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A B S T R A C T

In this paper we study computational schemes to simulate freezing and thawing in permafrost
modeled by a nonlinear heat equation with constitutive properties resembling those in the
well known Stefan problem but featuring distinct challenges. The models are discretized
with low order conservative discretization and fully implicit time stepping. We explore the
challenges due to the nonsmooth nature of the temperature–enthalpy relationship and the
domain heterogeneity, with focus on the solver and the use of enthalpy as a primary variable
in contrast to the temperature variable used commonly in applications literature. We prove and
demonstrate the convergence of our algorithms in realistic physical scenarios.

1. Introduction

In this paper we address the challenges in computational schemes for heat conduction models involving phase transitions in
ermafrost soils. Our focus is on various forms of heterogeneity and their impact on the solvers. In particular, we demonstrate that
he use of enthalpy as primary unknown is by far a more robust choice than the use of temperature variable, even though the latter
hoice dominates in the applications literature. We provide theoretical explanations and illustrate with numerical experiments. Our
ork provides a bridge between the rigorous computational mathematics approaches and the permafrost applications literature, with
n aim to provide concrete details for computational algorithms in realistic setting, and to annotate their context within rigorous
iterature results.
In recent years, there has been an increased interest in permafrost modeling due to its role within the global climate studies.

ermafrost is formally defined as ground that remains frozen for two or more years [1,2]. The part of permafrost that undergoes
nnual freezing and thawing is called the active layer; its thickness may range from 0.1 to 1 [m] [3] (Pg. 7). Permafrost features
eterogeneity in the form of multiple soil types and ground ice wedges with length scales of 0.01 to 10 [m] [3] (Pg. 8) [4]. A
olistic modeling approach involves the study of the thermal, hydrological, and mechanical processes across the scales, and we
efer to [5–9] for recent discussion of some modeling aspects, but we do not attempt to give an exhaustive list of references. In this
aper we focus only on the thermal aspect of permafrost, and defer the study of the coupled hydrological and mechanical processes
o our forthcoming work in [10,11]. We also refer to [12,13] for our first explorations of computational schemes as well as the
onnection between Stefan problem and permafrost models.
Heat conduction with phase change is modeled with the following nonlinear degenerate parabolic equation, written in the sense

f distributions,

𝜕𝑡𝑤 − ∇ ⋅ (𝑘∇𝜃) = 𝑓, 𝑤 ∈ 𝛼(𝜃), (1)
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where 𝜃 is the temperature, 𝑤 is the enthalpy which is related to the temperature using the relationship 𝛼, 𝑘 = 𝑘(𝜃) is the thermal
conductivity, and 𝑓 is an external heat source. For the permafrost models (𝑃 ), which are our focus here, 𝛼 = 𝛼𝑃 is a nonlinear,
iecewise-differentiable, monotone function whose derivative features a singularity at some freezing temperature 𝜃 = 𝜃∗. For the
ell known Stefan problem, 𝛼 = 𝛼𝑆𝑇 is a multivalued graph. We refer to [13] for our work on the connection and the upscaling of
tefan-like models 𝛼𝑆𝑇 to 𝛼𝑃 .
The low regularity of the solutions to (1) for Stefan problem [14] makes finite elements a natural choice for approximation of

he temperature 𝜃 and enthalpy 𝑤 variables; see, e.g., [15,16] where proofs of convergence are given. In most works on Stefan and
ermafrost models 𝜃 is approximated using P1 (piecewise-linear) finite elements, and convergence is proven within the so-called
irchhoff transformation or upon regularization of 𝛼𝑆𝑇 . The approximation of enthalpy is done separately. For 𝜃 − 𝑤, we have
thus P1-P1 or P1-P0 schemes or P0-P0 schemes, where P0 means piecewise-constant finite elements. For reference, we mention a
few works without attempting to provide a comprehensive list. For Stefan problem, P1-P0 schemes with P0 used for enthalpy are
in [15,17], but P1-P1 are in [18–20], and P0-P0 finite volume in [21]. For permafrost, P1-P1 is used in [22–25], but P1-P0 or
P0-P0 in [26,27]. Furthermore, in some application papers, the schemes apply chain rule in (1) to 𝑤 = 𝛼𝑃 (𝜃), with the so called
‘apparent heat capacity’’ technique. Such approaches, along with regularizations or model approximations may bear a modeling
rror significant in permafrost applications relevant especially when coupling (1) to multiphysics scenarios involving thermal or
ydrological fluxes.
In this work we focus on permafrost models with the constitutive properties 𝛼𝑃 , 𝑘𝑃 in 𝑑 ≥ 1 dimensions. We use P0-P0 mixed

finite element scheme with fully implicit time stepping for approximation of (1) written as

𝜕𝑡𝑤 + ∇ ⋅ 𝑞 = 𝑓, 𝑤 ∈ 𝛼(𝜃), 𝑞 = −𝑘∇𝜃. (2)

e introduced the P0-P0 scheme for Stefan problem in this formulation in [12] where we showed it was conservative and compared
ery well to P1-P0 and P1-P1 approaches. In this paper we focus on P0-P0 schemes and solvers for permafrost applications with
eterogeneity. Generally, theoretical techniques such as Kirchhoff transformation or regularizations which are powerful for deriving
onvergence results do not apply for problems featuring heterogeneity or to coupled multiphysics scenarios. These challenges
otivate our focus on solvers and practical scenarios.
Heterogeneity is an important aspect of the processes in porous media including the flow and thermal processes in permafrost,

nd is associated with the presence of different soil types such as peat, silt, bedrock and gravel which feature different physical
roperties including the porosity, grain distribution, as well as thermal properties; see, e.g. [23,24,28,29]. To indicate heterogeneity
e write 𝛼 = 𝛼𝑃 (𝑥, 𝜃) and 𝑘 = 𝑘𝑃 (𝑥, 𝜃); these incorporate distinct soil-type specific properties which may lead to different qualitative
ehavior, e.g., mild or sharp or even nearly infinite gradients in 𝜃 and/or 𝑥. A particular heterogeneous medium challenge comes
with modeling massive ice or rock wedges embedded in soil; see Fig. 1 for an illustration of the media heterogeneity in permafrost.

Our contributions are as follows. After giving the model details, we begin by (i) analyzing the relationships 𝛼𝑃 and 𝛽𝑃 = (𝛼𝑃 )−1
o isolate the challenges specific to permafrost model within the class of nonlinear degenerate parabolic equations. Next, (ii) we
iscuss the applicability of the known theoretical results for convergence of approximations to (2) to permafrost models. We also
iscuss numerical methods for (1) in geotechnical engineering and outline their limitations when compared with our P0-P0 scheme.
iii) We define two nonlinear iterative solvers denoted by P0-P0-𝛩 and P0-P0-𝑊 referring to the primary unknowns temperature
nd enthalpy, respectively. We prove convergence of our nonlinear solvers and demonstrate their robustness when dealing with
ractical permafrost scenarios and media heterogeneity. We demonstrate the advantages of the enthalpy-based algorithm P0-P0-𝑊
ver the temperature formulation P0-P0-𝛩. Finally, (iv) we provide simulations for physically meaningful heterogeneous scenarios
sing data from Alaska, USA as well as an example with an ice wedge.
The outline of this paper is as follows. In Section 2 we provide the details of (1) and in Section 3, we define our P0-P0 scheme

to discretize (2). We review theory and literature in Section 4. In Section 5 we present our solvers and prove their convergence.
In Section 6 we provide numerical examples on the order of convergence as well on the robustness of our solvers, followed by
simulations of practical scenarios. We conclude in Section 7 and acknowledgments. Auxiliary results and supplemental data are in
the Appendix.

2. Model description

A list of symbols used in this paper is given in Table 1. We provide now the narrative to this notation.
Let 𝛺 ⊂ R𝑑 , 𝑑 ∈ {1, 2, 3} be a connected open bounded set representing a heterogeneous permafrost domain. We denote by 𝜈

the outward normal to 𝜕𝛺.
We assume that 𝛺 is divided into 𝑁𝑟 non-overlapping subdomains 𝛺(𝑗), where each 𝛺(𝑗) is occupied by a particular soil type, or

ice, or solid rock. Within each, we denote the variables and data associated with the liquid water, ice, and rock grains by subscripts
𝑙, 𝑖, and 𝑟, respectively. The rock types 𝑗 = 1, 2,… , 𝑁𝑟 have heat capacity and conductivity

𝑐𝑟(𝑥) = 𝑐(𝑗)𝑟 , 𝑘𝑟(𝑥) = 𝑘(𝑗)𝑟 , ∀𝑥 ∈ 𝛺(𝑗). (3)

We make the following natural assumptions.

Assumption 2.1. The thermal parameters within each 𝛺(𝑗) are constant in 𝑥, 𝜃 and satisfy

0 < 𝑐𝑚𝑖𝑛 ≤ 𝑐𝑙 , 𝑐𝑖, 𝑐
(𝑗)
𝑟 ≤ 𝑐𝑚𝑎𝑥 <∞, 0 < 𝑘𝑚𝑖𝑛 ≤ 𝑘𝑙 , 𝑘𝑖, 𝑘

(𝑗)
𝑟 ≤ 𝑘𝑚𝑎𝑥 < ∞, 1 ≤ 𝑗 ≤ 𝑁𝑟. (4)

The latent heat of water 𝐿 = const ≥ 0.
2
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Fig. 1. Illustration of heterogeneity due to multiple soil layers and the presence of ice wedges (motivated by [25,30,31]). In the domains 𝛺(𝑗) , 𝑗 ∈ {1, 2, 3}, the
subdomains correspond to different soil types, such as clay, silt, gravel, with the soil type specific temperature enthalpy relationship 𝛼𝑃 (𝑥, 𝜃)|𝛺(𝑗) = 𝛼(𝑗)(𝜃). In 𝛺(4),
the thermal properties of ice wedge are 𝛼(𝑥, 𝜃)|𝛺(4) = 𝛼𝑆𝑇 (𝜃) which is multivalued.

Table 1
Variables and parameters in this work.
Subscript/Notation Description

{𝑙, 𝑖, 𝑟} Liquid 𝑙, ice 𝑖 (solid) phase, and rock 𝑟
𝑆𝑇 , 𝑃 Stefan problem (𝑆𝑇 ) and permafrost models (𝑃 )
SFC Soil freezing curve

Variable Description/SI Unit

𝜃 Temperature [◦C]
𝑤 Enthalpy/energy per unit volume [J∕m3]
𝑞 Heat flux [J∕m2 s]
𝜒𝑙 Liquid volume fraction [–]; 𝜒𝑙 = 𝜒𝑃𝑙 or 𝜒𝑆𝑇𝑙
Parameter Description/SI Unit Typical values

𝑐 Volumetric heat capacity [J∕m3 ◦C] Water 4.19 × 106, Ice 1.9 × 106 [32]
𝑘 Thermal conductivity [J∕m s ◦C] Water 0.58, Ice 2.3 [32]
𝐿 Latent heat per unit volume [J∕m3] Water 3.06 × 108 [32]
𝜃∗ Freezing point depression [◦C] Water 0
𝜂 Porosity [–] Mineral soil [0.2, 0.4] [24]

Relationship Description

𝛼 Temperature–enthalpy relationship; 𝑤 ∈ 𝛼𝑆𝑇 (𝜃) or 𝑤 = 𝛼𝑃 (𝜃)
𝛽 Enthalpy-temperature function 𝛽 ∶= 𝛼−1; 𝜃 = 𝛽𝑆𝑇 (𝑤) or 𝜃 = 𝛽𝑃 (𝑤).

For functional spaces, we consider Lebesgue and Sobolev spaces 𝑀 = 𝐿2(𝛺) and 𝑋 = 𝐻𝑑𝑖𝑣(𝛺). The 𝐿2 inner product of scalar
valued 𝑓1, 𝑓2 ∈ 𝐿2(𝛺) or vector valued 𝑓1, 𝑓2 ∈ (𝐿2(𝛺))𝑑 is denoted by (𝑓1, 𝑓2) = ∫𝛺 𝑓1𝑓2.

.1. Heat conduction in permafrost soil

The model (1) for permafrost applications reads

𝜕𝑡𝑤 − ∇ ⋅ (𝑘𝑃 (𝑥, 𝜃)∇𝜃) = 𝑓, 𝑤 = 𝛼𝑃 (𝑥, 𝜃), (5)

where the temperature–enthalpy relationship 𝛼𝑃 is defined as follows

𝛼𝑃 (𝑥, 𝜃) = ∫

𝜃

𝜃∗
𝑐(𝑥, 𝑣)𝑑𝑣 + 𝐿𝜂𝜒𝑃𝑙 (𝑥, 𝜃), 𝑐(𝑥, 𝑣) = 𝑐𝑓 (𝑥) + 𝜒𝑃𝑙 (𝑥, 𝑣)(𝑐𝑢(𝑥) − 𝑐𝑓 (𝑥)). (6)

Here 𝑐𝑢(𝑥) = 𝑐𝑙𝜂(𝑥) + 𝑐𝑟(𝑥)(1− 𝜂(𝑥)) and 𝑐𝑓 (𝑥) = 𝑐𝑖𝜂(𝑥) + 𝑐𝑟(𝑥)(1− 𝜂(𝑥)) are the volumetric heat capacities of ‘‘unfrozen’’ 𝑢 and ‘‘frozen’’
𝑓 soil, respectively [23,24], with 𝜂 denoting the porosity of the soil, and 𝜃∗ denoting the freezing point depression above which
ater exists only in the liquid phase 𝑙. Typically, 𝜃∗ is close to 0 [◦C] and is used in parametric models for 𝛼𝑃 . The water fraction
𝑃
𝑙 = 𝜒𝑃𝑙 (𝑥, 𝜃) is called the Soil Freezing Curve and is discussed below.
In turn, the thermal conductivity 𝑘𝑃 incorporates the presence of the liquid 𝑙, ice 𝑖 and rock 𝑟 phases and materials; it is

btained through weighted averaging of the individual thermal conductivities 𝑘𝑝, 𝑝 ∈ {𝑙, 𝑖, 𝑟} [6–8,23,33]; see Appendix A.1 for
3

hese expressions, and [13] for its proper choice via upscaling.
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Table 2
SFC parameters for clay. These parameters have been used to plot Fig. 2.
Model Parameter values Adapted from

Adapted L (9a) 𝑏 = 0.271 [–], 𝜃∗ = −1.1544 [◦C] [35] (Figure 9)
Adapted W (9b) 𝑏 = 6.4216 [◦C], 𝜒𝑟𝑒𝑠 = 0.36 [–], 𝜃∗ = 0 [◦C] [22] (Table 3)
Adapted M (9c) 𝑏 = 0.16 [1∕◦C], 𝜒𝑟𝑒𝑠 = 0.20144 [–] 𝜃∗ = 0 [◦C] [6] (Pg. 7)

2.1.1. Soil Freezing Curve (SFC)
The definition (6) involves the water fraction 𝜒𝑃𝑙 (𝜃); in heterogeneous soil, we have 𝜒

𝑃
𝑙 = 𝜒𝑃𝑙 (𝑥, 𝜃).

Unlike in bulk water (without soil grains), an important feature of permafrost is that 𝜒𝑃𝑙 (𝜃) is nonzero at a large range of
temperatures below some given 𝜃∗ < 0; this is due to surface energy effects [34]. In experiments, this measured quantity called
the soil freezing curve (SFC) is fit to some algebraic parametric models, and depends on physical and chemical factors such as the
specific area of the soil particles, the presence of dissolved solutes and the size of the mineral particles [3,4,35,36].

Generally, 𝜒𝑃𝑙 (𝜃) is monotone and continuous on R but not differentiable at 𝜃 = 𝜃∗. However, some of the data reported
in literature based on mass fraction measurements [3,35,36] produces discontinuous SFC, with the related numerical difficulties
acknowledged in, e.g., [23,33,37]. In fact, the fitted power function SFC expressions used in [35,38,39] are unbounded near
𝜃 = 0 [◦C], thus they are used only for 𝜃 ≤ 𝜃∗ < 0, or a smooth or regularized SFC [24–26,33] can be considered. Upscaled 𝜒𝑃𝑙
from our work [13] is also discontinuous but can also be smoothed in practice. In this paper we defer the study of discontinuous
SFC to another venue, and focus on other challenges, making the following assumption regarding the SFCs.

Assumption 2.2. (i) For a fixed soil type, the SFC 𝜒𝑃𝑙 (𝜃) has the general form

𝜒𝑃𝑙 (𝜃) =

{

1; 𝜃 > 𝜃∗
𝛶 (𝜃); 𝜃 ≤ 𝜃∗,

(7)

where 𝛶 is a smooth, monotone nondecreasing, convex, and Lipschitz function which satisfies 0 ≤ 𝜒𝑟𝑒𝑠 ≤ 𝛶 (𝜃) ≤ 1, ∀𝜃 ∈ (−∞, 𝜃∗];
𝛶 (𝜃∗) = 1, and lim𝜃→−∞ 𝛶 (𝜃) = 𝜒𝑟𝑒𝑠, with Lipschitz constant 𝐿𝜒𝑃𝑙 equal that for 𝛶 .

(ii) For domains with multiple soil types we have

𝜒𝑃𝑙 (𝑥, 𝜃) = 𝜒𝑃𝑙
(𝑗)(𝜃), ∀𝑥 ∈ 𝛺(𝑗), 1 ≤ 𝑗 ≤ 𝑁𝑟, (8)

where each 𝜒𝑃𝑙
(𝑗) satisfies (i).

From Assumption 2.2 𝜒𝑃𝑙 is continuous and differentiable except at 𝜃 = 𝜃∗, but globally Lipschitz. In heterogeneous case, 𝜒𝑃𝑙 is
not necessarily continuous in 𝛺 × R thus not globally Lipschitz.

SFC considered in this work. Typically, porous organic soils such as peat and moss have ‘‘steep’’ SFCs, whereas mineral soils
such as clay and silt feature a more gradual long tailed behavior. Each satisfies Assumption 2.2, but has different Lipschitz constants.
We use one of three SFCs adapted from [22,35,37] denoted with superscripts 𝐿,𝑊 and 𝑀 corresponding to the original author’s
names. Their expressions and the Lipschitz constants for 𝜒𝑃𝑙 are given

𝛶 𝐿(𝜃) = |𝜃∗|
𝑏
|𝜃|−𝑏, 𝐿𝛶𝐿 = 𝑏|𝜃∗|

−1, (9a)

𝛶𝑊 (𝜃) = 𝜒𝑟𝑒𝑠 + (1 − 𝜒𝑟𝑒𝑠)𝑏4(𝑏 − 𝜃 + 𝜃∗)−4, 𝐿𝛶𝑊 = 4(1 − 𝜒𝑟𝑒𝑠)𝑏−1, (9b)

𝛶𝑀 (𝜃) = 𝜒𝑟𝑒𝑠 + (1 − 𝜒𝑟𝑒𝑠)𝑒𝑏(𝜃−𝜃∗), 𝐿𝛶𝑀 = (1 − 𝜒𝑟𝑒𝑠)𝑏. (9c)

See illustrations in Fig. 2, with typical data in Table 2.

2.1.2. Properties of temperature–enthalpy function 𝛼𝑃
We prove now some properties of 𝛼𝑃 and its inverse 𝛽𝑃 = (𝛼𝑃 )−1.

Lemma 2.1. Let Assumption 2.1 and 2.2 hold and 𝛼𝑃 be given by (6). Then 𝛼𝑃 is continuous, piecewise-smooth, globally Lipschitz,
and strictly monotone. Further, |(𝛼𝑃 )′| whenever defined is bounded above and below by positive constants. Moreover, 𝛽𝑃 = (𝛼𝑃 )−1 is
well-defined and is also continuous, piecewise-smooth, globally Lipschitz, and strictly monotone with derivative |(𝛽𝑃 )′| bounded above and
below by positive constants, except at 𝑤 = 𝑤∗ = 𝛼𝑃 (𝜃∗), where 𝛽𝑃 is non-differentiable.

Proof. We set (𝐴𝑃 )′(𝜃) = 𝑐𝑢𝜒𝑃𝑙 (𝜃) + 𝑐𝑓 (1 − 𝜒
𝑃
𝑙 (𝜃)) + 𝐿𝜂(𝜒

𝑃
𝑙 )

′(𝜃) and calculate from (6)

(𝛼𝑃 )′(𝜃) =

{

𝑐𝑢; 𝜃 > 𝜃∗
(𝐴𝑃 )′(𝜃); 𝜃 < 𝜃∗.

(10)

Now we see (𝛼𝑃 )′ is discontinuous at 𝜃 = 𝜃∗. Further, from Assumptions 2.1 and 2.2, 𝐴𝑃 is smooth and each term in the definition
of (𝐴𝑃 )′ is positive, and since 𝜒𝑃𝑙 ∈ [0, 1], we can conclude that (𝐴𝑃 )′ ≥ min{𝑐𝑢, 𝑐𝑓 } ≥ 𝑐𝑚𝑖𝑛. Also, at 𝜃 = 𝜃∗ we have

lim (𝛼𝑃 )′(𝜃) = 𝑐𝑢, lim−(𝛼
𝑃 )′(𝜃) = 𝑐𝑢 + 𝐿𝜂 lim−(𝜒

𝑃
𝑙 )

′(𝜃),
4

𝜃→𝜃+∗ 𝜃→𝜃∗ 𝜃→𝜃∗
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Fig. 2. Illustration of the water fraction 𝜒𝑙 (left) and temperature–enthalpy relationships 𝛼 (middle) and 𝛽 (right) for the permafrost model compared to Stefan
problem. Note that 𝜒𝑆𝑇𝑙 and 𝛼𝑆𝑇 are multivalued at 𝜃 = 𝜃∗, whereas 𝜒𝑃𝑙 and 𝛼𝑃 are functions with a long tailed behavior as 𝜃 → −∞. Here we use the SFC and
thermal parameters for clay and water as listed in Tables 2 and 5.

and thus

[(𝛼𝑃 )′]𝜃∗ = −𝐿𝜂 lim
𝜃→𝜃−∗

(𝜒𝑃𝑙 )
′(𝜃). (11)

Now we see that the upper bound and Lipschitz constant is

|(𝛼𝑃 )′(𝜃)| ≤ (𝑐𝑚𝑎𝑥 + 𝐿𝜂𝐿𝜒𝑃𝑙
) = 𝐿𝛼𝑃 (12)

which can be found in practice for each SFC from (9).
We may further prove that

𝛼𝑃 (𝜃2) − 𝛼𝑃 (𝜃1) ≥ 𝑐𝑚𝑖𝑛(𝜃2 − 𝜃1), ∀𝜃1, 𝜃2 ∈ R, 𝜃1 ≤ 𝜃2. (13)

Indeed, for 𝜃1 < 𝜃2, since 𝜒𝑃𝑙 is monotone, we have from (6)

𝛼𝑃 (𝜃2) − 𝛼𝑃 (𝜃1) ≥ ∫

𝜃2

𝜃1

(

𝑐𝑢𝜒
𝑃
𝑙 (𝑣) + 𝑐𝑓 (1 − 𝜒

𝑃
𝑙 (𝑣))

)

𝑑𝑣 ≥ min{𝑐𝑢, 𝑐𝑓 }(𝜃2 − 𝜃1) ≥ 𝑐𝑚𝑖𝑛(𝜃2 − 𝜃1).

This proves (13) and consequently that 𝛼𝑃 is strictly increasing monotone.
Since 𝛼𝑃 is continuous and strictly monotone, 𝛽𝑃 is well-defined and continuous. Further,

(𝛽𝑃 )′(𝑤) = 1
(𝛼𝑃 )′(𝛽𝑃 (𝑤))

=

⎧

⎪

⎨

⎪

⎩

1
𝑐𝑢
; 𝑤 > 𝑤∗

1
(𝐴𝑃 )′(𝛽𝑃 (𝑤)) , 𝑤 < 𝑤∗,

𝑤∗ = 𝛼𝑃 (𝜃∗), (14)

hus 𝛽𝑃 is piecewise-smooth. Moreover, from (12) and (13) we have ∀𝑤1, 𝑤2 ∈ R

1
(

𝑐𝑚𝑎𝑥 + 𝐿𝜂𝐿𝜒𝑃𝑙

) |𝑤2 −𝑤1| ≤ |𝛽𝑃 (𝑤2) − 𝛽𝑃 (𝑤1)| ≤
1
𝑐𝑚𝑖𝑛

|𝑤2 −𝑤1|. (15)

Hence 𝛽𝑃 is globally Lipschitz, strictly monotone, and differentiable except at 𝑤∗. □

From Lemma 2.1, it follows immediately that 𝛼𝑃 and 𝛽𝑃 are semismooth on R [40] (Pg. 35, Prop. 2.26). In fact, since 𝛼𝑃 and
𝑃 are piecewise-smooth, they are order 1-semismooth. We also make the following observation when comparing the behavior of
𝑃 and 𝛽𝑃 . From (15), it follows that (𝛽𝑃 )′ ≤ 𝑐−1𝑚𝑖𝑛 even when 𝜒

𝑃
𝑙 features steep gradients. This is in contrast with a large slope

of 𝛼𝑃 near 𝜃 ≈ 𝜃∗ and its jump given in (11). These features support the improved robustness of our P0-P0 solver in the enthalpy
formulation over the temperature formulation discussed in Section 5.

.2. Heat conduction in ice wedges

In heterogeneous permafrost, it is common to encounter subdomains filled with ice wedges of considerable size, where porosity
= 1, i.e., there are no soil grains. In such subdomains, the model (1) takes the form of the well-known Stefan problem [12,14,41,42]
here 𝛼 = 𝛼𝑆𝑇 and 𝑘 = 𝑘𝑆𝑇 . For completeness we provide its definition now, in a form consistent with (6) in which we set 𝜂 = 1,
nd use 𝜒𝑆𝑇𝑙 (𝜃) = H (𝜃 − 𝜃∗), where H is the Heaviside graph with H (𝑣) = 0, ∀𝑣 < 0, H (𝑣) = 1, ∀𝑣 > 0, and H (0) = [0, 1].
We obtain multivalued 𝛼 = 𝛼𝑆𝑇 given by

𝛼𝑆𝑇 (𝜃) = ∫

𝜃
𝑐(𝑣)𝑑𝑣 + 𝐿𝜒𝑆𝑇𝑙 (𝜃), 𝑐(𝜃) =

{

𝑐𝑙; 𝜃 > 𝜃∗ (16)
5

𝜃∗ 𝑐𝑖; 𝜃 < 𝜃∗,
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Fig. 3. Illustration of approximations to 𝜒𝑆𝑇𝑙 (left). Plotted are 𝜒𝑆𝑇𝑙 as well as its piecewise-linear 𝜒𝑙 given by in (19) with 𝜖 = 0.01 [◦C], and the adapted L
permafrost SFC function 𝜒𝑃𝑙 with 𝑏 = 1.5, 𝜃∗ = −0.01 [◦C] in (9a). The corresponding 𝛼𝑆𝑇 and its approximations by (16) are shown on right.

with its inverse function 𝛽𝑆𝑇 = (𝛼𝑆𝑇 )−1 given by

𝛽𝑆𝑇 (𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑤−𝐿
𝑐𝑙

+ 𝜃∗; 𝑤 > 𝐿

𝜃∗; 𝑤 ∈ [0, 𝐿]
𝑤
𝑐𝑖
+ 𝜃∗; 𝑤 < 0.

(17)

In turn, the thermal conductivity 𝑘 = 𝑘𝑆𝑇 is given by

𝑘𝑆𝑇 (𝜃) =

{

𝑘𝑙; 𝜃 > 𝜃∗
𝑘𝑖; 𝜃 < 𝜃∗,

𝑘𝑆𝑇 (𝜃∗) =
𝑘𝑖 + 𝑘𝑙

2
. (18)

Now we discuss the properties of 𝛼𝑆𝑇 and 𝛽𝑆𝑇 . In comparison with those of 𝛼𝑃 , 𝛽𝑃 given in Lemma 2.1, we see that 𝛼𝑆𝑇 is a
monotone multi-valued graph with singularity at 𝜃 = 𝜃∗. In turn, the function 𝛽𝑆𝑇 is globally Lipschitz, piecewise-linear, and thus
semismooth. A plot of 𝛼𝑆𝑇 and 𝛽𝑆𝑇 is included in comparison with 𝛼𝑃 and 𝛽𝑃 in Fig. 2.

2.2.1. Approximating 𝜒𝑆𝑇𝑙 and 𝛼𝑆𝑇
As mentioned in Introduction, theoretical results and practical computational models of Stefan problem frequently approximate

he multivalued graph 𝜒𝑆𝑇𝑙 as well as the resulting 𝛼𝑆𝑇 with functions of finite slopes. In heterogeneous models involving permafrost
ith ice wedges, it is possible to set up domain decomposition and not regularize. However, in this paper, we consider two
pproximations 𝜒𝑆𝑇𝑙 to 𝜒𝑆𝑇𝑙 . One is (i) a piecewise-linear approximation 𝜒𝑙 ≈ 𝜒𝑆𝑇𝑙

𝜒𝑙(𝜃) =

⎧

⎪

⎨

⎪

⎩

0; 𝜃 < 𝜃∗ − 𝜖
(𝜃−𝜃∗+𝜖)

𝜖 ; 𝜃 ∈ [𝜃∗ − 𝜖, 𝜃∗]
1; 𝜃 > 𝜃∗,

𝜖 > 0. (19)

e also consider (ii) a sufficiently steep SFC, e.g., the adapted L SFC (9a) with a high 𝑏 and a small |𝜃∗|. The corresponding
pproximation 𝛼𝑆𝑇 ≈ 𝛼𝑆𝑇 are calculated with (16). An illustration of 𝜒𝑆𝑇𝑙 and 𝛼𝑆𝑇 is shown in Fig. 3.

3. Approximation scheme

To approximate the solutions to (2) we use the lowest order mixed finite elements: we approximate the temperature and enthalpy
ith P0 elements enforcing 𝑤 = 𝛼𝑃 (𝜃) pointwise for each degree of freedom and flux 𝑞 with RT[0] element. We provide details below,
ssuming for simplicity homogeneous Dirichlet boundary conditions 𝜃|𝜕𝛺 = 0. We also assume some given initial data 𝑤0 ∈𝑀 .
For simplicity of notation, we consider 𝛺 ⊂ R2, and assume 𝛺 can be well covered by a rectangular grid T ℎ with 𝑁𝜔 elements

𝑖,𝑗 so that 𝛺 =
⋃

𝑖,𝑗 𝜔𝑖,𝑗 , with each 𝜔𝑖,𝑗 having cell widths ℎ𝑥,𝑖, ℎ𝑦,𝑗 in the 𝑥 and 𝑦 direction, respectively. We also assume that the
grid edges align with any material interfaces. We further denote ℎ𝑚𝑖𝑛 = min𝑖,𝑗{ℎ𝑥,𝑖, ℎ𝑦,𝑗} and ℎ𝑚𝑎𝑥 = max𝑖,𝑗{ℎ𝑥,𝑖, ℎ𝑦,𝑗}. Each cell 𝜔𝑖,𝑗
has edges 𝛾𝑖− 1

2 ,𝑗
, 𝛾𝑖,𝑗+ 1

2
, 𝛾𝑖+ 1

2 ,𝑗
and 𝛾𝑖,𝑗− 1

2
when listed clockwise from its left edge.

On T ℎ we consider the space of piecewise-constant functions 𝑀ℎ ⊂ 𝑀 (P0) and the lowest order Raviart–Thomas space
𝑋ℎ = 𝑅𝑇[0] ⊂ 𝑋. We also use the generic subscript ℎ in (⋅, ⋅)ℎ to denote the use of the trapezoidal-midpoint (TM) quadrature
for numerical integration [43,44]. In the end, the discretization is implemented as a cell-centered finite difference/finite volume
6

cheme.
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We consider a time grid 𝑡𝑛 = 𝑡𝑛−1 + 𝜏𝑛, 1 ≤ 𝑛 ≤ 𝑁, 𝑡0 = 0, where 𝜏𝑛 is the time step. Our fully discrete implicit P0-P0 mixed
lement scheme at each 1 ≤ 𝑛 ≤ 𝑁 , given 𝑤𝑛−1ℎ ∈𝑀ℎ seeks (𝜃𝑛ℎ, 𝑞

𝑛
ℎ) ∈𝑀ℎ ×𝑋ℎ such that

(𝑤𝑛ℎ, 𝜂ℎ) + 𝜏𝑛(∇ ⋅ 𝑞𝑛ℎ, 𝜂ℎ) = (𝑤𝑛−1ℎ + 𝜏𝑛𝑓 𝑛, 𝜂ℎ), ∀𝜂ℎ ∈𝑀ℎ, 𝑤
𝑛
ℎ ∈ 𝛼(𝜃𝑛ℎ), (20a)

(𝑘̃−1𝑞𝑛ℎ, 𝜓ℎ)ℎ − (𝜃𝑛ℎ,∇ ⋅ 𝜓ℎ) = 0, ∀𝜓ℎ ∈ 𝑋ℎ, (20b)

here 𝑘̃ ∈ 𝑀ℎ is a suitable approximation to 𝑘(𝜃𝑛ℎ) based on time or iterative lagging to be discussed in Section 5, and has similar
properties to 𝑘 so that 𝑘̃−1 is well-defined. The use of the (⋅, ⋅)ℎ quadrature allows us to eliminate 𝑞ℎ and implement (20) as a
ell-centered finite difference (CCFD) scheme for 𝜃𝑛ℎ, 𝑤

𝑛
ℎ.

Next we rewrite (20) in the matrix–vector as a nonlinear algebraic system; here we follow notation from [12]. The basis functions
f 𝑀ℎ are simply the indicator functions 𝟏𝜔𝑖,𝑗 . For 𝜃ℎ, 𝑤ℎ ∈ 𝑀ℎ, we denote by 𝛩𝑖,𝑗 = 𝜃ℎ|𝜔𝑖,𝑗 and 𝑊𝑖,𝑗 = 𝑤ℎ|𝜔𝑖,𝑗 . The vector-valued
unctions of 𝑋ℎ are tensor products of piecewise-linear functions in one direction and piecewise-constants in the other direction.
or any 𝑞ℎ = (𝑞ℎ1, 𝑞ℎ2) ∈ 𝑋ℎ, 𝑞ℎ1 and 𝑞ℎ2 are defined by their values on the edges 𝛾𝑖± 1

2 ,𝑗
and 𝛾𝑖,𝑗± 1

2
, respectively, and we denote

𝑄𝑖± 1
2 ,𝑗

= 𝑞ℎ1|𝛾
𝑖± 1

2 ,𝑗
and 𝑄𝑖,𝑗± 1

2
= 𝑞ℎ2|𝛾

𝑖,𝑗± 1
2

. We denote the basis functions for 𝑋ℎ by 𝜓𝑖+ 1
2 ,𝑗

for first component and by 𝜓𝑖,𝑗+ 1
2
for the

econd component. Finally, the vector 𝐹 collects the entries 𝐹𝑖,𝑗 = (𝑓, 𝟏𝜔𝑖,𝑗 ). Let 𝛩,𝑊 , and 𝑄 denote the degrees of freedom of 𝜃ℎ, 𝑤ℎ,
nd 𝑞ℎ, respectively, in their respective basis.
Let M be the mass matrix defined by (𝑤ℎ, 𝜃ℎ) = 𝛩𝑇M𝑊 , ∀𝜃ℎ, 𝑤ℎ ∈ 𝑀ℎ; for a uniform square spatial grid M = ℎ2𝐼𝑁𝜔×𝑁𝜔 . We

enote by B the matrix defined by (∇ ⋅ 𝑞ℎ, 𝜃ℎ) = −𝛩𝑇B𝑄, ∀𝜃ℎ ∈ 𝑀ℎ, 𝑞ℎ ∈ 𝑋ℎ, and by K̃ the matrix defined by (𝑘̃−1𝑞ℎ, 𝜙ℎ)ℎ =
𝑇 K̃ 𝑄, ∀𝑞ℎ, 𝜙ℎ ∈ 𝑋ℎ, where 𝛷 denotes the degrees of freedom of 𝜙ℎ. With these, (20) can be written as

M𝑊 𝑛 − 𝜏𝑛B𝑄𝑛 = 𝜏𝑛𝐹
𝑛 + M𝑊 𝑛−1, 𝑊 𝑛 ∈ 𝛼(𝛩𝑛), (21a)

B𝑇𝛩𝑛 + K̃ 𝑄𝑛 = 0, (21b)

here we use the superscript to denote the time step. Since the matrix K̃ is diagonal and invertible (see Appendix A.2 below), we
an easily eliminate 𝑄𝑛 to get

M𝑊 𝑛 + 𝜏𝑛A 𝛩𝑛 = 𝜏𝑛𝐹
𝑛 + M𝑊 𝑛−1, (22)

here A ∶= BK̃ −1B𝑇 , with details in Appendix A.2. The model is closed with a component-wise relationship between 𝑊 𝑛 and
𝑛, a counterpart of 𝑤 = 𝛼𝑃 (𝜃) or 𝜃 = 𝛽𝑃 (𝑤). In the former case, we have the temperature formulation with primary unknown 𝛩𝑛.
n the latter, we have the enthalpy formulation with 𝑊 𝑛 as primary unknown.
The problem (22) is nonlinear, and must be solved by iteration which we discuss in Section 5.

. Literature review on convergence rates and numerical models

In this section we identify and briefly review the literature context relevant for our scheme (22) for the permafrost model (5), as
specific case of (1). First in Section 4.1 we discuss known results on mixed finite element approximation to degenerate parabolic
roblems of a structure as in (1). In Section 4.2 we recall the schemes used specifically for (5) in the applications literature and
iscuss their features in contrast to our scheme (22).

.1. Orders of convergence derived in literature

We are not aware of any rigorous work in computational mathematics literature devoted to the specific challenges of permafrost
odeled by (5). If framed as a generic doubly nonlinear degenerate parabolic problems with structure (1), the analysis of mixed
inite element schemes as well as their CCFD formulation is well known, and the order of convergence depends on the character of
onlinearity in (1).
For the simplest linear case when 𝛼(𝜃) = 𝑐𝜃, 𝑐 = 𝑐𝑜𝑛𝑠𝑡 and 𝑘 = 𝑘(𝑥) in (1), under Neumann boundary conditions and strong

egularity assumptions on 𝜃 and 𝑞, [45] (Thm. 5.1) derives the estimates

‖𝜃ℎ − 𝜃‖∞,2 + max
𝑛

(

𝑘−1(𝑞𝑛ℎ − 𝑞
𝑛), 𝑞𝑛ℎ − 𝑞

𝑛)
1
2
ℎ = 𝑂(ℎ2 + 𝜏). (23)

or nonlinear 𝛼(𝜃) and 𝑘 = 𝑘(𝑥) motivated by applications in reservoir engineering, the analysis in [46] is based on Kirchhoff
ramework. The Kirchhoff transform is defined as 𝐾 ∶ R → R, 𝐾(𝜃) = ∫ 𝜃𝜃∗ 𝑘(𝑣)𝑑𝑣. One defines the Kirchhoff temperature 𝑢 = 𝐾(𝜃),
nd change variables in (1) as

𝜕𝑡𝑤 − 𝛥𝑢 = 0. (24)

Further using 𝜃 = 𝛽(𝑤) we have

𝑢 = 𝑃 (𝑤), 𝑃 ∶= 𝐾 ◦ 𝛽. (25)

For the degenerate case, when (𝑃 )′(𝑤) vanishes for some values of 𝑤 ∈ R (as in Stefan problem), [46] (Theorem 3) provides optimal
7

estimates of the form
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w

𝑛
∑

𝑚=1
𝜏𝑚

(

𝑤𝑚ℎ −𝑤𝑚, 𝑃 (𝑤𝑚ℎ ) − 𝑃 (𝑤
𝑚)
)

+
‖

‖

‖

‖

‖

𝑛
∑

𝑚=1
𝛹𝑚ℎ 𝜏𝑚 −𝛱1

ℎ ∫

𝑡𝑛

0
𝛹
‖

‖

‖

‖

‖2

= 𝑂(ℎ + 𝜏), (26)

here 𝛹 = −∇𝑢, and 𝛱1
ℎ ∶ 𝐿2(𝛺)𝑑 → 𝑋ℎ is the 𝐿2 projection operator. For the nondegenerate case, i.e., when (𝑃 )′ ≠ 0 (such as for

permafrost models), under strong assumptions of smoothness of 𝑃 and (𝑃 )′, [46] (Theorem 5) proves the estimate

‖𝑤ℎ −𝑤‖∞,2 + ‖𝛹 − 𝛹ℎ‖2,2 = 𝑂(ℎ + 𝜏). (27)

Further, [46] (Theorem 7) extends (27) to superconvergent orders on rectangular grids, i.e.,

‖𝑤ℎ −𝛱0
ℎ𝑤‖∞,2 + ‖𝛹 −𝛱1

ℎ𝛹ℎ‖2,2 = 𝑂
(

ℎ2 + 𝜏
)

, (28)

where 𝛱0
ℎ ∶ 𝐿2(𝛺) →𝑀ℎ is the 𝐿2 projection operator.

In turn, [47] (Theorem 2) focuses on the case of Richards equation, where the authors prove first order convergence assuming
that 𝑃−1 is continuously differentiable and Lipschitz

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑚=1
∫

𝑡𝑚

𝑡𝑚−1
(𝑢𝑚ℎ − 𝑢𝑚)

‖

‖

‖

‖

‖

‖2

+
‖

‖

‖

‖

‖

‖

𝑁
∑

𝑚=1
∫

𝑡𝑚

𝑡𝑚−1
(𝛹𝑚ℎ − 𝛹 )

‖

‖

‖

‖

‖

‖2

= 𝑂(ℎ + 𝜏). (29)

Also for Richards equation, optimal orders are given in [48] (Thm. 5.2), who consider an expanded mixed finite element scheme
and prove

‖𝜃ℎ − 𝜃‖∞,2 + ‖𝑞ℎ − 𝑞‖2,2 = 𝑂(ℎ + 𝜏), (30)

where 𝑞 = −∇𝜃.

Remark 4.1. The orders of convergence given by (27)–(29) require that 𝛼 or 𝑃 for (1) are smooth and are derived by employing a
mean value argument which requires |(𝑃 )′′| to be well-defined and bounded. This assumption does not hold for permafrost model
(5) since the corresponding 𝑃 = 𝐾◦𝛽𝑃 is only piecewise-smooth. Indeed, from Lemma 2.1

(𝑃 )′(𝑤) = 𝑘𝑃
(

𝛽𝑃 (𝑤)
)

(𝛽𝑃 )′(𝑤), 𝑤 ≠ 𝑤∗, (31)

and (𝑃 )′ is discontinuous at 𝑤 = 𝑤∗, i.e, (𝑃 )′′ features the Dirac delta 𝛿(𝑤 − 𝑤∗) and is not a well-defined function. Thus, the
estimates (27)–(29) do not formally apply to (5). Furthermore, any arguments based on Kirchhoff transformation do not apply to
heterogeneous problems.

In spite of that theoretical results do not apply to the permafrost model, we show that our P0-P0 scheme leads to linear orders
of convergence for 𝜃, 𝑤, and 𝑞 robustly for realistic permafrost scenarios, with quadratic superconvergence similar to that (28) for
temperatures all strictly above, or all below 𝜃∗, in homogeneous media. Thus, the scheme (22) for (5) appears well grounded in
theory even if the rigorous results from the literature do not apply directly.

4.2. Schemes in the applications literature

The majority of numerical models in the permafrost applications literature are based on P1 finite element or nodal finite
difference approaches, and exploit the ‘‘apparent heat capacity’’ concept, essentially an application of the chain rule; see [6,23–
25,28,33,49,50]. This involves rewriting (5) as

𝑐𝑎𝑝𝑝(𝜃)𝜕𝑡𝜃 − ∇ ⋅ (𝑘𝑃∇𝜃) = 𝑓, 𝑐𝑎𝑝𝑝(𝜃) ∶= 𝑐(𝜃) + 𝜂𝐿(𝜒𝑃𝑙 )
′(𝜃), (32)

where 𝑐𝑎𝑝𝑝(𝜃) = (𝛼𝑃 )′(𝜃) is the ‘‘apparent heat capacity’’. Such an approach allows an evaluation of 𝑐𝑎𝑝𝑝 by time-lagging and appears
natural. However, (i) the non-smooth behavior of 𝛼𝑃 at 𝜃 = 𝜃∗ with the jump of the derivative given by (11) and (ii) steep gradient
of 𝑐𝑎𝑝𝑝 near 𝜃∗ lead to difficulties. These features pose a challenge for P1 schemes when mass matrices involving 𝑐𝑎𝑝𝑝 are computed
unless a fine mesh and appropriate numerical quadrature is used, since the contribution of the latent heat term at phase change
may not be captured properly [51–53]. These difficulties are not present for our P0-P0 scheme since we handle 𝑤 = 𝛼(𝜃) in (22)
directly without chain rule

The difficulty presented by (i) is avoided by some by considering appropriate smooth approximations of 𝜒𝑃𝑙 [24,25]. For (ii),
if the enthalpy 𝑤𝑛ℎ = 𝛼𝑃 (𝜃𝑛ℎ) is interpolated using P1 elements, certain ‘‘spatial’’ [49,54] or ‘‘temporal’’ [55] averaging methods are
employed, and improve the performance of the scheme over the direct use of (32). Recently, techniques similar to the temporal
averaging were employed in [24,25] to approximate (𝜒𝑃𝑙 )

′(𝜃) in (32), while in [23], 𝜒𝑃𝑙 is used as the integrating variable in
evaluating mass matrices. In turn, in [26,27] the enthalpy formulation is used, but (𝛼𝑃 )′ is approximated with a finite difference
approximation. The resulting nonlinear system of equations is usually solved by the Newton’s or Picard’s method [23,25,26,28].

While some of the above approximations seem natural to implement, the use of chain rule involving 𝑐𝑎𝑝𝑝 is not conservative
since 𝛼𝑛 − 𝛼𝑛−1 ≠ 𝑐 (𝜃𝑛 − 𝜃𝑛−1). Further, the use of regularized SFCs or 𝑐 approximations lead to modeling errors.
8
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Our P0-P0 algorithms do not suffer from these issues since the semismooth framework for Newton’s method allows us to consider
on-smooth SFCs (see Assumption 2.2) without any need for regularization or chain rule application.

. Computational algorithm and solver

In this section we provide details of solvers for our P0-P0 algorithm (22) in both the temperature and enthalpy variants, with
a solver based on Newton’s iteration. First we provide implementation details and next we analyze the nonlinear solver, and show
that it is robust and efficient.

The standard Kantorovich result for convergence of Newton iteration requires the nonlinearity to be smooth with Lipschitz
continuous derivative [56]. However in the permafrost models and scheme (22), we only have piecewise-smoothness for the
nonlinearities 𝛼 and 𝛽. Thus we work in the semismooth framework [40,57] which establishes super-linear or even quadratic
onvergence under some assumptions. In practice, we obtain quadratic convergence for an appropriate initial guess.
Second, nonlinear solvers based on the Newton’s method are well known to be quadratically convergent but require a good

nough initial guess for convergence. For transient problems, this means the Newton solver may require small time steps for robust
onvergence. These are frequently the reasons why researchers consider other schemes, e.g., the L-scheme is considered in [58] for
he Richards’ equation, while recent work on Anderson acceleration improves over Newton’s and Picard’s methods for stationary
roblems in [59]. However, we find that accurate simulation of the dynamics of the free boundary in permafrost (or Stefan problem)
equires moderate size time steps anyway; with these, our solver is robust.

.1. Implementation details

First we complete (22) by the relationship between 𝑊 and 𝛩, the counterpart of 𝑤 = 𝛼𝑃 (𝜃). Both are solved by iteration until
he residuals achieve an absolute tolerance of 10−12 or a relative tolerance of 10−6 (with respect to the first iteration). Further, we
se adaptive time stepping: at every 𝑡 = 𝑡𝑛, starting with an initial fixed 𝜏𝑛 = 𝜏, if convergence of our algorithm is not achieved
ithin 𝑚𝑚𝑎𝑥 = 30 iterations, we repeat the step with reduced time step 𝜏𝑛 =

𝜏
2 . If not successful, we continue the reduction further.

Temperature formulation: at each time step 𝑡𝑛 we seek 𝛩𝑛 such that

M 𝛼𝑃 (𝛩𝑛) + 𝜏𝑛A 𝛩𝑛 = 𝜏𝑛𝐹
𝑛 + M𝑊 𝑛−1, (33)

e solve the problem by iteration, with an initial guess 𝛩𝑛,(0) = 𝛩𝑛−1.
In each iteration 𝑚 = 1, 2,…, given 𝛩𝑛,(𝑚−1), we find 𝛩𝑛,(𝑚) as

(P0-P0-𝛩)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅(𝛩𝑛,(𝑚−1)) = M 𝛼𝑃 (𝛩𝑛,(𝑚−1)) + 𝜏𝑛A 𝛩𝑛,(𝑚−1) − M𝑊 𝑛−1 − 𝜏𝑛𝐹 𝑛, (a)

(MJ 𝑛,(𝑚−1)
𝛼 + 𝜏𝑛A )𝛿𝛩𝑛,(𝑚) = −𝑅(𝛩𝑛,(𝑚−1)), (b)

𝛩𝑛,(𝑚) = 𝛩𝑛,(𝑚−1) + 𝛿𝛩𝑛,(𝑚), (c)

(34)

here J 𝑛,(𝑚−1)
𝛼 ∈ 𝜕𝛼𝑃 (𝛩𝑛,(𝑚−1)) is a diagonal matrix. We note that (34)(b) involves solving a linear system. Also, 𝜕𝛼𝑃 is the Clarke’s

eneralized Jacobian defined as the convex hull 𝜕𝛼𝑃 = co(𝜕𝐵𝛼𝑃 ), with the B-subdifferential

𝜕𝐵𝛼
𝑃 (𝜃) = {𝐽𝛼 ∈ R | ∃{𝜃𝑘}𝑘 ∈ 𝐷𝛼 , 𝜃𝑘 → 𝜃, (𝛼𝑃 )′(𝜃𝑘) → 𝐽𝛼}, (35)

where 𝐷𝛼 ⊂ R is the set where 𝛼𝑃 admits a Fréchet derivative.
Now we need to state how we make the selection out of 𝜕𝛼𝑃 in our implementation. We use 𝜕𝛼𝑃 (𝜃) = (𝛼𝑃 )′(𝜃),∀𝜃 ≠ 𝜃∗. Also, we

set 𝜕𝛼𝑃 (𝜃∗) = 𝑐𝑢.
Enthalpy formulation: we seek 𝑊 𝑛 such that

M𝑊 𝑛 + 𝜏𝑛A 𝛽(𝑊 𝑛) = 𝜏𝑛𝐹
𝑛 + M𝑊 𝑛−1, (36)

ith 𝛽 = 𝛽𝑃 or 𝛽𝑆𝑇 . We start with an initial guess 𝑊 𝑛,(0) = 𝑊 𝑛−1. Next, we consider the enthalpy formulation (36): in each iteration
𝑚, given 𝑊 𝑛,(𝑚−1), we find 𝑊 𝑛,(𝑚) as follows

(P0-P0-𝑊 )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅(𝑊 𝑛,(𝑚−1)) = M𝑊 𝑛,(𝑚−1) + 𝜏𝑛A 𝛽(𝑊 𝑛,(𝑚−1)) − M𝑊 𝑛−1 − 𝜏𝑛𝐹 𝑛, (a)

(M + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 )𝛿𝑊 𝑛,(𝑚) = −𝑅(𝑊 𝑛,(𝑚−1)), (b)

𝑊 𝑛,(𝑚) = 𝑊 𝑛,(𝑚−1) + 𝛿𝑊 𝑛,(𝑚), (c)

(37)

here J 𝑛,(𝑚−1)
𝛽 ∈ 𝜕𝛽(𝑊 𝑛,(𝑚−1)) is Clarke’s generalized Jacobian, a diagonal matrix. In our implementation, we set 𝜕𝛽𝑃 (𝑤∗) = 𝑐𝑢−1

or permafrost models and 𝜕𝛽𝑆𝑇 (0) = 0, 𝜕𝛽𝑆𝑇 (𝐿) = 𝑐𝑙−1 for the Stefan problem.
Finally, the algebraic expression for 𝛽𝑃 in (37)(a) is not easy to find explicitly, and the use of look-up tables to invert some

iecewise-linear 𝛼𝑃 ≈ 𝛼𝑃 leads to a modeling error and discrepancy between the results obtained with P0-P0-𝛩 and P0-P0-𝑊 .
For our numerical experiments, we employ a local nonlinear solver to invert 𝛽𝑃 (𝑊 𝑛,(𝑚−1)) componentwise in (37)(a), i.e., we

eed to solve 𝛼𝑃 (𝛩𝑛,(𝑚−1)) −𝑊 𝑛,(𝑚−1) = 0 in every cell 𝜔 . For this purpose, we choose Ridder’s method [60] (Pg. 452) which is
9
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known to be very robust; we apply the same relative and absolute tolerances as those listed above. In our experiments, Ridder’s
method converges within a maximum of 25 iterations and an average of 3 iterations.

5.2. Convergence of solvers P0-P0-𝛩 and P0-P0-𝑊

Now we demonstrate theoretical results for our algorithms. For these, we time-lag the conductivity values 𝑘̃ = 𝑘(𝜃𝑛−1ℎ ) in (20b).

emma 5.1. At each time step 𝑛, the sequence {𝛩𝑛,(𝑚)}𝑚 generated by (34) converges quadratically to the solution 𝛩𝑛 of (33) for an
appropriate initial guess.

Proof. From Lemma 2.1 J 𝑛,(𝑚−1)
𝛼 has positive entries. Moreover, since M is the diagonal matrix of cell volumes, the product

J 𝑛,(𝑚−1)
𝛼 is diagonal and the eigenvalues 𝜆

(

MJ 𝑛,(𝑚−1)
𝛼

)

≥ ℎ2𝑚𝑖𝑛𝑐𝑚𝑖𝑛. Since A is symmetric positive semidefinite, the Jacobian
𝑛,(𝑚−1)
𝛼 = MJ 𝑛,(𝑚−1)

𝛼 + 𝜏𝑛A in (34)(b) is symmetric positive definite and thus invertible.
Now, since 𝜆

(

J𝑛,(𝑚−1)𝛼

)

≥ min
{

𝜆
(

MJ 𝑛,(𝑚−1)
𝛼

)}

, we have

‖

‖

‖

(

J𝑛,(𝑚−1)𝛼
)−1

‖

‖

‖2
≤ 1
ℎ2𝑚𝑖𝑛𝑐𝑚𝑖𝑛

. (38)

Finally, since 𝛼 is order-1 semismooth, we see that the sequence {𝛩𝑛,(𝑚)}𝑚 generated by the semismooth Newton’s method will
converge quadratically for an appropriate initial guess [40] (Pg. 31, Prop. 2.18). □

Lemma 5.2. At each time step 𝑛, the sequence {𝑊 𝑛,(𝑚)}𝑚 generated by (37) converges quadratically to the solution 𝑊 𝑛 of (36) for an
appropriate initial guess.

Proof. The Jacobian in (37)(b) is given by

J𝑛,(𝑚−1)𝛽 = M + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 =

(

𝐼 + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 M −1

)

M . (39)

Since A J 𝑛,(𝑚−1)
𝛽 M −1 in (39) is not symmetric, we cannot proceed as in the proof of Lemma 5.1.

Since A is symmetric positive semidefinite and J 𝑛,(𝑚−1)
𝛽 M −1 is diagonal with non-negative entries from Lemma 2.1 and (17), the

product A J 𝑛,(𝑚−1)
𝛽 M −1 has non-negative eigenvalues. Hence 𝜆

(

𝐼 + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 M −1

)

≥ 1, and

consequently
(

𝐼 + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 M −1

)

is invertible. Since J𝑛,(𝑚−1)𝛽 in (39) is a product of two invertible matrices, it is invertible.

We now apply a result from literature to prove the uniform boundedness of
‖

‖

‖

‖

(

J𝑛,(𝑚−1)𝛽

)−1
‖

‖

‖

‖1
. Since A is symmetric and weakly

diagonally dominant (see Appendix A.2), the product A J 𝑛,(𝑚−1)
𝛽 M −1 is also column-wise weakly diagonally dominant since right

multiplication of a matrix by a diagonal matrix scales the columns of the former by the diagonal entries of the latter. Hence from
Lemma A.1 we have

‖

‖

‖

‖

(

J𝑛,(𝑚−1)𝛽

)−1
‖

‖

‖

‖1
≤ ‖

‖

‖

M −1‖
‖

‖1

‖

‖

‖

‖

(

𝐼 + 𝜏𝑛A J 𝑛,(𝑚−1)
𝛽 M −1

)−1
‖

‖

‖

‖1
≤ ‖

‖

‖

M −1‖
‖

‖1
≤ 1
ℎ2𝑚𝑖𝑛

. (40)

Finally, since 𝛽 is order-1 semismooth, we see that the sequence {𝑊 𝑛,(𝑚)}𝑚 converges quadratically for an appropriate initial guess
[40] (Pg. 31, Prop 2.18). □

.3. Local convergence of P0-P0-𝛩 and P0-P0-𝑊

In Lemmas 5.1 and 5.2 we showed local convergence of our nonlinear P0-P0 solvers P0-P0-𝛩 and P0-P0-𝑊 for an appropriate
initial guess regardless of which primary variable is used (temperature or enthalpy). Now we compare their performance, with focus
on the magnitude of the time step that guarantees convergence.

We recall that when using the semismooth Newton’s method to seek a solution 𝑆∗ to 𝑔(𝑆) = 0, for some 𝑔 ∶ R𝐼 → R𝐼 , convergence
is guaranteed if the initial guess 𝑆0 is in a neighborhood 𝐵𝑟0 (𝑆∗), where 𝑟0 > 0 is such that ∀𝛿𝑆, ‖𝛿𝑆‖ < 𝑟0, we have

‖

‖

‖

𝑔(𝑆 + 𝛿𝑆) − 𝑔(𝑆) − J𝑔𝛿𝑆
‖

‖

‖𝑞
≤ (2𝐶)−1‖𝛿𝑆‖𝑞 , J𝑔 ∈ 𝜕𝑔(𝑆 + 𝛿𝑆), (41)

with 𝐶 > 0 being the uniform upper bound of the Jacobian ‖J𝑔
−1
‖𝑞 ≤ 𝐶 [40] (Prop. 2.7, Eq. (2.1)), and 𝑞 ∈ {1, 2}.

In the temperature formulation (33), the nonlinearity is 𝑔 = 𝛼𝑃 . For the linear part of 𝛼𝑃 , the left hand side of (41) equals 0,
but near 𝜃 < 𝜃∗, from (11) (𝛼𝑃 )′ is large for SFCs with steep gradients, i.e., large 𝐿𝜒𝑃𝑙 . Hence, in such cases, we anticipate 𝑟0 to be
small for (41) to hold near 𝜃 ≈ 𝜃∗. That is, convergence would be guaranteed only if the initial guess is really close to the solution,
or equivalently, we would only expect P0-P0-𝛩 to converge for small time steps.

On the other hand, in the enthalpy formulation (36), the nonlinearity is 𝑔 = 𝛽𝑃 . In this case, by (15), (𝛽𝑃 )′ remains bounded
independently of 𝐿𝜒𝑃𝑙 . In fact, (𝛽

𝑃 )′ decreases near 𝑤 ≈ 𝑤∗ as 𝐿𝜒𝑃𝑙 increases. Thus we do not need 𝑟0 to be too small for (41) to
hold, and we expect P0-P0-𝑊 would converge for large time steps.
10

We illustrate these observations through numerical tests in Sections 6.2 and 6.3.
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Table 3
Parameters used in Example 6.1.
𝑐𝑖 , 𝑐𝑙 , 𝑐𝑟 𝑘𝑖 , 𝑘𝑙 , 𝑘𝑟 𝐿 𝜃∗
1 1 1 0

Table 4
Results for Example 6.1.
Case 𝜏 ‖𝜃𝑒𝑟𝑟‖∞,2 ‖𝜃𝑒𝑟𝑟‖∞,1 ‖𝜃𝑒𝑟𝑟‖2,2 ‖𝑤𝑒𝑟𝑟‖∞,2 ‖𝑤𝑒𝑟𝑟‖∞,1 ‖𝑤𝑒𝑟𝑟‖2,2 ‖𝑞𝑒𝑟𝑟‖∞,2 ‖𝑞𝑒𝑟𝑟‖∞,1 ‖𝑞𝑒𝑟𝑟‖2,2
(𝑆𝑇 ) 𝑂(ℎ) 1.25 1.33 1.23 0.51 1.01 0.50 0.51 0.97 0.50

𝑂(ℎ2) 1.22 1.44 1.23 0.50 1.01 0.49 0.40 0.78 0.50

(𝑃 ) 𝑂(ℎ) 1.29 1.28 1.11 1.33 1.18 1.11 1.21 1.24 1.16
𝑂(ℎ2) 1.85 1.99 1.85 1.85 2.00 1.84 1.25 1.50 1.24

6. Numerical experiments

In this section, we provide numerical experiments to demonstrate the performance of our P0-P0 algorithm as well as the features
f P0-P0-𝛩 and P0-P0-𝑊 solvers. We start with tests of convergence to verify the theoretical estimates from Section 4. Next, we
rovide physical permafrost scenarios to test the robustness of our algorithms when handling different SFCs, boundary conditions,
nd media heterogeneity.

.1. Order of convergence

We now provide convergence studies for permafrost models using our P0-P0-𝛩 algorithm. Similar tests were given in [12] for
he Stefan problem and 𝜃,𝑤 variables.
Here we give the errors for 𝜃, 𝑤, and 𝑞 and in the ‖ ⋅‖∞,2, ‖ ⋅‖∞,1 and ‖ ⋅‖2,2 error norms (see Appendix A.4 for their details). We

stimate the orders of convergence using two examples: one with a known analytical solution and another with a fine grid solution.
For the first example, we consider a non-physical scenario with a known analytical solution adapted from [17] (Example 1). We

rovide the convergence orders obtained for the Stefan problem using P0-P0-W.

xample 6.1. Let 𝛺 = (0, 0.4) × (0, 0.2) and 𝑆(𝑥, 𝑡) = 0, 𝑆(𝑥, 𝑡) = −𝑥 + 𝑡 + 0.1, be the free boundary between the frozen and
hawed states, with material parameters as in Table 3. In the first case, we consider the Stefan problem with analytical solution
17] (Example 1)

𝑤𝑆𝑇 =

{

𝑒𝑆 − 1; 𝑆 < 0
2(𝑒𝑆 − 1) + 1; 𝑆 ≥ 0,

𝜃𝑆𝑇 =

{

𝑒𝑆 − 1; 𝑆 < 0
2(𝑒𝑆 − 1); 𝑆 ≥ 0,

𝑞𝑆𝑇 =

{

𝑒𝑆 ; 𝑆 < 0
2𝑒𝑆 ; 𝑆 ≥ 0,

(42)

nd external source 𝑓𝑆𝑇 = 0. For the second case, we modify (42) to satisfy the permafrost model. We choose the adapted M SFC
ith parameters 𝑏𝑀 = 2, 𝜒𝑀𝑟𝑒𝑠 = 0, 𝜃𝑀∗ = 0, and a porosity of 𝜂 = 0.5. The thermal parameters of the rock material are as in Table 3.
he analytical solution is given by

𝜃𝑃 =

{

𝑒2𝑆 − 1; 𝑆 < 0
2(𝑒𝑆 − 1); 𝑆 ≥ 0,

𝑤𝑃 =

{

(𝑒2𝑆 − 1) + 0.5𝑒2(𝑒2𝑆−1); 𝑆 < 0
2(𝑒𝑆 − 1) + 0.5; 𝑆 ≥ 0,

𝑞𝑃 =

{

2𝑒2𝑆 ; 𝑆 < 0
2𝑒𝑆 ; 𝑆 ≥ 0,

(43a)

ith the external source term

𝑓𝑃 =

⎧

⎪

⎨

⎪

⎩

2
[

𝑒2
(

𝑒2𝑆−1
)

− 1
]

𝑒2𝑆 ; 𝑆 < 0

0; 𝑆 ≥ 0.
(43b)

It is worthwhile to note that

[𝑞𝑆𝑇 ]𝑆=0 = 2 − 1 = 1 = 𝐿𝜕𝑆
𝜕𝑡

|

|

|𝑆=0
, (44a)

owever

[𝑞𝑃 ]𝑆=0 = 2 − (2) = 0. (44b)

his difference is in accordance with the fact that 𝑞𝑃 ∈ 𝐻𝑑𝑖𝑣 but 𝑞𝑆𝑇 ∉ 𝐻𝑑𝑖𝑣.
We obtain the errors using grid sizes ℎ ∈ {2, 1, 0.5} × 10−3 and 𝜏 = (1.25 × 10−1)ℎ and 𝜏 = (1.5625 × 10)ℎ2. The convergence rates

re tabulated in Table 4. We seek the order 𝑝 of the error 𝑂(ℎ𝑝).
For the permafrost model, we obtain at least 𝑝 ≈ 1 for 𝜃,𝑤, and 𝑞 when using 𝜏 = 𝑂(ℎ); when 𝜏 = 𝑂(ℎ2), we obtain order

∈ [1.8, 2] for 𝜃,𝑤, and order 𝑝 ∈ [1.25, 1.5] for 𝑞. In contrast, for the Stefan problem, 𝑝 ≈ 1 for 𝜃 and 𝑝 ≈ 0.5 for 𝑤 and 𝑞 regardless
11



Journal of Computational and Applied Mathematics 442 (2024) 115719N. Vohra and M. Peszynska

t

m
A

E
p

T

a

Table 5
Thermal parameters of water and rock grains used in this paper.
Material 𝑐 [J∕m3 ◦C] 𝑘 [J∕m s ◦C] 𝐿 [J∕m3] 𝜃∗ [◦C] Ref.

Liquid water 4.19 × 106 0.58 306 × 106 0 [32] (Section 4)
Ice 1.90 × 106 2.30 306 × 106 0 [32] (Section 4)
Rock grains 2.36 × 106 1.95 0 0 [6] (Table 1)

Table 6
Results of Examples A.1 and 6.2. Orders of convergence are obtained using fine grid solution with ℎ𝑓𝑖𝑛𝑒 = 2 × 10−3 [cm] and 𝜏𝑓𝑖𝑛𝑒 = 1 [s].
Model 𝜏 ‖𝜃𝑒𝑟𝑟‖∞,2 ‖𝜃𝑒𝑟𝑟‖∞,1 ‖𝜃𝑒𝑟𝑟‖2,2 ‖𝑤𝑒𝑟𝑟‖∞,2 ‖𝑤𝑒𝑟𝑟‖∞,1 ‖𝑤𝑒𝑟𝑟‖2,2 ‖𝑞𝑒𝑟𝑟‖∞,2 ‖𝑞𝑒𝑟𝑟‖∞,1 ‖𝑞𝑒𝑟𝑟‖2,2
Example 6.2(i)

𝐿 𝑂(ℎ) 0.97 0.97 0.96 0.96 0.96 0.95 0.76 1.00 0.92
𝑂(ℎ2) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.98 1.93

𝑊 𝑂(ℎ) 0.96 0.96 0.96 0.95 0.95 0.96 0.76 1.00 0.90
𝑂(ℎ2) 2.01 2.01 2.01 2.01 2.01 2.02 1.53 1.97 1.93

𝑀 𝑂(ℎ) 0.96 0.97 0.97 0.98 0.96 0.97 0.76 1.00 0.89
𝑂(ℎ2) 2.01 2.01 2.01 2.00 2.01 2.02 1.53 1.97 1.94

Example 6.2(ii)

𝐿 𝑂(ℎ) 1.34 1.35 1.40 1.46 1.58 1.34 0.95 1.16 1.04
𝑂(ℎ2) 1.08 1.27 1.57 1.39 1.89 1.65 1.01 1.15 1.08

𝑊 𝑂(ℎ) 1.69 1.55 1.31 1.38 1.34 1.21 1.08 1.33 1.06
𝑂(ℎ2) 1.60 1.63 1.69 1.56 1.89 1.85 1.16 1.41 1.21

𝑀 𝑂(ℎ) 1.52 1.46 1.41 1.55 1.48 1.30 1.05 1.29 1.13
𝑂(ℎ2) 0.98 1.32 1.63 1.62 1.95 1.85 1.13 1.21 1.22

when 𝜏 = 𝑂(ℎ) or 𝑂(ℎ2). The higher orders of convergence in permafrost models is due to the increased regularity of 𝛼𝑃 compared
o 𝛼𝑆𝑇 .
We consider next a realistic physical scenario, and compute the order of convergence using fine grid solutions. The permafrost
odel features a moving thawing front. For reference, we provide the test for the linear heat equation in Example A.1 in
ppendix A.3.1.

xample 6.2. Let 𝛺 = (0, 0.2) [m] be occupied by a soil with porosity 𝜂 = 0.55 and SFC parameters as in Table 7. The thermal
roperties are taken from Table 5. We choose 𝑤0 = 𝛼𝑃 (𝜃0) and boundary conditions

𝜃(0, 𝑡) = 𝜃0, 𝜃(0.2, 𝑡) = 𝜃0 +
2𝑡

5000
, ∀𝑡 > 0, (45)

where (i) 𝜃0 = −4 or (ii) 𝜃0 = −1.5 [◦C]. The simulations are run over 𝑡 ∈ (0, 5000) [s]. We consider grid size ℎ ∈ {0.4, 0.2, 0.1}×10−2 [m]
and time step 𝜏 = (5 × 104)ℎ [s] and 𝜏 = (5 × 107)ℎ2 [s]. The results are tabulated in Table 6.

For permafrost models in Example 6.2, in case (i), we obtain order 𝑝 = 1 and 𝑝 = 2 for 𝜃,𝑤, and 𝑞 when using 𝜏 = 𝑂(ℎ) and
𝑂(ℎ2), respectively. This agrees with the estimate (28) since the problem is only mildly nonlinear, i.e., the nonlinearity 𝛼𝑃 is smooth
as 𝜃(𝑥, 𝑡) < 𝜃∗,∀(𝑥, 𝑡) ∈ 𝛺𝑇 . In case (ii), however, we obtain orders 𝑝 ≈ 1.2–1.6 for 𝜃,𝑤 and 𝑝 ≈ 1–1.2 for 𝑞, when using 𝜏 = 𝑂(ℎ).
here is only a slight improvement when using 𝜏 = 𝑂(ℎ2). This is expected since in this case 𝜃(𝑥, 𝑡) > 𝜃∗ for some (𝑥, 𝑡) ∈ 𝛺𝑇 : about
5% of the domain completely thaws by the end of the simulation. Since 𝛼𝑃 is non-smooth for some time of simulation, we can only
expect orders in accordance with (26).

Summary: We see that using our P0-P0 scheme for permafrost models we see roughly first order of convergence for both 𝜃,𝑤,
nd 𝑞 with 𝜏 = 𝑂(ℎ) in all norms. In scenarios not involving phase transition, quadratic order can be obtained as long as 𝜏 = 𝑂(ℎ2).
These rates are better than for the Stefan problem, where 𝜃 is first order convergent, but 𝑤 only half [12] (Section 3.4), and results
are better for weaker norms.

6.2. Robustness of solvers

In this section, we demonstrate robustness of our P0-P0 solvers for permafrost scenarios with respect to different boundary
conditions and domain heterogeneity. In particular, we compare performance of P0-P0-𝛩 and P0-P0-𝑊 solvers and test their
robustness.

6.2.1. Robustness in practical homogeneous scenarios
We start by comparing the performance of our P0-P0 algorithms in homogeneous permafrost scenarios with physical data.
12
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Table 7
SFC parameters used in Examples 6.2 and 6.3.
Permafrost model SFC parameters

Adapted L (9a) 𝑏 = 1.75 [–], 𝜃∗ = −1 [◦C]
Adapted W (9b) 𝑏 = 5 [◦C], 𝜒𝑟𝑒𝑠 = 0 [–], 𝜃∗ = −1 [◦C]
Adapted M (9c) 𝑏 = 1 [1∕◦C], 𝜒𝑟𝑒𝑠 = 0 [–], 𝜃∗ = −1 [◦C]

Fig. 4. Illustrations for Example 6.3. Top row: A plot of the surface temperature corresponding to Dirichlet boundary conditions (46a) (left) and surface flux
orresponding to Neumann boundary conditions (46b) (right). Bottom row: the maximum number of iterations taken by our P0-P0 algorithms when using
irichlet (left) and Neumann (right) boundary conditions. Here ℎ = 10−2 [m].

xample 6.3. Let 𝛺 = (0, 1) [m] with porosity 𝜂 = 0.55. We consider the SFCs with parameters as in Table 7. We choose initial
onditions 𝑤0 = 𝛼𝑃 (𝜃0) and consider two sets of boundary conditions: (i) Dirichlet boundary conditions

𝜃(0, 𝑡) = −5 + 15 sin (2𝜋𝑡) + N , 𝜃(1, 𝑡) = −5 [◦C], ∀𝑡 > 0, (46a)

nd (ii) Neumann boundary conditions

𝑞(0, 𝑡) ⋅ 𝜈 = −0.002 sin (2𝜋𝑡) − 0.0003N , 𝑞(1, 𝑡) ⋅ 𝜈 = 0.0001 [J∕cm2 s], ∀𝑡 > 0, (46b)

here N ∼ 𝑁(0, 1) is Gaussian noise added to the signal to replicate the oscillatory nature of field measured data; see Fig. 4 for a
lot of boundary conditions (46).

The simulation is run over 𝑡 ∈ (0, 1) [year]. We choose grid sizes ℎ ∈ {5, 1, 0.2} × 10−2 [m] and 𝜏 ∈ {120, 24, 1} [h]. The results are
iven in Tables 14–15, and shown in Fig. 4 for ℎ = 10−2 [m].
In both the cases of Dirichlet and Neumann boundary conditions, P0-P0-𝛩 performs robustly for all three SFCs with a maximum

f 10 and average of 1.6–3.9 iterations. Further, for large 𝜏, some time step reduction is observed for the adapted L SFC in the
irichlet case, and for all SFCs in the Neumann case. Moreover, when using P0-P0-𝑊 , for all SFCs the maximum and average
terations are reduced to 8 and 1.3–3.4, respectively. More importantly, there was no time step reduction for any SFC.
This example demonstrates that P0-P0-𝑊 is more robust than P0-P0-𝛩 for large time steps.

.2.2. Robustness in heterogeneous domains
The argument in Section 5.3 shows that the rate of convergence of our P0-P0 algorithms depends on the data for which (41)

olds, which in turn depends on the SFC. We now test this observation for a heterogeneous SFCs 𝜒𝑃𝑙 = 𝜒𝑃𝑙 (𝑥, 𝜃), and demonstrate
he robustness of our P0-P0 algorithms in heterogeneous domains.
Consider the stationary system

𝑊 + 𝐴𝛩 = 𝐹 , 𝑊 = 𝛼(𝛩), (47)
13
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Fig. 5. Illustration for Example 6.4 showing the selected smooth (left) and semismooth (right) functions 𝛼1 and 𝛼2 used to compare the performance of our
0-P0 algorithm. Note the difference in the gradients of the two curves in each plot.

here 𝑊 =
[

𝑊1
𝑊2

]

, 𝛩 =
[

𝛩1
𝛩2

]

∈ R2, 𝐴 =
[

2𝑘 −𝑘
−𝑘 2𝑘

]

, 𝑘 > 0, and 𝛼 ∶ R2 → R2, 𝛼(𝛩) =
[

𝛼1(𝛩1)
𝛼2(𝛩2)

]

, for some semismooth 𝛼1, 𝛼2 ∶ R → R,

and 𝐹 ∈ R2 is a constant. The system (47) arises when (22) is written for 𝑁𝜔 = 2 cells; we do not consider (47) to be related to any
particular physical scenario.

When using P0-P0-𝛩, the Jacobian in (34)(b) is given by J(𝑚−1)𝛼 = J (𝑚−1)
𝛼 + 𝐴, where J (𝑚−1)

𝛼 ∈ 𝜕𝛼(𝛩(𝑚−1)) is given by

J (𝑚−1)
𝛼 =

[

𝐽 (𝑚−1)
𝛼1 0
0 𝐽 (𝑚−1)

𝛼2

]

, 𝐽 (𝑚−1)
𝛼𝑗 ∈ 𝜕𝛼𝑗 (𝛩

(𝑚−1)
𝑗 ). Now, substituting 𝑔(𝛩) = 𝛼(𝛩) + 𝐴𝛩 in the left hand side of (41) gives, with

𝛿𝛩 = [𝛿𝛩1, 𝛿𝛩2]𝑇 , that

‖

‖

𝛼(𝛩 + 𝛿𝛩) − 𝛼(𝛩) − J𝛼𝛿𝛩‖‖2 =

( 2
∑

𝑖=1

|

|

|

𝛼𝑖(𝛩𝑖 + 𝛿𝛩𝑖) − 𝛼𝑖(𝛩𝑖) − 𝐽𝛼𝑖𝛿𝛩𝑖
|

|

|

2
)1∕2

, 𝐽𝛼𝑖 ∈ 𝜕𝛼𝑖(𝛩𝑖 + 𝛿𝛩𝑖).

By extending the argument from Section 5.3, if either 𝛼1 or 𝛼2 features a steep gradient, the algorithm P0-P0-𝛩 requires small
time steps for convergence. The performance of P0-P0-𝛩 is mostly affected by the features of 𝛼1 and 𝛼2 rather than the heterogeneity
𝛼1(𝛩) ≠ 𝛼2(𝛩). Similar reasoning applies to P0-P0-𝑊 .

We now illustrate the above with a numerical example.

Example 6.4. Consider the system (47). We choose smooth and semismooth expressions for 𝛼1 and 𝛼2 and compute the solution
corresponding to a given 𝐹 using our algorithms. We test P0-P0-𝛩 and P0-P0-𝑊 with respect to different initial guesses 𝛩0 and
𝑊0 = 𝛼(𝛩0), respectively, and with respect to different values of 𝑘. The expressions of 𝛼1 and 𝛼2 and the value of 𝐹 are listed in
Table 8. We also plot 𝛼1 and 𝛼2 in Fig. 5. The results are given in Table 8.

We see that P0-P0-𝛩 struggles to converge in cases when 𝛼1 or 𝛼2 has a steep gradient. Further, for semismooth functions, no
convergence of P0-P0-𝛩 is observed when 𝑘 is small. When using P0-P0-𝑊 , however, convergence is achieved for all cases with
fewer iterations than P0-P0-𝛩.

Summary: Our P0-P0 algorithms appear to perform robustly in heterogeneous permafrost scenarios regardless of the boundary
conditions or SFC expressions used. We also see that P0-P0-𝑊 performs better than P0-P0-𝛩 with fewer iterations and time step
reductions. In particular, a time step of 1–120 [h] for a grid size of 0.2 × 10−2–5 × 10−2 [m] appears to suffice for convergence in
ractical permafrost scenarios.

.3. Physically realistic simulations

We now test the application of our P0-P0 scheme in heterogeneous permafrost scenarios with physical data. First, in Section 6.3.1,
we consider heterogeneity, i.e., multiple soil types, with data measured in Alaska. Next, in Section 6.3.2 we consider heterogeneity
due to an ice wedge in 𝑑 = 1 and 𝑑 = 2. We see that our P0-P0 algorithms apply well in such scenarios, and we reconfirm the
advantages of P0-P0-𝑊 over P0-P0-𝛩.

6.3.1. Utqiagvik, Alaska
In this example, we use the data measured at Utqiagvik, Alaska (formerly known as Barrow). The data is taken from Permafrost

Laboratory, University of Alaska, Fairbanks [61], and the Circumpolar Active Layer Monitoring Program [62,63]. The purpose of our
simulation is not to exactly replicate the measured temperature values but to show the robustness of our algorithms when handling
heterogeneity and physical data. For that reason, we ignore additional factors such as the dependence of the thermal soil properties
on the temperature or the effects of snow on the ground surface.

Data description and calibration: At Utqiagvik, we use data from two different sites: water fraction data from NGEE Barrow
C and ground surface temperature from Barrow 2 (N. Meadow Lake No. 2/NML-2) [61]; see Fig. 6 for a plot of the ground surface
14
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Table 8
Results for Example 6.4 show that the performance of our P0-P0 algorithm appears to depend on the steepness of gradient of 𝛼1 or 𝛼2 rather than the heterogeneity
represented by 𝛼1(𝛩) ≠ 𝛼2(𝛩).
𝛼1(𝛩) 𝛼2(𝛩) 𝐹 𝑘 𝛩0 P0-P0-𝛩 P0-P0-𝑊

Smooth functions Convergence?/Iter. Convergence?/Iter.

𝛩3 + 𝛩 𝛩3 + 𝛩 [1.5 1]𝑇 1 [1 1]𝑇 Yes/4 Yes/4
[6 5]𝑇 Yes/7 Yes/5

10−3 [1 1]𝑇 Yes/4 Yes/2
[6 5]𝑇 Yes/7 Yes/2

𝛩3 + 𝛩 𝛩7 + 3𝛩 [1.5 1]𝑇 1 [1 1]𝑇 Yes/4 Yes/3
[6 5]𝑇 Yes/12 Yes/4

10−3 [1 1]𝑇 Yes/4 Yes/2
[6 5]𝑇 Yes/12 Yes/1

𝛩7 + 3𝛩 𝛩7 + 3𝛩 [1.5 1]𝑇 1 [1 1]𝑇 Yes/4 Yes/3
[6 5]𝑇 Yes/13 Yes/3

10−3 [1 1]𝑇 Yes/4 Yes/2
[6 5]𝑇 Yes/13 Yes/1

Semismooth functions
{

𝛩 + 𝑒𝛩 ; 𝛩 < 0
2𝛩 + 1; 𝛩 ≥ 0

{

𝛩 + 𝑒𝛩 ; 𝛩 < 0
2𝛩 + 1; 𝛩 ≥ 0

[0.98 0.95]𝑇 1 [−2 − 2.5]𝑇 Yes/3 Yes/3

[3 2]𝑇 Yes/2 Yes/2
10−3 [−2 − 2.5]𝑇 Yes/3 Yes/2

[3 2]𝑇 Yes/2 Yes/1
{

𝛩 + 𝑒𝛩 ; 𝛩 < 0
2𝛩 + 1; 𝛩 ≥ 0

{

𝛩 + 𝑒10𝛩 ; 𝛩 < 0
𝛩 + 1; 𝛩 ≥ 0

[0.98 0.95]𝑇 1 [−2 − 2.5]𝑇 Yes/5 Yes/4

[3 2]𝑇 Yes/4 Yes/3
10−3 [−2 − 2.5]𝑇 No Yes/2

[3 2]𝑇 No Yes/2
{

𝛩 + 𝑒10𝛩 ; 𝛩 < 0
𝛩 + 1; 𝛩 ≥ 0

{

𝛩 + 𝑒10𝛩 ; 𝛩 < 0
𝛩 + 1; 𝛩 ≥ 0

[0.98 0.95]𝑇 1 [−2 − 2.5]𝑇 Yes/5 Yes/4

[3 2]𝑇 Yes/4 Yes/3
10−3 [−2 − 2.5]𝑇 No Yes/2

[3 2]𝑇 No Yes/2

Table 9
SFC parameters used in Example 6.5. Here we use the adapted L SFC given by (9a).
Subdomain SFC parameters

𝛺(1) = (0, 0.2) [m] 𝑏 = 0.42, 𝜃∗ = −0.002, 𝜂 = 0.56
𝛺(2) = (0.2, 0.4) [m] 𝑏 = 0.81, 𝜃∗ = −0.03, 𝜂 = 0.46
𝛺(3) = (0.4, 40) [m] 𝑏 = 1.43, 𝜃∗ = −0.05, 𝜂 = 0.51

temperature. The two sites are roughly 3.8 [km] apart and have available recorded data from 2012–2018. The yearly active layer
depth data is taken from [62,63] Barrow CRREL plots from 2013–2018 which is measured between mid August to September, when
the thaw depth is the maximum [62] (Pg. 169).

We calibrate the adapted L SFC using the available daily water fraction data from 2012–2013 at depths of 0.15, 0.30, and 0.42 [m].
The obtained SFC parameters are tabulated in Table 9.

Example 6.5. Let 𝛺 = (0, 40) [m] be partitioned into subdomains 𝛺(1) = (0, 0.2), 𝛺(2) = (0.2, 0.4), and 𝛺(3) = (0.4, 40), where each
𝛺(𝑗), 1 ≤ 𝑗 ≤ 3 is occupied with a soil type with SFC parameters as in Table 9. We use Dirichlet boundary conditions at 𝑥 = 0
corresponding to the available surface temperature data from 06∕01∕2013 − 06∕01∕2018 and Neumann boundary conditions

𝑞(40, 𝑡) ⋅ 𝜈 = −0.0565 [J∕m2 s], ∀𝑡 > 0, (48)

corresponding to the constant geothermal flux [28].

We choose a non-uniform grid with grid size ℎ = 10−2 [m] in (0, 2) [m] and ℎ = 0.2 [m] in (2, 40) [m], and an initial time step of
𝜏 = 24 [h].

An interesting question concerns an initial condition, since it should reflect a physically realistic distribution. We calculate the
initial condition by using the surface temperature from 06/01/2012–06/01/2013 by following a procedure similar to [28]: we
first choose a uniform initial temperature profile −9 [◦C] and compute the steady state solution by using the Dirichlet surface
temperature value on 06/01/2012 and Neumann condition (48). Using the steady state solution as an initial condition, we further
simulate the temperature profile at the end of 3 years by periodically extending the surface temperature data from 06/01/2012–
06/01/2013 and using it as the Dirichlet surface boundary condition along with the Neumann condition (48). The temperature
15
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Fig. 6. Illustration for Example 6.5 showing the measured ground surface temperature (left) and the initial temperature profile (right) used in the simulation.

Fig. 7. Results for Example 6.5. Measured and simulated temperature at a depth of approximately 1 [m] (left), simulated flux at the ground surface (middle),
and simulated and measured thaw depth (right).

Fig. 8. Performance of our P0-P0 algorithms in Example 6.5. Left: when P0-P0-𝛩 is used, the time step is reduced even down to 𝑂(10−2) [s], whereas using
P0-P0-𝑊 requires no time step reduction. Right: iteration counts show that P0-P0-𝑊 takes fewer iterations than P0-P0-𝛩 for convergence.

profile at the end of the 3 year simulation is shown in Fig. 6: we choose this to be our initial temperature profile for the simulation
rom 01/06/2013–06/01/2018.
We first run the simulation with P0-P0-𝛩 solver. At the end of the simulation, we compare the measured and simulated

emperature at a depth of 1 [m]. The results are shown in Fig. 7. A maximum difference of max𝑡 |𝜃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 (𝑡) − 𝜃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑡)| ≈ 1.13 [◦C]
as obtained at a depth of 𝑥 ≈ 1 [m]. We also compute the location of the 0 [◦C] isotherm to compute the maximum thaw depth.
good qualitative agreement was observed between the measured and simulated values; see Fig. 7.
We now discuss the performance of the solvers in this challenging case with heterogeneity of the soil and the quickly varying

urface temperature data. Fig. 8 shows the time step reduction and iteration count during the simulation.
For P0-P0-𝛩 solver, the time step is reduced to a minimum of 𝜏 = 0.04 [s]. With this reduction, maximum of 28 iterations were

aken throughout the simulation, with an average of 2.7.
We next re-run the simulation using P0-P0-𝑊 . Now there are only 13 maximum iterations, with average 2.0. Most importantly,

here is no time step reduction during the simulation; see Fig. 8.
16



Journal of Computational and Applied Mathematics 442 (2024) 115719N. Vohra and M. Peszynska

W

w
p

t

A
b
o
𝑡
a

𝛼
a
f
9
t

t
a
a

E
s

Table 10
SFC and thermal parameters used in Example 6.6. Here we use the adapted L SFC given by (9a). A plot of the
SFCs is shown in Fig. 9.
Soil type SFC and thermal parameters Reference

Organic mineral mixture 𝑏 = 0.6, 𝜃∗ = −0.05, 𝜂 = 0.50 [24] (Table 1)
𝑐𝑟 = 1.750 × 106 [J∕m3 ◦C], 𝑘𝑟 = 0.692 [J∕ms ◦C] [25] (Table A.3)

Mineral 𝑏 = 0.5, 𝜃∗ = −0.1, 𝜂 = 0.40 [24] (Table 1)
𝑐𝑟 = 2.385 × 106 [J∕m3 ◦C], 𝑘𝑟 = 2.92 [J∕ms ◦C] [4] (Pg. 90, Table 4.1)

Fig. 9. Illustration for Example 6.6. Left: SFCs of the different soil types used in the example. The parameters are taken from Table 10. Right: the surface
temperature (49) used in the simulation clearly showing the warming trend.

6.3.2. Ice wedge modeling
In this example, we model the inclusion of ice and rock wedges in permafrost. We begin with a 𝑑 = 1 example with an ice wedge

modeled with different approaches discussed in Section 2.2.1. Next we continue with a 𝑑 = 2 example replacing the ice wedge with
a soil, or with solid rock.

Example 6.6. Let 𝛺 = (0, 2) [m]. Let 𝛺(1) = (0, 0.2) be occupied by an organic mineral soil mixture, 𝛺(2) = (0.2, 1.5) be occupied by
ice, and 𝛺(3) = (1.5, 2) be occupied by a mineral soil. The SFCs and thermal parameters are listed in Table 10 and shown in Fig. 9.
e choose an initial condition corresponding to 𝜃0 = −5 [◦C] and boundary conditions

𝜃(0, 𝑡) = 𝜃𝑠(𝑡) + 3𝑡, 𝜃(2, 𝑡) = −5, ∀𝑡 > 0, (49)

here 𝜃𝑠 is the surface temperature (46a) (periodically extended over 3 years) and 3𝑡 represents an additional warming scenario. A
lot of the surface temperature (49) is shown in Fig. 9.

The simulation is run over 𝑡 ∈ (0, 3) [year] (1 [year] = 365 [day]) using different grid sizes ℎ ∈ {1.25, 2.5, 5} × 10−2 [m] and
ime steps 𝜏 ∈ {120, 24, 1} [h]. With P0-P0-𝛩, we consider the two approximations 𝛼𝑆𝑇 = 𝛼, 𝛼𝑃 shown in Fig. 3. We distinguish
the corresponding numerical solutions by appropriate superscripts; e.g., 𝜃𝛼 denotes the temperature obtained using P0-P0-𝛩 with
𝛼𝑆𝑇 = 𝛼 and 𝜃𝛽𝑆𝑇 using P0-P0-𝑊 .

The temperature and water fraction profiles at 𝑡 ≈ 0.25, 1.25 and 2.25 [year] are shown in Fig. 10 when using ℎ = 1.25 × 10−2 [m].
maximum thaw depth of ≈ 0.53 [m] was observed at the end of the simulation. The thawing front is captured most accurately
y P0-P0-𝑊 , since no regularization or approximation of 𝜒𝑆𝑇𝑙 is used in this case. Comparing to P0-P0-𝛩, a maximum difference
f max𝑥 |𝜃𝛼

𝑃 (𝑥, 𝑡) − 𝜃𝛽𝑆𝑇 (𝑥, 𝑡)| ≈ 0.12 [◦C] and max𝑥 |𝜃𝛼(𝑥, 𝑡) − 𝜃𝛽
𝑆𝑇 (𝑥, 𝑡)| ≈ 0.77 [◦C] occurred near ground surface at 𝑥 = 0 and at

≈ 2.25 (the time of the maximum ground surface temperature). We conclude that 𝛼𝑃 and 𝛼 serve as an effective and accurate
pproximation of 𝜒𝑆𝑇𝑙 when used in soil-ice wedge scenarios.
We now compare the performance of the solvers for this complex case. Table 11 shows that with P0-P0-𝛩, the approximations

𝑃
𝑙 and 𝛼 perform similarly. For 𝛼𝑃 a maximum of 19 and average of 2.1–4.1 iterations are taken, whereas for 𝛼 a maximum of 26
nd average of 1.6–1.9 iterations are taken. Further, time step reductions were observed down till 𝑂(10−1) [s] for 𝛼𝑃 and 𝑂(1) [s]
or 𝛼. This is expected due to the high gradients of the approximations 𝛼𝑃 and 𝛼. However, when using P0-P0-𝑊 , a maximum of
and average of 1.5–3.2 iterations are taken. Further, time step reduction was only observed for the high value of 𝜏0 = 120; even
hen the time step was only reduced till 𝑂(10) [h].
Finally we consider a 2D example for ice wedge modeling. We focus on the features of heterogeneity, thus we use constant rather

han time-varying boundary conditions. The example is designed to show how easy it is to consider different scenarios, geometries,
nd rock types with our robust P0-P0 algorithms. In fact, we are able to model the ice domain as (5) with 𝛼𝑃 , 𝑘𝑃 given with 𝜂 = 1,
nd the solid rock domain with 𝜂 = 0, 𝐿 = 0.

xample 6.7. Let 𝛺 = (0, 1) × (0, 1.2) [m2] be partitioned to three material subdomains shown in Fig. 11 (top left), with the layout
ummarized in Table 12. The subdomains 𝛺(1) and 𝛺(3) are occupied by soil types S1 and S2. For 𝛺(2), we consider three different
17
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Fig. 10. Results for Example 6.6 showing the temperature (left) and water fraction (right) at different times corresponding to the different model approximations
o the ice wedge. Here ℎ = 1.25 × 10−2 [m].

scenarios. The ice wedge case (A) features ice in 𝛺(2), with 𝜂 = 1 (no rock). This case is compared to (B) where soil type 2 is assigned
o 𝛺(2), and case (C) when 𝛺(2) is occupied by solid rock (e.g., a boulder) with 𝜂 = 0, 𝑏 = 0, 𝐿 = 0, 𝜂𝑟𝑒𝑠 = 0. The thermal parameters
for all materials are in Table 5, and the SFC using model M (9c) in Table 12.

We consider constant initial conditions 𝜃𝑖𝑛𝑖𝑡 = −10 [◦C] and a constant Dirichlet boundary condition 𝜃 = 10 on 𝑦 = 1.2. On the
oundaries 𝑥 = 0, 𝑥 = 1, and 𝑦 = 1.2 we consider the no-flux conditions 𝑞 ⋅ 𝜈 = 0. We choose a spatial grid of 100 × 120 elements
nd a time step 𝜏 = 12[h]. We use 𝜃 as a primary unknown, since the case is only mildly challenging.
The simulation is run over 𝑡 ∈ (0, 1) [year], with results presented in Figs. 11–12.

The plots in Figs. 11–12 show complex profiles of evolving 𝜃 and water fraction 𝜒𝑙. We see that 𝜃 is continuous across material
nterfaces, but that the water fraction 𝜒𝑙 features a sharp contrast across material interfaces. In addition, as expected, the ice wedge
n case (A) thaws the slowest, while 𝜒𝑙|𝛺(2) is meaningless in case C and is not plotted.
As concerns solver, the solver P0-P0-𝛩 is quite robust for this general 𝑑 = 2 case. With the time steps of half-day chosen for

ccurate dynamics, the solver requires only about 2-4 iterations and no time step cutting. After thawing is initiated, the time step
an easily be increased. We do not report more details for brevity.

ummary: The numerical experiments provided in this section further demonstrate the robustness of our P0-P0 algorithms in
ractical heterogeneous domains. As observed in Section 6.2, we see that P0-P0-𝑊 converges with fewer iterations and minimal
ime step reductions when compared to P0-P0-𝛩. However, it requires additional iterations of Ridder’s iteration per each cell. This
et-up due to its robustness may be more advantageous especially for large domains where the cost of linear solver needed in each
18

teration of P0-P0-𝛩 easily outweighs the cost of Ridder’s iterations.
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Table 11
Results for Example 6.6 comparing the performance of our P0-P0 algorithms. Note that P0-P0-𝑊 takes fewer
iterations than P0-P0-𝛩 and converges for larger time steps.
Ice wedge model ℎ [cm] 𝜏 [h] Max/min/mean iter. 𝜏 reduced?

P0-P0-𝛩

𝜒𝑃𝑙 , 𝛼
𝑃 5 120 13/1/3.7 𝜏 ≈ 0.41 [s]

24 9/1/3.0 𝜏 ≈ 0.65 [s]
1 4/1/2.1 𝜏 ≈ 0.87 [s]

2.5 120 9/1/3.9 𝜏 ≈ 1.6 [s]
24 13/1/3.3 𝜏 ≈ 1.3 [s]
1 4/1/2.3 𝜏 ≈ 1.7 [s]

1.25 120 18/1/4.1 𝜏 ≈ 0.41 [s]
24 19/1/3.5 𝜏 ≈ 1.3 [s]
1 4/1/2.4 𝜏 ≈ 1.7 [s]

𝜒𝑙 , 𝛼 5 120 11/1/1.9 𝜏 ≈ 13.1 [s]
24 7/1/1.9 𝜏 ≈ 5.2 [s]
1 4/1/1.6 𝜏 ≈ 3.5 [s]

2.5 120 26/1/1.9 𝜏 = 6.5 [s]
24 7/1/1.9 𝜏 ≈ 5.2 [s]
1 4/1/1.7 𝜏 ≈ 7.0 [s]

1.25 120 16/1/1.8 𝜏 ≈ 3.2 [s]
24 9/1/1.9 𝜏 ≈ 5.2 [s]
1 4/1/1.7 𝜏 = 1.7 [s]

P0-P0-𝑊

𝜒𝑆𝑇𝑙 , 𝛽𝑆𝑇 5 120 8/1/2.5 No
24 6/1/1.8 No
1 3/1/1.5 No

2.5 120 8/1/2.8 𝜏 = 60 [h]
24 8/1/2.0 No
1 4/1/1.5 No

1.25 120 9/1/3.2 𝜏 = 30 [h]
24 9/1/2.2 No
1 4/1/1.5 No

Table 12
Definition of Cases A–B–C in Example 6.7, with SFC parameters used in the adapted 𝑀 model given by (9c).
Top: data. Bottom: simulation results for Example 6.7.
Material 𝜂 𝐿 𝜃𝑟𝑒𝑠 𝑏

S1 0.5 𝐿𝑤 0.21 0.16
S2 0.2 𝐿𝑤 0.21 0.16
Ice wedge 1 𝐿𝑤 0.01 2
Solid rock 0 0 0 0

Case 𝛺(1), 𝛺(2), 𝛺(3) Min,Max𝑥∈𝛺𝜒(𝑥, 𝑇 ) Newton iter.

A S1,Ice,S2 0,1 4(5).
B S1,S2,S2 0.2986,1 3(5)
C S1,Rock,S2 0.3114,1 4(5)

7. Summary and conclusions

In this paper we presented and analyzed a robust algorithm to model heat conduction in permafrost scenarios based on lowest
rder mixed finite elements and the semismooth Newton’s solver. We demonstrated convergence and tested its robustness for realistic
ermafrost applications.
In particular, we verified the optimal order of convergence of our schemes as suggested by the literature results for similar

roblems.
We also investigated the advantages of the enthalpy formulation over the temperature formulation, with two variants of nonlinear

olver, respectively, called P0-P0-𝛩 and P0-P0-𝑊 . We proved their convergence based on the analysis of the properties of the
onlinear temperature–enthalpy relationships 𝛼𝑃 and its inverse, 𝛽𝑃 . In the end, the algorithm P0-P0-𝑊 using enthalpy as primary
unknown is more robust, but it requires an additional local nonlinear solver. However it (i) does not require any regularization of
19

𝛼, even in scenarios involving SFCs with steep gradients or ice wedges, and it (ii) converges for large time steps.
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Fig. 11. Simulation set-up and results for Example 6.7. Left column: sketch of the domains (top), and temperature plot for case (A). Middle and right columns:
𝜃(0.5, 𝑦, 𝑡), 𝜒𝑙(0.5, 𝑦, 𝑡) at 𝑡 = 1[y] (top), and 𝑡 = 0.5[y] (bottom) for cases A, B, C.

We further demonstrated robustness of our P0-P0 algorithms in different permafrost scenarios including those with extreme
heterogeneity due to multiple soil types or ice or rock wedges. Moreover, our P0-P0 algorithms are conservative and consistent in
contrast to other schemes frequently used in literature which employ the ‘‘apparent heat capacity technique’’.

Data availability

We use publicly available data and scientific articles in examples in the paper. As for software, we plan to make portions of the
code available upon request on Peszynska’s website.
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Fig. 12. Simulation results for Example 6.7. Profiles of 𝜃 (top), and 𝜒 (bottom) at 𝑡 = 1[y]. Visible is continuity of temperature, and discontinuity of water
fraction.

Appendix

A.1. Weighting of 𝑘𝑟, 𝑘𝑙 , 𝑘𝑖 in 𝑘𝑃

To obtain 𝑘𝑃 (𝑥, 𝜃), one has to weigh 𝑘𝑟, 𝑘𝑙 , 𝑘𝑖 depending on the local geometry of pore space or at least the proportions of rock,
liquid, and ice within the pores.

In particular, one of the following three expressions can be employed

𝑘𝐴 = 𝑘𝐴𝑢 𝜒
𝑃
𝑙 + 𝑘𝐴𝑓 (1 − 𝜒

𝑃
𝑙 ), 𝑘

𝐴
𝑢 = 𝜂𝑘𝑙 + (1 − 𝜂)𝑘𝑟, 𝑘𝐴𝑓 = 𝜂𝑘𝑖 + (1 − 𝜂)𝑘𝑟, (50a)

𝑘𝐺 = (𝑘𝐺𝑢 )
𝜒𝑃𝑙 (𝑘𝐺𝑓 )

1−𝜒𝑃𝑙 , 𝑘𝐺𝑢 = 𝑘𝑙
𝜂𝑘𝑟

1−𝜂 , 𝑘𝐺𝑓 = 𝑘𝑖
𝜂𝑘𝑟

1−𝜂 , (50b)

𝑘𝐻 =

(

𝜒𝑃𝑙
𝑘𝐻𝑢

+
1 − 𝜒𝑃𝑙
𝑘𝐻𝑓

)−1

, 𝑘𝐻𝑢 =
(

𝜂
𝑘𝑙

+
1 − 𝜂
𝑘𝑟

)−1
, 𝑘𝐻𝑓 =

(

𝜂
𝑘𝑖

+
1 − 𝜂
𝑘𝑟

)−1
, (50c)

epresenting the arithmetic (50a), geometric (50b), and harmonic (50c) average.
In general, upscaling should be used; see [13] for comparisons of 𝑘𝐴, 𝑘𝐺 , 𝑘𝐻 . In 𝑑 = 1 upscaled values are the same

s harmonically weighted. In this paper, we use harmonic averaging (50c) in our numerical tests and simulations. Based on
21
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Assumption 2.1, we have the uniform bounds

𝑘𝑚𝑖𝑛 ≤ 𝑘𝐻 (𝑥, 𝜃) ≤ 𝑘𝐺(𝑥, 𝜃) ≤ 𝑘𝐴(𝑥, 𝜃) ≤ 𝑘𝑚𝑎𝑥, ∀𝑥 ∈ 𝛺, 𝜃 ∈ R. (51)

A.2. Auxiliary properties of the matrices M ,B, K̃ and A

We now state some useful properties of the matrices M ,B, K̃ −1 and A introduced in Section 3. The matrix M is a diagonal
matrix of the cell-volumes of T ℎ. We refer the reader to [12] (Section 3.1, Section 7.5) and [44] (Section 3.1, Eq. (15)) for the
complete details of B and K̃ , and here we only state that B is a constant matrix with each column having at most two nonzero
entries ∈ {−1, 1} and the matrix K̃ is a diagonal matrix of the transmissibilities associated with each edge of T ℎ. For example, the
transmissibility 𝑇𝑖+ 1

2 ,𝑗
associated with 𝛾𝑖+ 1

2 ,𝑗
is defined as

𝑇𝑖+ 1
2 ,𝑗

= ℎ𝑦,𝑗
( 1
2
ℎ𝑥,𝑖𝑘̃

−1
𝑖,𝑗 + 1

2
ℎ𝑥,𝑖+1𝑘̃

−1
𝑖+1,𝑗

)−1
, (52)

so that with 𝜓ℎ = 𝜓𝑖+ 1
2 ,𝑗

in (20b) we get

ℎ𝑦,𝑗𝑄
𝑛
𝑖+ 1

2 ,𝑗
= −𝑇𝑖+ 1

2 ,𝑗
(𝛩𝑛𝑖+1,𝑗 − 𝛩

𝑛
𝑖,𝑗 ). (53)

The right hand side of (53) also explains how the nonzero entries of B are ∈ {−1, 1}.
The matrix A = B𝐾−1B𝑇 is at least symmetric positive definite (SPD) (and at least positive semidefinite for Neumann boundary

conditions). We will now show that A is weakly diagonal dominant (see Lemma A.1 for the definition). Consider a cell 𝜔𝑖,𝑗 ∈ T ℎ.
or simplicity of exposition, we let 𝜔𝑖,𝑗 be an interior cell. Then, using the basis functions 𝜂ℎ = 𝟏𝑖,𝑗 and 𝜓ℎ = 𝜓𝑖± 1

2 ,𝑗
, 𝜓𝑖,𝑗± 1

2
in (20)

ives

ℎ𝑥,𝑖ℎ𝑦,𝑘𝑊
𝑛
𝑖,𝑗 + 𝜏𝑛[𝑇𝑖+ 1

2 ,𝑗
(𝛩𝑛𝑖,𝑗 − 𝛩

𝑛
𝑖+1,𝑗 ) + 𝑇𝑖− 1

2 ,𝑗
(𝛩𝑛𝑖,𝑗 − 𝛩

𝑛
𝑖−1,𝑗 ) +

+𝑇𝑖,𝑗+ 1
2
(𝛩𝑛𝑖,𝑗 − 𝛩

𝑛
𝑖,𝑗+1) + 𝑇𝑖,𝑗− 1

2
(𝛩𝑛𝑖,𝑗 − 𝛩

𝑛
𝑖,𝑗−1)] = ℎ𝑥,𝑖ℎ𝑦,𝑘𝑊

𝑛−1
𝑖,𝑗 + 𝜏𝑛𝐹 𝑛𝑖,𝑗 . (54)

Or,

ℎ𝑥,𝑖ℎ𝑦,𝑘𝑊
𝑛
𝑖,𝑗 + 𝜏𝑛

(

𝑇𝑖− 1
2 ,𝑗

+ 𝑇𝑖,𝑗+ 1
2
+ 𝑇𝑖+ 1

2 ,𝑗
+ 𝑇𝑖,𝑗− 1

2

)

𝛩𝑛𝑖,𝑗 + 𝜏𝑛

(

−𝑇𝑖+ 1
2 ,𝑗

)

𝛩𝑛𝑖+1,𝑗 +

𝜏𝑛

(

−𝑇𝑖− 1
2 ,𝑗

)

𝛩𝑛𝑖−1,𝑗 + 𝜏𝑛

(

−𝑇𝑖,𝑗+ 1
2

)

𝛩𝑛𝑖,𝑗+1 + 𝜏𝑛

(

−𝑇𝑖,𝑗− 1
2

)

𝛩𝑛𝑖,𝑗−1 = ℎ𝑥,𝑖ℎ𝑦,𝑘𝑊
𝑛−1
𝑖,𝑗 + 𝜏𝑛𝐹 𝑛𝑖,𝑗 . (55)

omparing (55) with the (22), we establish that the row of A corresponding to the degree of freedom 𝛩𝑛𝑖,𝑗 has the entries
{(

𝑇𝑖− 1
2 ,𝑗

+ 𝑇𝑖,𝑗+ 1
2
+ 𝑇𝑖+ 1

2 ,𝑗
+ 𝑇𝑖,𝑗− 1

2

)

,−𝑇𝑖+ 1
2 ,𝑗
,−𝑇𝑖− 1

2 ,𝑗
,−𝑇𝑖,𝑗+ 1

2
,−𝑇𝑖,𝑗− 1

2

}

, (56)

with the first entry in (56) being the diagonal entry. This proves that A is row-wise weakly diagonally dominant. Since A is
ymmetric, it is also column-wise weakly diagonally dominant.
We will use of the following result on weakly diagonally dominant matrices from [64] (Thm. A.2).

emma A.1. Let 𝑋 ∈ R𝐼×R𝐼 be a column-wise weakly diagonally dominant with non-negative main diagonal and non-positive off-diagonal
lements, i.e.,

𝑋𝑗,𝑗 ≥
𝐼
∑

𝑖=1,𝑖≠𝑗
|𝑋𝑖,𝑗 |, ∀1 ≤ 𝑗 ≤ 𝐼,

𝑋𝑗,𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝐼, 𝑋𝑖,𝑗 ≤ 0, ∀1 ≤ 𝑖, 𝑗 ≤ 𝐼, 𝑖 ≠ 𝑗.

hen ‖(𝐼 +𝑋)−1‖1 ≤ 1.

.3. Supplemental data

In this section, we provide information for the narrative in Section 6.

.3.1. Orders of convergence for the linear heat equation

xample A.1. Let 𝛺 = (0, 0.2) [m] be occupied with water with material properties as in Table 5. We choose the initial condition
0 = 𝛼𝑆𝑇 (𝜃0), 𝜃0 = −4 [◦C] and boundary conditions

𝜃(0, 𝑡) = 𝜃0, 𝜃(0.2, 𝑡) = 𝜃0 +
2𝑡

5000
, ∀𝑡 > 0. (57)

The simulations in Example 6.2 are run over 𝑡 ∈ (0, 5000) [s]. We consider grid size ℎ ∈ {0.4, 0.2, 0.1} × 10−2 [m] and time step
= (5 × 104)ℎ [s] and 𝜏 = (5 × 107)ℎ2 [s]. The results are tabulated in Table 13.
22
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Table 13
Results of Example A.1. Orders of convergence are obtained using fine grid solution computed using ℎ𝑓𝑖𝑛𝑒 = 2 × 10−3 [cm] and 𝜏𝑓𝑖𝑛𝑒 = 1 [s].
Case 𝜏 ‖𝜃𝑒𝑟𝑟‖∞,2 ‖𝜃𝑒𝑟𝑟‖∞,1 ‖𝜃𝑒𝑟𝑟‖2,2 ‖𝑤𝑒𝑟𝑟‖∞,2 ‖𝑤𝑒𝑟𝑟‖∞,1 ‖𝑤𝑒𝑟𝑟‖2,2 ‖𝑞𝑒𝑟𝑟‖∞,2 ‖𝑞𝑒𝑟𝑟‖∞,1 ‖𝑞𝑒𝑟𝑟‖2,2
Example A.1

Linear 𝑂(ℎ) 0.99 0.99 0.99 0.99 0.99 0.99 0.76 1.00 0.97
heat 𝑂(ℎ2) 1.99 1.99 1.99 1.99 1.99 1.99 1.52 1.99 1.92

Table 14
Results for Example 6.3(i) when Dirichlet boundary conditions are used.
Model ℎ [cm] 𝜏 [h] P0-P0-𝛩 P0-P0-𝑊

Max/min/mean iter. 𝜏 reduced? Max/min/mean iter. 𝜏 reduced?

Adapted L 5 120 10/1/2.6 No 7/1/2.2 No
24 5/1/2.4 ≈0.18 [h] 5/1/2.0 No
1 4/1/2.0 ≈0.12 [h] 3/1/1.8 No

1 120 10/1/2.3 No 7/1/2.1 No
24 6/1/2.3 No 8/1/1.9 No
1 4/1/2.0 No 3/1/1.7 No

0.2 120 10/1/2.1 No 6/1/2.2 No
24 6/1/2.0 No 7/1/1.9 No
1 4/1/1.8 No 3/1/1.4 No

Adapted W 5 120 7/2/2.7 No 6/1/2.1 No
24 5/2/2.8 No 4/1/2.0 No
1 5/2/3.3 No 3/1/2.1 No

1 120 6/1/2.4 No 7/1/2.0 No
24 6/1/2.4 No 7/1/1.9 No
1 5/2/3.0 No 4/1/2.1 No

0.2 120 6/1/2.2 No 6/1/2.1 No
24 6/1/2.1 No 7/1/1.9 No
1 5/2/2.7 No 4/1/2.0 No

Adapted M 5 120 7/1/2.4 No 7/1/2.1 No
24 5/1/2.0 No 5/1/1.8 No
1 4/1/1.8 No 3/1/1.5 No

1 120 7/1/2.1 No 7/1/2.0 No
24 5/1/1.9 No 7/1/1.7 No
1 4/1/1.7 No 4/1/1.4 No

0.2 120 7/1/2.0 No 6/1/2.1 No
24 6/1/1.8 No 7/1/1.7 No
1 4/1/1.6 No 4/1/1.3 No

We obtain order 1 and 2 convergence for 𝜃,𝑤 and 𝑞 when using 𝜏 = 𝑂(ℎ) and 𝑂(ℎ2), respectively. This is in accordance with the
estimates (23).

A.3.2. Robustness of our P0-P0 algorithms in homogeneous permafrost scenarios.
Here we provide the results for Example 6.3. For the case when Dirichlet and Neumann boundary conditions are used, the results

are tabulated in Tables 14 and 15, respectively.

A.4. Error norms

We use the following formulas to compute the integrals in the error norms

(𝑓, 𝑔) =
𝑁𝜔
∑

𝑗=1
𝑓 (𝑥𝑗 )𝑔(𝑥𝑗 )ℎ𝑗 , (58a)

‖𝑓‖2,2 =

( 𝑁
∑

𝑛=1
𝜏𝑛‖𝑓 (⋅, 𝑡𝑛)‖22

)

1
2

, ‖𝑓 (⋅, 𝑡𝑛)‖2 =

(𝑁𝜔
∑

𝑗=1
ℎ𝑗 |𝑓 (𝑥𝑗 , 𝑡𝑛)|

2

)

1
2

, (58b)

‖𝑓‖∞,𝑞 = max
1≤𝑛≤𝑁

⎡

⎢

⎢

⎢

⎣

(𝑁𝜔
∑

𝑗=1
ℎ𝑗 |𝑓 (𝑥𝑗 , 𝑡𝑛)|

𝑞

)

1
𝑞 ⎤
⎥

⎥

⎥

⎦

, 𝑞 ∈ {1, 2}, (58c)

here 𝑥 ∈ 𝜔 is the center of the cell 𝜔 and ℎ = |𝜔 | is the size of the cell.
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Table 15
Results for Example 6.3(ii) when Neumann boundary conditions are used.
Model ℎ [cm] 𝜏 [h] P0-P0-𝛩 P0-P0-𝑊

Max/min/mean iter. 𝜏 reduced? Max/min/mean iter. 𝜏 reduced?

Adapted L 5 120 5/2/3.3 ≈0.4 [h] 4/2/2.8 No
24 4/1/2.7 ≈1.5 [h] 4/1/2.0 No
1 4/1/1.9 0.5 [h] 2/1/1.9 No

1 120 5/2/3.5 ≈1.8 [h] 6/2/3.2 No
24 5/1/2.8 No 5/1/2.3 No
1 4/1/1.9 No 3/1/1.7 No

0.2 120 7/2/3.6 7.5 [h] 7/2/3.4 No
24 5/1/2.9 No 5/1/2.5 No
1 4/1/2.1 No 4/1/1.9 No

Adapted W 5 120 6/1/3.6 60 [h] 4/1/2.7 No
24 4/1/3.2 12 [h] 3/1/2.2 No
1 5/1/3.5 No 3/1/1.9 No

1 120 7/1/3.7 12 [h] 6/1/3.0 No
24 6/1/3.4 No 5/1/2.6 No
1 5/1/3.5 No 3/1/2.2 No

0.2 120 7/1/3.9 No 6/1/3.1 No
24 6/1/3.5 No 5/1/2.7 No
1 6/1/3.7 No 4/1/2.7 No

Adapted M 5 120 5/1/3.0 No 4/1/2.5 No
24 4/1/2.6 3 [h] 4/1/2.0 No
1 4/1/1.8 No 2/1/1.8 No

1 120 5/1/3.0 3 [h] 5/1/2.8 No
24 5/1/2.7 12 [h] 5/1/2.3 No
1 4/1/1.9 No 3/1/1.9 No

0.2 120 6/1/3.1 No 6/1/3.0 No
24 5/1/2.8 12 [h] 6/1/2.4 No
1 4/1/1.9 No 4/1/1.9 No
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