galerkin finite elements Monolithic; COMPASS

framework
Zhang, Michalowski’ 15 [6] TpHM – ABAQUS 6.12
Zhang et al.’16 [8] TpHM – COMSOL Multiphysics
Liu et al.’19 [7] TpHM Quadratic Lagrange for Tp, H;

quadratic serendipity for M
COMSOL Multiphysics

Yu et al.’20 [13] TpHM Galerkin finite elements Sequential; MATLAB code
Shastri et al.’ 21 [9] TpHM Galerkin finite elements Monolithic; CODE_BRIGHT

framework

Liu et al.’ 09 [18] THM Discontinuous Galerkin Direct iteration
Brun et al.’ 20 [15] THM Mixed finite elements Iterative L-scheme; Python code
Beddrich et al.’ 22 [16] TpH Finite volumes Monolithic, semismooth

Newton’s method;
DUNE-PDELab framework

‖𝑓‖∞,𝑞 = max
1≤𝑛≤𝑁

⎡

⎢

⎢

⎢

⎣

(𝑁𝜔
∑

𝑗=1
ℎ𝑗 |𝑓 (𝑥𝑗 , 𝑡𝑛)|

𝑞

)

1
𝑞 ⎤
⎥

⎥

⎥

⎦

, 𝑞 ∈ {1, 2}, (98c)

here 𝑥𝑗 is the center of the cell 𝜔𝑗 and ℎ𝑗 = |𝜔𝑗 | is the size of the cell.

.3. Literature review table

Here we provide a brief overview of the different numerical discretizations and nonlinear solvers used for TpHM models. See
able A.10.
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