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NUMERICAL ANALYSIS OF A MIXED FINITE ELEMENT
APPROXIMATION OF A COUPLED SYSTEM MODELING
BIOFILM GROWTH IN POROUS MEDIA WITH SIMULATIONS

AZHAR ALHAMMALIY* MALGORZATA PESZYNSKAZ2, AND CHOAH SHIN?

Abstract. In this paper, we consider mixed finite element approximation of a coupled system of
nonlinear parabolic advection-diffusion-reaction variational (in)equalities modeling biofilm growth
and nutrient utilization in porous media at pore-scale. We study well-posedness of the discrete
system and derive an optimal error estimate of first order. Our theoretical estimates extend
the work on a scalar degenerate parabolic problem by Arbogast et al, 1997 [4] to a variational
inequality; we also apply it to a system. We also verify our theoretical convergence results with
simulations of realistic scenarios.

Key words. Parabolic variational inequality, nonlinear coupled system, mixed finite element
method, error estimates, biofilm—nutrient model, porous media.

1. Introduction

Biofilms play an important role in a variety of scientific and engineering appli-
cations including microbial enhanced oil recovery (MEOR) [26], CO3 sequestration
[29, 17], bioremediation engineering [30], and so on.

Biofilm growth in porous media is affected by the ambient fluid flow and nutrient
availability. It is also subject to a volume constraint. In this paper we consider a
model proposed in [35] which is a coupled system involving a nonlinear parabolic
variational inequality (PVI) equipped with a new nonlinear diffusivity term and
subject to Neumann boundary conditions assuming the system is isolated. The
model of the biofilm growth is discussed in detail in Sec. 2. We are particularly
interested in simulating this model on voxel grids at the pore-scale, i.e., grids cor-
responding to the x-ray tomography images of porous media at the pore-scale.

We approximate the model with mixed finite element method (MFEM). We
believe this choice is better for the problem than the finite element method (FEM)
we considered in our earlier work in [1], because of the conservative property of
MFEM and its natural way of handling Neumann boundary conditions. (We remark
that MFEM works also very well theoretically and computationally when Dirichlet
condition is imposed unlike FEM that we succeeded in [1] in deriving an error
estimate with Dirichlet conditions only.) Moreover, the implementation of MFEM
with the lowest order of Raviart Thomas elements on rectangles and cubes RTjq
as cell centered finite difference method (CCFD) is very easy to implement and to
use for voxel grids. We recall that CCFD is equivalent to this mixed FE up to
quadrature order of O(h?) for smooth solutions [34, 40] where the later is more
convenient to implement in practice.

MFEM has been studied extensively in literature including the theory developed
in [11, 8]. However, most of the work is devoted to either unconstrained problems
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such as [13, 4, 23], etc, or constrained stationary problem as in [12]. Semi-
discrete mixed finite element approximation for unconstrained parabolic problem
was considered in [13] for the linear case and in [23] for the nonlinear case.

There are several challenges in analysing the biofilm—nutrient model considered in
this paper. One of challenges is the fact that PVI lacks of regularity. In particular,
the second derivative in time of the solution uy ¢ L? [22, 6]. Johnson in his paper
[22] overcomes this challenge by setting some realistic assumptions on the domain
and derives the error estimate of the finite element approximation of his problem
using summation by parts. We implemented Johnson’s approach in our previous
work [1] with the finite element approximation of a simple model of biofilm—nutrient
dynamic proposed in [32]. However, there are some major differences between the
problem in [1] and the problem considered here in this work. In [1] we considered
a quasi-linear PVI, where the diffusivity depends only on the spatial variable with
no advection term and the boundary conditions are of Dirichlet type. In contrast,
the problem in this paper has nonlinear diffusivity and an advection term with
Neumann boundary conditions. Johnson’s technique used in [22] does not work
with MFEM. Therefore, we implement time integration approach used in [4].

Another difficulty is the nonlinearity involved in both the diffusivity and the

reaction terms. Woodward and Dawson [41] deal with the nonlinearity using the
expanded mixed finite element method which introduces a new variable, and then
solves the problem in three unknowns (the primary unknown, its flux, and the new
variable). However, as it is described in [33], "the expanded mixed finite element
method is not equivalent with the standard mixed finite element method and their
results cannot be simply transferred to our method MFEM”. Arbogast et al. [4]
consider an unconstrained nonlinear parabolic problem, where the nonlinearity is
in the reaction term and under time derivative; the diffusivity is nonlinear if the
change of variable is used. To derive the error estimate, they use the weighted
projection on the approximated space which depends on the diffusivity beside the
time integration technique. When we implement this approach to our problem,
we need to assume some regularities on the solution which we do not guarantee
that they are realistic ones. Therefore, to deal with the nonlinear diffusivity, we
first linearize our problem using Kirchhoff transformation as in [33], and then we
implement the approach used in [4]. We would like to emphasize here that the
works in [4] and [33] are on scalar unconstrained problems whereas our problem is
a constrained coupled nonlinear system.
Moreover, there are some studies in literature that regularize the PVI first using
Lagrange multipliers then approximate it with finite element method as in [21, 28,
31]. In this paper we keep the PVI formulation in the theoretical analysis, yet use
the Lagrange multiplier in computations.

1.1. Outline. Below we set up the notation. In Sec. 2 we provide details of the
model. The paper is next broken into two parts: the first deals with the scalar PVI
involving nonlinear diffusivity, and the second next deals with the additional chal-
lenges due to the coupled nature of the system. In Sec. 3 we provide mathematical
details and formulate assumptions on the scalar PVI involving a nonlinear diffu-
sivity. In Sec. 4 we provide details of the discretization and prove well-posedness
of the discrete system. In Sec. 5 we prove the result on the convergence of MFEM
approximation to this scalar problem. In Sec. 6 we provide the analyses for the full
coupled system, and in Sec. 7 we provide examples in d = 1 and d = 2.

The theoretical results we prove require various assumptions which are specific to
the result. In particular, the well-posedness in Sec. 4 and Sec. 6 are derived under
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the assumption that advection terms are handled explicitly. However, the error
analysis in Sec. 5 and Sec. 6 allow for advection terms to be handled implicitly
in time. The techniques allow also the study of explicit advection, with small
modification, which we do not discuss.

1.2. Notations. Now we set up notation for this paper. Let Q C R%, d = 1,2, or
3 be a bounded domain with sufficiently smooth boundary I', and let 0 < T' < oo
and J = (0,7] be the time interval.

We shall use the following functional spaces that are suitable for the MFEM
when Neumann boundary conditions are considered.

X = Hy(div,Q) := {q € H(div;Q) : q-n|p = 0}, and M = L*(Q).
Recall that H(div; Q) = {q € (L*(Q))%; V-q € L*(Q)} equipped with the following
scalar product and norm:

[qalll)] = (Cb’l/)) + (V " q, V- 1/))’ Hq”H(div,Q) = [qa q]1/2’
and the normal trace q-n € H~z (T"). We also define the closed subset K C M as:

K={neM;0<n<u"aeon},

which includes the box constraint [0, u*], where u* € R.

In the sequel, we use standard notations on L*°(-), and Sobolev spaces H?®(-) for
some nonnegative integer s; see, e.g., [37] for more details on the Sobolev spaces.
Let || - ||o denote the norm on L?(-), || - ||s the norm on L®°(-), and || - ||s the norm
on H*(:). For the sake of abbreviation, we write L?(L?) to mean L?(J;L%(f2)),
and L?(Hg;,) to mean L?(J; H(div;(2)), similar abbreviation is applied to other
notations on functional spaces. Throughout this paper, let C' be a generic constant
independent of h or 7, where h is the spatial step size and 7 is the time step size.
15 is the characteristic function on S C 2. We will also use an indicator function

Is defined below. Without abuse of notation, we write the reciprocal of a function

gas g L.

2. Biofilm-nutrient model

Biofilm is a heterogeneous complex structure made of billions of bacterial cells,
attached to some wet solid surfaces, and a slimy extracellular polymeric substance
(EPS) excreted by the bacteria to protect them from the harsh environmental
conditions such as dehydration, ultra-violet radiation, antibacterial chemicals, bac-
teriophages and phagocytes [42, 3]. The majority of the bacteria exist in biofilm
communities in aqueous porous media [25, 14].

Biofilm develops and grows through a reaction process depending on the exis-
tence of substrates such as nutrient and oxygen, and also through diffusion and
advection process. Initially, the microbes grow in the void space of porous media
until their concentration reaches some density u, > 0 indicating that the biofilm
forms and becomes mature. Then the biofilm phase continues growing until it
reaches a certain density, denoted by u* > w., that cannot be exceeded because
micro-cells have finite volume, and only so many of them can fit in a particular
region. After this density is close to maximal, the majority of the growth occurs
through the interface between the biofilm and the ambient fluid [3], which is the
free boundary to be modeled. The bulk fluid may penetrate the biofilm region in
the permeable and partially permeable zones to transport the substrate so that
microbes continue growing in its domain [38, 35].
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The particular Biofilm-Nutrient model considered in this paper is proposed in [35]
as an enhancement of model in [32] consistent with the ideas which is proposed in
[15]. The model is a coupled system of two nonlinear parabolic advection-diffusion-
reaction PDEs in a biomass density u(x,t), and a nutrient concentration wus(x,t)
required for the microbes to grow [15, 35].

(la) Owur + V- (qui) — V- (di(u1)Vur) + 0l =y (u1) > 71(ur,uz) in ©Q,
(1b) 675UQ +V- ((lU/Q) -V (dg(ul)VUQ) = 7“2(U1,u2) in Q,

for ¢t > 0, where (2 is the non-rock domain in the porous medium filled with abun-
dant flowing fluid with some microbes and sufficient nutrient. In fact, 2 can be
viewed as the union of the domain of biofilm €, the domain of fluid 2,, and the
interface between them I'y,,; i.e. Q = Q, UQ, UTy,.

In the model (1) the advective flux q is assumed given, and one can consider
different modeling variants in which q is trivial or nontrivial inside the biofilm
domain. In particular, q can be obtained by the heterogeneous Brinkman flow
model as in [35].

Model (1) can be considered as a free-boundary problem with the free boundary
being the interface between the biofilm and the bulk fluid. The free boundary at
time ¢ is a set of points x where u(x,t) = u*, i.e., were the biofilm reaches its
maximum density.

It is natural to assume that the initial biomass u1|;—¢ amount is nonnegative.
Even though it is physically justified to expect that u; would remain nonnegative
at all times, we are not able to prove a maximum principle for the PDE model to
show this. Furthermore, discrete mixed methods do not necessarily satisfy maxi-
mum principle, thus we impose the non-negativity constraint also on the numerical
solutions. In other words, u; is subject to the box constraint 0 < u; < u*. The
role of the term 01 ,-)(u1) in (1a) is to enforce this constraint, and OI is the sub-
gradient of the indicator function Ijg .+ : L?(2) — R defined to be zero when
0 <wuy; <u*, and oo otherwise:

Oa 0 S Uy S U/*7
400 otherwise,

@) Toaey ) = {

and hence,

(—00,0), u; =0,
(3) Ol (u1) = 0, 0 <uy <u¥,
0,00), w3 =u*

is a multi-valued function, which explains the inclusion symbol 3 in (1a). We note
here that in the distributional sense, OIx can be written as

(4) Ol (u) = {¢ € L*(Q); (p,n —u) <0,V n € K}, Vu € K.

In our model it is crucial to define the nonlinear diffusivities d, ds. We postulate
that the biofilm diffusivity d; = dy(u1), and nutrient diffusivity do = da(u1) both
depend on the biomass density u;. In particular, the spreading of biofilm through
the interface between the region 0 < u; < u* and u; = uv* is modeled by 01 as well
as by fast increasing dy (u1) as u; approaches u* (see [15]). dy(u1) can be given in
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the following formula [35]:

do, u; <0,
(5) di(u1) = di(ezur) = ¢ do [(ufiu) + 1] ;0 <u <t
d*, uy > u’;

«
with d* = dy [(u*“*m) + 1}, where dy> 0 is the motility coefficient, u* is the
maximum density, and u* > u* is a barrier parameter. The exponent « is a param-
eter which expresses the strength of spreading of the biomass u; as it approaches
uw*. It is important to select a accurately to ensure the growth and spreading with-
out violating the constraint u; < u*; (see the adaptive model in [35] that computes
the optimal «; it also shows that the optimal o has to be greater than or equal to
2). See also similar diffusivity formula in [19].

We explain now the similarities and the differences between our model with the
choice of bounded d; (u1) and the family of Eberl et al. models [15, 16, 19] where dy
is a graph at u; = u*. First, the formal difference is that the latter model ensures
the constraint u; < u* by admitting an “infinite diffusivity” close to the constraint.
Our model includes this constraint with the operator dljg,~). Thus both models
achieve the same purpose, even if the actual choice of diffusivity in our model may be
less than that in the Eberl et al. models. Second, in numerical implementation, the
formally infinite diffusivity requires very small time steps and this is impractical
in a fully implicit formulation especially if coupled to the flow. In the end, our
approach through variational inequality is more practical computationally.

In turn, the nutrient diffusivity da = da(u1) depends significantly on the density
of biofilm phase in the medium. In particular, in the portion of biofilm phase where
biofilm is mature with u; ~ «*, nutrient diffuses very slowly, but it diffuses some-
what faster in the active layer portion of the biofilm where u < u* [19]. Following
[19, 35], we define da2(u1) as:

u*dN,w, u; <0,
(6) da(ur) = ¢ uwdnw Fur(dyny —dyw), 0<wu; <u*,
u*dnp, up > u*;

where dy ., dn,, are the nutrient diffusivity in the aqueous phase and the biofilm
phase, respectively, with dyp << dn,. Note that dy is bounded from below by
u*dynp and from above by u*dy ..
The reaction terms r; and ro are given in terms of Monod function m(ug) =
Y2 where 8 and ~y are fixed constants. [ is the specific nutrient uptake rate,

uz+vy’
and « is called Monod half-life. 71 = kui;m(us) involves the growth rate with a

growth constant , while ro = —uym(us) involves the utilization rates.

3. Mathematical details of the nonlinear parabolic variational inequality

In this section we focus on the first component of (1) and study the parabolic
variational inequality (PVI): we fix us, and rewrite (la) in terms of u = uy as
follows

(7) Ou+V - (qu) — V- (d(u)Vu) + 0ljg y+1(u) > f(u)inQ, t >0,

where f(u) = fo(x)+um(x), for some bounded function fy, and m(z) is the Monod
function defined in Sec.2. The diffusivity d(-) = di(-) in (5). This function has the
following properties which we summarize below.
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Lemma 3.1. Let d be given by (5), and let u* > u*, dy > 0, a > 2 be fized. Then
the function d : [0,00) — [do,d*] is Lipschitz continuous with some constant LY.
More precisely, we have

(8a) |d(u) —d(v)| < LY —v|, Yu,v >0,
but also
(8b) |d(u) —d(v)| = d*lu—v|, ifu,v>u"

The function 1/d(u) is well defined, it is bounded from above by dal, below by
(d*)~Y, and has a global Lipschitz constant L}i. Finally, for a fired v and some
2 <ay < ag, dlag;u) < d(ag;u).

Nlustrations of the diffusivity d(-) and its reciprocal when v > 0 are in Figure 1.
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FIGURE 1. Left: biomass diffusivity d(u) = d(2;u). Right: its
reciprocal 1/d(u).

Now we introduce a new variable q = qu — d(u)Vu, and substitute in (7). The
model is completed with initial and homogeneous boundary conditions. We rewrite
it in the following mixed formulation

(9a) d ' (u)q =d Y (u)qu — Vu, in Q, t >0,
(9b) Ou+V - q+ g+ (u) > f(u)in Q, t >0,

(9¢) q(s,t)-n=0o0onT, t >0,

(9d) u(x,0) = Ugnge in Q.

Assumption 1. We make the following assumptions.

(4) a=q(z) € (L>(Q))".

(B) f = f(z,t;u) is a continuous Lipschitz function with respect to u for each
x € Q,t >0, with a global Lipschitz constant R .

(C) u* € R is given.

(D) Uinit € Hl(Q), and 0 < Uinit < u*.

For the sake of numerical analysis, we assume the following reqularity of

(q,u).

(E) we L*(H'Y), uy € L2(H™1).

(F) ae L*((H")"), q; € L*(H")%), V-q € L*(H").

We would like to emphasise here that Assumptions (E) and (F) are not strong
regularity assumptions. We set them just for the sake of numerical analysis and
they do not depend on some theory. In literature, though, there are quite similar
assumptions but for unconstrained problem; see e.g. [4].
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Now for each ¢ > 0, the solution (q(t),u(t)) € X x K of (9) may be thought as
a solution to the mixed formulation of the parabolic variational problem

(10a) (' (w)a,¥) — (A" (w)au,$) — (V-p,u) = 0 Ve X,
(10b) O, —uw) +(V-q,n—u) > (f(u),n—u) VneK,
(10c) u(0) = Uinit,

To obtain (10a) from (9a), we have multiplied (9a) by some test function ¥ € X
and integrated by parts. The variational inequality (10b) is equivalent to (9b) by
the definition of OIk in the distributional sense (4).

The well-posedness of the weak formulation of the mixed problem (9) in the case
where @ = 0, and d = d(z) has been shown in [2] where we combined results from
[37] and [36]. We also mention the work in [27] where the solvability is shown for
similar models but not in mixed formulation.

4. Mixed FE discretization and CCFD implementation

We first explain how the unconstrained problem is discretized in time and in
space. Later we incorporate the constraints.

The advection term involving q can be treated explicitly or implicitly in time.
In the error analysis we consider the implicit case, which is harder theoretically,
and we do not include the analysis of the explicit case. For well-posedness of the
discrete system we only discuss the explicit case, which is what we actually use in
the implementation.

4.1. Discrete formulation for the unconstrained problem. We first state
the time-discrete mixed formulation for an unconstrained version of (10), where we
replace n € K by n € M. We apply fully implicit in time formulation, except for
the term qu which we discretize explicitly, and diffusivities which can be obtained
by time-lagging. For some positive integer N, let 7 = %, be the time step size,
and let ¢, = n1, J, = (tn_1,ts) for n = 1,...,N. At each time step t,, we seek
(q",u™) € X x M. We use the symbols n* = n (fully implicit), or n* = n — 1
(time-lagging case). Since the advection term is discretized explicitly, we adapt
(9b) and (9a) as follows. We move —(V - (qu™ 1), n) from the left hand side to the
right hand side and absorb it within (f™,7) in (9b). We use now the symbol q only
for the diffusive flux, i.e., we also modify (9a) to have d~1(u)q = —Vu.
The time-discrete form is an identity, since we are not using constraints

(11a) (d'(u™)a"9)— (", V-9) = 0, Ve X,
(11b)  (V-q",n)+ (=2 ) = (f"n) = (f§ +um,n), Vn € M.

4.1.1. Discretization in space. The domain € is covered by quadrangulation 7"
which contains rectangular cells denoted by w;;. We assume that their union covers
the domain € which is connected. Each cell (ij) has edges v;+1/2,; and 7; j11/2. It
is also convenient to consider some global numbering of the cells (w;;);;: we assign
to each (i,7) some index 1 < ¢ < N,.; We also have a global numbering of each of
the edges vi+1/2,5,7ij+1/2 @ Ye,€ = 1,... Ne. Each edge e is between the cells in
¢(e). In 2 dimensions, each edge e is associated with at most two neighboring cells,
and each cell ¢ is adjacent to at most four edges.

We shall assume the grid This quasi-uniform, so that there is a lower h,,;, and
an upper h,q; bound for each |wij| = h; x hj, with Apin = Brhimaer and 0 < B, < 1.
(A uniform square grid has 8, = 1.)
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On this grid we build the well known spaces (X, x Mp,) built on 7" with X, =

{q e RTy;q-n|r = 0}, where RT] (0] is the lowest order Raviart-Thomas space on
rectangles [9, 4, 40]. That is,

RT: = {q€e(L*2)% q

[ ax+b N h
wyy = ( ey +d ), a,b,c,d € Py for each w;; € T",

and q-n|. € Py(e) on each edge e € dw;;}.

We choose these lower order approximation spaces because the solution to varia-
tional inequalities feature low regularity. The space M}, contains piecewise constants
on Th; ie. My :== MIOT") := {n € L*(Q);n|w,, € Po for each w;; € T"}; the
basis functions spanning M), are simply 1, ;, and uplw,; = U;; associated with the
cell centers z;; of each w;;.

The vector valued functions in X}, are tensor products of piecewise linears in one
coordinate with piecewise constants in the other. In particular, (qy); is identified by
their edge values at the left and right edges 7;1+1/2,; S0 we have, e.g, (Qn)1ln,,, /0, =
Qi+1/2,5; analogously (qp)2 is identified by values at the bottom and top edges
Yi.j+1/2, respectively, (dn)aly, ;_,,, = Qi j—1/2. The basis functions for the vector
valued functions in X} are ¥;41/2; for (qn)1 and 9; 41,2 for (qn)2. We also have
elementwise approximations d;; ~ d(c;u)lw,; -

In summary, (Q;U) is the vector of the degrees of freedom for (qp,uy) in their
bases. In particular, @ is a vector of Q;11/2,; and Q; j+1/2 (or of (Qe)é\[:el), and U

is a vector of Uy; (or of (U.)Ne,).

4.1.2. Fully discrete formulation. Now we discuss how to obtain the approxi-
mations to the solutions to (11). These approximations satisfy discrete equations
obtained by setting a system similar to (11) but which now must hold in the finite
dimensional subspaces of the functional spaces used for (11). For the easiness of
implementation we also apply a particular numerical integration rule.

At each time step t,, we seek the approximations (q},u}) € X5 x M}, to (q,u)
which satisfy a system similar to (11) in which we also apply numerical integration,
for Vip € X,V € My, that

(12a)  (d~*(up ap,)n — (uft, V- 9)

(a26) (Vg + () = () = () + upm( b)),

0,

The numerical integration (-, -), in (12a) to calculate (d='q7, %), is a combination
of the trapezoidal (T) and midpoint (M) integration rules, respectively, (TM) in 1
and (MT) in x5 spatial coordinate, with basis functions associated with the first
coordinate and second coordinate. This strategy leads to simplifications and an easy
interpretation of the system (12) as a cell-centered finite difference system [34]; see
also recent details in [7] recalled now here. Consider 9 = 1,2 ; associated with
the edge 7;41/2,; With support on w;j,w;1,5. Focus on the first component of the
inner product (d_l(uz*)q}l‘, )n which is an integral of the product of piecewise
linear functions in z; on w;; and w;4+1,; and of the coefficient d~! which takes
piecewise constant values d;jl = d(a; U;j) 71, d;_lld = d(a; Ujy1,7) 7, respectively.
Once trapezoidal T rule in x; direction followed by M in x5 direction are applied,
these yield % (d;'Qit1/2,ihi + dijy ;Qiv1/2,hi1).  To simplify, we introduce
the notion of edge transmissivities, which are harmonic grid-weighted averages of
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diffusivities. For example, on 7,41/ ; we have

(13a) Qiv1/2,j = —Dig1/2,;(Uiy1,5 — Uij);

(].3b) Di_-l-ll/Q,j = (hld(OL, Ul'j)il =+ hH_ld(Oé; Ui+1,j)71)/2-

This formula defines D; 1/ ; as the harmonic grid-weighted average of d;; and
diy1,5- D; j41/2 is defined similarly, and all (D). are positive.

Now we are ready to rewrite (12) in the matrix—vector form. The first term of
(12a) becomes D~H(U)Q", where

(14) D' =D (U) = diag(D, '(U))., D = diag(D.).

are diagonal and is made of positive edge transmissivities or their inverses. The
second term in (12a) and the first in (12b) are written with the difference matrix
B made of rows which contain —1 and 1, as BYU" and —BQ", respectively. Here
the non-square matrix B : RVe — R¥e with BT : RVe — RNe, We have then

(15a) DIQ" +BTU" = 0.
The second equation (12b) becomes
(15b) -BQ" + UM = M"U"+G"

Here the term M"™U™ comes from (muj,n), where the diagonal matrix M™ =
diag(M[)., with the entries M = m(z.,t,). We also have G" = FJ' + 1U"~1,
and where F{J' are found from integration of (fy,n) in (12b).

In (15), D~! is diagonal, and depends on U which we write concisely as D! =
D~Y(U™"). This means D~ is computed by time-lagging with n* = n-1, or fully
implicitly if n* = n. Whether linear or linearized, the saddle-point structure of the
system (15) makes it harder to solve the linear system. However, since D~ is diag-
onal, it is easy to transform (15) to a single equation with a positive definite matrix
which is easier to solve and precondition. We substitute Q" = —D(U™)BTU" in
the second equation multiplied by 7, and rewrite (15) as a single nonlinear system,
using A(U™") = BD(U™ )BT. We thus obtain,

(16) C(U™) = (rAU™ ) +I —TM™)U" = 7G".

We seek the solution of (16) in W = RMe. If n* = n, the operator is nonlinear,
but in the time-lagged case, it is linear. In the time-lagged case, D = D(U"™!)
is known, and this coupled saddle-point system is linear, (without constraints, one
can apply Theorem [9](Prop.3.3.1 and Thm 3.6.2)), and we will not handle this
case separately.

The more complicated nonlinear case n* = n will be handled next when we
incorporate constraints.

4.2. Constrained problem. Now we incorporate the constraint in (11). In the
weak form we have a parabolic variational inequality, and we continue working
under the assumption that advection is discretized explicitly in time as in (12b).
In the fully discrete case, this means that at every time step ¢,, we are seeking the
solution U™ € K}, C Mp, to a modification of (16)

(17) CU™) 4+ 7A(UM)=7G"™; A€ dlg, (U"),

where C,G™ are as in (16), and K; = M, N K. Now A is a Lagrange multiplier
or penalty term which enforces the constraint so that U™ € Kj. Equivalently, the
variational inequality reads

(18) <C(Un)7’r] - Un> > T<Gn’77 - Un>7 vf,] € Kp.
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4.2.1. Properties of D!, D, and M. These properties will be needed in the
study of well-posedness of (17). We mention that these properties only work for
the present finite dimensional case.

Lemma 4.1. Let T" be quasi-uniform, and let d(c;u) be as in Lemma 3.1. Then
(i) the entries D, are bounded from above by Dpan = d*h;ﬁn and from below by
Dinin = doh,k ., thus, since D is diagonal, for any induced matriz norm, |D|| <
Doz (i) We also have the global Lipschitz property for each e, with L,

(19a) |D.(U) — D.(V)| < L5, m(a§<\Uc—Vc|, YU,V € M,
Thus also with some LY,

(19b) D) —=DV)||, <LYNU = V|, YU,V € M.
(19¢) | AU — AV || < LB|U = V|, VU,V € M,

(i) Finally, there is Cz such that
(19d) J(U, V)= (A(U)U - AV)V,U - V) < C7|U=V|? VYU,V € M.

Proof. We prove the steps separately.

First, (i) is immediate from (13b).

For part (ii) note that for every edge e, D.(U) given by (13b) is a differentiable
function of each U, for ¢ € c¢(e) (and D.(U) has globally bounded derivatives),
hence, (19a) follows, even if calculation of L, is tedious while it involves h.. By
taking maximum over e, D, (U) is Lipschitz in U € R¥¢, in any norm, since RVe
is of finite dimension, thus (19b) holds with some L},. In consequence we get also
| A(U) = A(V)|| < LallU = V|| where L4 involves | B. To prove (19¢c), it seems
we would need however some handle on ||U]|,||V||. However, we recall the piecewise
definition of d(u) exploited in Lemma 3.1 from which we see that also d(u)u is
globally Lipschitz since d(u) is globally bounded and in fact constant for u > w*.
Thus not only A(U) but also A(U)U is globally Lipschitz.

(iii) Now (19d) follows immediately by Cauchy—Schwarz inequality and (19¢). O

Next we establish some bounds on the terms M™U™. Suppressing n, for every
t, on the right hand side of (15b) we have an obvious result.

Lemma 4.2. Assume m(z,t) is bounded and is nonnegative for all x,t. Let also
F(U) = MU + G where G is known. Then

(20a) (F(U)-F(V),U-V)={MU-MV,U-V)>0.
We also have, with some constant Cpr which depends on ||ml||
(20b) |F(U) = F(V)|| < CnllU =V

4.2.2. Solvability of (17). We will use the well known theorem from [43](Theorem
2.G), and [5](Theorems 5.1.4, 11.2.1, and Ex.11.2.8), and [20](Theorem 11.3.6). We
recall these without proof.

Theorem 4.3 (Existence and uniqueness of a nonlinear problem). Let V be a
Hilbert space, and T: V. — V be strongly monotone i.e. (T(u)— T(v),u —v) >
cr|lu—v||2, and Lipschitz continuous i.e. ||T(u) —T(v)|| < Lrllu—v| for some
cr, L. Then (a) for any b € V, there is a unique uw € V' which solves

(21) T(u) = b.
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(b) Furthermore, let K C V be non-empty, closed and convex, and T be strongly
monotone and Lipschitz on K. Then for any b € V there exists a unique u € K
such that

(22) (T(u),v —u) > (byv —u),Yv € K.

We use this Theorem now for (17), and apply it to the coupled system (uy,us)
system later in Sec. 6.1.

Proposition 1. Under the assumptions of Lemma 4.1 and Lemma 4.2 the problem
(17) is uniquely solvable for a sufficient small T.

Proof. We apply Theorem 4.3 to (17) with T =C, V = W, = RY K = K,. We
verify first that C is Lipschitz on K i.e. HC(U) — C(V)H < Le||[U — V|| . This follows
directly from Lipschitz continuity of A(U)U established in (19¢) which holds on K,
and from (20b) in Lemma 4.2.

We next show that the operator C is strongly monotone i.e.,

(23) CU)=C(V),U=V) ZccllU-V|
for some c¢ > 0 and any U,V € Kj. We first expand

(24) (CU)—C(V),U-V)=(U-V,U—V)
— (AU — AV, V = U) = 7(M(U - V), U — V)
=|U = V|2 = 7(AU)U — AVIV,V —U) — 7{M(U — V), U — V).

Now we handle the second and third terms. For the third, since M has only
nonnegative terms, by (20a) it satisfies —(M(U — V), U — V) < 0, but from (20b)
and Cauchy-Schwarz inequality we have (M(U -V ),U V) < C,,|U — V|| %2. Thus
—T(MU-V),U-V) > —7C,,||U — V|| . For the second term, if A is independent
of U such as in the time-lagging case, it is also a nonnegative definite linear operator,
thus we have (A(U — V),U — V) > 0. In the nonlinear case, we treat the terms
involving A(U)U as a Lipschitz perturbation similar to the M terms: by (19d) we
have

(25) (AU — A(V)V,U = V) < CullU = V|| 2.

We get the lower bound (23) as long as 7 is small enough so that c¢c =1 —7C4 —
7Cp > 0.
We conclude by applying Theorem 4.3 to (17). O

Remark 1. The proof of well-posedness in Proposition 1 applies, as stated, to the
case of explicit treatment of advection. For the implicit treatment of advection, the
well posedness is proved similarly as long as Assumption 1(A) that the advective
fluz is bounded holds. Then the corresponding discrete advective operator ZU 1is
globally Lipschitz in the problem

(26) C(U) = (rA(U™ ) + T+ 72— TM")U" = 7G™.

We treat EU as an additional Lipschitz perturbation to C in (16), and we see C is
globally Lipschitz and monotone as long as T is small enough.
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5. Error estimate for the fully implicit mixed finite approximation of the
PVI

Now we proceed to study the error analysis of the fully discrete problem corre-
sponding to the first unknown w;. Our techniques follows the work in [4] which
was formulated with a Kirchhof transformation for a variational equality, i.e., an
unconstrained problem. We also use some ideas from [33]. We annotate.

To deal with the nonlinear diffusivity, we transform the PVI (7) using Kirchhoff
transformation (as in [33]) defined as:

(27) K:R—R, u—)/ d(s) ds.
0

The Kirchhoff transformation can be inverted since d(s) is positive. We denote
its inverse by b(-), and take £ = K(u), thus, we have u = b(§) = K~1(¢) and
V¢ = d(u)Vu. Since 0 < u < u*, we have 0 < ¢ < &*, where & = fou* d(s) ds.
Thus (7) can be written as

(28) 9b(§) = V- (V&€ = ab(§)) + 00,6+ (§) 3 f(b(E)) in 2,8 > 0.

Let us next define the closed subset K* := {n € L?(2);0 < n < ¢* a.e. on Q}, and
denote w = —V¢& + gb(§).

We complete the problem with some initial condition and homogeneous boundary
condition:

(29a) 0b(&) +V - w + 0l ¢+ (€) 3 f(b(E)) in Q,t >0,
(29b) w=-VE+qb(§) in Q,t >0,

(29¢) w(s,t)-mn=0 onT,t >0,

(29d) &(x,0) = &inar 1n Q,

where &init = K(Winit)-
By properties of d(-) in Lemma 3.1, we have the following result.

Lemma 5.1. The function b(-) € C* is nondecreasing and Lipschitz continuous
with Lipschitz constant Ry.

Remark 2. By Lemma 5.1, we have

(30)  [[b(¢h1) — b(¢2)[|> < Ru(b($1) — b(h2), b1 — ¢2), Ve1, 2 € L2,

where Ry, is the Lipschitz constant in Lemma 5.1. Furthermore, since 9b(§)/0& =
be(§) = 1/d(u), and by the property of d(-) in Lemma 3.1, there are two constants
Cy and C3 such that

0<Cy<be(§) <C5 <00 forall £ €R.
Thus,

(31) Colm — n2| < |b(m) — b(n2)] < Cs|m — n2].

Assumption 2. We assume the following for the solution (w,¢).
(A) €€ L*>(HY), & € L>(H™ ).
(B) V-we L?(HY), wy € L2((H™1)?).
Furthermore, based on the assumptions above, we have
(C) Jywis) ds € H'((L2)*) N L*(Haio).
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To overcome the low regularity of the solution we implement the time integration
technique used in [4]. We integrate (29a) in time from 0 to ¢ € J, and use (4) to
write problem (29) in the variational formulation. Thus, we have

(b)), — £(t) /vW ds,n — £(1))

(32a) / FOE))) ds,n — €(1)) + (i), 1 — (1)), ¥ € K,
(32b)  (w(t)9) — (€(1),V - 9) — (@b(E(E). %) = 0, W € X.

Using backward Euler Scheme, the fully implicit mixed finite element approxi-
mation of (32) is as follows:

Forn € {1,..., N}, we seek a solution (w}!, &) € X, x K} K = K* N M), such
that

B = &)+ 7OV Wi — &)

j=1
(33a) > 7> FOED) mn — &) + (0(Eh) . — &), Vn € K7,
=1
(33b) (Wi,¥n) — (&, V -¥n) — (Qb(&).¥n) =0, Yo, € X},

where &8 . = €t

To estimate the error between the exact solution and the approximate solution,
we need to use approximation properties of finite element spaces. We define the
following interpolation operator. (See e.g. ([10], page 150) and ([18], page 217)).

Definition 5.1. The interpolation operator
pn: (H')" = RTy
is defined by

/(1/) —pph) - =0 for each edge e of the cells in T", Y € (H')™

This means that the mean value of the normal component of a given function
¥ € (H')9 coincides with the normal component of p,1 on each edge.

This interpolation operator is related to the orthogonal L2-projection onto Mj
by the following property, for the proof we refer to ([8], Proposition 2.3.2, page
108).

Lemma 5.2 (Minimal Property). Let w, : M — M, be the orthogonal L?-projection
onto My, i.e.

(v —mpv,pp) =0, Yo € M, Yu, € My,
Then

(V) =V (opth), Vo € (H").

The operators p;, and 7, defined above satisfy the following properties which we
state without proof. We refer to ([8], pages 107-108), ([10], page 151), and ([18],
page 217).

Lemma 5.3. Let py, and wp, be the operators defined in Definition 5.1 and Lemma 5.2,
respectively. Then we have the following properties.

(a) (V . ph’l,b7’l)h) = (V "l,b,’l}h) V’Uh S Mh, \V/’(/) S X,
(b) llpntp —bllo < Chlly if € (H")?,
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(¢) IV - pripllo < C|IV -9llo Vb € X,
(d) |V - (@ — prp)llo < ChIV -9y if V-9p € H,
(e) ||mhv —vllo < Chlv]y ifv e HL.

We mention that Radu et al. [33] employed Green operator technique to derive
the error estimate. Instead, we follow the technique developed in [4] which used
a weighted (L?(2))? projection on X} that depends on the diffusivity. However,
since the diffusivity in (32) after the Kirchhoff transformaton is the constant 1,
we just apply the (L2(92))? projection on Xj,: Py : (L2())? — X, as for all
¥ € (L?())9, we have

(34) (Putp — ,95) = 0, Vb, € X,
It is easy to show that
(35) [Putp — llo < Chlgply, if ¢ € (H')™.

At the same time, in Sec. 6.2, we make use of the weighted (L%(Q2))¢ projection on
Xh.
In this section, we shall use the following lemma.

Lemma 5.4. For any vectorsa; € R™; m>1 and j =1,...,n, we have
n
(36) QZ —aj_1,05) = |an|* = lao* + Y la; —aj_1[*.
j=1

Theorem 5.5. Let (w(t),&(t)) € X x K* be a solution to (32), for each t > 0,
that satisfies Assumption 2, and let (wj, &) € Xy x K} be a solution to (33) for
n=1,...,N. Then there exists a constant C' > 0 that does not depend on h nor T
such that

2

n tn n
SN =l +| [ wie) s = Sowir| <0 (12 +7%).
j=1

=1 o
Proof. Define w” = * ft )ds, Iy =7y 0 W = fo s) ds, o™ = w" —
w, &":722;10] *I\T;Lv_TZj=1Whv =" =&

The major difference between the problem (32) and the problem in [4] is that the
latter is a system of equalities while (32) involves an inequality. This requires some
manipulations to be able to get an estimate for the term (b(€") — b(&R), ™ — &7).
To this end, we take t = ¢, and n = &} in (32a), we obtain

(e — ) < | / "V ws) ds, €] — £7)

(37) b FO(E(S))) ds, € — € + (b(Emmar), € — E1).

0
Now take 1, = mp€™ in (33a), we have

b & —mg™) < 7O V-wh, mal" — &)

j—l

(38) Zf (E0)): &R — mn€™) + (b(EMin) & — ThE™).
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Using the definition of 7, in Lemma 5.2, as b(&§}}) € My, the left hand side of (38)
can be written as

(39) (0(&5), & — mn€™) = (b(&R), & — €")-

Similarly, the third term of the right hand side of (38) can be written as
(40) (b( fnzt)agg - ,/Thgn) = ( ( znzt) gh fn)
Combining (38)— (40), we obtain

b & —¢m < O V-wh, mt" — &)

Jj=1

(41) - Zf (&) & — Th€™) + (). & — €.

Add (41) to (37), we have

(b(€™) — b(&r). €™ — &)
/ V- w(s) ds, £ — €7) +T(Zv Wi, mhE" — €F)

/ FOE(s)) ds,€" — &) fer (€, mre" — €1)
(42) + (0(inie) = b(€in)- €" — &R)-
Take t = t,, in (32b), and subtract (33b) from the obtained equality, we get

(W —wi,¥n) = (" = &5, V- ¥n) +(Qb(E") — b(ER)], ¥n), Vi € X

Take ¥, = Pn6™ in the last equality, and notice that by the definition of 6", and
by adding and subtracting pp6™, the function Pp6™ can be written as Ppé" =
pn0™ + (Pr, — pp)Z, thus we get

(W' —wh, Ppo™) = (£" =&,V puo™)
(43) + (€ =LY (Ph— pn)T) + (@b(E™) — b(EN)], Pro™).

Using the definition (34), the left hand side of (43) is

(W' — Wi, Ppe™) = (W" —wp, Ppo") + (W" — W", Ppé™)
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Using the properties of 7, and pp in Lemma 5.2 and Lemma 5.3, respectively, the
1st term in the right hand side of (43) can be written as:

(V- pn6™,&" = &5)

def. of 5» oo
—(V T =) = (Ver Y wh e &)
j=1
=(V-I0. " = &) + (V- (onTh —To), £ = &) — (V-7 Y _ Wi, &" —&h)em

j=1
Lemma 5.3 (a)
=(V- 15,8 =) + (V- (pnTyy — T), € — mn™)

Lemma 5.2

(45) = (V-7 y_wi,m&" = &),

j=1
Combining (43)—(45), we have
(Pho™ Pué™) =(W" — W™, Pp6™) + (V- T0, £" — &)

+ (V- (onTgy = T0), 6" —mn€™) = (V-7 wi, €™ — &)

Jj=1

(46) + (V- (P — pn)Ty, € = &) + @lb(€”) — b(ER)], Pré™).
Add (46) to (42), we get

(B(E™) — (&), €™ — &) + (Pro™, Pré™)
<(W" =W, Pp6™) + (V- (onTey — Tn), §" — mné™)

+(f " H(E(s)) ds, e — ) - (Z FOED) e — &)
+ (V- (Pn— pr) Ty, €' = &) + (@(E") — b(ER)], Pud™)
(47) + (0(&init) = b(EDir), €™ — &1).
Since 6™ € X; Vn, we have by (35)
(Pr6™ 1) = (6™,%n), Yy € Xn,
and

(Pro™ 1 4pn) = (6™ L bn), Ve, € X,

Subtract the last two equations and note that 6™ = 6"~ ! + 76™, so we have
(Pu6™ — Pun6™ " n) = (0", 9n)7, Vibi € Xp.
Take 9, = Pp6™ in the last equation, we obtain

(48) (0", Pre™)T = (Ppé™ — Pro™ 1, Pro™).
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Now, replace n by j in (47) and multiply by 7 and take the sum from 1 through n,
we have

ST(E) b)), & — )+ > (Puo?, Pré?)r
J=1 j=1
<YW P 4 T (T~ T - )

j=1 =1
Z / b ) ds, & — &) — 7 Z Zf(b(&’f))mhfj - &)
j=1 =1 k=1

+ D (V- (Pu— pn)Td, g)r+ > _(ab() = b(&))], Puo?)r
Jj=1 j=1

(49) + Z( (Slnzt) (Emzt) 5 Eh)

J=1

By (48) and Lemma 5.4, we have

Z(Jj,ﬁhaj )T thaj Proi =, Pro?)
j=1

Jj=1

)_n

(50) =5 P65 — *IIPhAollo Z 1Pné? =P’ =15
j:l
Combining (49)—(50) and using (30),(31) and (34), we get
Co & 7112 L s ~An |2
i 2o I+ 5171

n ) ) . ) 1 . . 1 n o o
<D (&) = b(E). & = &)+ SIPe" I3+ D IPac? — Prud?™ 3

j=1
6
(51) <> T
=1
where
(52) T =3 (% —wi, Bro?)r,
j=1
(53) T *Z(V (pnTh — Th), & — mn&/),
n ] ) )
(54) / Fb(E(s))) ds, € — €)= 72 33 (R mr? — ),
Jj=1 k=1

(55) Ty —Z( (Ph— pn) T, & = ),



NUMERICAL ANALYSIS OF MFE APPROXIMATION

.5*1:

(56) I5

<
Il
—

5'43

(57) Ts

I
—

J

Now we estimate each Tj; | = 1,...,

Lemma 5.3, and (35), we have

T1 = Z/Qﬁh(fj/t.

(@lb(&’) — (&), Prué’)r,

(b(€imie) — b(hin), & — D7+ 2 |Pus” .

(w(s) —w’) ds dz

wy(t) dt ds dx

j—1 /15

n

IN

IN

Jj=1

IN

Jj=1

IN

Jj=1

&
I
gk

IN
| = T
3

IV - (o3,

—

e
e
IN
ol
I
-

<.
Il
—

n J

t]
Z/ 7 [ e o
Z/ / HPhOJHO |Wt( )Ho dt ds

3/22 1Puo [lol[Well 2(s:22)
1N |7 Jn2 1 o 2
*Z”Pha lor + 5—7 Z||WtHL2(J,-;L2)
2 =1 261 = J

J 1 2
< DY PN+ gl
(V- (pnTd, = T,), & — m&)r

) 1 ) )
~ T3+ 5 YN - el

j=1

C
V- T3 + h22|§]|1

Jj=1

dszZf 39))
dszZf

+ S0 STIF0ER) - fb(E)) ¢

j=1 k=1
(60) = T31 + T3,

with obvious notations of T3; and T3s.

37

6, and use the properties in Lemma 5.2,
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Using the Lipschitz continuity of f and b in Assumption 1: (B), and Lemma 5.1,
respectively, we have

T3 = TZ / f( dS—TZf fk el

= (3 [ vt - so) s,

j=1 \k=1"tk—1

n th

< RRyr > Z —£F| ds, e’
j=1 th—1
n tr Tk
= RRyTY Z/tk / & (t)| dt ds, e’
1 S

Jj=1

IN

tk
RRbTZnefHoZ / & @l dt ds

tkl S

n J
< bzz e lo7 1€ () L2 (s ™)
=1k=1
£o AN RZR LA,
< > Z(HEJ”OT ZZ 31&(- ”LZ(JkLz)
j=1k=1 j=1k=1
Tea =~ R2R2
(61) s 5 lle? |5 + 72( ||§t()||2L2(L2))-
j=1

Ty = 3 77| D) - FoL&R)]

A
\][\3
=
£

n J
>l lolle’llo
k=1

Jj=1k=
R? R
(62) < (Zekllof) T4t ZII e [[3r.
j=1 \ k=1

Ty, = Z(V (P — pn)TL,, 6 — 5;{)7

Jj=1
1 - ~ ; &4 - :
< o ST P T+ 2 e
€4 < °
j=1 Jj=1
1 < L .
< SNV (T, - Tl
€ =
ZII T, — puT3) |37 + = ZH’IIoT
j=1
c n
. 4 .
(63) < LY T DY Il
j=1 j=1
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n

Ts = ) (@b’ - b)), Pué’)r

j=1
n
< lallseRem > ll€7 ol Pné?|lo
j=1
||‘7l||2 R£€5 . 12 1 = h o 2
(64) < %;HHHOTﬂLT%;HﬂU’HOT-

n

Ty = D (blmin) — b(Ein) & — €7 + 5 1Pl

j=1
. e 1 < 1
6 1 Nooa
< D Ry lEimit — EhnaelI§7 + 5 DMl I + 5 1Pad 13
, 2 2eq 4 2
j=1 j=1
€6TR§ 5 1 i 2 1. - 012
(65) < 5 h” + %0 ;He H07'+§||73h0' ll5-

Combining (51)—(65), and by appropriate choices of €;’s , we have

n
DNl + IPs™ 3

j=1
n 7 n
(66) < C R+ 2+ P15+ D | Do Nebs | 7+ D I1Puc? I3
j=1 \k=1 j=1
Using Gronwall’s Lemma, the proof is complete. O

6. Analysis of the nonlinear coupled system

Now consider the coupled biofilm-nutrient system which extends (17), and which
is solved for U = (Uy;Uy) with U; denoting the biofilm concentration and Us
denoting the nutrient. We extend the inner (-, -) product on M to the inner product
on M x M, with U2, ;. = [|U1|3 + ||U2]|3, and we work with K}, x Mj,.

We seek (Uy;Us) € Kp x My, which satisfies C(U) = (C1(U);C2(U)) = 7G =
7(G1; G2) or the fully discrete system, a counterpart of (1). The unconstrained
system reads

(67&) Cl(Ul,UQ): (TAl(U{L)ﬁ’I*TMl(UQn))Uln:TG?,
(67b) Cz(Ul; UQ) = TMQ(UQ”)U? + (T.AQ(U{L) —‘rI)UQn = TGQ
The coupling between the equations is in the diffusivity A = Ag(Uy) for each
k = 1,2 in each equation which depends on U;. In addition, each equation has
coupling terms representing the growth U; M (Us) and decay = —U; M2 (Us), where
each diagonal nonnegative matrix My (Usz) = diag((mx(U.)). is associated with a
nonnegative, bounded, and Lipschitz continuous functions my (us).

Under the constraints, we have a system extending (17)
(68a) C1(Uy;Us) + 7A(UT) = 7GY,
(68b) Co(Ur; Uz) = 7G3.

Below we first prove well-posedness of the coupled system. Next we derive error
estimates for this system.
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6.1. Well-posedness for the coupled system.

Proposition 2. Assume that each function my : [0,00) = R for k = 1,2 is a
Lipschitz continuous nonnegative and nondecreasing function bounded from above.
We will also use assumptions on u*, and the diffusivity as above. Then the system
(68) is solvable on the set Kp x My C My x My, as long as T is small enough.

Proof. We will use Theorem 4.3 again following similar steps as in the proof of
Proposition 1. We first note that each of Cy (U1, Us),Ca(Ur, Us) is globally Lipschitz
with respect to each Uy, Us, since the individual operators A, My, k = 1,2 are
either constant in each of the variables U; or depend nonlinearly on a particular U,
with the nonlinearity globally Lipschitz and bounded as in Proposition 1. Moreover,
My, are globally bounded due to the properties of each my.

Writing each Cp(U) = Uy + 79 (Ur,Usz) where U1 (U) = Ay (U1)Uy — M1 (Uz)Us
and Uo(U) = Ay(U1)Us + Mo (Us)U; we have that each ¥y is globally Lipschitz
in each U; thus also in U = (U3, Us) in any product norm, thus we conclude that
C = (C1;C9) is also globally Lipschitz in U.

It remains to check that C is strongly monotone. However, each Cj is made of 7
plus a globally Lipschitz term multiplied by 7. With 7 small enough, we obtain
strong monotonicity of each C and in turn of C, since now

(69) (C(U)—=C(V),U=V)=[U1 = Vi||* +|Uz — V2| ?
+7(U (U) =V (V), Uy = Vi) + 7(Ua(U) = Us(V), Uy — V3).

The proof is complete after we apply Theorem 4.3. (]
Remark 3. The well-posedness in Proposition 2 holds regardless whether advection

is treated explicitly or implicitly, as explained in Remark 1.

6.2. Error Estimate for the coupled system. Now we consider the coupled
system (1); we follow the same technique we used with the scalar PVI in Sec. (5).
Let & = K(uy); where

K(uy) = /Ou dy(s) ds

is the Kirchhoff transformation, and let b(-) be its inverse. Using the following
notations

&= fou* di(s) ds,

wi= —VE&+abé),
= U2,
z:= —da(b(§))Vu+au,

system (1) can be written equivalently in the following mixed formulation:
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For each ¢ > 0, we seek a solution [(w(t),£(t)), (z(t), u(t))] € (X x K*) x (X x M)
such that

(&) n — £t) /vW ds,n — £(1))

(70a) > ( / r1 (B(E()), 1(3)) s, — £(1) + (B(Emir)n — E()), Vi € K,
(T0b) (w(t), %) — (€(£),V - %) — (@b(E(H)). ) = 0, Vap € X,

D+ ([ ) ) = ([ ralble(o), (o) ds.7)
(70C) + (/sznzta ’7)a V’Y S M7
(70d) (dy " (b(€))2(t),€) — (u(t),V - €) — (dy " (b(€))an.¢) = 0, ¥¢ € X,
where K™ is defined analogously to that in Sec. 5.
The fully implicit MFE approximation of (70) is:

For n € {1,..., N}, we seek a solution [(w}, &), (z),u5)] € (Xn x K}) % (Xp X
My); K = K* N Mj, such that

(BER) = &) + 7V - Wi — &7)
j=1

(Tla) > (Y o0&, ) — &) + (0(Ehi)mn — &), Vw € K,
j=1

(71b) (Wi, %n) = (&, V - ¥n) — (@b(ER), ¥n) = 0, Vo1, € X,

(g yn) + 7OV e zfom) = 7> ra(b(E]) 1)), )

j=1 j=1

(Tlc) + (18nies Y1) Y € M,

(T1d)  (dy " (b(&))2i> Cn) = (uiis V- Cn) = (dy " (bR, Cn) = 0, VCn € X,
where &8 = mp&nie and plt = mppl

Assumption 3. In this section we make use of the following assumptions

(A) dy satisfies the same conditions d(-) satisfies in Lemma 3.1.
(B) By formula (6), dy*(+) is a smooth function, and there are constants vy and
Vo such that

0<V1§d;1(s)gugfor Vs € R.

Moreover, d;1(~) 18 a continuous Lipschitz function with a Lipschitz con-
stant L.
(€) a=a(x) € (L),
(D) 71(-,-) and r5(-,-) are smooth functions on R? with a global Lipschitz con-
stant R, we also assume that 1 and ro are uniformly bounded on RT =
[0, 00).
We also assume the following regularities:
(B) &€ L2(HY), &, € L(HY), & € L(L%).
(F) V-w,V -z € L*H"Y), w,z; € L2(H™1)4).
Furthermore, based on the assumptions above, we have
(G) Jyw(s) ds. [ a(s) ds € H'((L*)*) N L*(Huio).
To deal with the coupling, we also assume the following for (u,z)
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(H) e L®(L™) and z € L=((L®)%).

To derive an error estimate between the solutions of (70) and (71), we shall
use the properties of the operators defined in Lemma 5.3, and the property of the
projection P}, in (35).

We also define the following weighted projections ’ﬁff which depends on the
diffusivity da(-) as

Pi (L) — X,
such that
(72) (dy ' (b(E()) (P22 — 2),¢n) = 0, YCh € X
The weighted projector 7532 satisfies the following property.

Lemma 6.1. Let P{? be defined as in (72), then if ¢ € (H")?, we have

(73) P2 —llo < A1

Proof Using the properties of d 1() in Assumption 3 (B), and the definition of
P2 in (72), we have for all ¢ € (H')?

nl[Ply —vllf < (dy ()P — ), Prp — )
= (dz H(u)(Pi2gp — ), Prtp) — (dy (u) (P2 — ), )

(dy ' (W) (P2 — ), prp — ) — (dy " (W) (P24 — ), pnip)
< w|Pyp —plollont — ¥lo.

Thus by the property (b) in Lemma 5.3, we have

A

A 1%
[P —opllg < V—j||ph¢—¢||030h|«/z\1.

O

Theorem 6.2. Let [(w(t),£(t)), (z(t), u(t))] € (X x K*) x (X x M) be a solution

o (70), for each t > 0, that satisfies Assumption 3, and let [(w}, &), (z), pyy)] €
(Xn x K3) x (X3, x My) be a solution to (71) forn=1,...,N. Then there exists
a constant C > 0 that does not depend on h nor T such that

2
n

tn n )
S (1€ = &I+ =i )+ | [ wlo) ds = Sowhe
j=1

j=1

0
2
tn no
+ / z(s) dS*ZZiLT < C(h2 +T2) :
0 =
0
Proof. Asin Sec. 5, we define w”" = 1 ft )ds, I = TZ 1WJ fo ds.
Analogous notations for z", and I" We also define o, = W" — wj, 63“, =

Ty o1 ol, = In — T ;=1 Wy, Analogous notations for o} and &;. Also define
et = en— € and € = " — .
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Take t = t, and n = &} in (70a), and take n, = mp&™ in (71la). Using the
definition of 7, and add the result together, we obtain

(b(€™) — b(&x), €™ — &)

(| Vew(s)ds,&p—¢")=7(Q_V-wi, & —mig")

0

IN

j=1

T / " (B(E(s)), 1(s) ds, €7 — €8) — (S (b(ED), ), €7 — )

j=1

(T4 +  (b(&nae) — b(ELir) ™ — ).

Now take t = t,, and v = " — u} in (70c), and take v, = pjf — mpu™ in (71c), we
get

tn

(| V-z(s)ds,py —p") =7V -z, ufy — mpt")
j=1

leg 1
0

Lo / " (b)), 1(5)) ds, i — i) — (> ra(b(ED), i), — i)

Jj=1

(75) + (Hinit - Uzhm't? /’('n - MZ)

Take t = t, in (70b), then subtract (71b) from the obtained equality, and take
Yy, = Proy, = prnoy + (Pn — pn)ZLy, we obtain

(Phott, Prol) = (W' —w", Ppol) + (V- I, " — &)
+ (Ve (pnTy —To), " —mn€™) — (V-7 Y _ Wi, mn€" — €7)
j=1
(76) + (V- (P — pn) T, €7 — &1) + (@lb(E™) — b(ED)], Prolh).

Now take t = t,, in (70d), and subtract (71d) from the obtained equality, we get

(dy ' (b(€™))2"™,Cn) — (dy ' (b(E1))zR, Cn)
([d3 " (b(€™) — d3 " (b(ENan™, ¢n) — (da  (b(ERNalu™ — up),¢n)
(77) = (V-Cnp" —py), YCn € Xp.

The first two terms in the left hand side of (77) can be written as

(dy ™ (b(€™))2", ) — (dy ™ (b(ER)) 21, Cn)
= ([dy"(b(€™) — dy ' (b(&))2" )
(78) + (dy ' (0(EN) (2" —2"),Cn) + (dy ' (b)) oy Cn), Von € X

Combine (77) and (78), and take 5, = P267 = pn62 + (P2 —py)ZL in the obtained
result, and use the definition of ’ﬁ,”f, 7, and the property of pj in (72), Lemma 5.2,
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and Lemma 5.3 (a), respectively, we get

(dy (b(ER))Pr2 oy, Pr2oy)
= (' (B(E))E" "), Piey)
= ([dy " (b(E™) — dy (b(EM))2", Py26y)
+ ([dy 1 (6(€M) — dy M (b)) ]an”, Phroy) + (dy ' (b(E7))aep, Pheoy)
+ (V- (ponZy — I, 0" — mpp™) + (V- I7 p™ — )
(1) = (VY g = i) + (V- (P = o) T " = ).

j=1
Combining the ine(qualities) (74)—-(76), and (79), and using Assumption 3 (B), we
have
(b(€") = b(&R), €™ — &) + lle I
+ (Puow, Pro) + (dy  (b(E"))Pr2 oy, Pr2oy)

< (e u) dsg” = ) = (S ra(bEh) . €~ €8)
([ s ns)) s = ) = 73 ra(b(€]). o™ = )
0 j=1
E W, Puan) + (d (b)) (@ — ), PR
+ (V- (pnLy —Iy) " —mnl") +(V ‘( nLy — I ), " — map™)
+ (V- (Pu—pn)T, 6" = &) + (V- (P2 = pn) Ty, 1™ — i)
T (alve >—b<5h>] Pot)
(5 (bleM) — d (blER) ", P
(7 (b)) — dy (b an", Pear) + (d3 (b(ep)acl, Piear)
(80) 4+ (bl€mit) — <m>§ €8+ (tinit — it i — ).
Note that
6l =67 — o7, Vn.
Similarly,
Gl =67 — o1, Vn

Since 67 and 677! € X, Vn, we have by the definition of the projection P, on Xy,
(Prot — Pron bn) = (00, %1)7, Ybn € Xp.
Take 9, = ﬁh&:’v in the last equation, we obtain
(81) (0% Pud )T = (Padl, — Puoy " Prdy,)-
Now, by the definition of P in (72) and since 67 and 62! € X, we have
(dy ' (b(EM) (P23 — 67),Cn) = 0;¥Ch € Xn,

and
(dy " (D" ) (Przop=" = 6771),¢n) = 0;Ch € X,
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Subtract the last two qualities, we get

( 1(b(£n)) zaCh)

= (dy'(b(€M)(Pioy —

+ ([dy(b(€™) — dy

Take ¢, = P267
(dy ' (b(€™)

= (4 () (PR

+ ([dy(b(E™) — dy

That is,

2 HOEII(Prray

(E")og. Pray)T
(

75}?26—;1_1)7 Ch)

6y in the last equality, we get

»—Plorh), Pley)
S BETI)(Pept — 60, PRoy

(dy ' (b(&M)oy, Preoy )T

(a5 (b)) Py
(a3 (b(&™)

([dy " (b(€™)) — dy
(dy  (b(EM)PR2ay 1,

1
2
1 pd
2 P

82) -

Pile6n)—(dy (b(e" ) P on

oot

— 6071, ¢n); YCn € X

).

Ao
O e G L )
Nbler (P - o). P

45

Replace n by j in (80) and multiply by 7 and take the sum from 1 through n, we

obtain

D (b(E) —b(g]), &

Jj=1

—¢

oy

n

+ Z(ﬁh

o, Phaj

IA
M- 1

( / 1 (b(E(s)), 1(5))

j=1

D2 ERCCEINTE)

n

bYW Pl )+ S b)) @

1 Jj=1

.—7Th§J T—|—Z

J

(V- (pnTd, — T4,), €

+
1

3
3

+ (V- (P — pn)T4,, & —

<.
Il
—

n
)T+Z [CAz

(b(EN) P ol Plgi)r

J

ds, & — g,LT—TQZZn (b(R), 1),

7j=1 k=1

— &)

n J
ds,p? — i) =72 (3 ra(0(ER), ), 1’ — 11f)

fj T+Z

), 17 — mnp )T

(P2 — pn) T, 1 — i)
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(@b(&’) — b(&)], Puod,)T

M-

<
Il
—

([dy * (b(€7) — dy  (b(&)))2, Prod)T

M-

<
I
—

M-

([dy * (b(€7) — dy (b)) ]aw, PR2a)T + Z(d51(b(€f{))dei, Piol)r

<
Il
—

M=

(83) + (b(&init) — b(fzhm't)a g - 5%)7 + Z(Nim’t - u?nit’ w - N%)T'
j=1

AN
—

By (81) and Lemma 5.4, we have

n n
> (04, Prol)r = > (Publ, — Puoly " Pro,)
j=1 j=1
Lo 1~ . I a o
(84) = SIPulE — SIPaoR I + 5 D 1Puod, — Prusdy 3
j=1

By (82), we have

> (dy ' (b(&))ed, Prod)T

J=1

S (@5 vle)Piod, Biod) — (a3 (e ) Piod ™ Pioi )]

j=1

b o> [ M@ Pl + (a5 e )P Py )

j=1
+ Y ([dy N (B(E)) — dy (B TNI(Pe T — 657, Piea))
j=1
(85) — > (dy'(b(&))(Prza]t Prra).
j=1
Note that
5 O [ bl Piad, Pieog) — (dg e )P il )
j=1
1 . .
= S OE)PRey. Py
(86) — 50y ((E)Pi69, Pi69).
Combining (83)—(86), we have
n ) S ) n , 1 .
> (€)= (). — &)+ Y lelier + 51 Prot 3
j=1 j=1

n 14
1 A Al V1 Ads n
(87) + 5 2 1Pudd, = Pusd S + 1Py 15 < DT,
Jj=1 =1
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with obvious notations of 7}’s.
Now we estimate each 17, [ = 1,...,14.

= S (), 1)) — (b)), 1)) ds, ed)r
j=1 k=17tk—1
S / " 1 (b(E()), 1) — 1 (B(ER), )] ds, ed)r
j=1 k=171
(88) = k11 + k1o,

with obvious notations of k1; and kqs.

b= 300 [ ) u) ~ ra(ble(s) )] ds, el

j=1 k=1"1tk—1

B Z(Z/ " [ ((E($)). 1)) — i (b(E()). 1)) ds. )

jlk?ltkl

’I'L

+ Z [7“1 —r1(b(é(s)) )] ds,el)T

j=1 k=17tk—1
(89) = 7111+ Tr112-

i = zi: kzj://tk L )_Tl(b(f(s))’uk)] eé

kzi://tkl l‘|€5dsdx
//kl/S |Nt dtdsdx

/k / lae@lollello dt ds

. k
RZTnegnoZ Ol o

IN

IN I
oy X
M 19+ 11
S S

IN

(90) = RZTQHQHOZTUQHM N2z

k=1

| ds dx

47
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By Cauchy-Schwarz inequality, we have

J J J
1
27'1/2||Mt(t)||L2(Jk;L2) < 5(2 ZHM ||L2(Jk,L2))
k=1 k=1 k=1
1
(91) < ST+ @l gp2)-

Insert (91) in (90), we get

R - :
rin < §(T+\|Mt(t)||2L2(L2))ZTzHeé”(J

j=1
€1 R 1 " ;
< 5(5(T+||Mt(t)|‘%2(L2))2T7—2+27&ZTH62H(2J'
j=1
1 n )
(92) - CT2+£ZT||eg||3.
j=1
n J .
T2 = ZZ ), 1) = r1(b(E(s)), )] ds), )T
j=1 k=17tk-1
< 3y / / 1 (BE(S)), 1) — 1 (B(E(S)), )| €] ds da
j=1 k=1 th—1
SRZ Z/ ,u—,uh|e§dsdx
j=1 tp—1
= RZT Z/ |ek||e£\ dx
Jj=1
< RZZTzﬂeﬁHoH@éHo
=1 k=1
E n n
) .
(93) < Ry ZHe o | 7+ 522”%”37-
j= j=1
Lt ky ok j
b = 30 [ e ) a0l )] s,y
j=1 k=1"7tk—1
] .
= Z / o) = i (6(€8), uf)] ds, )
tp—1

(94) = 7121 +T122.
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n J

rio1 = Z(Z/k [r1(b(&(5)), k) — 1 (B(ER), 7] ds’eg)T

j=1 k=1"t—1

n J tr .
< BRY r> [ [ e - ¢4 dss
j=1 k=179 tk—1
n ] tr tr .
- RRbZTZ// / &(t)ldt ) €l ds da
j=1 k=172 t-1 \/s
n J tk ty .
< BmY ey [ [ ja®loledlo deds
j=1 k=17tk-1"s
no
< RRbZTQZHeé||07'1/2”ft(t)”LQ(Jk;H)
j=1 k=1
RRy ‘ J J
< e ledllo [ D07+ Y IE W01
j=1 k=1 k=1
RRy & ;
< S Plelllo [T+ 16O s)|
7j=1
R*RITe; 2 1Sy
< SR T O] T+ 5= Yl
8 283 =1
<

1 <,
072+£ZH62H3T-
j=1

T129 = Z(Z/k [Tl(b(gk%/‘?z)_Tl(b(gflf)wulfi)] d87eg)T

j=1 k=1"tk—1

< RRb;TQkX_jl/Qlfk—fﬁl el du
< SRR Y koo
j=1 k=1
< RN el oo (lee’gér) -
j=1 i=1 \k=1
- [ / o (b(E()). pu(s)) ds — Zrz(b(ﬁz’i),uﬁ)fl el |
j=1 k=1
= SO0 [ €D (s) — ra(0leh) i) ds. el
j=1 k=1"tk-1
Y / " [ra(0(E(s)), 1(s)) — (b)), W] ds,€d)r
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n J

R /tkkl[’““b(f(s)),um —r2(b(ER), )] ds,ef)T

G=1 k=1
(97) = ko1 + koo

kay = Z(Z/" [r2(b(E(5)), pu(s)) — r2(b(E(s)), ub)] ds,el)T

- X Z L 06 )~ o), ) s
IS [ b))~ o) ] ey
j=1 k=1"7tk-1
(98) = T211 +T212

S

IA IA

=
M: Il Ms
Mb qug.
S~
h

HE

7;

E

&

o

// / e (t) e] dt ds dx
k

=1 thk—1 Vs

J
DI 2/ / lae(®llolledlo dt ds
j=1 &k te—1 Vs

R 7||el, ||oZT”2Hm( N2(522)
j=1 k=1

3“

IN

IN

< 2Tl 32 16l
j=1
< T O 2T + Q;jilﬂlei;llé
0 = cT2+2;jil||ef;||%r
n J k .
To12 = Z Z/tk 1 7Mk)_7"2(b(§(8))nu§)] dS)yei)T
Jj=1 k=1

IN

RZTZ// |k — uf| ei ds dx

=1 _ QJtp_1
n

(100) < ZZ llegllollefllo < R (Z |€M||oT) T+ 72 e, Il
j=1 j=1

k=1
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(102)

(103)

221

222

IN

IN

IN

IN
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n o J

S [ ra(oe(o), ) — o) )] el

j=1 k=1"tk—1

) / " ra(B(E(S)), 1) — ra(b(E"), W] ds, )T

J=1 k=1"1tk-1
n J

S0 / " bR, i) — ra(b(E). )] ds, )T

j=1 k=1"tk—1

7921 + 7222.

S / " [ra(b(E(S)), ) — o (b(E"), W] ds, )T

j=1 k=1"1tk—1

RRszn:zj:/Q (/t:kl |€(s) — €F] ds) e{L dx

j=1k=1

n J . 22 173
j=1k=1 Q tr—1 s
tr ]
[ [ el aeas

n 7 te
RR,r S /
n J )
RRy Y lleplor /2l (1) 1 12secn)

j=1k=1""tk-1

j=1 k=1

RR, O~ j j ,

TZT llen.llo ZT+Z||ft(t)HL2(Jk;L2)
j=1 k=1 k=1

RRy & ;

S rledlo [T+ l®) 3o
j=1

R2R2Te;

2 1 n )
[T+ 16 ®lFews| 7+ 5= D llehlidr
8 257 =
2 1 ¢ 712
cr? + EZH%HOT.
j=1

S / " [ra(b(€R), 1) — ra(b(EE), 1)) ds, el )

j=1 k=1"/tk-1

n J t

. k
RRbZTZ/eZL &8 — 8| ds da
j=1 k=179 k-1
n J .
RRbZTQZHe]gHoH@ﬂHO
j=1 k=1

RPRTes o~ 5o 1 o~ [y oo
TZH%HOT—FEZ:I ;:1”65”07 T
]: =

Jj=1

51
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(104)

(105)

(106)

Ty

13

IN

IA

IN

IN
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= W W P

j=1
= Z / Prol, 7/3 (w(s) —w(t;)) ds dax
tji—1

< Z/ /75,1&3; /J|wt|dt dz ds
j=1 ti—1 Q s
n tj t; R )

< Z/ / /|Ph6f,v\|wt(t)|dxdtds
j=1 tji—1 s Q

< S 1Pcthlo [ [ Iwitolo deas
j=1 tji—1 Vs

< ZTS/2||PW lollwellz2(s;:z2)

< HPhU 157 + 72 7||Wt||L2 (L2)-

j=1

D (A N — ), Piad)r

Jj=1

ZT (/ (b)) P26 %71_ /tj (z(s) — z(t;)) ds dx)

tj—1

/ /d2 b(g])) P (/ |zt|dt> dx ds
WZ/L/WW%MWMW
j:1 tj71 S

n
> 72wl Piredlollzel a2

2
6101/2

n
- ; 1
do ~
I e e L 0

j=1

3

(V- (pnT — T,), & — mndl)r

™

<
Il
—

IV - (on T3, = To) 37 + Zl\f’—whfjllof

INA
N | =
M-

—

n

hZWFh+WZWh

IN
M\Q

<.
I |
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IN

IN

IN

NUMERICAL ANALYSIS OF MFE APPROXIMATION

15

IN

IN

IN

Ty

IN

IN

= Z (T3 =), 1 — T )T

hQZIV I+ hQZlujI%T-
j=1

IN

n

Z(V ~(Pn — pn)T5,, & — €))7

Jj=1

D va (P = p Tl + 5 ZH ellizr

i —T3)|2
25112”V (PhTd, — Tl

1 n
EZ”V (T, — pn T, ||oT+*Z|| ell§r
j=1

C n ‘ €11 4
hQEZW'I&ﬁT*‘?ZHeéHgT-
j=1 j=1

= D (V- (P2 = o) T 1 — )7
=1

< w2 Zw T+ 223 el

j=1

> @b(€’) = b)), Puéd,)

j=1

n
lallse Bor D llellol Prédllo

j=1

lallZ REe1s <~ iy 1 s ~i2
T8 5™ g+ o2 3 IPucd 3
= €13 =
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Combining (87)—(118), using the property of b(+) in (30),(31), and Assumption 3(B),
and taking appropriate choices of ¢;’s, we have
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Using Gronwall’s Lemma, the proof is complete. O

7. Numerical Examples

In this section, we conduct two experiments, one in 1D, where we compute the
error, and the other in 2D, where we study the behavior of biofilm U; and nutrient
U, in a complex porous medium with realistic data.

We consider system (68). We recall, from Sec. 4.1.2, equation (15b), that

_ 1o

(120a) Gr = V- (qU! 1)+;U1 L
1

(120b) Gy = 7Vh~(qU2"_1)+;U2”_1,

where V), denotes explicit upwind flux. At each time step n, we implement the
operator splitting method [24]. That is, we first find the solution (U7, UZ) explicitly
for the advection part

(121a) upr = rGY,

(121b) Uy =G,

Then we find the solution (U7, UL, A™) for the diffusion-reaction system
(122a) (TAL(UT) + T — My (U3))UT + TA™ = U7,

(122b) TMa(USUT + (rA(UT) + I)US = Uy,

which is solved along side with the equation UT' — Pjg,+1(Uf" — A™) = 0, where
Po,u+1(U) = max{0, min(U,u*)}. Semi-smooth Newton method [39] is used to
solve the last nonlinear system.

Example 7.1. In this ezample, we consider a tube in 1D of length 1, with bound-
aries at = 0 and x = 1. We assume that the medium is rich of nutrient with an
initial nutrient u2,,, = 1. The nutrient is also constantly injected at the wall x = 1.
The initial biomass is equal to u},;, = 0.8, which is not mature yet. We assume
that it becomes mature at u, = 0.9, and its maximum density v* = 1. The fluid in
the medium flows at rate equal to 5 x 1072, Table 1 provides the data we use in

this experiment.
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TABLE 1. Parameters used in Example 7.1.

do aldyw | B Y R a U;‘Lmt uzznit:u%
107% 12 6 1]11.18x1073[0.44 | 5x%x107° | 0.8u* 1

Figure 2 shows that the mature biofilm forms around the time ¢ = 0.25. Then
it continues growing until it reaches its maximum density u* = 1 at time ¢t = 2.5
when A changes from being 0 to being a positive number to prevent the biofilm from
exceeding its maximum density. After that, biofilm stops growing upward, but it

continues growing forward exploiting the availability of nutrient that is transported
by the flow in the biofilm domain.

t= 0.1 t=0.25
1 1
0.5 0.5
0 0
0 0.5 1 0 0.5 1
= 1 t= 2
1 (o ——————tssstes 1 P ——————e
0.5 0.5
0 ki 0 ki
0 0.5 1 0 0.5 1
t= 25 = 3
14

0.5

0

0 0.5 1

FIGURE 2. Evolution of the solution (Uy, Us) of Example 7.1, h =
0.2,7 = 1073. The solution U, satisfies the constraint U; < u* =1,
and the Lagrange multiplier A becomes active in the region where
Uy = u*. The diffusivity of nutrient is lower whenever Uy > wu, =
0.9 which is visible in the profile of Us.

Example 7.2. The aim of this example is to test the errors \/>_, |et||3T and
VO, llex]|aT, where et = ul — U, ey = uy — UY. We consider the same data in
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Ezample 7.1 in 1D which is given in Table 1 except some slight changes, so Uy hits
its mazimum u* = 1 so quickly faster than it takes in Example 7.1 which allows us
to compute the error when the constraint takes place. We start at initial biomass
equal to ul ., = 1, the uptake rate 3 = 2, and flow velocity equal to 0.01.

We compute the numerical solution (Uy,Us) at different values of h and T shown
in Table 2. Since the analytical solution of the system (1) is difficult to obtain, we
compare the numerical solutions with a solution (Ulfme7 szine) computed at a fine
spatial step size hyine = 0.001 and a fine temporal step size Trine = 10—,

Table 2 shows the order of convergence of L?(Erry) = /Y., |le?|2T and L?(Errs)
Vo, lled]|3T for Example 7.2. We would like to note that since it is hard to
compute these errors at each time step, we rather compute the error at some
steps n, with ¢, € {0.5,0.55,0.6,0.65,0.7,0.75,0.85}. As it is shown in the ta-
ble, the error converges of the first order as we expected. We also compute the
error in the max norm in time for the same example in Table 3, i.e., we compute
max(Erry) = max, |e}|lo and max(Erry) = max, ||e}]o at the same steps as be-
fore. As we notice, the order of convergence of L?(Err;), which we theoretically
analysed, exceeds that of max,(Erry). Figure 3 illustrates the order of conver-
gence of the errors in these two norms. See also the solutions at tg 55, f0.65, to.75 in
Figure 4.

TABLE 2. Order of convergence for Example 7.2; L?(Erry)

V2 lletllor, L2 (Brra) = /32, et 3.

h T L?(Erry) | L?>(Erre) | L?(Erry) order | L?(Errs) order
0.02 0.02 | 0.042379 | 0.0010275 - -
0.01 0.01 0.0151 0.00030577 1.4888 1.7487
0.005 | 0.005 | 0.0074604 | 8.9094e-05 1.0172 1.779
0.0025 | 0.0025 | 0.0020002 | 2.1826e-05 1.8991 2.0293

TABLE 3. Order of convergence for Example 7.2; max(Err)

maxy, ||e7]|o, max(FErry) = max, ||e}||o-

h T max(Erry) | max(Erry) | max(Erry) order | max(Erry) order
0.02 0.02 0.151 0.0031494 - -
0.01 0.01 0.071414 0.0013377 1.0802 1.2353
0.005 | 0.005 0.054772 | 0.00055935 0.38277 1.258
0.0025 | 0.0025 | 0.017866 | 0.00018686 1.6163 1.5818

Next, we study the effect of the flow rate q on the growth. This flow rate is
assumed known in this paper, but it is important to study whether q is trivial or
nontrivial in 5, in other words, respectively, whether €2} is considered impermeable
or permeable to the flow. In addition, we want to see whether the character of the
flow in 4 plays a role (such as Stokes-like or Darcy-like). In our computational
experiments q is determined by a coupled heterogeneous Brinkman flow model
—pAq + kpxa,d+ Vp = 0;V - q = 0, in which this bio-gel permeability in €
is denoted by kp. To study the aforementioned scenarios we set k, = 0 for the
impermeable case, k;, moderate for Darcy-like flow in €2, and use a large k, T oo
for the case when the flow in 2, is Stokes-like. We use realistic data form [35] listed
in Table 4.



NUMERICAL ANALYSIS OF MFE APPROXIMATION

- 10"
——'—-_ —"h---— A ‘—__"'-_-__‘L
1 15 g — —=h n
T g (O (RS = 1.5
- - . | o = 'h u
- -.-hz ——— 2
/ ) = ——P =
-5 /+L (Errq) /—&-maX(ErH)
-5
15 —L?(Err,) 10 ——max(Err,)
) N o & ) N o J
$ S LS $  °$
o o7 o o0 o7 o

FIGURE 3. Order of convergence of L%(Erri) = />, [le}l3T,

L?(Erry) >, llen||dr in the left, and of max(Err;) =
maxy, ||e}]lo, max(Erre) = maxy, ||ef|lo in the right for Exam-
ple 7.2.

t=0.55 t=0.65

o

05 1

FIGURE 4. Numerical solution (Uy, Us) of Example 7.2 at t = 0.55
in the left, ¢ = 0.65 in the middle, and ¢ = 0.75 in the right. The
front keeps moving in time due to the high availability of nutrient.
The meaning of U,, A is as explained in Figure (2).

Example 7.3. We consider a single-pore medium Q = (0, 1)%[mm]? shown in Fig-
ure 5. Initially, ten percent of the non-rock region is filled with biomass (u},;; = 0.6)
with no nutrient. Then the nutrient is injected through the left boundary of 2. We
set Neumann no-nutrient flux conditions on the rest of the boundaries. We also
assume that there is no biomass flux on all of the boundaries. The ambient fluid
flows from left to right at initial rate of Qipnie = 3.6 x 10~*[mm/h]. See the parame-

ters used in this example in Table 4, which is realistic data obtained form [35] with
slight changes.

59
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TABLE 4. Parameters used in Example 7.3.

dy |a|dNw | B 0% K Qinit Ui | U | U
1074712 6 1]1.18x1073]05]36x1072[06u*]| 0 1

FIGURE 5. A sample of a porous medium 2 = Q,, U,., where 0,
in white, and €2,. in black.

o t=0[h]

t=4[h
1 1.0 [hl 1
0.8 0.8 0.8 0.8
506 0.6 =06 0.6
£ s A s
= 0.4 0.4 = 0.4 0.4
0.2 0.2 0.2 0.2

0.0 ; 0
00 02 04 06 08 10

0.0
00 02 04 06 08 10
X [mm] x [mm]|
t=4[h

1.0 hl

08 %
506
£ 2,
=04

0.2 Q

. BN,
00 02 04 06 08 10
X [mm]

FIGURE 6. Accumulation of biomass near the rock surface . Left:
initial biomass. Middle and right: biomass concentration and
biofilm domain, respectively, after 4 hours of providing nutrient.

Qp: the biofilm domain, §2,, : the fluid domain, and €2, : the rock
domain.

Once the flow starts, biomass accumulates in the region near the rock surface as
it is shown in Figure 6. At high flow rate, the immature biomass is driven away,
therefore, most growth occurs at low flow rate as it is shown in Figure 7. As biofilm
grows, the flow region decreases, and hence its velocity increases.
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FIGURE 7. The effect of flow on biofilm growth when €2} is assumed
permeable to the flow and the flux q is obtained with k, = 107°.
Top: the biofilm evolution. Middle: the flow velocity. Bottom: the
nutrient.

Next, we consider various scenarios of the character of the flow q which gives
us availability of nutrient inside €2,. To this aim, we consider different values of
bio-gel permeability k; 1 oo when €, is permeable, k;, = 10~° when €, is partially
permeable, and k;, = 0 when 2, is impermeable. As it is illustrated in Figure 8, as
kp increases, the biofilm grows faster and fills up the pore more quickly. We also
see that the flow velocity is affected by the permeability of bio-gel. Table 5 shows
the time needed for the biofilm of different k; to clog and fill up the pore.

TABLE 5. Time taken for the biofilm to clog and fill up the pore
with different permeability k; of Example 7.3.

Permeable | Partially Permeable | Impermeable
Biofilm permeability k; 00 10~5[mm?] 0
Time when clogged 9.1[h) 9.18[h) 9.2[h|
Time when filled up completely | 12.75[h] 12.83[h] 12.91[h]

8. Summary and future work

In this paper we carried out rigorous analysis of a mixed finite element approxi-
mation (MFEM) of lowest order for a nonlinear constrained parabolic system mod-
eling biofilm growth, with advection. We also illustrated the results with numerical
experiments. We believe our results are first for such a system, and that they also
extend known theory for MFEM for scalar parabolic variational inequalities to the
case with nonlinear diffusivity and advection.
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FI1GURE 8. The effect of assumption on the accessibility of nutrient
by advection associated with the permeability of biofilm domain k;
on the biofilm growth. Top: the biomass concentration. Middle:
the biofilm domain. Bottom: the flow velocity. Recall the case
ky, = oo (left column) allows Stokest-type flow on the domain,
ky = 0 (right column) makes q|o, = 0, and the intermediate ky
(middle column) allows Darcy-type flow in €.

In future work we aim to relax the somewhat stringent assumptions on the
regularity of the solutions required for convergence. We also plan to study the
error in the coupled flow problem, and consider other modeling and theoretical
extensions.
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