Journal of Number Theory 254 (2024) 1-64

Contents lists available at ScienceDirect

NUMBER

Journal of Number Theory THEORY

<
ELSEVIER journal homepage: www.elsevier.com/locate/jnt

JNT Prime

W

Existential definability and diophantine stability )

Check for
Updates

Barry Mazur ®, Karl Rubin ", Alexandra Shlapentokh ¢

? Department of Mathematics, Harvard University, Cambridge, MA 02138-2901,
USA

b Department of Mathematics, UC Irvine, Irvine, CA 92697, USA

¢ Department of Mathematics, East Carolina University, Greenville, NC 27858,
USA

ARTICLE INFO ABSTRACT
Article history: Let K be a number field, let L be an algebraic (possibly
Received 18 September 2022 infinite degree) extension of K, and let Ox C Of be their

Received in revised form 25 April
2023

Accepted 26 April 2023

Available online 2 August 2023
Communicated by A. Pal

rings of integers. Suppose A is an abelian variety defined over
K such that A(K) is infinite and A(L)/A(K) is a torsion
group. If at least one of the following conditions is satisfied:

1. L is a number field,

2. L is totally real,

MSC: 3. L is a quadratic extension of a totally real field,
primary 11U05
secondary 11G05

In memory of Martin Davis

then Ok has a diophantine definition over Op,.

Keywords: © 2023 Elsevier Inc. All rights reserved.
Hilbert’s Tenth Problem

Diophantine definition

* The authors thank Hector Pasten for his comments and suggestions for the paper. The research for this
paper was partially supported by DMS grants 2152098 (AS), 2152149 (BM), 2152262 (KR). AS was also
partially supported by an ECU Creative Activity and Research Grant 2121-02 during the summer of 2022.

* Corresponding author.

E-mail addresses: mazur@g.harvard.edu (B. Mazur), krubin@uci.edu (K. Rubin),
shlapentokha@ecu.edu (A. Shlapentokh).

URLs: http://www.math.harvard.edu/~mazur (B. Mazur), https://math.uci.edu/~krubin (K. Rubin),
https://myweb.ecu.edu/shlapentokha (A. Shlapentokh).

https://doi.org/10.1016/j.jnt.2023.04.011
0022-314X/© 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jnt.2023.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2023.04.011&domain=pdf
mailto:mazur@g.harvard.edu
mailto:krubin@uci.edu
mailto:shlapentokha@ecu.edu
http://www.math.harvard.edu/~mazur
https://math.uci.edu/~krubin
https://myweb.ecu.edu/shlapentokha
https://doi.org/10.1016/j.jnt.2023.04.011

2 B. Mazur et al. / Journal of Number Theory 254 (2024) 1-64

Contents
1. Introduction . . . . ... . 2
Part 1.  Existential definability and Hilbert’s Tenth Problem. . . ... .................... 5
2. Hilbert’s Tenth Problem over rings of algebraic integers . ........... ... ... ...... 5
3.  Main theorems: diophantine definitions from diophantine stability . .............. ... 8
4.  Existential definitions . . . . ... ... 10
Part 2. On the geometry of group schemes over rings of integers in number fields . . ......... 13
5. The conormal bundle to a section of a smooth scheme . ........ ... ... .. ... .... 13
6. The conormal bundle to the identity section of a smooth group scheme . ... ........... 15
7. A prepared group scheme . .. ... . ... 18
8. Theopen piece in G . . . . o oo it 22
9. Vanishing and congruence ideals. . . . . .. ... ... ... L o 24
10. Coordinates of rational points . . . . ... ... ... .. . .. .. e 25
Part 3. Proof of the main theorems . . . . . ... ... . .. 28
11.  Capturing subrings by congruences . . . . .. ... ... .. .. ... 28
12. Quadratic extensions of totally real fields . ... ........ ... ... ... .. . . ... . . ... 32
13.  Rational points . . ... ... ... e 39
14.  An existential formulation of Corollaries 13.17 and 13.19 ... ... ... ... ... ... ..... 44
15. A simple example . . . . ... 48
Part 4. Diophantine stability in infinite algebraic extensions of Q—results and conjectures . ... 50
16. Diophantine stability in abelian extensions . ... ....... ... ... .. ... 51
17.  Totally real fields . . . . . .. . e 57
18.  Quadratic extensions of totally real fields again . .. ... ...... .. ... ... ... ... ... 57
Data availability . . .. ... .. e 59
Appendix A. A geometric formulation of diophantine stability . ... .......... ... ... ... 59
19.  The same structures described in a different vocabulary . ........................ 59
References . . . . . . 63

1. Introduction

For the definition of “diophantine definition”, “diophantine undecidable”, “existen-
tially definable”, and similar terms used in this introduction, see §2 and §4.

Here is a corollary of one of our main results (see Theorems 3.1 and 3.9 below). By
“number field” we mean a finite extension of Q.

Theorem 1.1. Let K be a number field, let L be an algebraic (possibly infinite degree)
extension of K, and let O C O be their rings of integers. Suppose A is an abelian
variety defined over K such that A(K) is infinite and A(L)/A(K) is a torsion group. If
at least one of the following conditions is satisfied:

(1) L is a number field,
(2) L is totally real,
(3) L is a quadratic extension of a totally real field,

then Ok has a diophantine definition over Op,.

Theorem 1.1 answers a question raised by B. Poonen in [Poo02, Question 2.6(3)]. For
a discussion of previous results in the direction of Theorem 1.1, see §2.
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Theorem 1.1 is a special case of a more general result (see Propositions 14.3, 14.4,
and 14.5) where the abelian variety is replaced by a smooth group scheme over Ok
satisfying some mild additional hypotheses (Assumption 7.4). In this paper the group
schemes we mainly use are Néron models of abelian varieties and twists of multiplicative
groups.

One way of describing the main structural element in the proof of Theorem 1.1 is
the following. We pass, via an ‘existential definition’—from an appropriate subgroup of
the group of rational points on the group scheme we work with—to the (additive group
of the) ring Ok, by constructing a scheme-theoretic (existentially defined) analogue to
some approximation of the standard logarithm mapping that sends an appropriate open
subset of the identity in an algebraic group to its Lie algebra.

The following concept, implicit in the statement of Theorem 1.1, is fundamental to
our results in this paper.

Definition 1.2. Let L/K be an extension of fields, and V' an algebraic variety defined
over K. We denote by V(K) the set of K-rational points of V.

o Say that V is diophantine stable for L/ K, or L/K is diophantine stable for V, if the
inclusion V(K) < V(L) is an isomorphism, i.e., if V acquires no new rational points
after passing from K to L.

o If V. = A is an abelian variety over a field K, say that A is rank stable for L/K
if A(L)/A(K) is a torsion group. If L is a number field, this is equivalent to saying
that rank A(K) = rank A(L).

A study of diophantine stability for elliptic curves can be found in [MR10], and for
higher dimension abelian varieties in [MR18].

Definition 1.3. We say that number fields L/K are connected by a diophantine chain if
there is an n > 0 and a tower of number fields

K=KycKic---CcK,DL

such that for every i, 1 < i < n, there is an abelian variety A; defined over K;_; that is
rank stable for K;/K;_; and such that rank A;(K;_1) > 0.

The condition of being ‘connected by a diophantine chain descends in the following
sense.

Theorem 1.4. Let L/K and K'/K be linearly disjoint number field extensions of K,
and consider L' := K'L, the compositum of K' and L. If the number fields L' /K’ are
connected by a diophantine chain then so are the number fields L/ K.

(See Theorem 3.3 below.)
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Remark 1.5. The abelian varieties involved in the descended chain connecting L to K in
the conclusion of Theorem 1.4 are ‘Weil traces’ of those involved in the chain connecting
L’ to K’ and, in particular, each are of dimension [K’ : K| times the dimension of the
corresponding abelian varieties in that initial chain.

Moreover, by the nature of Weil trace, the Mordell-Weil ranks of the relevant abelian
varieties are equal to the Mordell-Weil ranks of the corresponding descended abelian
varieties.

The following corollary follows directly from Theorem 1.1 and Lemma 4.3 below.

Corollary 1.6. If L/ K is an extension of number fields connected by a diophantine chain,

then the ring of integers of K has a diophantine definition over the ring of integers of
L.

Conjecture 1.7. Every number field L is connected to Q by a diophantine chain.

A consequence of Conjecture 1.7 is the following conjecture, first formulated by Denef
and Lipshitz in [DL78], which is also known to follow from other standard conjectures
about elliptic curves ([MR10,MP18]):

Conjecture 1.8. The ring Z of rational integers has a diophantine definition over the ring
of integers of any number field. Hence Hilbert’s Tenth Problem has a negative answer for
the ring of integers of every number field.

For a discussion of Hilbert’s Tenth Problem see §2.

Inspired by conjectures of C. David, J. Fearnley, and H. Kisilevsky [DFK07,FK12], the
first two authors of this article developed in [MR22] a “heuristic” (based on the statistics
of modular symbols) for groups of rational points on elliptic curves over infinite abelian
extensions of Q. Using specially constructed abelian varieties, this heuristic and the main
results of this article led us to make the following diophantine undecidability conjecture.
See §16, §17, and §18, especially Consequences 16.15, 17.3, and 18.4 for details. Let Q2P
denote the maximal abelian extension of Q, the field generated over Q by all roots of
unity.

Conjecture 1.9. For the primes p = 7, 11, or 13 there are subfields L C Q*" for which
the field extension Q" /L is cyclic of degree p and such that Oy, the ring of integers in
L, is diophantine undecidable.

In fact, we conjecture (the stronger statement) that Z is existentially definable over
Oy, for the fields L in Conjecture 1.9. We do not make the same conjecture for Ogas.

The following result—related to Conjecture 1.9—is due to the third author [Sh109],
K. Kato [Kat04], K. Ribet [Rib81] and D. Rohrlich [Roh84,Roh88] (see [LRO8, Theo-
rem 1.2]).
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Theorem 1.10. Let L be an abelian extension with finitely many ramified primes. Then
Z is existentially definable over O,.

Part 1. Existential definability and Hilbert’s Tenth Problem
2. Hilbert’s Tenth Problem over rings of algebraic integers

The original “Hilbert’s Tenth Problem” was one of 23 problems posed over a century
ago by David Hilbert in the International Congress of Mathematicians, at the Sorbonne,
in Paris:

Problem. Find an algorithm that, when given an arbitrary polynomial equation in several
variables over Z, answers the question of whether that equation has solutions in Z.

Work of M. Davis, H. Putnam, J. Robinson and Yu. Matijasevich shows that there is
no such algorithm. (See [Dav73] and [DMR76].)

Since the time when this result was obtained, similar questions have been raised for
other fields and rings. E.g.,

Question 2.1. Let R be a computable ring, i.e., a countable ring computable as a set
and with ring operations represented by computable functions. Is there an algorithm
(equivalently: computer program) taking the coefficients of an arbitrary polynomial over
R as its input and outputting a “Yes” or “No” answer to the question whether the
polynomial in question has solutions in R?

This question in the special case of R = Q remains an open basic diophantine issue;
we wonder (a) why Hilbert didn’t formulate this question as an addendum to his initial
“tenth problem,” and (b) whether there is currently a strong consensus guess by the
experts about its answer.

One way to resolve the question of diophantine decidability negatively over a ring
of characteristic zero is to construct a diophantine definition of Z over such a ring.
The usefulness of such a diophantine definition stems from the fact that if a ring has a
diophantine definition of Z, then its analog of Hilbert’s Tenth Problem is undecidable.
We explain how diophantine definitions are used in the following section.

Deriving undecidability of Hilbert’s Tenth Problem over a ring R using a diophantine
definition of Z over R.

Definition 2.2. Let R be a ring and let E be a subset of R. Then we say that E has a dio-
phantine definition over R if there exists finite collection of polynomials with coefficients
in R,

F: filt,x1,20,23,...2) € Rlt,x1,...,2y) fori=1,2,....m
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such that for any 7 € R,
T € FE <= 3ay,...,a, € R satisfying fi(7,a1,...,a,) =0fori=1,2,...,m.

We will use interchangeably the terminology F has a diophantine definition over R, or
E is diophantine over R, or E is existentially definable over R—noting that this last is
a slight abuse of language: properly speaking, we should say E is positively existentially
definable over R.

We now prove an easy proposition that explains the importance of diophantine defi-
nition discussed above.

Proposition 2.3.

(1) Suppose R is a ring containing Z, and Z has a diophantine definition over R. Then
there is mo algorithm to determine whether an arbitrary finite system of polynomial
equations with coefficients in R has solutions in R.

(2) More generally, suppose I is an arbitrary index set, and {Ry : « € I} is a collection
of subrings of some ring R containing Z. Let Ry := NqerRa, and suppose there
exists a finite collection of polynomials

filt,x1,...,xn) € Rolt,z1,...2p], 1<i<m

that constitutes a diophantine definition of Z over R, for every o € I. Then there is
no algorithm to determine whether an arbitrary finite system of polynomial equations
with coefficients in Ry has solutions in R, for some « € I.

Proof. Assertion (1) is a special case of (2), where we take I to have only one element.
As for (2), let p(t1,...,t.) € Z[t1,...,t;]. Then for « € I, the system equations

p(tlw",tr)zoa fi(tjamj,la"'axj,n)zoa ]-SZSma]-SJST (24)

have solutions in R,, if and only if the equation p(t1,...,t.) = 0 has solutions in Z. So
if there is an algorithm to determine whether (2.4) has solutions in R, for some «, then
there is an algorithm to determine whether p(t1,...,t.) has solutions in Z. O

Here is a brief account of some of the history of diophantine definitions. Using norm
equations, diophantine definitions have been obtained for Z over the rings of algebraic
integers of some number fields. J. Denef has constructed a diophantine definition of Z
for the finite degree totally real extensions of Q. J. Denef and L. Lipshitz extended
Denef’s results to all quadratic extensions of finite degree totally real fields. (These fields
include all finite abelian extensions of Q.) T. Pheidas, C. Videla and the third author
of this paper have independently constructed diophantine definitions of Z for number
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fields with exactly one pair of non-real conjugate embeddings. Lemma 4.3 below shows
that the subfields of all the fields mentioned above “inherit” the diophantine definitions
of Z. The proofs of the results listed above can be found in [Den75], [DL78], [Deng0],
[Phe88], [Vidg&9], [SS89], and [ShI&9].

The first abelian varieties put to use for the purpose of definability were elliptic curves.
Perhaps the first mention of elliptic curves in the context of the first-order definability
belongs to R. Robinson in [Rob64] and in the context of existential definability and
diophantine stability relative to Q to J. Denef in [Den80]. Using elliptic curves B. Poonen
has shown in [Poo02] that if for a number field extension M /K we have an elliptic curve
FE defined over K, of rank one over K, such that the rank of E over M is also one,
then O (the ring of integers of K) is diophantine over Oy;. G. Cornelissen, T. Pheidas
and K. Zahidi weakened somewhat the assumptions of B. Poonen’s theorem. Instead of
requiring a rank one curve retaining its rank in the extension, they require existence of
a rank one elliptic curve over the number field and an abelian variety or a commutative
group-scheme of positive rank defined over Q and diophantine stable relative to Q (see
[CPZ05]). This paper was the first to use a higher dimensional abelian variety or a group-
scheme to show that Hilbert’s Tenth Problem is undecidable over a ring of integers of a
number field.

Somewhat later B. Poonen and the third author have independently shown that the
conditions of B. Poonen’s theorem can be weakened to remove the assumption that the
rank is one and require only that the rank in the extension is positive and the same as the
rank over the ground field, i.e. the elliptic curve is rank stable and with a positive rank
(see [Shl08] and [Poo]). Additional use of diophantine stable elliptic curves can be found
in [CS08], where G. Cornelissen and the third author of this paper used elliptic curves
to define a subfield of a number field using one universal and existential quantifiers.
Recent papers by N. Garcia-Fritz and H. Pasten ([GFP20]) and by D. Kundu, A. Lei
and F. Sprung ([KLS22]) also use diophantine stability of elliptic curves to construct
diophantine definitions of Z over new families of rings of integers of number fields.

The first two authors showed in [MR10] that if the Shafarevich—-Tate conjecture holds
over a number field K, then for any prime degree cyclic extension M of K, there exists an
elliptic curve of rank one over K, keeping its rank over M. Combined with B. Poonen’s
theorem, this result shows that the Shafarevich-Tate conjecture implies that Hilbert’s
Tenth Problem is undecidable over the rings of integers of any number field. While in
[MR10], the case of a general extension was reduced to a cyclic extension of prime degree,
in fact, it would be enough to show that result holds for any quadratic extension of num-
ber fields. The proof of this fact relies on well-known properties of diophantine definitions;
see Theorem 4.8 below. R. Murty and H. Pasten produced another conjectural instance
where one could use diophantine stability of elliptic curves in finite extensions of number
fields to show that Z has a diophantine definition in the rings of integers ([MP18]). The
authors relied on a different set of conjectures for elliptic curves (automorphic, parity
and the analytic rank 0 part of the twisted Birch and Swinnerton-Dyer conjecture) and
the results from [Sh108] and [Poo] for their proof. An accessible exposition of the proof
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can be found in [MF19]. H. Pasten also showed in [Pas22b] that existential definability of
Z over rings of integers of number fields follows from a well-known conjecture on elliptic
surfaces.

3. Main theorems: diophantine definitions from diophantine stability

Number field results.

Theorem 3.1. Let L/K be a number field extension with O /O the corresponding ex-
tension of their rings of integers. Let A be an abelian variety defined over K such that
rank A(L) =rank A(K) > 1. Then Ok has a diophantine definition over Of,.

Remark 3.2. Regarding the diophantine definitions provided by Theorem 3.1, fix the
number field K and choose an abelian variety A over K with rank A(K) > 1.

(1) For any positive number d there is a single set of equations F (K, A, d) (i.e., equations
of the form described in Definition 2.2), with coefficients in O, such that for any
field extension L/K of degree < d such that rank A(L) = rank A(K) that set of
equations provides a diophantine definition of Ok over Of.

(2) By Theorem 16.5 below ([MR18, Theorem 1.2]), if A is a non-CM elliptic curve there
are (infinitely) many integers d for which there exist infinitely many pairwise linearly
disjoint extensions L/K with [L : K| = d and rank A(L) = rank A(K).

(3) Without any restriction on the degree of L, if L is a totally real field or a quadratic
extension of a totally real field there is a single set of equations F(K, A) with co-
efficients in O that provides a diophantine definition of Ok over Oy, for any field
extension L/K such that rank A(L) = rank A(K).

(4) If we set K = Q or let K be any number field with a diophantine definition of Z
over Ok then Proposition 2.3 applies to each collection of fields described above.

For the proof of Theorem 3.1, see Proposition 14.3 and Lemma 13.8 below. Theo-
rem 3.1 can be sharpened to:

Theorem 3.3. Let L/K be a number field extension with Or/Ok the corresponding ex-
tension of their rings of integers. Let K'/K be a number field extension with K' linearly
disjoint from L over K. Put L' :== K'L. Suppose that the number fields L' /K’ are con-
nected by a diophantine chain (cf. Definition 1.3). Then

(1) the number fields L/ K are connected by a diophantine chain,

(2) Ok has a diophantine definition over Oy,.

(8) If L is a totally real field or a quadratic extension of a totally real field, the diophan-
tine definition in (2) depends only on K and A, and not on L.
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Proof. Since the number fields L' /K’ are connected by a diophantine chain, there is an
n > 0 and a tower of number fields

K'=K,cK c---CK/,>L
such that for every i = 1, ..., n there is an abelian variety A} defined over K/_, satisfying
rank A;(K|_;) = rank A}(K}) > 0. (3.4)
For i =0,1,...,n define
K, =LNK]. (3.5)
Then
Ky=LNK,=LNK'=KCK,C---CK,=LNnK, DL. (3.6)

Set A; to be the “Weil trace” of A} with respect to the field extension K} _,/K;_1 (see
[Wei82, §1.3]). Then A, is an abelian variety of dimension [K]_; : K;_1]dim A} defined

2

over K;_1, and if F' is a field containing K;_; and F N K]_; = K;_1, then
Ai(F) = A'(KI_,F). (3.7)
Using (3.5) and (3.7) with F = K,;_; and with F' = K;, we have
Ai(Kioa) = AfKG ), Ai(KG) = A(KG L KG) C AY(KD).
Thus (3.4) and the inclusion A;(K,_;) C AL(K]) show that
rank A;(K;_1) = rank A;(K;) > 0.

This proves (1), with the diophantine chain given by (3.6) and the abelian varieties A;.

Applying Theorem 3.1 to 4,1 for ¢ = 1,2,...,n shows that each Ok, , has a dio-
phantine definition over Ok, and (2) follows from the “transitivity lemma” (Lemma 4.3).

Assertion (3) follows from Remark 3.2. O

Combined with Theorem 16.5 below ([MRI18, Theorem 1.2]), we get the following
corollary.

Corollary 3.8. For any number field K, there is an integer Ni such that for every prime
¢ > N, and every positive integer n, there exist infinitely many cyclic extensions L/ K
of degree U™ such that Ok is diophantine over Q.
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Proof. Let E be a non-CM elliptic curve defined over K such that rank(E(K)) > 0.
(Such a curve always exists.) Then by Theorem 16.5, for all sufficiently large primes
¢ and all n, there are infinitely many cyclic extensions L/K of degree ¢™ such that
E(L) = E(K). Now the corollary follows from Theorem 3.1. O

Results for infinite algebraic extensions of Q. We will generally use boldface letters
(e.g., L, K) to denote fields of algebraic numbers that are allowed to have infinite degree
over Q, and normal type (e.g., L, K) for number fields, i.e., fields of finite degree over

Q.

Theorem 3.9. Let L be an algebraic extension of Q. Assume that L is totally real or
a quadratic extension of a totally real field. Let K be a subfield of L. Let Or,/Ox be
the corresponding extension of their rings of integers. Let A be an abelian variety defined
over K such that A(K) contains an element of infinite order and A(L)/A(K) is a torsion
group. If K is a number field, then Ok has a diophantine definition over Or. If K is an
infinite extension of Q, then O contains a subset D such that D is diophantine over
Or andZ C D C Ok.

The proof of Theorem 3.9 is similar to that of Theorem 3.1, using Propositions 14.4
and 14.5 below.

Remark 3.10. If K is a number field, then the diophantine definition f(¢,x1,...,x¢) of
Ok over Op or O, constructed in the proofs of Theorems 3.1, 3.3 and 3.9 has the
property that for all ¢t € O there exist x1,...,z; € Ok such that f(¢,z1,...,2,) = 0.
This follows from the fact that we use points of A(K) to generate rational integers and
then a basis of K/Q to generate all elements of O.

Corollary 3.11. Suppose K C L and A are as in Theorem 3.9. If K is a number field
then the existential theory of O is undecidable. Alternatively, Hilbert’s Tenth Problem
is undecidable over Ox,.

Proof. By the result of Denef and Lipshitz [DL78] mentioned in §2, Z has a diophan-
tine definition over Ok. Combining this with Theorem 3.9 and Lemma 4.3 proves the
corollary. O

4. Existential definitions

The basics of existential definability. Recall Definition 2.2 above.

Lemma 4.1. Let O be an integral domain whose fraction field K is not algebraically
closed, and suppose p(t) € Olt] is a (non-constant) polynomial with no root in K. Let

{fi(x17x27"'7xm) :O'l SZST}
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be a system of polynomial equations over O. Then there exists a single effectively com-
putable polynomial F(x1, 22, ..., Tm) € Olx1, T2, ..., 2] such that the solutions to F = 0
in O™ are the same as the common solutions in O™ of the system F.

Proof. The proof is taken from [Shl06]. Write p(t) = ant™ + ap—1t" "' + -+ + ao with
a; € 0. It f,g € Olx1,x2,...,2,] and x € O™, then

(anf" +an1f" g+ +arfg" T +agg")(x) =0 <= f(x)=g(x)=0.

Now we proceed by induction to combine any finite number of polynomials {fi,..., f-}
into one. O

Note that although the degree of F(x1, o, ..., %, ) in Lemma 4.1 may be significantly
higher than the degree of the polynomials f;(x1, 2, ..., %, ) that comprise the system,
the number of variables m remains the same.

Here are some easy (and well-known) properties of existential definability we use in
this paper. The proofs of many of the statements below can be found (among other
places) in Chapter 2 of [Shl06].

Lemma 4.2. The set O* of units in any commutative ring O (with unit) is existentially
definable over the ring O.

Proof. The polynomial f(t,s) :=ts —1 € Olt, s] has a zero for t = « € O if and only if
acO*. O

Below, if K is a subfield of Q, then Ok will be its ring of integers. The following
lemma is proved in [SS89].

Lemma 4.3 (Transitivity descent for diophantine definitions). Let K C L C H be alge-
braic possibly infinite extensions of Q.

o If Ok has a diophantine definition over O, and Oy, has a diophantine definition
over Ou, then Ok has a diophantine definition over Og.

o IfH/L is a finite extension and Ok has a diophantine definition over O, then Ok
has a diophantine definition over Ot,.

Remark 4.4. In particular, if H/K is a finite extension and Ok has a diophantine def-
inition over Oy, then Ok has a diophantine definition over Oy, for every intermediate
field L such that K C L € H.

The following lemma is clear.

Lemma 4.5 (Intersection). Let Ey, Ey C Ok be subsets each existentially definable in
Ogk. Then E1 N Ey C Ok is existentially definable.
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The following is due to J. Denef ([Den80]).

Lemma 4.6. Let K be any field of algebraic numbers. The set Ok \ {0} of non-zero
elements of Ok s existentially definable over Oxk.

Proof. Let x € Ok. We claim that x # 0 is equivalent to the existential statement
Jy,z,w € Ok : 2y —1)(3z2 — 1) = zw.

For if = 0, then either y = 1/2 or z = 1/3, so either y or z is not in Ok. Suppose
now x # 0. Working in the number field Ky := Q(z), we can factor the principal ideal
(x) = ab, where (a,(2)) = 1, and (b,(3)) = 1. (It is possible that either a or b is the
unit ideal.) Choose y,z € Ok, such that 2y = 1 (mod a) and 3z = 1 (mod b). Then
(2y —1)(32 — 1) =0 (mod ab), and so = divides (2y — 1)(3z — 1) in Ok,, and therefore
in Ok as well. O

Lemma 4.7. Let L/K be an algebraic extension possibly of infinite degree, where K is a
number field. Suppose that there exists a subset S of Ok containing N such that S has
a diophantine definition over Or. Then Ok has a diophantine definition over Oy,.

Proof. Let o € Or, be any element such that K = Q(«a) and consider the following
subset E of O,:

[Q():Q]
E={xecO:bx= Z a;o’, with b # 0, +a;,b € S}
i=0

Now if y € E, then y € K N O, = Ok because b € Ok and all a; € Ok. Conversely, if
y € Ok, then y € E, since every element of Ok can be represented as the sum in the
definition of E with b # 0, a; € Z. Finally the condition b # 0 is diophantine over O, by
Lemma 4.6. O

The following theorem due to the third author was mentioned in the discussion at the
end of Section 2.

Theorem 4.8. Suppose that for every quadratic extension of number fields L/K we have
that Ok has a diophantine definition over Or. Then Z has a diophantine definition over
the ring of integers of any number field.

Proof. Let M be a number field. By Remark 4.4, without loss of generality we can assume
that M is Galois over Q. For any complex embedding M < C consider the corresponding
complex conjugation which gives an involution o : M — M of the field M. Let M? C M
be the fixed field of this involution. Since M/M? is a quadratic extension, we obtain—
from the assumption in the statement of the theorem—that its ring of integers has a
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diophantine definition in O,;. By Corollary 4.5 the same is true for the ring of integers
in the intersection

Mt =n,M°.

That is, O+ has a diophantine definition in Q. Since M7 is totally real, the result of
Denef [Den80] discussed above gives us that Z has a diophantine definition in Oys+. By
“transitivity” of diophantine definitions (Lemma 4.3) we have that Z has a diophantine
definition over Oy;. 0O

Total positivity; replacing inequalities by equations.

Proposition 4.9. Let F be an algebraic (possibly infinite) extension of Q. Let x,z € O
with © # z. Then there exists y1,...,ys € Op with ys # 0 such that

(e —2) =y + 93 + 3 +yi (4.10)
if and only if for every embedding o : F — R we have that o(x) > o(z).

Proof. The existence of yq,...,y5 € O with y5 # 0 implies the inequality o(z) > o(z)
for all real embeddings o : F — R.

To go the other way, assume the inequality o(z) > o(z) for all real embeddings. It
follows that (4.10) has a solution in all real completions of F', and hence in all archimedean
completions. In any non-archimedean completion a quadratic form of dimension four
represents every element; so (4.10) has a solution in every completion of F. By the
Hasse-Minkowski Theorem ([Shil2] Corollary 27.5) it has a solution in F. 0O

Part 2. On the geometry of group schemes over rings of integers in number fields
5. The conormal bundle to a section of a smooth scheme

Let S = Spec(O) where O is a Dedekind domain, and let X — S be a morphism of
finite type and smooth of dimension d. Let e : S < X be a section. We’ll refer to the pair
(X,e) as an S-pointed scheme. Let I = I, be the sheaf of ideals on X that cut out the
section e. For a general reference to this, see [Gro61, §1.4], especially Proposition 4.1.2.

Denote by X, 57 = X[g; C X the subscheme cut out by I2. In the language of [Gro61],
Xe,[2) is a “formal scheme” with support equal to the closed subscheme e : S — X,
and has I, restricted to Ox, ,, as its ideal of definition (which is an ideal of square zero
in OX[2]).

The pullback e*(I/I%) to S is a locally free coherent sheaf of rank d over S (the
conormal bundle to the section e; for another general reference, cf. [Har77]).
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Let
N =Nx.:=HS,e"(I/I*)) C Rx =Rx.:=HS, e (Ox/I?).

So Nx. is the (locally free, rank d) O-module of sections of the coherent sheaf e*(I/1?)
over S, viewed as an ideal in R x ¢, the O-algebra of global sections (over S) of e*(Ox /I?).
We can write

RX,e = O @NX,e = O[NX,e]v

where the object on the right is the O-algebra generated by the O-module N'x . where
the square of Nx . C Rx . is zero. (Compare: [Gro61, Proposition 10.8.11].)

Proposition 5.1 (Functoriality).
(1) There is a canonical isomorphism
Xe,[2] ~ SpeC(Rx’e).

(2) Let f: (X,e) = (X', €') be a morphism of smooth (S-pointed) schemes over S. Then
f induces (via the canonical mapping Ix — f*Ix:) functorial morphisms

f

X———=X

fi2)

Xe,2] X
S

and (correspondingly) contravariant functorial O-homomorphisms

/
e',[2]

Nx» —— Nx

]

RX/ ——— Rx.
(3) If f : X = X' is a closed immersion, so is
f[Q] . X[Q] — X{2]7

and the horizontal morphisms in (5.2) are surjections.
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(4) If (X,e) and (X',€') are smooth (S-pointed) schemes over S, letting (Y,y) :=
(X,e) xg (X', €) we have an isomorphism of O-modules

Nvy) = Nixe) ® Nixr,en.

Proof. The statements follow directly from the functoriality of the construction X +—
X[ and the fact that ¢’ = foeso (¢/)* =e*o f*. O

6. The conormal bundle to the identity section of a smooth group scheme

We will be dealing with smooth group schemes G of finite type over our base S, which
we now suppose to be Spec(Of) for some number field K. Our main applications will
use group schemes G that are either

o the Néron model over the base S of an abelian variety A, or
o the multiplicative group G, over S, or more generally a torus over .S, or
o (possibly in the future) extensions of these groups.

As the reader will see, we will only be “using” the connected component of the identity
of GG, so we could restrict to connected group schemes over S. Moreover, there are few
properties of G (besides smoothness along the identity section) that are required, in the
constructions to follow. Specifically, G needn’t be commutative; it needn’t even have
inverses: it could just be a monoid; more curious is that—although it would take some
discussion which we won’t enter to explain this: it needn’t even be associative. The main
requirement is that there be a binary law v : G X G — G of schemes over S with a
two-sided identity section e : S — Gj i.e., such that this diagram is commutative:

exId Idxe
G=5%gG GxsG GxgS=G
\lW/
G

But let (X,e) = (G, e) just be a smooth group scheme of finite type over S pointed by
its “identity section.” Below we’ll begin to drop the e from (G, e) and just call it G.

Lemma 6.1. Let h denote the class number of the number field K. For G a smooth group
scheme of finite type over S, let

G/Z:{G}hI:GXSGXS-”XsG

denote the h-fold power of G, and Ng and Ng' their corresponding conormal bundle
Ok -modules. Then
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Ng = EBhNG,
and Ng is a free (finite rank) O -module.

Proof. The first part of that sentence follows from Proposition 5.1(4). The second follows
from the fact that Ng is locally free over O, and if h is the class number of K the
h-fold direct sum of any locally free Og-module is free ([FT93, Theorem I1.4.13]). O

Remark 6.2. This lemma will be useful later. Whenever we have a group scheme that is
diophantine stable for a field extension L/K, Lemma 6.1 allows us to choose one with
the further property that its conormal bundle module Ng is free over Of.

Proposition 6.3.

1) The functor (G,e) — G, 91 preserves closed immersions.
(2]
(2) The functor G — Ng sends closed immersions G1 < G to surjections

NGQ — NG1'
(3) If G, H are S-group schemes we have canonical closed immersions of S-schemes

(G Xs H)[Q]% G[Q] X5 H[Q]% G xXg H
Spec(Rex )~ Spec(R¢) x5 Spec(Ru)

(4) Letting 1¢ € Rg = Ra,e denote the unit, and ditto for H, we have a canonical
isomorphism of Ok -modules

Nexsa — Na ®oy 1u @ lg ®o, N

(5) Let v: G xs G — G denote the group law (g1,92) — g192. We have a commutative
diagram

Spec(RGng) ;- {G Xs G}[g](ﬁ G[g] Xs G[Q]% G Xg G

Spec(R¢) —— Gy © G G.

Proof. Items (1) and (2) follow from item (3) of Proposition 5.1. The remaining items
follow straight from the definitions or the functoriality of the objects named, except for
(4) which is a direct computation.
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Note that the natural Og-homomorphism
Ra ®ox Rae — RaxsH
is a surjection, but not (necessarily) an isomorphism. 0O
Proposition 6.4. Recall that v: G x G — G denotes the group operation. The mapping
Y21 : No — Naxsa = WNe @0 1a) @ (1a @0 Ng)
s given by the formula
z = T®Rlg+lg®uw. (6.5)
Proof. Since e is the identity section we have the commutative diagram

exGC— GxGE<~—Gxe

bt

G

which gives us that the composition of

Na E)NGXSG:NG ®o la ®lg ®o Nag

with projection to Ng ®0 1g or to 1g ®o Ng induces the ‘identity mapping’ (i.e.,
r—x®lg or x — 1lg ® x respectively). O

Corollary 6.6. Let G and G’ be two smooth group schemes over S. Let Gy C G be an
open subscheme containing e, the identity section, and let G, C G’ be, similarly, an open
subscheme containing €', the identity section. We view (Go,e) and (Gg,€') as (smooth)
S-pointed schemes. Let v : (Go,e) — (Gj,€’) be a morphism of S-pointed schemes that
is a closed immersion of schemes (but ¢ is not required to extend to a homomorphism,
or even a morphism, of the ambient groups). We have a commutative diagram

GxG«—@xGmr54%xG@m31«%xGmmj>@Udmm@+GxG’

l ¥ J/ Vi2) l V12) l ¥ (21 J/ Vi L v

G Gy Gopyy ‘ Gy - € G’
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Remark 6.8. We will make use of this discussion in the case where G = A is the Néron
model of an abelian variety, and G’ = Aff" is n-dimensional affine space. The key fact
we use is Proposition 6.4 and the commutativity of the inner square in diagram (6.7)
(and this follows directly from the formula (6.5)).

7. A prepared group scheme
Fix a number field K.

Projective space over O . For n a positive integer, consider n-dimensional projective
space P™ viewed as a scheme (over Z, or more relevant to our context, over Ok ). A point
in P™ rational over K (which is the same as being rational over Ok ) can be represented
in n + 1 homogeneous coordinates (not all of them 0),

(1 :@o -+ Tpg1)
for ; € K noting that such a representation is unique up to scalar multiplication by
a nonzero element in K. Two such vectors (z} : @b @ --- @) ), (X1 2 @2 - 1 Tpg1)
are equivalent if and only if there is a nonzero element ¢ € K such that z} = cx;
for i+ = 1,2,...n + 1. Any such point can therefore be represented by such a vector
with z; € Og. (Below, we keep to the convention that the colons signify that we are

considering “homogeneous coordinates.”)

Definition 7.1. In the special case that the entries ay,as,...,an41 of an n 4+ 1-vector
a=(a1:az: - :apt1)
generates a principal ideal “ ged()” = (a) C Ok, define
¢ the denominator of a to be
0(a) :=apy1/a C Ok,
noting that §(«) is only well-defined up to a unit in K—i.e., it is only the principal
ideal generated by d(«) that is well-defined,
¢ the numerator of a to be
v(a) = the ideal (a1/a,a2/a,...,a,/a) C Ok,

noting that v(a) and §(«) are relatively prime—i.e., the ideal generated by v(«) and
d(«) is the unit ideal.
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Affine space over O. We view affine n-dimensional space
Spec(Ok [y1, Y2, - - -, yn]) =t AE" = G7
as an additive group scheme over Og; with
e:=(0,0,...,0) € Affi"

its zero-section (cut out by the ideal I := (y1,y2,---,¥n) C Ok [y1,¥2, .-, Yn])-
Letting P*"~! ~ H C P™ denote the hyperplane defined by x,,1 = 0, we have an

isomorphism
Aff" ~P"\ H C P",
defined by
(a1,a2,...,a,) = (a1 tag i+ tay:1).
“Going the other way:” if (a1 : ag : -+ : ap : any1) is & homogeneous representative

of a point a € P"(Ok), where a, 1 # 0, denote by

a a a 1
ali=(——, ..., ) € Afi" (O]
Ap+1 QAp41 Ap+1 Ap+1

). (7.2)

Remark 7.3. If the ideal (aj,az,...,a,) € Ok is relatively prime to the ideal (a,41)

then a' reduces to a well-defined element—call it a!m—in the quotient

O?{/(al, as, ..., an)ZO?{.

Visibly, a![2] is dependent only on the equivalence class of (a1 : ag : -+ : ap : Api1)
as long as the hypothesis in Remark 7.3 holds. This will be relevant in the discussion
below.

We will be working with the quotient: Ox — Ok [y1,¥y2, - ., yn]/I?. Form the corre-
sponding closed subscheme

ARy := Spec(Ok [y1, 92, - - -, yn)/T?) C AE™ = Spec(Ok[y1, Y2, - - -, Yn])-
An embedded group scheme
Assumption 7.4. Let G be a smooth connected quasi-projective group scheme over S =

Spec(Ok). Assume further that the conormal bundle module, N is free over Ok (see
Lemma 6.1 and Remark 6.2).
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There is a positive integer n and an Og-morphism of schemes
G <P

that is a local immersion, identifying G with a locally closed Og-subscheme of P™.
Denote by e the zero-section of G over Ok, and let J be the sheaf of ideals in G that
cuts out e.
Recall the construction Gg) C G of §6; i.e., the subscheme of G' cut out by 72

Proposition 7.5. If G C P™ is the Zariski-closure of the Qg -subscheme G C P™, then
setting

X:=G\GcCP",
the support of X is disjoint from the zero-section e.
Proof. Since the group scheme G is smooth along the zero-section, the injection G —
G induces an isomorphism on normal bundles along the zero-section, establishing the
proposition. 0O
Remark 7.6. If, for example, G = A, the Néron model of an abelian variety A over K,
then the support of X' in Proposition 7.5 is concentrated in fibers of A — Spec(O)

over the finite punctual subscheme Y1,,4(A) C Spec(Ok) where 3p,q(A) is the set of
bad primes of A, i.e.:

Ebad(A) = ‘—|p|cond(A) Spec(k;p).
(Here ky is the residue field of the prime p of K, and cond(A) is the conductor of A /f.)

Definition 7.7. An injective (local immersion) Og-morphism ¢ : G — P™ will be called
well-arranged if both of the following properties hold:

o ¢ takes any point P € G(Ok) to a point «(P) € P™ that can be written in homo-

geneous coordinates (a; : ag : -+ : apt1) with a; € Ok, and such that the ideal
generated by the entries, (a1, a2, ...,a,+1) C Ok, is the unit ideal,
« . takes the zero-section, e € G to the point (0:0:---: 0 : 1)—this being written in

homogeneous coordinates; i.e., 11 = 1:

T

P OART
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Proposition 7.8. Let

be an S-section. Then there is an injective S-morphism v : P™ < PN for some N such
that

(1) the image of any S-section of P™ in PN, when written in homogeneous coordinates
(a1 : ag : -+ : an41) has the property that the ideal generated by the entries,
(a1,a9,...,an+1) C Ok, is a principal ideal in Ok, and hence after scaling can
be taken to be the unit ideal, and

(2) o(s)=(0:0:---:0:1).

Proof. Let h = hi denote the class number of K. Let
O P — PV

(with N := (":h) — 1) be the h-fold Veronese embedding of P/, —in ]P’/J\(’gk (see for
example [Sha74, §1.4.4.2]), i.e., the embedding defined by the rule

On,h
(33171727 e "Tn"rl) — (:ul('l:lv s axn+1) s ,MN(CCl, s 7'1:7L+1))7

where the entries of the vector on the right, ux(z1,...,2Zn41), run through the N + 1
monomials of degree h in the variables z1,xs2,...,Zx11.

For any K-valued point a € P™(K) represented by the n + 1-vector (a1,asg,...ant1)
the Og-fractional ideal generated by the entries px(ai,...,an4+1) of the vector v, p(a)
is the h-th power of the fractional ideal generated by the entries of «.. So this (fractional)
ideal is principal. By scaling our homogeneous coordinates by dividing each entry by the
inverse of a generator of that principal ideal we get assertion (1) of the proposition.

For part (2) of the proposition, let the image of the section s (i.e., v, 1(s) € PY(Of))
be represented by the point 7 := (71,72,...,7n+1) € AffNH(OK) where the entries
generate the unit ideal. Let W := Aff¥ T (Ok) and let T := 7Ok C W be the cyclic
Ox-module generated by 7. Then Wy := W/T is a torsion-free O-module, and hence
projective, so the exact sequence

0O0—T —W —Wy—0

splits. Therefore W = W, & T, and by the classification theorem for projective modules
(of finite rank) over Dedekind domains (see for example [FT93, Theorem I1.4.13]), since



22 B. Mazur et al. / Journal of Number Theory 254 (2024) 1-64

W and T are free over O, so is Wy. It follows that we can find an Og-basis of W
where the first N elements of that basis generate Wy. That is, there is an Og-linear
change of coordinates of Aff¥ ! so that after that change AFY™! is given by coordi-
nates (z1,22,...,2N,2N+1) Where AFY s cut out by zy+1 = 0 and the element 7 has
coordinates (0,0,...,0,1). O

Corollary 7.9. Let G be a group scheme over S = Spec(Ok) satisfying Assumption 7./.
There is a well-arranged injective S-morphism G < Pn (for some positive number n).
For any rational point, P : S — G, its image, A(P) := tP(S) € P™, when written in
homogeneous coordinates A(P) = (A1(P), ..., \nt1(P)) has the property that the entries
Ai(P) fori=1,2,...,n generate a principal ideal in Ok —equivalently: one can arrange
the homogeneous coordinates of A(P) by appropriate scalar multiplication so that the
entries generate the unit ideal.

8. The open piece in G

From now on, we will fix a quasi-projective group scheme G over S = Spec(Ok) as
in Assumption 7.4 such that its conformal bundle module N is free over Ok (using
Lemma 6.1) and with a fixed well-arranged injective S-morphism G < pn (this being
guaranteed to exist by Corollary 7.9).

Recall its Zariski-closure G C G <» P™ as defined in 7.5. Letting H C P™ be the
hyperplane described in §7 above, i.e., cut out by #,4+1 = 0. Let B := GNH C G denote
the divisor in G at infinity.

Definition 8.1. Let Gy C G be the Zariski-dense open (Og-scheme) defined by the carte-
sian diagram:

— > Go:= GNA" — = G\ B G

k]

Aff" = - P"\H——>Pr

The Ok-scheme Gy is an affine scheme, immersed as a closed subscheme of Aff”, and
contains an open subscheme of the zero-section e in G.
The injection

Go <> Afi"
is induced by the (surjective) ring homomorphism
t: Oklxy, @, ..., 2] — Oklx1, @0, ..., 20]/(t1,t2, . )

where
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ti(z1,29,...,2n) €I C Oklz1,29,...,2,]; for j=1,2,....m

are the polynomials (all with ‘no constant term’) that cut out the affine subscheme Gy
in Aff"™. (Recall that I is the ideal generated by the x;.)
Passing to quotients by I? we have:

t: Oglxy, @2, .., %) Oxlx1, @2, ..., xn]/(t1,t2, ... tm)

| |

2] OK[.rl,JZQ, e ,xn]/IQ —_— OK[J,‘l,J,‘Q, e ,a:n]/(tl,t2, . ,tm,lz)
these being the ring homomorphisms inducing the morphisms of affine schemes:

Aff" < G,

] ]

Aftfy <— Go o) = Gay.

Lemma 8.3. After an appropriate Oy -linear automorphism of the group scheme Aff™ we
may rewrite the surjective ring homomorphism of (8.2)

2] * OK[1‘171'27...,£L'7L]/I2 — OK[J,'l,LUQ,...,l‘n]/(tl,tg,...7tm,l2) (84)

that induces the group scheme morphism Gy < Afffé] as the projection

v : Oklxr, oo, .. w0/ (21,22, . . v 2n)? = Oklzy, 2o, ..., 24]/ (21,20, . .., 2q)*

where d is the dimension of the group scheme Gk, and the mapping t[o is given by:

o x;—=>x;ifi <d, and
e ;= 0ifd<i<n.

Proof. This uses the fact that the group scheme G is smooth, its conormal bundle module
Ng is free over O, and the injection G — P" is well-arranged. To be explicit, consider
the ideal J := (t1,t2,...,tm, %), so we may rewrite (8.4) above as

tg) : Olr1, w2, .. xn] /TP = Oklz1, T, ... 20/,

and we can find n — d generators for the free Og-module J/I?. Letting {t;; j =
1,2,...,n —d} C J be lifts of those generators, the ideal J := (t1,t2,...,tn_a, 1)
as positioned in the sequence of ideals

12 = (l’l,l’g,...,$n)2 cJ= (t17t27"'atn—d7[2) clI= (-rla'rQa"'a-Tn) C OK
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has the property that J/I? is a free Ox-module with n — d generators
{t;; 7=1,2,...,n—d}

and is—as (free) Og-submodule of the free Ox-module I/I?—a direct summand. That
is, there is a free O-submodule & C I/I? such that:

r*=Jj/jieu.

It follows that after a linear change of variables (over Ok ) we can arrange it so that
ti=xq.; mod I*fori=1,2,....,.n—d. O

Corollary 8.5. Keeping to the above notation, and the terminology of §6 we have:

(1) Rg = Ox[x1,22,...,24)/ (21,72, ..., 24)%,
d

(2) Ng = @:EKDK where T; is the image of x; in Ok [x1, %o, ..., 24]/(T1,22,...,74)2,
i=1

d
(3) N¢& = @f{@;{ where T : Ng — Ok is the ring homomorphism sending Z; to

=1
1€ Ok and z; to 0 if j # 1.
9. Vanishing and congruence ideals

Recall that we have fixed a group scheme G satisfying Assumption 7.4 above. Denote
by e : S — G its identity-section. To say that G is quasi-projective means the structure
morphism G — S is a quasi-projective morphism (see [Gro61, Definition 5.3.1]) hence is
of finite type, and since S is an affine noetherian scheme, G — S is a morphism of finite
presentation. Let P be an Og-point of G.

Definition 9.1. By the vanishing ideal of P we mean the ideal zp C Og defining the
intersection of the S-section P with the identity section.

By the congruence ideal of P we mean the ideal cp C Ok defining the intersection of
the S-section P with the subscheme Gp) C G.

That is, the ideals zp and cp are the ideals that fit into diagram (9.2) below where
the rectangles are cartesian.

Spec(Ok /zp)—— Spec(Ok /cp) —

n<~—
-
53
Q<—-0
~
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Lemma 9.3.

(1) The ideal cp is the square of the ideal zp.

(2) For P = e, the identity section, we have that z. and c. are equal to (0). If P # e
then zp and cp are nonzero ideals.

(3) Let Q, P be Ok -valued points of G. Then (writing the group law of G multiplicatively)
zqg.p is contained in the ideal (2q,zp) generated by zg and zp.

Proof. (1) Recalling that the identity section S <> G is the subscheme cut out by the
sheaf of ideals Z C Og, and G|y <% @G is the subscheme cut out by the square of
that sheaf of ideals 72 C Og, cartesian-ness of (9.2) then implies that ideal cp is the
square of the ideal zp.

(2) The cartesian square

Spec(Ox /7e) —

S
i P=e

gives us that Spec(Ok/z.) = S; so z. = (0), and hence ¢, = 22 = (0) as well.
(3) Briefly: note that P and @ restricted to the base Spec(Ok /(zp, 2g)) are both equal
to the identity section (over that base), so their product is as well. O

e

S

Lemma 9.4. For v € N, let Q = P¥. Then zg C zp.
Proof. Induction on v, using Lemma 9.3(3). O
10. Coordinates of rational points

Assume now that we have arranged coordinates as in Lemma 8.3 and Corollaries 8.5
and 7.9. The Og-rational point P of G and its image ¢(P) € P" fit into a diagram

S = Spec(Ok) . a a—
> tz]

Spec(Ox /cp) Gy Affpy

Spec(Ok /zp) e = %

and the image ((P) := ¢P(S) € P™ has homogeneous coordinates
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AP) = (M(P) : Aa(P) : - : Ap(P) : A1 (P)) € A" (Ok)
where the elements
{IM(P), X2(P), ..., M (P), \ps1(P)} € Ok

generate the unit ideal. In particular, the ideal generated by {A\i(P),...,\,(P)} and
the principal ideal generated by A, 4+1(P) are relatively prime ideals in Ok. Also, using
Lemma 8.3 and Corollary 8.5 we may assume that A\;(P) =0 for d < j < n.

Proposition 10.1. The vanishing ideal zp s the ideal generated by
{M(P), ..., 2 (P)}.
Proof. This follows directly from the definitions. O
If
a:=(A1: A Ay Apg1) € O%‘H

are homogeneous coordinates for the point P with properties described above, then
letting §(P) := An41 (i-e., the denominator), with notation defined in (7.2) above we
may write:

M(P) Xa(P) AP
o(P) " o(P) " 8(P)

)€ Oxlz5))"

a' = (

Write the morphism Py : Spec(Ok /cp) — Gz) as a homomorphism of the underlying
affine rings,

Py : Ok @& Ng = Rg — Ok/cp. (10.2)

Consider the Og-dual of the locally free Ox-module Ng
N* = N& = Homo,, (Ng, Ok) (10.3)
Definition 10.4. If P is an S-section of G, g let 9P € N*®0,. (O /cp) denote the element
(in N*®o, (Ok/cp) = N* @0, (Ok/7%)) determined by the Ox-homomorphism Py

restricted to Mg in (10.2).

Using the quotation marks below to indicate passing to the quotient

we get
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| “<)‘1(P) >‘2(P) )‘d(P)
27 \5(p) a(p) T 8(P)

,0,0,. ..0) 7€ (O /25)",
and using Lemma 8.3 and (8.4), we get that coordinates for OP are given by:

o« )\1(P) )‘Z(P) A (P)
or= (6<P>’6<P>""’ 5(P)

)” € 2p(NE B0y Ok /22) C (N Boy Ok /23).
(10.5)

Definition 10.6. If R is a commutative ring, and W is a free R-module of finite rank, an
element w € W is called a basis element if any of the following equivalent properties
hold:

o W/(Rw) is a free R-module;
e w is a member of a basis of the free R-module W;
o if I is any nonunit ideal of R then w ¢ IW.

Lemma 10.7. Let P be a section of G that is not the identity section, so zp # 0. Suppose,
as well, that zp is not the unit ideal. Let

Wp = N* Qo, (2p/25) CN* @0, (Ok/2%).
Then

(1) 8P =0 (mod N* ®o, zp), so P € Wp,
(2) the Ok /zp module Wp is free over Ok /zp,
(3) OP is a basis element of Wp.

Proof. Assertions (1) and (3) follow directly from the definition of vanishing ideal, while
assertion (2) follows from the fact that A* is locally free over Og. O

Remark 10.8. With notation as in Lemma 10.7, if P, Q) are S-sections with property that
zg C zp we have the natural Og-module homomorphism

L
Wo —=2s Wp.

Proposition 10.9. 9(P - Q) = 9(P) + 9(Q) (mod (cg, cp)).
Proof. The mapping (P - Q) : Rag — Ok is given by the composition of the maps
Re 2 Roxo,. ¢ — Ok

where ¢ restricted to Ng @0, 1 is Py ®0y 1, and ¢ restricted to 1®0,, N is1®o, Q-
The result follows from Proposition 6.4. O
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Corollary 10.10. Let Q = PY. Then
0Q =v-0P € Wp.

Proof. This follows from Lemmas 9.3(1) and 9.4 and Proposition 10.9. 0O
Part 3. Proof of the main theorems

We will keep to the convention that a field of algebraic numbers that is allowed to
have infinite degree over Q will be put in boldface, e.g., L, K, but if it is assumed to be
a number field, i.e., a field of finite degree over Q, it will be in normal type, e.g., L, K.
11. Capturing subrings by congruences
Lemma 11.1. Let L/K be an extension of number fields, O /O their corresponding
rings of integers, and let M /K be the Galois closure of L/K. Let o € Op, and b € Ok.

Suppose there exists an ideal I C O with the following properties:

|NM/Q(I(9M)| > |NM/Q(a — pB)| for every conjugate B of o over K, (11.2)
a=b (mod IOy). (11.3)

Then o € Ok.

Proof. Since I C Ok, it follows from (11.3) that every conjugate S of « satisfies 8 = b
(mod IOyr). Therefore o — =0 (mod 10j;). Consequently,

N —=B8) =0 (mod Nay(IOwn))
in Z. Thus, either o = § or
Ny (a— B)| > [Naro(IOwm)|

which contradicts (11.2). O

Norm inequalities. While it is clear that a congruence like (11.3) can be rewritten as a
divisibility condition in the ring of integers assuming we are given generators of the ideal
1, it is not a priori clear how to convert (11.2) into a polynomial equation with variables
ranging over that ring. The propositions below explain how it can be done.

Definition 11.4. For m a positive integer let C(m) denote (m + 1)? times the smallest
positive integer greater than the maximum absolute value of any minor of the matrix
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0 0
1 1
mm™ mm! 1

29

(11.5)

Proposition 11.6. Let M/Q be a Galois number field extension of degree m. Suppose

a € Oy and define

u=u(m,a):=C(m) -a(l —a) - (m—a).

(11.7)

Then for every conjugate 3 of a over Q and every ideal I of Oy contained in um’ Or,

we have

INarjo(a = B)| < INayo(Owm)|

Proof. Let g(T) be the characteristic polynomial of o over Q as an element of M. Let

g(T)=T™ + ap_ 1T + ...+ ag with a; € Z. For every r € Z we have

Na(r —a) = g(r).

Put C := C(m). By definition of u, if 1 <r < m, then

u
r—oa= - .
CHZL#T(Z — )
Put
m
Wy = H (i —a)
i=1,ir

Then from (11.8) and (11.9) it follows that

1
P a1 r™ 4+ ag )NM/Q(U) = ¢ Ny/q(u),

- CmNM/Q (w,

where |¢;| < &. Now consider the following linear system

0 0 o1 1 C()N]\/[/Q (U)
1 1 o1 am-1 | _ ClNM/Q(U)
m™ mm! 1 ao cmN/o(u)

Using Cramer’s rule we obtain that a; = %, where

(11.8)

(11.9)
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CoNM/Q (u) 1
Di: 1 1 clNM/Q(u) 1 ’
(m)m (m)m_l - cmNM/Q(u) |
with the column (¢, Ny /q(u)),r = 0,...,m replacing the i-th column of the matrix

(11.5) and D is the discriminant of (11.5). Factoring out N;/q(u) and expanding along
the i-th column we obtain the following:

0 ... Co ..

D; 1 1 N T | i -
Dy = +e M| < |er| | M1,
‘NM/Q(U) TZ:;) ;

mm mm—l N 1

where M, ; is the minor of (11.5) corresponding to the elimination of the r-th row and
the i-th column. By assumption

C

Mri<47
[ M i (m+1)2

and by construction |c,| < Cim Thus, for all ¢ = 0,...,m, we have that
|Dl| <

1
CE e INar/q(w)]-

Finally, taking into account that |D| > 1, we conclude that

1
lai| < |D;i| < WWM/Q(UH-
Suppose now that some root v of g is greater in absolute value than |ma,| for all r =
0,...,m —1. Let |amax| = maxo<i<m—1 |a;|. In this case we have that
m—1
W =] = amy™ = =gl < Z |ary"| < [mamay™ 1 < Y™,
r=0

and we have a contradiction. Thus, every root v of g satisfies
1 1
7] < WH\IM/Q(UH < §|NM/Q(U)|a
and for any two roots v and § of g we have that

v =0 < [Naryo(u)|

(we may assume m > 1 or there is nothing to prove). Now
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INajgla—B)| < Nayg)™™ V| < |Ny/(IO0y)|. O

Lemma 11.10. Let M be a finite Galois totally real extension of Q, and put m := [M : Q].
Further, let x € Opp be such that |o(z)| > 1 for every embedding o : M — R. Then for
every v € Gal(M/Q) we have

INarjo(@ —7(2))] < 2"Nayg(?).
Proof. Let 0,7 : M — R be embeddings. Since |o(z)|, |7(x)| > 1 we have that
|o(z) = 7(2)] < 2|o(z)7(z)],
S0

Najgle —y(2) =[] lo(@) = (0 07)()]

<[[2lo@) (@)@ =2"[]lo(@)] = 2"Naja(@®). ©

Corollary 11.11. Let a be an algebraic integer contained in some totally real Galois ex-
tension M/Q and such that o(a) > 1 for every embedding o : M — R. Let I be an ideal
of M such that I C (2 +1)20yy.

Then for any conjugate B of o over Q we have that |Ny/q(a— )| < |Nayo(IOn)|.

Proof. Let v:=2a+ 1 and m := [M : Q]. For every embedding o : M — R we have
2 < 20(a) < o(v),
and therefore
2™ < 2™Njyg(a) < Nayyg(v).
By Lemma 11.10, we now have
INaj(e = 8)| < 2"Nayg(a®) < Nayg(v?) < Nayo(l). O

The basic congruence relation for extensions of finite degree and totally real fields. Fix
L/K an extension of number fields and let m denote the degree of M, the Galois closure

of L/Q.
For a positive integer m and an algebraic integer a € Op, define

D(m,a) := u(m,a)m2 =(Ca(l-—a)---(m— a))m2 € Or,

where C'= C(m) is as in Definition 11.4 and u(m, «) is as in Definition 11.7.



32 B. Mazur et al. / Journal of Number Theory 254 (2024) 1-64

Putting together Lemma 11.1, Proposition 11.6 and Corollary 11.11 we immediately
obtain these corollaries.

Corollary 11.12. Let E C Oy, be the set of all elements a € Oy, such that there exists
be Ok and an ideal I C Ok satisfying

10, € D(m,a)Or, a=b (mod I0}).
Then FE C Ok.

Corollary 11.13. Let L be a totally real extension of Q, possibly infinite. Let K C L be
a number field. Let E C O, be the set of all elements a € O such that there exists
be Ok, an ideal I C O, and uy,usz,u3,us € O, satisfying

IOL C 20+ 120, a=1+ui+...+uj, a=b (modIOL).
Then E C Ok.

Remark 11.14. The equations for the totally real case are the same across all pairs of
totally real fields K and L, including the case where one or both extensions are infinite.
We will show that the same is true in the case of a quadratic extension of a totally real
field.

12. Quadratic extensions of totally real fields

We treat separately quadratic extensions of totally real fields because if the totally
real field is of infinite degree over Q, this case is technically much more complicated than
the case of finite extensions or the case of totally real fields. The main reason for the
complications is the difficulty with bounds on norms.

Norm inequalities for quadratic extensions of totally real fields. The construction of
diophantine bounds on norms of elements of a non-totally real quadratic extension of
a totally real field of infinite degree over Q is not as simple as the analogous construc-
tions in the case of extensions of finite degree over Q or totally real fields of arbitrary
degree. We construct a diophantine definition of these bounds in several steps starting
with Lemma 12.1 below and continuing with Lemma 12.5, Corollaries 12.6, 12.13, 12.15
and 12.16. Unlike diophantine definitions of bounds in the other two cases, in the case
of non-totally real quadratic extensions of totally real fields of infinite degree over Q, we
will need to use diophantine stability of a commutative group scheme in the extension
F/L, where L is a totally real field possibly of infinite degree over Q and F is a non-
totally real quadratic extension of L. The group scheme, a twist of G,,, is constructed
in §12.
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Proposition 12.1. Let L be a possibly infinite totally real extension of Q and let F be a
quadratic extension of L. Let 6 € Op, 62 =d € O, F = L(J). Let x = yo + 116 € Op
with yo,y1 € L, and let w € L be such that

for all embeddings o : F — R we have that 1 < o(x) < o(w), (12.2)
for all embeddings 7 : F — C with 7(F) ¢ R we have that |7(w)] > 1. (12.3)

Let L C L be a number field containing d,yo,y1 and w. Let F' = L(8). Then
INr/@(y1)| < [Np/g(zw)|.

Remark 12.4. Recall that the inequality involving o can be converted to an equation by
Proposition 4.9.

Proof. If 7 is a non-real embedding of F, then |7(y;6)| < |7(x)]. If o is a real embedding

|
of F, then let & be an embedding of F' such that o, = 6| but & # o. In other words,
if o(x) =o0(yo) + 0(6)o(y1), then 6(z) = o(yo) — 0(6)o(y1). Then either

()] = lo(yo)| + [o(6y1)];

or

6 ()| = lo(yo)| + [o(dy1)l-

So, either |6(z)| > |6(0y1)| or |o(x)| > |o(dy1)|. Since o(w) = 6(w), for all real em-
beddings o of F' we have that |o(w)| > |o(dy1)|. Let ¥ be the collection of all real
embeddings of F', and let T be the collection of all embeddings of F' that are not real.
Now we have the following inequalities:

INpeid) = ] 176yl I o6yl

TeT cED

< T 17@)I ] lowa)
TeT oED

< [T Ir@I IT lo@) IT lr@)I TT loW)] = Ngjg(aw)l. ©
TeT oEX TET oEX

For Proposition 12.1 to be useful we need to be provided with an existentially defined
bound “w” that satisfies (12.2) and (12.3). This is Corollary 12.6 below. In preparation,
we have:

Lemma 12.5. Let K be a totally real number field. Let ¥ = {o1,...,0,} be the collection
of all embeddings of K into R. Let Q) C K be an infinite set. Then for any integer N > 0
there exists u # v € Q such that for all o € ¥ we have that
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()

Proof. As an infinite subset of R, for each embedding o of K into R, the set o(Q) is
either unbounded or it has a limit point and therefore contains a non-constant Cauchy

> N.

<ﬁ+n>

sequence. Assume without loss of generality that o(Q2) contains a Cauchy sequence
{o1(u;)} such that all elements of the sequence are distinct. If {|oa(u;)|} is unbounded,
then select a subsequence {u; 2} such that {|o2(u;2)|} = oo. If {o3(u;2)} is bounded,
then let {u; 3} be a subsequence of {u; 2} such that {os(u;2)} is a Cauchy sequence.
Continuing by induction we construct a sequence {u; ,} such that for all o € ¥ we have
that {o(u;n)} is either a Cauchy sequence or is going to infinity. Now let N > 0 be
given. Choose j € Z~ such that for all ¢ € ¥ and all £ > j either |o(us,)| > N or
lo (W) — uen)| < % We claim that for all o € X, ¢ > j it is the case that

1 2
o <[<—) +1
Ujn — WUen

Indeed, for each o € ¥ we have that either |o(u; )| > N or

1
o (7” >N
Ujn — Ul n

while the o-images of both factors are always bigger than 1. 0O

> N.

<ﬁm+m>

Corollary 12.6. Let L C F be as in Proposition 12.1. Let Q) C L contain infinitely many
elements of some number field K C L. Then for any x € Og there exist u,v € {0 such

that
2
w = l( 1 >+1
uU—v

(u? +1)

satisfies (12.2) and (12.3).

A special case of stability for quadratic extensions of totally real fields. As we have
mentioned above, to construct diophantine bounds on norms of elements of non-totally
real extensions of degree 2 of totally real fields, we will need to use a particular case
of diophantine stability. We discuss this case in this section. More specifically, we con-
sider diophantine stability of multiplicative groups over rings of integers in quadratic
extensions F /L, where L is a totally real possibly infinite algebraic extension of Q.

J. Denef and L. Lipshitz were the first to use this phenomenon for the purposes
of existential definability over finite extensions (see [DL78]). The third author used it
over infinite extensions in conjunction with diophantine stability of elliptic curves (see
[Sh109]).
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Here we present a different proof of these results using the vocabulary of diophantine
stability. Our goal is to show that this case is of the same nature as other instances of
diophantine stability already discussed in this paper. We begin by considering number
fields and then move to infinite extensions.

The case of finite extensions. Suppose M /L is a quadratic extension of fields. We denote
by G /Y the twist of the multiplicative group G,, over L by the quadratic character
corresponding to M/L, as defined for example in [MRS07]. If F/L is a field extension
and FN M = L, then

G/ (Op) ={z € Ofyp : Nypypr = 1}, (12.7)

G/ (OL) = {x € OF : Nype =1}, (12.8)

Lemma 12.9. Suppose L is a totally real number field, and F is a quadratic extension
of L. Suppose M/L is a quadratic extension such that for every infinite place v of L, v
ramifies in M /L if and only if v does not ramify in F/L. Then

(1) [GME(0p) : GME(0L)] is finite,
(2) if F is not totally real, then G%/L(OL) has elements of infinite order,
(3) if n is an integer, n > 3, then ker{G%]/L(OF) — G%/L(OF/nOF)} C G%/L(OL).

Proof. Consider the diagram of fields in the hypothesis of the lemma.

MF
N,

Let V be the set of archimedean places of L (all real, by hypothesis). Write V = VUV,
where Vg C V is the subset consisting of the places that do not ramify in F'/L and Vs
is the subset consisting of the places that do not ramify in M/K. So

[L:Q] = V] = VF| + [Vl

We have that rp := 2 - |[Vp| is the number of real places of F' and rp; := 2 - |Viy| is the
number of real places of M. Letting sp, sj); denote the number of complex places of F
and M respectively, we have: sp = |Vi| and sp; = |Vp|. As for M F/L we have that M F
is totally complex and every archimedean place of L lifts to two complex places of M F'.
Letting ux denote the rank of the group of units of a field K, we have, by Dirichlet’s
Unit Theorem:
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'U,L:‘V|—1, uM:2|VM|+\VF|—1,

uF:2\VF|+\VM|71, 'U,MF:2|V|71

so that

upmp —up = |Vp| = upm —ur.
Let G denote the group GJ\mM L The above combined with (12.7), shows that

rankz G(Op) = unp — up = [V,

rankz G(OL) = upy — ur = |Varl, (12.10)

so that rankz G(Op) = rankz G(Or). This proves (1).

Equation (12.10) shows that rankz G(OL) > 0 unless [V)y| = 0, i.e., unless F is totally
real. This proves (2).

Suppose now that = € ker{G(Op) — G(Op/nOF)}. Using (12.7) we can view z €
Ofy such that 2 = 1 (mod n). By (1), there is a positive integer k such that 2% € O,. If
o is the nontrivial automorphism of M F/M, then (z/27)F = 1, so /27 is a root of unity.
But /27 =1 (mod n), so we have /27 = 1,i.e., x € M. Since Ny 2 = Nyp/px = 1,
we have x € G(Or) by (12.7). This proves (3). O

Lemma 12.11. Suppose L is a totally real number field, and F is a quadratic extension
of L. Then there is a quadratic extension M /L such that for every infinite place v of L,
v ramifies in M /L if and only if v does not ramify in F/L.

Proof. Choose d € L such that F = L(v/d) and let M = L(v/—d). Then for every infinite
place v of L, —« is negative at v if and only if « is positive at v, so v ramifies in M /L
if and only if v doesn’t ramify in F//L. O

The case of quadratic extensions of totally real fields L of infinite degree. Let L be a
totally real algebraic extension of Q. Let F and M be quadratic extensions of L such that
for every embedding o of MF into Q we have that o(F) C R if and only if o(M) ¢ R.
Let F = L(J) where 62 = d € O, and let M = L(8) where 82 = —d € Op. We let
G = Gl\m/I/L as above.

Lemma 12.12. if n is an integer, n > 3, then ker{G(Or) = G(Or/nOr)} C G(OL).

Proof. Suppose z € ker{G(Or) — G(Or/nOr)}. Let L be a number field contained
in L such that d € L and z € G(Op)). Let F = L(6) and M = L(B). Then
z € ker{G(Or) = G(Op/nOr)} C GM/*(OL) by Lemma 12.9(3). By (12.8) we have
GM/E(0) c GNM(OL), so z € G(OL). O
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Corollary 12.13. Let L be a totally real algebraic extension of Q. Let F be a quadratic
extension of L and assume that F is not totally real. Then there exists a commutative
group scheme G defined over Oy, such that

(1) G(OL) contains an element of infinite order,

(2) for every integer n > 3, ker{G(Or) — G(Op/nOr)} C G(O1).

Proof. By Lemmas 12.9(2) and 12.12, the commutative group scheme G := GM/L has

these properties. O

Remark 12.14. In the language of Definition 13.5 below, Corollary 12.13(2) says that if
n > 3 then (1,n0r,) is an exponent of diophantine stability for G relative to F /L.

There is another consequence of diophantine stability we will use later to produce
bounds for elements of F.

Corollary 12.15. Let F/L be as in Corollary 12.13. Then there exists a set B C Op X
(Or \ {0}) satisfying the following conditions.

(1) B is diophantine over Op.

(2) If (a,b) € B, then a/b € L.
(8) For some number field L C L, the set {a/b: (a,b) € B and a/b € L} is infinite.

Proof. Let G be a group scheme satisfying the conclusions of Corollary 12.13. Let G —
P™ be a well-arranged embedding (see Definition 7.7)

P~ (ml(P) cag(P) - xn+1(P)).
Let A be the set of all (n+1)-tuples in Op X - - - x Op that are homogeneous coordinates

of some point P € ker{G(Or) — G(Or/nOr)}. Then A is diophantine over Op. It
follows that the set

B:= {(yzayj)()gzv] §n+1ayj #Oa(yh"'ynvq) GA}

is diophantine over O as well. By Corollary 12.13(2), if (a,b) € B then a/b € L.

By Corollary 12.13 we can fix a point P of infinite order in G(Oy,). For some positive
k we have P* € ker{G(Op) — G(Op/nOx)}. Then P* € G(O1) for some number field
L C L, and for every integer m we have

P € ker{G(Of) — G(Or /nOF)} N G(OL),

and it follows that the set in assertion (3) of the corollary is infinite. O
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Combining bound equations and basic congruence equations in the case of non-totally
real quadratic extensions of totally real fields. In the following corollary we combine
Proposition 12.1, Lemma 12.5, Corollaries 12.6 and 12.15 to finish our construction of
norm bounds. We remind the reader that inequalities for real embeddings are imple-
mented using sums of squares, pairs in B come from a totally real field, and the role of
u and v is explained in Corollary 12.6.

Corollary 12.16. Let F be a quadratic extension of a totally real field L. Let B be as in
Corollary 12.15. Let o € Op. Let § € Op be such that F = L(8) and 6% :=d € Oy,. Let
H C L be a number field such that d € H, a« € H(5) and let & be the conjugate of «
over H. Let Y be the set of all real embeddings of the field F. Consider now the following
equations and conditions:

(a,b),(c,d) € B,
u=a/bv=c/d,bd#0
X3 #0

1 2
X1:X2[< ) +1
u—v

Vo € 3 |o(Xa)| < |o(Xza)| < |o(X1)].

(u*+1)

If this system of equations and conditions is satisfied over Og, then

IN#(5,u,0)/@(@ = &) < [Np(s,u.0)/0((2X10)|.
Conversely, for any o € O, this system can be satisfied.

Proof. First, assume the equations and the conditions in the statement of the corollary
are satisfied. Then by construction of B we have that u,v € L. Let W = % € L and
observe that for any embedding p : F — C we have that u(W) > 1. Further, for every
o € ¥ we have that 1 < |o(a)| < o(W). If we let a = yo + dy1 and & = yo — y19, then

|NH(6,u,v)/Q(d —a)|= |NH(6,u,1))/Q(25y1)‘ < |NH(5,u7v)/Q(2aW)|
< INu (50 /@ (20X0)]

where the penultimate inequality is true by Proposition 12.1.

Suppose now that a € Op, then by construction of B, Corollary 12.15 and Corol-
lary 12.6 we can find (a,b) and (¢, d) in B to satisfy the equations and conditions of the
corollary. O

Finally, we combine the bounds in Corollary 12.16 with the basic congruence condition
(Lemma 11.1) for the case of a non-totally real quadratic extension.
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Corollary 12.17. Let L be a totally real field. Let F be a quadratic extension of L. Let K
be a number field contained in F. Let X be the set of all embeddings of F into R. Let T
be the set of all non-real embeddings of F into C.

Let E C Op be the set of elements a € O such that there exist elements X, €
Or,0 # Xy € O with % e L, be Ok, and I an ideal of Ok satisfying the following
conditions:

Vo ecX: 1<cr(a)<a<Xl>,

X
VTGT:T(Y;)>1,

IO C 2X100F
a=b (mod IOF).

Then E C O . (Here we again remind the reader that for real embeddings we can convert
inequalities to equations via Proposition 4.9.)

13. Rational points

Let G be a group scheme satisfying Assumption 7.4 above.

Definition 13.1. Let

SL

be an S-section of G. We allow ourselves a number of synonyms for this notion. If the

n=<—Q

ring Ok rather than the corresponding scheme S is more prominent in the surrounding

” or an “Og-rational point.”

discussion, we may also call an S-section an “Og-section,
In the case, for example, when the group scheme G := A is the Néron model over
S = Spec(Ok) of an abelian variety Ak, the S-sections of G—alias Og-sections of
A—are in one-one correspondence with the K-rational points of the abelian variety A

over K to which these sections restrict.

Definition 13.2. Set M := G(S). The letter “M” is for Mordell-Weil group, a label we
use even if G is any of the group schemes that we work with—i.e., as in Assumption 7.4;
we may also denote M as G(Ok).

Definition 13.3. For any algebraic extension L of Q and any nonempty subset I C Of,
different from {0} let
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M[’L(G) = ker{G((’)L) — G(OL/IOL)}
where IO}, denotes the (nonzero) ideal of Oy, generated by I. If r € Z~( define
MIT,L = {IL'T T e M],L}.

That is, we have a surjection

r-th power

My g,

)

M;,L C MI,L-
Lemma 13.4. The group My, = M 1(G) is a subgroup of M = G(OL) of finite indez.

Proof. Since IOy, is a nonzero ideal, O, /IOy, is a finite ring, so G(Spec(Or/IO)) is a
finite group. O

Definition 13.5. Say that a pair (r,I) consisting of a positive integer r together with a
nonzero ideal I C Ok is an exponent of diophantine stability for G relative to a field
extension L/K if the subgroup M} ; (G) C G(Op) is contained in G(Ok):

{z":z e M; 1} C G(Ok).

Example 13.6. Property (3) of Lemma 12.9 says that, in the notation of that lemma, if
n > 3 then the pair (1,nOf) is an exponent of diophantine stability for Gf\,{/ L relative
to F/L.

Remark 13.7. If the subgroup G(Ok) is of finite index m in G(OL) then (m,OL) is an
exponent of diophantine stability for G relative to L/ K. If G, = A is an abelian variety,
then there exists an exponent of diophantine stability for G relative to L/K if and only
if A is rank stable for the field extension L/K.

Lemma 13.8. Suppose A is an abelian variety over K, rank stable for the extension L/K.
Then there is a positive integer n such that (1,nOk) is an exponent of diophantine
stability for A relative to L/K.

Proof. Let L’ denote the Galois closure of L over K. Let p,q be primes of L’ where A
has good reduction, and with distinct residue characteristics p, g, respectively. By [ST68,
Lemma 2], reduction modulo p is injective on prime-to-p torsion, and reduction modulo g
is injective on prime-to-¢ torsion. Hence the only torsion in M, 1 is p-power torsion, and
the only torsion in M, 1/ is g-power torsion. Thus, setting n = pg, the torsion subgroup
of M, 1 is zero.

Now suppose P € M, 1. Since A is rank stable for L/K, there is a positive integer ¢
such that tP € A(K). If 0 € Gal(Q/K), then t(¢P — P) = o(tP) — tP = 0. Therefore
oP — P is a torsion point in M), 1/, so 0P — P = 0 and we conclude that ¢ P = P. Since
this holds for every o € Gal(Q/K), we have P € A(K). This proves the lemma. O
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Remark 13.9. If (r,I) is an exponent of diophantine stability for G relative to L/ K, we
have the diagram

M;L(H M[’Lg G(OL) .

e

G(Ok)

Lemma 13.10. If G; and Gs are two smooth group schemes over Ok and (r,I) is an
exponent of diophantine stability for both Gy and Gy relative to a field extension L/K,
then (r,I) is an exponent of diophantine stability for G1 X, Ga relative to L/ K.

Lemma 13.11. Suppose that G(Ok) contains a point of infinite order. Then for every
nonzero ideal I C Ok, every v € Zxo, and every L/K, the group My (G) contains a
point of infinite order.

Proof. Let L be a number field contained in L, let P € G(Or) C G(Or) be a point
of infinite order. Let N := |G(Or/(I N Or)O)|. Then N < oo, PN is contained in
Mo, € Mry and PN is contained in MEL. Since P™V has infinite order, this
proves the lemma. O

Lemma 13.12. Let I C Ok be any nonzero ideal, and let P be an S-section of G in My k.
Then zp C I.

Proof. This follows directly from Definition 13.3: if P € M x(G) then the image of P
in G(Og/I) is trivial. O
Proposition 13.13. Let L/ K be a finite extension, with O /O their corresponding rings
of integers. Let m := the degree of the Galois closure M/Q of L over Q. Let C := C(m)
be as in Proposition 11.6.

Fiz o € Oy, and let D(m, ) := (Ca(l —a)...(m —a))™ € OL. Suppose

o 2 C Ok is an ideal such that zOp, C D(«)Oy,
o W is a free Ok /z-module of finite rank.

If either D(m,a) = 0 or if there are elements v,w € W such that w € W is a basis
element and

1Rl=wRa=a(w®l) e Weo, Or (13.14)

then a € Ok .
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Proof. Suppose that «, v, w satisfy (13.14). Let 2z, := 2Oy, Since w is a basis element of
the free O /z-module W, we see that w®1 is a basis element of the free Oy, /zr-module
W ®o, Or.

All of (13.14) ‘takes place’ in the free Oy /zr-submodule of W ®¢,, Or (of rank one)
generated by w ® 1. In particular v € (Og/z)w so we can choose b € Ok such that
v = bw. Then, using (13.14),

wRa=vR1=bw®1l=wxh>H.

Since w®1 is a basis vector, it follows that b = « (mod z1,). The proposition then follows
from Corollary 11.12. O

In the same manner, using Corollaries 11.13 and 12.17, one can prove a totally real
version and a quadratic extension of a totally real field version of Proposition 13.13.

Proposition 13.15. Let L/K be an extension of totally real fields, with Or/Ok their
corresponding rings of integers. Fiz o € Oy, such that a = 1+v} +...+v? with v; € Or,.
Suppose

e 2 C Ok is an ideal such that 20y, C (2a + 1)?Ox,,
o W is a free O /z-module of finite rank.

If there are elements v,w € W such that w € W is a basis element and
1R1l=wRa=aw®l) €W, O

then o € Ok.

Proposition 13.16. Let

L——F

]

K

be a diagram of fields of algebraic numbers where K is an algebraic possibly infinite
extension of Q, L is totally real, and [F : L] = 2. For elements o € Op and X1, X5 € O

with Xo nonzero, putting X = ))g—; suppose that:

(1) X €L,
(2) for every embedding T : F — C, we have 7(X) € R and 7(X) > 1,

(3) for every real embedding 7 : F — R, we have 1 < 7(a) < 7(X) (this inequality can
be rewritten as an equation by Proposition /.9).
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Suppose further that z C Ok is an ideal such that zOp C X1aOp and there is a free
Ok /z-module of finite rank W for which there are elements v,w € W such that w € W
is a basis element and

vl=wa=awel) e W o, OF.
Then a € Ok.

Before stating the corollary below we recall the definition of Wp from Lemma 10.7:
Wp = N* @0, (2p/2p) C N* @0, (Ok/zp)-

Corollary 13.17. Let (r,I) be an exponent of diophantine stability for G relative to L/ K
(resp. L/K, F/K). Let Y denote the set of a € Oy, for which there are points P,Q €
Mipay.n (resp- My, 1yer 1, Mix o x) with P # e such that

0Q =a-9P € Wp ®o, OL( resp. Wp @0y Or, Wp @0, Or). (13.18)

In the totally real case assume o = 1+u? +---+u2. In the case of a quadratic extension
let X, be defined as in Proposition 13.16. Then:

(1) Y C O (resp. Y C Ok).
(2) If G(Ok) (resp. G(Ok)) contains a point of infinite order, then N CY C Ok (resp.
NCY cCOk).

Proof. We consider the case of a number field extension L/K first. If D(m,«) = 0 then
a€{0,1,2,...,m}, so we may suppose that D(m,a) # 0. By the diophantine stability
hypothesis of this corollary we have P,Q € G(Og)—in particular these are K-rational
points.

To connect with the notation of Proposition 13.13 above, let W := Wp and z :=
zp, noting that Wp is a free O /zp-module by Lemma 10.7(2). Take the v and w
of Proposition 13.13 to be, respectively, the images of 0P and 0Q in Wp. Since P €

Mg(m,oz)
us that Y is contained in O, which is (1).

L C Mp(ayr,r we have that zp C D(m,a)IOr. Proposition 13.13 then gives
Now suppose a € N. Find a nontrivial point P &€ Mg(m a)I,L* Note that such a P

exists by Lemma 13.11 since G(Ok) contains a point of infinite order. Let @ := P%*. By
Corollary 10.10 we have

0Q =a-0P € Wp

so a € Y. This proves (2).
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In the case of a totally real extension or quadratic extension of a totally real field, we
note that (2a + 1)? and X; cannot be 0. Next we proceed exactly as above replacing
D(m,a) by (2 + 1)? in the totally real case and replacing D(m,a) by Xial, with n
being an integer greater or equal to 3, in the case of a quadratic extension of a totally
real field. O

The case K = L is of particular interest to us, so we add the following corollary.

Corollary 13.19. Let F,L be as above with F not totally real and let G be the twist of
G, defined at the beginning of Section 12. Let (r,I) = (1,30F). Let Y denote the set of
a € Or for which there are points P,Q € M31X1040F,F with P # e such that

0Q =a-0P € Wp®p, Or.
Here X, is again defined as in Proposition 13.16. Then N C Y C Oy,.
Proof. The corollary follows from Proposition 13.16, Lemmas 12.9 and 12.12. 0O

Remark 13.20. While D(«a) and (2a+ 1)? are obviously polynomial in nature, we remind
the reader that one can see that X7, X5 can be described in a diophantine fashion from
Corollaries 12.15 and 12.16.

Remark 13.21. Whether or not there are any points of infinite order in G(Of), our proof
will show that a given natural number v is in E as long as My, | (resp. Mp,, L) is
not trivial.

14. An existential formulation of Corollaries 13.17 and 13.19

Our aim is to give a formulation of Corollaries 13.17 and 13.19 entirely in the language
of Op. Assume that G is a group scheme over O satisfying Assumption 7.4. Then:

(1) There exists a system of homogeneous equations over O that defines G the Zariski
closure of G in P™ as described in Proposition 7.5 above, so using Lemma 4.6 above,
there is an existential definition of the set of homogeneous coordinates (A1 : Ay : - :
Ant1) € Af"TH(O}) that are representatives of points P € G(Oy).

(2) Hence if, for example, G = A is an abelian scheme, G is an open Op-subscheme in G
defined by a finite set of local congruences (see Remark 7.6) so there is an existential
definition of the set of homogeneous coordinates

(M :Ag:: Agr) € AT (O))

that are representatives of points P € G(Op).
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Given two points P,Q € G(Op) add a further set of variables

{7"1,7"2, ooy T413581,825 -4+, Sn+1}
and the equations (in the rings Op[r1, 79, ..., mh41] and Op[s1, 82, ..., Spi1] TESpec-
tively):
n+1 n+1
gp : Z rz)\z(P) = 1, 5@ : Z Sz)w(Q) =1. (141)
i=1 i=1

This augmented system of equations gives us an existential definition of the sets of
homogeneous coordinates that generate the unit ideal for P and for @, a pair of
points in G(Oy,).

Given an ideal J C Op defined by an explicit finite set of generators J :=
(J1,42,---,7Jt) C O, we have an existential definition of the sets of homogeneous
coordinates that generate the unit ideal for P and for @, a pair of points in M 1,
since the subgroup M, C G(Or) is defined by explicit congruence conditions.
Since the r-th power mapping

G r-th power G c G
is defined by a system of equations over O, it then follows that M7 ; has an exis-
tential definition in terms of M 1.
Note that if (r, I) is an exponent of diophantine stability for L/ K thenif P € M} C
G(Ok) is such that set of homogeneous coordinates
{Ai(P):1<i<n+1} C O
generates the unit ideal in Oy, then there exists a unit u € Of such that

{uri(P):1<i<n+1}C O C Oy.

A consequence of this discussion is:

Corollary 14.2. Assume given:

a group scheme G satisfying Assumption 7.4,

a well-arranged embedding v : G — P™,

a finite extension L/ K,

an exponent (r,I) of diophantine stability for L/K, and
a set of generators ji,jo2,...,j+ € O of I.
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Then there is a finite system of polynomials
¢i € OK[X17X27~"7Xn+l;Y175/27"-;Ym;ZI;Z27---aZt]7 1<:< k>

where we call

o X1,Xo,..., X, 41 the fundamental variables,
o Y1,Y5,...,Y,, the auxiliary variables (to take care of items (1)-(6) above),
o 71,Zs,...,Z the congruence variables,

with the following property. Set the congruence variables Z1, Zs, ..., Z; to the given ele-
ments ji,j2,- .., ji € Ok to obtain a system ¥y := {¢r1,...,%1k} defined by

Vri( X1, Xoy oo, Xn413 Y1, Y2, ..., Y0)
= Q/)’i(XluX27"'7Xn+1;Y17Y27-' '7Ym;j17j27"'7jt)
€ Ok[X1, X0, ..., Xpy13 Y1, Y2, ..., Yol

If
(Xl,XQ,. .. ,Xn+1;Y1,Y2, .. ,Ym) — ()\1,)\2, .. .,)\n+1;lu,1,‘ug,. .. ,/Lm) S Aﬁn+1+m(0L)

is a common zero (in Or) of the system of equations Uy, then there exists a rational
point P € My | such that the first n+1 entries of that common zero, i.e., the values of
the fundamental variables:

(X1, X2,y Xng1) = (A, A2y Angr) € A THO)

represent homogeneous coordinates for 1(P) € Af"T1(Oy) that generate the unit ideal
m OL N

(A, A2, Ang1) = (M(P), A2(P), .o, A1 (P)).
Moreover, every P € My | is so represented.

Now recall Corollary 13.17: Let (r,I) be an exponent of diophantine stability for G
relative to L/K. Let Y denote the set of a € Op, for which there are points P,Q €
M}“D(a)’L with P # e such that

0Q =a-0P € Wp®o, Or.

Assuming that we have chosen representative homogeneous coefficients for P and @ for
which there are solutions in equations (14.1), consider an equation in the form of (13.18):
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0Q =a-0P € Wp®0, O1

which can be written (appealing to (10.5) above):

3(P) - (AM(@),- -, 2a(@) = a-8(Q) - (M(P),..., Aa(P))  (mod 23 - (O)7).

In order to rewrite the equivalence above as a polynomial equation we note that for
any z € Of, we have that € 220, if and only if z = 20 @i Ai(P)A;(P),a;; € O.
As observed earlier, any two sets of coordinates corresponding to P will differ by a unit
and therefore will generate the same ideal.

We now summarize the discussion above in the following three propositions.

Proposition 14.3. Let L/K be a number field extension. Suppose G is a group scheme
over Ok satisfying Assumption 7.4 and G(Or) has a point of infinite order. If there is
an exponent of diophantine stability for L/K, then there exists an existential definition
f(t,z) € Oklt,Z] of Ok in O such that for every t € Ok we have that the equation
f(t,Z) =0 has solutions in O.

Proof. The assertion follows from Corollaries 13.17 and 14.2 combined with Lemma 4.7. O
In the same fashion we can prove the following proposition.

Proposition 14.4. Let L be a totally real algebraic extension of Q, possibly of infinite
degree. Let K be a subfield of L. Suppose G is a group scheme over Ok satisfying
Assumption 7.4 and G(OL) has a point of infinite order. If there is an exponent of
diophantine stability for L/K, then

o if K is a number field we have an existential definition f(t,Z) of Ok over Oy, such
that for every t € Ok the equation f(t,z) = 0 has solutions in Ok.

o if K is an infinite extension of Q there exists D C Oy, such that D has an ezistential
definition f(t,z) over O, N C D C Ok and for any t € D the equation f(t,z) =0
has solutions in Ok.

We now consider the case of quadratic extensions of totally real fields.

Proposition 14.5. Let F be a quadratic extension of a totally real algebraic extension L
of Q, possibly of infinite degree over Q. Let K C F be a field. Suppose G is a group
scheme over Ok satisfying Assumption 7.4 and G(Og) has a point of infinite order. If
there is an exponent of diophantine stability for F/K, then

e if K is a number field we have an existential definition of Ok over Op.
e if K is an infinite extension of Q there exists D C Oy, such that D has an existential
definition over O and N C D C Ok.
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Proof. The proof of the proposition follows from Corollaries 12.17, 13.17, 14.2 combined
with Lemma 4.7. O

Proposition 14.5 does not require an assumption on existence of a group scheme,
because we know such a group scheme exists.

Proposition 14.6. Let F be a quadratic extension of a totally real algebraic extension L
of Q, possibly of infinite degree over Q. There exists a set D C Op such that D has an
existential definition over Op and N C D C Ov.

Proof. The proof of the proposition follows from Corollaries 12.13, 12.16, 12.17, 13.19
and 14.2. O

Below we state another corollary emphasizing the fact that in the case of totally real
number fields and quadratic extensions of totally real number fields, our diophantine
definition of O over Oj; does not depend on the degree [M : Q].

Corollary 14.7. Let M be a totally real algebraic extension of Q or a quadratic extension
of a totally real algebraic extension of Q. Let K C M be a number field. Suppose G is
a group scheme over Ok satisfying Assumption 7.4 and G(Owm) has a point of infinite
order. Suppose also there is an exponent of diophantine stability for G relative to M/K.
Let M be the collection of all number fields M such that K C M C M. Then there exists
a single diophantine definition of Ok over Oy across all fields Oy € M.

Theorem 3.1 follows directly from Proposition 14.3, and Theorem 3.9 follows directly
from Propositions 14.4 and 14.6.

15. A simple example

Definition 15.1. A CM-field F is a totally complex field of algebraic numbers (possibly
of infinite degree over Q) possessing an involution o with fixed field F™ := F9 totally
real.

Remarks 15.2.

(1) This terminology is usually only used for number fields F'/Q (i.e., of finite degree over
Q) such fields being related to complex multiplication on abelian varieties—hence
the “CM.”

(2) The involution o referred to in the definition above is unique: there is at most one
involution of a totally complex field whose fixed field is totally real. Equivalently,
the field F* is the only totally real subfield L of F such that F/L is quadratic. We
will refer to F+ as the maximal totally real subfield of F.
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Let F be a CM-field and let L = F*. Take our group scheme G = G,, =
Spec(Or[s,s71]) to be the multiplicative group. We view this as a quasi-projective
smooth group scheme over Or,. We have that G(O) = Of C G(Or) = Op.

Lemma 15.3. Suppose I is an ideal of O divisible by a rational integer n > 3. Then
M?F C Of . That is, the pair (2,1) is an ezponent of diophantine stability for G relative
to the field extension F/L (see Definition 13.5(2)).

Proof. Let o denote complex conjugation, the nontrivial automorphism of F /L. Suppose
z € My, ie,z € Op and z =1 (mod I). We have

22 = (zx°)(x/x7). (15.4)

By Dirichlet’s unit theorem (or the fact that all absolute values of z/x7 are 1), we have
that x/z? is a root of unity. Since x/x? = 1 (mod n), we have z/x° = 1. Since xz? is
fixed by o, it follows from (15.4) that 22 € Op,. O

This (r = 2,I) exponent of diophantine stability for G relative to the extension
Or /Oy allows one to prove the following proposition due to Denef for the case when F
is a number field.

Proposition 15.5. Let F be a CM field, and let K be any number field contained in FT.
There exists a set Ex C Op+ such that the following conditions are satisfied.

(1) Ex is diophantine over O,
(2) Ox C Ek.

If F* is a number field then we can take Ex = O
Proof. Put L := F™. We have the well-arranged embedding
t: Gy, — Aff' = G, = Spec(Oy[t])
given by t — s — 1. The ideal cutting out the identity section of G, is (t); the ideal

cutting out the identity section of G, is (s — 1). So the mapping G|y — Aff[lz] is given
by the homomorphism (isomorphism, in fact)

OL[t]/ (1) = Ov[s,s™']/((s = 1)*) = Owls]/((s — 1)*)

that sends ¢ — s — 1.
Let us connect with the notation of Section 9 and more specifically equations (10.2)
and (10.3) of that section.

« As above, G = G, = Spec(Or)[s, s~ '] and Gy} = Spec(OL[s]/((s — 1)?)).
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e An Op-rational point P € G(Oy,) is given by a homomorphism
P:Oy[s,s '] — O

sending s to a unit u € O C O,

o The vanishing ideal zp is the ideal generated by u — 1 in Of,.

o The congruence ideal cp = z% is the ideal generated by (u — 1)

e Ng=(s—1)-0r[s]/((s — 1)?); it is a free Or,-module of rank 1.

o OP : Ng — Or/(cp) = Or/((u — 1)?) is the Or-homomorphism sending s — 1 to
u— 1. We view 0P as an element in

Wp = N*®0 (2p/2p) C N* @0 (0/2p)
as in Lemma 10.7 above.

Now the “Y” in Corollary 13.17 (combined with Lemma 4.7) gives the desired subset:

Ex =Y ={a € O : a satisfies (15.6) and (15.7) below}
Juq, us, ug, ug € O, such that a = 1—|—u%+...ui (15.6)

AP,Q € M{y, 1y2 1, With P # ¢ and 9Q = a- 9P € Wp @0, OL. O  (15.7)

Part 4. Diophantine stability in infinite algebraic extensions of Q—results and
conjectures

To date existential undecidability is known for very few rings with fraction fields equal
to infinite algebraic extensions of Q. The third author has shown that in any abelian
extension of Q with finitely many ramified primes Z is existentially definable in infinitely
many rings of S-integers strictly larger than the ring of integers of the field in question.
([Sh194] and [Sh107]).

All the known results about existential definability of Z over the ring of integers in
infinite extensions require some form of diophantine stability of elliptic curves. The first
such results appear in [Shl18] and require diophantine stability of an elliptic curve in a
totally real infinite extension of Q. The definability of Z can then be extended to any
quadratic extension of the totally real field under consideration.

From results of K. Kato [Kat04], K. Ribet [Rib81] and D. Rohrlich [Roh84,Roh88] we
know that in cyclotomic extensions with finitely many ramified primes there exist elliptic
curves with groups of points over these fields of positive rank and finitely generated (see
[LRO8], Theorem 1.2). Thus—as discussed in the introduction (Theorem 1.10)—Z is
existentially definable in any abelian extension of Q having only finitely many ramified
primes.

Below we show that diophantine stability of general abelian varieties, not just elliptic
curves, can be used to establish existential definability of Z over the rings of integers of
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totally real infinite extensions of Q and their totally complex quadratic extensions. We
also make use of diophantine stability of multiplicative groups as described in Section 15.
Additionally, we state some conjectures and questions based on conjectures and questions
from Section 16.

16. Diophantine stability in abelian extensions

Our expectation, based on conjectures about elliptic curves over Q (some of which
we describe below), is that diophantine instability is rare for abelian varieties in abelian
extensions unless there is a good reason (analytic or geometric) for it. In this section we
discuss this expectation and some open questions.

Notation 16.1. If A/K is an abelian variety and F/K is a finite Galois extension, we
denote by Ny, : A(F) — A(K) the map  — 3 ccip/x) V2-

If F/K is an abelian extension (finite or infinite) and x : Gal(F/K) — C* is a char-
acter of finite order, we will say that y occurs in A(F) if x occurs in the representation
of Gal(F'/K) acting on A(F) ® C.

From now on, a character of a Galois group G means a continuous character, i.e.,
a homomorphism G — C* of finite order.

The following lemma shows that to understand diophantine stability in abelian ex-
tensions it suffices to understand diophantine stability in cyclic extensions.

Lemma 16.2. Suppose L is an abelian extension of a number field K, and A is an abelian
variety defined over K. Then the following are equivalent:

(1) rank A(F) > rank A(K) for some finite extension F/K contained in L,

(2) rank A(F) > rank A(K) for some finite cyclic extension F/K contained in L,
(3) {x € A(F) : Np/gx = 0} is infinite for some finite cyclic F/K contained in L,
(4) there is a nontrivial character x of Gal(L/K) that occurs in A(L).

Proof. The implication (2) = (1) is trivial.
Suppose I is a finite cyclic extension of K. Let Zp := kerNp,x C A(F). Then
A(K)NZp C A(K)tors is finite, and if z € A(F) then
[F : K]Z‘ = NF/KI + ([F : K} - NF/K)QS S A(K) + Zp.
Thus there is a homomorphism with finite kernel and cokernel

AK) & Zp — A(F), (16.3)

so in particular (3) < (2).
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Now suppose (4) holds, and let F' be the cyclic extension of K cut out by x. Then y
occurs in A(F') but not in A(K), so (16.3) shows that x must occur in Zp. In particular
Z is infinite, so (4) = (3).

Finally, if (1) holds, then A(F)/A(K) is infinite, so some character x of Gal(L/K)
occurs in A(F')/A(K), and such a x is necessarily nontrivial. Thus (1) = (4). O

Lemma 16.4. Suppose L is an abelian extension of Q, and A is an abelian variety defined
over Q. Then the following are equivalent:

(1) A(L) is finitely generated,
(2) the set {characters x of Gal(L/Q) : x occurs in A(L)} is finite.

Proof. The implication (1) = (2) is clear.

Suppose (2) holds. A theorem of Ribet [Rib81] shows that A(L)tes is finite. Let w
be the exponent of A(L)ios. Fix a finite abelian extension K of Q, contained in L,
such that A(L)iors C A(K) and all characters x of Gal(L/Q) that occur in A(L) factor
through Gal(K/Q). Then for every finite extension F of K contained in L we have that
[A(F) : A(K)] is finite.

For every such F', define a homomorphism

wp: A(F) — HY (F/K, A(F)ors) = Hom(Gal(F/K), A(F)tors)

by sending = € A(F) to the Gal(F/K)-cocycle g — gz — z. Note that gz —x € A(F)tors
since [A(F) : A(K)] is finite. It is easy to see that the kernel of kp is A(K), and hence
A(F)/A(K) is killed by w. This holds for every field extension F of K in L, so w
annihilates A(L)/A(K) as well, i.e.,

A(L) C{r € A(Q) : wz € A(K)}.
Since the right-hand side is finitely generated, so is A(L). Thus (2) = (1). O
A lower bound for diophantine stability is given by the following theorem from [MR18].

Theorem 16.5 (Theorem 1.2 of [MR18]). Suppose A is a simple abelian variety over K
and all K-endomorphisms of A are defined over K. Then there is a set S of rational
primes with positive density such that for every ¢ € S and everyn > 1, there are infinitely
many cyclic extensions L/K of degree {™ such that A(L) = A(K).

If A is an elliptic curve without complex multiplication, then S can be taken to contain
all but finitely many rational primes.

Proof. All but the last sentence is proved in [MR18]. In the case that A is a non-CM
elliptic curve, the proof in [MR18] shows that we can take S to contain all primes ¢ such
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that the f-adic representation Gxg — Aut(A[(>°]) — GL2(Z,) is surjective. By Serre’s
theorem [Ser72] this holds for all but finitely many ¢. O

The next two conjectures are formulated in [MR22], where they are motivated by
the statistical properties of modular symbols. They were inspired by earlier conjec-
tures (based on random matrix theory) given by others; notably David, Fearnley, and
Kisilevsky [DFK07,FK12].

Conjecture 16.6 (Conjecture 10.2 of [MR22]). Suppose E is an elliptic curve over Q,
and L C Q?" is a real abelian field that contains only finitely many extensions of Q of
degree 2, 3, or 5. Then E(L) is finitely generated.

Conjecture 16.7 (Conjecture 10.1 of [MR22], combined with the Birch and Swinnerton-
Dyer conjecture). Suppose E is an elliptic curve over Q. Let X denote the set of even
characters of Gal(Q*?/Q). Then

{x € X :order(x) > 7, order(x) # 8,10 or 12, and x occurs in E(Q*)}
1s finite.

We now give some consequences of these conjectures for diophantine stability of
abelian varieties over Q.

Consequence 16.8. Suppose Conjecture 16.6 holds, E is an elliptic curve over Q, and
L C Q% is a real abelian field that contains only finitely many extensions of Q of degree
2, 3, or 5. Then there is a finite extension M/Q such that for every number field F
satisfying F C L and FNM = Q, we have that F/Q is diophantine stable for E.

Proof. Take M to be the field generated by the coordinates of points in E(L), so E(M) =
E(L). Conjecture 16.6 says that E(L) is finitely generated, so M/Q is finite. If F C L
and FFN M = Q, then

E(F)=E(F)nE(L) = E(F)nE(M)=E(FNM)=EQ). O

Definition/Proposition 16.9. Suppose A is an abelian variety defined over a number field
K, and F/K is a finite cyclic extension. Let G := Gal(F/K), let Q[G]r be the unique
irreducible Q[G]-submodule of Q[G] on which G acts faithfully, and let

Z[G)r == Q[G]r N Z[G).

Following [MRS07, §5] we construct an abelian variety Ap over K (the twist of A by
F/K ) that has these properties:

(1) dim(Ar) = ([F : K]) dim(A), where ¢ denotes the Euler p-function.



54 B. Mazur et al. / Journal of Number Theory 254 (2024) 1-64

(2) The base change of Ar to F is canonically (and G-equivariantly) isomorphic to
AR ZIG)F (over F).

(8) Suppose L is a field containing K and LN F = K. Then:
(a) There is a natural inclusion Ap(L) C A(FL) that identifies

Ap(L) = {z € A(FL) : Npy/pmrLz = 0 for every M with K C M C F}.

(b) Suppose x is a character of Gal(L/K). Then x occurs in Ar(L) if and only if
xp occurs in A(FL) for some faithful character p of Gal(F/K).

Proof. Assertion (1) is [MRS07, Theorem 2.1(i)], (3.a) is [MRS07, Theorem 5.8(ii)], and
(3.b) follows from (3.a). O

Corollary 16.10. Let F/K, A, and Ar be as in Proposition 16.9. If [F : K] is prime,
then rank Ap(K) > 0 if and only if rank A(F') > rank A(K).

Proof. Taking L = K in Proposition 16.9(3) shows that rank Ap(K) > 0 if and only
if some faithful character p of Gal(F/K) occurs in A(F). If [F' : K] is prime, then p is
faithful if and only if it is nontrivial. By Lemma 16.2(1,4) a nontrivial p occurs in A(F')
if and only if rank A(F") > rank A(K). This proves the corollary. O

Consequence 16.11. Suppose F/Q is a cyclic extension of prime degree p > 7, and E is
an elliptic curve over Q. Let A := Ep be the twist of E as in Definition 16.9. Suppose
Conjecture 16.7 holds and L is a real abelian extension of Q not containing F. Then:

(1) A(L) is finitely generated.
(2) If rank E(F) > rank F(Q) then rank A(Q) > 0.

Proof. Proposition 16.9(3b) shows that a character x of Gal(L/Q) occurs in A(L) if and
only if xp occurs in E(FL) for some nontrivial character p of Gal(F/Q). Since LNF = Q,
we have Gal(LF/Q) = Gal(L/Q) x Gal(F/Q), so such a character xp has order divisible
by p > 7. Thus Conjecture 16.7 predicts that only finitely many characters occur in
A(L). Now (1) follows by Lemma 16.4, and (2) follows from (1) by Corollary 16.10. O

The following construction shows that there is a large collection of abelian fields L
“close” to Q*P to which we can try to apply Consequence 16.11.

Example 16.12. Fix a prime p > 7, and another prime ¢ = 1 (mod p) but £ # 1 (mod p?).
Let F' denote the unique cyclic extension of Q of degree p and conductor £. It follows
from class field theory that there are infinitely many real abelian extensions L/Q such
that

o [@F L] =p,
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e LNF=Q
(where Q** denotes the real subfield of Q).

In order to apply Consequence 16.11 to the arithmetic of the “big” fields of Exam-
ple 16.12 (see Consequences 17.3 and 18.4), we need to have that rank E(F') > rank E(Q).
This leads to the following question:

Question 16.13. Suppose F'/Q is a cyclic extension of prime degree p. Is there an elliptic
curve E defined over Q such that rank F(F) > rank E(Q)?

Remark 16.14. Computer calculations and heuristics similar to [MR22] suggest that when
p = 7, the answer to Question 16.13 is “yes”. When p > 7 the answer is less clear, but
Fearnley and Kisilevsky [FK12] produce some examples with p = 7 and 11. Our own
calculations, assuming the Birch and Swinnerton-Dyer conjecture, found four examples
with p = 13. For instance, if F is the curve labeled 4025.c1 in [Col], and F is the extension
of degree 13 in Q((s3), then L(E/F,s)/L(E/Q, s) vanishes at s = 1. Thus the Birch and
Swinnerton-Dyer conjecture predicts that rank E(F) > rank F(Q).

Consequence 16.15. Suppose Conjecture 16.7 holds, and p = 7 or 11. Then there is an
abelian variety A over Q and infinitely many real abelian fields L such that [Q*>7 : L] =
p, and A(L) is infinite and finitely generated.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same
statement holds for p = 13.

Proof. If p = 7, let E be the elliptic curve y2 + 2y +y = 2> — 22 — 6z + 5 and F
the abelian field of degree 7 and conductor 29. If p = 11, let E be the elliptic curve
y? +xy = 2% + 22 — 322 + 58 and F the abelian field of degree 11 and conductor 23.
Let L be a real abelian field as in Example 16.12, and let A := Er be the twist of F as
in Definition 16.9. Fearnley and Kisilevsky [FK12] show that rank E(F) > rank F(Q).
Thus for p = 7 or 11 the desired conclusion follows from Consequence 16.11.

For p = 13 the proof is the same, except that for the elliptic curve E labeled 4025.c1
in [Col], and the cyclic extension F of degree 13 and conductor 53, we need the Birch
and Swinnerton-Dyer conjecture in order to conclude that rank E(F') > rank F(Q). O

The following consequence of Conjecture 16.7 gives rise to a collection of “big” abelian
fields L over whose ring of integers Hilbert’s Tenth Problem has a negative answer.
Although these fields are not as close to QP as those of Example 16.12, we can produce
them without needing to know the answer to Question 16.13.

Consequence 16.16. Suppose Conjecture 16.7 holds. There is a positive integer n and an
abelian variety A/Q such that
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(1) rank A(Q) > 0,
(2) if L is a finite real abelian extension of Q and [L : Q] is relatively prime to n, then
rank A(L) = rank A(Q),

Proof. Fix an elliptic curve E defined over Q. By Conjecture 16.7 there is a finite cyclic
extension F of Q that is maximal in the sense that

(a) there is a faithful character ¢ of Gal(F'/Q) that occurs in E(F),
(b) there is no cyclic extension F’ of Q with property (a) that properly contains F.

Fix such an F, and let n := [F' : Q] and A := Ep. By property (a) and 16.9(3b), the
trivial character occurs in A(Q), so A(Q) is infinite.

Now fix an abelian extension L/Q of degree prime to n. In particular L N F' = Q.
Suppose x is a nontrivial character of Gal(L/Q), and let L’ be the cyclic extension of Q
cut out by x. Since [L : Q] is prime to [F' : Q], the compositum F'L’ is also cyclic over
Q. By the maximality of F' (property (b)) and 16.9(3.b), we conclude that x does not
occur in A(L). Lemma 16.4 now shows that rank A(L) = rank A(Q). O

It is natural to try to generalize Conjectures 16.6 and 16.7 by asking whether they
still hold for abelian varieties over number fields instead of elliptic curves over Q.

Question 16.17. How much diophantine instability can there be? For example, suppose
K is a totally real number field, and A is an abelian variety over K. Is there a con-
stant C(A, K) such that for every finite abelian extension L/K, and every character
X : Gal(L/K) — C* of order greater than C'(4, K), x does not occur in the representa-
tion of Gal(L/K) on A(L)® C? If there is such a constant C(A, K), how does it depend
on A, and on K7

Remark 16.18. The reason to restrict to totally real fields in Question 16.17 is that
otherwise the Birch and Swinnerton-Dyer conjecture can be used to force diophantine
instability. For example, suppose K is an imaginary quadratic field, and F is an elliptic
curve over Q with the property that every prime where E has bad reduction splits into
2 distinct primes in K. Then the theory of Heegner points gives rise to arbitrarily large
cyclic extensions L/K such that

rank F(L) > rank Z E(F).
KCFCL

The fields in question are anticylotomic extensions of K, i.e., Galois extensions of Q
with Gal(K/Q) acting as —1 on Gal(L/K). These extensions are “sparse” in the set of
all abelian extensions of K.
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17. Totally real fields

The biggest difference between definability problems over finite and infinite extensions
of Q lies in the difficulty of bounding heights of elements in infinite extensions. Recall
that for finite extensions, the bound in Section 11 was generated by using explicitly the
degree of the extension over Q. For obvious reasons such a method of producing bounds
on the height of elements will not work over a ring of integers of an infinite extension.
However, over a totally real field there is a substitute method relying on sums of squares
that we used in Section 11 and other sections of Part 3. So in order to prove existential
undecidability over the ring of integers of an infinite totally real extension L of Q, all we
need is an abelian variety A over L with A(L) finitely generated and of positive rank.

Corollary 17.1. Let L be a totally real infinite extension of Q and let A be an abelian vari-
ety such that A(L) is infinite and finitely generated. Then Z has a diophantine definition
over Ox,.

Proof. Let K be the field generated over Q by points in A(L). Then K is a totally real
number field and A(K) = A(L). By Proposition 14.4, we have that Ok is diophantine
over Or,. As was described in the introduction, J. Denef showed that the ring of integers of
any totally real number field has a diophantine definition of Z. Therefore from Lemma 4.3
we can deduce that Z is diophantine over Or,. 0O

Consequence 17.2. Suppose Conjecture 16.6 holds, and L C Q™7 is a real abelian field
that contains only finitely many extensions of Q of degree 2, 3, or 5. Then Z has a dio-
phantine definition over O, and Hilbert’s Tenth Problem for Oy, has a negative solution.

Proof. By Conjecture 16.6, we can find an elliptic curve F such that F(L) is infinite and
finitely generated. Thus the assertion of the consequence holds by Corollary 17.1. O

From Consequence 16.15 combined with Corollary 17.1, we also obtain the following
consequence.

Consequence 17.3. Suppose Conjecture 16.7 holds. If p = 7 or 11, then there exists a
totally real abelian extension L such that [Q*™* : L] = p and Z has a diophantine
definition over Oy,.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same
is true with p = 13.

18. Quadratic extensions of totally real fields again

A reduction to the maximal totally real subfield. As has been noted above, totally real
fields are special in the sense that sums of squares allow us to impose bounds on heights
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of variables using existential language of the rings only. Much of this definability “ad-
vantage” is inherited by quadratic extensions of totally real fields; in other words one
can reduce a definability problem over a quadratic extension of a totally real field to
a definability problem over this totally real field. From Proposition 14.5 we have the
following corollary.

Corollary 18.1. Let F be a quadratic extension of a totally real field. If there exists an
abelian variety A over F such that A(F) is infinite and finitely generated, then Z is
existentially definable over Og, and Hilbert’s Tenth Problem is undecidable over Op.

Proof. Let F = L(v) where L is totally real and v2 € L. Let F be the subfield of
F generated over Q by the points in A(F). Since A(F) is finitely generated, F is a
number field, so we have F' = Q(J) where § € F, i.e., § = a + by with a,b € L.
Let L := F(a,b,7?) "L and K := L(§). Then L is totally real, and a,b,v% € L, so
[K : L] = 2. Thus K is a quadratic extension of a totally real number field, and F C K
so A(K) = A(F).

By a result of Denef ([Den75]) and a result Denef and Lipshitz ([DL78]) we have
that Z has a diophantine definition over Ok. By Proposition 14.5 we have that Ok has
a diophantine definition over Op. Finally by Lemma 4.3 (Transitivity of diophantine
definitions), we can now conclude that Z has a diophantine definition over O and the
assertion of the corollary follows. O

Then following corollary provides a slightly different way of establishing diophantine
undecidability of quadratic extensions of totally real fields.

Corollary 18.2. Let F be a quadratic extension of a totally real field L. If there exists
an abelian variety A over L such that A(L) is infinite and finitely generated, then 7 is
ezistentially definable over Og, and Hilbert’s Tenth Problem is undecidable over Op.

Proof. Let K be the number field generated by the points in A(L), so A(K) = A(L). By

Proposition 14.4, there exists a diophantine definition f(¢,z) of Ok over Or, such that

for all t € Ok the equation f(t,z1,...,2,) = 0 has solutions in Ok . By Proposition 14.6,

we have that there exists D C O such that D is diophantine over O and N C D C Oy,.
Let v € Ok generate K over Q and define D C O in the following manner.

KQ-1
D=/ Z a;v'| £ a; € D}.
i=0

Observe that since D is diophantine of over O, we have that D is diophantine over
Op. Further, Ox ¢ D C Op. Let g(z,y) be a diophantine definition of D over Op. Now
consider the following system of equations:
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g($17g1) = 07
g(xragr) =0, (183)
g(t7zla"'az’f‘)7

f(tazla"wxr):()

Suppose (18.3) has solutions in Op. Then by assumption on g being the diophantine
definition of ﬁ, we have that t,x1,...,2, € D c Oy, Since f is a diophantine definition
of Ok over O, we conclude that t € Og. Conversely, suppose t € Ok, then there exist
z1,...,2, € O C D such that ft,z1,...,2.) =0. Since t,x1,...,2, € Og C D, there
exist 41, ..., Yr, z with all components in O such that all g-equations are satisfied. Thus
(18.3) is a diophantine definition of Ok over Op.

From [Den75] we have that Ok has a diophantine definition of Z. Thus applying
Lemma 4.3 to the tower Z C O C Op, we have that Z has a diophantine definition
over Op. O

Combining Corollary 18.2 with Consequence 16.15 we get another consequence of
Conjecture 16.7.

Consequence 18.4. Suppose Conjecture 16.7 holds. If p = 7 or 11, then there exists an
abelian extension L such that [Q*" : L] = p and Z has a diophantine definition over O, .
If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same
is true with p = 13.
Data availability
No data was used for the research described in the article.
Appendix A. A geometric formulation of diophantine stability
19. The same structures described in a different vocabulary

If K is a number field let Ok denote its ring of integers.

Definition 19.1 (Compare with Definition 1.2). Let L/K be an extension of number fields.
Let

F fi(t§x17l'2,$3, c )

be a system of m polynomials (i = 1,2,...,m) with coefficients in Ok. We’ve singled
out the first variable t, which will play a special role. Say that F is diophantine stable
at t for L/K if all the simultancous solutions
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fi(a;a17a27~~~7an) = 0

for a,ay,as,...,a, € Op and i = 1,2,...,m have the property that the “singled out”
entry t = a lies in Og.

Example 19.2. Let F be the equation over Ok that says that t is a unit:

fx):=1—t -z, =0.

So F is diophantine stable at t for any L/K where Op and Ok have the same unit
group.

Any system of equations F over Ok (as in Definition 19.1 above) determines a finitely
presented affine O g-scheme

V = Vg :=Spec(Ox[t;x1,xa, ..., xn]/(f1, f2, - [m))

Let Aff' = Spec(Ok[t]) be 1-dimensional affine space, viewed as (an affine) scheme over
Ok. The homomorphism Oglt] — {(’)K[t;xhx% ceos )/ (f1y fay e e fm)} induced by
sending t — t can be viewed as an Og-morphism:

V s Aff!
which in turn induces a map on Op-valued points
V(OL) = Op. (19.3)
The diophantine stable at t property of F relative to L/K is equivalent to the property
that the image of V(Opr) under (19.3) is contained in the subset Ok of Oy,.
If we denote the image of (19.3) in Oy, by E, then

V(0p) 2% E c 0 = AFH(O))

shows that F (or equivalently, the pair (V,t)) is a diophantine definition of E over Oy,
(see Definition 2.2). We are especially interested in the case where F = Og C Of.

Proposition 19.4. If L/ K is an extension of number fields, F is a system of polynomials
as in Definition 19.1, and the image E of the map (19.3) on O -valued points of Vr
satisfies N C E C Ok, then there is a system F' such that the corresponding pair
(Vg t) is a diophantine definition of O over Op,.

Proof. This is Lemma 4.7 above. 0O
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A diophantine definition (V,t) of Ok over Of, can be used to transport any algorithm
that determines whether a system of polynomials with coefficients in Of, has a solution
over Op, to a similar algorithm for systems of polynomials with coefficients in Ok, as
follows.

Construction 19.5. Suppose we are given a diophantine definition (V,t) of O over Or,.

For every finitely presented affine scheme B over S = Spec(Ok) we can construct an
S-scheme V = Vg with a surjective S-morphism T :V — B:

\

with the property that the image of the set of Or-valued points of V under T is equal to
the set of Ok -valued points of B:

V

nNn<—

V(Or)

=

B(Ok) — B(OL)
Proof. Let (V,t) be the diophantine definition, and

G: gi(z1,22,...,2,) € Okglz1,22,...,2,) fori=1,2,...,u

the presentation of the affine scheme B. We can view this presentation as giving us a
closed embedding

Spec(Ox (21,22, -, 2] /(91,92 .-, 9u)) =B Iy AffY = Spec(Ok 21,22, -+, 20])-

Let VI .= V x0, V xo, ...V be the v-fold power of V (fiber-product over S =
Spec(Ok)) and form the cartesian diagram:

Vg = Vs Vivd

lT é l (ttseet) (19.6)
B—— Aff”.

Since the map ¢ of (19.6) is a surjective morphism of schemes, so is the projection
7 : )V — B. Since (V,t) is a diophantine definition, the mapping ¢ is a surjection of
VI (OL), the set of Op-valued points of V*}, onto AffY(Ok). If v is an Op-valued
point of V then, by commutativity of (19.6), 7(v) is an Og-valued point of B; and,
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by cartesian-ness of (19.6), any Og-valued point of B, viewed in Aff"(Of) lifts to an
Op-valued point of V¥, 0O

Therefore

Corollary 19.7. Suppose (V,t) is a diophantine definition of Ok over Or. Then the
following are equivalent:

(1) The O-scheme B has an O -rational ‘point’ (meaning: a Spec(O )-section).

(2) The system of equations G : g;(z1,22,...,2v) € Oklz1,22,..., 2] fori=1,2,... 1
has a simultaneous solution in Ok.

(8) The finitely presented Op-scheme Vi has an Op-rational ‘point’ (meaning: a
Spec(Op,)-section).

(4) The system of equations over Oy, finitely presenting the O -scheme Vg has a simul-
taneous solution in Of.

Remark 19.8. Suppose G is a finite system of polynomial equations over Ok defining
a scheme B as in Construction 19.5, and we are given a diophantine definition (V1)
of Ok over Op. If we have a finite algorithm to determine whether or not a finite
system of polynomial equations over Op, has a simultaneous solution over Oy, then—by
Corollary 19.7—applying this algorithm to the system of equations over Oy, that finitely
present the Op-scheme Vg will tell us whether or not G has a simultaneous solution over
Ok. In particular, a negative answer for Ok to the question posed by Hilbert’s Tenth
Problem implies a similar negative answer for Oy,

Remark 19.9. What can be said about the category comprising the various diophantine
definitions of rings of integers related to a given L/K? E.g., beyond the fact that:

e The diophantine definitions, (V,t), of Ok over Oy, are closed under fiber product
over Aff!.
o Any (V,t) sandwiched between two diophantine definitions of Ok in O, is again one:

Question 19.10. Given L/K what is the smallest Krull dimension of a diophantine def-
inition (V,t) of Ok over Op7 For example, what is the smallest Krull dimension of a
diophantine definition of Z over Z[i]?

A related question concerns the smallest number of variables one needs to define
Ok over Op. The smallest number of variables question has a long history. In its first
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version, the question concerned the smallest number of variables necessary to define a
non-recursive c.e. subset of natural numbers or integers. Yu. Matiyasevich, J. Robinson
and J. Jones were the first people considering this problem. Later on they were joined by
Zhi-Wei Sun, among others. His recent paper [Sun21] contains the most recent survey of
the results in the arca. H. Pasten in [Pas22a] and independently A. Fehm, P. Dittman
and N. Daans in [DDEF21] considered the smallest number of variables question in the
context of diophantine definitions over rings and fields. They called this number the
diophantine rank of a set.
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