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Abstract. In this paper we upscale thermal models from the pore-scale to the Darcy scale
for applications in permafrost. We incorporate thawing and freezing of water at the pore-scale and
adapt rigorous homogenization theory from [A. Visintin, STAM J. Math. Anal., 39 (2007), pp. 987—
1017] to the original nonlinear multivalued relationship to derive the effective properties. To obtain
agreement of the effective model with the known Darcy scale empirical models, we revisit and extend
the pore-scale model to include the delicate microscale physics in small pores. We also propose a
practical reduced model for the nonlinear effective conductivity. We illustrate with simulations.
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1. Introduction. In this paper we apply numerical upscaling to connect the
permafrost models at the macro- (Darcy) scale to the micro- (pore-scale) processes.
Permafrost is the ground that remains frozen for two or more years, and is a complex
environment with great importance to climate studies. Our focus in this paper is on
the energy equation and on the freezing/thawing phenomena; other equations as well
as the coupled thermal-hydrological processes will be discussed elsewhere.

The following energy equation combines the conservation of energy with Fourier
law:

(1.1) w+V-q=f, q=-k(0)VI, w=a(b),

and requires constitutive equations defining the enthalpy w and heat conductivity
k as functions of temperature 6. The models of phase change are challenging since
w(#) is typically multivalued at the temperature of phase change; this feature has
been very well studied, in particular, for the well-known Stefan problem in which
w € af) = c(0)0 + LH(0) where H is the Heaviside graph, and ¢, L are the positive
heat capacity and nonnegative latent heat coefficients [73, 65]. In what follows we
write w € () when «(6) is multivalued, and w = «(0) if the relationship in some
particular material is single-valued.

Permafrost soil is a porous medium, a mixture of Ny; 47 = 2 materials: rock and
water in liquid and ice phases: in this paper we do not consider vapor phase or air
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component, and neglect the density variations between ice and water. The energy
equation for this mixture depends on the material and on the scale. We consider
the pore-scale domains w and the Darcy-scale domains 2 and work with models
denoted by Model-w and Model-2 at the pore-scale and the Darcy scale, respectively,
in several variants. Each Model-w recognizes the interface between the materials
and phases, and for each material m = 1,... Njy;ar they feature material-specific
multivalued relationships a(™ (0) as well as conductivities (™ (6). At the Darcy scale,
the applications literature commonly uses various experimentally calibrated models
which we call Model-Q-empirical with single-valued functions ' () and k¥ (6); here,
the superscript ¥ refers to the Permafrost, and can be replaced by superscript "ode!
for a particular parametric model.

We devote this paper to the development of the rigorous connection between
Model-w involving the collections (a(™ k(™). and the Darcy-scale Model-Q-
empirical involving (o k). We follow the general homogenization theory in [73]
to derive Model-Q with multivalued c.s¢(6) and kesr(6) from Model-w. However,
upscaling Model-w which involves only rock and bulk water (and which we call Model-
w-basic) does not give relationships qualitatively consistent with Model-Q-empirical.
To improve, we propose a new Model-w-extended which incorporates realistic physics
of Gibbs—Thomson relationship to account for the depression of freezing temperature
in small pores. After upscaling Model-w-extended, we get Model-Q-extended with
qualitative agreement with the empirical Model-Q2-empirical. The roadmap we follow
is summarized in Table 1.

We illustrate the findings with computations and provide ample references to both
mathematical and applications literature including the emerging work on imaging
permafrost soils.

The outline of this paper is as follows. We provide preliminary notation in sec-
tion 2.1, and give details on Model-w and Model-2-empirical in section 2. In section 3
we explain the process of upscaling of the constitutive relationships from the pore-
scale Model-w-basic and Model-w-extended to the Darcy-scale Model-{2-basic and
Model-Q-extended, respectively; we also address approximate Model-Q2-extended-fit,
and compare to Model-Q-empirical. We divide the presentation there into that for a
and k. In section 5 we outline the computational models and present simulation re-
sults including a comparison of the pore- and the Darcy-scale solutions in section 5.4.
We also provide supplementary material (Supplement.pdf [local/web 19.4MB]) with
illustrations of the heterogeneous Stefan problem; these provide additional illustra-
tions on the heterogeneous Stefan problem which are not available in the literature.

TABLE 1
Scales: the pore-scale w and the Darcy scale 2, and models Model-w and Model-Q2, respectively,
considered in this article. In the last column we indicate the relationship a(-) and whether it is
multivalued or single valued for a given collection of models.

Model Scale NpyraT Materials k [
Model-w-basic pore-scale 2 rock (r), water (w) k(™) (™) multi
Model-w-extended pore-scale Ny prar +1>2 rock (r), and

water in pore subdomains 1... Nywasar
Model-€2-basic Darcy averaged over (r,w) kefp oepy, multi
Model-Q-extended Darcy averaged over (r,w(), .. w(Nwamar))
Model-Q-extended-fit Darcy approximation/fit of Q-extended kfe\f/f &;c}, single
Model-Q-empirical Darcy calibrated experimentally kP P, single
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2. Physical models for heat conduction at the Darcy and the pore-scale.
We start with general notation in section 2.1 and next we define the heat conduction
models at the pore-scale in section 2.2 and at the Darcy scale in section 2.3. A list of
parameters and variables is given in Table 2.

2.1. Notation in heat conduction models with phase change. We consider
heat conduction in a domain Q C R? d > 1, and denote by Q7 = x (0,T') the space-
time cylinder. The boundary of 2 is denoted by 02, and n is the unit outward normal
to 09); 0N is partitioned to the Dirichlet boundary 9Q2p and Neumann boundary
00\ 0Qp. We will also assume that |[0Qp| > 0. We adopt the usual notation on
Sobolev spaces [66, 72], and denote for shorthand the Sobolev spaces on Qr as follows:
v € L?(H') denotes functions v € L2(0,T; H'(2)). For a set S, D(S) = C§°(S) is
the set of smooth functions with compact support on S, and D(S)’ is the space of
distributions, i.e., the continuous linear functionals on D(S). Further, we denote by
|S| the measure of set S and by S its closure.

We also recall the Heaviside function H : R — {0,1}, H(0,00) = {1}; H(—00,0] =
{0}, and define the multivalued Heaviside graph as follows: H(0,00) ={1};H(—00,0)
={0};H(0)=[0,1].

2.1.1. Heat conduction with phase change in a single material. We now
provide details of (1.1) which involves the energy density (enthalpy) w, the heat flux
g, the temperature 6, and the liquid phase fraction x(6). The data are the source
term f and heat conductivity k. We assume that 2 has a fixed volume; in particular,
we disregard the change of volume due to ice expansion as the water freezes. We also
ignore convection. We consider two phases: liquid and ice (solid), and their properties
are denoted with subscript ; for liquid, and ; for ice. The domain Q is partitioned
into the liquid €2; and ice phase subdomains (2; separated by an interface (“mushy”)
region (;; in which ice and liquid co-exist.

First, we require a definition of w. Without the phase change dw = ¢(6)df, with
heat capacity ¢, and w = «(f) = C(9) = f:mf c(v)dv where 0,.¢ can be any conve-
nient reference temperature which we choose to be equal 0; for freezing/thawing, the

TABLE 2
Variables and parameters used throughout this article.

Notation Description
pe{i, I} Subscript: phase p either solid ice ¢ (frozen), or liquid ! (unfrozen)
(m) Superscript: material m; for example, water (w), rock grains (r)
n, n(™ Volume fraction of material (m)
w, wl(,m) An REV w and wz(,m) C w is the portion of the REV occupied by phase
p of material(m)
Variable Description/SI Unit
w Enthalpy/Energy per unit volume [J/m?3]
0 Temperature [°C|
X1 Liquid phase fraction (= Xl(w)) -]
Parameter Description/SI Unit Typical value
n Porosity [—] Sand [0.30,0.35], Silt [0.4,0.5],
Clay [0.45,0.55] [4](Pg. 74)
0+« Freezing point depression [°C] [0,—5] [1](Pg. 24)
c Volumetric heat capacity [J/m3°C] Water 4.19 x 109, Tce 1.90 x 108 [58]
k Thermal conductivity [J/m s°C] Water 0.58, Ice 2.3 [58]
L Latent heat per unit volume [J/m?3] Water 3.06 x 108 [58]
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reference temperature is best set to the freezing temperature 6,. For heat capacities
cl,0 >0,
c;,0 <0,
librium, i.e., that 0|q, > 0., 0|q, < 0., and that 0|g,, = 6.. We need both x and 6
as independent variables to fully describe the system’s state, but x|q, =1, x
while x € [0,1] in Q;;. We write concisely x(6) € H(8 — 6..).

The well-known Stefan problem [72, 18] describes the phase change between ice i
and liquid I: the melting requires adding some latent heat L amount, and the freezing
is exothermic. This is encapsulated in the definition of enthalpy

constant in each phase, we set C(0) = (6 — 0,) . We assume local equi-

Q; =0,

(2.1) wEa(G)Z/:c(v)dv—FLx(H):C(G)—FLH(G—Q*).

Formally, « is the subdifferential of the convex function, the primitive ¥ of o = 0y
given by

“(0—0,)2, 0 <4,,
(2.2 vio)=1 21070
G(0—0,)>+L(O—0,), 0>0..
. kia 0<6* ki +k;
To complete the model we have as in [72] k() = o 950, k(0.) = =57, We
s *

also require some initial and boundary conditions. Let w;,;+ be given, and we set
w(x,0) = winit(z). We also set Dirichlet boundary conditions for 6|sq,,, and Neumann
conditions for q - nlsa\a0, -

In summary, the model, in the sense of distributions, is

(2.3) B(w(z,1)) — V- (k(O)VO) = f, we alf)=dpd)in D(Qr).

One well known interpretation of (2.3) is that if the mushy region is reduced to
an interface Q;; = I';; = 0, N 08, the Stefan problem describes the heat conduction
in each Q; and ; coupled by the Stefan condition [g - n]|r,, = Lv, where v is the
speed of the free boundary I'j; =T';(¢), and where H(-) is replaced by H(-) [65]. For
numerical simulations which approximate 6,w, x, it is natural and necessary to accept
that x € [0, 1] rather than only y € {0,1}: except in front-tracking approaches such
as [37, 17], the position of free boundary is usually not aligned with the degrees of
freedom.

The analysis of (2.3) is well established; we refer to [72, 18] for extensive analysis
and references, and to [66, 65] for the connection between the classical problem, Stefan
condition, mushy region, and the weak formulation. The regularity of solutions is
typically low due to the free boundary where the fluxes take a jump. For example,
under homogeneous Dirichlet boundary conditions with sufficiently smooth initial
data one finds [73, 72] that 6 € L?>(H}) while w € L?(Qr).

2.1.2. Multiple materials and thermal properties. Now we assume that
the domain € is filled by Nj;ar distinct materials m = 1,... Nayar such as rock
or water, each associated with a subdomain Q™. We also denote the space-time
cylinders Q(Tm) = Q0™ x (0,T). The material interfaces are fixed; for an interface
between some Q0™ QU) we denote the interface by T = 9™ N 9QU) . These
materials are in the liquid p = [ phase, or in the ice p = ¢ phase; we denote their
thermal properties with superscript (™) and subscript p-

(© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Fic. 1. lllustration of the pore-scale domain w with rock w(") in white, liquid wl(w) in black. In

0 002 004 006

()

(a)—(c) gray denotes w(w> In (d) (a) Cartoon with notation. (b)—(d): image of sandstone geometry
from [50] (b) with ice, (c) without ice, and (d) without ice, but small pores marked by gray found
with a heuristic algorithm (e) the histogram of pore distribution in (c).

In this paper we are interested in the particular composite material: a soil mixture
of rock grains (m = r) and water-filled pore space (m = w) in phase p =1 or p = i;
see Figure 1. The geometry of Q is known from X-ray micro-CT [49, 14, 59], and
there is abundant work on modeling and upscaling flow (but not energy) models from
the pore- to the Darcy scale; see, e.g., [69, 10], and our own work in [12, 50, 64] on
this subject. In this paper we will consider two classes of models at the pore-scale,
Model-w-basic, and Model-w-extended, in which we will consider a mixture of rock
and water, and a mixture of rock and water of different properties, respectively. In
Model-w-basic we consider the subdomains Q") and Q(*) with a fixed known interface
99" NN | while Q) is partitioned between Ql(w) and ng) separated by the ice-
water free boundary. These have heat capacities ¢,, ¢, ¢;, respectively of rock, liquid
water, and ice, shorthand for c(’"),cl(w),cgw), respectively. Similarly, we have heat
conductivities k., k;, k;. In Model-w-extended we allow different subdomains Q@™
m=1,... Nyyarar within Q) but for simplicity we consider only one mineral rock
grain type numbered r = Ny;ar = Nwarar + 1.

2.1.3. Scales and periodic geometry. We consider two scales: the Darcy
scale and the pore-scale. The Darcy scale quantities depend on the position x € ).
The pore-scale variables and quantities depend on y € w(zx) within a local REV
(Representative Elementary Volume) w(x) centered at x. Typically, we assume that
the typical quantity ey = Z;ZZ:E‘;Z; is small, which renders this separation of scales
meaningful. We also assume that 2 is made of a large number of statistically nearly
identical copies of w. If they are identical, we call this “the periodicity assumption”,
and each REV w is a cube of edge length € in each direction and identical, up to
scaling, to a so-called unit cell ), a cube with volume 1. For some thermal property
v(z) varying periodically in € with period €, one can then write v = v(z,y),y = £.
This homogenization Ansatz is well known [43, 22].

At the pore-scale we consider w(™(z) = w(z) N Q") and w]f,m) () = w(z) N

Ql()m) within w(zx); see Figure 1, and we define the volume fraction 7™ (z) = ‘I(:((:)) I"

In porous media, the rock and water regions w(™ and w(®), respectively, are most

important, and we define the porosity n(z) = 1) (z).

(m)
For the phase p of material m we define its relative volume fraction X(m) ::{’m):

occupied by this phase with respect to the total amount of the materlal. In particu-

lar, we have the (evolving in time) liquid water fraction Xl(w)(ac t)= % In flow

models such volume fractions are usually called “phase saturations”. In turn, per-
mafrost literature refers to nxl(w) as the “volumetric unfrozen (liquid) water content”.

We also abbreviate and write x; = xl(w).

(© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2.1.4. Local averages. Since we aim to compare our results with those in the
literature, we recall now the local REV volumetric average (v)(z) of some quantity

v(z,y),

1
(24) 0= gy [ v

The weighted arithmetic (parallel), geometric, and harmonic (series) averages of some
property v which takes a constant value v("™) in each material are given as

(2.5a) i o™,
(v

(2.5b) 00 = TINMAT (y(m) 0™
Nuyar -1
(2.5¢) o =(1/v)7t = ( > n<m>(v<m>)1> :
m=1

These averages are functions of z, since w =w(z), and each material volume fraction
n(m = 77(7”)( ). If material’s properties depend on a phase, these definitions are read-
ily extended. In particular, as commonly considered in the ag)]ghcatlonb literature, we
consider some property v with values vy, vy, v; in each w(” ,w; ’ lumped together
in the “unfrozen” (thawed) and “frozen” material propertles found by arithmetic or

geometric averaging v = (1 —n)v, + nuy, U? = (1 —n)v, +nv;, and VS = vq(ﬂl*")vl",
v¢ ¢ = =™ vy as follows:

(2.6a) v = () =v,.(1 =)+ (v + (1 — x)vi) = v + v?(l - X1)s

(2.6b) v =PRI = (N ),

(2.6¢) ol = (1/v)~

These quantities depend on the phase properties represented by the relative fraction
x; of the liquid phase.

2.2. Heat conduction in porous medium at the pore-scale. Let () repre-
sent a porous medium made of rock grains in Q") and void space filled with water
Q@) To describe heat conduction in €2, we use (2.3) in Q) and the model for freez-
ing/thawing of water in Q(*), coupled by the continuity of temperature and fluxes
across the rock-water interface I'("). This special case of general heterogeneous Ste-
fan problem described in section 2.2.1 gives Model-w-basic in section 2.2.2; we extend
it to Model-w-extended to describe the realistic microphysics in section 2.2.3.

2.2.1. Heterogeneous Stefan problem.

Assumption 2.1. We assume that the properties of the materials are piecewise
constant in each phase [,7 and materlal m for example, when m represents rock or
water. In particular, cl(m), cgm),eim), k(m k‘lm) are constants that are specific
to the material type (m). We also assume that the interface |J,,,; (™9 between any
two materials m, j is fixed in time and perfectly conducting. For well-posedness and

physical meaning, we assume that there exist constants cpin, Cmaz, Emins Emaz:

2.7)
0< Cmin <™, 4™ < Cmazy 0 < kimin <E™ K™ <kpaz,  0< LU for all m.

(© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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We also assume T = (0£m))m is a nondecreasing sequence. This is done for the
convenience of notation for calculations in section 3.2, and does not change any of the
physics of the problem.

Now let (2.3) hold in each material subdomain Q) m=1,.. . Nypar:

(2.82) Qp(w) = V- (K™ (0)V0) = f, wea™(9) in DG,
"™ (0 —6m); o< o,
(2.8b) o™ (9) = [0, L0™)]; 0— Qim),

A G- 00y 4 L >l

To close the problem, we need some transmission conditions on every interface I'(™7) =
9™ N 9NY) . We assume no thermal resistance which yields continuity of 6 as well
as of the heat flux

(28C) o(m)h—\(m]‘) = G(j)|r<mj>; k(m)VH(m) . n|1"(mj) = k(J)VQ(J) ~n‘r(m]‘).

Since the interface (J,,,; ') is fixed, we can combine the portions of (2.8) for each
material and write these in the sense of distributions over 2 analogous to (2.3); see,
e.g., [13]. With the material properties variable in = € Q as in (2.8) we have

(2.9a) Oy(w(z,t)) =V - (k(0,2)VO)=f in D(Qr); w(x,t) € a(f(x,t),x), a.e. x,t.
When (2.9a) is supplemented with appropriate boundary and initial conditions
(29b) G(I,t)‘{)QD :eD(x7t);Q'n‘BQ\BQD =0, w(:r,O):wm“(:L‘),zEQ,

the well-posedness of (2.9) can be studied. In particular, [60, Cor. 4.1 of Thm 4.1]
proves the existence of solution § € L2(H!) as a limit of Rothe approximations to a
regularized problem, under nonlinear boundary conditions, and provided w;,;; € L
as well as that each Q™) is a bounded Lipschitz domain. In the multiscale setting
there are existence results in [73] for (2.9); we recall their statement in section 3.1.1.

2.2.2. Model-w-basic at the pore-scale. We consider a special case of het-
erogeneous Stefan problem (2.8). In Q) we have a(*) given as in (2.8b) with the
properties of bulk water. In Q") we have no phase change within the range of tem-
peratures of interest but we can use the definition (2.8b) setting

(2.10) L0 =0, =" =, kD = k") = ., 07 = ().

The choice 04@ = Hﬁw) has no physical meaning and is made for the convenience of
notation in the forthcoming upscaling formulas. On the interface T0%) = 90" N
o0 we adopt (2.8¢).

The relationships (a(™),, in this Model-w-basic will be upscaled to a.;s in
Model-Q2-basic in section 4.1.1. Conductivity (k("‘))m will be upscaled to ker¢ in
section 4.2.

2.2.3. Model-w-extended at the pore-scale. The physics of freezing of the
pore water Q(*) is not the same as in the bulk water, except perhaps in large pores.
This microphysics is crucial to obtain agreement of upscaled models in section 4.1.2
with the empirical models.

The energy landscape at the fluid-rock interfaces is known to be very complex
[1, 56, 28]. In particular, the microscale thermodynamics of confined regions involves

(© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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the phenomena of “thermal regelation” and “premelting” caused by the interactions
between mineral grains and those of water molecules. As a consequence, at subfreezing
temperatures, small amounts of liquid coexist in equilibrium with solid ice because of
the wetting interactions and surface-energy effects. These are best interpreted with the
theories of adsorption involving van der Waals and other forces, rather than with focus
only on thermal conduction. In models and experiments, there are also consideration
of flat or nonflat soil-water interfaces, connected or disconnected liquid film, and
the relative significance of the adsorptive versus capillary forces. These important
microphysics phenomena result in two interconnected features: (i) a depression of
freezing temperature prominent in small pores, and (ii) the presence of a thin film of
(undercooled) water around the grains.

In this paper, we focus on (i) which is critical for thermal models since it leads to
the long-tailed behavior of o’ (6) at the Darcy scale, discussed later in section 2.3. We
recall the Gibbs—Thomson law which provides the formula for the depression in phase
change temperature Af, = —2]%%‘, where o[J/m?] is the surface-tension coefficient,
0.[K] is the phase change temperature, and R[m] radius of the curvature and the
dependence of Af, on R comes from that for the curvature x = E? see [18, p. 50,
eq. (2.2.6)], and [72, eq. (IV.2.2,3.1)]. We note in passing that the Gibbs—-Thomson
relationship is related to the Young-Laplace relationship in capillary phenomena [4,
p. 257-259], [29, p. 48-55], which, in turn, can be used to estimate the pore radius.
Estimates of the pore radius R are available from the a(pphcatlons literature as well

as from X-ray micro-CT images [48, 49, 50, 59]. Since 6.’ = 0[°C], we postulate

2.11 o) —AplW) = _ T
(2.11) 7 ¢l

where FET must be chosen. In particular, we can set FET = =I5 GT — %“[K].

Our idea is to set up Model-w-extended in which the pore water domain is par-
titioned to a collection of pore subdomains, each associated with some characteristic
radius size R, for which an individual freezing temperature is calculated with (2.11).
This Model-w-extended is made precise and upscaled to Model-Q-extended in sec-
tion 4.1.2.

Remark 2.1. For water in porous medium 6" = 273.15[K], o ~7.536 x 10~2 [J/mQ],
(surface tension coefficient) [72.99, p. 99], and L is as in Table 2. We get Fy" =
1.2x 1077 [m°C]. If FET = F§FT | then to lower the temperature with (2.11) by 1° C’
we must have a small enough pore radius R~ Ry=10""! [m]=0.1 [um]. Such pores
are present in realistic porous media [21, 29]. To apply (2.11) in multiscale setting we
will consider scaling of F&T developed in section 4.1.2.

Remark 2.2. To accommodate (ii), one can introduce an additional type of sub-
domain w™) containing thin (nano-) film of undercooled water around each grain
for which we set 9&“1) to be far below the freezing temperatures of any of the pores.
However, since the volume fraction n(*! is very small, its influence on the Darcy scale
thermal parameters can be ignored. On the other hand, the impact of w() on the
flow parameters is substantial but these are outside the present scope.

The relationships (a(™),,, in this Model-w-extended will be upscaled to aess in
Model-Q-extended in section 4.1.2 Conductivity (k(™),, will be upscaled to k.ff as
shown in section 4.2.

2.3. Model-Q-empirical for heat conduction at the Darcy scale. There is
considerable literature devoted to permafrost models in civil, petroleum, and geotech-
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nical engineering, hydrology, soil science, and more recently, in computational envi-
ronmental climate models; see some representative papers in [20, 75, 1, 28, 67, 57, 24,
40, 23]. The thermal Model-Q-empirical at the Darcy scale specializes (1.1) to

(2.12) ow —V - (kPVO) = f; w(z,t) = o (6).

The single valued experimentally calibrated formulas for o (#) as well as k' (6) treat
soil as a single material while they incorporate c,,¢;,c;, L and k.., k;, k;, the porosity
n(x), and the key property, the liquid (unfrozen) volume fraction x; (), also known
as SFC (Soil Freezing Curve), given in section 2.3.1. Once x;{ (0) is selected, o’ (0) is
found similarly to (2.1)

4
(213)  w(0)=a"(0) :/0 c(v)dv + Lx[ (0); c(v) = cuxi (v) +cp(1—x{ (v))

with ¢,, ¢y are the (porosity weighted) heat capacities of the “unfrozen” and “frozen”
soil, defined as before (2.5). The formula (2.13) requires an integral of a given non-
linear x7 (v).

Remark 2.3. The models for Xf = Xf (f) assume instantaneous local equilib-
rium, i.e., that the liquid fraction Xf(a:,t) responds instantaneously to the changes in
temperature 6(z,t); equivalently, they assume that (some amount of) the ice forms
instantly when the temperatures drop. This not entirely realistic feature ignores the
presence of undercooled water, the mechanisms of nucleation, as well as the nonnegli-
gible scale effect. We refer to the discussions of related experimental difficulties in [28],
observations of apparent hysteresis in x/ () in [57] and to theoretical relevant work on
hysteresis including [32, 44, 46]. However, an in-depth discussion of nonequilibrium
models is outside our scope.

2.3.1. Empirical models for the soil freezing curve le leading to af.

The SFC models for xF () are calibrated from empirical measurements, and the
algebraic formulas vary from power models to exponential to blended models which fit
best particular types of soils (clay, silt, sand); see, e.g., [75, 42, 38, 30, 27, 57], as well
as a recent through review in [28]. Some works relate SFC to capillary phenomena and
the Clausius—Clapeyron equation; those efforts may be relevant for the flow models,
but are not directly relevant to our scope.

All the SFC models share common qualitative behavior, and, in particular, (a)
have a long-tailed behavior as 6 ]. Some works postulate limg_, ., XlP (0) = xres > 0,
and some x5 = 0. In addition, (b) some SFCs are discontinuous at # = 0 so that
limg_,0- X7 (0) = x0 # 1 = xF(0)|p=0. This lack of continuity if yo # 1 presents chal-
lenges to computations, a feature noted in [26]. In turn, [28] considers the smoothness
mandatory and requires xo = 1, while some choose parameters for which yo = 1; see,
e.g., [78, 33]. In this paper we adapt SFC from the literature to ensure continuity at
0= 9*7

1; 0>0,;
2.14 [O)=<" -
(2.14) 0 {TP; 0y
and consider x7(0),x]V (6),x (0) from [34, 75, 38], respectively, with the symbols
L, W, M chosen according to the original author’s names, Y7 = [6,[°10| 7%, YW = x,.cs+
(1- Xres)(ﬁ)‘*, TM = ypes 4 (1 = Xres )70+ We illustrate these in Figure 2
along with the plots of the corresponding o () calculated with (2.13). Additional

model

data on the parameters typical for x; (0) is given in Table 8 ; see also soil-specific
data available in [1, 57] and [2, 28].
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F1G. 2. Plot of the Darcy-scale relationships x} (0) (left) and w=aF () (right) used in Model-
Q-empirical for clay using the parametric models X;m’dez () with model = L,W, M given by (2.14)
from section 2.3.1, and with data from Table 7. The original relationships (top) may be discontinu-
ous, the adapted (continuous at § =0) are on the bottom.

2.3.2. Empirical models for heat conductivity k¥ (8) at the Darcy scale.
Once a particular 7 is selected as in section 2.3.1, the Model-Q-empirical uses simple
weighted average expressions for k¥ = k¥ (x¥(0)) based on (2.6),

(2.158) kA =kixT + k(L= xD)s ki = (1= )k + ki, ki = (1—n)k, +nk;,
(215b) kG = (k) (KF) X kG = kR kG = kLT,
(2.15¢) kT = (1/k(").

Each of k4, k% k! is a function of z,t,0(z,t) since n =n(x) and x =xF(0(z,t),z).

In particular, k¢ is used in [42, 23, 38, 78], and [1, Figures 2-27], and k4 is
used in [33]. In turn, ¥ do not seem to be known or used in geophysics. In more
general context, arithmetic and harmonic averaging correspond to composite materials
arranged “in parallel” or “in series”.

We emphasize that the above formulas rely on the average liquid water content
xF; they do not account for the specific partition of the geometry of w®) into wl(w)
and wgw). In contrast, we address this geometrical aspect when calculating k.¢s in

section 4.2 which we compare to the averages given by (2.15).

3. Upscaling Model-w to Model-£2. In this section we describe how to bridge
between the pore-scale and the Darcy scale for the thermal models of permafrost. At
the pore-scale permafrost is a composite medium described by Model-w (2.8) written
here as an e-model for the geometry from section 2.1.3,
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(3.1) O(w(x,y,t)) — V- (k(0°,2,y)VE) = f in D(Qr)’;
w(z,y,t) € a(0(z,y,t),x), a.e.x € Qy eV, t>0.

At the Darcy scale we derive effective properties aefy and ke for Model-Q describing
(97 w)7
(3.2) O (W) =V - (kesr(0)VO) = f, W € aesp(0) in D(Q7),

which we aim to compare to the Model-w-empirical (2.12) from section 2.3.

We aim to upscale Model-w to Model-2, and start with the theoretical background
in section 3.1. Without the phase change, upscaling the thermal properties is an
easy task. In particular, it is well known that w(z,y,t) = c0°(z,y,t) in (3.1) is
well approximated asymptotically by @ = c.sf0 with cosp = (c). In turn, k.f; can
be calculated by well known formulas involving an auxiliary elliptic boundary value
problem on the cell. The process to find ceff,kery is well known; see, e.g., [43, 22].
However, the freezing and thawing scenarios in permafrost soils requires handling
the nonlinear k(6) and multivalued relationships w € a(#); in this paper we follow the
rigorous theory in [13, 73]. In a more general context, for homogenization of nonlinear
flow models when multiple phases and/or additional processes such as precipitation
or biofilm growth are involved, we refer to, e.g., [45, 49, 7, 55].

In section 3.2 we derive the upscaled relationships a.f¢(6). First, in section 4.1.1
we work with Model-w-basic, but the corresponding upscaled a.s; in Model-Q2-basic
is qualitatively different from of in Model-Q-empirical. In section 4.1.2 we therefore
propose a new Model-w-extended to include additional microphysics; after upscaling
to Model-{2-extended, we get aeyy similar to af in some Model-Q-empirical.

In section 4.2 we discuss kers(0). In some circumstances we find that the rig-
orously derived coarse-scale models for k.;s are close to simple averages given for
kT by (2.15). In general, however, these averages are not accurate while the general
formulas depend on the local geometry; we follow up with recommendations on most
useful (also reduced) approximations k. sy, guided by the pore-scale examples.

3.1. Background. The mathematical theory of homogenization for PDEs in
composite materials is very well established; we refer to the abundant theory in the
classical as well as modern expositions in [43, 62, 16]. In geosciences and specifically
porous media, the derivation of effective parameters and models can proceed within
the rigors of homogenization theory and/or the algorithms of numerical upscaling
and/or the framework of volume averaging; these are well explained, e.g., in [22, 4].
While the multiscale efforts originally focused on the flow properties from the Darcy
to the field scale, upscaling from the pore- to the Darcy scale has recently drawn con-
siderable attention, including for the flow [69, 47, 48, 49], and for other and coupled
processes [19, 7, 8]. These works provide selected perspectives on modeling in porous
media which inform research in this paper. Some of these, as well as the work deriving
from Heterogeneous Multiscale Method (HMM) in [10] couple the scales dynamically,
i.e., HMM models probe the Model-w whenever data for Model-{2 is needed at grid-
points covering €2, and two-scale models maintain the implicit connection between the
micro- and macromodel. In this work we follow [73] who define both two-scale as well
as the effective approaches.

For nonlinear and coupled problems, there are additional complications which
one must address, since now the upscaled relationships may be functions rather than
constants. Specifically, such relationships arise in the work on homogenization of non-
linear models of phase transitions outlined in [73] and earlier work in [13] specifically
on a simplified Stefan problem form the theoretical foundations for this work.
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First, make a rigorously justified and practical connection between the pore- and
the Darcy scale models, deriving effective properties rather than the two-scale ap-
proaches. The large separation of scales between the pore-scale of [um] and the Darcy
scale of [cm]—-[m] of empirical models combined with the large uncertainty of the ge-
ometry at the pore-scale [49, 64, 50] as well as with the specifics of freezing/thawing in
micropores suggest that the two-scale simulation may not be feasible for permafrost.

Second, we work with the “actual” physical size of the pore-scale region y € w(x)
as well as with the mathematically idealized unit cell ). We also maintain a realistic
connection to the scale-dependent microphysics at the grain-water interfaces.

Third, we embrace the enormous complexity of realistic pore geometries. In fact,
the REV w must contain a large variety of pore sizes so that the effective relationships
compare well to those found empirically. This aspect can be combined eventually with
the strategy in [50] to guide the construction of surrogate effective models built off-
line.

3.1.1. Theory for upscaling nonlinear heat equation with phase change.
We now recall the theory including notation, assumptions, and main results derived
in [73] which employs traditional homogenization applied to (2.9); we provide our
corresponding notation in brackets.

The unknowns in [73] are w,u,q (we use w,8,q), with the freezing temperatures
u«(x) [0«(z)]. The constitutive enthalpy-temperature relationship is w € 9y (u,x,y)
[we af,z,y) = 0Y(0,z,y)], and its primitive ¢ (v, z,y) is assumed [73, egs. (2.28),
(2.29), (3.18)] proper, strictly convex lower semicontinuous and bounded from below
by a quadratic a.e. (z,y) (these hold for ¢ in (2.2)). In addition, [73, eq. (3.1)]
assumes w € OY(v,x,y) is bilaterally affine bounded ¢;|v| + hyi(z) < |w| < é1|v| +
hy(x) (these hold due to Assumption 2.1) for some positive ¢1,é and hy, hy € L1(S).
The flux-temperature relationship in [73, egs. (2.36)—(2.37) and (3.2)—(3.4)] is ¢ =
q(Vu,u,z,y,t) which must be affine bounded (we consider ¢ = —k(6, x,y) V0 linear in
V0 for which the bound and properties hold due to Assumption 2.1).

The boundary conditions in [73] include those on the Dirichlet portion 9Qp of
O£ which is assumed to have nonzero measure (this agrees with (2.9b)). The source
f in [73] is allowed to be nonlinear in u and satisfy some bounds. (We only consider
the source f € L2(V'), with V ={ve HY(Q):v|pq, =0}).

For homogenization to a two-scale problem and upscaling to a coarse problem,
[73] considers dependence of data on x,y = £ to be periodic in y € ) with a unit
measure cell ). The averages over ) are denoted by p, we use (p).

We recall the theory in Remark 7.1 in the appendix. We summarize now how it
applies to (2.9).

ProOPOSITION 3.1 (adapted from [73, Thms. 4.1 and 5.4)]. There exists a family

of e-solutions (u,w¢,q%) of (2.9) which are bounded uniformly in € in the norms in
L2(HY) and L>=(L*) N HY(V"), and (L*(Qr))?, respectively. Their asymptotic limits
satisfy the problem

(3.3) w+ V- -a={f), @Eaeff(é)zal/}eff(é), (jz—keff(é)vwé in D'(Qr),
where Yefp(v) = (Y (v,-)), and where

(3.4a) kerr(v) = (Kepf.is)igs Kepfas = (k(v;9)(0i5 + 0i&5))
18 found via the corrections (fj)?:l which solve the auxiliary periodic elliptic problem
(3.4b) =V - (k(a,y)(ej + V&) =0; & periodic on Y.
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Remark 3.1. The result in Proposition 3.1 from [73] generalizes that in [13] for
a simpler model with Nj;47 = 2 in which the conductivities are constant in each
material and phase independent. In this simplified case uniqueness and regularity
of the temperature in H'(L?) N L>°(V) stronger than only L*(H') as in [73] are
obtained, and homogenization is carried out. We note that in [13] the transmission
conditions identical to (2.8¢) which are assumed to be rigid and perfectly conducting
are explicitly stated.

In sections 3.2 and 3.3 we identify eyys,kess, respectively, and their reasonable
approximations.

3.2. Finding a.yy = 8(yp) for Model-Q-effective from Proposition 3.1.
We now provide general calculations for heterogeneous Stefan problem (2.8) with
any Npsar > 1. Assume that the domain Q is made of Nj;ar materials arranged
in periodic cells w(x), with w(™ (z) = w(z) NQ™, m = 1,...Nprar. The heat
properties are material specific and piecewise constant: each o(™ (9) is parameterized
by clm) c(m)7 and L™ as well as Gfﬂm) as in Assumption 2.1. For each material m we

have a formula similar to (2.2) for the primitive of (™),
(m)
S (0 -0, 6 <o,
(35) V(0 9)]wom = C@n) (m)\2 (m) (m) (m)
L= (0 =0, + L0 -0."7), 0>0,.
With this set-up we apply Proposition 3.1.

PROPOSITION 3.2. Let v be given by (3.5). Then

Nyar Narar

(3.6) acpr(0)=0eps(0)= Y 0ot (@)= Y 1™al™ ()
m=1

m=1

s a piecewise linear multivalued graph defined as follows:

Nuar k k = k k
(B.72)  Oegs ()] gom ooy = D 1P O -0") + 370 We (0 -6
k=m k=1

m—1
+ 3" W L®H g - o).
k=1

In particular, for 6 < o1 the formula gives Oy (0) = Z,]jfl” n(k)cgk) (60— Hik)). In
turn, for 6 > pNMAT) e get Efcv:"q” n(k)cl(k) (60— Gik)) + Eka{‘T n®LE H (6 - Hﬁk)).
In addition, at each 6 = 05]”), the graph 0 is multivalued, with its jump from left to
right given by

(3.7b) [Dpesslgem =nt™ L™

Proof. The proof is by algebraic calculations and taking subdifferentials. We
calculate

(33)  theps(0) = /y (0, y)dy=3" /y 0y = 3™ 0),

Next, we take its subdifferential with respect to 6 and get (3.6) also as a volumetric
average. The details of (3.7) follow easily; we outline the calculation for Ny a7 = 2;
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an extension to the case Njysa1 > 2 is tedious but immediate. We recall the expression
(3.5) for (™) (6), and see that

™ — o™y, 9 <o,
(3.9) O™ (0) = a™(9) = { LMy (g) e [0,L™)]; 9=,
o™ (0 0.+ Lm; 9>

is piecewise linear, with constant slopes c ) for 0 < 0 , and clm) for 6 > 9>(km). At
0= 9£m a(™ is multivalued with values in [0, L(m)], i.e., the graph o™ takes a jump
of L™,

We next characterize the weighted average Merp = Mo (0) + 7oy ().
We have either (i) o) =0 or (ii) o) < 0® . In case (i) both materials undergo
phase change at the same temperature § = 9(1 09) at which their properties
change from solid (ice) to liquid, thus for 9 < 9( we have the slope of a.f; equal
to Cepf = 77(1) (a )—1—77(2) (2 ), and for 9>9* , Ceff —n(l) ( )—1—77(2) ) The jump of
Dosy at 0= 00 =02 is nM) LD 4@ L@

In case (ii) we consider first some 6 not equal to any of 9£m). For 0 < 99), we
have

ey (0) =nVelV (0 = 6) + PP (6 - 07).
For 95}) <f< 99), we have
s (0) =MD (0 — 09) + ML 4 7@ P (g — o)),
Lastly for 6 > 09, we have
s (0) = VD (0 — 0 + O LD 4 5@ (9 - 62)) 4 L@,

Considering next 6 = Oi ), we see that 0.y (Qil)) = n(l)L(l)’H(ﬁ—Qg)) takes a jump of

magnitude n™ LM, Similarly, at 6 = 0'? the jump of 8weff(6£2)) has the magnitude
N L@,

The extension to Npsar > 2 completes the proof. 0

Next, we interpret a.rs derived in Proposition 3.2 as having a “regular” and
“singular” part; the latter associated with the effective volume fraction x.ys(¢) which
depends only on the data in

(3.10) D= (eim) , n(m>) ot

m=1

COROLLARY 3.1. The formula (3.7) from Proposition 3.2 can be decomposed into
regular (continuous piecewise linear part Cerr(0)) and singular (multivalued) parts

(3.11a) epy(0) =0hesp(0) =Cers(0) + Leys(0)Xers(0).
Here Cor5(0) is given by

m—1 Nyvar

(3.11b)  Cop(0)] o1 gy = an 0+ 3 W - o),

k=m
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with the (variable) slopes cqr5(0) given by

Ny ar
k
(3.11c) Cef 1 (O)] (gim— gimry = Zn o + Z n®eft
The multivalued Legs(0)xers(0) portion of (3.11a) is
Ny ar
(3.11d) Legs(O)xers(0)= > a™MLOH(0 - 0).
k=1

The effective liquid fraction is the average x.r(0) = Zﬁﬁ;” n"mH (O — 08”)) multi-
valued at Him) :

0, 0 € (—o0,0),
ey o) <0 <0,
m—1
(3.11¢) Xepf(0) = n®em < g < o™

k=1
1, 9£NMAT) < 97

[m—1 m

e s (60) = n®, 3 n®)
L k=1 k=1

The weighted average latent heat Lrs(0) = (31, "R L® 39— oLF ))( 21:_11 nk))—1

18 given as

0, 6 € (00,6,
Lo, o) <0 <62,
m—1
(k) 1, (k)
_ n
B L@l e, = g
S e =TS
Nyar
Z n(k)L(k)’ QS(NMAT)SH'
k=1

Proof. The proof follows by algebraic calculations. First, we note that C.r; rep-
resents the first two terms on the right-hand side of (3.7), and that the third and last
term of this equation form the right-hand side of (3.11d), modified by extending the
sum to all m=1,... Nyjar. But when 6 < 0§<m) for some m, all the terms H (6 — (‘)Skk))
for k> m are zero. Similar extension applies in (3.11e).

Since Cesy is clearly piecewise linear, we need only verify its continuity, say, at
G(m D when m = 2,...Npyar + 1, where the formula in (3.11b) changes from interval
(9£m 2),9,(57”71)) to (9£m71),9£m)), and shifts the term involving c( to cl( ) from

(m—1) m— 1)

one sum to the other. Since the term involves 6 — 6, , which equals 0 at 9
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each (0 — 9£m71)) is piecewise linear continuous on R, and therefore, their linear
combination C.f¢ which is continuous.

To verify (3.11f), we match the expressions on its right-hand side for a given
0e (ai’”*”,aﬁm)) with (3.11d). We also confirm the jumps at § = 0" where the
graph is multivalued. O

COROLLARY 3.2. We summarize the practical steps following Proposition 3.2 and
Corollary 3.1 to get acsf(0). These do not require explicit calculation of ess(6).

(STEP 1) Arrange the materials with nondecreasing 0..

(STEP 2) Calculate the reqular portion Cers(0) of cery(0) with (3.11b).

(STEP 3) Calculate the effective xers(0) with (3.11¢).

(STEP 4) Calculate the effective L.sy(0) with (3.11f).

(STEP 5) Assemble aeyps(0) from STEP 2-STEP 4 with formula (3.11a).

Ezample 3.1 (academic example illustrating the steps of upscaling). Consider the
data in Table 3 for Ny;ar = 3 hypothetical materials, and pursue upscaling with
STEPS 2-5. The plots in Figure 3 illustrate the process. The total amount of latent
heat required to melt all the solid phase in the three materials equals the weighted
average 3 = + 5% 1= + 1 % =142+ 1= =3t of the different latent heats (L),
reflected as the jump of L.fs from far left to far right. We also see a jump in the
graph of a.rr(#) at each of the three freezing temperatures for the three materials.

We apply Corollary 3.2 for upscaling (a(™),,, to . r# from the pore- to the Darcy
scale in section 4.1.

3.3. Upscaling (k(™),, to kepr. We now revisit the definition of kegr in
(3.4). A useful approximation kess to kesy can be found by averaging & instead of
&;, where éj solves a mixed Dirichlet—Neumann problem instead of periodic problem.
This latter problem is frequently used by researchers working with software for elliptic
boundary value problem solvers which do not allow period boundary conditions, but
allow a mixture of Dirichlet and Neumann conditions. These two approaches are well
compared in [15], where a strong case is made for flow problems that k.s; is a poor
approximation for k. if either the geometry of composite REV cell w(x) has a strong
non-axi-symmetric trend, and/or if the individual conductivities differ by orders of
magnitude. For the thermal applications considered here we find, however, that ks
may be adequately accurate.

We compare k.s; as well as averages (2.15) to keys for the pore- to the Darcy
scale in section 4.2.

4. Results of upscaling Model-w to Model-2. Now we apply the theoretical
derivations from section 3 to upscaling from the pore-scale to the Darcy scale: we
discuss a.sy first in section 4.1. For Model-w-basic, these do not compare well to
the relationships a®, k¥ used in Model-Q-empirical. Therefore, we extend the simple
Model-w-basic to Model-w-extended, and improve the agreement after upscaling to
Model-Q-extended with empirical data.

TABLE 3
Thermal data for Example 3.1.

Material cgm) |clm) n(m) L(m) Oim)
Material (1) 1|2 5|15 3 -1
Material (2) 2|1 6|15 5 0
Material (3) 115 4|15 1 2
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FiG. 3. Illustration for Example 3.1. Plots of 1efs(0), acrs(0), and how they are built from
M) | q(m) (top). Middle and bottom: Ceff(0),Lers(6), and xess(0), as building blocks of aeyy
following STEP 2-5 of Corollary 3.2. We indicate the freezing temperatures at which the properties
have jumps.

Next, we discuss upscaling conductivities to k.yr. Here we also connect our
upscaling efforts to realistic data from porous media.

4.1. Results: Upscaling a for the basic and extended models. In sec-
tion 4.1.1 we first upscale Model-w-basic with Ny a7 = 2 for rock and bulk water. In
section 4.1.2 we upscale Model-w-extended which accounts for Gibbs—Thomson effects
in a collection of Nj;4p-1> 1 subdomains corresponding to the pores of a variety of
characteristic sizes.

4.1.1. Upscaling « in Model-w-basic to Model-Q2-basic. We now apply the
discussion in section 3.2 to upscale (a%n )) for the rock-water mixture with Ny; a7 =2
and m = r,w described in section 2.2.2. The properties of Q(*) are identical to bulk
water. For Q") we set 08) =0 with L(") =0 to simplify the notation and calculations.

We follow similar physical reasoning as in Example 3.1 to calculate the amount
nL of heat necessary to melt all the ice in wgw) in the pore domain w when the
temperature goes from far below to above freezing.
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We next follow the steps in Corollary 3.2. We number the water material w as
m = 1, with 0&1) = 0. The rock material is m = 2, with (9£2) =0 but LB =0. We
recall porosity n=7") =y and 1 —n=n") =y, Consistent with (3.11e) we get
Xesr(0) = (MM +n@)H(0) = H(H), thus for this example x.;s(0) = xl(“’)(e) features
only one jump at § = 0. In turn, from (3.11f) for 6 > 0, Le;7(0) = ™ML + 720 =
n L) = nL vanishes for # < 0, and features only one jump at § = 0. Next, the
slopes ceyrs of the regular part Cers(0) = cubxess(0) + cr0(1 — xerr(6)) with (3.11c)
are given by cefflo<o =1n¢; + (1 —n)cr = ¢ and cesflo>o =ne + (1 —n)e = ¢, as in
(2.13),

(4.1) csp(0) =Cers(0) + Lnxers(0); Xers(0) =H(0—0).

This gives aeyy as part of Model-Q-basic. We note that in applications literature,
e.g., [40, 39, 77] ¢ and ¢, are called “frozen” and “unfrozen” properties consistent
with (2.6a).

Ezample 4.1 (upscaling model-w-basic). We consider w = (0,1)[cm], with rock
grains w(™ = (0,0.20) U (0.60, 1), and water w(*) = (0.20,0.60). Now 7 = 0.40, and we
use thermal parameters from Table 5. We calculate and plot x.ff,acrs for Model-
Q-basic, and compare to a selected x*,a” in Model-Q-empirical; see Figure 4. For
illustration, we include plots of (), a(*) in Model-w-basic.

Remark 4.1. We compare Model-(2-basic to Model-Q-empirical. We see that
Xesr(0) = H(0 — 0.) features exactly one jump at 6. = 0, as a special case of what
Example 3.1 illustrated. In consequence, we see that x.rr is qualitatively different
from any of the empirical SFC X7 (0) in Model-Q-empirical from section 2.3 which
feature long tailed smooth behavior and have steep gradients only for very coarse-
grained soils [40]. For fine-grained soils such as clay, x/ is smooth and entirely
dissimilar from x.;s given in (4.1). These differences carry over to that of af and

Qeff-.

Now we see that upscaling Model-w-basic and treating pore water as bulk water
fails to give an effective model resembling any Model-Q2-empirical. The primary reason
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Fic. 4. Hllustration for Ezxample 4.1. Shown is a comparison of the constitutive properties:
liguid phase fraction (left) and enthalpy (right) between Model-w-basic, Model-Q2-basic and Model-Q2-
empirical. We plot x(")(8) for Stefan problem in bulk water in Model-w-basic in upscaled heteroge-
neous Stefan problem Xy ¢ (0) for rock-water in Model-Q-basic, and the Darcy scale empirical model
XZW (0) in Model-Q2-empirical, same as that plotted in Figure 2. On the right we show the correspond-
ing enthalpy graphs w € a(®)(0), w € acfr(0), andw=aF (). We emphasize the jumps of Xeff and
aeff at =0, =0 in Model-Q-basic which is absent in the empirical XZP,aP in Model-Q2-empirical.
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is that we have not accounted for the microphysics described in section 2.2.3. This is
addressed in the next section.

4.1.2. Result: Upscaling o in Model-w-extended to Model-Q2-extended.
We now aim to improve the agreement with Model-Q-empirical of concern in Re-
mark 4.1. We incorporate the micro-physics of freezing in porous media from sec-
tion 2.2.3, and in particular, we propose accounting for the depression of freezing
temperatures in small pores.

To this end we modify our e-model. We postulate that every REV w(z) includes a
collection of pores with a large variation of pore sizes. This feature is true in realistic
porous media; see [21, 29, 14]; in particular, [14] reports for limestone that the largest
pores make about 10% with diameters around 100 [pm], but the remaining pores have
sizes below 10 [um]. In turn, clay frequently features macro-, meso-, and micropores,
with median pore sizes ranging from 100 through 1 through 0.01 [um], respectively
[21, 29]. See illustration in Figure 1, right.

Formally, we postulate that the water portion w(®) of an REV w is made of
several subdomains w(“”m), 1 < m < Nwwupar, as well as of the rock material
r = Nyar = Nwayar + 1. The subdomains w(w.m) correspond to some assumed
volume fractions (n(*>™)),, and we have (") =1—-n=1— ZNWMAT n(wm™)  Next, we

m=1
l(m) ™ L(m),kl(m),kgm) for each material in w(®™).

need the thermal parameters ¢; ', ¢;
These can be distinct for each m but for simplicity we set these equal to those for
the bulk water from Table 5. We distinguish each “material” (w,m) by its specific
0™ calculated with Gibbs-Thompson relationship (2.11) based on an assumed char-
acteristic pore size R("™)| ideally with FGT = FOGT for water as in Remark 2.1. We
denote this collection R = (R(™),,, and see that (2.11) gives a 1-1 map to the freezing
temperatures in 7. We can now apply Corollary 3.2 to calculate x.sy with (3.11e)
for the given D = (R, T). We also get a.s; incorporating the remaining data, each
with Ny a7 jumps.

With this process we get the Model-Q-extended with x.s; resembling XfD from
Model-Q2-empirical. Since x.fs(#) is a multivalued graph unlike the smooth function

xF, we also fit Xess to some parametric model X’e’}(}del as part of some Model-Q2-

extended-fit. Without fitting to a smooth curve, the upscaled model with multiple
jumps requires substantial additional effort in implementation [74]. In addition, it
raises the question on how a.rs compares to af from the empirical observations.
These two statements motivate the idea of fitting. As for the choice of parametric
models, one could use a variety of parametric models going beyond those used in
geophysics literature. We aim, however, to address the connection to the empirical
models of particular form. In the end, one can interpret the homogenization process
which derives X.rf, as an emulator of a physical experiment in which a discrete
collection of experimental dwoints (6b, x)p is collected, followed by fitting to some

smooth parametric model Xg’}(}d"‘l.
___Beside qualitative agreement, a good test of our conceptual process is whether

xg}ofdel is reasonably close to some x"°%! reported in the literature. We provide

examples to address this question, assuming first that we know the distribution of
pore sizes R. Considering R as data creates a bit of a conundrum since these should
be simultaneously compatible with the actual REV size |w|, and since we aim for the
freezing point depression to be significant enough to be noticed in computations and
in physical experiments.
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F1G. 5. Illustration for Example 4.2: the dependence of the upscaled phase fraction xcyfs on the
Gibbs—Thomson parameter F = FCGT in (2.11) (left) and on the number of materials Narar (right).

Ezample 4.2 (upscaling to model-w-extended and fitting to model-Q-extended-fit).
We consider the REV w = (0, 1)[cm] illustrated in Figure 5, with porosity n =0.5. We
consider Npsar > 2 with the arrangement of phases as follows: the pore sizes R(™)
were generated recursively using R+t = R(™) 4 (™) and (U(m))ﬁl‘é{”_z was gen-
erated uniformly from [0.2,1]. The values R(™) were scaled next so that > R(™ =
n|w|. Next, we use (2.11) to compute the depression in the freezing temperature corre-
sponding to an assumed pore size for which we heuristically set R(™) = n(®™)|y|. To
accommodate these, we use ad-hoc values FET € {5x1074,1073,2 x 1073}. For each
choice of Ny, AT/&IE FCT we calculated the upscaled liquid fraction . #£(8) which

we fit to some XZ}‘;EIEZ. The results are plotted in Figure 5 and are given in Table 8.

We make the following observations. Already with Ny a4 = 10, the step func-
tions x.ss plotted approximate well some of the smooth relationships le in Figure 2,
with a large tail and freezing point depression of order 10[°C]. Second, as expected,
increasing F¢T or Ny arar increases the magnitude of the freezing point depression
and decreases the maximum slope of x.¢s. Third, the parameter fit reported in Table
8 is, in general, agreement with the parameter range from literature, and is best for
models W and M, and would improve, e.g., with larger Ny asar.

Now we address the choice of FET in Example 4.2. In principle, we should con-
sider only the physical value FT = FST from Remark 2.1. However, as indicated
there, the drop of 6, by more than 10°C observed in nature requires very small radius
R of a pore. Simultaneously, the smoothness of experimentally measured Xf indicates
that there is a wide range of pore sizes in permafrost soils, likely reaching from 10~
to 107*[m]. We can include these submicron size pores along with larger pores in
the model construction. However, an image or grid resolution for these would be at
least 10% in one dimension which prevents us from the use of either imaging data,
or of synthetically constructed computational domains. Therefore, without this high
resolution, a good fit in Example 4.2 with an assumed R requires F¢T >> FOGT. Al-
ternatively, one should fix the freezing temperatures T rather than the radii R. This
issue is relevant for validation as well as for the impending comparison between the
pore- and the Darcy scale simulations in section 5.4.

Remark 4.2. If we are to interpret quite literally the decomposition of w(®) to
subdomains w(™) in which one solves the pore-scale problem numerically, then
O(R™) = R ~ |w™)| as in Example 4.2. For this, we must accept an estimate
for the order of magnitude R ~ O(1072|w|) corresponding to, e.g., Ny arar = 50,
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n=0.5, to allow a reasonable discretization each with 10 cells per each w(*™) for the
total of about O(10%) grid cells in each w. In other words, R or R should not be
too small. At the same time, from Remark 2.1 the physical choice of FOGT =107 cor-
responds to Af, ~ 1°C only for small Ry =10"" [m], but to achieve a close fit of xs¢
to empirical x{" from plots in Figure 2, we must have at least |9(m)| > O(1°C). There-
fore, in this literally understood scenario when the physical size of REV and of R are
matched, we conclude that a close fit between Xl and X.yy is obtained either when
Xefs is based only on 7, or if the process connecting 7 to R and the assumed wlw:m)
follows with a scaled F¢T = FGT 1}; =1072|w| or larger, as in Example 4.2. Another
option is to consider REV w Wthh is physically much smaller, which contradicts the
above statement about R.

We demonstrate the scaling and fitting issues further in the next examples.

Ezample 4.3 (dependence of model-Q-extended on Nps4r and the factor F' GT).
We consider (a) w = (0,1073) [cm] with = 0.50 and Ny;a7 = 51 materials. In (b),
we consider w = (0,1) [cm], and Npsar = 11; the configuration of materials within
the REV is shown in Figure 6. For both cases we generate (R(™),, from a normal
distribution ~ N(0.1,4 x 107%), and next scale so that Y = R(™) =n|w|. We calculate
0™ from (2.11) with (a) FGT FEFT, and (b) with FET =1073. We calculate the

upscaled x.ys, and we fit to X?Odel these are shown in Figure 6, with data in Table 9.

We see that the fitting parameters for X“}f}del(e) are within the range reported in
the literature. The example illustrates well the connection between the fitted models
and Model-w-extended.

The examples have shown the success of our conceptual construction of Model-
w-extended in achieving close agreement with Model-Q2-extended after upscaling.

4.1.3. Validation of acsy in Model-Q-extended. A meaningful validation
study would require a comprehensive dataset for some soil including a pore size dis-
tribution R (or of freezing temperatures T), soil-specific SFC x¥, and the knowledge
of porosity 1. Such comprehensive data is not available at this time, but we attempt

REV w REV w, Ny oo =11
0 0.001 0 1
x [cm] x [cm]
1 'e s A DD RS ERERERET LR LT b
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FIG. 6. Results of Example 4.3: plot of upscaled phase fraction xers(8) and of fitted models
Xg'}(}del(ﬁ) for model = L,W, M. Left: case (a) with FT = FFT. Right: case (b) with F¢T =1073.
Domain sizes and REVs are shown on top.
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realistic setting using only data on R = (R(™)),, and the associated volume fraction
(n(“’vm))m from applications literature; we refer to [21, 29] as a resource. We also
use X-ray micro-CT images [48, 49, 70, 50, 59], even if these do not resolve well the
tiniest pores.

We start with some empirical x{ (6) and n. Next, we find the step function
Xeff = HT(XZP) as the L? projection of le on some assumed grid 7. Clearly, the
choice of T determines the quality of the process and of the fit of x¥ a x.ss. Since x¥’
features steep gradients close to 6, =0, T is usually graded with more points towards
0, =0. We also have the pore sizes R = (R(™)),, from (2.11) assuming some F&7.

Next, we extract the volume fraction (™) of each material (w,m) from (3.11e)
as the jump 7™ = [Xeff]|0£m> of the step function y.rs at each of the 9,(km), 1<
m < Nwuyar. For ONwWMAT we have nW-Nwmar 11 —p = [Xesfllgvwaraz) so that
N =13, 7. )

We can next compare literature data as in the next example.

Ezample 4.4 (validation of Model-Q-extended with pore size distribution data).
We start with the SFC given by x with parameters x* = 0,06M = 0.2,0} = 0,
porosity of n = 0.5, and F¢T = F§'T; see Figure 7 for illustration. For expository
purposes, we start with Ny s a7 = 5; see Table 4 for 9>(km), the calculated characteristic
pore size R(™) and volume fractions n(wvm). We consider next large Ny asar = 50
and obtain a better fit of x.sr; we plot the histogram of (R(m),n(m))m in Figure 7,
with a comparison to the pore size distribution in [59, Figure 6] for silty loam.
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Fic. 7. Illustration of Example 4.4: approximating a given SFC curve XlP by some step function

m

Xeff based on a set of Ny ayar =5 points 0, . Left: approzimation oleM R Xefs when Ny prar =

5. Right: with Ny prar = 50 we have a better fit of le R Xeff with more points in T = (gim))m;

we show the histogram of pore size distribution R("™) compared to that from [59], annotated as (ER)
in the legend (inset, same units of radii).

TABLE 4
Results of Example 4.4 with Ny praT=5: the pore radii and volume fractions for the SFC
plotted in Figure 7.

Parameter Material (m)

1) (2 3) (4) (5) (6)
o™ [°(] ~15 -75 -5 —3.75 0 0
R(™) [cm] 8.000 x 10~7 1.600 x 10~6 2.400 x 10~% 3.200 x 10~ - -
(™) -] 5778 x 1072 8.696 x 1072 6.422 x 1072 1.427 x 10~! 1.482 x 10~ 5.000 x 10~*
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As shown in Figure 7 we have good qualitative agreement with [59, Figure 6], but
there is a scaling discrepancy of roughly 100 between pore radii we find and those
reported in literature. We already addressed the scaling issue in Remark 4.2 and
note that the data in [59, Figure 6] uses very small range of R. Here we would have
|w[~O(10) [pm].

Next, we attempt the validation process in the opposite direction. From a given
histogram of R, we extract the volume fractions n(*>™) and for each R("™) we calculate

T= (9£m))m. The homogenization process in (3.11e) gives Xeyf(€) which we can fit

to a selected parametric model Xg}ofdd(e)_

Ezample 4.5 (cross-checking of Model-Q-extended with inverse modeling). We
consider (a) one of the pore size distributions from [59] for a small sample of silty
loam. We also consider (b) the pore size distribution of Berea sandstone in [29],
normally distributed with mean g =0.002 [cm] and an estimated standard deviation
o = 0.001 [cm] to replicate the behavior reported in [29, Figures 3-7]. For both
examples, we assume 7 /——_\&5. We use FCT = F§T7 and derive Model-Q-extended

with xcrr(0) fitted to Xg’}ofdelw) for each model = M, W, L shown in Figure 8, and
with parameters in Table 9.
In (a) the range of pore sizes is relatively small of 10-150 [pm], thus the cor-

responding range of freezing temperatures is small at most 0.01 [°C], resulting in a

steep profile of x.rs and a poor fit of the models X;’}‘}del which feature steeper gradi-
ents than those plotted in Figure 2. The distribution in (b) gives a better fit, but the
freezing depression is likely underestimated to be only of 0.1 [°C].
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F1G. 8. Illustration for Example 4.5: constructing x.ss(6) and XZ}‘}del(G) for the given pore size
distribution from [59] annotated as (ER) in the legend (top) and for Berea sandstone from [29].
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In the end we believe that the examples we provide show success of the proof-of-
concept construction of upscaling Model-w-extended to Model-Q2-extended.

4.2. Results: Upscaling heat conductivity (k(™)),, from Model-w to
kess(0) in Model-Q2. Here we work to derive effective conductivity k.yy and some
of its approximations k. sy which we compare to the simple averages k4, k%, k! given
by (2.15). Since we do not have physical data for conductivities in small pores, we
use the properties for bulk water, thus there is no difference in calculating k.yy from
Model-w-basic and Model-w-extended. The main challenge we describe and address
is a significant nonlinear dependence of the upscaled conductivities on the actual
phase distribution rather than only on the volume fractions of ice within w(*). This
dependence calls for construction of a reduced model.

Heat conductivity for composites is an important topic both for practical studies
of unsaturated as well as ice- or hydrate-filled soils [68, 9, 11], and from the theoretical
point of view [36]. In particular, of interest are both the homogenized conductivity
tensors as well as the upper and lower bounds such as k4 and & on their eigen-
values, respectively. Composites with nonzero thermal contact resistance are also
important [60, 31] but are outside our scope. Tighter bounds can be obtained with
Hashin—Shtrikman formulas when Ny, 47 = 2; see [36, secs. 2.6-2.7], but are not easily
computable for rock and water in two phases.

4.2.1. Theoretical set-up. To calculate k.sr, we require (k,()m))%’ﬁfT for each

material m and phase p = [,i. For m = r we set k(") = k|, = ky, and assume

w() is known. For k| ) as in Assumption 2.1 we only consider phase dependence,

i.e., we choose from k;,k;. We also set k|w(w,m) = kl,k\ww,m) = k; in each m =1,
1 i

Ny aar regardless of the pore size in w(®™); the more general case would require
the knowledge of the heat conductivity of the undercooled water and/or small pores
for which we lack sufficient literature at this time.

Given some 6(x) = 6y, the effective heat conductivity keys(6p) € R¥*? for the
heterogeneous Stefan problem (2.8) is given by (3.4) as part of Proposition 3.1. To
solve (3.4b) for (&;)?_,, we need to know the geometry of the materials and phases

i=1
wfw),w§w) C w(z) corresponding to 6.

Remark4.3. In d=1, k.5 ¢(6) equals exactly k¥ which only depends on the volume
fraction of the materials rather than their geometry, which can be approximated from
the known xerr(60)-

We can also consider some approximations k:f/f discussed in section 3.3. In ad-
dition, we consider reduced models defined next.

4.2.2. Proposed practical reduced model for kezs(0). For d > 1, the dis-
tribution of wl(w) corresponding to 6y is not unique. In fact, for a given 6, there are
infinitely many possible different realizations (0(y)q)a,y € w: (0(-)a) = 6o, with the
corresponding geometry (wl(w))a; each yields a different (kcsf)q. The second challenge
is that the dependence on 6y is implicit.

To make the calculations of ks (6) useful for coarse-scale computational models,
we propose a reduced model, a comprehensive look-up library for each fixed rock—
water domain w(™. A desired value of k.sf(f) is given by an interpolation of the
precalculated values (kcs¢(6s))s drawn from a probability distribution of (8)s, as is

common in reduced order models [52].

Remark 4.4. The parametrizations of probability distributions (kes;(6p))s can
be calculated offline: for each 6, and a given w(™ we build a desired number N, of
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“realizations” of (wl(w))a with one of the following data-based or simulation strate-
gies: (i) postprocessing the pore-scale images [14, 59], or (ii) simulations of (6(y,t))a
corresponding to some initial data and energy input scenarios for which the time
snapshots of averages equal 6. Alternatively, one can pursue (iii) via stochastic or
statistical mechanics simulations of plausible phase configurations compatible with
the microphysics; see [50].

A different reduced model strategy is possible for pore modifications due, e.g., to
biofilm growth around the grains such as in the work [7].

4.2.3. Results on kcsp. We illustrate now the idea in section 4.2.2, and com-
pare k.ss to the approaches in permafrost literature which calculate kP = kP (6)) as
one of k4 k% Kk given by (2.15); these do not distinguish the different geometries
(wl(w))a. In Example 4.6 we follow up on point (i) from Remark 4.4, and assume
w®@b (@) are known from imaging. In Example 4.7 we assume as in (ii) that
w1 are known from simulations.

Ezample 4.6 (upscaling thermal conductivities with a phase arrangement from
imaging). We consider pore geometries taken from [50, Figure 1A] with w shown in
Figure 9, with voxel resolution 535 x 536. We consider first cases (1)-(2) with w(®)
in one phase only, and then cases (3)—(4) with w(*) partitioned into two phases. We
assume material properties as in Table 5, and find the upscaled ke ¢, its approximation

kcs¢, and the simple averages given by (2.15). These values are reported in Table 6.

Now we discuss the results: the geometry of w is close to “isotropic” without any
particular layered or skew trends, even when multiple phases are present. Therefore,
it is not a surprise that the tensor k. reflects this “isotropy”: the diagonal values of
kesy are close to one another, and the off-diagonal values ks 12, kefr,21 (not shown

in Table 6) are of order 107°. Next, the values of k. s are within less than 1% of ks ¢
even when additional eight digits are considered (not shown). Finally, in each case

(3) | (4)

FI1G. 9. Pore-scale images of w(x) from Ezample 4.6. Rock grains in white. In (1)—(2) water is
in black. In (3)—(4), water is in gray, and additional solid phase is in black. The effective keys and
its approximations are giwen in Table 6.

TABLE 5
Thermal properties of rock and water materials assuming water has properties of bulk water.
(The grains are considered “frozen” for 6 <0 and “unfrozen” for 6 >0.) This convention is useful
for algebraic formulas employed in section 4.1.1.

Material c£m>| cl(m) k§m>\ kl(m) Lim) 0.(™)  Reference
Unit [J/m3°C] [J/m s°C] [J/m?3) [°C]

Material (w)  1.90 x 104.19 x 108 2.30| 0.58 3.06 x 108 0 (58]
Material (r)  2.36 x 105]2.36 x 106 1.95|1.95 0 0 ci, kit [78]
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TABLE 6
Upscaled values kegy of heat conductivity k from Ezample 4.6 corresponding to the geometries

shown in Figure 9, and its approximations k/e\f/f as well as k4, kG k2.

Case 7 @i xg kA kG kK keppins keproz keppaikepy oo
(1) 04413 0 0 001345 0.01142 0.00955 0.01149 0.01166 0.01149 0.01150
(2) 04395 0 0 0.01347 0.01144 0.00956 0.01168 0.01161 0.01168 0.01162

(3) 0.4099 0.3558 0.1499 0.0164 0.0146 0.0123 0.01492 0.01471  0.01492 0.01467
(4) 0.4136 0.2679 0.6478 0.01844 0.01708 0.01496 0.01717 0.01727 0.01721 0.01720

kC is within less than 1% of the diagonal entries of kepy, but kA and k¥ can be as
much as 10-20% different from k“. In the end, the values kT as well as k. ff appear
to provide a very good approximation to upscaled conductivities k.

Next we consider a layered phase arrangement, with the realizations of (o.}l(w))a
obtained via a transient simulation of heat equation at the pore-scale for a scenario
of thawing due to heat input from bottom boundary.

Ezample 4.7 (upscaling thermal conductivities with a phase arrangement given
from simulations). We consider pore scale geometry shown in Figure 10, assume
material properties in Table 5, and conduct simulations of thawing, following [5.
Example 5.4.2]. For every time step " of the simulation, we have a different geometry
of (wl(w))n, with selected snapshots shown in Figure 10. We calculate the volume
fraction (x1)n = (x(-,t™)), ()", and upscaled kess plotted in Figure 10; we omit the
off-diagonal entries of k.y; which are about 1075 smaller than the diagonal entries.

This example demonstrates a different pattern than in Example 4.6. While the
manner of upscaling seems insignificant since keys ~ kesr, we see a drastic difference
between k. and kA kG EH. As shown in Figure 10, the thawing process follows by
design from the bottom to the top of the domain w(x). As a result, the arrangement
of phases (materials) at each time step n resembles a layered medium with inclusions,
with layers building up in the vertical x, direction. Unlike in Example 4.6 we see
strong anisotropy with up to 50% difference between the horizontal and vertical com-
ponents of the conductivity Kefr 11 7# kesr22 which, as expected, are close but not
equal to the arithmetic and harmonic averages, respectively. This feature, typical for
layered media, is somewhat moderated due to the presence of rock inclusions. Finally,
the geometric average k¢ remains within 20 to 25% of the upscaled values k. f£,11 and
kegf.22 and more or less splits their difference.

In the end we see significant difference between the upscaled heat conductivities
keps found using different approaches. It is natural to wonder how this difference
impacts the Darcy scale models. We follow up with a study of sensitivity to k* in
permafrost models in section 5.3; we also discuss the choice of ks in the comparison
between the pore- and the Darcy scale to be reported in section 5.4.

5. Computational results. In this section we provide simulation results to il-
lustrate the upscaling heterogeneous Stefan problem in Model-w-extended (2.8)
with data (™ k(™),, to the effective model Model-Q-extended (3.2) with data
(qeff, kers) and their practical approximations (Qeff, kers) in Model-Q-extended-fit.
These were defined in sections 4.1.2 and 4.2.

In section 5.1 we provide literature notes. In section 5.2 we outline our P0O-P0
scheme. In section 5.3 we present a sensitivity study on k.¢s and kT at the Darcy
scale. In section 5.4 we present our main result: a computational comparison of the
pore-scale and the Darcy-scale models.
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Fi1G. 10. Illustration for Example 4.7. Top: evolution of the geometry w(x) in time: grains w(™
(w) (w)

[ l

corresponding to the evolving w1 . Middle: plots of average phase fractions n;(t), xi(t), and x;(t),

and of upscaled keyy(t), approzimated kesy(t) and averaged values of heat conductivity. Bottom:

plots of keyr(x1) and keyr((6)).

black, ice w in white, and liquid w in gray. Middle and bottom: effective thermal properties

5.1. Literature notes on approximation of Stefan problem and nonlin-
ear degenerate parabolic problems. We start by acknowledging the wealth of
literature on the subject including the classical contributions on monolithic (no front-
tracking) approaches to the homogeneous Stefan problem in [37, 58, 35, 41, 71, 25].
These, however, do not apply to the heterogeneous version in our Model-w, and our
recent review accompanying the schemes for heterogeneous Stefan problem in [6] in-
cludes an extensive discussion of the P1-P1 schemes [61], P1-PO schemes involving
the Chernoff formula [35, 41], and approximations using phase relaxation [71, 25].

As concerns the Darcy scale permafrost models similar to Model-Q2-empirical,
we see from the plots in Figure 2 that af’(6) features nonlinearity with a singular
derivative at # = 6, somewhat different than in the degenerate but smooth nonlinear
parabolic equations considered, e.g., in [3, 63, 76, 51, 54, 53]. In particular, linear
rates have been derived in [3, 63] which can be extended to quadratic rates under
strict smoothness requirements [3].
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Meanwhile, the applications literature has produced simulations of Model-Q-
empirical with focus on simulations rather than convergence analyses included, e.g.,
in [20, 75, 23, 40, 38].

We are not aware of any work that would fit the multivalued Model-Q-extended
with multiple jumps, but we are working on a manuscript on this topic [74].

5.2. Algorithm. We start by briefly outlining the approximation techniques for
the heterogeneous Stefan problem (2.8) at the pore-scale, and for the permafrost model
at the Darcy scale for (2.12). At both scales, we use rectangular (voxel) grids, and
a fully implicit in time scheme, approximating # and w each by piecewise constants
(hence denoted by P0-P0), and fluxes with RTjy finite elements. This PO-PO approx-
imation scheme is implemented as CCFD (cell-centered finite difference) scheme, also
interpreted as a finite volume scheme. It is solved for the primary scalar unknowns

(5.1a) wh +TAOM)" =w" T T 0> 1,

where w" = (w});, " = (67); are the vectors of discrete approximations to w, at

time " and at the cell centers x; of some rectangular grid covering 2. We have
W = (Winit(z));. Also, T is the time step, A is a discrete “diffusion” nonlinear oper-
ator built from the phase dependent heat conductivities and which incorporates the
Dirichlet boundary conditions, and f™ approximates the source term which includes

Neumann boundary data, if relevant. The system is closed with a relationship
(5.1b) g;(07,w}) =0at every grid point ;.

Here the relationship g; expresses the model-specific pointwise connection between 0
and w. In the heterogeneous Stefan problem, let z; € Q™) for some m; we work with
the function g;(0,w) = 6 — (a(™)~(w); the function (a(™)~!(w) is a continuous
nondecreasing Lipschitz function differentiable everywhere except at w =0 and w =
L™ In empirical Darcy-scale models we work with g;(6,w) = g(0,w) = w — o (9);
the function o strictly monotone, continuous, globally Lipschitz, and differentiable
everywhere except at § = 0. The approach is robust for the pore-scale models (3.1)
and approximations to w¢,0¢ and the Darcy-scale models (2.12) with approximations
to w?,0F; we show in [6, 74] that the scheme converges at the linear rates, at least
for the d =1 examples and in the norms we consider.

The nonlinear algebraic system (5.1) is solved with Newton iteration which gen-
erally requires that all nonlinear functions are at least Lipschitz with a Lipschitz
inverse. This holds for the pore- and the Darcy-scale models with (5.1b) described
above: the Newton iteration is well defined and reasonably robust as long as adaptive
time-stepping is used.

However, when approximating (6¢/f,w®/7), the solutions of the effective model
(3.2), we have g(8,w) =w — e sr(6) given by (3.7), and the solver for (5.1b) presents
new challenges since sy features a mixture of several jumps and jumps in slopes.
We find that the Newton iteration has difficulty converging without additional algo-
rithmic improvements; these deserve special attention deferred to another venue [74].
Therefore in this paper we use a smooth approximation a.rf(6) to a.ss discussed
in section 3.2, for which Newton iteration works similarly to that for the empirical
models af’ (). This means that in the end, we find the approximations (f¢f/, weff)
rather than (6¢/7 we/7).

5.3. Sensitivity study. We now address the issue of the dependence of the
simulations of the Darcy-scale model on the conductivity value, which we believe
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is significant. We consider Q = (0,10)[cm], n = 0.43, and x7(0) = xM(6), with
Xres = 0,0, =0, and b= 0.16. We use wjn;;(z) = const = a.ss(0y) with 8y = —7[°C]
representing a frozen state. We discretize with M = 50 and 7 = 10[s], and simulate
0(z,t),t € (0,T] with T'=10,000[s] sufficient for about quarter of the sample to thaw
due to the boundary conditions

(5.2) 0(0,¢) =0y, 0(10,t) =5.

We conduct two simulations. First, we focus on the “value” of k,. which influences
kT ().

Ezample 5.1 (study of sensitivity of solutions to Model-{2 to the heat conductivity
k). We approximate 6(z,t) using k. = 1.95 from Table 5. We also find 6™ (y,t)
corresponding to some k" chosen to be within 20% difference from k.., and drawn
randomly from a uniform distribution from [1.56,2.34]. The temperature and enthalpy
profiles for k¥ = k4 calculated at each k7** are shown in Figure 11. We find that the
simulated |6™¢*(z,t) — 6(x,t)| can be as much as = 0.74°, which represents about 6%
of the range of simulated temperatures.

Second, we keep k,. fixed, and study the sensitivity to the choice of k.

Ezample 5.2 (study of sensitivity of solutions to Model-2 to the choice of param-
etrization k). We simulate 64 (z,t),0% (z,t),0 (z,t) with the same scenario as in
Example 5.1 but choosing, respectively, k¥ () to be k4,k, or k given in (2.15).
The results shown in Figure 12 show a difference max, ; |04 (x,t) — 68 (z,t)| = 1.45[°C]
which is about 15% of the range.

t=1
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—k=1095
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o, |-=k=1755 E
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S [ek=234 =
g 2
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-7 e 0
0 5 10
x [em]
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5 0000 1501
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T >
[} 7 o
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F1G. 11. Temperature 6 (left) and enthalpy w (right) profiles at t =100 (top), and t = 10,000 [s]
(bottom) for Exzample 5.1. The units in the legend for k =k, are [J/m s°C].
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Fi1G. 12. Temperature 0 (left) and enthalpy w (right) at t =100 (top) andt =10,000 [s] (middle)
for Ezample 5.2 comparing the use of k4, kG, and k™ . Also shown (bottom) are the normal boundary
flux values over time.

These two examples show substantial sensitivity of the solutions to the values
and the choice of k*. This fact plays a significant role in the quality of upscaling
considered below.

5.4. Comparison between the pore-scale and the Darcy-scale models.
In this section we illustrate the main result of this paper: we show that one can
effectively upscale the heterogeneous Stefan problem with Nggy pores to the Darcy-
scale permafrost model with data derived from upscaling the pore-scale data.

We work in d =1 in which ¢y = N;gv represents the actual size |w| of the pore
domain w = (0,1) [cm] relative to the size of Q = (0,10) [cm]. We choose the REV
to be the same as in Example 4.3, with the pore geometry given in Figure 6, and
porosity n =0.45. Rock-fluid data is in Table 5.
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The choice of d =1 allows various simplifications; in particular, we recall that in
one spatial dimension keys(#) is known to be exactly equal kEH for a geometry wl(w)
corresponding to 8. This choice allows one us to focus on the features of the upscaling
specific to the Stefan problem.

For initial and boundary conditions, we use the same scenario as in Examples 5.1
and 5.2 for the evolution from the initially frozen state towards a partial thaw due to
the heat applied through Dirichlet condition on the right-hand side.

With the data as above, we approximate the solutions (6¢,w®) to the actual pore-
scale model (2.8) implemented with the scheme (5.1). We also find the approximations

to (6¢ff wefl) to the Darcy-scale model (3.2), again with (5.1), and compare these to
the pore-scale model solutions. When referring to these approximations, we suppress
any notation for the spatial or temporal discretization.

For the Darcy-scale model, we build x.f¢ as shown in Example 4.3(b), and cal-
culate next aeyy(#) built from the pore-scale model as described in section 3.2. Next,

we construct ag}ofdel through a fit of x.fs to one of the parametric models XZ}‘}del,
model = L, W, M discussed in Example 4.3.

As concerns ke f(0), we have the exact match k. ¢ (0) = k™ (9) which depends only
on the current volume fraction x.sr(6) rather than the actual possible arrangements
of wl(w) corresponding to this #. In the example, we can compare the use of the
weighted averages k4, k¢ calculated from the same data.

Ezample 5.3 (comparison of solutions to Model-w-extended applied at every cell
of Model-Q-extended). The solutions (0¢,w¢) and (0¢/f wefl) are approximated in-
dependently of one another with spatial discretization corresponding to M€ = 1000
and M/ =25 cells, respectively. We also use finer time-stepping for the pore-scale
7¢ = 1[s] than that for the Darcy scale model where 7¢/f =10[s]. The solutions (8, w)
at the end T' = 10,000 are plotted in Figure 13. We also plot the normal fluxes at
x =0 (left boundary) and x =10 (right boundary) in Figure 14.

We now compare the pore-scale solutions to Model-w-extended with the REV
w distributed over all 2 to the solutions to Model-Q2-extended-fit approximating the
effective Model-Q-extended. We observe that the pointwise values of 6¢ are close

to 6¢ff. In addition, the values of weff are quite visibly in the “middle” between
the lower and upper bounds of w* which correspond to the rock and water portions
of each w(™, and w(*), respectively. One interesting feature is the presence of the
individual pointwise “spikes” in w® which correspond to the temperatures 6¢ crossing
the different freezing temperatures specific to the different material types in every
REV w. We also see the expected “wiggles” of 6¢ around 6°/f. Finally, the closeness
of ¢ and 6/ is most pronounced for the “correct” and exact kff =k s.

Further insight is provided through the analysis of fluxes in Figure 14. We see
that the right flux quickly settles to an inflow energy value already around ¢ = 1000,
with the closest agreement from the simulation corresponding to k. The left flux is
of much smaller magnitude of about 10% of the right. The time oscillations in flux
visible from pore scale correspond to the finite time of propagation of free boundary
across the cells, and are typical for the solutions to Stefan problem, and more general,
for any phase change problems.

5.4.1. Performance of our computational algorithm. We also briefly re-
port on the performance of our P0-P0 algorithm when applied to Example 5.3. We
have performed an extensive study of our PO-P0 algorithm at the pore scale in [6];
therefore, we only report about the algorithm at the Darcy scale. Convergence was
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Use of k4 (arithmetic averaging)
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Fi1G. 13. Illustration for Example 5.3: plots of temperature 6 (left) and enthalpy (right) w at
t=10,000 [s] of solutions to Model-w-extended and Model-Q2-extended at the pore and Darcy scale,
respectively. Very good agreement of the pore-scale with the Darcy-scale solutions is visible; it is
excellent when k™ is used.

achieved for grid sizes h € {0.4,0.2,0.1} x 1072 [m] and 7 € {1,10,100} [s]. The L, W,
and M models have similar performance with a maximum of 4-9 iterations and mean
of 2—4.2 iterations. For time steps 7 =1,10 and 100, time step reduction was observed
until 7 =0.5,2.5, and 50, respectively, and the number of iterations decrease with de-
creasing time step. Moreover, no difference was observed when using k* = k4, k% or
kH. More analysis will be given in [74].
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Use of k4 (arithmetic averaging)
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Fi1G. 14. Illustration of Example 5.3: plot of the left and right boundary heat fluzes q(t) in time.
The inset is chosen at t = 1000 when the phase change is first well visible.

6. Summary and conclusions. In this paper we consider upscaling of het-
erogeneous Stefan problem which features multiple nonlinearities, some of which are
multivalued; all are dependent on the type of material considered.

We apply rigorous theory from [73] and derive practical formulas for the effective
properties in section 3. First, we consider the Model-w-basic for the rock and water
mixture at the pore-scale which we upscale to the Darcy-scale Model-Q-basic. We
demonstrate that additional microscale physics must be incorporated and thus we
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propose Model-w-extended, which after upscaling to Model-Q-extended shows quali-
tative agreement with Model-Q2-empirical. We also propose a reduced model for han-
dling effective conductivities. In the end, the solutions of upscaled and micromodel
compare well.

The theoretical contributions of this work include a new connection between the
pore- and the Darcy-scale models, a method to incorporate microphysics in the rigor-
ous upscaling process, and a new proposed reduced model for effective conductivities
which honors the underlying uncertainty.

The practical contribution is that we are able to relate the pore-scale properties of
porous media such as pore distribution to the effective properties such as water content
XZP (9). This practical relationship allows one to construct the effective constitutive
properties of permafrost “in silicio” instead of via experiments. One other important
take-away message is that some of the approximations commonly used in the Darcy-
scale models including the arithmetic or geometric weighting of conductivities might
lead to modeling errors.

More research is underway addressing some of the open questions. In particular,
in this paper we only considered the continuous relationships XlP (0) which we adapted
from the models in literature, and only simulated upscaled models with their effective

approximations X;’}‘}del. More general study as well as development of algorithms
for properties involving the mixtures of step functions is needed. Moreover, we only
studied a portion of the microphysics by including freezing point depression. More
can be incorporated in future models.

Furthermore, we only considered air-free media, and only studied thermal models.
More general coupled thermal-hydrological models will be considered in the future.

A. Appendix. We include here additional notes on theoretical background and
computational results.

A.1. Additifonal theoretical notes. We now provide now detailed theoretical
results in abstract spaces related to the material in section 3.1.1 which set the stage
for Proposition 3.1.

Remark 7.1. With the hypotheses in section 3.1.1, [73, Thm. 3.1] establishes the
existence of a solution w € L*(L?), and [73, Thm, 4.1] proves two-scale convergence
as € = 0. The coarse-scale problem in [73, Prob. 5.1 and Thm. 5.4] requires ad-
ditional assumptions [73, eqgs. (5.1)—(5.3)] on the dependence of ¢ on wu [these hold
for ¢ = —k(0,2,y)VO(z,y) considered in this paper]. The effective conductivity Ky
[our k.sy] calculations are in [73, eqgs. (6.1)-(6.7)]. The simplified cases listed in [73,
egs. (6.8)—(6.9)] do not apply to the composite materials in this paper. Furthermore,
[73, Thms. 4.1 and 5.1] prove two-scale convergence of the solutions of the e problem
[73, Prob 3.1] and derive the two scale equation [73, egs. (5.8)—(5.11) or Prob. 5.1] sat-
isfied by the asymptotic limits, as well as the coarse scale problem with data dvg, Kq
[our cesy, keys] defined by [73, Thm. 5.4], [73, egs. (6.6)—(6.7)], respectively.

7.2. Data on parameters and fitting. We include here the tables with pa-
rameters and reporting on the data fitting. Table 7 provides summary of the adapted
xF models.

Table 8 contains details on these parametric models in Example 4.2.

Table 9 presents results of fitting of x.ss to these parametric models in Exam-
ples 4.3 and 4.5.
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TABLE 9 o
The parameters of fitted models model = L, W, M for fitting xcfs to X'g}ofdel.

Example 4.3(a) bl =2.6973,0L = —0.80199,
"W =1.3709,0% = —0.80007,x¥, =0,
bM =2.4568,0M = —0.80247,xM, =0.
Example 4.3(b) bl =2.6075,0L = —1.4665
bW =2.6393,00 = —1.4526,xV =0
bM =1.2245 0M = —1.4348,xM_ =0
Example 4.5(a) [59] b =7.816 x 107 1,0F = —8.871 x 1074,
bW =7.428 x 1073,0/V = —8.623 x 10~4,x/, =0,
bM =4.821 x 102,0M = —-8.519 x 1074, xM_ =0.
Example 4.5(b) [29] bl =8.586 x 10~ 1,0 = —2.659 x 1073,
bW =1.872x 1072,0%V = —-2.670 x 1073,x¥_ =0,
bM =1.940 x 102,0M = —2.668 x 10~3, M _=0.
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