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ARTICLE INFO ABSTRACT

Keywords: In this paper we study computational schemes to simulate freezing and thawing in permafrost
Nonlinear degenerate parabolic equation modeled by a nonlinear heat equation with constitutive properties resembling those in the
Mixed finite elements well known Stefan problem but featuring distinct challenges. The models are discretized

Heat conduction with phase change
Permafrost models

Semismooth Newton’s method
Heterogeneous media

with low order conservative discretization and fully implicit time stepping. We explore the
challenges due to the nonsmooth nature of the temperature-enthalpy relationship and the
domain heterogeneity, with focus on the solver and the use of enthalpy as a primary variable
in contrast to the temperature variable used commonly in applications literature. We prove and
demonstrate the convergence of our algorithms in realistic physical scenarios.

1. Introduction

In this paper we address the challenges in computational schemes for heat conduction models involving phase transitions in
permafrost soils. Our focus is on various forms of heterogeneity and their impact on the solvers. In particular, we demonstrate that
the use of enthalpy as primary unknown is by far a more robust choice than the use of temperature variable, even though the latter
choice dominates in the applications literature. We provide theoretical explanations and illustrate with numerical experiments. Our
work provides a bridge between the rigorous computational mathematics approaches and the permafrost applications literature, with
an aim to provide concrete details for computational algorithms in realistic setting, and to annotate their context within rigorous
literature results.

In recent years, there has been an increased interest in permafrost modeling due to its role within the global climate studies.
Permafrost is formally defined as ground that remains frozen for two or more years [1,2]. The part of permafrost that undergoes
annual freezing and thawing is called the active layer; its thickness may range from 0.1 to 1 [m] [3] (Pg. 7). Permafrost features
heterogeneity in the form of multiple soil types and ground ice wedges with length scales of 0.01 to 10 [m] [3] (Pg. 8) [4]. A
holistic modeling approach involves the study of the thermal, hydrological, and mechanical processes across the scales, and we
refer to [5-9] for recent discussion of some modeling aspects, but we do not attempt to give an exhaustive list of references. In this
paper we focus only on the thermal aspect of permafrost, and defer the study of the coupled hydrological and mechanical processes
to our forthcoming work in [10,11]. We also refer to [12,13] for our first explorations of computational schemes as well as the
connection between Stefan problem and permafrost models.

Heat conduction with phase change is modeled with the following nonlinear degenerate parabolic equation, written in the sense
of distributions,

dw—=V-(kV0) = f, we a(d), 1
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where 0 is the temperature, w is the enthalpy which is related to the temperature using the relationship a, k = k(9) is the thermal
conductivity, and f is an external heat source. For the permafrost models (P), which are our focus here, « = «f is a nonlinear,
piecewise-differentiable, monotone function whose derivative features a singularity at some freezing temperature 6 = 6,. For the
well known Stefan problem, a = «57 is a multivalued graph. We refer to [13] for our work on the connection and the upscaling of
Stefan-like models a7 to af.

The low regularity of the solutions to (1) for Stefan problem [14] makes finite elements a natural choice for approximation of
the temperature 6 and enthalpy w variables; see, e.g., [15,16] where proofs of convergence are given. In most works on Stefan and
permafrost models 6 is approximated using P1 (piecewise-linear) finite elements, and convergence is proven within the so-called
Kirchhoff transformation or upon regularization of «%7. The approximation of enthalpy is done separately. For § — w, we have
thus P1-P1 or P1-P0O schemes or PO-PO schemes, where PO means piecewise-constant finite elements. For reference, we mention a
few works without attempting to provide a comprehensive list. For Stefan problem, P1-PO schemes with PO used for enthalpy are
in [15,17], but P1-P1 are in [18-20], and PO-PO finite volume in [21]. For permafrost, P1-P1 is used in [22-25], but P1-PO or
PO-PO in [26,27]. Furthermore, in some application papers, the schemes apply chain rule in (1) to w = «”(6), with the so called
“apparent heat capacity” technique. Such approaches, along with regularizations or model approximations may bear a modeling
error significant in permafrost applications relevant especially when coupling (1) to multiphysics scenarios involving thermal or
hydrological fluxes.

In this work we focus on permafrost models with the constitutive properties af, k¥ in d > 1 dimensions. We use P0-PO mixed
finite element scheme with fully implicit time stepping for approximation of (1) written as

w+V-g=f, wea®), g=—-kVo. 2)

We introduced the PO-PO scheme for Stefan problem in this formulation in [12] where we showed it was conservative and compared
very well to P1-PO and P1-P1 approaches. In this paper we focus on P0O-PO schemes and solvers for permafrost applications with
heterogeneity. Generally, theoretical techniques such as Kirchhoff transformation or regularizations which are powerful for deriving
convergence results do not apply for problems featuring heterogeneity or to coupled multiphysics scenarios. These challenges
motivate our focus on solvers and practical scenarios.

Heterogeneity is an important aspect of the processes in porous media including the flow and thermal processes in permafrost,
and is associated with the presence of different soil types such as peat, silt, bedrock and gravel which feature different physical
properties including the porosity, grain distribution, as well as thermal properties; see, e.g. [23,24,28,29]. To indicate heterogeneity
we write a = aP(x,0) and k = k" (x, §); these incorporate distinct soil-type specific properties which may lead to different qualitative
behavior, e.g., mild or sharp or even nearly infinite gradients in 6 and/or x. A particular heterogeneous medium challenge comes
with modeling massive ice or rock wedges embedded in soil; see Fig. 1 for an illustration of the media heterogeneity in permafrost.

Our contributions are as follows. After giving the model details, we begin by (i) analyzing the relationships «” and g* = (a”)™!
to isolate the challenges specific to permafrost model within the class of nonlinear degenerate parabolic equations. Next, (ii) we
discuss the applicability of the known theoretical results for convergence of approximations to (2) to permafrost models. We also
discuss numerical methods for (1) in geotechnical engineering and outline their limitations when compared with our PO-PO scheme.
(iii) We define two nonlinear iterative solvers denoted by P0O-P0-© and PO-PO-W referring to the primary unknowns temperature
and enthalpy, respectively. We prove convergence of our nonlinear solvers and demonstrate their robustness when dealing with
practical permafrost scenarios and media heterogeneity. We demonstrate the advantages of the enthalpy-based algorithm P0-PO-W
over the temperature formulation PO-P0-@. Finally, (iv) we provide simulations for physically meaningful heterogeneous scenarios
using data from Alaska, USA as well as an example with an ice wedge.

The outline of this paper is as follows. In Section 2 we provide the details of (1) and in Section 3, we define our PO-PO scheme
to discretize (2). We review theory and literature in Section 4. In Section 5 we present our solvers and prove their convergence.
In Section 6 we provide numerical examples on the order of convergence as well on the robustness of our solvers, followed by
simulations of practical scenarios. We conclude in Section 7 and acknowledgments. Auxiliary results and supplemental data are in
the Appendix.

2. Model description

A list of symbols used in this paper is given in Table 1. We provide now the narrative to this notation.

Let 2 ¢ R?, d € {1,2,3) be a connected open bounded set representing a heterogeneous permafrost domain. We denote by v
the outward normal to 9£2.

We assume that £ is divided into N, non-overlapping subdomains 2V, where each 2% is occupied by a particular soil type, or
ice, or solid rock. Within each, we denote the variables and data associated with the liquid water, ice, and rock grains by subscripts
1, i, and r, respectively. The rock types j = 1,2, ..., N, have heat capacity and conductivity

¢, (x) =Y, k,(x) = kY, Vx € 2V, 3)

We make the following natural assumptions.

Assumption 2.1. The thermal parameters within each QU) are constant in x, 6 and satisfy

0 < Cpin < €n i) < gy <00, 0 < ki < ko ki kY < kg < 00, 1 <j <N, ©)

min

The latent heat of water L = const > 0.
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Fig. 1. Illustration of heterogeneity due to multiple soil layers and the presence of ice wedges (motivated by [25,30,311). In the domains 2V, € {1,2,3}, the
subdomains correspond to different soil types, such as clay, silt, gravel, with the soil type specific temperature enthalpy relationship a”(x, 8)|o, = a?(9). In Q@
the thermal properties of ice wedge are a(x,0)|o« = a7 () which is multivalued.

Table 1
Variables and parameters in this work.

Subscript/Notation Description

{Li,r} Liquid /, ice i (solid) phase, and rock r

ST, P Stefan problem (ST) and permafrost models (P)

SFC Soil freezing curve

Variable Description/SI Unit

0 Temperature [°C]

w Enthalpy/energy per unit volume [J/m?]

q Heat flux [J/m? s]

Ve Liquid volume fraction [-]; y, = z/ or 4T

Parameter Description/SI Unit Typical values

c Volumetric heat capacity [J/m’ °C] Water 4.19 x 10°, Ice 1.9 x 10° [32]
k Thermal conductivity [J/m s °C] Water 0.58, Ice 2.3 [32]
L Latent heat per unit volume [J /m3] Water 3.06 x 108 [32]

0, Freezing point depression [°C] Water 0

n Porosity [-] Mineral soil [0.2,0.4] [24]
Relationship Description

a Temperature—enthalpy relationship; w € a7 (9) or w = a”(0)

B Enthalpy-temperature function f :=a~'; 8 = 57 (w) or 6 = P (w).

For functional spaces, we consider Lebesgue and Sobolev spaces M = L*(22) and X = H;,(£2). The L? inner product of scalar
valued f,, f, € L*(Q) or vector valued f, f, € (L*(Q))! is denoted by (£}, f2) = [, f1fa-

2.1. Heat conduction in permafrost soil

The model (1) for permafrost applications reads
dw—V - (kP (x,0)V0) = £, w=al(x,0), (5)

where the temperature-enthalpy relationship a” is defined as follows

0
f@m:/cmww+mﬁuwwwm=qm+ﬁum@m—qmy (6)
0,
Here c,(x) = ¢;n(x) + ¢, (x)(1 —n(x)) and ¢ £ (x) = en(x) + ¢, (x)(1 —n(x)) are the volumetric heat capacities of “unfrozen” u and “frozen”
f soil, respectively [23,24], with n denoting the porosity of the soil, and 0, denoting the freezing point depression above which
water exists only in the liquid phase /. Typically, 6, is close to 0 [°C] and is used in parametric models for «”. The water fraction
% = x[(x,0) is called the Soil Freezing Curve and is discussed below.
In turn, the thermal conductivity k¥ incorporates the presence of the liquid /, ice i and rock r phases and materials; it is
obtained through weighted averaging of the individual thermal conductivities k,,p € {/,i,r} [6-8,23,33]; see Appendix A.1 for
these expressions, and [13] for its proper choice via upscaling.
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Table 2

SFC parameters for clay. These parameters have been used to plot Fig. 2.

Model Parameter values Adapted from
Adapted L (9a) b=0271 [-], 6, = —1.1544 [°C] [35] (Figure 9)
Adapted W (9b) b=6.4216 [°C], x,,, =0.36 [-], 6, =0 [°C] [22] (Table 3)
Adapted M (9¢) b=0.16 [1/°Cl, j,., =0.20144 [-] 6, =0 [°C] [6]1 (Pg. 7)

2.1.1. Soil Freezing Curve (SFC)

The definition (6) involves the water fraction " (9); in heterogeneous soil, we have y” = x/(x,6).

Unlike in bulk water (without soil grains), an important feature of permafrost is that ;(,P () is nonzero at a large range of
temperatures below some given 6, < 0; this is due to surface energy effects [34]. In experiments, this measured quantity called
the soil freezing curve (SFC) is fit to some algebraic parametric models, and depends on physical and chemical factors such as the
specific area of the soil particles, the presence of dissolved solutes and the size of the mineral particles [3,4,35,36].

Generally, ;(IP (6) is monotone and continuous on R but not differentiable at § = 6,. However, some of the data reported
in literature based on mass fraction measurements [3,35,36] produces discontinuous SFC, with the related numerical difficulties
acknowledged in, e.g., [23,33,37]. In fact, the fitted power function SFC expressions used in [35,38,39] are unbounded near
0 = 0 [°C], thus they are used only for § < 6, < 0, or a smooth or regularized SFC [24-26,33] can be considered. Upscaled ;(]P
from our work [13] is also discontinuous but can also be smoothed in practice. In this paper we defer the study of discontinuous
SFC to another venue, and focus on other challenges, making the following assumption regarding the SFCs.

Assumption 2.2. (i) For a fixed soil type, the SFC ;(IP (0) has the general form

1; 0>0
P oy — > * 7
2 ) {Y(e); 0<0.. @

where Y is a smooth, monotone nondecreasing, convex, and Lipschitz function which satisfies 0 < y,,, < Y(0) < 1, V8 € (-,0,];
Y(,) =1, and limy_,_,, Y(6) = x,.s, With Lipschitz constant L p equal that for Y.
1
(ii) For domains with multiple soil types we have

1,0 = PO, vxe @V, 1<j <N, ®)

where each ;([P U) satisfies (i).

From Assumption 2.2 ;(IP is continuous and differentiable except at 6 = 6,,, but globally Lipschitz. In heterogeneous case, ;(,P is
not necessarily continuous in £ x R thus not globally Lipschitz.

SFC considered in this work. Typically, porous organic soils such as peat and moss have “steep” SFCs, whereas mineral soils
such as clay and silt feature a more gradual long tailed behavior. Each satisfies Assumption 2.2, but has different Lipschitz constants.
We use one of three SFCs adapted from [22,35,37] denoted with superscripts L, W and M corresponding to the original author’s
names. Their expressions and the Lipschitz constants for ;(IP are given

YE0) = 10,1°101™", Lyr =bl0,1™", (9a)
YY) = gos + (1= 2,00 0= 0 +60,)™%, Lyw =41 — g, )b, (9b)
YMO) = Zes + (1= £ye)e™ 7%, Lyn = (1= g0)b. (90

See illustrations in Fig. 2, with typical data in Table 2.

2.1.2. Properties of temperature—enthalpy function af
We prove now some properties of a” and its inverse * = (a”)~!.

Lemma 2.1. Let Assumption 2.1 and 2.2 hold and a® be given by (6). Then af is continuous, piecewise-smooth, globally Lipschitz,
and strictly monotone. Further, |(a”)'| whenever defined is bounded above and below by positive constants. Moreover, p* = (a©)~! is
well-defined and is also continuous, piecewise-smooth, globally Lipschitz, and strictly monotone with derivative |(8)'| bounded above and
below by positive constants, except at w = w, = ' (8,), where ¥ is non-differentiable.

Proof. We set (A”Y(0) = ¢,z (0) + c,(1 — x(0)) + Ln(xY (0) and calculate from (6)
; 6>6
Py 0) = Cu> * 10
(a”)' () {(AP)’(H); 6<0.. (10)

Now we see («f) is discontinuous at @ = 6,. Further, from Assumptions 2.1 and 2.2, A” is smooth and each term in the definition
of (APY is positive, and since ;(]P € [0,1], we can conclude that (AP)" > min{c,,c;} > ¢,,. Also, at § = 6, we have

: Py — : Py — : Py
Jim @) (®) = ¢,.. lim (@")(©) = ¢, + Ln fim () @),
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Fig. 2. Illustration of the water fraction y, (left) and temperature-enthalpy relationships « (middle) and g (right) for the permafrost model compared to Stefan
problem. Note that " and o5 are multivalued at 6 = 6,, whereas y” and o” are functions with a long tailed behavior as 6 — —co. Here we use the SFC and
thermal parameters for clay and water as listed in Tables 2 and 5.

and thus

[(@")1y, =—Ln egrg;(x,P)’(e)- (11)
Now we see that the upper bound and Lipschitz constant is

@Y (O)] < (Cpax + LHLZ[P) =L.r (12)

which can be found in practice for each SFC from (9).
We may further prove that

a®(0y) = a"(0)) = ¢,,(0; - 0)), ¥0,,0, ER,0, < 0,. (13)

Indeed, for 6, < 6,, since ;(IP is monotone, we have from (6)
0>
af6,) - a6, 2 / (cux] @) + e, = xF @) dv > min{c,, ¢ 10, = 0)) = €65 — 6)).
0,

This proves (13) and consequently that «” is strictly increasing monotone.
Since af is continuous and strictly monotone, ¥ is well-defined and continuous. Further,
1 L. w>w
b *
(B"Y (w) = @Y P (w) =1% w, =a”(0,), 14)
APy Py’ WS We

thus g” is piecewise-smooth. Moreover, from (12) and (13) we have Yw,,w, € R

1
———lw, —w| < 18P (wy) - P (wy)| <
(cmax + LnLl/P> Cmin

|wy — wy]. 5)

Hence g* is globally Lipschitz, strictly monotone, and differentiable except at w,. []

From Lemma 2.1, it follows immediately that «” and * are semismooth on R [40] (Pg. 35, Prop. 2.26). In fact, since a” and
p¥ are piecewise-smooth, they are order 1-semismooth. We also make the following observation when comparing the behavior of
a” and pP. From (15), it follows that (8”) < ¢! even when [ features steep gradients. This is in contrast with a large slope
of a” near 6 ~ 6, and its jump given in (11). These features support the improved robustness of our PO-PO solver in the enthalpy
formulation over the temperature formulation discussed in Section 5.

2.2. Heat conduction in ice wedges

In heterogeneous permafrost, it is common to encounter subdomains filled with ice wedges of considerable size, where porosity
n = 1, i.e., there are no soil grains. In such subdomains, the model (1) takes the form of the well-known Stefan problem [12,14,41,42]
where « = «%7 and k = k57 For completeness we provide its definition now, in a form consistent with (6) in which we set = 1,
and use x7(6) = (0 — 0,), where # is the Heaviside graph with #(v) =0, Vv < 0, s#(v) = 1, Vv > 0, and J(0) = [0, 1].

We obtain multivalued a = a7 given by

0
; 0>0
aST() = / c)dv+ Ly T (0), c(0) = “ * (16)
0 c; 6<6,,

*
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Fig. 3. Illustration of approximations to 7 (left). Plotted are y " as well as its piecewise-linear 7, given by in (19) with ¢ = 0.01 [°C], and the adapted L
permafrost SFC function y/ with b =15, 6, = —0.01 [°C] in (9a). The corresponding «*" and its approximations by (16) are shown on right.

with its inverse function 57 = («57)! given by

w—L .
- +0,; w>L
BT (w) =146,; wel0,L] 17
% +0,; w < 0.

In turn, the thermal conductivity k = k57 is given by

k; +k
i I. 18)

kST () = ki 6>, KST(9,) =
ki; 0<80,,

Now we discuss the properties of «57 and #57. In comparison with those of a”, #” given in Lemma 2.1, we see that «57 is a
monotone multi-valued graph with singularity at @ = 6,. In turn, the function 57 is globally Lipschitz, piecewise-linear, and thus
semismooth. A plot of @57 and 57 is included in comparison with o and g¥ in Fig. 2.

2.2.1. Approximating x5 and a57

As mentioned in Introduction, theoretical results and practical computational models of Stefan problem frequently approximate
the multivalued graph ;(IST as well as the resulting «57 with functions of finite slopes. In heterogeneous models involving permafrost
with ice wedges, it is possible to set up domain decomposition and not regularize. However, in this paper, we consider two

approximations " to y7. One is (i) a piecewise-linear approximation ¥, ~ ;"

0; 0<0,—c¢
70 =120 gefo, —e0,] €>0. (19)
I; 0>0,,

We also consider (ii) a sufficiently steep SFC, e.g., the adapted L SFC (9a) with a high b and a small |6,]. The corresponding
approximation 5T ~ a7 are calculated with (16). An illustration of ;(IST and ST is shown in Fig. 3.

3. Approximation scheme

To approximate the solutions to (2) we use the lowest order mixed finite elements: we approximate the temperature and enthalpy
with PO elements enforcing w = a”(6) pointwise for each degree of freedom and flux g with RT), element. We provide details below,
assuming for simplicity homogeneous Dirichlet boundary conditions 6|,, = 0. We also assume some given initial data w, € M.

For simplicity of notation, we consider £ c R?, and assume £ can be well covered by a rectangular grid 7" with N, elements
®; ; so that Q= ij @i.;> with each o, ; having cell widths h,;, h,; in the x and y direction, respectively. We also assume that the
grid edges align with any material interfaces. We further denote h,,, = min, ;{h,;, h,;} and h,,,, = max; ;{h,; h,;}. Each cell w, ;

hasedgesy. 1 .,7,.,1,7.,1 . and y. . | when listed clockwise from its left edge.
l—f,j t,/+§ I+§,J ”J_f

On 7" we consider the space of piecewise-constant functions M, » € M (PO) and the lowest order Raviart-Thomas space
X, = RTp C X. We also use the generic subscript 4 in (-,-), to denote the use of the trapezoidal-midpoint (TM) quadrature
for numerical integration [43,44]. In the end, the discretization is implemented as a cell-centered finite difference/finite volume
scheme.
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We consider a time grid 7, =1,_; +7,, 1 <n < N, t, = 0, where 7, is the time step. Our fully discrete implicit PO-PO mixed
element scheme at each 1 <n < N, given w;’l‘l € M), seeks (0},q,) € M;, X X, such that

Wy, np) +7,(V - gy, mp) = (w;';l + 0, " 1), Vny € My, wh € a(0)), (20a)
& g win = 65,V - wp) = 0, Yy, € X, (20Db)

where k € M » is a suitable approximation to k(¢;) based on time or iterative lagging to be discussed in Section 5, and has similar
properties to k so that k=! is well-defined. The use of the (-,-), quadrature allows us to eliminate g, and implement (20) as a

cell-centered finite difference (CCFD) scheme for 6", w’}l.

Next we rewrite (20) in the matrix—vector as a nonlinear algebraic system; here we follow notation from [12]. The basis functions
of M, are simply the indicator functions 1,, . For 0,,w, € M;, we denote by 0, ; = Onle,, and W, ; = Wile,,- The vector-valued
functions of X, are tensor products of piecewise-linear functions in one direction and piecewise-constants in the other direction.

For any q;, = (q5,49,) € X3, g5, and gy, are defined by their values on the edges Viel and Vijels respectively, and we denote
+5, i

o ; for first component and by v, il for the

. J+3

1=l and Q. . 1 =qu,l, ,.We denote the basis functions for X, by v,
J i3 Lixs e i+

x5,

w1

second component. Finally, the vector F collects the entries F; ; = (f, lw,»'/»)' Let ©, W, and Q denote the degrees of freedom of 6, w,,,
and gy, respectively, in their respective basis.

Let .# be the mass matrix defined by (w,,8,,) = @T.#W, ¥6,,w, € M,; for a uniform square spatial grid .# = h*I N xN,- We
denote by % the matrix defined by (V - g,,,0,) = —0T %0, V0, € M,,q, € X,, and by A the matrix defined by & g pp)n =
T A 0, Vg, ¢, € X;, where @ denotes the degrees of freedom of ¢,. With these, (20) can be written as

MW" =1, BO" = T, F" + AW, W" € a(O"), (21a)
B O+ HQ" =0, (21b)

where we use the superscript to denote the time step. Since the matrix A is diagonal and invertible (see Appendix A.2 below), we
can easily eliminate Q" to get

MW" 41, O" =, F" + AW, (22)

where o7 = BA - ~17, with details in Appendix A.2. The model is closed with a component-wise relationship between W” and
0", a counterpart of w = af(#) or = ¥ (w). In the former case, we have the temperature formulation with primary unknown 0".
In the latter, we have the enthalpy formulation with W" as primary unknown.

The problem (22) is nonlinear, and must be solved by iteration which we discuss in Section 5.

4. Literature review on convergence rates and numerical models

In this section we identify and briefly review the literature context relevant for our scheme (22) for the permafrost model (5), as
a specific case of (1). First in Section 4.1 we discuss known results on mixed finite element approximation to degenerate parabolic
problems of a structure as in (1). In Section 4.2 we recall the schemes used specifically for (5) in the applications literature and
discuss their features in contrast to our scheme (22).

4.1. Orders of convergence derived in literature

We are not aware of any rigorous work in computational mathematics literature devoted to the specific challenges of permafrost
modeled by (5). If framed as a generic doubly nonlinear degenerate parabolic problems with structure (1), the analysis of mixed
finite element schemes as well as their CCFD formulation is well known, and the order of convergence depends on the character of
nonlinearity in (1).

For the simplest linear case when a(0) = ¢, ¢ = const and k = k(x) in (1), under Neumann boundary conditions and strong
regularity assumptions on 6 and g, [45] (Thm. 5.1) derives the estimates

1
104 = Ollo  + max (k™' (g} = ¢").q — ")} = O(h® + 7). (23)

For nonlinear a(f) and k = k(x) motivated by applications in reservoir engineering, the analysis in [46] is based on Kirchhoff
framework. The Kirchhoff transform is defined as K : R - R, K(9) = /j k(v)dv. One defines the Kirchhoff temperature u = K(6),
and change variables in (1) as

0w — Au = 0. (24)
Further using 6 = f(w) we have
u= P(w), P:=Kop. (25)

For the degenerate case, when (P)’(w) vanishes for some values of w € R (as in Stefan problem), [46] (Theorem 3) provides optimal
estimates of the form
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=0(h+71), (26)

Xt (w0 = w™, Py = Pw™) +
m=1 2

n tVl

1
> q/;lnfm—nh/ w
m=1 0

where ¥ = —Vu, and IT} : L*(2)? - X, is the L* projection operator. For the nondegenerate case, i.e., when (P)’ # 0 (such as for
permafrost models), under strong assumptions of smoothness of P and (P)’, [46] (Theorem 5) proves the estimate

[lwy, = wllgop + 1¥ =¥l = O(h + 7). (27)
Further, [46] (Theorem 7) extends (27) to superconvergent orders on rectangular grids, i.e.,
llwy, = Mwllgo + I1¥ = MWyl = O (R +7), (28)

where IT) : L*(Q) - M, is the L? projection operator.
In turn, [47] (Theorem 2) focuses on the case of Richards equation, where the authors prove first order convergence assuming
that P~! is continuously differentiable and Lipschitz

N ’m N ’m
Z/ " — u™) Z/ " -9)
m=1"1m-1 m=1"1m-1

Also for Richards equation, optimal orders are given in [48] (Thm. 5.2), who consider an expanded mixed finite element scheme
and prove

+ =O0(h+ 7). (29)

2 2

16y, = Ollo + Gy — Gllpp = OCh +7), (30)

where § = -V0.

Remark 4.1. The orders of convergence given by (27)-(29) require that a or P for (1) are smooth and are derived by employing a
mean value argument which requires |(P)”| to be well-defined and bounded. This assumption does not hold for permafrost model
(5) since the corresponding P = Kof? is only piecewise-smooth. Indeed, from Lemma 2.1

(P (w) = K (8P (w)) (B®Y (w), w # w,, (31)

and (P) is discontinuous at w = w,, i.e, (P)" features the Dirac delta §(w — w,) and is not a well-defined function. Thus, the
estimates (27)-(29) do not formally apply to (5). Furthermore, any arguments based on Kirchhoff transformation do not apply to
heterogeneous problems.

In spite of that theoretical results do not apply to the permafrost model, we show that our PO-PO scheme leads to linear orders
of convergence for 6, w, and q robustly for realistic permafrost scenarios, with quadratic superconvergence similar to that (28) for
temperatures all strictly above, or all below 6,, in homogeneous media. Thus, the scheme (22) for (5) appears well grounded in
theory even if the rigorous results from the literature do not apply directly.

4.2. Schemes in the applications literature

The majority of numerical models in the permafrost applications literature are based on P1 finite element or nodal finite
difference approaches, and exploit the “apparent heat capacity” concept, essentially an application of the chain rule; see [6,23—
25,28,33,49,50]. This involves rewriting (5) as
(0)0,0 = V - (,kPVO) = [, ¢4,p(6) 1= c(6) + nL(x]) (6), (32)

Capp

where c,,,(6) = (a?)(9) is the “apparent heat capacity”. Such an approach allows an evaluation of ¢4pp Dy time-lagging and appears
natural. However, (i) the non-smooth behavior of a” at § = , with the jump of the derivative given by (11) and (ii) steep gradient
of c,,, near 6, lead to difficulties. These features pose a challenge for P1 schemes when mass matrices involving c,,, are computed
unless a fine mesh and appropriate numerical quadrature is used, since the contribution of the latent heat term at phase change
may not be captured properly [51-53]. These difficulties are not present for our PO-PO scheme since we handle w = «(9) in (22)
directly without chain rule

The difficulty presented by (i) is avoided by some by considering appropriate smooth approximations of ;([P [24,25]. For (ii),
if the enthalpy w;'l =af (92) is interpolated using P1 elements, certain “spatial” [49,54] or “temporal” [55] averaging methods are
employed, and improve the performance of the scheme over the direct use of (32). Recently, techniques similar to the temporal
averaging were employed in [24,25] to approximate ( ;(IP )(6) in (32), while in [23], ;(IP is used as the integrating variable in
evaluating mass matrices. In turn, in [26,27] the enthalpy formulation is used, but («”)’ is approximated with a finite difference
approximation. The resulting nonlinear system of equations is usually solved by the Newton’s or Picard’s method [23,25,26,28].

While some of the above approximations seem natural to implement, the use of chain rule involving c,,, is not conservative

app
since " — "~ # ¢, (8" — 0""1). Further, the use of regularized SFCs or c,,, approximations lead to modeling errors.

app app
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Our PO-PO algorithms do not suffer from these issues since the semismooth framework for Newton’s method allows us to consider
non-smooth SFCs (see Assumption 2.2) without any need for regularization or chain rule application.

5. Computational algorithm and solver

In this section we provide details of solvers for our PO-PO algorithm (22) in both the temperature and enthalpy variants, with
a solver based on Newton’s iteration. First we provide implementation details and next we analyze the nonlinear solver, and show
that it is robust and efficient.

The standard Kantorovich result for convergence of Newton iteration requires the nonlinearity to be smooth with Lipschitz
continuous derivative [56]. However in the permafrost models and scheme (22), we only have piecewise-smoothness for the
nonlinearities « and f. Thus we work in the semismooth framework [40,57] which establishes super-linear or even quadratic
convergence under some assumptions. In practice, we obtain quadratic convergence for an appropriate initial guess.

Second, nonlinear solvers based on the Newton’s method are well known to be quadratically convergent but require a good
enough initial guess for convergence. For transient problems, this means the Newton solver may require small time steps for robust
convergence. These are frequently the reasons why researchers consider other schemes, e.g., the L-scheme is considered in [58] for
the Richards’ equation, while recent work on Anderson acceleration improves over Newton’s and Picard’s methods for stationary
problems in [59]. However, we find that accurate simulation of the dynamics of the free boundary in permafrost (or Stefan problem)
requires moderate size time steps anyway; with these, our solver is robust.

5.1. Implementation details

First we complete (22) by the relationship between W and 6, the counterpart of w = a” (). Both are solved by iteration until
the residuals achieve an absolute tolerance of 10~12 or a relative tolerance of 10~® (with respect to the first iteration). Further, we
use adaptive time stepping: at every ¢ = ", starting with an initial fixed 7z, = 7, if convergence of our algorithm is not achieved
within m,,,, = 30 iterations, we repeat the step with reduced time step 7, = % If not successful, we continue the reduction further.

Temperature formulation: at each time step " we seek ©" such that

Maf (@) +17,70" = 7, F" + MW", (33)
We solve the problem by iteration, with an initial guess ©™® = @~
In each iteration m = 1,2, ..., given "~ we find 6™ as
R(O""=D) = #aP (@) + ¢, 7@MD — Wl -z, F", (a)
(PO-P0-0) 3 (A 7" + 1,9/)60™™ = —R(©™"D), (b) (34)
onm = gnm=1 4 somim, ©

where /‘;"("’_1) € da’(@""~D) is a diagonal matrix. We note that (34)(b) involves solving a linear system. Also, da” is the Clarke’s
generalized Jacobian defined as the convex hull da” = co(dga®), with the B-subdifferential

dgal(®) = {J, eR | 3{6,}, € D,.0, — 0,(al) 6, = J,}, (35)

where D, C R is the set where o admits a Fréchet derivative.

Now we need to state how we make the selection out of da® in our implementation. We use da’ (9) = () (), V6 # 0,.. Also, we
set 0af(8,) = [

Enthalpy formulation: we seek W" such that

MW"+ 1, V") = 7, F" + AW, (36)

with g = P or pST. We start with an initial guess W"™(® = W1, Next, we consider the enthalpy formulation (36): in each iteration
m, given W("=Dwe find W as follows

RW ™=y = g wnm=D 4 of gV ™Dy — g W — 7, F", (a)
(PO-PO-W){ (M + 7,9/ /;‘"’*”mwn,(m) = —R(W™m=1)), b) 37)

Wnm = pgran=1 4 sp7nm (c)
where 7 ﬂ" =) e 5w =1y is Clarke’s generalized Jacobian, a diagonal matrix. In our implementation, we set a8 (w,) = c,”!
for permafrost models and 9457 (0) = 0, dfST(L) = ¢,~! for the Stefan problem.
Finally, the algebraic expression for ¥ in (37)(a) is not easy to find explicitly, and the use of look-up tables to invert some
piecewise-linear aP ~ aP leads to a modeling error and discrepancy between the results obtained with PO-P0O-© and PO-PO-W'.
For our numerical experiments, we employ a local nonlinear solver to invert g”(W"™("-D) componentwise in (37)(a), i.e., we

need to solve aP(@"" V) - I/V[.j’("’_l) = 0 in every cell w;;. For this purpose, we choose Ridder’s method [60] (Pg. 452) which is

ij
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known to be very robust; we apply the same relative and absolute tolerances as those listed above. In our experiments, Ridder’s
method converges within a maximum of 25 iterations and an average of 3 iterations.

5.2. Convergence of solvers PO-PO-© and PO-PO-W

Now we demonstrate theoretical results for our algorithms. For these, we time-lag the conductivity values k = k(GZ‘]) in (20b).

Lemma 5.1. At each time step n, the sequence {©™}, generated by (34) converges quadratically to the solution ©" of (33) for an
appropriate initial guess.

Proof. From Lemma 2.1 /:’('"_” has positive entries. Moreover, since .# is the diagonal matrix of cell volumes, the product

M gD s diagonal and the eigenvalues A (/// f;'('”_l)> h2. Cpin- Since & is symmetric positive semidefinite, the Jacobian
I = g g™V 4 1 o in (34)(b) is symmetric positive definite and thus invertible.
Now, since 4 (J]Z’(’" 1)) > min {A (.//l/a'"('"*l)) }, we have
_1\ -1 1
("), = : (38)
oy <

Finally, since « is order-1 semismooth, we see that the sequence {@"™}, generated by the semismooth Newton’s method will
converge quadratically for an appropriate initial guess [40] (Pg. 31, Prop. 2.18). [

Lemma 5.2. At each time step n, the sequence {W"™("}  generated by (37) converges quadratically to the solution W" of (36) for an
appropriate initial guess.

Proof. The Jacobian in (37)(b) is given by
BN = 4t g = <1+f o ”///-)//z (39)

Since &7 7, ﬂ”’('”_l)/// -1 in (39) is not symmetric, we cannot proceed as in the proof of Lemma 5.1.
Since &/ is symmetric positive semidefinite and ¢ ;’('"_')Q//l -1 is diagonal with non-negative entries from Lemma 2.1 and (17), the
product </ 7 mm=D -1 has non-negative eigenvalues. Hence A (1 + 7,9 /ﬂ" =D ’1> > 1, and

consequently <I + 1,9 f =Dy~ 1) is invertible. Since JI" m=1 jn (39) is a product of two invertible matrices, it is invertible.

(J;»<m—1>)“ 1

diagonally dominant (see Appendix A.2), the product &/ ¢ mm=D)_z=1 is also column-wise weakly diagonally dominant since right
multiplication of a matrix by a diagonal matrix scales the columns of the former by the diagonal entries of the latter. Hence from
Lemma A.1 we have

We now apply a result from literature to prove the uniform boundedness of . Since & is symmetric and weakly

1

H(JZ’(M_U)A |1 < |-, ”(1 + 1, D ! )71”1 <[, < o (40)

Finally, since f is order-1 semismooth, we see that the sequence {W™(™}, converges quadratically for an appropriate initial guess
[40] (Pg. 31, Prop 2.18). []

5.3. Local convergence of PO-P0O-© and PO-PO-W

In Lemmas 5.1 and 5.2 we showed local convergence of our nonlinear PO-PO solvers PO-PO-© and PO-PO-W for an appropriate
initial guess regardless of which primary variable is used (temperature or enthalpy). Now we compare their performance, with focus
on the magnitude of the time step that guarantees convergence.

We recall that when using the semismooth Newton’s method to seek a solution S, to g(S) = 0, for some g : R/ — R/, convergence
is guaranteed if the initial guess S, is in a neighborhood B, (S,), where ry > 0 is such that V55, [|6S]| < r;, we have

Hg(S +55)—g(S) - /gas“q <C)"I5S I, 7, € 9g(S +5S), (41)

with C > 0 being the uniform upper bound of the Jacobian ”{ng l,<C [40] (Prop. 2.7, Eq. (2.1)), and q € {1,2}.

In the temperature formulation (33), the nonlinearity is g = a”. For the linear part of «f, the left hand side of (41) equals 0,
but near 6 < 6,, from (11) («”) is large for SFCs with steep gradients, i.e., large L e Hence, in such cases, we anticipate r, to be
small for (41) to hold near 0 ~ 6,. That is, convergence would be guaranteed only 1fj the initial guess is really close to the solution,
or equivalently, we would only expect PO-PO-O to converge for small time steps.

On the other hand, in the enthalpy formulation (36), the nonlinearity is g = #¥. In this case, by (15), (#¥)’ remains bounded
independently of L p. In fact, () decreases near w ~ w, as L o increases. Thus we do not need r, to be too small for (41) to
hold, and we expect PO-PO-W would converge for large time steps.

We illustrate these observations through numerical tests in Sections 6.2 and 6.3.

10
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Table 3
Parameters used in Example 6.1.
(IR ki k., k, L 0,
1 1 1 0
Table 4
Results for Example 6.1.
Case T 18l o2 10 llo.t 181122 10l co 2 1 @Werllco 1 10,1122 Ger llco 2 19errll o1 197/ 1122
(ST O(h) 1.25 1.33 1.23 0.51 1.01 0.50 0.51 0.97 0.50
0(h?) 1.22 1.44 1.23 0.50 1.01 0.49 0.40 0.78 0.50
(P) O(h) 1.29 1.28 1.11 1.33 1.18 1.11 1.21 1.24 1.16
o(h?) 1.85 1.99 1.85 1.85 2.00 1.84 1.25 1.50 1.24

6. Numerical experiments

In this section, we provide numerical experiments to demonstrate the performance of our PO-PO algorithm as well as the features
of PO-P0-© and P0O-PO-W solvers. We start with tests of convergence to verify the theoretical estimates from Section 4. Next, we
provide physical permafrost scenarios to test the robustness of our algorithms when handling different SFCs, boundary conditions,
and media heterogeneity.

6.1. Order of convergence

We now provide convergence studies for permafrost models using our PO-P0O-0 algorithm. Similar tests were given in [12] for
the Stefan problem and 0, w variables.

Here we give the errors for 6, w, and ¢ and in the || - || .l - ll,; and || - [|,, error norms (see Appendix A.4 for their details). We
estimate the orders of convergence using two examples: one with a known analytical solution and another with a fine grid solution.

For the first example, we consider a non-physical scenario with a known analytical solution adapted from [17] (Example 1). We
provide the convergence orders obtained for the Stefan problem using P0O-PO-W.

Example 6.1. Let Q = (0,04) x (0,0.2) and S(x,7) = 0, S(x,1) = —x +t + 0.1, be the free boundary between the frozen and
thawed states, with material parameters as in Table 3. In the first case, we consider the Stefan problem with analytical solution
[17] (Example 1)

ST — eS—1; S<0 st _ eS—-1;,  8§<0 7 = eS; S<0 42)
2eS-1+1; S>0, 25 -1); >0, 2¢5; §>0,

and external source fS7 = 0. For the second case, we modify (42) to satisfy the permafrost model. We choose the adapted M SFC

with parameters b =2, yM =0,6M =0, and a porosity of n = 0.5. The thermal parameters of the rock material are as in Table 3.

The analytical solution is given by

gro -1 s<0 L Je - 1)+0.5¢2° "D 5 <0 o= 2%, §<0 433)
205 - 1); S>0, 2(eS — 1)+ 0.5; S >0, 2e5; §>0,
with the external source term
2 [ez(e“*l) - 1] 25, §<0
fP B 0 S>0 (430)
; >0.
It is worthwhile to note that
aS
[ s =2-1= 1= L% . (44a)
however
l4")s= =2-()=0. (44b)

This difference is in accordance with the fact that ¢* € Hy;, but ¢5T ¢ Hy,,.

We obtain the errors using grid sizes 4 € {2,1,0.5} x 1073 and 7 = (1.25 x 10~")A and = = (1.5625 x 10)A2. The convergence rates
are tabulated in Table 4. We seek the order p of the error O(h?).

For the permafrost model, we obtain at least p ~ 1 for 8, w, and ¢ when using = = O(h); when = = O(h?), we obtain order
p €[1.8,2] for 6, w, and order p € [1.25,1.5] for ¢. In contrast, for the Stefan problem, p ~ 1 for § and p ~ 0.5 for w and ¢ regardless

11
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Table 5
Thermal parameters of water and rock grains used in this paper.
Material ¢ [I/m? °C] k [J/m s °C] L [J/m’] 6, [°C] Ref.
Liquid water 4.19 x 10° 0.58 306 x 100 0 [32] (Section 4)
Ice 1.90 x 10° 2.30 306 x 100 0 [32] (Section 4)
Rock grains 2.36 x 10° 1.95 0 0 [6] (Table 1)
Table 6
Results of Examples A.1 and 6.2. Orders of convergence are obtained using fine grid solution with A/"¢ =2x 10~ [cm] and 7/ =1 [s].
Model T 16Nl o2 16y ll o, 161122 [0ep lloo2 10yl o1 (17 PP 19errlloo2 1Gerr llo.1 1Gepe ll2.2
Example 6.2(i)
L O(h) 0.97 0.97 0.96 0.96 0.96 0.95 0.76 1.00 0.92
O(h?) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.98 1.93
w O(h) 0.96 0.96 0.96 0.95 0.95 0.96 0.76 1.00 0.90
o(n?) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.97 1.93
M Oo(h) 0.96 0.97 0.97 0.98 0.96 0.97 0.76 1.00 0.89
o(n?) 2.01 2.01 2.01 2.00 2.01 2.02 1.53 1.97 1.94
Example 6.2(ii)
L O(h) 1.34 1.35 1.40 1.46 1.58 1.34 0.95 1.16 1.04
o(n?) 1.08 1.27 1.57 1.39 1.89 1.65 1.01 1.15 1.08
w O(h) 1.69 1.55 1.31 1.38 1.34 1.21 1.08 1.33 1.06
o(h?) 1.60 1.63 1.69 1.56 1.89 1.85 1.16 1.41 1.21
M Oo(h) 1.52 1.46 1.41 1.55 1.48 1.30 1.05 1.29 1.13
o(h?) 0.98 1.32 1.63 1.62 1.95 1.85 1.13 1.21 1.22

when 7 = O(h) or O(h?). The higher orders of convergence in permafrost models is due to the increased regularity of a” compared
to a57.

We consider next a realistic physical scenario, and compute the order of convergence using fine grid solutions. The permafrost
model features a moving thawing front. For reference, we provide the test for the linear heat equation in Example A.1 in
Appendix A.3.1.

Example 6.2. Let 2 = (0,0.2) [m] be occupied by a soil with porosity n = 0.55 and SFC parameters as in Table 7. The thermal
properties are taken from Table 5. We choose w, = a”(6,) and boundary conditions

2t
00,1) = 0;, 0(0.2,1) =0y + ———, V¥t >0
0.1) =6y, 60.2,1) =6y + 555, V1 >0, (45)

where (i) §, = —4 or (ii) §, = —1.5 [°C]. The simulations are run over ¢ € (0,5000) [s]. We consider grid size h € {0.4,0.2,0.1}x1072 [m]
and time step 7 = (5 X 10*)A [s] and = = (5 x 107)h? [s]. The results are tabulated in Table 6.

For permafrost models in Example 6.2, in case (i), we obtain order p = 1 and p = 2 for 6, w, and ¢ when using = = O(h) and
O(h?), respectively. This agrees with the estimate (28) since the problem is only mildly nonlinear, i.e., the nonlinearity a” is smooth
as 6(x,1) < 0,,V(x,t) € 2. In case (ii), however, we obtain orders p ~ 1.2-1.6 for 6, w and p ~ 1-1.2 for ¢, when using r = O(h).
There is only a slight improvement when using = = O(h?). This is expected since in this case (x,) > 8, for some (x,?) € 2: about
5% of the domain completely thaws by the end of the simulation. Since «” is non-smooth for some time of simulation, we can only
expect orders in accordance with (26).

Summary: We see that using our PO-PO scheme for permafrost models we see roughly first order of convergence for both 6, w,
and ¢q with 7 = O(h) in all norms. In scenarios not involving phase transition, quadratic order can be obtained as long as = = O(h?).
These rates are better than for the Stefan problem, where 0 is first order convergent, but w only half [12] (Section 3.4), and results
are better for weaker norms.

6.2. Robustness of solvers
In this section, we demonstrate robustness of our PO-PO solvers for permafrost scenarios with respect to different boundary
conditions and domain heterogeneity. In particular, we compare performance of PO-PO-© and PO-PO-W solvers and test their

robustness.

6.2.1. Robustness in practical homogeneous scenarios
We start by comparing the performance of our PO-P0 algorithms in homogeneous permafrost scenarios with physical data.

12
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Table 7
SFC parameters used in Examples 6.2 and 6.3.
Permafrost model SFC parameters
Adapted L (9a) b=175[-],0, =-1 [°C]
Adapted W (9b) b=5[°Cl. fpes =0 [-1.6, = -1 [°C]
Adapted M (9¢) b=1[1/°Cl, %,es =0 [-],0, = =1 [°C]
20 3% 10®
W
(5} 10 o~ 2
B £
— S q
S o >
2 50
=
8.'10 [0}
£ g1
(0]
F-20 5.
(%)
-30 + ! -3 - !
180 365 0 180 365
Time [day] Time [day]
- P0-P0-© P - P0-P0-0 _ o
“€) Adapted L “€) Adapted L =, iz A
-8 Adapted W 6 -8 AdaptedW _ -0~
o 7}-9-Adapted M » -0 Adapted M
C 6 = Lo - S —— ..@
9 - = _m = iel —r—
E=] e E=] e
i e S ghe==
2 1 2 1 24 120
: : PO-PO-W
32,5 3 § 6 /'_,_«0
e
P 5 - i -
/\”/ O =
P -

= —
Time §4ep [hr] L :?/ Time %fep [hr] 120

Fig. 4. Illustrations for Example 6.3. Top row: A plot of the surface temperature corresponding to Dirichlet boundary conditions (46a) (left) and surface flux
corresponding to Neumann boundary conditions (46b) (right). Bottom row: the maximum number of iterations taken by our PO-PO algorithms when using
Dirichlet (left) and Neumann (right) boundary conditions. Here h = 10~2 [m].

Example 6.3. Let Q2 = (0,1) [m] with porosity #n = 0.55. We consider the SFCs with parameters as in Table 7. We choose initial
conditions w, = af(6,) and consider two sets of boundary conditions: (i) Dirichlet boundary conditions

6(0,1) = =5+ 15sin 2xt) + A, 6(1,1) = =5 [°C], Vi > 0, (46a)
and (ii) Neumann boundary conditions
q(0,7) - v =—0.002 sin 2z1) — 0.0003.4", q(1,¢) - v =0.0001 [J/cm2 s], Vi > 0, (46b)

where .4 ~ N(0, 1) is Gaussian noise added to the signal to replicate the oscillatory nature of field measured data; see Fig. 4 for a
plot of boundary conditions (46).

The simulation is run over ¢ € (0, 1) [year]. We choose grid sizes 4 € {5,1,0.2} x 1072 [m] and r € {120,24,1} [h]. The results are
given in Tables 14-15, and shown in Fig. 4 for 4 = 10~2 [m].

In both the cases of Dirichlet and Neumann boundary conditions, PO-P0-© performs robustly for all three SFCs with a maximum
of 10 and average of 1.6-3.9 iterations. Further, for large z, some time step reduction is observed for the adapted L SFC in the
Dirichlet case, and for all SFCs in the Neumann case. Moreover, when using PO-PO-W, for all SFCs the maximum and average
iterations are reduced to 8 and 1.3-3.4, respectively. More importantly, there was no time step reduction for any SFC.

This example demonstrates that PO-PO-W is more robust than PO-P0-O for large time steps.

6.2.2. Robustness in heterogeneous domains
The argument in Section 5.3 shows that the rate of convergence of our PO-P0O algorithms depends on the data for which (41)

holds, which in turn depends on the SFC. We now test this observation for a heterogeneous SFCs ;([P = IP (x,0), and demonstrate
the robustness of our PO-P0 algorithms in heterogeneous domains.
Consider the stationary system

W +AO =F, W =a(O), (47)

13
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 5. Illustration for Example 6.4 showing the selected smooth (left) and semismooth (right) functions @, and «, used to compare the performance of our
PO-PO algorithm. Note the difference in the gradients of the two curves in each plot.

W, o, -k 2k 2, (0,)
and F € R? is a constant. The system (47) arises when (22) is written for N,, = 2 cells; we do not consider (47) to be related to any
particular physical scenario.
When using PO-P0-0, the Jacobian in (34)(b) is given by J™ ™ = gz 1 4, where 7"V € da(@™D) is given by
(m=1) _ Je(v:n_l) 0
a - 0 J(m—l) H

L)

50 =[60,,50,17, that

where W = [Wl] , 0= [@' 2k —k “(61)

eR?, A= [ ] ,k>0,and « : R? - R?, a(@) = [ ], for some semismooth ¢;,a, : R » R,

J,f,:,"_l) € 0aj(6;m_l)). Now, substituting g(@) = a(0) + AO in the left hand side of (41) gives, with

) 172
2
@@ +56) - a(0) - 7,50), = (Z (a,.(@,. +60,) — a,(0,) — Jaiéé)i‘ > . Iy, € 00,(0; +56),).
i=1

By extending the argument from Section 5.3, if either «; or «, features a steep gradient, the algorithm P0-P0-O requires small
time steps for convergence. The performance of PO-P0-6 is mostly affected by the features of «; and «, rather than the heterogeneity
@,(0) # a,(O). Similar reasoning applies to PO-PO-W.

We now illustrate the above with a numerical example.

Example 6.4. Consider the system (47). We choose smooth and semismooth expressions for «; and «, and compute the solution
corresponding to a given F using our algorithms. We test PO-P0-O and PO-PO-W with respect to different initial guesses ©, and
W, = a(0,), respectively, and with respect to different values of k. The expressions of «; and «, and the value of F are listed in
Table 8. We also plot «; and «, in Fig. 5. The results are given in Table 8.

We see that PO-PO-O struggles to converge in cases when a; or a, has a steep gradient. Further, for semismooth functions, no
convergence of PO-P0-O is observed when k is small. When using PO-PO-W, however, convergence is achieved for all cases with
fewer iterations than P0O-P0-6.

Summary: Our PO-PO algorithms appear to perform robustly in heterogeneous permafrost scenarios regardless of the boundary
conditions or SFC expressions used. We also see that PO-PO-W performs better than PO-P0O-O© with fewer iterations and time step
reductions. In particular, a time step of 1-120 [h] for a grid size of 0.2 x 1072-5 x 10~2 [m] appears to suffice for convergence in
practical permafrost scenarios.

6.3. Physically realistic simulations

We now test the application of our PO-P0O scheme in heterogeneous permafrost scenarios with physical data. First, in Section 6.3.1,
we consider heterogeneity, i.e., multiple soil types, with data measured in Alaska. Next, in Section 6.3.2 we consider heterogeneity
due to an ice wedge in d = 1 and d = 2. We see that our PO-P0O algorithms apply well in such scenarios, and we reconfirm the
advantages of PO-PO-W over PO-P0-6.

6.3.1. Utqiagvik, Alaska

In this example, we use the data measured at Utqiagvik, Alaska (formerly known as Barrow). The data is taken from Permafrost
Laboratory, University of Alaska, Fairbanks [61], and the Circumpolar Active Layer Monitoring Program [62,63]. The purpose of our
simulation is not to exactly replicate the measured temperature values but to show the robustness of our algorithms when handling
heterogeneity and physical data. For that reason, we ignore additional factors such as the dependence of the thermal soil properties
on the temperature or the effects of snow on the ground surface.

Data description and calibration: At Utgiagvik, we use data from two different sites: water fraction data from NGEE Barrow
C and ground surface temperature from Barrow 2 (N. Meadow Lake No. 2/NML-2) [61]; see Fig. 6 for a plot of the ground surface
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Table 8
Results for Example 6.4 show that the performance of our PO-P0 algorithm appears to depend on the steepness of gradient of a, or a, rather than the heterogeneity
represented by a,(0) # a,(0).

a,(0) ,(0) F k 0, PO-P0O-0 PO-PO-W
Smooth functions Convergence?/Iter. Convergence?/Iter.
0’ +0 0*+0 [.s51" 1 [nnr Yes/4 Yes/4
[6 51" Yes/7 Yes/5
1073 [nnr Yes/4 Yes/2
651" Yes/7 Yes/2
e +0 07 +30 [.s1" 1 [nr Yes/4 Yes/3
[6 51" Yes/12 Yes/4
1073 [11r Yes/4 Yes/2
[6 51" Yes/12 Yes/1
0’ +30 07 +30 [1.51]7 1 [1rr Yes/4 Yes/3
[6 51" Yes/13 Yes/3
1073 [11r Yes/4 Yes/2
[6 51" Yes/13 Yes/1
Semismooth functions
O+e¢% 6<0 0+¢% 0<0
¢ ¢ 0.98 0.95]" 1 (-2 —2.5)" Yes/3 Yes/3
20+1; 620 20+1; ©>0
321" Yes/2 Yes/2
1073 [-2 —=2.5]" Yes/3 Yes/2
321" Yes/2 Yes/1
0+e¢% 0<0 0+¢'%°; 0<0
¢ ¢ [0.98 0.95]" 1 [-2 — 2.5 Yes/s Yes/4
20+1; 620 O+1; 0>0
321" Yes/4 Yes/3
1073 [-2 =2.5]" No Yes/2
321" No Yes/2
O+e'%%; ©6<0 0+ ©<0
[0.98 0.951" 1 [-2 —2.5]" Yes/5 Yes/4
O+1; 0>0 O+1; 0>0
321" Yes/4 Yes/3
1073 [-2 —2.5]" No Yes/2
321" No Yes/2
Table 9
SFC parameters used in Example 6.5. Here we use the adapted L SFC given by (9a).
Subdomain SFC parameters
QM =(0,0.2) [m] b=042,0, = -0.002,n = 0.56
QP =(0.2,0.4) [m] b=0.81,0, =-0.03,n = 0.46
QP =(0.4,40) [m] b=143,0, =-0.05,7=051

temperature. The two sites are roughly 3.8 [km] apart and have available recorded data from 2012-2018. The yearly active layer
depth data is taken from [62,63] Barrow CRREL plots from 2013-2018 which is measured between mid August to September, when
the thaw depth is the maximum [62] (Pg. 169).

We calibrate the adapted L SFC using the available daily water fraction data from 2012-2013 at depths of 0.15,0.30, and 0.42 [m].
The obtained SFC parameters are tabulated in Table 9.

Example 6.5. Let 2 = (0,40) [m] be partitioned into subdomains Q) = (0,0.2), 2® = (0.2,0.4), and Q® = (0.4,40), where each
QU1 < j < 3 is occupied with a soil type with SFC parameters as in Table 9. We use Dirichlet boundary conditions at x = 0
corresponding to the available surface temperature data from 06/01/2013 — 06/01/2018 and Neumann boundary conditions

4(40,1) - v = —0.0565 [J/m? s], Vi > 0, (48)
corresponding to the constant geothermal flux [28].

We choose a non-uniform grid with grid size 2 = 10~2 [m] in (0,2) [m] and # = 0.2 [m] in (2,40) [m], and an initial time step of
T =24 [h].

An interesting question concerns an initial condition, since it should reflect a physically realistic distribution. We calculate the
initial condition by using the surface temperature from 06/01/2012-06/01/2013 by following a procedure similar to [28]: we
first choose a uniform initial temperature profile —9 [°C] and compute the steady state solution by using the Dirichlet surface
temperature value on 06/01/2012 and Neumann condition (48). Using the steady state solution as an initial condition, we further
simulate the temperature profile at the end of 3 years by periodically extending the surface temperature data from 06/01/2012—
06/01/2013 and using it as the Dirichlet surface boundary condition along with the Neumann condition (48). The temperature
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Fig. 6. Illustration for Example 6.5 showing the measured ground surface temperature (left) and the initial temperature profile (right) used in the simulation.
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Fig. 7. Results for Example 6.5. Measured and simulated temperature at a depth of approximately 1 [m] (left), simulated flux at the ground surface (middle),
and simulated and measured thaw depth (right).
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Fig. 8. Performance of our PO-PO algorithms in Example 6.5. Left: when PO-P0-O is used, the time step is reduced even down to O(10~2) [s], whereas using
PO-PO-W requires no time step reduction. Right: iteration counts show that PO-PO-W takes fewer iterations than P0O-P0-© for convergence.

profile at the end of the 3 year simulation is shown in Fig. 6: we choose this to be our initial temperature profile for the simulation
from 01/06/2013-06/01/2018.

We first run the simulation with PO-P0O-O solver. At the end of the simulation, we compare the measured and simulated
temperature at a depth of 1 [m]. The results are shown in Fig. 7. A maximum difference of max, |§/aed (¢ — gmeasured (1)| ~ 1,13 [°C]
was obtained at a depth of x ~ 1 [m]. We also compute the location of the 0 [°C] isotherm to compute the maximum thaw depth.
A good qualitative agreement was observed between the measured and simulated values; see Fig. 7.

We now discuss the performance of the solvers in this challenging case with heterogeneity of the soil and the quickly varying
surface temperature data. Fig. 8 shows the time step reduction and iteration count during the simulation.

For PO-P0-O solver, the time step is reduced to a minimum of = = 0.04 [s]. With this reduction, maximum of 28 iterations were
taken throughout the simulation, with an average of 2.7.

We next re-run the simulation using PO-PO-W. Now there are only 13 maximum iterations, with average 2.0. Most importantly,
there is no time step reduction during the simulation; see Fig. 8.
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Table 10
SFC and thermal parameters used in Example 6.6. Here we use the adapted L SFC given by (9a). A plot of the
SFCs is shown in Fig. 9.

Soil type SFC and thermal parameters Reference
Organic mineral mixture b=0.6,0, = —0.05, n =0.50 [24] (Table 1)

¢, =1.750 x 10° [J/m* °C], k, = 0.692 [J/ms °C] [25] (Table A.3)
Mineral b=05,0, =-0.1, n =0.40 [24] (Table 1)

¢, =2.385x 106 [J/m’ °C], k, = 2.92 [J/ms °C] [4] (Pg. 90, Table 4.1)

N
o

-©-0rganic mineral mixture
-@-Mineral

o

(&)
0.8 o
210
2
0.6 g
s S o
0.4 0
[0]
0.2 g 10
©
@
0 . - - - . . -20 " " "
5 4 3 2 4 0 1 0 1 2 3
Temperature [ C] Time [year]

Fig. 9. Illustration for Example 6.6. Left: SFCs of the different soil types used in the example. The parameters are taken from Table 10. Right: the surface
temperature (49) used in the simulation clearly showing the warming trend.

6.3.2. Ice wedge modeling

In this example, we model the inclusion of ice and rock wedges in permafrost. We begin with a d = 1 example with an ice wedge
modeled with different approaches discussed in Section 2.2.1. Next we continue with a d = 2 example replacing the ice wedge with
a soil, or with solid rock.

Example 6.6. Let Q = (0,2) [m]. Let 2 = (0,0.2) be occupied by an organic mineral soil mixture, 2® = (0.2, 1.5) be occupied by
ice, and 2@ = (1.5,2) be occupied by a mineral soil. The SFCs and thermal parameters are listed in Table 10 and shown in Fig. 9.
We choose an initial condition corresponding to 6, = —5 [°C] and boundary conditions

0(0,1) = 0,(t) + 31, 0(2,1) = =5, ¥Vt > 0, (49)

where 6, is the surface temperature (46a) (periodically extended over 3 years) and 3¢ represents an additional warming scenario. A
plot of the surface temperature (49) is shown in Fig. 9.

The simulation is run over ¢ € (0,3) [year] (1 [year] = 365 [day]) using differenL&rid sizes h € {1.25,2.5,5} x 1072 [m] and
time steps ¢ € {120,24,1} [h]. With PO-P0-0, we consider the two approximations «57 = @,a” shown in Fig. 3. We distinguish
the corresponding numerical solutions by appropriate superscripts; e.g., 6% denotes the temperature obtained using PO-P0-@ with
ST = and 6#°" using PO-PO-W.

The temperature and water fraction profiles at  ~ 0.25,1.25 and 2.25 [year] are shown in Fig. 10 when using 4 = 1.25 x 102 [m].
A maximum thaw depth of ~ 0.53 [m] was observed at the end of the simulation. The thawing front is captured most accurately
by PO-PO-W, since no regularization or approximation of )(IST is used in this case. Comparing to PO-P0-0, a maximum difference
of max, |0"P(x, 1 — i (x,1| ~ 0.12 [°C] and max, 16%(x, 1) — QﬂST(x, )] = 0.77 [°C] occurred near ground surface at x = 0 and at
t ~ 2.25 (the time of the maximum ground surface temperature). We conclude that «f and @ serve as an effective and accurate
approximation of ;(IST when used in soil-ice wedge scenarios.

We now compare the performance of the solvers for this complex case. Table 11 shows that with P0-P0-0, the approximations
alP and @ perform similarly. For ¥ a maximum of 19 and average of 2.1-4.1 iterations are taken, whereas for @ a maximum of 26
and average of 1.6-1.9 iterations are taken. Further, time step reductions were observed down till O(107") [s] for «” and O(1) [s]
for @. This is expected due to the high gradients of the approximations o and @. However, when using PO-PO-W, a maximum of
9 and average of 1.5-3.2 iterations are taken. Further, time step reduction was only observed for the high value of 7, = 120; even
then the time step was only reduced till O(10) [h].

Finally we consider a 2D example for ice wedge modeling. We focus on the features of heterogeneity, thus we use constant rather
than time-varying boundary conditions. The example is designed to show how easy it is to consider different scenarios, geometries,
and rock types with our robust PO-P0 algorithms. In fact, we are able to model the ice domain as (5) with «f, k¥ given with n = 1,
and the solid rock domain with n =0, L = 0.

Example 6.7. Let Q = (0,1)x (0, 1.2) [m?] be partitioned to three material subdomains shown in Fig. 11 (top left), with the layout
summarized in Table 12. The subdomains 2 and 2 are occupied by soil types S1 and S2. For 2®, we consider three different
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Fig. 10. Results for Example 6.6 showing the temperature (left) and water fraction (right) at different times corresponding to the different model approximations
to the ice wedge. Here h = 1.25x 1072 [m].

scenarios. The ice wedge case (A) features ice in 2@, with 4 = 1 (no rock). This case is compared to (B) where soil type 2 is assigned
to 2@, and case (C) when 2@ is occupied by solid rock (e.g., a boulder) with # = 0,6 = 0, L = 0,7,,, = 0. The thermal parameters
for all materials are in Table 5, and the SFC using model M (9c) in Table 12.

We consider constant initial conditions 6,,;, = —10 [°C] and a constant Dirichlet boundary condition § = 10 on y = 1.2. On the
boundaries x = 0, x = 1, and y = 1.2 we consider the no-flux conditions ¢ - v = 0. We choose a spatial grid of 100 x 120 elements
and a time step 7 = 12[h]. We use 6 as a primary unknown, since the case is only mildly challenging.

The simulation is run over 7 € (0, 1) [year], with results presented in Figs. 11-12.

The plots in Figs. 11-12 show complex profiles of evolving # and water fraction y,. We see that # is continuous across material
interfaces, but that the water fraction y, features a sharp contrast across material interfaces. In addition, as expected, the ice wedge
in case (A) thaws the slowest, while y;|,e is meaningless in case C and is not plotted.

As concerns solver, the solver P0O-P0-O is quite robust for this general d = 2 case. With the time steps of half-day chosen for
accurate dynamics, the solver requires only about 2-4 iterations and no time step cutting. After thawing is initiated, the time step
can easily be increased. We do not report more details for brevity.

Summary: The numerical experiments provided in this section further demonstrate the robustness of our PO-PO algorithms in
practical heterogeneous domains. As observed in Section 6.2, we see that PO-PO-W converges with fewer iterations and minimal
time step reductions when compared to PO-P0-O. However, it requires additional iterations of Ridder’s iteration per each cell. This
set-up due to its robustness may be more advantageous especially for large domains where the cost of linear solver needed in each
iteration of PO-P0-O easily outweighs the cost of Ridder’s iterations.
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Table 11
Results for Example 6.6 comparing the performance of our PO-PO algorithms. Note that PO-PO-W takes fewer
iterations than PO-P0-© and converges for larger time steps.

Ice wedge model h [cm] 7 [h] Max/min/mean iter. 7 reduced?
P0O-PO-0
xf.a? 5 120 13/1/3.7 7041 [s]
24 9/1/3.0 7~ 0.65 [s]
1 4/1/2.1 7~ 0.87 [s]
2.5 120 9/1/3.9 T~ 1.6 [s]
24 13/1/3.3 T2 13 [s]
1 4/1/2.3 T~ 1.7 [s]
1.25 120 18/1/4.1 7= 041 [s]
24 19/1/3.5 T~ 1.3 [s]
1 4/1/2.4 T~ 1.7 [s]
7. 5 120 11/1/1.9 7= 13.1 [s]
24 7/1/1.9 752 [s]
1 4/1/1.6 7~35 [s]
2.5 120 26/1/1.9 7=6.5 [s]
24 7/1/1.9 Tx5.2 [s]
1 4/1/1.7 T~ 70 [s]
1.25 120 16/1/1.8 T~32[s]
24 9/1/1.9 Tx52 [s]
1 4/1/1.7 =17 [s]
PO-PO-W
25T BT 5 120 8/1/2.5 No
24 6/1/1.8 No
1 3/1/1.5 No
2.5 120 8/1/2.8 7 =60 [h]
24 8/1/2.0 No
1 4/1/1.5 No
1.25 120 9/1/3.2 7 =30 [h]
24 9/1/2.2 No
1 4/1/1.5 No
Table 12

Definition of Cases A-B-C in Example 6.7, with SFC parameters used in the adapted M model given by (9c).
Top: data. Bottom: simulation results for Example 6.7.

Material n L 0,05 b

S1 0.5 L, 0.21 0.16
S2 0.2 L, 0.21 0.16
Ice wedge 1 L, 0.01 2
Solid rock 0 0 0 0
Case QO Q@ QB Min,Max g 7(x,T) Newton iter.
A S1,Ice,S2 0,1 4(5).

B $1,82,S2 0.2986,1 3(5)

C S1,Rock,S2 0.3114,1 4(5)

7. Summary and conclusions

In this paper we presented and analyzed a robust algorithm to model heat conduction in permafrost scenarios based on lowest
order mixed finite elements and the semismooth Newton’s solver. We demonstrated convergence and tested its robustness for realistic
permafrost applications.

In particular, we verified the optimal order of convergence of our schemes as suggested by the literature results for similar
problems.

We also investigated the advantages of the enthalpy formulation over the temperature formulation, with two variants of nonlinear
solver, respectively, called PO-PO-© and PO-PO-W. We proved their convergence based on the analysis of the properties of the
nonlinear temperature—enthalpy relationships «” and its inverse, f. In the end, the algorithm PO-PO-W using enthalpy as primary
unknown is more robust, but it requires an additional local nonlinear solver. However it (i) does not require any regularization of
a, even in scenarios involving SFCs with steep gradients or ice wedges, and it (ii) converges for large time steps.
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Fig. 11. Simulation set-up and results for Example 6.7. Left column: sketch of the domains (top), and temperature plot for case (A). Middle and right columns:
6(0.5,y,1), 7,(0.5,y,1) at t = 1[y] (top), and 7 = 0.5[y] (bottom) for cases A, B, C.

We further demonstrated robustness of our PO-PO algorithms in different permafrost scenarios including those with extreme
heterogeneity due to multiple soil types or ice or rock wedges. Moreover, our PO-PO algorithms are conservative and consistent in
contrast to other schemes frequently used in literature which employ the “apparent heat capacity technique”.

Data availability
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code available upon request on Peszynska’s website.
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Fig. 12. Simulation results for Example 6.7. Profiles of 6 (top), and y (bottom) at r = 1[y]. Visible is continuity of temperature, and discontinuity of water
fraction.

Appendix

A.1. Weighting of k,,k;, k; in k¥

To obtain k”(x, #), one has to weigh k,, k,, k; depending on the local geometry of pore space or at least the proportions of rock,
liquid, and ice within the pores.
In particular, one of the following three expressions can be employed

KA =k g+ kA = s k= + (L=, K = nk; + (1= 1k, (50a)
KO = RO (G4 kG =k 1k, KG = KTk, (50b)
P P\ ! -1 -1
oo 1-x <n 1—n> n o l-n
K= =+ K=+ K==+ . (50¢)
<kf k7 > “ k k, ! ki k,
representing the arithmetic (50a), geometric (50b), and harmonic (50c) average.
In general, upscaling should be used; see [13] for comparisons of k%, k%, k. In d = 1 upscaled values are the same

as harmonically weighted. In this paper, we use harmonic averaging (50c) in our numerical tests and simulations. Based on
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Assumption 2.1, we have the uniform bounds

<kM(x,0) < k%(x,0) <k (x,0) < k

min =

k Vx € 2,0 € R. (51)

max>

A.2. Auxiliary properties of the matrices .#, %, A and of

We now state some useful properties of the matrices .#, %, - and o/ introduced in Section 3. The matrix . is a diagonal
matrix of the cell-volumes of .7". We refer the reader to [12] (Section 3.1, Section 7.5) and [44] (Section 3.1, Eq. (15)) for the
complete details of 4 and A, and here we only state that 4 is a constant matrix with each column having at most two nonzero
entries € {—1,1} and the matrix .% is a diagonal matrix of the transmissibilities associated with each edge of .7”. For example, the
transmissibility 7, 1 associated with y,, 1 is defined as

To1,=hy <2hx,kl‘J + 2hx r+1k.+1,) , -
so that with y, = 7y in (20b) we get
hy‘jQ:l+%,j = TA+' /(@x+1j o7). 53)

The right hand side of (53) also explains how the nonzero entries of % are € {—1, 1}.

The matrix o = ZK-'#7 is at least symmetric positive definite (SPD) (and at least positive semidefinite for Neumann boundary
conditions). We will now show that 7 is weakly diagonal dominant (see Lemma A.1 for the definition). Consider a cell w; ;€ gh,
For simplicity of exposition, we let ;; be an interior cell. Then, using the basis functions #, =1, ; and y;, = w_ | Ve 1 in (20)

£3.

gives

oy Wi + T 1 (O = l+l])+T 1,000, -0, )+

+T 54107 = u+1) + T, 100 =0, Dl = hy, hy Wi+, Fl 4)
Or,

hx,hykW +1, <T71’j +Ti,j+% +T 1 +T” é)@?} +1, ( il j> @An+1/

i <_T"’%J> Orry * <_Ti,j+%> O +7 < Tuj*%) 1= hx'hykwn_ + o, F (55)
Comparing (55) with the (22), we establish that the row of &/ corresponding to the degree of freedom @If’j has the entries

{ (s # o # T # T, ) T Ty T T o)

with the first entry in (56) being the diagonal entry. This proves that </ is row-wise weakly diagonally dominant. Since &/ is
symmetric, it is also column-wise weakly diagonally dominant.
We will use of the following result on weakly diagonally dominant matrices from [64] (Thm. A.2).

Lemma A.1. Let X € R!xR! be a column-wise weakly diagonally dominant with non-negative main diagonal and non-positive off-diagonal
elements, i.e.,
I
X2 Y XL VI <,
i=Li%j

X, 20, VI<j<I X;; SO, VI<ij<I i#].

ij =

Then ||(I +X)‘1I|1 <L
A.3. Supplemental data

In this section, we provide information for the narrative in Section 6.
A.3.1. Orders of convergence for the linear heat equation

Example A.1. Let Q =(0,0.2) [m] be occupied with water with material properties as in Table 5. We choose the initial condition
wy = a57(8,), 6, = —4 [°C] and boundary conditions

6(0,1) = 6y, 9(021)—90+5000 vt > 0. (57)

The simulations in Example 6.2 are run over ¢ € (0,5000) [s]. We consider grid size 4 € {0.4,0.2,0.1} x 10~ [m] and time step
7= (5x10%h [s] and 7 = (5 x 107)A? [s]. The results are tabulated in Table 13.
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Table 13
Results of Example A.1. Orders of convergence are obtained using fine grid solution computed using A/ =2 x 107> [cm] and /"¢ =1 [s].
Case T 16err llo.2 1601l oot 16112 1er Nl o 2 10 ep llo,1 e, 122 Gerrllo2 1Gerr llo,1 1 Il
Example A.1
Linear O(h) 0.99 0.99 0.99 0.99 0.99 0.99 0.76 1.00 0.97
heat o(h?) 1.99 1.99 1.99 1.99 1.99 1.99 1.52 1.99 1.92
Table 14
Results for Example 6.3(i) when Dirichlet boundary conditions are used.
Model h [cm] 7 [h] PO-P0O-0 PO-PO-W
Max/min/mean iter. 7 reduced? Max/min/mean iter. 7 reduced?
Adapted L 5 120 10/1/2.6 No 7/1/2.2 No
24 5/1/2.4 ~0.18 [h] 5/1/2.0 No
1 4/1/2.0 ~0.12 [h] 3/1/1.8 No
1 120 10/1/2.3 No 7/1/2.1 No
24 6/1/2.3 No 8/1/1.9 No
1 4/1/2.0 No 3/1/1.7 No
0.2 120 10/1/2.1 No 6/1/2.2 No
24 6/1/2.0 No 7/1/1.9 No
1 4/1/1.8 No 3/1/1.4 No
Adapted W 5 120 7/2/2.7 No 6/1/2.1 No
24 5/2/2.8 No 4/1/2.0 No
1 5/2/3.3 No 3/1/72.1 No
1 120 6/1/2.4 No 7/1/2.0 No
24 6/1/2.4 No 7/1/1.9 No
1 5/2/3.0 No 4/1/72.1 No
0.2 120 6/1/2.2 No 6/1/2.1 No
24 6/1/2.1 No 7/1/1.9 No
1 5/2/2.7 No 4/1/2.0 No
Adapted M 5 120 7/1/2.4 No 7/1/2.1 No
24 5/1/2.0 No 5/1/1.8 No
1 4/1/1.8 No 3/1/1.5 No
1 120 7/1/2.1 No 7/1/2.0 No
24 5/1/1.9 No 7/1/1.7 No
1 4/1/1.7 No 4/1/1.4 No
0.2 120 7/1/2.0 No 6/1/2.1 No
24 6/1/1.8 No 7/1/1.7 No
1 4/1/1.6 No 4/1/1.3 No

We obtain order 1 and 2 convergence for 6, w and g when using = = O(h) and O(h?), respectively. This is in accordance with the

estimates (23).

A.3.2. Robustness of our PO-PO algorithms in homogeneous permafrost scenarios.

Here we provide the results for Example 6.3. For the case when Dirichlet and Neumann boundary conditions are used, the results

are tabulated in Tables 14 and 15, respectively.
A.4. Error norms

We use the following formulas to compute the integrals in the error norms

Nw
(f.8)= Y fx)g(x))h;,
j=1
1 1

N 2 N,
I lle = D wllF G5 ) o 1At = D mjlree 0l )
n=1 Jj=1
1

q

N(H
1/ llos.q = max, (Z mfGtl? ) | g e (1.2),
v\ &

where x; € w; is the center of the cell w; and h; = |o;]| is the size of the cell.
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Table 15
Results for Example 6.3(ii) when Neumann boundary conditions are used.
Model h [cm] 7 [h] PO-PO-© PO-PO-W
Max/min/mean iter. 7 reduced? Max/min/mean iter. 7 reduced?
Adapted L 5 120 5/2/3.3 ~0.4 [h] 4/2/2.8 No
24 4/1/2.7 ~1.5 [h] 4/1/2.0 No
1 4/1/1.9 0.5 [h] 2/1/1.9 No
1 120 5/2/3.5 ~1.8 [h] 6/2/3.2 No
24 5/1/2.8 No 5/1/2.3 No
1 4/1/1.9 No 3/1/1.7 No
0.2 120 7/2/3.6 7.5 [h] 7/2/3.4 No
24 5/1/2.9 No 5/1/2.5 No
1 4/1/2.1 No 4/1/1.9 No
Adapted W 5 120 6/1/3.6 60 [h] 4/1/2.7 No
24 4/1/3.2 12 [h] 3/1/2.2 No
1 5/1/3.5 No 3/1/1.9 No
1 120 7/1/3.7 12 [h] 6/1/3.0 No
24 6/1/3.4 No 5/1/2.6 No
1 5/1/3.5 No 3/1/2.2 No
0.2 120 7/1/3.9 No 6/1/3.1 No
24 6/1/3.5 No 5/1/2.7 No
1 6/1/3.7 No 4/1/2.7 No
Adapted M 5 120 5/1/3.0 No 4/1/2.5 No
24 4/1/2.6 3 [h] 4/1/2.0 No
1 4/1/1.8 No 2/1/1.8 No
1 120 5/1/3.0 3 [h] 5/1/2.8 No
24 5/1/2.7 12 [h] 5/1/2.3 No
1 4/1/1.9 No 3/1/1.9 No
0.2 120 6/1/3.1 No 6/1/3.0 No
24 5/1/2.8 12 [h] 6/1/2.4 No
1 4/1/1.9 No 4/1/1.9 No
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