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In many decision tasks, we have a set of alternative choices and are faced with the problem of

how to use our latent beliefs and preferences about each alternative to make a single choice.

Cognitive and decision models typically presume that beliefs and preferences are distilled to a

scalar latent strength for each alternative, but it is also critical to model how people use these

latent strengths to choose a single alternative. Most models follow one of two traditions to

establish this link. Modern psychophysics and memory researchers make use of signal de-

tection theory, assuming that latent strengths are perturbed by noise, and the highest resulting

signal is selected. By contrast, many modern decision theoretic modeling and machine learning

approaches use the softmax function (which is based on Luce’s choice axiom; Luce, 1959) to

give some weight to non-maximal-strength alternatives. Despite the prominence of these two

theories of choice, current approaches rarely address the connection between them, and the

choice of one or the other appears more motivated by the tradition in the relevant literature

than by theoretical or empirical reasons to prefer one theory to the other. The goal of the

current work is to revisit this topic by elucidating which of these two models provides a better

characterization of latent processes in m-alternative decision tasks, with a particular focus on

memory tasks. In a set of visual memory experiments, we show that, within the same experi-

mental design, the softmax parameter β varies across m-alternatives, whereas the parameter d′

of the signal-detection model is stable. Together, our findings indicate that replacing softmax

with signal-detection link models would yield more generalizable predictions across changes

in task structure. More ambitiously, the invariance of signal detection model parameters across

different tasks suggests that the parametric assumptions of these models may be more than just

a mathematical convenience, but reflect something real about human decision-making.

Introduction

We make choices in virtually every real-world and labora-

tory task. For example, we decide which cereal we prefer in a

supermarket, which color a word is in a Stroop task, or which

item is ‘old’ in a forced-choice memory study. Because de-

cision processes are ubiquitous, there is great value in de-

termining the type of quantitative model that best captures

them. To this end, we examine the generalizability of two

prominent probabilistic models of choice. The first is a Gaus-

sian signal detection model, which is based on classic Sig-

nal Detection Theory (e.g., Wixted, 2020) and Thurstone’s

law of comparative judgment (Thurstone, 1927). The sec-

ond is the normalized exponetial model, commonly known

as the softmax function (e.g., Bridle, 1990), which is based

on Luce’s Choice Axiom (LCA) (Luce, 1959) and the ratio
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of strengths formula (Bradley & Terry, 1952) (for extensive

taxonomy of these models see: Townsend & Landon, 1983).

In the current work, we focus on how these two mod-

els generalize across different decision-based visual mem-

ory tasks in order to better understand the types of compu-

tations people use to convert sensory evidence to memory

representations to make memory-based decisions. Focusing

on the generalizability of these models is key because this

allows us to better isolate latent variables of interest (e.g.,

Navarro, 2021). For illustration, consider a standard forced-

choice task in which you are shown an object that you have to

remember. Subsequently, when are you tested on your mem-

ory, you are shown that object along with one or seven foil

objects, where foils refer to objects you were never actually

shown. In this simple forced choice task, as more foil items

are added you will tend to become less accurate at choos-

ing the object you saw. This follows because your hit rate

will decrease as you are presented with more options sim-

ply because the probability of you incorrectly choosing a foil

will tend to increase when more foils are present (Wickens,

2001). Importantly, if memory conditions are held constant

across these decision tasks, the fidelity of your memory for

the object you saw should also remain unchanged, regard-
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less of how you are tested on your memory (Swets, 1959).

Thus, a key question is what decision model best allows us

to assess people’s memory strength independently of the de-

cision task we use to test it. In other words, which decision

model’s parameters are invariant and best generalizes across

variations in task structure that affect the decision process but

not memory fidelity?

We focus on Signal Detection Theory and Luce’s Choice

Axiom because they are prominent in different domains, such

as decision-making and memory research, but within some

domains, there are relatively few comparisons between them.

Furthermore, early work that examines the connections be-

tween these models (for recent review see: Pleskac, 2015),

has yet to be linked to contemporary research questions. We

illustrate these points in the context of recent computational

modeling research on visual memory.

Our article has the following structure. First, we overview

each of the theories and their corresponding models. Second,

we outline how early work on the relationship between mod-

els based on SDT and LCA applies to contemporary research

on visual memory and describe a critical test that we used to

discriminate between them. Finally, we discuss our findings

and their relevance for theorizing about decision processes

within and outside of visual memory tasks.

Signal detection theory

The application of SDT to the study of sensory and cog-

nitive process comes from the tradition of perceptual psy-

chophysics (e.g., Green, Swets, et al., 1966), which high-

lights the relationship between sensory signals that must

be used to make a decision, and the physical and neural

noise that perturbs them before a decision is made (Wickens,

2001). Over the years, SDT has been used in other domains,

such as memory research (e.g., Wixted, 2007), to provide a

detailed description of decision processes in detection and

discrimination tasks by postulating latent memory-strength

signals that are perturbed by noise. The two core assump-

tions of signal detection models is that when faced with mak-

ing a decision, the conceivably rich and multi-dimensional

representation of each alternative is collapsed down into a

scalar value ±the decision variable± and that the decision

variable invoked by a particular alternative is probabilistic.

Jointly, these assumptions capture the mainstream view that

there are internal and external sources of noise that corrupt

sensory and memory signals (e.g., Dosher & Lu, 1998). For

instance, in the memory domain, a familiar object, such as a

backpack, will produce a decision variable of some magni-

tude with respect to some task, such as a familiarity signal

for a recognition task. The decision variable produced by

observing a backpack will vary from one instance to another

due to variation in external circumstances, such as its lighting

and vantage point, as well as fluctuations of internal states,

such as memory, attention and motivation.

Because decision variables in this view are seen as ran-

dom variables, it is common to postulate a specific prob-

ability distribution over them (although see: Kellen et al.,

2021). While in some low-level perceptual domains, great

care has been taken to characterize the functional form of

this distribution, and thus the form of the psychometric func-

tion (e.g., Green, Swets, et al., 1966), in most applications

such fidelity is unattainable and researchers simply assume

that decision variables are normally distributed. Thus, his-

torically, the normality assumption common in SDT is made

primarily for convenience (Wickens, 2001). Furthermore, in

contemporary modeling work it is often treated as an aux-

iliary assumption that does not have a theoretical justifica-

tion (Kellen et al., 2021; Rouder et al., 2010). To preview

our analysis and results, we show that the Gaussian param-

eterization of signal detection models is not merely ancil-

lary. Instead, its use can have a principled theoretical basis

that formalizes how sensory signals are converted to decision

variables. We discuss this point in depth when reviewing the

mathematical link between the Gaussian signal detection and

softmax model.

Finally, most mainstream signal detection models postu-

late that, while decision variables are probabilistic, the de-

cision making process is deterministic (for exceptions see,

e.g., Benjamin et al., 2009). That is, once decision variables

are sampled from their probability distributions, choices are

made deterministically by comparing the decision variables

to one another, or to a fixed decision criterion. Next we de-

scribe how these principles are used to explain performance

in mainstream detection and discrimination tasks.

SDT for detection and discrimination tasks

In detection tasks the observer responds by indicating the

presence or absence of a target stimulus. The classic Gaus-

sian signal detection model posits that this decision is made

by collapsing the rich stimulus representation down into a

single decision variable and then comparing this decision

variable X against a fixed decision threshold C. Accordingly,

the probability of responding that a target is ªPresentº on tar-

get present and absent trials is given by Equations 1 and 2,

respectively:

P('Present' | Present) = P(XT > C), (1)

P('Present' | Absent) = P(XF > C). (2)

In Equation 1 XT denotes the decision variable elicited by

the target stimulus, which is a random variable sampled from

a normal distribution with free parameters, mean µ > 0 and

variance σ2: XT ∼ N(µ, σ2). A common assumption is that,

on average, decision variables on target present trials will be

of greater magnitude than on target absent trials, and it fol-

lows that their mean will also be greater. Therefore, with no

loss in generality, the mean and variability of the decision



LUCE’S CHOICE AXIOM AND SIGNAL DETECTION THEORY 3

variable elicited by foil items, XF in Equation 2, on target

absent trials is set to 0 and 1, respectively: XF ∼ N(0, 1).

Unlike in detection tasks, in forced-choice discrimination

tasks the target is always shown and an observer must select

it out of a set of n alternatives. Classic signal detection mod-

els postulate that this selection process involves computing

the maximum of a set of n independent random variables cor-

responding to the decision variables invoked by each of the

stimuli: Xi. More precisely, the probability of identifying a

given item i as the target is the probability that the magnitude

of the decision variable generated by the target Xi exceeds the

decision variables generated by each of the n − 1 foil items

X j for j , i:

P(ID(i)) = P(∀ j , i : Xi > X j). (3)

This general expression can be written out for the spe-

cial cases of correct choices, when Xi corresponds to the

target (i = 1), and incorrect choices, when i , 1. For

correct choices, or Target Identifications, Xi is the target

(Xi = X1 = XT ) and all X js are foils, thus Xi ∼ N(µ, σ2), and

X j ∼ N(0, 1). For incorrect choices, or Foil Identifications,

the target is one of the X js while Xi and the remaining X js

are foils. For both of these special cases, we can rewrite the

general expression:

X1 = XT ∼ N(µ, σ2) (4)

X2...n ∼
iid
N(0, 1) (5)

P(ID(Target)) = P(X1 > max(X2...n)), (6)

P(ID(Foil)) =

n
∑

i=2

P(Xi > max(X1..n\i)). (7)

Luce’s choice axiom

Luce’s Choice Axiom (LCA) comes from the decision

theory tradition, rather than psychophysics, and is pre-

dated by the ratio of strengths formula for pairwise choices

(Bradley & Terry, 1952) (for empirical tests and extended

discussion of these models see: Townsend & Ashby, 1982;

Townsend & Landon, 1983). Unlike SDT, the LCA frame-

work is silent about the mechanisms of detection and dis-

crimination processes. Instead, it consists of a set of axioms

that impose ªplausible constraintsº on choice probabilities.

The central axiom is called Independence from Irrelevant

Alternatives and states that the probability of choosing one

alternative over another should not change if irrelevant alter-

natives are added or taken away. Under this view, response

probabilities for each alternative are computed by dividing

each response strength by the sum of all response strengths

in the set. For instance if a is one alternative out of a larger

set T , the probability of choosing a out of S is

P(a, S ) =
ϕ(a)

∑

z∈S ϕ(z)
, (8)

where ϕ is a response strength function. Note that inde-

pendence from irrelevant alternatives follows directly from

this formula because the odds of choosing a over a differ-

ent alternative b ∈ S remains the same, even if we consider

a larger set of alternatives T where S ⊆ T . That is, for

0 < P(x) < 1,

P(a, S )

P(b, S )
=

P(a,T )

P(b,T )
=
ϕ(a)

ϕ(b)
. (9)

Equation 8 also implies that the function ϕ lies on a ratio

scale. That is, assume there exists another function ϕ′ that

satisfies the equality

ϕ(a)

ϕ(b)
=
ϕ′(a)

ϕ′(b)
. (10)

Substituting 1 for ϕ(b) and τ > 0 for ϕ′(b) yields τϕ(a) =

ϕ′(a), showing that the scale ϕ is unique up to multiplication

by a positive constant (proof adapted from: Krantz et al.,

1971). This entails that the response function ϕ lies on a

ratio scale, an important and rare property of psychological

metrics (Falmagne & Doble, 2015).

Finally, note that in order for choice probabilities in

Equation 8 to be restricted between zero and one, response

strengths should be constrained to be non-negative. One way

to impose this constraint is to parameterize the Luce choice

model with an exponential function, such that

P(a, S ) =
eϕ(a)

∑

z∈S eϕ(z)
. (11)

This formulation of LCA is equivalent to the exponential

form of the multinomial distribution and the softmax func-

tion (Bridle, 1990), which is routinely used in econometrics

(McFadden, 1980), machine learning (Murphy, 2012) and re-

inforcement learning (Sutton & Barto, 2018).

LCA for detection and discrimination tasks

Through the lens of LCA, performance in detection and

discrimination tasks is not determined by random decision

variables but by fixed response strengths. In detection tasks,

assume that β denotes response strength generated by the

target stimulus1 and V denotes a bias parameter for report-

ing the stimulus is absent. Then, on target present trials, the

probability of correctly responding target present is

P('Present' | Present) =
eβ

eβ + eV
. (12)

1Technically, β denotes how response strengths are weighted.

More precisely, as β increases responses become more determin-

istic, such that alternatives with higher response strengths receive

more weighting and are more likely to be chosen. However, since

we assume that foil items yield zero response strength in this expo-

sition, we equate β with response strength of the target stimulus.
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On target absent trials, the probability of incorrectly

responding target present is determined by the response

strength generated by the foil, which is zero. Thus, the prob-

ability of incorrectly responding target present on target ab-

sent trials is

P('Present' | Absent) =
1

1 + eV
. (13)

Note that the formulas for choice probabilities in Equa-

tions 12 and 13 are formally equivalent to a logistic cumula-

tive distribution (Suppes & Krantz, 2007), a special case of

the softmax function for binary choices.

Extending this logic to discrimination tasks with n alterna-

tives uses the standard assumption that the response strength

generated by the target and n − 1 foils is equal to β and zero,

respectively. Accordingly, the probability of correctly select-

ing the target is

P(ID(Target)) =
eβ

eβ + n − 1
, (14)

and the probability of incorrectly selecting a foil item is

P(ID(Foil)) =
n − 1

eβ + n − 1
. (15)

Connections between SDT and LCA

Due to their distinct origins and distinct mathematical in-

stantiations, models based on SDT and LCA may seem ex-

tremely different from one another. However, the Gaussian

signal detection and softmax models turn out to be close ap-

proximations in some tasks. More precisely, in detection

tasks, the connection between these models follow simply

from the fact that the logistic distribution approximates the

normal distribution and vice versa (Treisman & Faulkner,

1985). This entails that the LCA for binary choices is equiv-

alent to a signal detection model with a logistic parameteri-

zation, which closely approximates the Gaussian signal de-

tection model. Thus, in detection tasks LCA and Gaussian

signal detection models are closely related.

In discrimination tasks with more than two alternatives the

Gaussian signal detection and softmax model no longer ap-

proximate each other. The relationship between these two

models breaks down in m-afc tasks (where m > 2) because

the distribution of maximums of normally distributed vari-

ables is not a normal distribution. However, it is possible to

establish an equivalence between the two models by drop-

ping the normality assumption in the signal detection model.

Holman and Marley, 1974 as well as Yellott Jr, 1977 showed

that, if decision variables in the signal detection model have a

Type 1 extreme value Gumbel distribution for the maximum

(Gumbel, 1954), than the signal detection model is mathe-

matically equivalent to the Luce model for any number of

alternatives (m) in an m-afc task.We provide our own proof

of this result in the Appendix.

In the current context, the major implication of this result

is that comparing the softmax model to the Gaussian signal

detection model can be recast as a comparison of two dif-

ferent parameterizations of the signal detection model, that

is, a signal detection model with a Gumbel versus a Gaus-

sian parameterization. As we discuss next, these two param-

eterizations have an important conceptual basis because they

describe different ways of translating sensory evidence into

decision variables.

Processing implications of a Gaussian versus Gumbel sig-

nal detection (softmax) model

A common assumption is that the Gaussian parameteri-

zation of signal detection models is made for mathemati-

cal convenience and does not have a theoretical basis (e.g.,

Kellen et al., 2021). However, early work by Thompson and

Singh, 1967 provides one principled justification for using a

normal distribution to model decision variables. These re-

searchers noted that each time we observe a stimulus, it pro-

duces a sensory response of some variable magnitude. For

instance, through the lens of contemporary population cod-

ing neural models, these sensory responses can be conceived

of as distributed patterns of activation in populations of neu-

rons (e.g., Averbeck et al., 2006).

If this large number of sensory signals (e.g., patterns of

activation across a population) are pooled together by sum-

ming or averaging to compute decision variables, then in ac-

cordance with the Central Limit Theorem, decision variables

will be normally distributed. In contrast to the Gaussian, the

Gumbel distribution is an extreme value distribution used to

model the maximum of a set of random variables (Gumbel,

1954). Thus, a signal detection model with a Gumbel param-

eterization is most consistent with the view that, rather than

pooling, the observer takes the maximum of sensory signals

to compute decision variables. Figure 1 depicts these predic-

tions by showing how a stimulus produces a neural response

profile that consists of a set of tuning functions (colored dis-

tributions), and how these neural responses can be converted

to a single decision variable through the lens of each model.

Together, a test between these models can be recast as

a test of two different signal detection models. To fur-

ther motivate the comparison of these two models, we un-

derscore that there is extensive support for signal detection

theory as a general theory in the memory domain (for re-

cent overview see: Wixted, 2020) using diverse methods,

including Receiver Operating Characteristics analysis (e.g.,

Robinson et al., 2020; Williams et al., 2022; Wixted, 2007),

and a novel critical test which rests on minimal assumptions

(Winiger et al., 2021) While some authors reported evidence

for alternative models under some conditions (e.g., Balakr-

ishnan, 1999; Rouder et al., 2008), follow-up work suggests

that these results were spuriously driven by either restricted

model assumptions, or non-diagnostic data and inadequate
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Each object elicits distributed patterns of sensory 
activations (over neural populations).

Sensory signals are pooled to compute familiarity signals.
By Central Limit Theorem, pooling predicts Gaussian

distribution of memory signals across trials.

On a single trial, one familiarity signal is drawn from each 
distribution and people report on the maximally strong one.

  

More familiar

I saw the  
teddy bear

Each object elicits distributed patterns of sensory 
activations (over neural populations).

Maximal sensory signal is used to compute each familiarly 
signal. By Extreme Value Theorem, taking the maximum 

predicts Gumbel distribution of memory signals across trials.

On a single trial, one familiarity signal is drawn from each 
distribution and people report on the maximally strong one.

  

More familiar

I saw the  
clock

Gaussian signal detection model Gumbel signal detection model

Stimuli

Raw sensory 
signals

Transformed
sensory signals

Decision
variables

Figure 1

Processing implications of the Gaussian versus Gumbel parameterization of the signal detection model. By Central Limit

Theorem, the Gaussian signal detection model entails that observes convert sensory evidence (depicted with colored distribu-

tions) evoked by a stimulus (such as backpack) to decision variables via pooling. The Gumbel signal detection model, which

is formally equivalent to the softmax model, entails that observers convert sensory evidence to decision variables by taking

the maximum of the sensory signals.

metrics of model fit (Mueller & Weidemann, 2008; Robin-

son et al., 2022). Moreover, recent modeling work in the vi-

sual memory domain indicates that a signal detection model

constrained by psychophysical scaling methods outperforms

all extant alternative models both in fit and generalization

(Schurgin et al., 2020). Thus, classic and contemporary mod-

eling work demonstrates robust evidence for signal detection

models of memory. Our work builds on this literature by

highlighting that the parametric assumptions of signal detec-

tion models are not merely ancillary, but can have different

implications for how we think observers convert rich sen-

sory or memory evidence to decision variables when making

memory-based decisions.

Critical test: Parameter invariance across changes of m

in m-afc tasks

We compared the Gaussian signal detection and softmax

model by examining which model’s parameters (d′ in SDT; β

in LCA/softmax) are invariant across variations in the num-

ber of alternatives presented at test in an m-afc task. Our test

rests on the assumption that, everything else being equal, the

way in which observers compute decision variables should

be invariant across changes in m-afc. This assumption aligns

with the broader view that model parameters that general-

ize across task structures may also provide better approxi-

mations of latent cognitive processes (Busemeyer & Wang,

2000).

We note that a similar test was used in an auditory mem-

ory task in an early study by Treisman and Faulkner, 1985.

These authors reported evidence for the Gaussian signal de-

tection model, however, their results were somewhat ambigu-

ous. Mainly, they found that variations in m-afc produces

decreases in d′ and increases β, parameters in the Gaussian

signal detection and softmax model, respectively. The re-

searchers interpreted this as evidence for the Gaussian sig-

nal detection model because they reasoned that increasing

the number of alternatives in the auditory task may increase

memory load and hurt performance, but not improve it. How-

ever, while the finding that d′ decreases with m may be more

psychologically plausible, it does not demonstrate that pa-

rameters of this model are invariant with m because m is

confounded with memory load. Furthermore, this study only
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used data from 6 participants and may have been underpow-

ered. As we discuss next, one of our goals was to address

both of these methodological limitations and perform a more

general test of the two theories.

Application to visual memory

We ran a new set of experiments that extends the critical

test of Treisman and Faulkner, 1985 to the visual memory

domain. The first reason we used a visual memory task is

because this allows us to present all m-afc alternatives visu-

ally, instead of having participants maintain these in working

memory. Accordingly, this study design minimizes differ-

ences in memory load across m-afc task, addressing the core

limitation of the Treisman and Faulkner experiment and pro-

viding a strong test bed of parameter invariance. We also

increase the number of participants in our experiments to en-

sure that our studies are sufficiently powered.

Another motivation for extending this test to the visual

memory domain is because a comparison between these

models has direct relevance for contemporary models of vi-

sual memory. That is, both the Gaussian signal detection

and softmax models have been used in recent modeling work

as response functions that capture how people make deci-

sions in m-afc visual memory tasks (Oberauer & Lin, 2017;

Schurgin et al., 2020). However, these models have not been

empirically compared with critical tests, and the processing

implications for understanding how people compute decision

variables in visual memory tasks have not been discussed.

Finally, there is much recent interest in instantiating human

visual memory models using neural network architectures

(e.g., Bates et al., 2023; Brady & Störmer, 2020; Hedayati

et al., 2022) that routinely use the softmax as a response

function (Murphy, 2012); it remains unclear whether this

provides the best approximation of how humans map latent

states to memory judgments. Our goal is to fill these gaps

by comparing these models in a set of visual memory exper-

iments. To this end, we ran two experiments in which we

varied the structure of the stimulus space, the dimensional-

ity of stimuli and the presentation format to ensure that our

results were robust across different processing domains and

theoretical assumptions.

Experiment 1: Memory for simple features

Experiment 1 was designed to test the signal detection and

softmax models in a multiple alternative forced choice visual

working memory task with simple features (color). The cen-

tral comparison involves examining which model’s parame-

ters are invariant across changes in the number of alternatives

in m-afc tasks.

Methods

Participants Participants (n = 31) were undergraduate stu-

dent volunteers, at the University of California, San Diego,

who participated in the study for course credit. All par-

ticipants were at least 18 years old, reported normal or

corrected-to-normal vision, and provided informed consent.

All experiments were approved by the Institutional Review

Board at the University of California, San Diego.

Our predetermined sample size was n = 30. This sample

size is a conservative bound for detecting a medium effect

size (dz = 0.6) with 90% power and α = .05 significance

criterion. We collected participant data until our sample size

reached n = 30 based on our exclusion criteria. Consistent

with our standard lab practice, we excluded trials with reac-

tion times less than 100 ms or greater than 5000 ms (average

proportion of 3% per participant). We excluded participants

who had more than 10% of trials excluded, or who whose

performance was at chance in any of the four conditions (one

participant).

Stimuli Stimuli were colored circles. Colors were drawn

from the CIE L*a*b* color space, centered in the color space

at (L = 54, a = 21.5, b = 11.5) with a radius of 49 (from

Schurgin et al., 2020).

Procedure On each trial, participants were shown four cir-

cles and instructed to remember their colors and spatial lo-

cations. The minimum distance (along the color circle) be-

tween each circle in the memory array was 30 degrees. The

memory array was shown for 1,000 ms. After a brief re-

tention interval (800 ms), participants were shown a spatial

cue that probed one of the four circles shown in the memory

array.

Participants were instructed to use a discretized color

wheel to report on their memory for the probed circle. The

discretized color wheel consisted of 2, 4, 8, or 16 colors,

which were spaced either 180°, 90°, 45°or 22.5°apart in color

space, respectively. Participants were instructed to click on

the color that they thought best matched the color of the

probed circle. One of the colors always matched the color of

the probed circle, whereas the others did not. There were a

total of 500 trials in the experiment (125 trials per m-afc con-

dition), and each experimental session lasted approximately

50 minutes.

Analysis

Participants’ responses were converted to errors by taking

their distance along the color wheel from the correct answer,

where the correct response is centered at zero. Rather than

assuming that all foils are processed independently and elicit

zero signal regardless of their similarity to the shown color,

we fit models to the full distribution of errors under the as-

sumption that the latent memory strength of each alternative

scales with the psychophysical similarity to the remembered
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Retention interval

800ms 

m-afc

Until response
Memory array 

1,000ms 

Time

Figure 2

Example trial from Experiment 1. On each trial participants

were shown a memory array with four colored circles. The

memory array was presented for 1,000 ms and followed by

an 800 ms retention interval. After a retention interval, par-

ticipants were shown a self-report screen with 2, 4, 8, or

16 equally spaced colors, and the other positions filled with

gray "filler" squares. One of the colors presented at test was

always shown on that trial, and the remaining colors were

not. Participants had to click one the colors to indicate which

color was at the cued position on this trial. Responses were

not speeded. The pictured trial shows an 8-AFC test with 8

colors presented at test, and the correct answer is the yellow

color on the bottom of the response wheel, as this matches

the color presented in the top left location, which is the cued

location on this trial.

item. This assumption aligns with classic feature matching

models of memory (e.g., Clark & Gronlund, 1996), as well as

more recent work on visual memory (Schurgin et al., 2020).

More precisely, both theoretical frameworks predict that foils

that are more similar to the target have stronger latent mem-

ory strengths than those that are less similar. This fitting

procedure used psychophysical similarity values obtained by

Schurgin et al., 2020. These deviation values were fit with

a Gaussian signal detection model and a softmax model to

estimate parameters d′ and β, respectively. Models were fit

separately to each participant’s data and fitting was imple-

mented in MATLAB using maximum likelihood estimation

(MLE).

Our goal was to determine which model’s parameters are

invariant across the m-afc manipulations. We tested this by

comparing the relative fits of the Gaussian signal detection

and softmax model when parameters d′ and β, respectively,

were fixed across all m-afc conditions2. This analysis pro-

vides insight into which model best accommodates the data

if we assume that its parameters are invariant across manipu-

lations of m-afc. Since both the signal detection and softmax

models have the same number of parameters, we used the log

likelihood (LL) to compare models (note that larger values of

the LL indicate superior fit). These values were compared at

the level of individual participants using a paired t-test.

We also implemented three secondary analyses that com-

plement our critical test. In the first complementary analysis,

we ran a manipulation check that memory fidelity, which is

captured via model parameters, did not decrease as a func-

tion of alternatives in m-afc. In the second complementary

analysis, we evaluated the relative flexibility of both mod-

els because prior work suggests that variants of the ratio of

strengths formula can be extremely complex relative to alter-

native models with the same number of parameters (Myung

& Pitt, 1997; Pitt et al., 2002; Townsend & Ashby, 1982).

To compare these models on their flexibility, we assessed

the relative fits when parameters varied freely across m-afc

conditions. This analysis provides insight into whether (as

expected) the invariance of parameters of these models, as

opposed to their functional form, yields better fits to data in

our primary analysis when parameters are fixed across m-

afc conditions. That is, we expect that if these models are

matched on their flexibility, they should yield comparable

fits to the data when parameters vary freely across experi-

mental conditions. In the third complementary analysis, we

compared the standard deviation of parameters across m-afc

conditions when we allowed these to vary freely across m-afc

conditions. We expect variability of parameters across m-afc

conditions to be smaller in the model that provides the best

fit to data when parameters are fixed across m-afc conditions.

Results

Manipulation check

Panel A of Figure 3 shows parameter estimates from each

model when they were allowed to vary freely across m-afc

experimental conditions. Note that one critical assumption

of our analysis is that by making m− a f c alternatives visible

to participants we do not increase memory load with m−a f c.

To check for this, we examined whether parameter estimates

decreased systematically as a function of the m − a f c ma-

nipulation. We found that they did not. Specifically, in the

Gaussian signal detection model, average d′ equaled 1.79

(S EM = .17), 1.86 (S EM = .16), 1.98 (S EM = .14) and

1.84 (S EM = .16) in the 2, 4, 8, and 16 m-afc conditions,

respectively. In the Gumbel signal detection model, average

β estimates equaled 2.42 (S EM = .34), 2.5 (S EM = .23),

2.85 (S EM = .19) and 3.07 (S EM = .24) in the 2, 4, 8, and

16 m-afc conditions, respectively. Together, through the lens

of both models we did not find that performance decreased

systematically as we increased the number of alternatives at

2Model comparisons are essential because in m-afc tasks mod-

els cannot be compared by simply examining the distributions of

errors. For instance, the maximum rule Gaussian signal detection

model does not predict perfectly Gaussian distribution of errors be-

cause distribution of the maximums of m > 2 variables is slightly

skewed.
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Figure 3

Model fitting and comparison results from Experiment 1. Panel A shows the difference in log likelihood between the Gaussian

signal detection and softmax models when we fixed each model’s parameters across m-afc conditions. Positive values indicate

support for the Gaussian signal detection model, negative values indicate support for the softmax (or Gumbel signal detection

model), and values at zero indicate equal support for both models (denoted with the black dotted line). Panel B shows

participants raw proportion correct at each m-afc condition (top) as well as the parameter estimates obtained from fitting the

Gaussian SDT model (middle) and softmax model (bottom) separately to the full error distributions from each m-afc condition.

In each figure, the black dot and error bar denote the average and standard error of the mean across participants within each

condition. The black dotted line in Panel B, denotes the mean across participants and condition. The fact that estimates of d′

are more stable than estimates of β across m-afc conditions is consistent with the model comparison favoring the Gaussian

SD model.

test.

Model flexibility

Importantly, based on LL, we found that the Gaussian

signal detection ( ÅX = −560; S EM = 31) and softmax

( ÅX = −560.01; S EM = 31) models fit the data comparably

when parameters were free to vary across m-afc conditions

(t(29) = .19, p > .84; dz = 0.04). This analysis provides

convergent support for the conclusion that the superior fit of

the Gaussian signal detection model when its parameters are

fixed across m-afc conditions, reflects its superior capacity to

capture invariants across m-afc conditions, as opposed to this

model having a more flexible functional form.

Critical test for parameter invariance

Panel B of Figure 3 shows the difference in log likeli-

hood (LL) between the Gaussian signal detection and soft-

max model when parameters d′ and β, respectively are fixed

across m-afc conditions. Positive and negative values indi-

cate support for the Gaussian signal detection and softmax

model, respectively, whereas values near zero indicate equal

support for both models. We found that the LL was signifi-

cantly higher for the Gaussian signal detection ( ÅX = −562.2;

S EM = 31) than the softmax ( ÅX = −565.3; S EM = 31)
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model (t(29) = 4.26, p < .001; dz = 0.77). Average

parameter estimates in the fixed models were d′ = 1.86

(S EM = .15) and β = 2.69 (S EM = .22).

Based on the standard deviation of parameters across m-

afc conditions, we also found that there was significantly

less variability in parameters in the Gaussian signal detec-

tion ( ÅX = .21; S EM = .02) than the softmax model ÅX =

.55; S EM = .08) when these were allowed to vary freely

(t(29) = 5.26, p < .001; dz = 0.96). Thus, the d′ parame-

ter of the Gaussian signal detection model was more stable

across m-afc conditions than the β parameter of the softmax

model.

Together, our results provide support for the Gaussian sig-

nal detection over the softmax model. That is, we find that

the Gaussian signal detection model does a better a job at

capturing invariance of decision latent processes across m-

afc conditions, and that these effects are not due to differ-

ences in model flexibility.

Experiments 2: Memory for real-world objects

The goal of Experiment 2 was to examine the generaliz-

ability of our modeling results. To this end, in Experiment 2

we modified both the stimuli and presentation format. More

precisely, we had participants remember real-world objects

instead of simple features and presented stimuli sequentially

instead of simultaneously. Another advantage of using real-

world objects instead of colors as stimuli, is that the real-

world object stimulus space in unconstrained. This entails

that we can select a larger number of foils that are completely

dissimilar from the target and, therefore, compare models

without relying on additional assumptions about how partic-

ipants process psychophysically similar foils.

Methods

Participants Participants (n = 31) were undergraduate stu-

dent volunteers, at the University of California, San Diego,

who participated in the study for course credit. As in Ex-

periment 1, we collected participants until we reached a final

sample size of (n = 30). Exclusion criteria were the same as

those used in Experiment 1. We excluded an average of 4%

of trials per participant, and one participant.

Stimuli Stimuli were photos of real-world objects taken

from Brady et al., 2008. All objects were from different cat-

egories.

Procedure On each trial, participants were shown a se-

quence of five unique photos of real-world objects. Each ob-

ject was presented for 300 ms, and the interstimulus interval

was 100 ms. The sequence of objects was followed by a

retention interval that lasted 800 ms.

At memory test, participants were shown 2, 4, or 8 objects

and were instructed to click on the object that was shown

in the sequence on that trial. We include 3 instead of 4 m-

afc conditions because trials with sequential presentation are

longer and we wanted to ensure that the experimental session

did not run over the 50 minute time limit, while maintaining

a sufficiently large number of trials per condition. One of

the objects always matched an object shown on that trial se-

quence, whereas the others were completely novel objects

that were only shown once throughout the entire experimen-

tal session. There were a total of 210 trials (70 trials per

m-afc condition), and each experimental session lasted ap-

proximately 50 minutes.

Memory sequence

300ms each item / 100ms ISI

m-afc

Until response

Time

Retention interval

800ms 

Figure 4

Example trial sequence from Experiment 2. On each trial

participants were shown a sequence of five unique photos of

real-world objects. Each object was presented for 300ms,

with an inter-stimulus interval (ISI) of 100ms. The object

sequence was followed by an 800ms retention interval, and

then a self-report screen. The self-report screen showed 2, 4,

8 objects. One of the objects was always an object shown on

the trial sequence, and the remaining objects were foils from

different categories, that were not shown again during the

experimental session. Participants had to click which object

they had seen on that trial. Responses were not speeded.

Analysis

In this experiment all stimuli, including targets and non-

targets in the memory array, as well as foils were chosen

randomly with the constraint that they came from different

categories (as in Brady et al., 2008). Accordingly, there is

no structure to the error distribution as a function of similar-

ity, and analyzing the accuracy data and error distributions

yields identical results. Thus, the analysis was identical to

the one used in Experiment 1, with the exception that we fit

models to proportion correct alone rather than the complete

error distribution with no loss in generality.

Results

Manipulation check

Panel A in Figure 5 shows parameter estimates from each

model when these varied freely across experimental condi-

tions. In the Gaussian signal detection model, average d′

equaled 1.42 (S EM = .12), 1.49 (S EM = .13) and 1.61

(S EM = .13) in the 2, 4 and 8 m-afc conditions, respec-

tively. Average β estimates equaled 1.71 (S EM = .16), 1.96

(S EM = .17) and 2.30 (S EM = .18) in the 2, 4 and 8

m-afc conditions, respectively. Again, through the lens of
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Figure 5

Model fitting and comparison results from Experiment 2. Panel A shows the difference in log likelihood between the Gaussian

signal detection and softmax models when we fixed each model’s parameters across m-afc conditions. Positive values indicate

support for the Gaussian signal detection model, negative values indicate support for the softmax (or Gumbel signal detection

model), and values at zero indicate equal support for both models. Panel B shows participants raw proportion correct at

each m-afc condition (top) as well as the parameter estimates obtained from fitting the Gaussian SDT model (middle) and

softmax model (bottom) separately to the percent correct from each m-afc condition. In each figure, the black dot and error

bar denote the average and standard error of the mean across participants within each condition. The black dotted line in

Panel B, denotes the mean across participants and condition. The fact that estimates of d′ are more stable than estimates of β

across m-afc conditions is consistent with the model comparison favoring Gaussian SD.

both models, memory performance did not decrease system-

atically with an increase in the number of alternatives.

Model flexibility

Based on the LL, both models yielded identical fits to the

data ( ÅX = −105.4; S EM = 3.6 for both models; t(29) = 0).

Again, this indicates that the superior performance of the

Gaussian signal detection model is not due to its having a

more flexible functional form.

Critical test for parameter invariance

Panel B in Figure 5 shows the difference in log likeli-

hood (LL) between the Gaussian signal detection and soft-

max model when parameters d′ and β, respectively are fixed

across m-afc conditions. As before, positive and negative

values indicate support for the Gaussian signal detection and

softmax model, respectively, whereas values near zero in-

dicate equal support for both models. We found that the

LL was significantly higher for the Gaussian signal detection

( ÅX = −106.9; S EM = 19) than the softmax ( ÅX = −107.8;

S EM = 20) model (t(29) = 4.42, p < .001; dz = .81). Aver-

age parameter estimates in the fixed models were d′ = 1.52

(S EM = .12) and β = 2.04 (S EM = .16). Based on the

standard deviation of parameters across m-afc conditions, we

also found that there was significantly less variability in pa-

rameters in the Gaussian signal detection ( ÅX = .24; S EM =
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.03) than the softmax model ÅX = .41; S EM = .04) when

these were allowed to vary freely (t(29) = 8.77, p < .001;

dz = 1.60). Once again, these results provide support for the

Gaussian signal detection over the softmax model.

General Discussion

We revisited the connection between the Gaussian signal

detection and (Luce choice) softmax model. Although these

two models come from different traditions, they closely ap-

proximate each other in detection tasks, and both can be re-

cast as different parametric variants of the signal detection

model in the m-afc task. Thus, the distinction between signal

detection and softmax choice models can be understood as

embodying different assumptions about the latent distribu-

tion of decision variables in a signal detection model, where

the Gaussian parameterization is consistent with pooling of

sensory evidence to compute decision variables, whereas the

Gumbel distribution is most consistent with taking the max-

imum of sensory evidence to compute decision variables

(Thompson & Singh, 1967). Together, comparing these

models may help elucidate how people compute decision

variables from sensory evidence in a range of cognitive tasks.

We applied these ideas to examine which signal detec-

tion model provides the best characterization of processes in

visual working memory tasks. To this end, we designed a

critical test to assess which model’s parameters are invariant

across changes in the number of alternatives in m-afc visual

memory tasks. We assumed that the model that best capture

stable latent processes, should yield parameters that are in-

variant across m-afc conditions (Busemeyer & Wang, 2000)

because the computations people use to compute decision

variables in these conditions should be the same. We imple-

mented this test in two different visual memory experiments,

where we varied the structure of the stimulus space ± that is,

how similar stimuli were to one another, the dimensionality

of stimuli ± that is, whether people had to remember simple

features (color) or complex real-world objects, and presenta-

tion format ± that is, whether stimuli were presented simulta-

neously or sequentially. Across these experiments, we found

consistent support for the Gaussian signal detection model.

These results align with the view that sensory evidence is

pooled via summation or averaging, and indicates that out

of this suite of models, the Gaussian signal detection model

best capture latent processes in visual memory.

Models of visual working memory

Our work has direct implications for contemporary mod-

els of visual memory. First, this is relevant for building

cognitive models of visual memory. Relevant in this con-

text are two prominent models, the Target Confusability and

Competition (TCC) (Schurgin et al., 2020) and Interference

model (Oberauer & Lin, 2017). The TCC model combines

principles from signal detection theory and Shepard’s law of

generalization; it postulates that familiarity is a function of

the psychophysical similarity to remembered items, such that

items that are more similar to items held in memory generate

a stronger familiarity signal. Importantly, an assumption of

this model is that the response function that maps familiarity

signals to responses is a Gaussian signal detection model.

The interference model postulates that memory for items is

driven by cued based retrieval. More precisely, access to

working memory representations is determined by a spatial

retrieval cue, as well as noise that is uniformly distributed

across memoranda. In contrast to TCC, the Interference

model uses a softmax response function. Importantly, when

proposing these models, these researchers did not provide a

process-based justification for using one response function

over the other.

Our work suggests that the Gaussian signal detection

model is more appropriate because it does a superior job

of capturing cognitive invariants in forced choice memory

tasks. As discussed, this result suggests that people pool

sensory evidence via summation or averaging when comput-

ing decision variables. Critically, this study is one of few

to directly model how people translate early sensory signals

to higher-level representations, and lays the groundwork for

building and constraining cognitive architectures that charac-

terize the linking function between perception and memory

(e.g., Hedayati et al., 2022).

Limitations and future directions

Throughout our article we focused on two specific models

of choice the Gaussian signal detection and softmax model.

In principle, however, we could have compared a much wider

range of models; for instance, we could have considered a

larger range of signal detection models with different pa-

rameterizations. This approach was taken by Rouder et al.,

2010, who used Receiver Operating Characteristics analy-

sis to compare different parameterizations of the signal de-

tection model to a variant of the Gaussian signal detection

model, which is most prominent in the recognition memory

domain (Wixted, 2007). For instance, the authors considered

signal detection models with a log-normal and gamma pa-

rameterization. In the current study, we focused on compar-

ing Gaussian signal detection and softmax (Gumbel signal

detection) models because they are prominent across differ-

ent research domains. Furthermore, there is a large body of

classic work that examines the formal relationship between

these models, but it is disconnected from more contemporary

modeling of visual memory. Another major reason is that,

unlike the Gaussian and Gumbel signal detection models,

these alternative parameterizations do not currently have a

clear theoretical interpretation. In short, there is an extremely

wide range of possible parameterizations of signal detection

models. Considering a larger subset of these is outside of

the scope of the current project because our goal is to focus
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solely on theoretically-motivated models.

Finally, our results conflict with a recent analysis by Ober-

auer, 2021. Oberauer, 2021 implemented a factorial compar-

ison of visual working memory models, and found support

for the softmax over the Gaussian signal detection model. A

major limitation of this work, is that it is not based on a crit-

ical test, such as our test of parameter invariance. Instead,

Oberauer, 2021 factorially combined different dimensions of

each model until he identified a model that provided superior

ªfitº to the data based on a particular model comparison tech-

nique. More precisely, Oberauer considered different com-

binations of activation functions (e.g., Laplace versus von-

Mises) and response rules (e.g., Gaussian signal detection

versus softmax), and found that the best fitting model had a

von Mises activation and softmax response rule. A critical

limitation of this work, is that models were evaluated solely

on their fit to data, rather than their ability to capture cogni-

tive invariants. It is known that superior fit to data alone does

not entail that a model’s basis theory is also a superior one

(Roberts & Pashler, 2000). Instead, it could reflect other fac-

tors such as, inadequate penalization of a model’s flexibility

(Piantadosi, 2018; Pitt & Myung, 2002). Our results sug-

gest that the Gaussian signal detection model performs well

across a range of experimental conditions and when we make

minimal assumptions about the latent activation function.

Conclusion

We revisited the connection between the Gaussian signal

detection and Luce choice-based softmax model. We found

that the Gaussian signal detection model best captures de-

cision processes that underpin mainstream visual working

memory tasks. This result suggest that people pool sensory

evidence to compute decision variables in such tasks, and

paves the way for developing linking propositions (Teller,

1984) between neural and cognitive models of visual mem-

ory.
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Appendix

Gumbel signal detection and softmax model

We provide a proof for equivalence between the Gumbel sig-

nal detection and softmax model (original result proved by

Holman & Marley, 1974; Yellott Jr, 1977). We start with the

general form of the signal detection model likelihood for dis-

crimination tasks, given partially in the main text in Equation

3. For simplicity, first consider n independent and identically

distributed (i.i.d.) variables with probability and cumulative

densities f and F, respectively. Equation 3 can be rewritten

as a likelihood of the signal detection model for discrimina-

tion tasks in terms of these densities of n variables, as shown

below

P(ID(i)) = P(∀ j , i : Xi > X j), (A1)

= P(Xi = x)P(X j < x,∀ j , i), (A2)

Equation A2 shows the joint probability that the

magnitude of the decision variable Xi exceeds the magnitude

of all remaining variables X j, where ∀ j , i.

For continuous variables in a memory task where

there is one target and n−1 foils, the likelihood that the target

generates the maximum familiarity signal is

∫ ∞

−∞

fT (x)FF(x)n−1dx, (A3)

and the likelihood that a foil generates the maxi-

mum familiarity signal is

∫ ∞

−∞

(n − 1) fF(x)FT (x)FF(x)n−2dx. (A4)

Informally, Equation A3 gives the probability that

the target generates a familiarity signal x (denoted with prob-

ability density fT ), which exceeds the familiarity signal of all

n−1 foils (denoted with cumulative density FT exponentiated

by n − 1). Similarly, Equation A4 gives the probability that

one of the foils generates a familiarity signal that exceeds the

target and the remaining n−2 foils, which can happen in n−1

ways. In both equations, these probabilities are integrated

over every possible value of x.

Next, assume that each of n variables has a Gumbel

distribution (for maximums) with scale parameter α = 1. As

before, we assume that on target present trials decision vari-

ables will be larger on average than on target absent trials,

so the shift parameter µ > 0 and µ = 0 on target present

and target absent trials, respectively. Thus, the densities for

decision variables elicited by the target, fT and FT on target

present trials are

fT (x) = eµ−xe−eµ−x

, (A5)

FT (x) = e−eµ−x

, (A6)

and the densities for decision variables elicited by

the foils, fF and FF on target absents trials are

fF(x) = e−xe−e−x

, (A7)

FF(x) = e−e−x

. (A8)

Replacing the generic densities in Equation A4 with

the Gumbel densities in Equations A5 through A8, the likeli-

hood for the Gumbel signal detection model on target present

and absent trials is the following,

P(ID(Target)) =

∫ ∞

−∞

(eµ−xe−eµ−x

)(e−e−x

)n−1dx, (A9)

P(ID(Foil)) =

∫ ∞

−∞

(n − 1)(e−xe−e−x

)(e−eµ−x

)(e−e−x

)n−2dx.

(A10)

For simplicity, we show equivalence between the

Gumbel signal detection and softmax model using the likeli-

hood for target present trials (Equation A9), but these steps

can be extended to the likelihood for target absent trials

(Equation A10).

First, using substitution, set z = e−e−x

. Differentiat-

ing, dz
dx
= e−e−x−x and dx = (e−e−x−x)−1dz. Simplifying,

P(ID(Target)) =

∫ ∞

−∞

(eµ−xe−eµ−x

)zn−1(e−e−x−x)−1dz (A11)

=

∫ ∞

−∞

eµe−eµ−x+e−x

zn−1dz. (A12)

Replacing x with −ln(−ln(z)), in Equation A12 and

simplifying gives,

P(ID(Target)) ==

∫ ∞

−∞

eµe−eln(−ln(z))+µ+eln(−ln(z))

zn−1dz, (A13)

=

∫ ∞

−∞

eµeln(z)eµ−ln(z)zn−1dz, (A14)

=

∫ ∞

−∞

eµzeµz−1zn−1dz. (A15)

After applying the power rule, Equation A15 can be

rewritten as,

P(ID(Target)) =

∫ ∞

−∞

eµzeµ+n−2dz = eµ
zeµ+n−1

eµ + n − 1
. (A16)

Substituting e−e−x

back for z, and plugging in the

boundaries, yields
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P(ID(Target)) =
eµ−e−x(eµ+n−1)

eµ + n − 1

∣

∣

∣

∣

∞

−∞
, (A17)

=
eµ

eµ + n − 1
. (A18)

Equation A18 is identical to softmax expression for

P(ID(Target)) in discrimination tasks (Equation 14 in main

text) with β = µ, completing the proof.
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