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UPSCALING AN EXTENDED HETEROGENEOUS STEFAN
PROBLEM FROM THE PORE-SCALE TO THE DARCY SCALE

IN PERMAFROST\ast 

MALGORZATA PESZYNSKA\dagger , NAREN VOHRA\dagger , AND LISA BIGLER\ddagger 

Abstract. In this paper we upscale thermal models from the pore--scale to the Darcy scale
for applications in permafrost. We incorporate thawing and freezing of water at the pore-scale and
adapt rigorous homogenization theory from [A. Visintin, SIAM J. Math. Anal., 39 (2007), pp. 987--
1017] to the original nonlinear multivalued relationship to derive the effective properties. To obtain
agreement of the effective model with the known Darcy scale empirical models, we revisit and extend
the pore-scale model to include the delicate microscale physics in small pores. We also propose a
practical reduced model for the nonlinear effective conductivity. We illustrate with simulations.

Key words. heterogeneous Stefan problem, homogenization, upscaling, permafrost models, por-
ous media, pore-scale and Darcy scale, nonlinear degenerate parabolic partial differential equation

MSC codes. 35B27, 35R35, 80A22, 76S05
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1. Introduction. In this paper we apply numerical upscaling to connect the
permafrost models at the macro- (Darcy) scale to the micro- (pore-scale) processes.
Permafrost is the ground that remains frozen for two or more years, and is a complex
environment with great importance to climate studies. Our focus in this paper is on
the energy equation and on the freezing/thawing phenomena; other equations as well
as the coupled thermal-hydrological processes will be discussed elsewhere.

The following energy equation combines the conservation of energy with Fourier
law:

\partial tw+\nabla \cdot q= f, q= - k(\theta )\nabla \theta , w= \alpha (\theta ),(1.1)

and requires constitutive equations defining the enthalpy w and heat conductivity
k as functions of temperature \theta . The models of phase change are challenging since
w(\theta ) is typically multivalued at the temperature of phase change; this feature has
been very well studied, in particular, for the well-known Stefan problem in which
w \in \alpha (\theta ) = c(\theta )\theta + L\scrH (\theta ) where \scrH is the Heaviside graph, and c,L are the positive
heat capacity and nonnegative latent heat coefficients [73, 65]. In what follows we
write w \in \alpha (\theta ) when \alpha (\theta ) is multivalued, and w = \alpha (\theta ) if the relationship in some
particular material is single-valued.

Permafrost soil is a porous medium, a mixture of NMAT = 2 materials: rock and
water in liquid and ice phases: in this paper we do not consider vapor phase or air
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component, and neglect the density variations between ice and water. The energy
equation for this mixture depends on the material and on the scale. We consider
the pore-scale domains \omega and the Darcy-scale domains \Omega and work with models
denoted by Model-\omega and Model-\Omega at the pore-scale and the Darcy scale, respectively,
in several variants. Each Model-\omega recognizes the interface between the materials
and phases, and for each material m = 1, . . .NMAT they feature material-specific
multivalued relationships \alpha (m)(\theta ) as well as conductivities k(m)(\theta ). At the Darcy scale,
the applications literature commonly uses various experimentally calibrated models
which we call Model-\Omega -empirical with single-valued functions \alpha P (\theta ) and kP (\theta ); here,
the superscript P refers to the Permafrost, and can be replaced by superscript model

for a particular parametric model.
We devote this paper to the development of the rigorous connection between

Model-\omega involving the collections (\alpha (m), k(m))m, and the Darcy-scale Model-\Omega -
empirical involving (\alpha P , kP ). We follow the general homogenization theory in [73]
to derive Model-\Omega with multivalued \alpha eff (\theta ) and keff (\theta ) from Model-\omega . However,
upscaling Model-\omega which involves only rock and bulk water (and which we call Model-
\omega -basic) does not give relationships qualitatively consistent with Model-\Omega -empirical.
To improve, we propose a new Model-\omega -extended which incorporates realistic physics
of Gibbs--Thomson relationship to account for the depression of freezing temperature
in small pores. After upscaling Model-\omega -extended, we get Model-\Omega -extended with
qualitative agreement with the empirical Model-\Omega -empirical. The roadmap we follow
is summarized in Table 1.

We illustrate the findings with computations and provide ample references to both
mathematical and applications literature including the emerging work on imaging
permafrost soils.

The outline of this paper is as follows. We provide preliminary notation in sec-
tion 2.1, and give details on Model-\omega and Model-\Omega -empirical in section 2. In section 3
we explain the process of upscaling of the constitutive relationships from the pore-
scale Model-\omega -basic and Model-\omega -extended to the Darcy-scale Model-\Omega -basic and
Model-\Omega -extended, respectively; we also address approximate Model-\Omega -extended-fit,
and compare to Model-\Omega -empirical. We divide the presentation there into that for \alpha 
and k. In section 5 we outline the computational models and present simulation re-
sults including a comparison of the pore- and the Darcy-scale solutions in section 5.4.
We also provide supplementary material (Supplement.pdf [local/web 19.4MB]) with
illustrations of the heterogeneous Stefan problem; these provide additional illustra-
tions on the heterogeneous Stefan problem which are not available in the literature.

Table 1
Scales: the pore-scale \omega and the Darcy scale \Omega , and models Model-\omega and Model-\Omega , respectively,

considered in this article. In the last column we indicate the relationship \alpha (\cdot ) and whether it is
multivalued or single valued for a given collection of models.

Model Scale NMAT Materials k \alpha 

Model-\omega -basic pore-scale 2 rock (r), water (w) k(m) \alpha (m), multi

Model-\omega -extended pore-scale NWMAT + 1> 2 rock (r), and
water in pore subdomains 1 . . .NWMAT

Model-\Omega -basic Darcy averaged over (r,w) keff \alpha eff , multi

Model-\Omega -extended Darcy averaged over (r,w(1), . . .w(NWMAT ))

Model-\Omega -extended-fit Darcy approximation/fit of \Omega -extended k̃eff \alpha eff , single

Model-\Omega -empirical Darcy calibrated experimentally kP \alpha P , single

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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438 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

2. Physical models for heat conduction at the Darcy and the pore-scale.
We start with general notation in section 2.1 and next we define the heat conduction
models at the pore-scale in section 2.2 and at the Darcy scale in section 2.3. A list of
parameters and variables is given in Table 2.

2.1. Notation in heat conduction models with phase change. We consider
heat conduction in a domain \Omega \subset Rd, d\geq 1, and denote by \Omega T =\Omega \times (0, T ) the space-
time cylinder. The boundary of \Omega is denoted by \partial \Omega , and n is the unit outward normal
to \partial \Omega ; \partial \Omega is partitioned to the Dirichlet boundary \partial \Omega D and Neumann boundary
\partial \Omega \setminus \partial \Omega D. We will also assume that | \partial \Omega D| > 0. We adopt the usual notation on
Sobolev spaces [66, 72], and denote for shorthand the Sobolev spaces on \Omega T as follows:
v \in L2(H1) denotes functions v \in L2(0, T ;H1(\Omega )). For a set S, D(S) = C\infty 

0 (S) is
the set of smooth functions with compact support on S, and D(S)\prime is the space of
distributions, i.e., the continuous linear functionals on D(S). Further, we denote by
| S| the measure of set S and by \=S its closure.

We also recall the Heaviside function H :R\rightarrow \{ 0,1\} , H(0,\infty ) = \{ 1\} ;H( - \infty ,0] =
\{ 0\} , and define the multivalued Heaviside graph as follows: \scrH (0,\infty ) = \{ 1\} ;\scrH ( - \infty ,0)
= \{ 0\} ;\scrH (0) = [0,1].

2.1.1. Heat conduction with phase change in a single material. We now
provide details of (1.1) which involves the energy density (enthalpy) w, the heat flux
q, the temperature \theta , and the liquid phase fraction \chi (\theta ). The data are the source
term f and heat conductivity k. We assume that \Omega has a fixed volume; in particular,
we disregard the change of volume due to ice expansion as the water freezes. We also
ignore convection. We consider two phases: liquid and ice (solid), and their properties
are denoted with subscript l for liquid, and i for ice. The domain \Omega is partitioned
into the liquid \Omega l and ice phase subdomains \Omega i separated by an interface (``mushy"")
region \Omega li in which ice and liquid co-exist.

First, we require a definition of w. Without the phase change dw = c(\theta )d\theta , with

heat capacity c, and w = \alpha (\theta ) = \scrC (\theta ) =
\int \theta 

\theta ref
c(v)dv where \theta ref can be any conve-

nient reference temperature which we choose to be equal 0; for freezing/thawing, the

Table 2
Variables and parameters used throughout this article.

Notation Description

p\in \{ i, l\} Subscript: phase p either solid ice i (frozen), or liquid l (unfrozen)
(m) Superscript: material m; for example, water (w), rock grains (r)

\eta , \eta (m) Volume fraction of material (m)

\omega , \omega 
(m)
p An REV \omega and \omega 

(m)
p \subset \omega is the portion of the REV occupied by phase

p of material(m)

Variable Description/SI Unit

w Enthalpy/Energy per unit volume [J/m3]

\theta Temperature [\circ C]

\chi l Liquid phase fraction (= \chi 
(w)
l ) [ - ]

Parameter Description/SI Unit Typical value

\eta Porosity [ - ] Sand [0.30,0.35], Silt [0.4,0.5],
Clay [0.45,0.55] [4](Pg. 74)

\theta \ast Freezing point depression [\circ C] [0, - 5] [1](Pg. 24)

c Volumetric heat capacity [J/m3\circ C] Water 4.19\times 106, Ice 1.90\times 106 [58]
k Thermal conductivity [J/m s\circ C] Water 0.58, Ice 2.3 [58]

L Latent heat per unit volume [J/m3] Water 3.06\times 108 [58]
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 439

reference temperature is best set to the freezing temperature \theta \ast . For heat capacities

constant in each phase, we set \scrC (\theta ) = (\theta  - \theta \ast )

\Biggl\{ 
cl, \theta > \theta \ast 

ci, \theta < \theta \ast 
. We assume local equi-

librium, i.e., that \theta | \Omega l
> \theta \ast , \theta | \Omega i

< \theta \ast , and that \theta | \Omega li
= \theta \ast . We need both \chi and \theta 

as independent variables to fully describe the system's state, but \chi | \Omega l
= 1, \chi | \Omega i

= 0,
while \chi \in [0,1] in \Omega li. We write concisely \chi (\theta )\in \scrH (\theta  - \theta \ast ).

The well-known Stefan problem [72, 18] describes the phase change between ice i
and liquid l: the melting requires adding some latent heat L amount, and the freezing
is exothermic. This is encapsulated in the definition of enthalpy

w \in \alpha (\theta ) =
\int \theta 

\theta \ast 

c(v)dv+L\chi (\theta ) = \scrC (\theta ) +L\scrH (\theta  - \theta \ast ).(2.1)

Formally, \alpha is the subdifferential of the convex function, the primitive \psi of \alpha = \partial \psi 
given by

\psi (\theta ) =

\Biggl\{ 
ci
2 (\theta  - \theta \ast )

2, \theta < \theta \ast ,
cl
2 (\theta  - \theta \ast )

2 +L(\theta  - \theta \ast ), \theta \geq \theta \ast .
(2.2)

To complete the model we have as in [72] k(\theta ) =

\Biggl\{ 
ki, \theta < \theta \ast 

kl, \theta > \theta \ast 
, k(\theta \ast ) =

kl+ki

2 . We

also require some initial and boundary conditions. Let winit be given, and we set
w(x,0) =winit(x). We also set Dirichlet boundary conditions for \theta | \partial \Omega D

, and Neumann
conditions for q \cdot n| \partial \Omega \setminus \partial \Omega D

.
In summary, the model, in the sense of distributions, is

\partial t(w(x, t)) - \nabla \cdot (k(\theta )\nabla \theta ) = f, w \in \alpha (\theta ) = \partial \psi (\theta ) in D(\Omega T )
\prime .(2.3)

One well known interpretation of (2.3) is that if the mushy region is reduced to
an interface \Omega li =\Gamma li = \partial \Omega l \cap \partial \Omega i, the Stefan problem describes the heat conduction
in each \Omega l and \Omega i coupled by the Stefan condition [q \cdot n]| \Gamma li

= Lv, where v is the
speed of the free boundary \Gamma li = \Gamma li(t), and where \scrH (\cdot ) is replaced by H(\cdot ) [65]. For
numerical simulations which approximate \theta ,w,\chi , it is natural and necessary to accept
that \chi \in [0,1] rather than only \chi \in \{ 0,1\} : except in front-tracking approaches such
as [37, 17], the position of free boundary is usually not aligned with the degrees of
freedom.

The analysis of (2.3) is well established; we refer to [72, 18] for extensive analysis
and references, and to [66, 65] for the connection between the classical problem, Stefan
condition, mushy region, and the weak formulation. The regularity of solutions is
typically low due to the free boundary where the fluxes take a jump. For example,
under homogeneous Dirichlet boundary conditions with sufficiently smooth initial
data one finds [73, 72] that \theta \in L2(H1

0 ) while w \in L2(\Omega T ).

2.1.2. Multiple materials and thermal properties. Now we assume that
the domain \Omega is filled by NMAT distinct materials m = 1, . . .NMAT such as rock
or water, each associated with a subdomain \Omega (m). We also denote the space-time
cylinders \Omega 

(m)
T = \Omega (m) \times (0, T ). The material interfaces are fixed; for an interface

between some \Omega (m),\Omega (j) we denote the interface by \Gamma (mj) = \partial \Omega (m) \cap \partial \Omega (j). These
materials are in the liquid p = l phase, or in the ice p = i phase; we denote their
thermal properties with superscript (m) and subscript p.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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)e()d()c()b()a(

Fig. 1. Illustration of the pore-scale domain \omega with rock \omega (r) in white, liquid \omega 
(w)
l in black. In

(a)--(c) gray denotes \omega 
(w)
i . In (d) (a) Cartoon with notation. (b)--(d): image of sandstone geometry

from [50] (b) with ice, (c) without ice, and (d) without ice, but small pores marked by gray found
with a heuristic algorithm (e) the histogram of pore distribution in (c).

In this paper we are interested in the particular composite material: a soil mixture
of rock grains (m = r) and water-filled pore space (m = w) in phase p = l or p = i;
see Figure 1. The geometry of \Omega is known from X-ray micro-CT [49, 14, 59], and
there is abundant work on modeling and upscaling flow (but not energy) models from
the pore- to the Darcy scale; see, e.g., [69, 10], and our own work in [12, 50, 64] on
this subject. In this paper we will consider two classes of models at the pore-scale,
Model-\omega -basic, and Model-\omega -extended, in which we will consider a mixture of rock
and water, and a mixture of rock and water of different properties, respectively. In
Model-\omega -basic we consider the subdomains \Omega (r) and \Omega (w) with a fixed known interface
\partial \Omega (r) \cap \partial \Omega (w), while \Omega (w) is partitioned between \Omega 

(w)
l and \Omega 

(w)
i separated by the ice-

water free boundary. These have heat capacities cr, cl, ci, respectively of rock, liquid
water, and ice, shorthand for c(r), c

(w)
l , c

(w)
i , respectively. Similarly, we have heat

conductivities kr, kl, ki. In Model-\omega -extended we allow different subdomains \Omega (w,m),
m= 1, . . .NWMAT within \Omega (w), but for simplicity we consider only one mineral rock
grain type numbered r=NMAT =NWMAT + 1.

2.1.3. Scales and periodic geometry. We consider two scales: the Darcy
scale and the pore-scale. The Darcy scale quantities depend on the position x \in \Omega .
The pore-scale variables and quantities depend on y \in \omega (x) within a local REV
(Representative Elementary Volume) \omega (x) centered at x. Typically, we assume that

the typical quantity \epsilon 0 = diam(\omega )
diam(\Omega ) is small, which renders this separation of scales

meaningful. We also assume that \Omega is made of a large number of statistically nearly
identical copies of \omega . If they are identical, we call this ``the periodicity assumption"",
and each REV \omega is a cube of edge length \epsilon in each direction and identical, up to
scaling, to a so-called unit cell \scrY , a cube with volume 1. For some thermal property
\upsilon (x) varying periodically in \Omega with period \epsilon , one can then write \upsilon = \upsilon (x, y), y = x

\epsilon .
This homogenization Ansatz is well known [43, 22].

At the pore-scale we consider \omega (m)(x) = \omega (x) \cap \Omega (m) and \omega 
(m)
p (x) = \omega (x) \cap 

\Omega 
(m)
p within \omega (x); see Figure 1, and we define the volume fraction \eta (m)(x) = | \omega (m)| 

| \omega (x)| .

In porous media, the rock and water regions \omega (r) and \omega (w), respectively, are most
important, and we define the porosity \eta (x) = \eta (w)(x).

For the phase p of material m we define its relative volume fraction \chi 
(m)
p =

| \omega (m)
p | 

| \omega (m)| 
occupied by this phase with respect to the total amount of the material. In particu-

lar, we have the (evolving in time) liquid water fraction \chi 
(w)
l (x, t) =

| \omega (w)
l (x,t)| 

| \omega (w)(x)| . In flow

models such volume fractions are usually called ``phase saturations"". In turn, per-
mafrost literature refers to \eta \chi 

(w)
l as the ``volumetric unfrozen (liquid) water content"".

We also abbreviate and write \chi l = \chi 
(w)
l .

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 441

2.1.4. Local averages. Since we aim to compare our results with those in the
literature, we recall now the local REV volumetric average \langle \upsilon \rangle (x) of some quantity
\upsilon (x, y),

\langle \upsilon \rangle = 1

| \omega (x)| 

\int 
\omega (x)

\upsilon (x;y)dy.(2.4)

The weighted arithmetic (parallel), geometric, and harmonic (series) averages of some
property \upsilon which takes a constant value \upsilon (m) in each material are given as

\upsilon A = \langle \upsilon \rangle =
NMAT\sum 
m=1

\eta (m)\upsilon (m);(2.5a)

\upsilon G =\Pi NMAT
m=1 (\upsilon (m))\eta 

(m)

;(2.5b)

\upsilon H = \langle 1/\upsilon \rangle  - 1 =

\Biggl( 
NMAT\sum 
m=1

\eta (m)(\upsilon (m)) - 1

\Biggr)  - 1

.(2.5c)

These averages are functions of x, since \omega = \omega (x), and each material volume fraction
\eta (m) = \eta (m)(x). If material's properties depend on a phase, these definitions are read-
ily extended. In particular, as commonly considered in the applications literature, we
consider some property \upsilon with values \upsilon r, \upsilon l, \upsilon i in each \omega (r), \omega 

(w)
l , \omega 

(w)
i lumped together

in the ``unfrozen"" (thawed) and ``frozen"" material properties found by arithmetic or

geometric averaging \upsilon Au = (1 - \eta )\upsilon r + \eta \upsilon l, \upsilon 
A
f = (1 - \eta )\upsilon r + \eta \upsilon i, and \upsilon 

G
u = \upsilon 

(1 - \eta )
r \upsilon \eta l ,

\upsilon Gf = \upsilon 
(1 - \eta )
r \upsilon \eta i as follows:

\upsilon A = \langle \upsilon \rangle = \upsilon r(1 - \eta ) + \eta (\upsilon l\chi l + (1 - \chi l)\upsilon i) = \upsilon Au \chi l + \upsilon Af (1 - \chi l),(2.6a)

\upsilon G = \upsilon 1 - \eta 
r (\upsilon \eta \chi l

l \upsilon 
\eta (1 - \chi l)
i ) = (\upsilon Gu )

\chi l(\upsilon Gf )
1 - \chi l ,(2.6b)

\upsilon H = \langle 1/\upsilon \rangle  - 1.(2.6c)

These quantities depend on the phase properties represented by the relative fraction
\chi l of the liquid phase.

2.2. Heat conduction in porous medium at the pore-scale. Let \Omega repre-
sent a porous medium made of rock grains in \Omega (r) and void space filled with water
\Omega (w). To describe heat conduction in \Omega , we use (2.3) in \Omega (r), and the model for freez-
ing/thawing of water in \Omega (w), coupled by the continuity of temperature and fluxes
across the rock-water interface \Gamma (rw). This special case of general heterogeneous Ste-
fan problem described in section 2.2.1 gives Model-\omega -basic in section 2.2.2; we extend
it to Model-\omega -extended to describe the realistic microphysics in section 2.2.3.

2.2.1. Heterogeneous Stefan problem.

Assumption 2.1. We assume that the properties of the materials are piecewise
constant in each phase l, i and material m, for example, when m represents rock or
water. In particular, c

(m)
l , c

(m)
i , \theta 

(m)
\ast ,L(m), k

(m)
l , k

(m)
i are constants that are specific

to the material type (m). We also assume that the interface
\bigcup 

mj \Gamma 
(mj) between any

two materials m, j is fixed in time and perfectly conducting. For well-posedness and
physical meaning, we assume that there exist constants cmin, cmax, kmin, kmax:

0< cmin \leq c
(m)
l , c

(m)
i \leq cmax, 0<kmin \leq k

(m)
l , k

(m)
i \leq kmax, 0\leq L(m) for all m.

(2.7)
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442 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

We also assume \scrT = (\theta 
(m)
\ast )m is a nondecreasing sequence. This is done for the

convenience of notation for calculations in section 3.2, and does not change any of the
physics of the problem.

Now let (2.3) hold in each material subdomain \Omega (m) m= 1, . . .NMAT :

\partial t(w) - \nabla \cdot (k(m)(\theta )\nabla \theta )) = f, w \in \alpha (m)(\theta ) in D(\Omega 
(m)
T )\prime ,(2.8a)

\alpha (m)(\theta ) =

\left\{     
c
(m)
i (\theta  - \theta 

(m)
\ast ); \theta < \theta 

(m)
\ast ,

[0,L(m)]; \theta = \theta 
(m)
\ast ,

c
(m)
l (\theta  - \theta 

(m)
\ast ) +L(m); \theta > \theta 

(m)
\ast .

(2.8b)

To close the problem, we need some transmission conditions on every interface \Gamma (mj) =
\partial \Omega (m) \cap \partial \Omega (j). We assume no thermal resistance which yields continuity of \theta as well
as of the heat flux

\theta (m)| \Gamma (mj) = \theta (j)| \Gamma (mj) ; k(m)\nabla \theta (m) \cdot n| \Gamma (mj) = k(j)\nabla \theta (j) \cdot n| \Gamma (mj) .(2.8c)

Since the interface
\bigcup 

mj \Gamma 
(mj) is fixed, we can combine the portions of (2.8) for each

material and write these in the sense of distributions over \Omega T analogous to (2.3); see,
e.g., [13]. With the material properties variable in x\in \Omega as in (2.8) we have

\partial t(w(x, t)) - \nabla \cdot (k(\theta ,x)\nabla \theta ) = f in D(\Omega T )
\prime ; w(x, t)\in \alpha (\theta (x, t), x), a.e. x, t.(2.9a)

When (2.9a) is supplemented with appropriate boundary and initial conditions

\theta (x, t)| \partial \Omega D
= \theta D(x, t); q \cdot n| \partial \Omega \setminus \partial \Omega D

= 0, w(x,0) =winit(x), x\in \Omega ,(2.9b)

the well-posedness of (2.9) can be studied. In particular, [60, Cor. 4.1 of Thm 4.1]
proves the existence of solution \theta \in L2(H1) as a limit of Rothe approximations to a
regularized problem, under nonlinear boundary conditions, and provided winit \in L\infty 

as well as that each \Omega (m) is a bounded Lipschitz domain. In the multiscale setting
there are existence results in [73] for (2.9); we recall their statement in section 3.1.1.

2.2.2. Model-\bfitomega -basic at the pore-scale. We consider a special case of het-
erogeneous Stefan problem (2.8). In \Omega (w) we have \alpha (w) given as in (2.8b) with the
properties of bulk water. In \Omega (r) we have no phase change within the range of tem-
peratures of interest but we can use the definition (2.8b) setting

L(r) = 0, c
(r)
l = c

(r)
i = cr, k

(r)
l = k

(r)
i = kr, \theta 

(r)
\ast = \theta 

(w)
\ast .(2.10)

The choice \theta 
(r)
\ast = \theta 

(w)
\ast has no physical meaning and is made for the convenience of

notation in the forthcoming upscaling formulas. On the interface \Gamma (rw) = \partial \Omega (r) \cap 
\partial \Omega (w) we adopt (2.8c).

The relationships (\alpha (m))m in this Model-\omega -basic will be upscaled to \alpha eff in
Model-\Omega -basic in section 4.1.1. Conductivity (k(m))m will be upscaled to keff in
section 4.2.

2.2.3. Model-\bfitomega -extended at the pore-scale. The physics of freezing of the
pore water \Omega (w) is not the same as in the bulk water, except perhaps in large pores.
This microphysics is crucial to obtain agreement of upscaled models in section 4.1.2
with the empirical models.

The energy landscape at the fluid-rock interfaces is known to be very complex
[1, 56, 28]. In particular, the microscale thermodynamics of confined regions involves
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 443

the phenomena of ``thermal regelation"" and ``premelting"" caused by the interactions
between mineral grains and those of water molecules. As a consequence, at subfreezing
temperatures, small amounts of liquid coexist in equilibrium with solid ice because of
the wetting interactions and surface-energy effects. These are best interpreted with the
theories of adsorption involving van der Waals and other forces, rather than with focus
only on thermal conduction. In models and experiments, there are also consideration
of flat or nonflat soil-water interfaces, connected or disconnected liquid film, and
the relative significance of the adsorptive versus capillary forces. These important
microphysics phenomena result in two interconnected features: (i) a depression of
freezing temperature prominent in small pores, and (ii) the presence of a thin film of
(undercooled) water around the grains.

In this paper, we focus on (i) which is critical for thermal models since it leads to
the long-tailed behavior of \alpha P (\theta ) at the Darcy scale, discussed later in section 2.3. We
recall the Gibbs--Thomson law which provides the formula for the depression in phase
change temperature \Delta \theta \ast =  - 2\sigma \theta \ast 

RL , where \sigma [J/m2] is the surface-tension coefficient,
\theta \ast [K] is the phase change temperature, and R[m] radius of the curvature, and the
dependence of \Delta \theta \ast on R comes from that for the curvature \kappa = 1

R ; see [18, p. 50,
eq. (2.2.6)], and [72, eq. (IV.2.2,3.1)]. We note in passing that the Gibbs--Thomson
relationship is related to the Young--Laplace relationship in capillary phenomena [4,
p. 257--259], [29, p. 48--55], which, in turn, can be used to estimate the pore radius.
Estimates of the pore radius R are available from the applications literature as well
as from X-ray micro-CT images [48, 49, 50, 59]. Since \theta 

(w)
\ast = 0[\circ C], we postulate

\theta 
(w)
\ast =\Delta \theta 

(w)
\ast = - F

GT

R
[\circ C],(2.11)

where FGT must be chosen. In particular, we can set FGT = FGT
0 = 2\sigma \theta \ast [K]

L .
Our idea is to set up Model-\omega -extended in which the pore water domain is par-

titioned to a collection of pore subdomains, each associated with some characteristic
radius size R, for which an individual freezing temperature is calculated with (2.11).
This Model-\omega -extended is made precise and upscaled to Model-\Omega -extended in sec-
tion 4.1.2.

Remark 2.1. For water in porous medium \theta 
(w)
\ast = 273.15[K],\sigma \approx 7.536\times 10 - 2[J/m2],

(surface tension coefficient) [72.99, p. 99], and L is as in Table 2. We get FGT
0 =

1.2\times 10 - 7 [m\circ C]. If FGT = FGT
0 , then to lower the temperature with (2.11) by 1\circ C,

we must have a small enough pore radius R\approx R0 = 10 - 1 [m] = 0.1 [\mu m]. Such pores
are present in realistic porous media [21, 29]. To apply (2.11) in multiscale setting we
will consider scaling of FGT developed in section 4.1.2.

Remark 2.2. To accommodate (ii), one can introduce an additional type of sub-
domain \omega (ul) containing thin (nano-) film of undercooled water around each grain

for which we set \theta 
(ul)
\ast to be far below the freezing temperatures of any of the pores.

However, since the volume fraction \eta (ul) is very small, its influence on the Darcy scale
thermal parameters can be ignored. On the other hand, the impact of \omega (ul) on the
flow parameters is substantial but these are outside the present scope.

The relationships (\alpha (m))m in this Model-\omega -extended will be upscaled to \alpha eff in
Model-\Omega -extended in section 4.1.2 Conductivity (k(m))m will be upscaled to keff as
shown in section 4.2.

2.3. Model-\Omega -empirical for heat conduction at the Darcy scale. There is
considerable literature devoted to permafrost models in civil, petroleum, and geotech-
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444 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

nical engineering, hydrology, soil science, and more recently, in computational envi-
ronmental climate models; see some representative papers in [20, 75, 1, 28, 67, 57, 24,
40, 23]. The thermal Model-\Omega -empirical at the Darcy scale specializes (1.1) to

\partial tw - \nabla \cdot (kP\nabla \theta ) = f ; w(x, t) = \alpha P (\theta ).(2.12)

The single valued experimentally calibrated formulas for \alpha P (\theta ) as well as kP (\theta ) treat
soil as a single material while they incorporate cr, cl, ci,L and kr, kl, ki, the porosity
\eta (x), and the key property, the liquid (unfrozen) volume fraction \chi P

l (\theta ), also known
as SFC (Soil Freezing Curve), given in section 2.3.1. Once \chi P

l (\theta ) is selected, \alpha 
P (\theta ) is

found similarly to (2.1)

w(\theta ) = \alpha P (\theta ) =

\int \theta 

\theta \ast 

c(v)dv+L\eta \chi P
l (\theta ); c(v) = cu\chi 

P
l (v) + cf (1 - \chi P

l (v))(2.13)

with cu, cf are the (porosity weighted) heat capacities of the ``unfrozen"" and ``frozen""
soil, defined as before (2.5). The formula (2.13) requires an integral of a given non-
linear \chi P

l (v).

Remark 2.3. The models for \chi P
l = \chi P

l (\theta ) assume instantaneous local equilib-
rium, i.e., that the liquid fraction \chi P

l (x, t) responds instantaneously to the changes in
temperature \theta (x, t); equivalently, they assume that (some amount of) the ice forms
instantly when the temperatures drop. This not entirely realistic feature ignores the
presence of undercooled water, the mechanisms of nucleation, as well as the nonnegli-
gible scale effect. We refer to the discussions of related experimental difficulties in [28],
observations of apparent hysteresis in \chi P

l (\theta ) in [57] and to theoretical relevant work on
hysteresis including [32, 44, 46]. However, an in-depth discussion of nonequilibrium
models is outside our scope.

2.3.1. Empirical models for the soil freezing curve \bfitchi \bfitP 
\bfitl leading to \bfitalpha \bfitP .

The SFC models for \chi P
l (\theta ) are calibrated from empirical measurements, and the

algebraic formulas vary from power models to exponential to blended models which fit
best particular types of soils (clay, silt, sand); see, e.g., [75, 42, 38, 30, 27, 57], as well
as a recent through review in [28]. Some works relate SFC to capillary phenomena and
the Clausius--Clapeyron equation; those efforts may be relevant for the flow models,
but are not directly relevant to our scope.

All the SFC models share common qualitative behavior, and, in particular, (a)
have a long-tailed behavior as \theta \downarrow . Some works postulate lim\theta \rightarrow  - \infty \chi P

l (\theta ) = \chi res > 0,
and some \chi res = 0. In addition, (b) some SFCs are discontinuous at \theta = 0 so that
lim\theta \rightarrow 0 - \chi 

P
l (\theta ) = \chi 0 \not = 1 = \chi P

l (\theta )| \theta >0. This lack of continuity if \chi 0 \not = 1 presents chal-
lenges to computations, a feature noted in [26]. In turn, [28] considers the smoothness
mandatory and requires \chi 0 = 1, while some choose parameters for which \chi 0 = 1; see,
e.g., [78, 33]. In this paper we adapt SFC from the literature to ensure continuity at
\theta = \theta \ast ,

\chi P
l (\theta ) =

\Biggl\{ 
1; \theta \geq \theta \ast ;

\Upsilon P ; \theta < \theta \ast 
(2.14)

and consider \chi L
l (\theta ), \chi 

W
l (\theta ), \chi M

l (\theta ) from [34, 75, 38], respectively, with the symbols
L,W,M chosen according to the original author's names, \Upsilon L = | \theta \ast | b| \theta |  - b, \Upsilon W = \chi res+
(1 - \chi res)(

b
b - \theta +\theta \ast 

)4, \Upsilon M = \chi res + (1 - \chi res)e
b(\theta  - \theta \ast ). We illustrate these in Figure 2

along with the plots of the corresponding \alpha P (\theta ) calculated with (2.13). Additional
data on the parameters typical for \chi model

l (\theta ) is given in Table 8 ; see also soil-specific
data available in [1, 57] and [2, 28].
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 445

Fig. 2. Plot of the Darcy-scale relationships \chi P
l (\theta ) (left) and w= \alpha P (\theta ) (right) used in Model-

\Omega -empirical for clay using the parametric models \chi model
l (\theta ) with model = L,W,M given by (2.14)

from section 2.3.1, and with data from Table 7. The original relationships (top) may be discontinu-
ous, the adapted (continuous at \theta = 0) are on the bottom.

2.3.2. Empirical models for heat conductivity \bfitk \bfitP (\bfittheta ) at the Darcy scale.
Once a particular \chi P

l is selected as in section 2.3.1, the Model-\Omega -empirical uses simple
weighted average expressions for kP = kP (\chi P

l (\theta )) based on (2.6),

kA = kAu \chi 
P
l + kAf (1 - \chi P

l ); k
A
u = (1 - \eta )kr + \eta kl, k

A
f = (1 - \eta )kr + \eta ki,(2.15a)

kG = (kGu )
\chi P
l (kGf )

(1 - \chi P
l ); kGu = k\eta l k

1 - \eta 
r ; kGf = k\eta i k

1 - \eta 
r ,(2.15b)

kH = \langle 1/k(\cdot )\rangle .(2.15c)

Each of kA, kG, kH is a function of x, t, \theta (x, t) since \eta = \eta (x) and \chi P
l = \chi P

l (\theta (x, t), x).
In particular, kG is used in [42, 23, 38, 78], and [1, Figures 2--27], and kA is

used in [33]. In turn, kH do not seem to be known or used in geophysics. In more
general context, arithmetic and harmonic averaging correspond to composite materials
arranged ``in parallel"" or ``in series"".

We emphasize that the above formulas rely on the average liquid water content
\chi P
l ; they do not account for the specific partition of the geometry of \omega (w) into \omega 

(w)
l

and \omega 
(w)
i . In contrast, we address this geometrical aspect when calculating keff in

section 4.2 which we compare to the averages given by (2.15).

3. Upscaling Model-\bfitomega to Model-\Omega . In this section we describe how to bridge
between the pore-scale and the Darcy scale for the thermal models of permafrost. At
the pore-scale permafrost is a composite medium described by Model-\omega (2.8) written
here as an \epsilon -model for the geometry from section 2.1.3,
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446 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

\partial t(w
\epsilon (x, y, t)) - \nabla \cdot (k(\theta \epsilon , x, y)\nabla \theta \epsilon ) = f in D(\Omega T )

\prime ;(3.1)

w\epsilon (x, y, t)\in \alpha (\theta \epsilon (x, y, t), x), a.e. x\in \Omega , y \in \scrY , t > 0.

At the Darcy scale we derive effective properties \alpha eff and keff for Model-\Omega describing
(\=\theta , \=w),

\partial t( \=w) - \nabla \cdot (keff (\=\theta )\nabla \=\theta ) = f, \=w \in \alpha eff (\=\theta ) in D(\Omega T )
\prime ,(3.2)

which we aim to compare to the Model-\omega -empirical (2.12) from section 2.3.
We aim to upscale Model-\omega to Model-\Omega , and start with the theoretical background

in section 3.1. Without the phase change, upscaling the thermal properties is an
easy task. In particular, it is well known that w\epsilon (x, y, t) = c\theta \epsilon (x, y, t) in (3.1) is
well approximated asymptotically by \=w = ceff \=\theta with ceff = \langle c\rangle . In turn, keff can
be calculated by well known formulas involving an auxiliary elliptic boundary value
problem on the cell. The process to find ceff , keff is well known; see, e.g., [43, 22].
However, the freezing and thawing scenarios in permafrost soils requires handling
the nonlinear k(\theta ) and multivalued relationships w \in \alpha (\theta ); in this paper we follow the
rigorous theory in [13, 73]. In a more general context, for homogenization of nonlinear
flow models when multiple phases and/or additional processes such as precipitation
or biofilm growth are involved, we refer to, e.g., [45, 49, 7, 55].

In section 3.2 we derive the upscaled relationships \alpha eff (\theta ). First, in section 4.1.1
we work with Model-\omega -basic, but the corresponding upscaled \alpha eff in Model-\Omega -basic
is qualitatively different from \alpha P in Model-\Omega -empirical. In section 4.1.2 we therefore
propose a new Model-\omega -extended to include additional microphysics; after upscaling
to Model-\Omega -extended, we get \alpha eff similar to \alpha P in some Model-\Omega -empirical.

In section 4.2 we discuss keff (\theta ). In some circumstances we find that the rig-
orously derived coarse-scale models for keff are close to simple averages given for
kP by (2.15). In general, however, these averages are not accurate while the general
formulas depend on the local geometry; we follow up with recommendations on most
useful (also reduced) approximations \widetilde keff , guided by the pore-scale examples.

3.1. Background. The mathematical theory of homogenization for PDEs in
composite materials is very well established; we refer to the abundant theory in the
classical as well as modern expositions in [43, 62, 16]. In geosciences and specifically
porous media, the derivation of effective parameters and models can proceed within
the rigors of homogenization theory and/or the algorithms of numerical upscaling
and/or the framework of volume averaging; these are well explained, e.g., in [22, 4].
While the multiscale efforts originally focused on the flow properties from the Darcy
to the field scale, upscaling from the pore- to the Darcy scale has recently drawn con-
siderable attention, including for the flow [69, 47, 48, 49], and for other and coupled
processes [19, 7, 8]. These works provide selected perspectives on modeling in porous
media which inform research in this paper. Some of these, as well as the work deriving
from Heterogeneous Multiscale Method (HMM) in [10] couple the scales dynamically,
i.e., HMM models probe the Model-\omega whenever data for Model-\Omega is needed at grid-
points covering \Omega , and two-scale models maintain the implicit connection between the
micro- and macromodel. In this work we follow [73] who define both two-scale as well
as the effective approaches.

For nonlinear and coupled problems, there are additional complications which
one must address, since now the upscaled relationships may be functions rather than
constants. Specifically, such relationships arise in the work on homogenization of non-
linear models of phase transitions outlined in [73] and earlier work in [13] specifically
on a simplified Stefan problem form the theoretical foundations for this work.
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 447

First, make a rigorously justified and practical connection between the pore- and
the Darcy scale models, deriving effective properties rather than the two-scale ap-
proaches. The large separation of scales between the pore-scale of [\mu m] and the Darcy
scale of [cm]--[m] of empirical models combined with the large uncertainty of the ge-
ometry at the pore-scale [49, 64, 50] as well as with the specifics of freezing/thawing in
micropores suggest that the two-scale simulation may not be feasible for permafrost.

Second, we work with the ``actual"" physical size of the pore-scale region y \in \omega (x)
as well as with the mathematically idealized unit cell \scrY . We also maintain a realistic
connection to the scale-dependent microphysics at the grain-water interfaces.

Third, we embrace the enormous complexity of realistic pore geometries. In fact,
the REV \omega must contain a large variety of pore sizes so that the effective relationships
compare well to those found empirically. This aspect can be combined eventually with
the strategy in [50] to guide the construction of surrogate effective models built off-
line.

3.1.1. Theory for upscaling nonlinear heat equation with phase change.
We now recall the theory including notation, assumptions, and main results derived
in [73] which employs traditional homogenization applied to (2.9); we provide our
corresponding notation in brackets.

The unknowns in [73] are w,u, q (we use w,\theta , q), with the freezing temperatures
u\ast (x) [\theta \ast (x)]. The constitutive enthalpy-temperature relationship is w \in \partial \psi (u,x, y)
[w \in \alpha (\theta ,x, y) = \partial \psi (\theta ,x, y)], and its primitive \psi (v,x, y) is assumed [73, eqs. (2.28),
(2.29), (3.18)] proper, strictly convex lower semicontinuous and bounded from below
by a quadratic a.e. (x, y) (these hold for \psi in (2.2)). In addition, [73, eq. (3.1)]
assumes w \in \partial \psi (v,x, y) is bilaterally affine bounded c1| v| + h1(x) \leq | w| \leq \~c1| v| +
\~h1(x) (these hold due to Assumption 2.1) for some positive c1, \~c1 and h1,\~h1 \in L1(\Omega ).
The flux-temperature relationship in [73, eqs. (2.36)--(2.37) and (3.2)--(3.4)] is q =
q(\nabla u,u,x, y, t) which must be affine bounded (we consider q= - k(\theta ,x, y)\nabla \theta linear in
\nabla \theta for which the bound and properties hold due to Assumption 2.1).

The boundary conditions in [73] include those on the Dirichlet portion \partial \Omega D of
\partial \Omega which is assumed to have nonzero measure (this agrees with (2.9b)). The source
f in [73] is allowed to be nonlinear in u and satisfy some bounds. (We only consider
the source f \in L2(V \prime ), with V = \{ v \in H1(\Omega ) : v| \partial \Omega D

= 0\} ).
For homogenization to a two-scale problem and upscaling to a coarse problem,

[73] considers dependence of data on x, y = x
\epsilon to be periodic in y \in \scrY with a unit

measure cell \scrY . The averages over \scrY are denoted by \^p, we use \langle p\rangle .
We recall the theory in Remark 7.1 in the appendix. We summarize now how it

applies to (2.9).

Proposition 3.1 (adapted from [73, Thms. 4.1 and 5.4)]. There exists a family
of \epsilon -solutions (u\epsilon ,w\epsilon , q\epsilon ) of (2.9) which are bounded uniformly in \epsilon in the norms in
L2(H1) and L\infty (L2) \cap H1(V \prime ), and (L2(\Omega T ))

d, respectively. Their asymptotic limits
satisfy the problem

\partial t \=w+\nabla x \cdot \=q= \langle f\rangle , \=w \in \alpha eff (\=\theta ) = \partial \psi eff (\=\theta ), \=q= - keff (\=\theta )\nabla x
\=\theta in D\prime (\Omega T ),(3.3)

where \psi eff (v) = \langle \psi (v, \cdot )\rangle , and where

keff (v) = (keff,ij)ij ; keff,ij = \langle k(v;y)(\delta ij + \partial i\xi j)\rangle (3.4a)

is found via the corrections (\xi j)
d
j=1 which solve the auxiliary periodic elliptic problem

 - \nabla \cdot (k(\=u, y)(ej +\nabla y\xi j)) = 0; \xi j periodic on \scrY .(3.4b)
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448 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

Remark 3.1. The result in Proposition 3.1 from [73] generalizes that in [13] for
a simpler model with NMAT = 2 in which the conductivities are constant in each
material and phase independent. In this simplified case uniqueness and regularity
of the temperature in H1(L2) \cap L\infty (V ) stronger than only L2(H1) as in [73] are
obtained, and homogenization is carried out. We note that in [13] the transmission
conditions identical to (2.8c) which are assumed to be rigid and perfectly conducting
are explicitly stated.

In sections 3.2 and 3.3 we identify \alpha eff , keff , respectively, and their reasonable
approximations.

3.2. Finding \bfitalpha \bfite \bfitf \bfitf = \bfpartial \langle \bfitpsi \rangle for Model-\Omega -effective from Proposition 3.1.
We now provide general calculations for heterogeneous Stefan problem (2.8) with
any NMAT > 1. Assume that the domain \Omega is made of NMAT materials arranged
in periodic cells \omega (x), with \omega (m)(x) = \omega (x) \cap \Omega (m), m = 1, . . .NMAT . The heat
properties are material specific and piecewise constant: each \alpha (m)(\theta ) is parameterized

by c
(m)
l , c

(m)
i , and L(m) as well as \theta 

(m)
\ast as in Assumption 2.1. For each material m we

have a formula similar to (2.2) for the primitive of \alpha (m),

\psi (\theta ;y)| \omega (m) =

\left\{   
c
(m)
i

2 (\theta  - \theta \ast 
(m))2, \theta < \theta 

(m)
\ast ,

c
(m)
l

2 (\theta  - \theta \ast 
(m))2 +L(m)(\theta  - \theta 

(m)
\ast ), \theta \geq \theta 

(m)
\ast .

(3.5)

With this set-up we apply Proposition 3.1.

Proposition 3.2. Let \psi be given by (3.5). Then

\alpha eff (\theta ) = \partial \psi eff (\theta ) =

NMAT\sum 
m=1

\eta (m)\partial \psi (m)(\theta ) =

NMAT\sum 
m=1

\eta (m)\alpha (m)(\theta )(3.6)

is a piecewise linear multivalued graph defined as follows:

\partial \psi eff (\theta )| (\theta (m - 1)
\ast ,\theta 

(m)
\ast )

=

NMAT\sum 
k=m

\eta (k)c
(k)
i (\theta  - \theta 

(k)
\ast ) +

m - 1\sum 
k=1

\eta (k)c
(k)
l (\theta  - \theta 

(k)
\ast )(3.7a)

+

m - 1\sum 
k=1

\eta (k)L(k)\scrH (\theta  - \theta 
(k)
\ast ).

In particular, for \theta < \theta 
(1)
\ast , the formula gives \partial \psi eff (\theta ) =

\sum NMAT

k=1 \eta (k)c
(k)
i (\theta  - \theta 

(k)
\ast ). In

turn, for \theta > \theta 
(NMAT )
\ast , we get

\sum NMAT

k=1 \eta (k)c
(k)
l (\theta  - \theta (k)\ast )+

\sum NMAT

k=1 \eta (k)L(k)H(\theta  - \theta (k)\ast ).

In addition, at each \theta = \theta 
(m)
\ast , the graph \partial \psi is multivalued, with its jump from left to

right given by

[\partial \psi eff ]\theta (m)
\ast 

= \eta (m)L(m).(3.7b)

Proof. The proof is by algebraic calculations and taking subdifferentials. We
calculate

\psi eff (\theta ) =

\int 
\scrY 
\psi (\theta , y)dy=

\sum 
m

\int 
\scrY (m)

\psi (\theta , y)dy=
\sum 
m

\eta (m)\psi (m)(\theta ).(3.8)

Next, we take its subdifferential with respect to \theta and get (3.6) also as a volumetric
average. The details of (3.7) follow easily; we outline the calculation for NMAT = 2;
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 449

an extension to the case NMAT > 2 is tedious but immediate. We recall the expression
(3.5) for \psi (m)(\theta ), and see that

\partial \psi (m)(\theta ) = \alpha (m)(\theta ) =

\left\{     
c
(m)
i (\theta  - \theta 

(m)
\ast ); \theta < \theta 

(m)
\ast ,

L(m)\chi (m)(\theta )\in [0,L(m)]; \theta = \theta 
(m)
\ast ,

c
(m)
l (\theta  - \theta \ast 

(m)) +L(m); \theta > \theta 
(m)
\ast 

(3.9)

is piecewise linear, with constant slopes c
(m)
i for \theta < \theta 

(m)
\ast , and c

(m)
l for \theta > \theta 

(m)
\ast . At

\theta = \theta 
(m)
\ast \alpha (m) is multivalued with values in [0,L(m)], i.e., the graph \alpha (m) takes a jump

of L(m).
We next characterize the weighted average \partial \psi eff = \eta (1)\partial \psi (1)(\theta ) + \eta (2)\partial \psi (2)(\theta ).

We have either (i) \theta 
(1)
\ast = \theta 

(2)
\ast or (ii) \theta 

(1)
\ast < \theta 

(2)
\ast . In case (i) both materials undergo

phase change at the same temperature \theta = \theta 
(1)
\ast = \theta 

(2)
\ast at which their properties

change from solid (ice) to liquid, thus for \theta < \theta 
(1)
\ast we have the slope of \alpha eff equal

to ceff = \eta (1)c
(1)
i + \eta (2)c

(2)
i , and for \theta > \theta 

(1)
\ast , ceff = \eta (1)c

(1)
l + \eta (2)c

(2)
l . The jump of

\partial \psi eff at \theta = \theta 
(1)
\ast = \theta 

(2)
\ast is \eta (1)L(1) + \eta (2)L(2).

In case (ii) we consider first some \theta not equal to any of \theta 
(m)
\ast . For \theta < \theta 

(1)
\ast , we

have

\partial \psi eff (\theta ) = \eta (1)c
(1)
i (\theta  - \theta 

(1)
\ast ) + \eta (2)c

(2)
i (\theta  - \theta 

(2)
\ast ).

For \theta 
(1)
\ast < \theta < \theta 

(2)
\ast , we have

\partial \psi eff (\theta ) = \eta (1)c
(1)
l (\theta  - \theta 

(1)
\ast ) + \eta (1)L(1) + \eta (2)c

(2)
i (\theta  - \theta 

(2)
\ast ).

Lastly for \theta > \theta 
(2)
\ast , we have

\partial \psi eff (\theta ) = \eta (1)c
(1)
l (\theta  - \theta 

(1)
\ast ) + \eta (1)L(1) + \eta (2)c

(2)
l (\theta  - \theta 

(2)
\ast ) + \eta (2)L(2).

Considering next \theta = \theta 
(1)
\ast , we see that \partial \psi eff (\theta 

(1)
\ast ) = \eta (1)L(1)\scrH (\theta  - \theta (1)\ast ) takes a jump of

magnitude \eta (1)L(1). Similarly, at \theta = \theta 
(2)
\ast the jump of \partial \psi eff (\theta 

(2)
\ast ) has the magnitude

\eta (2)L(2).
The extension to NMAT > 2 completes the proof.

Next, we interpret \alpha eff derived in Proposition 3.2 as having a ``regular"" and
``singular"" part; the latter associated with the effective volume fraction \chi eff (\theta ) which
depends only on the data in

\scrD =
\Bigl( 
\theta 
(m)
\ast , \eta (m)

\Bigr) NMAT

m=1
.(3.10)

Corollary 3.1. The formula (3.7) from Proposition 3.2 can be decomposed into
regular (continuous piecewise linear part \scrC eff (\theta )) and singular (multivalued) parts

\alpha eff (\theta ) = \partial \psi eff (\theta ) = \scrC eff (\theta ) +\scrL eff (\theta )\chi eff (\theta ).(3.11a)

Here \scrC eff (\theta ) is given by

\scrC eff (\theta )| [\theta (m - 1)
\ast ,\theta 

(m)
\ast ]

=
m - 1\sum 
k=1

\eta (k)c
(k)
l (\theta  - \theta 

(k)
\ast ) +

NMAT\sum 
k=m

\eta (k)c
(k)
i (\theta  - \theta 

(k)
\ast ),(3.11b)
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450 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

with the (variable) slopes ceff (\theta ) given by

ceff (\theta )| (\theta (m - 1)
\ast ,\theta 

(m)
\ast )

=
m - 1\sum 
k=1

\eta (k)c
(k)
l +

NMAT\sum 
k=m

\eta (k)c
(k)
i .(3.11c)

The multivalued \scrL eff (\theta )\chi eff (\theta ) portion of (3.11a) is

\scrL eff (\theta )\chi eff (\theta ) =

NMAT\sum 
k=1

\eta (k)L(k)\scrH (\theta  - \theta 
(k)
\ast ).(3.11d)

The effective liquid fraction is the average \chi eff (\theta ) =
\sum NMAT

m=1 \eta (m)\scrH (\theta  - \theta 
(m)
\ast ) multi-

valued at \theta 
(m)
\ast :

\chi eff (\theta ) =

\left\{                         

0, \theta \in ( - \infty , \theta 
(1)
\ast ),

\eta (1), \theta 
(1)
\ast < \theta < \theta 

(2)
\ast ,

. . .
m - 1\sum 
k=1

\eta (k), \theta 
(m - 1)
\ast < \theta < \theta 

(m)
\ast ,

. . .

1, \theta 
(NMAT )
\ast < \theta ,

(3.11e)

\chi eff (\theta 
(m)
\ast ) =

\Biggl[ 
m - 1\sum 
k=1

\eta (k),

m\sum 
k=1

\eta (k)

\Biggr] 
.

The weighted average latent heat \scrL eff (\theta ) = (
\sum m - 1

k=1 \eta 
(k)L(k)\scrH (\theta  - \theta (k)\ast ))(

\sum m - 1
k=1 \eta 

(k)) - 1

is given as

\scrL eff (\theta )| [\theta (m - 1)
\ast ,\theta 

(m)
\ast )

=

\left\{                                 

0, \theta \in ( - \infty , \theta 
(1)
\ast ),

L(1), \theta 
(1)
\ast \leq \theta < \theta 

(2)
\ast ,

. . .
m - 1\sum 
k=1

\eta (k)L(k)

\sum m - 1
k=1 \eta (k)

, \theta 
(m - 1)
\ast \leq \theta < \theta 

(m)
\ast ,

. . .
NMAT\sum 
k=1

\eta (k)L(k), \theta 
(NMAT )
\ast \leq \theta .

(3.11f)

Proof. The proof follows by algebraic calculations. First, we note that \scrC eff rep-
resents the first two terms on the right-hand side of (3.7), and that the third and last
term of this equation form the right-hand side of (3.11d), modified by extending the

sum to all m= 1, . . .NMAT . But when \theta < \theta 
(m)
\ast for some m, all the terms \scrH (\theta  - \theta (k)\ast )

for k >m are zero. Similar extension applies in (3.11e).
Since \scrC eff is clearly piecewise linear, we need only verify its continuity, say, at

\theta 
(m - 1)
\ast when m= 2, . . .NMAT +1, where the formula in (3.11b) changes from interval

(\theta 
(m - 2)
\ast , \theta 

(m - 1)
\ast ) to (\theta 

(m - 1)
\ast , \theta 

(m)
\ast ), and shifts the term involving c

(m - 1)
i to c

(m - 1)
l from

one sum to the other. Since the term involves \theta  - \theta 
(m - 1)
\ast , which equals 0 at \theta 

(m - 1)
\ast ,
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 451

each (\theta  - \theta 
(m - 1)
\ast ) is piecewise linear continuous on R, and therefore, their linear

combination \scrC eff which is continuous.
To verify (3.11f), we match the expressions on its right-hand side for a given

\theta \in (\theta 
(m - 1)
\ast , \theta 

(m)
\ast ) with (3.11d). We also confirm the jumps at \theta = \theta 

(m - 1)
\ast where the

graph is multivalued.

Corollary 3.2. We summarize the practical steps following Proposition 3.2 and
Corollary 3.1 to get \alpha eff (\theta ). These do not require explicit calculation of \psi eff (\theta ).

(STEP 1) Arrange the materials with nondecreasing \theta \ast .
(STEP 2) Calculate the regular portion \scrC eff (\theta ) of \alpha eff (\theta ) with (3.11b).
(STEP 3) Calculate the effective \chi eff (\theta ) with (3.11e).
(STEP 4) Calculate the effective Leff (\theta ) with (3.11f).
(STEP 5) Assemble \alpha eff (\theta ) from STEP 2--STEP 4 with formula (3.11a).

Example 3.1 (academic example illustrating the steps of upscaling). Consider the
data in Table 3 for NMAT = 3 hypothetical materials, and pursue upscaling with
STEPS 2--5. The plots in Figure 3 illustrate the process. The total amount of latent
heat required to melt all the solid phase in the three materials equals the weighted
average 3 \ast 5

15 +5 \ast 6
15 +1 \ast 4

15 = 1+2+ 4
15 = 3 4

15 of the different latent heats (L(m))m
reflected as the jump of Leff from far left to far right. We also see a jump in the
graph of \alpha eff (\theta ) at each of the three freezing temperatures for the three materials.

We apply Corollary 3.2 for upscaling (\alpha (m))m to \alpha eff from the pore- to the Darcy
scale in section 4.1.

3.3. Upscaling (\bfitk (\bfitm ))\bfitm to \bfitk \bfite \bfitf \bfitf . We now revisit the definition of keff in

(3.4). A useful approximation \widetilde keff to keff can be found by averaging \~\xi i instead of
\xi i, where \~\xi j solves a mixed Dirichlet--Neumann problem instead of periodic problem.
This latter problem is frequently used by researchers working with software for elliptic
boundary value problem solvers which do not allow period boundary conditions, but
allow a mixture of Dirichlet and Neumann conditions. These two approaches are well
compared in [15], where a strong case is made for flow problems that \widetilde keff is a poor
approximation for keff if either the geometry of composite REV cell \omega (x) has a strong
non-axi-symmetric trend, and/or if the individual conductivities differ by orders of

magnitude. For the thermal applications considered here we find, however, that \widetilde keff
may be adequately accurate.

We compare \widetilde keff as well as averages (2.15) to keff for the pore- to the Darcy
scale in section 4.2.

4. Results of upscaling Model-\bfitomega to Model-\Omega . Now we apply the theoretical
derivations from section 3 to upscaling from the pore-scale to the Darcy scale: we
discuss \alpha eff first in section 4.1. For Model-\omega -basic, these do not compare well to
the relationships \alpha P , kP used in Model-\Omega -empirical. Therefore, we extend the simple
Model-\omega -basic to Model-\omega -extended, and improve the agreement after upscaling to
Model-\Omega -extended with empirical data.

Table 3
Thermal data for Example 3.1.

Material c
(m)
i | c(m)

l \eta (m) L(m) \theta 
(m)
\ast 

Material (1) 1| 2 5| 15 3  - 1
Material (2) 2| 1 6| 15 5 0

Material (3) 1| 5 4| 15 1 2
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452 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

Fig. 3. Illustration for Example 3.1. Plots of \psi eff (\theta ), \alpha eff (\theta ), and how they are built from

\psi (m), \alpha (m) (top). Middle and bottom: \scrC eff (\theta ),\scrL eff (\theta ), and \chi eff (\theta ), as building blocks of \alpha eff

following STEP 2--5 of Corollary 3.2. We indicate the freezing temperatures at which the properties
have jumps.

Next, we discuss upscaling conductivities to keff . Here we also connect our
upscaling efforts to realistic data from porous media.

4.1. Results: Upscaling \bfitalpha for the basic and extended models. In sec-
tion 4.1.1 we first upscale Model-\omega -basic with NMAT = 2 for rock and bulk water. In
section 4.1.2 we upscale Model-\omega -extended which accounts for Gibbs--Thomson effects
in a collection of NMAT -1> 1 subdomains corresponding to the pores of a variety of
characteristic sizes.

4.1.1. Upscaling \bfitalpha in Model-\bfitomega -basic to Model-\Omega -basic. We now apply the
discussion in section 3.2 to upscale (\alpha 

(m)
m ) for the rock-water mixture with NMAT = 2

and m= r,w described in section 2.2.2. The properties of \Omega (w) are identical to bulk
water. For \Omega (r), we set \theta 

(r)
\ast = 0 with L(r) = 0 to simplify the notation and calculations.

We follow similar physical reasoning as in Example 3.1 to calculate the amount
\eta L of heat necessary to melt all the ice in \omega 

(w)
i in the pore domain \omega when the

temperature goes from far below to above freezing.
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 453

We next follow the steps in Corollary 3.2. We number the water material w as
m = 1, with \theta 

(1)
\ast = 0. The rock material is m = 2, with \theta 

(2)
\ast = 0 but L(2) = 0. We

recall porosity \eta = \eta (w) = \eta (1) and 1 - \eta = \eta (r) = \eta (2). Consistent with (3.11e) we get

\chi eff (\theta ) = (\eta (1) + \eta (2))\scrH (\theta ) =\scrH (\theta ), thus for this example \chi eff (\theta ) = \chi 
(w)
l (\theta ) features

only one jump at \theta = 0. In turn, from (3.11f) for \theta \geq 0, \scrL eff (\theta ) = \eta (1)L + \eta (2)0 =
\eta (w)L(w) = \eta L vanishes for \theta < 0, and features only one jump at \theta = 0. Next, the
slopes ceff of the regular part \scrC eff (\theta ) = cu\theta \chi eff (\theta ) + cf\theta (1 - \chi eff (\theta )) with (3.11c)
are given by ceff | \theta <0 = \eta ci + (1 - \eta )cr = cf and ceff | \theta >0 = \eta cl + (1 - \eta )cl = cu as in
(2.13),

\alpha eff (\theta ) = \scrC eff (\theta ) +L\eta \chi eff (\theta ); \chi eff (\theta ) =\scrH (\theta  - \theta \ast ).(4.1)

This gives \alpha eff as part of Model-\Omega -basic. We note that in applications literature,
e.g., [40, 39, 77] cf and cu are called ``frozen"" and ``unfrozen"" properties consistent
with (2.6a).

Example 4.1 (upscaling model-\omega -basic). We consider \omega = (0,1)[cm], with rock
grains \omega (r) = (0,0.20)\cup (0.60,1), and water \omega (w) = (0.20,0.60). Now \eta = 0.40, and we
use thermal parameters from Table 5. We calculate and plot \chi eff , \alpha eff for Model-
\Omega -basic, and compare to a selected \chi P , \alpha P in Model-\Omega -empirical; see Figure 4. For
illustration, we include plots of \chi (w), \alpha (w) in Model-\omega -basic.

Remark 4.1. We compare Model-\Omega -basic to Model-\Omega -empirical. We see that
\chi eff (\theta ) = \scrH (\theta  - \theta \ast ) features exactly one jump at \theta \ast = 0, as a special case of what
Example 3.1 illustrated. In consequence, we see that \chi eff is qualitatively different
from any of the empirical SFC \chi P

l (\theta ) in Model-\Omega -empirical from section 2.3 which
feature long tailed smooth behavior and have steep gradients only for very coarse-
grained soils [40]. For fine-grained soils such as clay, \chi P

l is smooth and entirely
dissimilar from \chi eff given in (4.1). These differences carry over to that of \alpha P and
\alpha eff .

Now we see that upscaling Model-\omega -basic and treating pore water as bulk water
fails to give an effective model resembling any Model-\Omega -empirical. The primary reason

Fig. 4. Illustration for Example 4.1. Shown is a comparison of the constitutive properties:
liquid phase fraction (left) and enthalpy (right) between Model-\omega -basic, Model-\Omega -basic and Model-\Omega -
empirical. We plot \chi (w)(\theta ) for Stefan problem in bulk water in Model-\omega -basic in upscaled heteroge-
neous Stefan problem \chi eff (\theta ) for rock-water in Model-\Omega -basic, and the Darcy scale empirical model

\chi W
l (\theta ) in Model-\Omega -empirical, same as that plotted in Figure 2. On the right we show the correspond-

ing enthalpy graphs w \in \alpha (w)(\theta ), w \in \alpha eff (\theta ), and w= \alpha P (\theta ). We emphasize the jumps of \chi eff and

\alpha eff at \theta = \theta \ast = 0 in Model-\Omega -basic which is absent in the empirical \chi P
l , \alpha 

P in Model-\Omega -empirical.
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454 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

is that we have not accounted for the microphysics described in section 2.2.3. This is
addressed in the next section.

4.1.2. Result: Upscaling \bfitalpha in Model-\bfitomega -extended to Model-\Omega -extended.
We now aim to improve the agreement with Model-\Omega -empirical of concern in Re-
mark 4.1. We incorporate the micro-physics of freezing in porous media from sec-
tion 2.2.3, and in particular, we propose accounting for the depression of freezing
temperatures in small pores.

To this end we modify our \epsilon -model. We postulate that every REV \omega (x) includes a
collection of pores with a large variation of pore sizes. This feature is true in realistic
porous media; see [21, 29, 14]; in particular, [14] reports for limestone that the largest
pores make about 10\% with diameters around 100 [\mu m], but the remaining pores have
sizes below 10 [\mu m]. In turn, clay frequently features macro-, meso-, and micropores,
with median pore sizes ranging from 100 through 1 through 0.01 [\mu m], respectively
[21, 29]. See illustration in Figure 1, right.

Formally, we postulate that the water portion \omega (w) of an REV \omega is made of
several subdomains \omega (w,m), 1 \leq m \leq NWMAT , as well as of the rock material
r = NMAT = NWMAT + 1. The subdomains \omega (w,m) correspond to some assumed
volume fractions (\eta (w,m))m and we have \eta (r) = 1 - \eta = 1 - 

\sum NWMAT

m=1 \eta (w,m). Next, we

need the thermal parameters c
(m)
l , c

(m)
i ,L(m), k

(m)
l , k

(m)
i for each material in \omega (w,m).

These can be distinct for each m but for simplicity we set these equal to those for
the bulk water from Table 5. We distinguish each ``material"" (w,m) by its specific

\theta 
(m)
\ast calculated with Gibbs--Thompson relationship (2.11) based on an assumed char-
acteristic pore size R(m), ideally with FGT = FGT

0 for water as in Remark 2.1. We
denote this collection \scrR = (R(m))m and see that (2.11) gives a 1-1 map to the freezing
temperatures in \scrT . We can now apply Corollary 3.2 to calculate \chi eff with (3.11e)
for the given \scrD = (\scrR ,\scrT ). We also get \alpha eff incorporating the remaining data, each
with NWMAT jumps.

With this process we get the Model-\Omega -extended with \chi eff resembling \chi P
l from

Model-\Omega -empirical. Since \chi eff (\theta ) is a multivalued graph unlike the smooth function

\chi P
l , we also fit \chi eff to some parametric model \chi model

eff as part of some Model-\Omega -
extended-fit. Without fitting to a smooth curve, the upscaled model with multiple
jumps requires substantial additional effort in implementation [74]. In addition, it
raises the question on how \alpha eff compares to \alpha P from the empirical observations.
These two statements motivate the idea of fitting. As for the choice of parametric
models, one could use a variety of parametric models going beyond those used in
geophysics literature. We aim, however, to address the connection to the empirical
models of particular form. In the end, one can interpret the homogenization process
which derives \chi eff , as an emulator of a physical experiment in which a discrete
collection of experimental data points (\theta b, \chi b)b is collected, followed by fitting to some

smooth parametric model \chi model
eff .

Beside qualitative agreement, a good test of our conceptual process is whether

\chi model
eff is reasonably close to some \chi model

l reported in the literature. We provide
examples to address this question, assuming first that we know the distribution of
pore sizes \scrR . Considering \scrR as data creates a bit of a conundrum since these should
be simultaneously compatible with the actual REV size | \omega | , and since we aim for the
freezing point depression to be significant enough to be noticed in computations and
in physical experiments.
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 455

Fig. 5. Illustration for Example 4.2: the dependence of the upscaled phase fraction \chi eff on the

Gibbs--Thomson parameter F = FGT in (2.11) (left) and on the number of materials NMAT (right).

Example 4.2 (upscaling to model-\omega -extended and fitting to model-\Omega -extended-fit).
We consider the REV \omega = (0,1)[cm] illustrated in Figure 5, with porosity \eta = 0.5. We
consider NMAT > 2 with the arrangement of phases as follows: the pore sizes R(m)

were generated recursively using R(m+1) =R(m)+U (m), and (U (m))NMAT - 2
m=1 was gen-

erated uniformly from [0.2,1]. The values R(m) were scaled next so that
\sum 

mR
(m) =

\eta | \omega | . Next, we use (2.11) to compute the depression in the freezing temperature corre-
sponding to an assumed pore size for which we heuristically set R(m) = \eta (w,m)| \omega | . To
accommodate these, we use ad-hoc values FGT \in \{ 5\times 10 - 4,10 - 3,2\times 10 - 3\} . For each
choice of NMAT and FGT we calculated the upscaled liquid fraction \chi eff (\theta ) which

we fit to some \chi model
eff . The results are plotted in Figure 5 and are given in Table 8.

We make the following observations. Already with NWMAT = 10, the step func-
tions \chi eff plotted approximate well some of the smooth relationships \chi P

l in Figure 2,
with a large tail and freezing point depression of order 10[\circ C]. Second, as expected,
increasing FGT or NWMAT increases the magnitude of the freezing point depression
and decreases the maximum slope of \chi eff . Third, the parameter fit reported in Table
8 is, in general, agreement with the parameter range from literature, and is best for
models W and M , and would improve, e.g., with larger NWMAT .

Now we address the choice of FGT in Example 4.2. In principle, we should con-
sider only the physical value FGT = FGT

0 from Remark 2.1. However, as indicated
there, the drop of \theta \ast by more than 10\circ C observed in nature requires very small radius
R of a pore. Simultaneously, the smoothness of experimentally measured \chi P

l indicates
that there is a wide range of pore sizes in permafrost soils, likely reaching from 10 - 9

to 10 - 4[m]. We can include these submicron size pores along with larger pores in
the model construction. However, an image or grid resolution for these would be at
least 106 in one dimension which prevents us from the use of either imaging data,
or of synthetically constructed computational domains. Therefore, without this high
resolution, a good fit in Example 4.2 with an assumed \scrR requires FGT >>FGT

0 . Al-
ternatively, one should fix the freezing temperatures \scrT rather than the radii \scrR . This
issue is relevant for validation as well as for the impending comparison between the
pore- and the Darcy scale simulations in section 5.4.

Remark 4.2. If we are to interpret quite literally the decomposition of \omega (w) to
subdomains \omega (w,m) in which one solves the pore-scale problem numerically, then
O(R(m)) = \=R \approx | \omega (w,m)| as in Example 4.2. For this, we must accept an estimate
for the order of magnitude \=R \approx O(10 - 2| \omega | ) corresponding to, e.g., NWMAT = 50,
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456 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

\eta = 0.5, to allow a reasonable discretization each with 10 cells per each \omega (w,m) for the
total of about O(103) grid cells in each \omega . In other words, R(m) or \=R should not be
too small. At the same time, from Remark 2.1 the physical choice of FGT

0 = 10 - 7 cor-
responds to \Delta \theta \ast \approx 1\circ C only for small R0 = 10 - 7 [m], but to achieve a close fit of \chi eff

to empirical \chi P
l from plots in Figure 2, we must have at least | \theta (m)

\ast | >O(1\circ C). There-
fore, in this literally understood scenario when the physical size of REV and of \scrR are
matched, we conclude that a close fit between \chi P

l and \chi eff is obtained either when
\chi eff is based only on \scrT , or if the process connecting \scrT to \scrR and the assumed \omega (w,m)

follows with a scaled FGT = FGT
0

\=R
R0

= 10 - 2| \omega | or larger, as in Example 4.2. Another
option is to consider REV \omega which is physically much smaller, which contradicts the
above statement about \=R.

We demonstrate the scaling and fitting issues further in the next examples.

Example 4.3 (dependence of model-\Omega -extended on NMAT and the factor FGT ).
We consider (a) \omega = (0,10 - 3) [cm] with \eta = 0.50 and NMAT = 51 materials. In (b),
we consider \omega = (0,1) [cm], and NMAT = 11; the configuration of materials within
the REV is shown in Figure 6. For both cases we generate (R(m))m from a normal
distribution \sim N(0.1,4\times 10 - 4), and next scale so that

\sum 
mR

(m) = \eta | \omega | . We calculate

\theta 
(m)
\ast from (2.11) with (a) FGT = FGT

0 , and (b) with FGT = 10 - 3. We calculate the

upscaled \chi eff , and we fit to \chi model
eff ; these are shown in Figure 6, with data in Table 9.

We see that the fitting parameters for \chi model
eff (\theta ) are within the range reported in

the literature. The example illustrates well the connection between the fitted models
and Model-\omega -extended.

The examples have shown the success of our conceptual construction of Model-
\omega -extended in achieving close agreement with Model-\Omega -extended after upscaling.

4.1.3. Validation of \bfitalpha \bfite \bfitf \bfitf in Model-\Omega -extended. A meaningful validation
study would require a comprehensive dataset for some soil including a pore size dis-
tribution \scrR (or of freezing temperatures \scrT ), soil-specific SFC \chi P

l , and the knowledge
of porosity \eta . Such comprehensive data is not available at this time, but we attempt

Fig. 6. Results of Example 4.3: plot of upscaled phase fraction \chi eff (\theta ) and of fitted models

\chi model
eff (\theta ) for model=L,W,M . Left: case (a) with FGT = FGT

0 . Right: case (b) with FGT = 10 - 3.

Domain sizes and REVs are shown on top.
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 457

realistic setting using only data on \scrR = (R(m))m and the associated volume fraction
(\eta (w,m))m from applications literature; we refer to [21, 29] as a resource. We also
use X-ray micro-CT images [48, 49, 70, 50, 59], even if these do not resolve well the
tiniest pores.

We start with some empirical \chi P
l (\theta ) and \eta . Next, we find the step function

\chi eff = \Pi \scrT (\chi 
P
l ) as the L2 projection of \chi P

l on some assumed grid \scrT . Clearly, the
choice of \scrT determines the quality of the process and of the fit of \chi P

l \approx \chi eff . Since \chi 
P
l

features steep gradients close to \theta \ast = 0, \scrT is usually graded with more points towards
\theta \ast = 0. We also have the pore sizes \scrR = (R(m))m from (2.11) assuming some FGT .

Next, we extract the volume fraction \eta (w,m) of each material (w,m) from (3.11e)

as the jump \eta (w,m) = [\chi eff ]| \theta (m)
\ast 

of the step function \chi eff at each of the \theta 
(m)
\ast , 1 \leq 

m \leq NWMAT . For \theta NWMAT
\ast we have \eta w,NWMAT + 1  - \eta = [\chi eff ]| \theta (NWMAT )

\ast 
so that

\eta (r) = 1 - 
\sum 

m \eta 
(w,m).

We can next compare literature data as in the next example.

Example 4.4 (validation of Model-\Omega -extended with pore size distribution data).
We start with the SFC given by \chi M

l with parameters \chi M
res = 0, bM = 0.2, \theta M\ast = 0,

porosity of \eta = 0.5, and FGT = FGT
0 ; see Figure 7 for illustration. For expository

purposes, we start with NWMAT = 5; see Table 4 for \theta 
(m)
\ast , the calculated characteristic

pore size R(m) and volume fractions \eta (w,m). We consider next large NWMAT = 50
and obtain a better fit of \chi eff ; we plot the histogram of (R(m), \eta (m))m in Figure 7,
with a comparison to the pore size distribution in [59, Figure 6] for silty loam.

Fig. 7. Illustration of Example 4.4: approximating a given SFC curve \chi P
l by some step function

\chi eff based on a set of NWMAT = 5 points \theta 
(m)
\ast . Left: approximation of \chi M

l \approx \chi eff when NWMAT =

5. Right: with NWMAT = 50 we have a better fit of \chi P
l \approx \chi eff with more points in \scrT = (\theta 

(m)
\ast )m;

we show the histogram of pore size distribution R(m) compared to that from [59], annotated as (ER)
in the legend (inset, same units of radii).

Table 4
Results of Example 4.4 with NWMAT=5: the pore radii and volume fractions for the SFC

plotted in Figure 7.

Parameter Material (m)

(1) (2) (3) (4) (5) (6)

\theta 
(m)
\ast [\circ C]  - 15  - 7.5  - 5  - 3.75 0 0

R(m) [cm] 8.000\times 10 - 7 1.600\times 10 - 6 2.400\times 10 - 6 3.200\times 10 - 6 -- --

\eta (m) [ - ] 5.778\times 10 - 2 8.696\times 10 - 2 6.422\times 10 - 2 1.427\times 10 - 1 1.482\times 10 - 1 5.000\times 10 - 1
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458 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

As shown in Figure 7 we have good qualitative agreement with [59, Figure 6], but
there is a scaling discrepancy of roughly 100 between pore radii we find and those
reported in literature. We already addressed the scaling issue in Remark 4.2 and
note that the data in [59, Figure 6] uses very small range of \scrR . Here we would have
| \omega | \sim O(10) [\mu m].

Next, we attempt the validation process in the opposite direction. From a given
histogram of\scrR , we extract the volume fractions \eta (w,m), and for each R(m) we calculate
\scrT = (\theta 

(m)
\ast )m. The homogenization process in (3.11e) gives \chi eff (\theta ) which we can fit

to a selected parametric model \chi model
eff (\theta ).

Example 4.5 (cross-checking of Model-\Omega -extended with inverse modeling). We
consider (a) one of the pore size distributions from [59] for a small sample of silty
loam. We also consider (b) the pore size distribution of Berea sandstone in [29],
normally distributed with mean \mu = 0.002 [cm] and an estimated standard deviation
\sigma = 0.001 [cm] to replicate the behavior reported in [29, Figures 3--7]. For both
examples, we assume \eta = 0.5. We use FGT = FGT

0 , and derive Model-\Omega -extended

with \chi eff (\theta ) fitted to \chi model
eff (\theta ) for each model = M,W,L shown in Figure 8, and

with parameters in Table 9.
In (a) the range of pore sizes is relatively small of 10--150 [\mu m], thus the cor-

responding range of freezing temperatures is small at most 0.01 [\circ C], resulting in a

steep profile of \chi eff and a poor fit of the models \chi model
eff which feature steeper gradi-

ents than those plotted in Figure 2. The distribution in (b) gives a better fit, but the
freezing depression is likely underestimated to be only of 0.1 [\circ C].

Fig. 8. Illustration for Example 4.5: constructing \chi eff (\theta ) and \chi 
model
eff (\theta ) for the given pore size

distribution from [59] annotated as (ER) in the legend (top) and for Berea sandstone from [29].
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 459

In the end we believe that the examples we provide show success of the proof-of-
concept construction of upscaling Model-\omega -extended to Model-\Omega -extended.

4.2. Results: Upscaling heat conductivity (\bfitk (\bfitm ))\bfitm from Model-\bfitomega to
\bfitk \bfite \bfitf \bfitf (\bfittheta ) in Model-\Omega . Here we work to derive effective conductivity keff and some

of its approximations \widetilde keff which we compare to the simple averages kA, kG, kH given
by (2.15). Since we do not have physical data for conductivities in small pores, we
use the properties for bulk water, thus there is no difference in calculating keff from
Model-\omega -basic and Model-\omega -extended. The main challenge we describe and address
is a significant nonlinear dependence of the upscaled conductivities on the actual
phase distribution rather than only on the volume fractions of ice within \omega (w). This
dependence calls for construction of a reduced model.

Heat conductivity for composites is an important topic both for practical studies
of unsaturated as well as ice- or hydrate-filled soils [68, 9, 11], and from the theoretical
point of view [36]. In particular, of interest are both the homogenized conductivity
tensors as well as the upper and lower bounds such as kA and kH on their eigen-
values, respectively. Composites with nonzero thermal contact resistance are also
important [60, 31] but are outside our scope. Tighter bounds can be obtained with
Hashin--Shtrikman formulas when NMAT = 2; see [36, secs. 2.6--2.7], but are not easily
computable for rock and water in two phases.

4.2.1. Theoretical set-up. To calculate keff , we require (k
(m)
p )NMAT

m=1 for each
material m and phase p = l, i. For m = r we set k(r) = k| \omega (r) = kr, and assume
\omega (r) is known. For k| \omega (w) as in Assumption 2.1 we only consider phase dependence,
i.e., we choose from kl, ki. We also set k| 

\omega 
(w,m)
l

= kl, k| \omega (w,m)
i

= ki in each m = 1,

NWMAT regardless of the pore size in \omega (w,m); the more general case would require
the knowledge of the heat conductivity of the undercooled water and/or small pores
for which we lack sufficient literature at this time.

Given some \=\theta (x) = \theta 0, the effective heat conductivity keff (\theta 0) \in Rd\times d for the
heterogeneous Stefan problem (2.8) is given by (3.4) as part of Proposition 3.1. To
solve (3.4b) for (\xi j)

d
j=1, we need to know the geometry of the materials and phases

\omega 
(w)
l , \omega 

(w)
i \subset \omega (x) corresponding to \theta 0.

Remark 4.3. In d=1, keff (\theta 0) equals exactly k
H which only depends on the volume

fraction of the materials rather than their geometry, which can be approximated from
the known \chi eff (\theta 0).

We can also consider some approximations \widetilde keff discussed in section 3.3. In ad-
dition, we consider reduced models defined next.

4.2.2. Proposed practical reduced model for \bfitk \bfite \bfitf \bfitf (\bfittheta ). For d > 1, the dis-

tribution of \omega 
(w)
l corresponding to \theta 0 is not unique. In fact, for a given \theta 0, there are

infinitely many possible different realizations (\theta (y)a)a, y \in \omega : \langle \theta (\cdot )a\rangle = \theta 0, with the

corresponding geometry (\omega 
(w)
l )a; each yields a different (keff )a. The second challenge

is that the dependence on \theta 0 is implicit.
To make the calculations of keff (\theta ) useful for coarse-scale computational models,

we propose a reduced model, a comprehensive look-up library for each fixed rock--
water domain \omega (r). A desired value of keff (\theta ) is given by an interpolation of the
precalculated values (keff (\theta b))b drawn from a probability distribution of (\theta b)b, as is
common in reduced order models [52].

Remark 4.4. The parametrizations of probability distributions (keff (\theta b))b can
be calculated offline: for each \theta b and a given \omega (r) we build a desired number Na of
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460 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

``realizations"" of (\omega 
(w)
l )a with one of the following data--based or simulation strate-

gies: (i) postprocessing the pore-scale images [14, 59], or (ii) simulations of (\theta (y, t))a
corresponding to some initial data and energy input scenarios for which the time
snapshots of averages equal \theta b. Alternatively, one can pursue (iii) via stochastic or
statistical mechanics simulations of plausible phase configurations compatible with
the microphysics; see [50].

A different reduced model strategy is possible for pore modifications due, e.g., to
biofilm growth around the grains such as in the work [7].

4.2.3. Results on \bfitk \bfite \bfitf \bfitf . We illustrate now the idea in section 4.2.2, and com-
pare keff to the approaches in permafrost literature which calculate kP = kP (\theta 0) as
one of kA, kG, kH given by (2.15); these do not distinguish the different geometries

(\omega 
(w)
l )a. In Example 4.6 we follow up on point (i) from Remark 4.4, and assume

\omega (w,l), \omega (w,i) are known from imaging. In Example 4.7 we assume as in (ii) that
\omega (w,l), \omega (w,i) are known from simulations.

Example 4.6 (upscaling thermal conductivities with a phase arrangement from
imaging). We consider pore geometries taken from [50, Figure 1A] with \omega shown in
Figure 9, with voxel resolution 535 \times 536. We consider first cases (1)--(2) with \omega (w)

in one phase only, and then cases (3)--(4) with \omega (w) partitioned into two phases. We
assume material properties as in Table 5, and find the upscaled keff , its approximation\widetilde keff , and the simple averages given by (2.15). These values are reported in Table 6.

Now we discuss the results: the geometry of \omega is close to ``isotropic"" without any
particular layered or skew trends, even when multiple phases are present. Therefore,
it is not a surprise that the tensor keff reflects this ``isotropy"": the diagonal values of
keff are close to one another, and the off-diagonal values keff,12, keff,21 (not shown

in Table 6) are of order 10 - 5. Next, the values of \widetilde keff are within less than 1\% of keff
even when additional eight digits are considered (not shown). Finally, in each case

(1) (2) (3) (4)

Fig. 9. Pore-scale images of \omega (x) from Example 4.6. Rock grains in white. In (1)--(2) water is
in black. In (3)--(4), water is in gray, and additional solid phase is in black. The effective keff and
its approximations are given in Table 6.

Table 5
Thermal properties of rock and water materials assuming water has properties of bulk water.

(The grains are considered ``frozen"" for \theta < 0 and ``unfrozen"" for \theta > 0.) This convention is useful
for algebraic formulas employed in section 4.1.1.

Material c
(m)
i | c(m)

l k
(m)
i | k(m)

l L(m) \theta \ast (m) Reference

Unit [J/m3\circ C] [J/m s\circ C] [J/m3] [\circ C]
Material (w) 1.90\times 106| 4.19\times 106 2.30| 0.58 3.06\times 108 0 [58]

Material (r) 2.36\times 106| 2.36\times 106 1.95| 1.95 0 0 ci, ki: [78]
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 461

Table 6
Upscaled values keff of heat conductivity k from Example 4.6 corresponding to the geometries

shown in Figure 9, and its approximations k̃eff as well as kA, kG, kH .

Case \eta \eta (w)i \chi i kA kG kH keff,11, keff,22 ˜keff,11 ˜keff,22
(1) 0.4413 0 0 0.01345 0.01142 0.00955 0.01149 0.01166 0.01149 0.01150
(2) 0.4395 0 0 0.01347 0.01144 0.00956 0.01168 0.01161 0.01168 0.01162

(3) 0.4099 0.3558 0.1499 0.0164 0.0146 0.0123 0.01492 0.01471 0.01492 0.01467

(4) 0.4136 0.2679 0.6478 0.01844 0.01708 0.01496 0.01717 0.01727 0.01721 0.01720

kG is within less than 1\% of the diagonal entries of keff , but k
A and kH can be as

much as 10--20\% different from kG. In the end, the values kGI as well as \widetilde keff appear
to provide a very good approximation to upscaled conductivities keff .

Next we consider a layered phase arrangement, with the realizations of (\omega 
(w)
l )a

obtained via a transient simulation of heat equation at the pore-scale for a scenario
of thawing due to heat input from bottom boundary.

Example 4.7 (upscaling thermal conductivities with a phase arrangement given
from simulations). We consider pore scale geometry shown in Figure 10, assume
material properties in Table 5, and conduct simulations of thawing, following [5.
Example 5.4.2]. For every time step tn of the simulation, we have a different geometry

of (\omega 
(w)
l )n, with selected snapshots shown in Figure 10. We calculate the volume

fraction (\chi l)n = \langle \chi (\cdot , tn)\rangle , \langle \theta \rangle n, and upscaled keff plotted in Figure 10; we omit the
off-diagonal entries of keff which are about 10 - 5 smaller than the diagonal entries.

This example demonstrates a different pattern than in Example 4.6. While the
manner of upscaling seems insignificant since keff \approx \widetilde keff , we see a drastic difference
between keff and kA, kG, kH . As shown in Figure 10, the thawing process follows by
design from the bottom to the top of the domain \omega (x). As a result, the arrangement
of phases (materials) at each time step n resembles a layered medium with inclusions,
with layers building up in the vertical x2 direction. Unlike in Example 4.6 we see
strong anisotropy with up to 50\% difference between the horizontal and vertical com-
ponents of the conductivity keff,11 \not = keff,22 which, as expected, are close but not
equal to the arithmetic and harmonic averages, respectively. This feature, typical for
layered media, is somewhat moderated due to the presence of rock inclusions. Finally,
the geometric average kG remains within 20 to 25\% of the upscaled values keff,11 and
keff,22 and more or less splits their difference.

In the end we see significant difference between the upscaled heat conductivities
keff found using different approaches. It is natural to wonder how this difference
impacts the Darcy scale models. We follow up with a study of sensitivity to kP in
permafrost models in section 5.3; we also discuss the choice of keff in the comparison
between the pore- and the Darcy scale to be reported in section 5.4.

5. Computational results. In this section we provide simulation results to il-
lustrate the upscaling heterogeneous Stefan problem in Model-\omega -extended (2.8)
with data (\alpha (m), k(m))m to the effective model Model-\Omega -extended (3.2) with data

(\alpha eff , keff ) and their practical approximations (\alpha eff , \widetilde keff ) in Model-\Omega -extended-fit.
These were defined in sections 4.1.2 and 4.2.

In section 5.1 we provide literature notes. In section 5.2 we outline our P0-P0
scheme. In section 5.3 we present a sensitivity study on keff and kP at the Darcy
scale. In section 5.4 we present our main result: a computational comparison of the
pore-scale and the Darcy-scale models.
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t=0 100 500 700 1100

Fig. 10. Illustration for Example 4.7. Top: evolution of the geometry \omega (x) in time: grains \omega (r)

black, ice \omega 
(w)
i in white, and liquid \omega 

(w)
l in gray. Middle and bottom: effective thermal properties

corresponding to the evolving \omega (w,l). Middle: plots of average phase fractions \eta l(t), \chi l(t), and \chi i(t),

and of upscaled keff (t), approximated k̃eff (t) and averaged values of heat conductivity. Bottom:
plots of keff (\chi l) and keff (\langle \theta \rangle ).

5.1. Literature notes on approximation of Stefan problem and nonlin-
ear degenerate parabolic problems. We start by acknowledging the wealth of
literature on the subject including the classical contributions on monolithic (no front-
tracking) approaches to the homogeneous Stefan problem in [37, 58, 35, 41, 71, 25].
These, however, do not apply to the heterogeneous version in our Model-\omega , and our
recent review accompanying the schemes for heterogeneous Stefan problem in [6] in-
cludes an extensive discussion of the P1-P1 schemes [61], P1-P0 schemes involving
the Chernoff formula [35, 41], and approximations using phase relaxation [71, 25].

As concerns the Darcy scale permafrost models similar to Model-\Omega -empirical,
we see from the plots in Figure 2 that \alpha P (\theta ) features nonlinearity with a singular
derivative at \theta = \theta \ast somewhat different than in the degenerate but smooth nonlinear
parabolic equations considered, e.g., in [3, 63, 76, 51, 54, 53]. In particular, linear
rates have been derived in [3, 63] which can be extended to quadratic rates under
strict smoothness requirements [3].
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 463

Meanwhile, the applications literature has produced simulations of Model-\Omega -
empirical with focus on simulations rather than convergence analyses included, e.g.,
in [20, 75, 23, 40, 38].

We are not aware of any work that would fit the multivalued Model-\Omega -extended
with multiple jumps, but we are working on a manuscript on this topic [74].

5.2. Algorithm. We start by briefly outlining the approximation techniques for
the heterogeneous Stefan problem (2.8) at the pore-scale, and for the permafrost model
at the Darcy scale for (2.12). At both scales, we use rectangular (voxel) grids, and
a fully implicit in time scheme, approximating \theta and w each by piecewise constants
(hence denoted by P0-P0), and fluxes with RT[0] finite elements. This P0-P0 approx-
imation scheme is implemented as CCFD (cell-centered finite difference) scheme, also
interpreted as a finite volume scheme. It is solved for the primary scalar unknowns

wn + \tau A(\theta n)\theta n =wn - 1 + \tau fn; n> 1,(5.1a)

where wn = (wn
j )j , \theta 

n = (\theta nj )j are the vectors of discrete approximations to w,\theta at
time tn and at the cell centers xj of some rectangular grid covering \Omega . We have
w0 = (winit(xj))j . Also, \tau is the time step, A is a discrete ``diffusion"" nonlinear oper-
ator built from the phase dependent heat conductivities and which incorporates the
Dirichlet boundary conditions, and fn approximates the source term which includes
Neumann boundary data, if relevant. The system is closed with a relationship

gj(\theta 
n
j ,w

n
j ) = 0 at every grid point xj .(5.1b)

Here the relationship gj expresses the model-specific pointwise connection between \theta 
and w. In the heterogeneous Stefan problem, let xj \in \Omega (m) for some m; we work with
the function gj(\theta ,w) = \theta  - (\alpha (m)) - 1(w); the function (\alpha (m)) - 1(w) is a continuous
nondecreasing Lipschitz function differentiable everywhere except at w = 0 and w =
L(m). In empirical Darcy-scale models we work with gj(\theta ,w) = g(\theta ,w) = w  - \alpha P (\theta );
the function \alpha P strictly monotone, continuous, globally Lipschitz, and differentiable
everywhere except at \theta = 0. The approach is robust for the pore-scale models (3.1)
and approximations to w\epsilon , \theta \epsilon and the Darcy-scale models (2.12) with approximations
to wP , \theta P ; we show in [6, 74] that the scheme converges at the linear rates, at least
for the d= 1 examples and in the norms we consider.

The nonlinear algebraic system (5.1) is solved with Newton iteration which gen-
erally requires that all nonlinear functions are at least Lipschitz with a Lipschitz
inverse. This holds for the pore- and the Darcy-scale models with (5.1b) described
above: the Newton iteration is well defined and reasonably robust as long as adaptive
time-stepping is used.

However, when approximating (\theta eff ,weff ), the solutions of the effective model
(3.2), we have g(\theta ,w) =w - \alpha eff (\theta ) given by (3.7), and the solver for (5.1b) presents
new challenges since \alpha eff features a mixture of several jumps and jumps in slopes.
We find that the Newton iteration has difficulty converging without additional algo-
rithmic improvements; these deserve special attention deferred to another venue [74].
Therefore in this paper we use a smooth approximation \alpha eff (\theta ) to \alpha eff discussed
in section 3.2, for which Newton iteration works similarly to that for the empirical

models \alpha P (\theta ). This means that in the end, we find the approximations (\widetilde \theta eff , w̃eff )
rather than (\theta eff ,weff ).

5.3. Sensitivity study. We now address the issue of the dependence of the
simulations of the Darcy-scale model on the conductivity value, which we believe
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464 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

is significant. We consider \Omega = (0, 10)[cm], \eta = 0.43, and \chi P
l (\theta ) = \chi M

l (\theta ), with
\chi res = 0, \theta \ast = 0, and b = 0.16. We use winit(x) = const = \alpha eff (\theta 0) with \theta 0 =  - 7[\circ C]
representing a frozen state. We discretize with M = 50 and \tau = 10[s], and simulate
\theta (x, t), t\in (0, T ] with T = 10,000[s] sufficient for about quarter of the sample to thaw
due to the boundary conditions

\theta (0, t) = \theta 0, \theta (10, t) = 5.(5.2)

We conduct two simulations. First, we focus on the ``value"" of kr which influences
kP (\theta ).

Example 5.1 (study of sensitivity of solutions to Model-\Omega to the heat conductivity
kr). We approximate \theta (x, t) using kr = 1.95 from Table 5. We also find \theta new(y, t)
corresponding to some knewr chosen to be within 20\% difference from kr, and drawn
randomly from a uniform distribution from [1.56,2.34]. The temperature and enthalpy
profiles for kP = kA calculated at each knewr are shown in Figure 11. We find that the
simulated | \theta new(x, t) - \theta (x, t)| can be as much as \approx 0.74\circ , which represents about 6\%
of the range of simulated temperatures.

Second, we keep kr fixed, and study the sensitivity to the choice of kP .

Example 5.2 (study of sensitivity of solutions to Model-\Omega to the choice of param-
etrization kP ). We simulate \theta A(x, t), \theta G(x, t), \theta H(x, t) with the same scenario as in
Example 5.1 but choosing, respectively, kP (\theta ) to be kA, kG, or kH given in (2.15).
The results shown in Figure 12 show a difference maxx,t | \theta A(x, t) - \theta H(x, t)| \approx 1.45[\circ C]
which is about 15\% of the range.

Fig. 11. Temperature \theta (left) and enthalpy w (right) profiles at t= 100 (top), and t= 10,000 [s]
(bottom) for Example 5.1. The units in the legend for k= kr are [J/m s\circ C].
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 465

Fig. 12. Temperature \theta (left) and enthalpy w (right) at t= 100 (top) and t= 10,000 [s] (middle)
for Example 5.2 comparing the use of kA, kG, and kH . Also shown (bottom) are the normal boundary
flux values over time.

These two examples show substantial sensitivity of the solutions to the values
and the choice of kP . This fact plays a significant role in the quality of upscaling
considered below.

5.4. Comparison between the pore-scale and the Darcy-scale models.
In this section we illustrate the main result of this paper: we show that one can
effectively upscale the heterogeneous Stefan problem with NREV pores to the Darcy-
scale permafrost model with data derived from upscaling the pore-scale data.

We work in d = 1 in which \epsilon 0 =
10

NREV
represents the actual size | \omega | of the pore

domain \omega = (0,1) [cm] relative to the size of \Omega = (0, 10) [cm]. We choose the REV
to be the same as in Example 4.3, with the pore geometry given in Figure 6, and
porosity \eta = 0.45. Rock-fluid data is in Table 5.
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466 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

The choice of d= 1 allows various simplifications; in particular, we recall that in
one spatial dimension keff (\theta ) is known to be exactly equal kH for a geometry \omega 

(w)
l

corresponding to \theta . This choice allows one us to focus on the features of the upscaling
specific to the Stefan problem.

For initial and boundary conditions, we use the same scenario as in Examples 5.1
and 5.2 for the evolution from the initially frozen state towards a partial thaw due to
the heat applied through Dirichlet condition on the right-hand side.

With the data as above, we approximate the solutions (\theta \epsilon ,w\epsilon ) to the actual pore-
scale model (2.8) implemented with the scheme (5.1). We also find the approximations

to (\widetilde \theta eff , w̃eff ) to the Darcy-scale model (3.2), again with (5.1), and compare these to
the pore-scale model solutions. When referring to these approximations, we suppress
any notation for the spatial or temporal discretization.

For the Darcy-scale model, we build \chi eff as shown in Example 4.3(b), and cal-
culate next \alpha eff (\theta ) built from the pore-scale model as described in section 3.2. Next,

we construct \alpha model
eff through a fit of \chi eff to one of the parametric models \chi model

eff ,
model=L,W,M discussed in Example 4.3.

As concerns keff (\theta ), we have the exact match keff (\theta ) = kH(\theta ) which depends only
on the current volume fraction \widetilde \chi eff (\theta ) rather than the actual possible arrangements

of \omega 
(w)
l corresponding to this \theta . In the example, we can compare the use of the

weighted averages kA, kG calculated from the same data.

Example 5.3 (comparison of solutions to Model-\omega -extended applied at every cell

of Model-\Omega -extended). The solutions (\theta \epsilon ,w\epsilon ) and (\widetilde \theta eff , w̃eff ) are approximated in-
dependently of one another with spatial discretization corresponding to M \epsilon = 1000
and Meff = 25 cells, respectively. We also use finer time-stepping for the pore-scale
\tau \epsilon = 1[s] than that for the Darcy scale model where \tau eff = 10[s]. The solutions (\theta ,w)
at the end T = 10,000 are plotted in Figure 13. We also plot the normal fluxes at
x= 0 (left boundary) and x= 10 (right boundary) in Figure 14.

We now compare the pore-scale solutions to Model-\omega -extended with the REV
\omega distributed over all \Omega to the solutions to Model-\Omega -extended-fit approximating the
effective Model-\Omega -extended. We observe that the pointwise values of \theta \epsilon are close

to \widetilde \theta eff . In addition, the values of w̃eff are quite visibly in the ``middle"" between
the lower and upper bounds of w\epsilon which correspond to the rock and water portions
of each \omega (r), and \omega (w), respectively. One interesting feature is the presence of the
individual pointwise ``spikes"" in w\epsilon which correspond to the temperatures \theta \epsilon crossing
the different freezing temperatures specific to the different material types in every
REV \omega . We also see the expected ``wiggles"" of \theta \epsilon around \theta eff . Finally, the closeness

of \theta \epsilon and \widetilde \theta eff is most pronounced for the ``correct"" and exact kH = keff .
Further insight is provided through the analysis of fluxes in Figure 14. We see

that the right flux quickly settles to an inflow energy value already around t= 1000,
with the closest agreement from the simulation corresponding to kH . The left flux is
of much smaller magnitude of about 10\% of the right. The time oscillations in flux
visible from pore scale correspond to the finite time of propagation of free boundary
across the cells, and are typical for the solutions to Stefan problem, and more general,
for any phase change problems.

5.4.1. Performance of our computational algorithm. We also briefly re-
port on the performance of our P0-P0 algorithm when applied to Example 5.3. We
have performed an extensive study of our P0-P0 algorithm at the pore scale in [6];
therefore, we only report about the algorithm at the Darcy scale. Convergence was
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 467

Fig. 13. Illustration for Example 5.3: plots of temperature \theta (left) and enthalpy (right) w at
t= 10,000 [s] of solutions to Model-\omega -extended and Model-\Omega -extended at the pore and Darcy scale,
respectively. Very good agreement of the pore-scale with the Darcy-scale solutions is visible; it is
excellent when kH is used.

achieved for grid sizes h\in \{ 0.4,0.2,0.1\} \times 10 - 2 [m] and \tau \in \{ 1,10,100\} [s]. The L,W ,
and M models have similar performance with a maximum of 4--9 iterations and mean
of 2--4.2 iterations. For time steps \tau = 1,10 and 100, time step reduction was observed
until \tau = 0.5,2.5, and 50, respectively, and the number of iterations decrease with de-
creasing time step. Moreover, no difference was observed when using kP = kA, kG or
kH . More analysis will be given in [74].
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468 M. PESZYNSKA, N. VOHRA, AND L. BIGLER

Fig. 14. Illustration of Example 5.3: plot of the left and right boundary heat fluxes q(t) in time.
The inset is chosen at t= 1000 when the phase change is first well visible.

6. Summary and conclusions. In this paper we consider upscaling of het-
erogeneous Stefan problem which features multiple nonlinearities, some of which are
multivalued; all are dependent on the type of material considered.

We apply rigorous theory from [73] and derive practical formulas for the effective
properties in section 3. First, we consider the Model-\omega -basic for the rock and water
mixture at the pore-scale which we upscale to the Darcy-scale Model-\Omega -basic. We
demonstrate that additional microscale physics must be incorporated and thus we
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UPSCALING STEFAN PROBLEM FROM PORE TO DARCY SCALE 469

propose Model-\omega -extended, which after upscaling to Model-\Omega -extended shows quali-
tative agreement with Model-\Omega -empirical. We also propose a reduced model for han-
dling effective conductivities. In the end, the solutions of upscaled and micromodel
compare well.

The theoretical contributions of this work include a new connection between the
pore- and the Darcy-scale models, a method to incorporate microphysics in the rigor-
ous upscaling process, and a new proposed reduced model for effective conductivities
which honors the underlying uncertainty.

The practical contribution is that we are able to relate the pore-scale properties of
porous media such as pore distribution to the effective properties such as water content
\chi P
l (\theta ). This practical relationship allows one to construct the effective constitutive

properties of permafrost ``in silicio"" instead of via experiments. One other important
take-away message is that some of the approximations commonly used in the Darcy-
scale models including the arithmetic or geometric weighting of conductivities might
lead to modeling errors.

More research is underway addressing some of the open questions. In particular,
in this paper we only considered the continuous relationships \chi P

l (\theta ) which we adapted
from the models in literature, and only simulated upscaled models with their effective

approximations \chi model
eff . More general study as well as development of algorithms

for properties involving the mixtures of step functions is needed. Moreover, we only
studied a portion of the microphysics by including freezing point depression. More
can be incorporated in future models.

Furthermore, we only considered air-free media, and only studied thermal models.
More general coupled thermal--hydrological models will be considered in the future.

A. Appendix. We include here additional notes on theoretical background and
computational results.

A.1. Additifonal theoretical notes. We now provide now detailed theoretical
results in abstract spaces related to the material in section 3.1.1 which set the stage
for Proposition 3.1.

Remark 7.1. With the hypotheses in section 3.1.1, [73, Thm. 3.1] establishes the
existence of a solution w \in L\infty (L2), and [73, Thm, 4.1] proves two-scale convergence
as \epsilon \rightarrow 0. The coarse-scale problem in [73, Prob. 5.1 and Thm. 5.4] requires ad-
ditional assumptions [73, eqs. (5.1)--(5.3)] on the dependence of q on u [these hold
for q =  - k(\theta ,x, y)\nabla \theta (x, y) considered in this paper]. The effective conductivity K0

[our keff ] calculations are in [73, eqs. (6.1)--(6.7)]. The simplified cases listed in [73,
eqs. (6.8)--(6.9)] do not apply to the composite materials in this paper. Furthermore,
[73, Thms. 4.1 and 5.1] prove two-scale convergence of the solutions of the \epsilon problem
[73, Prob 3.1] and derive the two scale equation [73, eqs. (5.8)--(5.11) or Prob. 5.1] sat-
isfied by the asymptotic limits, as well as the coarse scale problem with data \partial \psi 0,K0

[our \alpha eff , keff ] defined by [73, Thm. 5.4], [73, eqs. (6.6)--(6.7)], respectively.

7.2. Data on parameters and fitting. We include here the tables with pa-
rameters and reporting on the data fitting. Table 7 provides summary of the adapted
\chi P
l models.

Table 8 contains details on these parametric models in Example 4.2.
Table 9 presents results of fitting of \chi eff to these parametric models in Exam-

ples 4.3 and 4.5.
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3
.8
4
5
\times 

1
0
 - 
1

 - 
1
.5
7
1

-

A
d
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d
W

[\circ 
C
]

 - 
3
.4
6
0
\times 

1
0
 - 
1

 - 
7
.0
8
6
\times 

1
0
 - 
1

 - 
1
.4
5
6

 - 
2
.9
1
5
\times 

1
0
 - 
1

 - 
1
.4
9
8

0
[7
5
,
(p

.
1
6
]

A
d
a
p
te
d
M

[\circ 
C
]

 - 
2
.9
1
6
\times 

1
0
 - 
1

 - 
6
.1
9
0
\times 

1
0
 - 
1

 - 
1
.3
5
2

 - 
2
.0
3
2
\times 

1
0
 - 
1

 - 
1
.4
1
5

0
[3
8
,
p
.
5
6
],
[7
8
,
p
.
7
]
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Table 9

The parameters of fitted models model=L,W,M for fitting \chi eff to \chi model
eff .

Example 4.3(a) bL = 2.6973, \theta L\ast = - 0.80199,

bW = 1.3709, \theta W\ast = - 0.80007, \chi W
res = 0,

bM = 2.4568, \theta M\ast = - 0.80247, \chi M
res = 0.

Example 4.3(b) bL = 2.6075, \theta L\ast = - 1.4665
bW = 2.6393, \theta W\ast = - 1.4526, \chi W

res = 0

bM = 1.2245, \theta M\ast = - 1.4348, \chi M
res = 0

Example 4.5(a) [59] bL = 7.816\times 10 - 1, \theta L\ast = - 8.871\times 10 - 4,

bW = 7.428\times 10 - 3, \theta W\ast = - 8.623\times 10 - 4, \chi W
res = 0,

bM = 4.821\times 102, \theta M\ast = - 8.519\times 10 - 4, \chi M
res = 0.

Example 4.5(b) [29] bL = 8.586\times 10 - 1, \theta L\ast = - 2.659\times 10 - 3,
bW = 1.872\times 10 - 2, \theta W\ast = - 2.670\times 10 - 3, \chi W

res = 0,

bM = 1.940\times 102, \theta M\ast = - 2.668\times 10 - 3, \chi M
res = 0.
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