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Abstract—The computational aspects of power systems have
been exploring the steady states of AC power flow for several
decades. In this paper, we propose a novel approach to AC
power flow calculation using resultants and discriminants for
polynomials, which are primarily compiled for quadratic power
flow equations. In the case of AC power flow nonlinear systems,
it is not possible to determine the number of isolated solutions.
However, for polynomial systems, the theorem of Bézout is the
primary theorem of algebraic geometry. This study considers a
certain multi-homogeneous structure in an algebraic geometry
system to demonstrate that the theorem of Bézout is indeed a
generalization of the fundamental theorem, among other results.

Index Terms—AC power flow, Algebraic Geometry, Bézout
theorm, Determinant, Sylvester Resultant, Multi-homogeneous.

I. INTRODUCTION

HE AC power flow equations, also known as load flow

equations, are a set of nonlinear algebraic equations used
to determine the steady-state operating conditions of an AC
power system. The equations relate the complex voltages
and currents at all buses in the system, the complex power
injections at the generator buses, and the complex power
consumptions at the load buses. In general, the AC power
flow equations can be written as [1]:

NB
Sn =DPntJqn = UHY,;LU: + vp Z Yr;rz,v;kn (1)

m=1,m#n

where s, p,, and g, are the complex, active, and reactive
power injections at bus n, respectively; v,, is the complex
voltage at bus n; Y, is the self-admittance of bus n; Y, is
the admittance between buses n and m; and the sum is taken
over all buses m connected to bus n.

These equations are typically solved iteratively using numer-
ical methods, such as the Newton-Raphson and Guasse-Sidel
methods until convergence is achieved. The solution provides
the complex voltages and currents at all buses in the system
under steady-state operating conditions.

The provided passage discusses the complex and non-linear
nature of problems in the AC power flow model, as denoted
by the notation UE{.) that represents complex conjugation. To
obtain an algebraic system from equation (1), it is necessary to
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reformulate the complex conjugate. This can be achieved by
replacing all instances of v}, with independent variables u; and
filtering for “real” solutions where uy = v}, = vgr — \/?11;(1;6,
after obtaining complex solutions. Consequently, this approach
yields a specific structure that allows for various results to be
proven.

The main contribution of the paper is a reformulation
of the steady-state equations into a multi-homogeneous al-
gebraic system. This methodology is vital to understanding
the complex and non-linear nature of problems in the AC
power flow model. The approach described herein provides an
effective method for handling complex systems and deriving
valuable insights into the steady-state operation of an AC
power network.

This study presents both analytical and empirical find-
ings. The analytical outcomes concentrate on the volume and
composition of viable solutions, drawing upon the multi-
homogeneous structures [15] as demonstrated in previous
research [3], [4]. The article recognizes that earlier works
have accomplished the algebraization of system 1 [6], [7],
[12]-[15] and that homotopy-continuation methods have been
extensively utilized [7]-[9], [16]-[23]. The methodology is
comprehensively examined, providing innovative perspectives
on the steady-state functioning of an AC power network
grounded in established techniques. In summary, this study
substantially contributes to the existing literature on AC power
systems by offering analytical and empirical findings that
augment the comprehension of viable solutions, along with
their volume and organization.

The structure of this paper is as follows: Section II discusses
the concept of Sylvester resultant, providing an overview of
the Bezout number and resultant of the polynomial. In Section
II, the comprehensive and tailored power flow equations
for multi-homogeneous systems are expounded upon. Section
IV presents the empirical results pertaining to the two-bus
test system, covering aspects such as the number of roots
and conditions for the non-uniqueness of optimal solution
outcomes. These results rely on the Bertini technique [5] and
resultant.

II. THE SYLVESTER RESULTANT

The concept of polynomials is commonly introduced in
elementary algebra, and therefore, their fundamental charac-
teristics and principles are widely recognized. However, as is
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typical of subjects taught at an elementary level, the scope of
polynomials extends far beyond the content typically covered
in secondary education. The investigation of polynomials
frequently revolves around the identification of their roots or
zeros. The examination of polynomials constitutes an integral
component of abstract algebra and engenders compelling at-
tributes, such as field extensions. Throughout this document,
the notation F' designates a field, and we commence with a
straightforward definition.

Definition 1 characterizes a polynomial f(x) € F[z] as the
product of factors (x — «;) for ¢ ranging from 0 to n, with a,,
representing the coefficient of the highest degree term, z™, and
ao the constant term. Notably, the degree of f(x), deg(f(z)),
equals n, with a,, # 0.

f@) =[] (@ - a) = ana"+an_12" 4. +arz+ay Q)

The roots of f(x) are denoted by «; and each coefficient
a; belongs to the field F'. Interested parties can consult
reference [24] for additional information on polynomials, their
properties, and polynomial rings.

Our aim is to determine the intersections of algebraic curves
of AC power flow equations for real- and reactive powers
at each node of the power grid such as p;,¢q; when i €
{1, ..., NB} belongs to P and Q, where P and Q correspond
to the vanishing sets of the multivariate polynomials p; and g;
when ¢ € {1, ..., NB}.

P={p|icl,. ., NB} 3)
Q={q|i€l,...NB}

For the purpose of maintaining mathematical rigor in this
section, we restrict our attention to bivariate functions in both
sets P and Q, denoted as f, = p(z,y) and f;, = q(z,y),
respectively. Our primary objective is to identify the common
zeros of p and g. We begin by examining the simpler question
of whether the line x = « intersects P and Q. To address
this issue algebraically, we investigate whether the univariate
polynomials p(c,y) and g(c,y) possess a common zero or
in the other words these two equations have the same root
which is the AC power flow solution of p and g. To solve this
problem, we employ the technique of resultant calculus, which
provides a solution that can be generalized to the bivariate
scenario.

A. Common Zeros of Bivariate Polynomials

In algebraic geometry, the study of common zeros of
bivariate polynomials plays a fundamental role. Given two
bivariate polynomials p(x,y) and ¢(z,y) defined over a field

P = R[z,y], the common zeros of p and ¢ are the solu-
tions (z,y) € R[z,y] that satisfy both p(z,y) = 0 and
g(z,y) = 0 simultaneously. Geometrically, these common

zeros correspond to the points of intersection between the
algebraic curves defined by p and gq.

Our focus now turns to the problem of determining the
common zeros of two bivariate polynomials p € Rz, y] and
g € R[z,y]. When the degree of p and ¢ is no more than

two in one of the variables, say y, a simple method can be
employed. We first solve ¢(z,y) = 0 for y, and then substitute
the resulting expression for y into p(z,y) = 0, effectively
eliminating one of the variables.

We consider p and ¢ as polynomials in y with coefficients
in R[z]. Specifically,

pla,y) = Y pila)y", )

0<k<n

az,y) = > a@)y )

0<k<m

Where p;(x) and g;(x) are polynomials in = and n, m denote
the degree of p and ¢ in y, respectively. We wish to compute
the resultant of p and ¢ with respect to y, which is a polynomial
in z that characterizes the common zeros of p and g. Through
the use of the substitution x +— (¢, we obtain univariate
polynomials that facilitate the computation of the common
zeros of the bivariate polynomials in question.

pley) = Y pile)y”, 6)
0<k<n

apy)= > gl (7)
0<k<m

If the resultant of the univariate polynomials p(p,y) and
q(v,y) is equal to zero, then these polynomials share a
common root. The resultant is a mathematical construct that
encapsulates the information regarding the common zeros of
the bivariate polynomials p and gq.

Pn(p) po(p)

an(‘P)

®)

An alternate method for determining the determinant in-
volves preserving the entries as polynomials in variable x. The
resulting polynomial in z can then be evaluated by substituting
the value of ¢ for x. To compute this polynomial, we first
construct the Sylvester matrix of the given polynomials p and
q with respect to variable y. This approach provides a more
efficient and computationally feasible method for computing
the determinant. The equation (9) represents the result of
applying the Sylvester method to compute the resultant of
two polynomials p and ¢ with respect to variable y. The
resultant is denoted by resy(p, ¢), which is computed as the
determinant of the Sylvester matrix Syl,(p, q). The Sylvester
matrix is constructed by placing the coefficients of p and ¢ in
the appropriate positions of the matrix, resulting in a square
matrix with n + m rows and columns. The curly brace with
the subscript m indicates that the matrix has m rows. The
determinant of this matrix yields the desired resultant, which
is a polynomial in variable x. It suffices to demonstrate that
if the determinant of the Sylvester matrix of polynomials p
and ¢ with respect to variable z is zero, then there exists a
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vector in the kernel of Syl (p, ¢) that has the form specified in
the aforementioned equation. This implies that there exists a
common root ¢ for p and g, thereby establishing the converse
of the aforementioned result.

The notion of root products and companion matrices is
grounded on the assumption that p(x) and ¢(x) have roots 7,
and (j, respectively. Based on this assumption, the following
expression can be constructed as [[_, [T, (mj — Cx). The
product obtained as a result of this construction is zero if
and only if there exists a common root of both p and gq.
It may seem like computing this product requires explicit
knowledge of the roots; however, this can be circumvented by

pn(®)

resy (p, q¢) = det[Syl,(p, q)] = det

qm ()

The resulting product can be expressed in terms of the
coefficients of p and ¢ rather than their roots. This approach
makes it possible to determine whether p and ¢ share a
common root without having to compute the roots explicitly,
which can be particularly useful in cases where the roots are
difficult to compute or not known.

mean (Wj*Ck):P?HQ(Wj)
j=1 k=1 j=1
= py, detq (Cp)

=(=D""qp [[ p ()
k=1

= (=1)""gy, det p (Cy)
= P det (Cp ® Ly — I, ®Cy)
(10)

p(Cq) refers to the matrix obtained by substituting the elements
of the companion matrix C, of polynomial ¢(z) into the
polynomial p(x). This is done by replacing every occurrence
of = in the entries of C, with the polynomial p(z). The
resulting matrix is a square matrix of the same size as Cq,
but with polynomial entries obtained by evaluating p(x) at the
corresponding entries of C,. The determinant of this matrix,
det p(C,), is equal to the value of p(z) evaluated at each root
of g(x). Through a recognized association with Kronecker
products, it is possible to express (10) in an alternative form.
This representation may offer a more efficient or manageable
means of addressing the equation in certain scenarios.

B. Bézout matrix and resultant of polynomial real and reactive
power flow functions

The Bézout matrix is a mathematical object associated
with two given polynomials p(xz) and ¢(z), as mentioned

multiplying the product by a suitable normalization factor. To
overcome this limitation, it is possible to multiply the product
by a normalization factor that simplifies the expression. This
normalization factor is chosen to cancel out the leading
coefficients of p and ¢ and replace them with ones. The
product obtained through the construction of root products and
companion matrices can be used to identify if there exists a
common root between two polynomials p and q. If the product
is equal to zero, then there exists a root of p that is equal to
a root of g. However, directly computing this product would
typically require explicit knowledge of the roots of both p and
q, which may not always be available.

po(z)

Pn () . po(x)
o qo(z) ©

qm () qo(z)

previously. In this context, we examine a function of two

variables.

P(va)q(vg) — p(vg)q(va)
Vd — Vq

B(vg,vq) = (11)
This function of two variables is a polynomial in vg and vy,
and its symmetry under the interchange of v4 and v, is readily
apparent. Bez,,(p, ¢) indicates the symmetric d X d matrix that
expresses a polynomial in the standard basis of monomials.
Specifically, this means that:

1 1" 1
Vq v
B('Udavq) = . Bezx(p7Q) : (12)

The equation (12) expresses how the Bézout matrix
Bez,(p, q) can be constructed using the function B(vg,v,),
which is defined as the dot product of a row vector and a
column vector of monomials. Specifically, the Bézout matrix
is a d X d symmetric matrix, where d is the maximum degree
of p(z) and ¢(z), and each entry is obtained by evaluating the
function B(vg,v,) at the corresponding values of vg and v,.
By constructing the Bézout matrix in this way, we can easily
obtain information about the common roots of p(z) and ¢(z)
through the determinant of the matrix or its rank.

The different constructions mentioned in this context in-
clude the Sylvester matrix (9), the Bezout matrix, the product
of the leading coefficients, and the Kronecker product (10).
Each of these constructions leads to a polynomial that is a
function of the coefficients of p(x) and ¢(z).

Resy (p, q) = det[Syl, (p, q)] = eq. (10)

n

9 ) (13)
= n—m det[Bezy (p7 Q)]
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It can be shown that all these different constructions yield
the same polynomial, which is the resultant of p and ¢. This
polynomial has the property that it vanishes if and only if
p(x) and g(x) have a common root. Therefore, the resultant
provides a way to determine whether two polynomials have
a common root, and it plays an important role in algebraic
geometry and polynomial computations. The resultant of two
polynomials p(z) and ¢(z) is a homogeneous multivariate
polynomial that involves n+m + 2 variables p; and g;,, where
n and m are the degrees of p and ¢, respectively. The resultant
has integer coefficients and a degree of n +m and is denoted
as Resy(p, ¢). It is a well-known fact that the resultant is zero
if and only if the polynomials p and ¢ share a common root.
Although the definition is not symmetric in its two arguments,
we have the relation Res,(p,q) = (—1)"™ Res(g, p), but this
does not affect the check for whether it is zero.

III. MULTI-HOMOGENEOUS SYSTEM

It should be noted that to derive an algebraic system from
the steady-state equations (1), it is necessary to re-express the
complex conjugate. This can be achieved by substituting all in-
stances of v}, with independent variables u,,, and subsequently
filtering for solutions where u,, = v}, after obtaining complex
solutions. Such solutions are referred to as “real”. Let G denote
the set of slack generators for which |v,,| is specified, and let
1 € G correspond to a reference node with phase 0. Notably,
the use of variables v,, and u,, leads to a multi-homogeneous
structure with variable groups v,, and w,,.

Z,iszl (Yo kvnug + Y:}kunvk) =2p, né€N\G
i\[:Bl (Yo kvpuy — Y;}kunvk) =2q, n€N\G

v = uy = vy ne {1}

(14)

IV. SIMULATION RESULTS

We consider a two-bus test system in Fig. 1. We assume
node 1 is slack bus with v4; = 1, v41 = 0 and node 2 is PQ bus
with p = ¢ = 1 and line parameter ¢ = —b = 0.05. All values
are represented in a per-unit system. The simulation results
of the program are provided in GitHub'. The polynomial
equations of this system can be represented in (15).

p:vﬁ—vg—vd—Bvq—i—lO:O (15)
q=—5v§—|—5v§—|—5vd—vq—1020
The determinant of resultant is given by —4(169v2 — 169v, —
10). By computing the determinant and set it equal to zero,
=1 V309 ywih oY) = —0.8776 and v = 1 + Y209
with v((f) = 0.6633. the distance between the two power
flow equation solutions, v(Y) ~ 0.87919076 and v® =
1.24652515, reveals that one value is smaller than the other,
with v < @) If we assume a lower bound of 0.9, then
v would represent an unstable voltage result. The distance

between these two solutions can be used to gauge how close

Uhttps://github.com/msdbarati/Resultant-of-AC-Power-Flow-Under-Multi-
homogeneous-of-Algebraic-Geometry-Lense

the stable operating point is to the nose point of voltage
collapse. In essence, this signifies that,

d(v(l),v@)) - |v(2) _ v(l)‘

16
= 1.24652515 — 0.87919076 ~ 0.36733439. (16)

Thus, the approximate distance between v(!) and v® is
0.36733439, a relatively small value. This suggests that the
system’s operating point is nearing voltage collapse, as indi-
cated by the closeness of the values.

PQ Bus
node 2

O (2)
1++/-1-0 vd+ﬁvq

Fig. 1. Two-bus power system diagram.

Slack Bus
node 1

P, Q12
g+ —Tb

V. CONCLUSION

The presented structural results are expected to facilitate
the development of more efficient solvers for the relevant
nonlinear AC power flow problems. One possible approach
is to utilize the Algebraic Geometry theorem in constructing
systems for polynomial equations, thereby enabling the study
of larger zero-dimensional systems. Furthermore, there is a
need to develop methods for solving the optimal power flow
problem, with a complexity that is only super-polynomial by
using the resultant and multi-homogeneous system concept.
Addressing these challenges can potentially lead to significant
advancements in the analysis of power systems.

Contour Plot of p and q

Fig. 2. The algebraic functions of p and ¢ in two-bus test system
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