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8. The open piece in Ḡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9. Vanishing and congruence ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10. Coordinates of rational points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Part 3. Proof of the main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11. Capturing subrings by congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12. Quadratic extensions of totally real fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
13. Rational points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14. An existential formulation of Corollaries 13.17 and 13.19 . . . . . . . . . . . . . . . . . . . . . . . . . 44
15. A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Part 4. Diophantine stability in infinite algebraic extensions of Q—results and conjectures . . . . 50
16. Diophantine stability in abelian extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
17. Totally real fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
18. Quadratic extensions of totally real fields again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Appendix A. A geometric formulation of diophantine stability . . . . . . . . . . . . . . . . . . . . . . . . 59
19. The same structures described in a different vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1. Introduction

For the definition of “diophantine definition”, “diophantine undecidable”, “existen-
tially definable”, and similar terms used in this introduction, see §2 and §4.

Here is a corollary of one of our main results (see Theorems 3.1 and 3.9 below). By 
“number field” we mean a finite extension of Q.

Theorem 1.1. Let K be a number field, let L be an algebraic (possibly infinite degree) 
extension of K, and let OK ⊂ OL be their rings of integers. Suppose A is an abelian 
variety defined over K such that A(K) is infinite and A(L)/A(K) is a torsion group. If 
at least one of the following conditions is satisfied:

(1) L is a number field,
(2) L is totally real,
(3) L is a quadratic extension of a totally real field,

then OK has a diophantine definition over OL.

Theorem 1.1 answers a question raised by B. Poonen in [Poo02, Question 2.6(3)]. For 
a discussion of previous results in the direction of Theorem 1.1, see §2.
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Theorem 1.1 is a special case of a more general result (see Propositions 14.3, 14.4, 
and 14.5) where the abelian variety is replaced by a smooth group scheme over OK

satisfying some mild additional hypotheses (Assumption 7.4). In this paper the group 
schemes we mainly use are Néron models of abelian varieties and twists of multiplicative 
groups.

One way of describing the main structural element in the proof of Theorem 1.1 is 
the following. We pass, via an ‘existential definition’—from an appropriate subgroup of 
the group of rational points on the group scheme we work with—to the (additive group 
of the) ring OK , by constructing a scheme-theoretic (existentially defined) analogue to 
some approximation of the standard logarithm mapping that sends an appropriate open 
subset of the identity in an algebraic group to its Lie algebra.

The following concept, implicit in the statement of Theorem 1.1, is fundamental to 
our results in this paper.

Definition 1.2. Let L/K be an extension of fields, and V an algebraic variety defined 
over K. We denote by V (K) the set of K-rational points of V .

• Say that V is diophantine stable for L/K, or L/K is diophantine stable for V , if the 
inclusion V (K) ↪→ V (L) is an isomorphism, i.e., if V acquires no new rational points 
after passing from K to L.

• If V = A is an abelian variety over a field K, say that A is rank stable for L/K
if A(L)/A(K) is a torsion group. If L is a number field, this is equivalent to saying 
that rankA(K) = rankA(L).

A study of diophantine stability for elliptic curves can be found in [MR10], and for 
higher dimension abelian varieties in [MR18].

Definition 1.3. We say that number fields L/K are connected by a diophantine chain if 
there is an n ≥ 0 and a tower of number fields

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊃ L

such that for every i, 1 ≤ i ≤ n, there is an abelian variety Ai defined over Ki−1 that is 
rank stable for Ki/Ki−1 and such that rankAi(Ki−1) > 0.

The condition of being ‘connected by a diophantine chain descends in the following 
sense.

Theorem 1.4. Let L/K and K ′/K be linearly disjoint number field extensions of K, 
and consider L′ := K ′L, the compositum of K ′ and L. If the number fields L′/K ′ are 
connected by a diophantine chain then so are the number fields L/K.

(See Theorem 3.3 below.)
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Remark 1.5. The abelian varieties involved in the descended chain connecting L to K in 
the conclusion of Theorem 1.4 are ‘Weil traces’ of those involved in the chain connecting 
L′ to K ′ and, in particular, each are of dimension [K ′ : K] times the dimension of the 
corresponding abelian varieties in that initial chain.

Moreover, by the nature of Weil trace, the Mordell-Weil ranks of the relevant abelian 
varieties are equal to the Mordell-Weil ranks of the corresponding descended abelian 
varieties.

The following corollary follows directly from Theorem 1.1 and Lemma 4.3 below.

Corollary 1.6. If L/K is an extension of number fields connected by a diophantine chain, 
then the ring of integers of K has a diophantine definition over the ring of integers of 
L.

Conjecture 1.7. Every number field L is connected to Q by a diophantine chain.

A consequence of Conjecture 1.7 is the following conjecture, first formulated by Denef 
and Lipshitz in [DL78], which is also known to follow from other standard conjectures 
about elliptic curves ([MR10,MP18]):

Conjecture 1.8. The ring Z of rational integers has a diophantine definition over the ring 
of integers of any number field. Hence Hilbert’s Tenth Problem has a negative answer for 
the ring of integers of every number field.

For a discussion of Hilbert’s Tenth Problem see §2.
Inspired by conjectures of C. David, J. Fearnley, and H. Kisilevsky [DFK07,FK12], the 

first two authors of this article developed in [MR22] a “heuristic” (based on the statistics 
of modular symbols) for groups of rational points on elliptic curves over infinite abelian 
extensions of Q. Using specially constructed abelian varieties, this heuristic and the main 
results of this article led us to make the following diophantine undecidability conjecture. 
See §16, §17, and §18, especially Consequences 16.15, 17.3, and 18.4 for details. Let Qab

denote the maximal abelian extension of Q, the field generated over Q by all roots of 
unity.

Conjecture 1.9. For the primes p = 7, 11, or 13 there are subfields L ⊂ Qab for which 
the field extension Qab/L is cyclic of degree p and such that OL, the ring of integers in 
L, is diophantine undecidable.

In fact, we conjecture (the stronger statement) that Z is existentially definable over 
OL for the fields L in Conjecture 1.9. We do not make the same conjecture for OQab .

The following result—related to Conjecture 1.9—is due to the third author [Shl09], 
K. Kato [Kat04], K. Ribet [Rib81] and D. Rohrlich [Roh84,Roh88] (see [LR08, Theo-
rem 1.2]).



B. Mazur et al. / Journal of Number Theory 254 (2024) 1–64 5

Theorem 1.10. Let L be an abelian extension with finitely many ramified primes. Then 
Z is existentially definable over OL.

Part 1. Existential definability and Hilbert’s Tenth Problem

2. Hilbert’s Tenth Problem over rings of algebraic integers

The original “Hilbert’s Tenth Problem” was one of 23 problems posed over a century 
ago by David Hilbert in the International Congress of Mathematicians, at the Sorbonne, 
in Paris:

Problem. Find an algorithm that, when given an arbitrary polynomial equation in several 
variables over Z, answers the question of whether that equation has solutions in Z.

Work of M. Davis, H. Putnam, J. Robinson and Yu. Matijasevich shows that there is 
no such algorithm. (See [Dav73] and [DMR76].)

Since the time when this result was obtained, similar questions have been raised for 
other fields and rings. E.g.,

Question 2.1. Let R be a computable ring, i.e., a countable ring computable as a set 
and with ring operations represented by computable functions. Is there an algorithm 
(equivalently: computer program) taking the coefficients of an arbitrary polynomial over 
R as its input and outputting a “Yes” or “No” answer to the question whether the 
polynomial in question has solutions in R?

This question in the special case of R = Q remains an open basic diophantine issue; 
we wonder (a) why Hilbert didn’t formulate this question as an addendum to his initial 
“tenth problem,” and (b) whether there is currently a strong consensus guess by the 
experts about its answer.

One way to resolve the question of diophantine decidability negatively over a ring 
of characteristic zero is to construct a diophantine definition of Z over such a ring. 
The usefulness of such a diophantine definition stems from the fact that if a ring has a 
diophantine definition of Z, then its analog of Hilbert’s Tenth Problem is undecidable. 
We explain how diophantine definitions are used in the following section.

Deriving undecidability of Hilbert’s Tenth Problem over a ring R using a diophantine 
definition of Z over R.

Definition 2.2. Let R be a ring and let E be a subset of R. Then we say that E has a dio-
phantine definition over R if there exists finite collection of polynomials with coefficients 
in R,

F : fi(t, x1, x2, x3, . . . xn) ∈ R[t, x1, . . . , xn] for i = 1, 2, . . . ,m
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such that for any τ ∈ R,

τ ∈ E ⇐⇒ ∃a1, . . . , an ∈ R satisfying fi(τ, a1, ..., an) = 0 for i = 1, 2, . . . ,m.

We will use interchangeably the terminology E has a diophantine definition over R, or 
E is diophantine over R, or E is existentially definable over R—noting that this last is 
a slight abuse of language: properly speaking, we should say E is positively existentially 
definable over R.

We now prove an easy proposition that explains the importance of diophantine defi-
nition discussed above.

Proposition 2.3.

(1) Suppose R is a ring containing Z, and Z has a diophantine definition over R. Then 
there is no algorithm to determine whether an arbitrary finite system of polynomial 
equations with coefficients in R has solutions in R.

(2) More generally, suppose I is an arbitrary index set, and {Rα : α ∈ I} is a collection 
of subrings of some ring R̂ containing Z. Let R0 := ∩α∈IRα, and suppose there 
exists a finite collection of polynomials

fi(t, x1, . . . , xn) ∈ R0[t, x1, . . . xn], 1 ≤ i ≤ m

that constitutes a diophantine definition of Z over Rα for every α ∈ I. Then there is 
no algorithm to determine whether an arbitrary finite system of polynomial equations 
with coefficients in R0 has solutions in Rα for some α ∈ I.

Proof. Assertion (1) is a special case of (2), where we take I to have only one element. 
As for (2), let p(t1, . . . , tr) ∈ Z[t1, . . . , tr]. Then for α ∈ I, the system equations

p(t1, . . . , tr) = 0, fi(tj , xj,1, . . . , xj,n) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ r (2.4)

have solutions in Rα if and only if the equation p(t1, . . . , tr) = 0 has solutions in Z. So 
if there is an algorithm to determine whether (2.4) has solutions in Rα for some α, then 
there is an algorithm to determine whether p(t1, . . . , tr) has solutions in Z. !

Here is a brief account of some of the history of diophantine definitions. Using norm 
equations, diophantine definitions have been obtained for Z over the rings of algebraic 
integers of some number fields. J. Denef has constructed a diophantine definition of Z
for the finite degree totally real extensions of Q. J. Denef and L. Lipshitz extended 
Denef’s results to all quadratic extensions of finite degree totally real fields. (These fields 
include all finite abelian extensions of Q.) T. Pheidas, C. Videla and the third author 
of this paper have independently constructed diophantine definitions of Z for number 
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fields with exactly one pair of non-real conjugate embeddings. Lemma 4.3 below shows 
that the subfields of all the fields mentioned above “inherit” the diophantine definitions 
of Z. The proofs of the results listed above can be found in [Den75], [DL78], [Den80], 
[Phe88], [Vid89], [SS89], and [Shl89].

The first abelian varieties put to use for the purpose of definability were elliptic curves. 
Perhaps the first mention of elliptic curves in the context of the first-order definability 
belongs to R. Robinson in [Rob64] and in the context of existential definability and 
diophantine stability relative to Q to J. Denef in [Den80]. Using elliptic curves B. Poonen 
has shown in [Poo02] that if for a number field extension M/K we have an elliptic curve 
E defined over K, of rank one over K, such that the rank of E over M is also one, 
then OK (the ring of integers of K) is diophantine over OM . G. Cornelissen, T. Pheidas 
and K. Zahidi weakened somewhat the assumptions of B. Poonen’s theorem. Instead of 
requiring a rank one curve retaining its rank in the extension, they require existence of 
a rank one elliptic curve over the number field and an abelian variety or a commutative 
group-scheme of positive rank defined over Q and diophantine stable relative to Q (see 
[CPZ05]). This paper was the first to use a higher dimensional abelian variety or a group-
scheme to show that Hilbert’s Tenth Problem is undecidable over a ring of integers of a 
number field.

Somewhat later B. Poonen and the third author have independently shown that the 
conditions of B. Poonen’s theorem can be weakened to remove the assumption that the 
rank is one and require only that the rank in the extension is positive and the same as the 
rank over the ground field, i.e. the elliptic curve is rank stable and with a positive rank 
(see [Shl08] and [Poo]). Additional use of diophantine stable elliptic curves can be found 
in [CS08], where G. Cornelissen and the third author of this paper used elliptic curves 
to define a subfield of a number field using one universal and existential quantifiers. 
Recent papers by N. Garcia-Fritz and H. Pasten ([GFP20]) and by D. Kundu, A. Lei 
and F. Sprung ([KLS22]) also use diophantine stability of elliptic curves to construct 
diophantine definitions of Z over new families of rings of integers of number fields.

The first two authors showed in [MR10] that if the Shafarevich–Tate conjecture holds 
over a number field K, then for any prime degree cyclic extension M of K, there exists an 
elliptic curve of rank one over K, keeping its rank over M . Combined with B. Poonen’s 
theorem, this result shows that the Shafarevich–Tate conjecture implies that Hilbert’s 
Tenth Problem is undecidable over the rings of integers of any number field. While in 
[MR10], the case of a general extension was reduced to a cyclic extension of prime degree, 
in fact, it would be enough to show that result holds for any quadratic extension of num-
ber fields. The proof of this fact relies on well-known properties of diophantine definitions; 
see Theorem 4.8 below. R. Murty and H. Pasten produced another conjectural instance 
where one could use diophantine stability of elliptic curves in finite extensions of number 
fields to show that Z has a diophantine definition in the rings of integers ([MP18]). The 
authors relied on a different set of conjectures for elliptic curves (automorphic, parity 
and the analytic rank 0 part of the twisted Birch and Swinnerton-Dyer conjecture) and 
the results from [Shl08] and [Poo] for their proof. An accessible exposition of the proof 



8 B. Mazur et al. / Journal of Number Theory 254 (2024) 1–64

can be found in [MF19]. H. Pasten also showed in [Pas22b] that existential definability of 
Z over rings of integers of number fields follows from a well-known conjecture on elliptic 
surfaces.

3. Main theorems: diophantine definitions from diophantine stability

Number field results.

Theorem 3.1. Let L/K be a number field extension with OL/OK the corresponding ex-
tension of their rings of integers. Let A be an abelian variety defined over K such that 
rankA(L) = rankA(K) ≥ 1. Then OK has a diophantine definition over OL.

Remark 3.2. Regarding the diophantine definitions provided by Theorem 3.1, fix the 
number field K and choose an abelian variety A over K with rankA(K) ≥ 1.

(1) For any positive number d there is a single set of equations F(K, A, d) (i.e., equations 
of the form described in Definition 2.2), with coefficients in OK , such that for any 
field extension L/K of degree ≤ d such that rankA(L) = rankA(K) that set of 
equations provides a diophantine definition of OK over OL.

(2) By Theorem 16.5 below ([MR18, Theorem 1.2]), if A is a non-CM elliptic curve there 
are (infinitely) many integers d for which there exist infinitely many pairwise linearly 
disjoint extensions L/K with [L : K] = d and rankA(L) = rankA(K).

(3) Without any restriction on the degree of L, if L is a totally real field or a quadratic 
extension of a totally real field there is a single set of equations F(K, A) with co-
efficients in OK that provides a diophantine definition of OK over OL for any field 
extension L/K such that rankA(L) = rankA(K).

(4) If we set K = Q or let K be any number field with a diophantine definition of Z
over OK then Proposition 2.3 applies to each collection of fields described above.

For the proof of Theorem 3.1, see Proposition 14.3 and Lemma 13.8 below. Theo-
rem 3.1 can be sharpened to:

Theorem 3.3. Let L/K be a number field extension with OL/OK the corresponding ex-
tension of their rings of integers. Let K ′/K be a number field extension with K ′ linearly 
disjoint from L over K. Put L′ := K ′L. Suppose that the number fields L′/K ′ are con-
nected by a diophantine chain (cf. Definition 1.3). Then

(1) the number fields L/K are connected by a diophantine chain,
(2) OK has a diophantine definition over OL.
(3) If L is a totally real field or a quadratic extension of a totally real field, the diophan-

tine definition in (2) depends only on K and A, and not on L.
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Proof. Since the number fields L′/K ′ are connected by a diophantine chain, there is an 
n ≥ 0 and a tower of number fields

K ′ = K ′
0 ⊂ K ′

1 ⊂ · · · ⊂ K ′
n ⊃ L′

such that for every i = 1, . . . , n there is an abelian variety A′
i defined over K ′

i−1 satisfying

rankA′
i(K ′

i−1) = rankA′
i(K ′

i) > 0. (3.4)

For i = 0, 1, . . . , n define

Ki := L ∩K ′
i. (3.5)

Then

K0 = L ∩K ′
0 = L ∩K ′ = K ⊂ K1 ⊂ · · · ⊂ Kn = L ∩K ′

n ⊃ L. (3.6)

Set Ai to be the “Weil trace” of A′
i with respect to the field extension K ′

i−1/Ki−1 (see 
[Wei82, §1.3]). Then Ai is an abelian variety of dimension [K ′

i−1 : Ki−1] dim A′
i defined 

over Ki−1, and if F is a field containing Ki−1 and F ∩K ′
i−1 = Ki−1, then

Ai(F ) = A′(K ′
i−1F ). (3.7)

Using (3.5) and (3.7) with F = Ki−1 and with F = Ki, we have

Ai(Ki−1) = A′
i(K ′

i−1), Ai(Ki) = A′
i(K ′

i−1Ki) ⊂ A′
i(K ′

i).

Thus (3.4) and the inclusion A′
i(K ′

i−1) ⊂ A′
i(K ′

i) show that

rankAi(Ki−1) = rankAi(Ki) > 0.

This proves (1), with the diophantine chain given by (3.6) and the abelian varieties Ai.
Applying Theorem 3.1 to Ai−1 for i = 1, 2, . . . , n shows that each OKi−1 has a dio-

phantine definition over OKi , and (2) follows from the “transitivity lemma” (Lemma 4.3). 
Assertion (3) follows from Remark 3.2. !

Combined with Theorem 16.5 below ([MR18, Theorem 1.2]), we get the following 
corollary.

Corollary 3.8. For any number field K, there is an integer NK such that for every prime 
ℓ > NK , and every positive integer n, there exist infinitely many cyclic extensions L/K
of degree ℓn such that OK is diophantine over OL.
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Proof. Let E be a non-CM elliptic curve defined over K such that rank(E(K)) > 0. 
(Such a curve always exists.) Then by Theorem 16.5, for all sufficiently large primes 
ℓ and all n, there are infinitely many cyclic extensions L/K of degree ℓn such that 
E(L) = E(K). Now the corollary follows from Theorem 3.1. !

Results for infinite algebraic extensions of Q. We will generally use boldface letters 
(e.g., L,K) to denote fields of algebraic numbers that are allowed to have infinite degree 
over Q, and normal type (e.g., L, K) for number fields, i.e., fields of finite degree over 
Q.

Theorem 3.9. Let L be an algebraic extension of Q. Assume that L is totally real or 
a quadratic extension of a totally real field. Let K be a subfield of L. Let OL/OK be 
the corresponding extension of their rings of integers. Let A be an abelian variety defined 
over K such that A(K) contains an element of infinite order and A(L)/A(K) is a torsion 
group. If K is a number field, then OK has a diophantine definition over OL. If K is an 
infinite extension of Q, then OL contains a subset D such that D is diophantine over 
OL and Z ⊂ D ⊂ OK.

The proof of Theorem 3.9 is similar to that of Theorem 3.1, using Propositions 14.4
and 14.5 below.

Remark 3.10. If K is a number field, then the diophantine definition f(t, x1, . . . , xℓ) of 
OK over OL or OL constructed in the proofs of Theorems 3.1, 3.3 and 3.9 has the 
property that for all t ∈ OK there exist x1, . . . , xℓ ∈ OK such that f(t, x1, . . . , xℓ) = 0. 
This follows from the fact that we use points of A(K) to generate rational integers and 
then a basis of K/Q to generate all elements of OK .

Corollary 3.11. Suppose K ⊂ L and A are as in Theorem 3.9. If K is a number field 
then the existential theory of OL is undecidable. Alternatively, Hilbert’s Tenth Problem 
is undecidable over OL.

Proof. By the result of Denef and Lipshitz [DL78] mentioned in §2, Z has a diophan-
tine definition over OK. Combining this with Theorem 3.9 and Lemma 4.3 proves the 
corollary. !

4. Existential definitions

The basics of existential definability. Recall Definition 2.2 above.

Lemma 4.1. Let O be an integral domain whose fraction field K is not algebraically 
closed, and suppose p(t) ∈ O[t] is a (non-constant) polynomial with no root in K. Let

{fi(x1, x2, . . . , xm) = 0 : 1 ≤ i ≤ r}
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be a system of polynomial equations over O. Then there exists a single effectively com-
putable polynomial F (x1, x2, . . . , xm) ∈ O[x1, x2, . . . , xm] such that the solutions to F = 0
in Om are the same as the common solutions in Om of the system F .

Proof. The proof is taken from [Shl06]. Write p(t) = antn + an−1tn−1 + · · · + a0 with 
ai ∈ O. If f, g ∈ O[x1, x2, . . . , xm] and x ∈ Om, then

(anfn + an−1f
n−1g + · · · + a1fg

n−1 + a0g
n)(x) = 0 ⇐⇒ f(x) = g(x) = 0.

Now we proceed by induction to combine any finite number of polynomials {f1, . . . , fr}
into one. !

Note that although the degree of F (x1, x2, . . . , xm) in Lemma 4.1 may be significantly 
higher than the degree of the polynomials fi(x1, x2, . . . , xm) that comprise the system, 
the number of variables m remains the same.

Here are some easy (and well-known) properties of existential definability we use in 
this paper. The proofs of many of the statements below can be found (among other 
places) in Chapter 2 of [Shl06].

Lemma 4.2. The set O× of units in any commutative ring O (with unit) is existentially 
definable over the ring O.

Proof. The polynomial f(t, s) := ts − 1 ∈ O[t, s] has a zero for t = α ∈ O if and only if 
α ∈ O×. !

Below, if K is a subfield of Q̄, then OK will be its ring of integers. The following 
lemma is proved in [SS89].

Lemma 4.3 (Transitivity descent for diophantine definitions). Let K ⊂ L ⊂ H be alge-
braic possibly infinite extensions of Q.

• If OK has a diophantine definition over OL, and OL has a diophantine definition 
over OH, then OK has a diophantine definition over OH.

• If H/L is a finite extension and OK has a diophantine definition over OH, then OK
has a diophantine definition over OL.

Remark 4.4. In particular, if H/K is a finite extension and OK has a diophantine def-
inition over OH, then OK has a diophantine definition over OL for every intermediate 
field L such that K ⊂ L ⊂ H.

The following lemma is clear.

Lemma 4.5 (Intersection). Let E1, E2 ⊂ OK be subsets each existentially definable in 
OK . Then E1 ∩E2 ⊂ OK is existentially definable.
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The following is due to J. Denef ([Den80]).

Lemma 4.6. Let K be any field of algebraic numbers. The set OK \ {0} of non-zero 
elements of OK is existentially definable over OK.

Proof. Let x ∈ OK. We claim that x ̸= 0 is equivalent to the existential statement

∃y, z, w ∈ OK : (2y − 1)(3z − 1) = xw.

For if x = 0, then either y = 1/2 or z = 1/3, so either y or z is not in OK . Suppose 
now x ̸= 0. Working in the number field K0 := Q(x), we can factor the principal ideal 
(x) = ab, where (a, (2)) = 1, and (b, (3)) = 1. (It is possible that either a or b is the 
unit ideal.) Choose y, z ∈ OK0 such that 2y ≡ 1 (mod a) and 3z ≡ 1 (mod b). Then 
(2y − 1)(3z − 1) ≡ 0 (mod ab), and so x divides (2y − 1)(3z − 1) in OK0 , and therefore 
in OK as well. !

Lemma 4.7. Let L/K be an algebraic extension possibly of infinite degree, where K is a 
number field. Suppose that there exists a subset S of OK containing N such that S has 
a diophantine definition over OL. Then OK has a diophantine definition over OL.

Proof. Let α ∈ OL be any element such that K = Q(α) and consider the following 
subset E of OL:

E = {x ∈ OL : bx =
[Q(α):Q]∑

i=0
aiα

i, with b ̸= 0,±ai, b ∈ S}

Now if y ∈ E, then y ∈ K ∩OL = OK because b ∈ OK and all ai ∈ OK . Conversely, if 
y ∈ OK , then y ∈ E, since every element of OK can be represented as the sum in the 
definition of E with b ̸= 0, ai ∈ Z. Finally the condition b ̸= 0 is diophantine over OL by 
Lemma 4.6. !

The following theorem due to the third author was mentioned in the discussion at the 
end of Section 2.

Theorem 4.8. Suppose that for every quadratic extension of number fields L/K we have 
that OK has a diophantine definition over OL. Then Z has a diophantine definition over 
the ring of integers of any number field.

Proof. Let M be a number field. By Remark 4.4, without loss of generality we can assume 
that M is Galois over Q. For any complex embedding M ↪→ C consider the corresponding 
complex conjugation which gives an involution σ : M → M of the field M . Let Mσ ⊂ M

be the fixed field of this involution. Since M/Mσ is a quadratic extension, we obtain—
from the assumption in the statement of the theorem—that its ring of integers has a 
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diophantine definition in OM . By Corollary 4.5 the same is true for the ring of integers 
in the intersection

M+ := ∩σM
σ.

That is, OM+ has a diophantine definition in OM . Since M+ is totally real, the result of 
Denef [Den80] discussed above gives us that Z has a diophantine definition in OM+ . By 
“transitivity” of diophantine definitions (Lemma 4.3) we have that Z has a diophantine 
definition over OM . !

Total positivity; replacing inequalities by equations.

Proposition 4.9. Let F be an algebraic (possibly infinite) extension of Q. Let x, z ∈ OF
with x ̸= z. Then there exists y1, . . . , y5 ∈ OF with y5 ̸= 0 such that

y2
5(x− z) = y2

1 + y2
2 + y2

3 + y2
4 (4.10)

if and only if for every embedding σ : F ↪→ R we have that σ(x) > σ(z).

Proof. The existence of y1, . . . , y5 ∈ OF with y5 ̸= 0 implies the inequality σ(x) > σ(z)
for all real embeddings σ : F ↪→ R.

To go the other way, assume the inequality σ(x) > σ(z) for all real embeddings. It 
follows that (4.10) has a solution in all real completions of F, and hence in all archimedean 
completions. In any non-archimedean completion a quadratic form of dimension four 
represents every element; so (4.10) has a solution in every completion of F. By the 
Hasse-Minkowski Theorem ([Shi12] Corollary 27.5) it has a solution in F. !

Part 2. On the geometry of group schemes over rings of integers in number fields

5. The conormal bundle to a section of a smooth scheme

Let S = Spec(O) where O is a Dedekind domain, and let X → S be a morphism of 
finite type and smooth of dimension d. Let e : S ↪→ X be a section. We’ll refer to the pair 
(X, e) as an S-pointed scheme. Let I = Ie be the sheaf of ideals on X that cut out the 
section e. For a general reference to this, see [Gro61, §I.4], especially Proposition 4.1.2.

Denote by Xe,[2] = X[2] ⊂ X the subscheme cut out by I2. In the language of [Gro61], 
Xe,[2] is a “formal scheme” with support equal to the closed subscheme e : S ↪→ Xe,[2]
and has I, restricted to OXe,[2] , as its ideal of definition (which is an ideal of square zero 
in OX[2]).

The pullback e∗(I/I2) to S is a locally free coherent sheaf of rank d over S (the
conormal bundle to the section e; for another general reference, cf. [Har77]).
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Let

N = NX,e := H0(S, e∗(I/I2)) ⊂ RX = RX,e := H0(S, e∗(OX/I2)).

So NX,e is the (locally free, rank d) O-module of sections of the coherent sheaf e∗(I/I2)
over S, viewed as an ideal in RX,e, the O-algebra of global sections (over S) of e∗(OX/I2).

We can write

RX,e = O ⊕NX,e = O[NX,e],

where the object on the right is the O-algebra generated by the O-module NX,e where 
the square of NX,e ⊂ RX,e is zero. (Compare: [Gro61, Proposition 10.8.11].)

Proposition 5.1 (Functoriality).

(1) There is a canonical isomorphism

Xe,[2] ≃ Spec(RX,e).

(2) Let f : (X, e) → (X ′, e′) be a morphism of smooth (S-pointed) schemes over S. Then 
f induces (via the canonical mapping IX → f∗IX′) functorial morphisms

X
f

X ′

Xe,[2]
f[2]

X ′
e′,[2]

S

e e′

and (correspondingly) contravariant functorial O-homomorphisms

NX′ NX

RX′ RX .

(5.2)

(3) If f : X → X ′ is a closed immersion, so is

f[2] : X[2] → X ′
[2],

and the horizontal morphisms in (5.2) are surjections.
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(4) If (X, e) and (X ′, e′) are smooth (S-pointed) schemes over S, letting (Y, y) :=
(X, e) ×S (X ′, e′) we have an isomorphism of O-modules

N(Y,y) ≃ N(X,e) ⊕N(X′,e′).

Proof. The statements follow directly from the functoriality of the construction X 1→
X[2] and the fact that e′ = f ◦ e so (e′)∗ = e∗ ◦ f∗. !

6. The conormal bundle to the identity section of a smooth group scheme

We will be dealing with smooth group schemes G of finite type over our base S, which 
we now suppose to be Spec(OK) for some number field K. Our main applications will 
use group schemes G that are either

• the Néron model over the base S of an abelian variety A/K , or
• the multiplicative group Gm over S, or more generally a torus over S, or
• (possibly in the future) extensions of these groups.

As the reader will see, we will only be “using” the connected component of the identity 
of G, so we could restrict to connected group schemes over S. Moreover, there are few 
properties of G (besides smoothness along the identity section) that are required, in the 
constructions to follow. Specifically, G needn’t be commutative; it needn’t even have 
inverses: it could just be a monoid; more curious is that—although it would take some 
discussion which we won’t enter to explain this: it needn’t even be associative. The main 
requirement is that there be a binary law γ : G × G → G of schemes over S with a 
two-sided identity section e : S → G; i.e., such that this diagram is commutative:

G = S ×S G
e×Id

G×S G

γ

G×S S = G
Id×e

G

But let (X, e) = (G, e) just be a smooth group scheme of finite type over S pointed by 
its “identity section.” Below we’ll begin to drop the e from (G, e) and just call it G.

Lemma 6.1. Let h denote the class number of the number field K. For G a smooth group 
scheme of finite type over S, let

G′ := {G}h := G×S G×S · · ·×S G

denote the h-fold power of G, and NG and NG′ their corresponding conormal bundle 
OK-modules. Then
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NG′ = ⊕hNG,

and NG′ is a free (finite rank) OK-module.

Proof. The first part of that sentence follows from Proposition 5.1(4). The second follows 
from the fact that NG is locally free over OK , and if h is the class number of K the 
h-fold direct sum of any locally free OK-module is free ([FT93, Theorem II.4.13]). !

Remark 6.2. This lemma will be useful later. Whenever we have a group scheme that is 
diophantine stable for a field extension L/K, Lemma 6.1 allows us to choose one with 
the further property that its conormal bundle module NG is free over OK .

Proposition 6.3.

(1) The functor (G, e) 1→ Ge,[2] preserves closed immersions.
(2) The functor G 1→ NG sends closed immersions G1 ↪→ G2 to surjections

NG2 −→ NG1 .

(3) If G, H are S-group schemes we have canonical closed immersions of S-schemes

(G×S H)[2]
=

G[2] ×S H[2]

=

G×S H

Spec(RG×SH) Spec(RG) ×S Spec(RH)

(4) Letting 1G ∈ RG = RG,e denote the unit, and ditto for H, we have a canonical 
isomorphism of OK-modules

NG×SH
≃−→ NG ⊗OK 1H ⊕ 1G ⊗OK NH .

(5) Let γ : G ×S G → G denote the group law (g1, g2) 1→ g1g2. We have a commutative 
diagram

Spec(RG×SG) =

γ[2]

{G×S G}[2]

γ[2]

G[2] ×S G[2]

γ

G×S G

γ

Spec(RG) =
G[2] G

=
G.

Proof. Items (1) and (2) follow from item (3) of Proposition 5.1. The remaining items 
follow straight from the definitions or the functoriality of the objects named, except for 
(4) which is a direct computation.
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Note that the natural OK-homomorphism

RG ⊗OK RH −→ RG×SH

is a surjection, but not (necessarily) an isomorphism. !

Proposition 6.4. Recall that γ : G ×G → G denotes the group operation. The mapping

γ[2] : NG −→ NG×SG = (NG ⊗O 1G) ⊕ (1G ⊗O NG)

is given by the formula

x 1→ x⊗ 1G + 1G ⊗ x. (6.5)

Proof. Since e is the identity section we have the commutative diagram

e×G

=

G×G

γ

G× e

=

G

which gives us that the composition of

NG
γ[2]−→ NG×SG = NG ⊗O 1G ⊕ 1G ⊗O NG

with projection to NG ⊗O 1G or to 1G ⊗O NG induces the ‘identity mapping’ (i.e., 
x 1→ x ⊗ 1G or x 1→ 1G ⊗ x respectively). !

Corollary 6.6. Let G and G′ be two smooth group schemes over S. Let G0 ⊂ G be an 
open subscheme containing e, the identity section, and let G′

0 ⊂ G′ be, similarly, an open 
subscheme containing e′, the identity section. We view (G0, e) and (G′

0, e
′) as (smooth) 

S-pointed schemes. Let ι : (G0, e) → (G′
0, e

′) be a morphism of S-pointed schemes that 
is a closed immersion of schemes (but ι is not required to extend to a homomorphism, 
or even a morphism, of the ambient groups). We have a commutative diagram

G×G

γ

(G×G)[2]
=

γ[2]

(G0 ×G0)[2]
ι×ι

γ[2]

(G′
0 ×G′

0)[2]
=

γ′
[2]

(G′ ×G′)[2]

γ′
[2]

G′ ×G′

γ′

G G[2]
=

G0[2]
ι

G′
0[2]

=
G′

[2] G′.

(6.7)
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Remark 6.8. We will make use of this discussion in the case where G = A is the Néron 
model of an abelian variety, and G′ = Affn is n-dimensional affine space. The key fact 
we use is Proposition 6.4 and the commutativity of the inner square in diagram (6.7)
(and this follows directly from the formula (6.5)).

7. A prepared group scheme

Fix a number field K.

Projective space over OK . For n a positive integer, consider n-dimensional projective 
space Pn viewed as a scheme (over Z, or more relevant to our context, over OK). A point 
in Pn rational over K (which is the same as being rational over OK) can be represented 
in n + 1 homogeneous coordinates (not all of them 0),

(x1 : x2 : · · · : xn+1)

for xi ∈ K noting that such a representation is unique up to scalar multiplication by 
a nonzero element in K. Two such vectors (x′

1 : x′
2 : · · · : x′

n+1), (x1 : x2 : · · · : xn+1)
are equivalent if and only if there is a nonzero element c ∈ K such that x′

i = cxi

for i = 1, 2, . . . n + 1. Any such point can therefore be represented by such a vector 
with xi ∈ OK . (Below, we keep to the convention that the colons signify that we are 
considering “homogeneous coordinates.”)

Definition 7.1. In the special case that the entries a1, a2, . . . , an+1 of an n + 1-vector

α = (a1 : a2 : · · · : an+1)

generates a principal ideal “ gcd(α)” = (a) ⊂ OK , define

• the denominator of α to be

δ(α) := an+1/a ⊂ OK ,

noting that δ(α) is only well-defined up to a unit in K—i.e., it is only the principal 
ideal generated by δ(α) that is well-defined,

• the numerator of α to be

ν(α) := the ideal (a1/a, a2/a, . . . , an/a) ⊂ OK ,

noting that ν(α) and δ(α) are relatively prime—i.e., the ideal generated by ν(α) and 
δ(α) is the unit ideal.
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Affine space over OK . We view affine n-dimensional space

Spec(OK [y1, y2, . . . , yn]) =: Affn ≃ Gn
a

as an additive group scheme over OK ; with

e := (0, 0, . . . , 0) ∈ Affn

its zero-section (cut out by the ideal I := (y1, y2, . . . , yn) ⊂ OK [y1, y2, . . . , yn]).
Letting Pn−1 ≃ H ⊂ Pn denote the hyperplane defined by xn+1 = 0, we have an 

isomorphism

Affn ≃ Pn \H ⊂ Pn,

defined by

(a1, a2, . . . , an) 1→ (a1 : a2 : · · · : an : 1).

“Going the other way:” if (a1 : a2 : · · · : an : an+1) is a homogeneous representative 
of a point a ∈ Pn(OK), where an+1 ̸= 0, denote by

a! := ( a1
an+1

,
a2

an+1
, . . . ,

an
an+1

) ∈ Affn(OK [ 1
an+1

]
)
. (7.2)

Remark 7.3. If the ideal (a1, a2, . . . , an) ∈ OK is relatively prime to the ideal (an+1)
then a! reduces to a well-defined element—call it a!

[2]—in the quotient

On
K/(a1, a2, . . . , an)2On

K .

Visibly, a!
[2] is dependent only on the equivalence class of (a1 : a2 : · · · : an : an+1)

as long as the hypothesis in Remark 7.3 holds. This will be relevant in the discussion 
below.

We will be working with the quotient: OK → OK [y1, y2, . . . , yn]/I2. Form the corre-
sponding closed subscheme

Affn
[2] := Spec(OK [y1, y2, . . . , yn]/I2) ⊂ Affn = Spec(OK [y1, y2, . . . , yn]).

An embedded group scheme

Assumption 7.4. Let G be a smooth connected quasi-projective group scheme over S =
Spec(OK). Assume further that the conormal bundle module, NG is free over OK (see 
Lemma 6.1 and Remark 6.2).
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There is a positive integer n and an OK-morphism of schemes

G
ι
↪→ Pn

that is a local immersion, identifying G with a locally closed OK -subscheme of Pn.
Denote by e the zero-section of G over OK , and let I be the sheaf of ideals in G that 

cuts out e.
Recall the construction G[2] ⊂ G of §6; i.e., the subscheme of G cut out by I2.

Proposition 7.5. If Ḡ ⊂ Pn is the Zariski-closure of the OK-subscheme G ⊂ Pn, then 
setting

X := Ḡ \G ⊂ Pn,

the support of X is disjoint from the zero-section e.

Proof. Since the group scheme G is smooth along the zero-section, the injection G ↪→
Ḡ induces an isomorphism on normal bundles along the zero-section, establishing the 
proposition. !

Remark 7.6. If, for example, G = A, the Néron model of an abelian variety A over K, 
then the support of X in Proposition 7.5 is concentrated in fibers of A → Spec(OK)
over the finite punctual subscheme Σbad(A) ⊂ Spec(OK) where Σbad(A) is the set of 
bad primes of A, i.e.:

Σbad(A) := ⊔p|cond(A) Spec(kp).

(Here kp is the residue field of the prime p of K, and cond(A) is the conductor of A/K .)

Definition 7.7. An injective (local immersion) OK -morphism ι : G ↪→ Pn will be called
well-arranged if both of the following properties hold:

• ι takes any point P ∈ G(OK) to a point ι(P ) ∈ Pn that can be written in homo-
geneous coordinates (a1 : a2 : · · · : an+1) with ai ∈ OK , and such that the ideal 
generated by the entries, (a1, a2, . . . , an+1) ⊂ OK , is the unit ideal,

• ι takes the zero-section, e ∈ G to the point (0 : 0 : · · · : 0 : 1)—this being written in 
homogeneous coordinates; i.e., xn+1 = 1:

e
ι

e e
=

G
ι

Pn Affn
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Proposition 7.8. Let

S
s

=

Pn

S

be an S-section. Then there is an injective S-morphism v : Pn ↪→ PN for some N such 
that

(1) the image of any S-section of Pn in PN , when written in homogeneous coordinates 
(a1 : a2 : · · · : aN+1) has the property that the ideal generated by the entries, 
(a1, a2, . . . , aN+1) ⊂ OK , is a principal ideal in OK , and hence after scaling can 
be taken to be the unit ideal, and

(2) v(s) = (0 : 0 : · · · : 0 : 1).

Proof. Let h = hK denote the class number of K. Let

vn,h : Pn → PN

(with N :=
(n+h

n

)
− 1) be the h-fold Veronese embedding of Pn

/OK
in PN

/OK
(see for 

example [Sha74, §1.4.4.2]), i.e., the embedding defined by the rule

(x1, x2, . . . xn+1)
vn,h

(µ1(x1, . . . , xn+1) . . . , µN (x1, . . . , xn+1)),

where the entries of the vector on the right, µk(x1, . . . , xn+1), run through the N + 1
monomials of degree h in the variables x1, x2, . . . , xn+1.

For any K-valued point α ∈ Pn(K) represented by the n + 1-vector (a1, a2, . . . an+1)
the OK-fractional ideal generated by the entries µk(a1, . . . , an+1) of the vector vn,h(α)
is the h-th power of the fractional ideal generated by the entries of α. So this (fractional) 
ideal is principal. By scaling our homogeneous coordinates by dividing each entry by the 
inverse of a generator of that principal ideal we get assertion (1) of the proposition.

For part (2) of the proposition, let the image of the section s (i.e., vn,h(s) ∈ PN (OK)) 
be represented by the point τ := (τ1, τ2, . . . , τN+1) ∈ AffN+1(OK) where the entries 
generate the unit ideal. Let W := AffN+1(OK) and let T := τOK ⊂ W be the cyclic 
OK -module generated by τ . Then W0 := W/T is a torsion-free OK-module, and hence 
projective, so the exact sequence

0 −→ T −→ W −→ W0 −→ 0

splits. Therefore W ∼= W0 ⊕ T , and by the classification theorem for projective modules 
(of finite rank) over Dedekind domains (see for example [FT93, Theorem II.4.13]), since 
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W and T are free over OK , so is W0. It follows that we can find an OK-basis of W
where the first N elements of that basis generate W0. That is, there is an OK-linear 
change of coordinates of AffN+1 so that after that change AffN+1 is given by coordi-
nates (z1, z2, . . . , zN , zN+1) where AffN is cut out by zN+1 = 0 and the element τ has 
coordinates (0, 0, . . . , 0, 1). !

Corollary 7.9. Let G be a group scheme over S = Spec(OK) satisfying Assumption 7.4. 
There is a well-arranged injective S-morphism G 

ι
↪→ Pn (for some positive number n). 

For any rational point, P : S → G, its image, λ(P ) := ιP (S) ∈ Pn, when written in 
homogeneous coordinates λ(P ) = (λ1(P ), . . . , λn+1(P )) has the property that the entries 
λi(P ) for i = 1, 2, . . . , n generate a principal ideal in OK—equivalently: one can arrange 
the homogeneous coordinates of λ(P ) by appropriate scalar multiplication so that the 
entries generate the unit ideal.

8. The open piece in Ḡ

From now on, we will fix a quasi-projective group scheme G over S = Spec(OK) as 
in Assumption 7.4 such that its conformal bundle module NG is free over OK (using 
Lemma 6.1) and with a fixed well-arranged injective S-morphism G 

ι
↪→ Pn (this being 

guaranteed to exist by Corollary 7.9).
Recall its Zariski-closure G ⊂ Ḡ

ι
↪→ Pn as defined in 7.5. Letting H ⊂ Pn be the 

hyperplane described in §7 above, i.e., cut out by xn+1 = 0. Let B := Ḡ∩H ⊂ G denote 
the divisor in Ḡ at infinity.

Definition 8.1. Let Ḡ0 ⊂ Ḡ be the Zariski-dense open (OK-scheme) defined by the carte-
sian diagram:

e

=

Ḡ0 := Ḡ ∩ Affn

ι

Ḡ \B

ι

G

ι

e Affn =
Pn \H Pn

The OK-scheme Ḡ0 is an affine scheme, immersed as a closed subscheme of Affn, and 
contains an open subscheme of the zero-section e in G.

The injection

Ḡ0
ι
↪→ Affn

is induced by the (surjective) ring homomorphism

ι : OK [x1, x2, . . . , xn] −→ OK [x1, x2, . . . , xn]/(t1, t2, . . . , tm)

where
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tj(x1, x2, . . . , xn) ∈ I ⊂ OK [x1, x2, . . . , xn]; for j = 1, 2, . . . ,m

are the polynomials (all with ‘no constant term’) that cut out the affine subscheme Ḡ0
in Affn. (Recall that I is the ideal generated by the xi.)

Passing to quotients by I2 we have:

ι : OK [x1, x2, . . . , xn] OK [x1, x2, . . . , xn]/(t1, t2, . . . , tm)

ι[2] : OK [x1, x2, . . . , xn]/I2 OK [x1, x2, . . . , xn]/(t1, t2, . . . , tm, I2)

(8.2)

these being the ring homomorphisms inducing the morphisms of affine schemes:

Affn Ḡ0

Affn
[2] Ḡ0,[2] = G[2].

Lemma 8.3. After an appropriate OK-linear automorphism of the group scheme Affn we 
may rewrite the surjective ring homomorphism of (8.2)

ι[2] : OK [x1, x2, . . . , xn]/I2 → OK [x1, x2, . . . , xn]/(t1, t2, . . . , tm, I2) (8.4)

that induces the group scheme morphism G[2]
ι
↪→ Affn

[2] as the projection

ι[2] : OK [x1, x2, . . . , xn]/(x1, x2, . . . , xn)2 → OK [x1, x2, . . . , xd]/(x1, x2, . . . , xd)2

where d is the dimension of the group scheme G/K , and the mapping ι[2] is given by:

• xi 1→ xi if i ≤ d, and
• xi 1→ 0 if d < i ≤ n.

Proof. This uses the fact that the group scheme G is smooth, its conormal bundle module 
NG is free over OK , and the injection G ↪→ Pn is well-arranged. To be explicit, consider 
the ideal J := (t1, t2, . . . , tm, I2), so we may rewrite (8.4) above as

ι[2] : OK [x1, x2, . . . , xn]/I2 → OK [x1, x2, . . . , xn]/J,

and we can find n − d generators for the free OK-module J/I2. Letting {tj ; j =
1, 2, . . . , n − d} ⊂ J be lifts of those generators, the ideal J := (t1, t2, . . . , tn−d, I2)
as positioned in the sequence of ideals

I2 = (x1, x2, . . . , xn)2 ⊂ J = (t1, t2, . . . , tn−d, I
2) ⊂ I = (x1, x2, . . . , xn) ⊂ OK
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has the property that J/I2 is a free OK-module with n − d generators

{tj ; j = 1, 2, . . . , n− d}

and is—as (free) OK-submodule of the free OK-module I/I2—a direct summand. That 
is, there is a free OK -submodule U ⊂ I/I2 such that:

I ′ 2 = J/J2 ⊕ U .

It follows that after a linear change of variables (over OK) we can arrange it so that 
ti ≡ xd+i mod I2 for i = 1, 2, . . . , n − d. !

Corollary 8.5. Keeping to the above notation, and the terminology of §6 we have:

(1) RG = OK [x1, x2, . . . , xd]/(x1, x2, . . . , xd)2,

(2) NG =
d⊕

i=1
x̄iOK where x̄i is the image of xi in OK [x1, x2, . . . , xd]/(x1, x2, . . . , xd)2,

(3) N ∗
G =

d⊕

i=1
x̄∗
iOK where x̄∗

i : NG → OK is the ring homomorphism sending x̄i to 

1 ∈ OK and x̄j to 0 if j ̸= i.

9. Vanishing and congruence ideals

Recall that we have fixed a group scheme G satisfying Assumption 7.4 above. Denote 
by e : S → G its identity-section. To say that G is quasi-projective means the structure 
morphism G → S is a quasi-projective morphism (see [Gro61, Definition 5.3.1]) hence is 
of finite type, and since S is an affine noetherian scheme, G → S is a morphism of finite 
presentation. Let P be an OK -point of G.

Definition 9.1. By the vanishing ideal of P we mean the ideal zP ⊂ OK defining the 
intersection of the S-section P with the identity section.

By the congruence ideal of P we mean the ideal cP ⊂ OK defining the intersection of 
the S-section P with the subscheme G[2] ⊂ G.

That is, the ideals zP and cP are the ideals that fit into diagram (9.2) below where 
the rectangles are cartesian.

Spec(OK/zP ) Spec(OK/cP )

P[2]

S

P

S
e

≃

G[2]

≃

G

Spec(OK) Spec(RG)

(9.2)
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Lemma 9.3.

(1) The ideal cP is the square of the ideal zP .
(2) For P = e, the identity section, we have that ze and ce are equal to (0). If P ̸= e

then zP and cP are nonzero ideals.
(3) Let Q, P be OK-valued points of G. Then (writing the group law of G multiplicatively) 

zQ·P is contained in the ideal (zQ, zP ) generated by zQ and zP .

Proof. (1) Recalling that the identity section S
e
↪→ G is the subscheme cut out by the 

sheaf of ideals I ⊂ OG, and G[2]
e
↪→ G is the subscheme cut out by the square of 

that sheaf of ideals I2 ⊂ OG, cartesian-ness of (9.2) then implies that ideal cP is the 
square of the ideal zP .

(2) The cartesian square

Spec(OK/ze) S

P=e

S
e

G

gives us that Spec(OK/ze) = S; so ze = (0), and hence ce = z2
e = (0) as well.

(3) Briefly: note that P and Q restricted to the base Spec(OK/(zP , zQ)) are both equal 
to the identity section (over that base), so their product is as well. !

Lemma 9.4. For ν ∈ N, let Q = P ν . Then zQ ⊂ zP .

Proof. Induction on ν, using Lemma 9.3(3). !

10. Coordinates of rational points

Assume now that we have arranged coordinates as in Lemma 8.3 and Corollaries 8.5
and 7.9. The OK-rational point P of G and its image ι(P ) ∈ Pn fit into a diagram

S = Spec(OK) P
G

ι
Pn

Spec(OK/cP ) G[2]
ι[2]

Affn
[2]

Spec(OK/zP ) e
≃

e

and the image ι(P ) := ιP (S) ∈ Pn has homogeneous coordinates
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λ(P ) =
(
λ1(P ) : λ2(P ) : · · · : λn(P ) : λn+1(P )

)
∈ Affn+1(OK)

where the elements

{λ1(P ),λ2(P ), . . . ,λn(P ),λn+1(P )} ⊂ OK

generate the unit ideal. In particular, the ideal generated by {λ1(P ), . . . , λn(P )} and 
the principal ideal generated by λn+1(P ) are relatively prime ideals in OK . Also, using 
Lemma 8.3 and Corollary 8.5 we may assume that λj(P ) = 0 for d < j ≤ n.

Proposition 10.1. The vanishing ideal zP is the ideal generated by

{λ1(P ), . . . ,λn(P )}.

Proof. This follows directly from the definitions. !

If

a := (λ1 : λ2 : · · · : λn : λn+1) ∈ On+1
K

are homogeneous coordinates for the point P with properties described above, then 
letting δ(P ) := λn+1 (i.e., the denominator), with notation defined in (7.2) above we 
may write:

a! = (λ1(P )
δ(P ) ,

λ2(P )
δ(P ) , . . . ,

λn(P )
δ(P ) ) ∈

(
OK [ 1

δ(P ) ]
)n

Write the morphism P[2] : Spec(OK/cP ) → G[2] as a homomorphism of the underlying 
affine rings,

P[2] : OK ⊕NG = RG → OK/cP . (10.2)

Consider the OK-dual of the locally free OK-module NG

N ∗ = N ∗
G = HomOK (NG,OK) (10.3)

Definition 10.4. If P is an S-section of G/S let ∂P ∈ N ∗⊗OK (OK/cP ) denote the element 
(in N ∗⊗OK (OK/cP ) = N ∗⊗OK (OK/z2

P )) determined by the OK-homomorphism P[2]
restricted to NG in (10.2).

Using the quotation marks below to indicate passing to the quotient

OK [ 1
δ(P ) ] → OK/z2

P

we get
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a!
[2] = “

(
λ1(P )
δ(P ) ,

λ2(P )
δ(P ) , . . . ,

λd(P )
δ(P ) , 0, 0, . . . 0

)
” ∈ (OK/z2

P )n,

and using Lemma 8.3 and (8.4), we get that coordinates for ∂P are given by:

∂P = “
(
λ1(P )
δ(P ) ,

λ2(P )
δ(P ) , . . . ,

λd(P )
δ(P )

)
” ∈ zP (N ∗

G ⊗OK OK/z2
P ) ⊂ (N ∗

G ⊗OK OK/z2
P ).

(10.5)

Definition 10.6. If R is a commutative ring, and W is a free R-module of finite rank, an 
element w ∈ W is called a basis element if any of the following equivalent properties 
hold:

• W/(Rw) is a free R-module;
• w is a member of a basis of the free R-module W ;
• if I is any nonunit ideal of R then w /∈ IW .

Lemma 10.7. Let P be a section of G that is not the identity section, so zP ̸= 0. Suppose, 
as well, that zP is not the unit ideal. Let

WP := N ∗ ⊗OK (zP /z2
P ) ⊂ N ∗ ⊗OK (OK/z2

P ).

Then

(1) ∂P ≡ 0 (mod N ∗ ⊗OK zP ), so ∂P ∈ WP ,
(2) the OK/zP module WP is free over OK/zP ,
(3) ∂P is a basis element of WP .

Proof. Assertions (1) and (3) follow directly from the definition of vanishing ideal, while 
assertion (2) follows from the fact that N ∗ is locally free over OK . !

Remark 10.8. With notation as in Lemma 10.7, if P, Q are S-sections with property that 
zQ ⊂ zP we have the natural OK-module homomorphism

WQ
ι(P,Q)−−−−−→ WP .

Proposition 10.9. ∂(P ·Q) ≡ ∂(P ) + ∂(Q) (mod (cQ, cP )).

Proof. The mapping (P ·Q)[2] : RG → OK is given by the composition of the maps

RG
γ[2]−→ RG×OK

G
φ−→ OK

where φ restricted to NG⊗OK 1 is P[2]⊗OK 1, and φ restricted to 1 ⊗OK NG is 1 ⊗OK Q[2]. 
The result follows from Proposition 6.4. !
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Corollary 10.10. Let Q = P ν . Then

∂Q = ν · ∂P ∈ WP .

Proof. This follows from Lemmas 9.3(1) and 9.4 and Proposition 10.9. !

Part 3. Proof of the main theorems

We will keep to the convention that a field of algebraic numbers that is allowed to 
have infinite degree over Q will be put in boldface, e.g., L,K, but if it is assumed to be 
a number field, i.e., a field of finite degree over Q, it will be in normal type, e.g., L, K.

11. Capturing subrings by congruences

Lemma 11.1. Let L/K be an extension of number fields, OL/OK their corresponding 
rings of integers, and let M/K be the Galois closure of L/K. Let α ∈ OL and b ∈ OK . 
Suppose there exists an ideal I ⊂ OK with the following properties:

|NM/Q(IOM )| > |NM/Q(α− β)| for every conjugate β of α over K, (11.2)

α ≡ b (mod IOL). (11.3)

Then α ∈ OK .

Proof. Since I ⊂ OK , it follows from (11.3) that every conjugate β of α satisfies β ≡ b

(mod IOM ). Therefore α− β ≡ 0 (mod IOM ). Consequently,

NM/Q(α− β) ≡ 0 (mod NM/Q(IOM ))

in Z. Thus, either α = β or

|NM/Q(α− β)| ≥ |NM/Q(IOM )|

which contradicts (11.2). !

Norm inequalities. While it is clear that a congruence like (11.3) can be rewritten as a 
divisibility condition in the ring of integers assuming we are given generators of the ideal 
I, it is not a priori clear how to convert (11.2) into a polynomial equation with variables 
ranging over that ring. The propositions below explain how it can be done.

Definition 11.4. For m a positive integer let C(m) denote (m + 1)2 times the smallest 
positive integer greater than the maximum absolute value of any minor of the matrix
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⎛

⎜⎜⎜⎝

0 0 . . . 1
1 1 . . . 1
. . .

mm mm−1 . . . 1

⎞

⎟⎟⎟⎠
. (11.5)

Proposition 11.6. Let M/Q be a Galois number field extension of degree m. Suppose 
α ∈ OM and define

u = u(m,α) := C(m) · α(1 − α) · · · (m− α). (11.7)

Then for every conjugate β of α over Q and every ideal I of OM contained in um2OL, 
we have

|NM/Q(α− β)| < |NM/Q(IOM )|.

Proof. Let g(T ) be the characteristic polynomial of α over Q as an element of M . Let 
g(T ) = Tm + am−1Tm−1 + . . . + a0 with ai ∈ Z. For every r ∈ Z we have

NM/Q(r − α) = g(r). (11.8)

Put C := C(m). By definition of u, if 1 ≤ r ≤ m, then

r − α = u

C
∏m

i=1,i̸=r(i− α) . (11.9)

Put

wr :=
m∏

i=1,i ̸=r

(i− α).

Then from (11.8) and (11.9) it follows that

rm + am−1r
m−1 + . . . + a0 = 1

CmNM/Q(wr)
NM/Q(u) = crNM/Q(u),

where |cr| ≤ 1
Cm . Now consider the following linear system

⎛

⎜⎜⎜⎝

0 0 . . . 1
1 1 . . . 1
. . .

mm mm−1 . . . 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
am−1
. . .

a0

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

c0NM/Q(u)
c1NM/Q(u)

. . .

cmNM/Q(u)

⎞

⎟⎟⎟⎠
.

Using Cramer’s rule we obtain that ai = Di
D , where
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Di =

∣∣∣∣∣∣∣∣∣

0 0 . . . c0NM/Q(u) . . . 1
1 1 . . . c1NM/Q(u) . . . 1
. . .

(m)m (m)m−1 . . . cmNM/Q(u) . . . 1

∣∣∣∣∣∣∣∣∣

,

with the column (crNM/Q(u)), r = 0, . . . , m replacing the i-th column of the matrix 
(11.5) and D is the discriminant of (11.5). Factoring out NM/Q(u) and expanding along 
the i-th column we obtain the following:

∣∣∣∣
Di

NM/Q(u)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

0 0 . . . c0 . . . 1
1 1 . . . c1 . . . 1
. . .

mm mm−1 . . . cm . . . 1

∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣

m∑

r=0
±crMr,i

∣∣∣∣∣ ≤
m∑

r=0
|cr||Mr,i|,

where Mr,i is the minor of (11.5) corresponding to the elimination of the r-th row and 
the i-th column. By assumption

|Mr,i| <
C

(m + 1)2 ,

and by construction |cr| ≤ 1
Cm . Thus, for all i = 0, . . . , m, we have that

|Di| <
1

(m + 1)Cm−1 |NM/Q(u)|.

Finally, taking into account that |D| > 1, we conclude that

|ai| < |Di| <
1

(m + 1)Cm−1 |NM/Q(u)|.

Suppose now that some root γ of g is greater in absolute value than |mar| for all r =
0, . . . , m − 1. Let |amax| = max0≤i≤m−1 |ai|. In this case we have that

|γm| = |− am−1γ
m−1 − . . .− a0| ≤

m−1∑

r=0
|arγr| ≤ |mamaxγ

m−1| < |γm|,

and we have a contradiction. Thus, every root γ of g satisfies

|γ| < 1
Cm−1 |NM/Q(u)| ≤ 1

2 |NM/Q(u)|,

and for any two roots γ and δ of g we have that

|γ − δ| < |NM/Q(u)|

(we may assume m > 1 or there is nothing to prove). Now
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|NM/Q(α− β)| < |NM/Q(u)m(m−1)| < |NM/Q(IOM )|. !

Lemma 11.10. Let M be a finite Galois totally real extension of Q, and put m := [M : Q]. 
Further, let x ∈ OM be such that |σ(x)| > 1 for every embedding σ : M ↪→ R. Then for 
every γ ∈ Gal(M/Q) we have

|NM/Q(x− γ(x))| ≤ 2mNM/Q(x2).

Proof. Let σ, τ : M ↪→ R be embeddings. Since |σ(x)|, |τ(x)| > 1 we have that

|σ(x) − τ(x)| < 2|σ(x)τ(x)|,

so

|NM/Q(x− γ(x))| =
∏

σ

|σ(x) − (σ ◦ γ)(x)|

<
∏

σ

2|σ(x)(σ ◦ γ)(x)| = 2m
∏

σ

|σ(x)|2 = 2mNM/Q(x2). !

Corollary 11.11. Let α be an algebraic integer contained in some totally real Galois ex-
tension M/Q and such that σ(α) > 1 for every embedding σ : M ↪→ R. Let I be an ideal 
of M such that I ⊂ (2α + 1)2OM .

Then for any conjugate β of α over Q we have that |NM/Q(α−β)| ≤ |NM/Q(IOM )|.

Proof. Let v := 2α + 1 and m := [M : Q]. For every embedding σ : M ↪→ R we have

2 ≤ 2σ(α) ≤ σ(v),

and therefore

2m ≤ 2mNM/Q(α) ≤ NM/Q(v).

By Lemma 11.10, we now have

|NM/Q(α− β)| ≤ 2mNM/Q(α2) < NM/Q(v2) ≤ NM/Q(I). !

The basic congruence relation for extensions of finite degree and totally real fields. Fix 
L/K an extension of number fields and let m denote the degree of M , the Galois closure 
of L/Q.

For a positive integer m and an algebraic integer α ∈ OL define

D(m,α) := u(m,α)m2 = (Cα(1 − α) · · · (m− α))m2
∈ OL,

where C = C(m) is as in Definition 11.4 and u(m, α) is as in Definition 11.7.



32 B. Mazur et al. / Journal of Number Theory 254 (2024) 1–64

Putting together Lemma 11.1, Proposition 11.6 and Corollary 11.11 we immediately 
obtain these corollaries.

Corollary 11.12. Let E ⊂ OL be the set of all elements α ∈ OL such that there exists 
b ∈ OK and an ideal I ⊂ OK satisfying

IOL ⊂ D(m,α)OL, α ≡ b (mod IOL).

Then E ⊂ OK .

Corollary 11.13. Let L be a totally real extension of Q, possibly infinite. Let K ⊂ L be 
a number field. Let E ⊂ OL be the set of all elements α ∈ OL such that there exists 
b ∈ OK , an ideal I ⊂ OK , and u1, u2, u3, u4 ∈ OL satisfying

IOL ⊂ (2α + 1)2OL, α = 1 + u2
1 + . . . + u2

4, α ≡ b (mod IOL).

Then E ⊂ OK .

Remark 11.14. The equations for the totally real case are the same across all pairs of 
totally real fields K and L, including the case where one or both extensions are infinite. 
We will show that the same is true in the case of a quadratic extension of a totally real 
field.

12. Quadratic extensions of totally real fields

We treat separately quadratic extensions of totally real fields because if the totally 
real field is of infinite degree over Q, this case is technically much more complicated than 
the case of finite extensions or the case of totally real fields. The main reason for the 
complications is the difficulty with bounds on norms.

Norm inequalities for quadratic extensions of totally real fields. The construction of 
diophantine bounds on norms of elements of a non-totally real quadratic extension of 
a totally real field of infinite degree over Q is not as simple as the analogous construc-
tions in the case of extensions of finite degree over Q or totally real fields of arbitrary 
degree. We construct a diophantine definition of these bounds in several steps starting 
with Lemma 12.1 below and continuing with Lemma 12.5, Corollaries 12.6, 12.13, 12.15
and 12.16. Unlike diophantine definitions of bounds in the other two cases, in the case 
of non-totally real quadratic extensions of totally real fields of infinite degree over Q, we 
will need to use diophantine stability of a commutative group scheme in the extension 
F/L, where L is a totally real field possibly of infinite degree over Q and F is a non-
totally real quadratic extension of L. The group scheme, a twist of Gm, is constructed 
in §12.
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Proposition 12.1. Let L be a possibly infinite totally real extension of Q and let F be a 
quadratic extension of L. Let δ ∈ OF, δ2 = d ∈ OL, F = L(δ). Let x = y0 + y1δ ∈ OF
with y0, y1 ∈ L, and let w ∈ L be such that

for all embeddings σ : F ↪→ R we have that 1 < σ(x) < σ(w), (12.2)
for all embeddings τ : F ↪→ C with τ(F) ̸⊂ R we have that |τ(w)| ≥ 1. (12.3)

Let L ⊂ L be a number field containing d, y0, y1 and w. Let F = L(δ). Then 
|NF/Q(δy1)| ≤ |NF/Q(xw)|.

Remark 12.4. Recall that the inequality involving σ can be converted to an equation by 
Proposition 4.9.

Proof. If τ is a non-real embedding of F , then |τ(y1δ)| ≤ |τ(x)|. If σ is a real embedding 
of F , then let σ̂ be an embedding of F such that σ|L = σ̂|L but σ̂ ̸= σ. In other words, 
if σ(x) = σ(y0) + σ(δ)σ(y1), then σ̂(x) = σ(y0) − σ(δ)σ(y1). Then either

|σ(x)| = |σ(y0)| + |σ(δy1)|,

or

|σ̂(x)| = |σ(y0)| + |σ(δy1)|.

So, either |σ̂(x)| ≥ |σ̂(δy1)| or |σ(x)| ≥ |σ(δy1)|. Since σ(w) = σ̂(w), for all real em-
beddings σ of F we have that |σ(w)| > |σ(δy1)|. Let Σ be the collection of all real 
embeddings of F , and let T be the collection of all embeddings of F that are not real. 
Now we have the following inequalities:

|NF/Q(y1δ)| =
∏

τ∈T

|τ(δy1)|
∏

σ∈Σ
|σ(δy1)|

≤
∏

τ∈T

|τ(x)|
∏

σ∈Σ
|σ(wx)|

≤
∏

τ∈T

|τ(x)|
∏

σ∈Σ
|σ(x)|

∏

τ∈T

|τ(w)|
∏

σ∈Σ
|σ(W )| = |NF/Q(xw)|. !

For Proposition 12.1 to be useful we need to be provided with an existentially defined 
bound “w” that satisfies (12.2) and (12.3). This is Corollary 12.6 below. In preparation, 
we have:

Lemma 12.5. Let K be a totally real number field. Let Σ = {σ1, . . . , σn} be the collection 
of all embeddings of K into R. Let Ω ⊂ K be an infinite set. Then for any integer N > 0
there exists u ̸= v ∈ Ω such that for all σ ∈ Σ we have that
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∣∣∣∣∣σ
([( 1

u− v

)2
+ 1

]
(u2 + 1)

)∣∣∣∣∣ > N.

Proof. As an infinite subset of R, for each embedding σ of K into R, the set σ(Ω) is 
either unbounded or it has a limit point and therefore contains a non-constant Cauchy 
sequence. Assume without loss of generality that σ1(Ω) contains a Cauchy sequence 
{σ1(ui)} such that all elements of the sequence are distinct. If {|σ2(ui)|} is unbounded, 
then select a subsequence {ui,2} such that {|σ2(ui,2)|} → ∞. If {σ3(ui,2)} is bounded, 
then let {ui,3} be a subsequence of {ui,2} such that {σ3(ui,2)} is a Cauchy sequence. 
Continuing by induction we construct a sequence {ui,n} such that for all σ ∈ Σ we have 
that {σ(ui,n)} is either a Cauchy sequence or is going to infinity. Now let N > 0 be 
given. Choose j ∈ Z>0 such that for all σ ∈ Σ and all ℓ ≥ j either |σ(uℓ,n)| > N or 
|σ(uj,n − uℓ,n)| < 1

N . We claim that for all σ ∈ Σ, ℓ > j it is the case that
∣∣∣∣∣σ

([( 1
uj,n − uℓ,n

)2
+ 1

]
(u2

j,n + 1)
)∣∣∣∣∣ > N.

Indeed, for each σ ∈ Σ we have that either |σ(uj,n)| > N or
∣∣∣∣σ

( 1
uj,n − uℓ,n

)∣∣∣∣ > N

while the σ-images of both factors are always bigger than 1. !

Corollary 12.6. Let L ⊂ F be as in Proposition 12.1. Let Ω ⊂ L contain infinitely many 
elements of some number field K ⊂ L. Then for any x ∈ OF there exist u, v ∈ Ω such 
that

w :=
[( 1

u− v

)2
+ 1

]
(u2 + 1)

satisfies (12.2) and (12.3).

A special case of stability for quadratic extensions of totally real fields. As we have 
mentioned above, to construct diophantine bounds on norms of elements of non-totally 
real extensions of degree 2 of totally real fields, we will need to use a particular case 
of diophantine stability. We discuss this case in this section. More specifically, we con-
sider diophantine stability of multiplicative groups over rings of integers in quadratic 
extensions F/L, where L is a totally real possibly infinite algebraic extension of Q.

J. Denef and L. Lipshitz were the first to use this phenomenon for the purposes 
of existential definability over finite extensions (see [DL78]). The third author used it 
over infinite extensions in conjunction with diophantine stability of elliptic curves (see 
[Shl09]).
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Here we present a different proof of these results using the vocabulary of diophantine 
stability. Our goal is to show that this case is of the same nature as other instances of 
diophantine stability already discussed in this paper. We begin by considering number 
fields and then move to infinite extensions.

The case of finite extensions. Suppose M/L is a quadratic extension of fields. We denote 
by GM/L

m the twist of the multiplicative group Gm over L by the quadratic character 
corresponding to M/L, as defined for example in [MRS07]. If F/L is a field extension 
and F ∩M = L, then

GM/L
m (OF ) = {x ∈ O×

MF : NMF/Fx = 1}, (12.7)

GM/L
m (OL) = {x ∈ O×

M : NM/Lx = 1}. (12.8)

Lemma 12.9. Suppose L is a totally real number field, and F is a quadratic extension 
of L. Suppose M/L is a quadratic extension such that for every infinite place v of L, v
ramifies in M/L if and only if v does not ramify in F/L. Then

(1) [GM/L
m (OF ) : GM/L

m (OL)] is finite,
(2) if F is not totally real, then GM/L

m (OL) has elements of infinite order,
(3) if n is an integer, n ≥ 3, then ker{GM/L

m (OF ) → GM/L
m (OF /nOF )} ⊂ GM/L

m (OL).

Proof. Consider the diagram of fields in the hypothesis of the lemma.

MF

F M

L

Let V be the set of archimedean places of L (all real, by hypothesis). Write V = VF ⊔VM

where VF ⊂ V is the subset consisting of the places that do not ramify in F/L and VM

is the subset consisting of the places that do not ramify in M/K. So

[L : Q] = |V | = |VF | + |VM |.

We have that rF := 2 · |VF | is the number of real places of F and rM := 2 · |VM | is the 
number of real places of M . Letting sF , sM denote the number of complex places of F
and M respectively, we have: sF = |VM | and sM = |VF |. As for MF/L we have that MF

is totally complex and every archimedean place of L lifts to two complex places of MF . 
Letting uK denote the rank of the group of units of a field K, we have, by Dirichlet’s 
Unit Theorem:
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uL = |V |− 1, uM = 2|VM | + |VF |− 1,

uF = 2|VF | + |VM |− 1, uMF = 2|V |− 1

so that

uMF − uF = |VM | = uM − uL.

Let G denote the group GM/L
m . The above combined with (12.7), shows that

rankZG(OF ) = uMF − uF = |VM |,

rankZG(OL) = uM − uL = |VM |, (12.10)

so that rankZG(OF ) = rankZG(OL). This proves (1).
Equation (12.10) shows that rankZG(OL) > 0 unless |VM | = 0, i.e., unless F is totally 

real. This proves (2).
Suppose now that x ∈ ker{G(OF ) → G(OF /nOF )}. Using (12.7) we can view x ∈

O×
FM such that x ≡ 1 (mod n). By (1), there is a positive integer k such that xk ∈ O×

M . If 
σ is the nontrivial automorphism of MF/M , then (x/xσ)k = 1, so x/xσ is a root of unity. 
But x/xσ ≡ 1 (mod n), so we have x/xσ = 1, i.e., x ∈ M . Since NM/Lx = NMF/Fx = 1, 
we have x ∈ G(OL) by (12.7). This proves (3). !

Lemma 12.11. Suppose L is a totally real number field, and F is a quadratic extension 
of L. Then there is a quadratic extension M/L such that for every infinite place v of L, 
v ramifies in M/L if and only if v does not ramify in F/L.

Proof. Choose d ∈ L such that F = L(
√
d) and let M = L(

√
−d). Then for every infinite 

place v of L, −α is negative at v if and only if α is positive at v, so v ramifies in M/L

if and only if v doesn’t ramify in F/L. !

The case of quadratic extensions of totally real fields L of infinite degree. Let L be a 
totally real algebraic extension of Q. Let F and M be quadratic extensions of L such that 
for every embedding σ of MF into Q̄ we have that σ(F ) ⊂ R if and only if σ(M) ̸⊂ R. 
Let F = L(δ) where δ2 = d ∈ OL and let M = L(β) where β2 = −d ∈ OL. We let 
G := GM/L

m as above.

Lemma 12.12. if n is an integer, n ≥ 3, then ker{G(OF) → G(OF/nOF)} ⊂ G(OL).

Proof. Suppose x ∈ ker{G(OF) → G(OF/nOF)}. Let L be a number field contained 
in L such that d ∈ L and x ∈ G(OL(δ)). Let F = L(δ) and M = L(β). Then 
x ∈ ker{G(OF ) → G(OF /nOF )} ⊂ GM/L

m (OL) by Lemma 12.9(3). By (12.8) we have 
GM/L

m (OL) ⊂ GM/L
m (OL), so x ∈ G(OL). !
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Corollary 12.13. Let L be a totally real algebraic extension of Q. Let F be a quadratic 
extension of L and assume that F is not totally real. Then there exists a commutative 
group scheme G defined over OL such that

(1) G(OL) contains an element of infinite order,
(2) for every integer n ≥ 3, ker{G(OF) → G(OF/nOF)} ⊂ G(OL).

Proof. By Lemmas 12.9(2) and 12.12, the commutative group scheme G := GM/L
m has 

these properties. !

Remark 12.14. In the language of Definition 13.5 below, Corollary 12.13(2) says that if 
n ≥ 3 then (1, nOL) is an exponent of diophantine stability for G relative to F/L.

There is another consequence of diophantine stability we will use later to produce 
bounds for elements of F.

Corollary 12.15. Let F/L be as in Corollary 12.13. Then there exists a set B ⊂ OF ×
(OF \ {0}) satisfying the following conditions.

(1) B is diophantine over OF.
(2) If (a, b) ∈ B, then a/b ∈ L.
(3) For some number field L ⊂ L, the set {a/b : (a, b) ∈ B and a/b ∈ L} is infinite.

Proof. Let G be a group scheme satisfying the conclusions of Corollary 12.13. Let G ↪→
Pn be a well-arranged embedding (see Definition 7.7)

P 1→
(
x1(P ) : x2(P ) : · · · : xn+1(P )

)
.

Let A be the set of all (n +1)-tuples in OF× · · ·×OF that are homogeneous coordinates 
of some point P ∈ ker{G(OF) → G(OF/nOF)}. Then A is diophantine over OF. It 
follows that the set

B := {(yi, yj) : 0 ≤ i, j ≤ n + 1, yj ̸= 0, (y1, . . . yn+1) ∈ A}

is diophantine over OF as well. By Corollary 12.13(2), if (a, b) ∈ B then a/b ∈ L.
By Corollary 12.13 we can fix a point P of infinite order in G(OL). For some positive 

k we have P k ∈ ker{G(OF) → G(OF/nOF)}. Then P k ∈ G(OL) for some number field 
L ⊂ L, and for every integer m we have

P km ∈ ker{G(OF) → G(OF/nOF)} ∩G(OL),

and it follows that the set in assertion (3) of the corollary is infinite. !
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Combining bound equations and basic congruence equations in the case of non-totally 
real quadratic extensions of totally real fields. In the following corollary we combine 
Proposition 12.1, Lemma 12.5, Corollaries 12.6 and 12.15 to finish our construction of 
norm bounds. We remind the reader that inequalities for real embeddings are imple-
mented using sums of squares, pairs in B come from a totally real field, and the role of 
u and v is explained in Corollary 12.6.

Corollary 12.16. Let F be a quadratic extension of a totally real field L. Let B be as in 
Corollary 12.15. Let α ∈ OF. Let δ ∈ OF be such that F = L(δ) and δ2 := d ∈ OL. Let 
H ⊂ L be a number field such that d ∈ H, α ∈ H(δ) and let α̂ be the conjugate of α
over H. Let Σ be the set of all real embeddings of the field F. Consider now the following 
equations and conditions:

(a, b), (c, d) ∈ B,

u = a/b, v = c/d, bd ̸= 0
X2 ̸= 0

X1 = X2

[( 1
u− v

)2
+ 1

]
(u2 + 1)

∀σ ∈ Σ : |σ(X2)| < |σ(X2α)| < |σ(X1)|.

If this system of equations and conditions is satisfied over OF, then

|NH(δ,u,v)/Q(α− α̂)| ≤ |NH(δ,u,v)/Q(2X1α)|.

Conversely, for any α ∈ OF, this system can be satisfied.

Proof. First, assume the equations and the conditions in the statement of the corollary 
are satisfied. Then by construction of B we have that u, v ∈ L. Let W = X1

X2
∈ L and 

observe that for any embedding µ : F ↪→ C we have that µ(W ) > 1. Further, for every 
σ ∈ Σ we have that 1 < |σ(α)| < σ(W ). If we let α = y0 + δy1 and α̂ = y0 − y1δ, then

|NH(δ,u,v)/Q(α̂− α)| = |NH(δ,u,v)/Q(2δy1)| ≤ |NH(δ,u,v)/Q(2αW )|
≤ |NH(δ,u,v)/Q(2αX1)|,

where the penultimate inequality is true by Proposition 12.1.
Suppose now that α ∈ OF , then by construction of B, Corollary 12.15 and Corol-

lary 12.6 we can find (a, b) and (c, d) in B to satisfy the equations and conditions of the 
corollary. !

Finally, we combine the bounds in Corollary 12.16 with the basic congruence condition 
(Lemma 11.1) for the case of a non-totally real quadratic extension.
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Corollary 12.17. Let L be a totally real field. Let F be a quadratic extension of L. Let K
be a number field contained in F. Let Σ be the set of all embeddings of F into R. Let T
be the set of all non-real embeddings of F into C.

Let E ⊂ OF be the set of elements α ∈ OF such that there exist elements X1 ∈
OF, 0 ̸= X2 ∈ OF with X1

X2
∈ L, b ∈ OK , and I an ideal of OK satisfying the following 

conditions:

∀σ ∈ Σ : 1 < σ(α) < σ

(
X1
X2

)
,

∀τ ∈ T : τ

(
X1
X2

)
≥ 1,

IOF ⊂ 2X1αOF

α ≡ b (mod IOF).

Then E ⊂ OK . (Here we again remind the reader that for real embeddings we can convert 
inequalities to equations via Proposition 4.9.)

13. Rational points

Let G be a group scheme satisfying Assumption 7.4 above.

Definition 13.1. Let

S
P

G

S

be an S-section of G. We allow ourselves a number of synonyms for this notion. If the 
ring OK rather than the corresponding scheme S is more prominent in the surrounding 
discussion, we may also call an S-section an “OK-section,” or an “OK-rational point.” 
In the case, for example, when the group scheme G := A is the Néron model over 
S = Spec(OK) of an abelian variety A/K , the S-sections of G—alias OK-sections of 
A—are in one-one correspondence with the K-rational points of the abelian variety A
over K to which these sections restrict.

Definition 13.2. Set M := G(S). The letter “M” is for Mordell-Weil group, a label we 
use even if G is any of the group schemes that we work with—i.e., as in Assumption 7.4; 
we may also denote M as G(OK).

Definition 13.3. For any algebraic extension L of Q and any nonempty subset I ⊂ OL

different from {0} let
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MI,L(G) := ker{G(OL) −→ G(OL/IOL)}

where IOL denotes the (nonzero) ideal of OL generated by I. If r ∈ Z>0 define

Mr
I,L := {xr : x ∈ MI,L}.

That is, we have a surjection

MI,L
r-th power−−−−−−−→ Mr

I,L ⊂ MI,L.

Lemma 13.4. The group MI,L = MI,L(G) is a subgroup of M = G(OL) of finite index.

Proof. Since IOL is a nonzero ideal, OL/IOL is a finite ring, so G(Spec(OL/IOL)) is a 
finite group. !

Definition 13.5. Say that a pair (r, I) consisting of a positive integer r together with a 
nonzero ideal I ⊂ OK is an exponent of diophantine stability for G relative to a field 
extension L/K if the subgroup Mr

I,L(G) ⊂ G(OL) is contained in G(OK):

{xr : x ∈ MI,L} ⊂ G(OK).

Example 13.6. Property (3) of Lemma 12.9 says that, in the notation of that lemma, if 
n ≥ 3 then the pair (1, nOK) is an exponent of diophantine stability for GM/L

m relative 
to F/L.

Remark 13.7. If the subgroup G(OK) is of finite index m in G(OL) then (m, OL) is an 
exponent of diophantine stability for G relative to L/K. If G/K = A is an abelian variety, 
then there exists an exponent of diophantine stability for G relative to L/K if and only 
if A is rank stable for the field extension L/K.

Lemma 13.8. Suppose A is an abelian variety over K, rank stable for the extension L/K. 
Then there is a positive integer n such that (1, nOK) is an exponent of diophantine 
stability for A relative to L/K.

Proof. Let L′ denote the Galois closure of L over K. Let p, q be primes of L′ where A
has good reduction, and with distinct residue characteristics p, q, respectively. By [ST68, 
Lemma 2], reduction modulo p is injective on prime-to-p torsion, and reduction modulo q
is injective on prime-to-q torsion. Hence the only torsion in Mp,L′ is p-power torsion, and 
the only torsion in Mq,L′ is q-power torsion. Thus, setting n = pq, the torsion subgroup 
of Mn,L′ is zero.

Now suppose P ∈ Mn,L. Since A is rank stable for L/K, there is a positive integer t
such that tP ∈ A(K). If σ ∈ Gal(Q̄/K), then t(σP − P ) = σ(tP ) − tP = 0. Therefore 
σP −P is a torsion point in Mn,L′ , so σP −P = 0 and we conclude that σP = P . Since 
this holds for every σ ∈ Gal(Q̄/K), we have P ∈ A(K). This proves the lemma. !
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Remark 13.9. If (r, I) is an exponent of diophantine stability for G relative to L/K, we 
have the diagram

Mr
I,L MI,L G(OL)

G(OK)

.

Lemma 13.10. If G1 and G2 are two smooth group schemes over OK and (r, I) is an 
exponent of diophantine stability for both G1 and G2 relative to a field extension L/K, 
then (r, I) is an exponent of diophantine stability for G1 ×OK G2 relative to L/K.

Lemma 13.11. Suppose that G(OK) contains a point of infinite order. Then for every 
nonzero ideal I ⊂ OK, every r ∈ Z>0, and every L/K, the group Mr

I,L(G) contains a 
point of infinite order.

Proof. Let L be a number field contained in L, let P ∈ G(OL) ⊂ G(OL) be a point 
of infinite order. Let N := |G(OL/(I ∩ OL)OL)|. Then N < ∞, PN is contained in 
MI∩OL,L ⊂ MI,L and P rN is contained in Mr

I,L. Since P rN has infinite order, this 
proves the lemma. !

Lemma 13.12. Let I ⊂ OK be any nonzero ideal, and let P be an S-section of G in MI,K . 
Then zP ⊂ I.

Proof. This follows directly from Definition 13.3: if P ∈ MI,K(G) then the image of P
in G(OK/I) is trivial. !

Proposition 13.13. Let L/K be a finite extension, with OL/OK their corresponding rings 
of integers. Let m := the degree of the Galois closure M/Q of L over Q. Let C := C(m)
be as in Proposition 11.6.

Fix α ∈ OL, and let D(m, α) := (Cα(1 − α) . . . (m − α))m2 ∈ OL. Suppose

• z ⊂ OK is an ideal such that zOL ⊂ D(α)OL,
• W is a free OK/z-module of finite rank.

If either D(m, α) = 0 or if there are elements v, w ∈ W such that w ∈ W is a basis 
element and

v ⊗ 1 = w ⊗ α = α(w ⊗ 1) ∈ W ⊗OK OL (13.14)

then α ∈ OK .
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Proof. Suppose that α, v, w satisfy (13.14). Let zL := zOL. Since w is a basis element of 
the free OK/z-module W , we see that w⊗1 is a basis element of the free OL/zL-module 
W ⊗OK OL.

All of (13.14) ‘takes place’ in the free OL/zL-submodule of W ⊗OK OL (of rank one) 
generated by w ⊗ 1. In particular v ∈ (OK/z)w so we can choose b ∈ OK such that 
v = bw. Then, using (13.14),

w ⊗ α = v ⊗ 1 = bw ⊗ 1 = w ⊗ b.

Since w⊗1 is a basis vector, it follows that b ≡ α (mod zL). The proposition then follows 
from Corollary 11.12. !

In the same manner, using Corollaries 11.13 and 12.17, one can prove a totally real 
version and a quadratic extension of a totally real field version of Proposition 13.13.

Proposition 13.15. Let L/K be an extension of totally real fields, with OL/OK their 
corresponding rings of integers. Fix α ∈ OL such that α = 1 +v2

1 + . . .+v2
4 with vi ∈ OL. 

Suppose

• z ⊂ OK is an ideal such that zOL ⊂ (2α + 1)2OL,
• W is a free OK/z-module of finite rank.

If there are elements v, w ∈ W such that w ∈ W is a basis element and

v ⊗ 1 = w ⊗ α = α(w ⊗ 1) ∈ W ⊗OK OL

then α ∈ OK.

Proposition 13.16. Let

L F

K

be a diagram of fields of algebraic numbers where K is an algebraic possibly infinite 
extension of Q, L is totally real, and [F : L] = 2. For elements α ∈ OF and X1, X2 ∈ OF
with X2 nonzero, putting X := X1

X2
suppose that:

(1) X ∈ L,
(2) for every embedding τ : F ↪→ C, we have τ(X) ∈ R and τ(X) > 1,
(3) for every real embedding τ : F ↪→ R, we have 1 < τ(α) < τ(X) (this inequality can 

be rewritten as an equation by Proposition 4.9).



B. Mazur et al. / Journal of Number Theory 254 (2024) 1–64 43

Suppose further that z ⊂ OK is an ideal such that zOF ⊂ X1αOF and there is a free 
OK/z-module of finite rank W for which there are elements v, w ∈ W such that w ∈ W

is a basis element and

v ⊗ 1 = w ⊗ α = α(w ⊗ 1) ∈ W ⊗OK OF.

Then α ∈ OK.

Before stating the corollary below we recall the definition of WP from Lemma 10.7:

WP := N ∗ ⊗OK (zP /z2
P ) ⊂ N ∗ ⊗OK (OK/z2

P ).

Corollary 13.17. Let (r, I) be an exponent of diophantine stability for G relative to L/K
(resp. L/K, F/K). Let Y denote the set of α ∈ OL for which there are points P, Q ∈
Mr

ID(α),L (resp. Mr
(2α+1)2I,L, Mr

IX1α,F) with P ̸= e such that

∂Q = α · ∂P ∈ WP ⊗OK OL( resp. WP ⊗OK OL,WP ⊗OK OF). (13.18)

In the totally real case assume α = 1 +u2
1 + · · ·+u2

4. In the case of a quadratic extension 
let X1 be defined as in Proposition 13.16. Then:

(1) Y ⊂ OK (resp. Y ⊂ OK).
(2) If G(OK) (resp. G(OK)) contains a point of infinite order, then N ⊂ Y ⊂ OK (resp. 

N ⊂ Y ⊂ OK).

Proof. We consider the case of a number field extension L/K first. If D(m, α) = 0 then 
α ∈ {0, 1, 2, . . . , m}, so we may suppose that D(m, α) ̸= 0. By the diophantine stability 
hypothesis of this corollary we have P, Q ∈ G(OK)—in particular these are K-rational 
points.

To connect with the notation of Proposition 13.13 above, let W := WP and z :=
zP , noting that WP is a free OK/zP -module by Lemma 10.7(2). Take the v and w
of Proposition 13.13 to be, respectively, the images of ∂P and ∂Q in WP . Since P ∈
Mr

D(m,α)I,L ⊂ MD(α)I,L we have that zP ⊂ D(m, α)IOL. Proposition 13.13 then gives 
us that Y is contained in OK , which is (1).

Now suppose α ∈ N. Find a nontrivial point P ∈ Mr
D(m,α)I,L. Note that such a P

exists by Lemma 13.11 since G(OK) contains a point of infinite order. Let Q := Pα. By 
Corollary 10.10 we have

∂Q = α · ∂P ∈ WP

so α ∈ Y . This proves (2).
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In the case of a totally real extension or quadratic extension of a totally real field, we 
note that (2α + 1)2 and X1 cannot be 0. Next we proceed exactly as above replacing 
D(m, α) by (2α + 1)2 in the totally real case and replacing D(m, α) by X1αI, with n
being an integer greater or equal to 3, in the case of a quadratic extension of a totally 
real field. !

The case K = L is of particular interest to us, so we add the following corollary.

Corollary 13.19. Let F, L be as above with F not totally real and let G be the twist of 
Gm defined at the beginning of Section 12. Let (r, I) = (1, 3OF ). Let Y denote the set of 
α ∈ OF for which there are points P, Q ∈ M1

3X1αOF,F with P ̸= e such that

∂Q = α · ∂P ∈ WP ⊗OL OF.

Here X1 is again defined as in Proposition 13.16. Then N ⊂ Y ⊂ OL.

Proof. The corollary follows from Proposition 13.16, Lemmas 12.9 and 12.12. !

Remark 13.20. While D(α) and (2α+1)2 are obviously polynomial in nature, we remind 
the reader that one can see that X1, X2 can be described in a diophantine fashion from 
Corollaries 12.15 and 12.16.

Remark 13.21. Whether or not there are any points of infinite order in G(OK), our proof 
will show that a given natural number ν is in E as long as Mr

D(ν),L (resp. Mr
D(ν),L) is 

not trivial.

14. An existential formulation of Corollaries 13.17 and 13.19

Our aim is to give a formulation of Corollaries 13.17 and 13.19 entirely in the language 
of OL. Assume that G is a group scheme over OK satisfying Assumption 7.4. Then:

(1) There exists a system of homogeneous equations over OK that defines Ḡ the Zariski 
closure of G in Pn as described in Proposition 7.5 above, so using Lemma 4.6 above, 
there is an existential definition of the set of homogeneous coordinates (λ1 : λ2 : · · · :
λn+1) ∈ Affn+1(OL) that are representatives of points P ∈ Ḡ(OL).

(2) Hence if, for example, G = A is an abelian scheme, G is an open OL-subscheme in Ḡ
defined by a finite set of local congruences (see Remark 7.6) so there is an existential 
definition of the set of homogeneous coordinates

(λ1 : λ2 : · · · : λn+1) ∈ Affn+1(OL)

that are representatives of points P ∈ G(OL).
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(3) Given two points P, Q ∈ G(OL) add a further set of variables

{r1, r2, . . . , rn+1; s1, s2, . . . , sn+1}

and the equations (in the rings OL[r1, r2, . . . , rn+1] and OL[s1, s2, . . . , sn+1] respec-
tively):

EP :
n+1∑

i=1
riλi(P ) = 1, EQ :

n+1∑

i=1
siλi(Q) = 1. (14.1)

This augmented system of equations gives us an existential definition of the sets of 
homogeneous coordinates that generate the unit ideal for P and for Q, a pair of 
points in G(OL).

(4) Given an ideal J ⊂ OL defined by an explicit finite set of generators J :=
(j1, j2, . . . , jt) ⊂ OL, we have an existential definition of the sets of homogeneous
coordinates that generate the unit ideal for P and for Q, a pair of points in MJ,L

since the subgroup MJ,L ⊂ G(OL) is defined by explicit congruence conditions.
(5) Since the r-th power mapping

G
r-th power−−−−−−−→ Gr ⊂ G

is defined by a system of equations over OL it then follows that Mr
J,L has an exis-

tential definition in terms of MJ,L.
(6) Note that if (r, I) is an exponent of diophantine stability for L/K then if P ∈ Mr

J,L ⊂
G(OK) is such that set of homogeneous coordinates

{λi(P ) : 1 ≤ i ≤ n + 1} ⊂ OL

generates the unit ideal in OL then there exists a unit u ∈ O×
L such that

{uλi(P ) : 1 ≤ i ≤ n + 1} ⊂ OK ⊂ OL.

A consequence of this discussion is:

Corollary 14.2. Assume given:

• a group scheme G satisfying Assumption 7.4,
• a well-arranged embedding ι : G ↪→ Pn,
• a finite extension L/K,
• an exponent (r, I) of diophantine stability for L/K, and
• a set of generators j1, j2, . . . , jt ∈ OK of I.
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Then there is a finite system of polynomials

ψi ∈ OK [X1, X2, . . . , Xn+1;Y1, Y2, . . . , Ym;Z1, Z2, . . . , Zt], 1 ≤ i ≤ k,

where we call

• X1, X2, . . . , Xn+1 the fundamental variables,
• Y1, Y2, . . . , Ym the auxiliary variables (to take care of items (1)–(6) above),
• Z1, Z2, . . . , Zt the congruence variables,

with the following property. Set the congruence variables Z1, Z2, . . . , Zt to the given ele-
ments j1, j2, . . . , jt ∈ OK to obtain a system ΨI := {ψI,1, . . . , ψI,k} defined by

ψI,i(X1, X2, . . . , Xn+1;Y1, Y2, . . . , Ym)
:= ψi(X1, X2, . . . , Xn+1;Y1, Y2, . . . , Ym; j1, j2, . . . , jt)
∈ OK [X1, X2, . . . , Xn+1;Y1, Y2, . . . , Ym].

If

(X1, X2, . . . , Xn+1;Y1, Y2, . . . , Ym) 1→ (λ1,λ2, . . . ,λn+1;µ1, µ2, . . . , µm) ∈ Affn+1+m(OL)

is a common zero (in OL) of the system of equations ΨI , then there exists a rational 
point P ∈ Mr

I,L such that the first n + 1 entries of that common zero, i.e., the values of 
the fundamental variables:

(X1, X2, . . . , Xn+1) 1→ (λ1,λ2, . . . ,λn+1) ∈ Affn+1(OL)

represent homogeneous coordinates for ι(P ) ∈ Affn+1(OL) that generate the unit ideal 
in OL:

(λ1,λ2, . . . ,λn+1) = (λ1(P ),λ2(P ), . . . ,λn+1(P )).

Moreover, every P ∈ Mr
I,L is so represented.

Now recall Corollary 13.17: Let (r, I) be an exponent of diophantine stability for G
relative to L/K. Let Y denote the set of α ∈ OL for which there are points P, Q ∈
Mr

ID(α),L with P ̸= e such that

∂Q = α · ∂P ∈ WP ⊗OK OL.

Assuming that we have chosen representative homogeneous coefficients for P and Q for 
which there are solutions in equations (14.1), consider an equation in the form of (13.18):
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∂Q = α · ∂P ∈ WP ⊗OK OL

which can be written (appealing to (10.5) above):

δ(P ) ·
(
λ1(Q), . . . ,λd(Q)

)
≡ α · δ(Q) · (λ1(P ), . . . ,λd(P )) (mod z2

P · (OL)d).

In order to rewrite the equivalence above as a polynomial equation we note that for 
any x ∈ OL, we have that x ∈ z2

POL if and only if x =
∑

i,j ai,jλi(P )λj(P ), ai,j ∈ OL. 
As observed earlier, any two sets of coordinates corresponding to P will differ by a unit 
and therefore will generate the same ideal.

We now summarize the discussion above in the following three propositions.

Proposition 14.3. Let L/K be a number field extension. Suppose G is a group scheme 
over OK satisfying Assumption 7.4 and G(OL) has a point of infinite order. If there is 
an exponent of diophantine stability for L/K, then there exists an existential definition 
f(t, ̄x) ∈ OK [t, ̄x] of OK in OL such that for every t ∈ OK we have that the equation 
f(t, ̄x) = 0 has solutions in OK .

Proof. The assertion follows from Corollaries 13.17 and 14.2 combined with Lemma 4.7.!

In the same fashion we can prove the following proposition.

Proposition 14.4. Let L be a totally real algebraic extension of Q, possibly of infinite 
degree. Let K be a subfield of L. Suppose G is a group scheme over OK satisfying 
Assumption 7.4 and G(OL) has a point of infinite order. If there is an exponent of 
diophantine stability for L/K, then

• if K is a number field we have an existential definition f(t, ̄x) of OK over OL such 
that for every t ∈ OK the equation f(t, ̄x) = 0 has solutions in OK.

• if K is an infinite extension of Q there exists D ⊂ OL such that D has an existential 
definition f(t, ̄x) over OL, N ⊂ D ⊂ OK and for any t ∈ D the equation f(t, ̄x) = 0
has solutions in OK.

We now consider the case of quadratic extensions of totally real fields.

Proposition 14.5. Let F be a quadratic extension of a totally real algebraic extension L
of Q, possibly of infinite degree over Q. Let K ⊂ F be a field. Suppose G is a group 
scheme over OK satisfying Assumption 7.4 and G(OF) has a point of infinite order. If 
there is an exponent of diophantine stability for F/K, then

• if K is a number field we have an existential definition of OK over OF.
• if K is an infinite extension of Q there exists D ⊂ OL such that D has an existential 

definition over OF and N ⊂ D ⊂ OK.
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Proof. The proof of the proposition follows from Corollaries 12.17, 13.17, 14.2 combined 
with Lemma 4.7. !

Proposition 14.5 does not require an assumption on existence of a group scheme, 
because we know such a group scheme exists.

Proposition 14.6. Let F be a quadratic extension of a totally real algebraic extension L
of Q, possibly of infinite degree over Q. There exists a set D ⊂ OF such that D has an 
existential definition over OF and N ⊂ D ⊂ OL.

Proof. The proof of the proposition follows from Corollaries 12.13, 12.16, 12.17, 13.19
and 14.2. !

Below we state another corollary emphasizing the fact that in the case of totally real 
number fields and quadratic extensions of totally real number fields, our diophantine 
definition of OK over OM does not depend on the degree [M : Q].

Corollary 14.7. Let M be a totally real algebraic extension of Q or a quadratic extension 
of a totally real algebraic extension of Q. Let K ⊂ M be a number field. Suppose G is 
a group scheme over OK satisfying Assumption 7.4 and G(OM) has a point of infinite 
order. Suppose also there is an exponent of diophantine stability for G relative to M/K. 
Let M be the collection of all number fields M such that K ⊂ M ⊂ M. Then there exists 
a single diophantine definition of OK over OM across all fields OM ∈ M.

Theorem 3.1 follows directly from Proposition 14.3, and Theorem 3.9 follows directly 
from Propositions 14.4 and 14.6.

15. A simple example

Definition 15.1. A CM-field F is a totally complex field of algebraic numbers (possibly 
of infinite degree over Q) possessing an involution σ with fixed field F+ := Fσ totally 
real.

Remarks 15.2.

(1) This terminology is usually only used for number fields F/Q (i.e., of finite degree over 
Q) such fields being related to complex multiplication on abelian varieties—hence 
the “CM.”

(2) The involution σ referred to in the definition above is unique: there is at most one 
involution of a totally complex field whose fixed field is totally real. Equivalently, 
the field F+ is the only totally real subfield L of F such that F/L is quadratic. We 
will refer to F+ as the maximal totally real subfield of F.
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Let F be a CM-field and let L = F+. Take our group scheme G = Gm :=
Spec(OL[s, s−1]) to be the multiplicative group. We view this as a quasi-projective 
smooth group scheme over OL. We have that G(OL) = O×

L ⊂ G(OF) = O×
F .

Lemma 15.3. Suppose I is an ideal of OF divisible by a rational integer n ≥ 3. Then 
M2

I,F ⊂ O×
L . That is, the pair (2, I) is an exponent of diophantine stability for G relative 

to the field extension F/L (see Definition 13.5(2)).

Proof. Let σ denote complex conjugation, the nontrivial automorphism of F/L. Suppose 
x ∈ MI,F, i.e., x ∈ O×

F and x ≡ 1 (mod I). We have

x2 = (xxσ)(x/xσ). (15.4)

By Dirichlet’s unit theorem (or the fact that all absolute values of x/xσ are 1), we have 
that x/xσ is a root of unity. Since x/xσ ≡ 1 (mod n), we have x/xσ = 1. Since xxσ is 
fixed by σ, it follows from (15.4) that x2 ∈ OL. !

This (r = 2, I) exponent of diophantine stability for G relative to the extension 
OF/OL allows one to prove the following proposition due to Denef for the case when F
is a number field.

Proposition 15.5. Let F be a CM field, and let K be any number field contained in F+. 
There exists a set EK ⊂ OF+ such that the following conditions are satisfied.

(1) EK is diophantine over OF,
(2) OK ⊂ EK .

If F+ is a number field then we can take EK = OK .

Proof. Put L := F+. We have the well-arranged embedding

ι : Gm ↪→ Aff1 = Ga = Spec(OL[t])

given by t 1→ s − 1. The ideal cutting out the identity section of Ga is (t); the ideal 
cutting out the identity section of Gm is (s − 1). So the mapping G[2] → Aff1

[2] is given 
by the homomorphism (isomorphism, in fact)

OL[t]/(t2) ≃−→ OL[s, s−1]/((s− 1)2) = OL[s]/((s− 1)2)

that sends t 1→ s − 1.
Let us connect with the notation of Section 9 and more specifically equations (10.2)

and (10.3) of that section.

• As above, G = Gm = Spec(OL)[s, s−1] and G[2] = Spec(OL[s]/((s − 1)2)).
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• An OL-rational point P ∈ G(OL) is given by a homomorphism

P : OL[s, s−1] −→ OL

sending s to a unit u ∈ O×
L ⊂ OL.

• The vanishing ideal zP is the ideal generated by u − 1 in OL.
• The congruence ideal cP = z2

P is the ideal generated by (u − 1)2.
• NG = (s − 1) · OL[s]/((s − 1)2); it is a free OL-module of rank 1.
• ∂P : NG → OL/(cP ) = OL/((u − 1)2) is the OL-homomorphism sending s − 1 to 

u − 1. We view ∂P as an element in

WP := N ∗ ⊗O (zP /z2
P ) ⊂ N ∗ ⊗O (O/z2

P )

as in Lemma 10.7 above.

Now the “Y ” in Corollary 13.17 (combined with Lemma 4.7) gives the desired subset:

EK := Y = {α ∈ OL : α satisfies (15.6) and (15.7) below}

∃u1, u2, u3, u4 ∈ OL such that α = 1 + u2
1 + . . . u2

4 (15.6)
∃P,Q ∈ M2

(2α+1)2,L with P ̸= e and ∂Q = α · ∂P ∈ WP ⊗OK OL. ! (15.7)

Part 4. Diophantine stability in infinite algebraic extensions of Q—results and 
conjectures

To date existential undecidability is known for very few rings with fraction fields equal 
to infinite algebraic extensions of Q. The third author has shown that in any abelian 
extension of Q with finitely many ramified primes Z is existentially definable in infinitely 
many rings of S-integers strictly larger than the ring of integers of the field in question. 
([Shl94] and [Shl07]).

All the known results about existential definability of Z over the ring of integers in 
infinite extensions require some form of diophantine stability of elliptic curves. The first 
such results appear in [Shl18] and require diophantine stability of an elliptic curve in a 
totally real infinite extension of Q. The definability of Z can then be extended to any 
quadratic extension of the totally real field under consideration.

From results of K. Kato [Kat04], K. Ribet [Rib81] and D. Rohrlich [Roh84,Roh88] we 
know that in cyclotomic extensions with finitely many ramified primes there exist elliptic 
curves with groups of points over these fields of positive rank and finitely generated (see 
[LR08], Theorem 1.2). Thus—as discussed in the introduction (Theorem 1.10)—Z is 
existentially definable in any abelian extension of Q having only finitely many ramified 
primes.

Below we show that diophantine stability of general abelian varieties, not just elliptic 
curves, can be used to establish existential definability of Z over the rings of integers of 
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totally real infinite extensions of Q and their totally complex quadratic extensions. We 
also make use of diophantine stability of multiplicative groups as described in Section 15. 
Additionally, we state some conjectures and questions based on conjectures and questions 
from Section 16.

16. Diophantine stability in abelian extensions

Our expectation, based on conjectures about elliptic curves over Q (some of which 
we describe below), is that diophantine instability is rare for abelian varieties in abelian 
extensions unless there is a good reason (analytic or geometric) for it. In this section we 
discuss this expectation and some open questions.

Notation 16.1. If A/K is an abelian variety and F/K is a finite Galois extension, we 
denote by NF/K : A(F ) → A(K) the map x 1→

∑
γ∈Gal(F/K) γx.

If F/K is an abelian extension (finite or infinite) and χ : Gal(F/K) → C× is a char-
acter of finite order, we will say that χ occurs in A(F ) if χ occurs in the representation 
of Gal(F/K) acting on A(F ) ⊗C.

From now on, a character of a Galois group G means a continuous character, i.e., 
a homomorphism G → C× of finite order.

The following lemma shows that to understand diophantine stability in abelian ex-
tensions it suffices to understand diophantine stability in cyclic extensions.

Lemma 16.2. Suppose L is an abelian extension of a number field K, and A is an abelian 
variety defined over K. Then the following are equivalent:

(1) rankA(F ) > rankA(K) for some finite extension F/K contained in L,
(2) rankA(F ) > rankA(K) for some finite cyclic extension F/K contained in L,
(3) {x ∈ A(F ) : NF/Kx = 0} is infinite for some finite cyclic F/K contained in L,
(4) there is a nontrivial character χ of Gal(L/K) that occurs in A(L).

Proof. The implication (2) ⇒ (1) is trivial.
Suppose F is a finite cyclic extension of K. Let ZF := kerNF/K ⊂ A(F ). Then 

A(K) ∩ ZF ⊂ A(K)tors is finite, and if x ∈ A(F ) then

[F : K]x = NF/Kx + ([F : K] − NF/K)x ∈ A(K) + ZF .

Thus there is a homomorphism with finite kernel and cokernel

A(K) ⊕ ZF −→ A(F ), (16.3)

so in particular (3) ⇔ (2).
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Now suppose (4) holds, and let F be the cyclic extension of K cut out by χ. Then χ
occurs in A(F ) but not in A(K), so (16.3) shows that χ must occur in ZF . In particular 
ZF is infinite, so (4) ⇒ (3).

Finally, if (1) holds, then A(F )/A(K) is infinite, so some character χ of Gal(L/K)
occurs in A(F )/A(K), and such a χ is necessarily nontrivial. Thus (1) ⇒ (4). !

Lemma 16.4. Suppose L is an abelian extension of Q, and A is an abelian variety defined 
over Q. Then the following are equivalent:

(1) A(L) is finitely generated,
(2) the set {characters χ of Gal(L/Q) : χ occurs in A(L)} is finite.

Proof. The implication (1) ⇒ (2) is clear.
Suppose (2) holds. A theorem of Ribet [Rib81] shows that A(L)tors is finite. Let w

be the exponent of A(L)tors. Fix a finite abelian extension K of Q, contained in L, 
such that A(L)tors ⊂ A(K) and all characters χ of Gal(L/Q) that occur in A(L) factor 
through Gal(K/Q). Then for every finite extension F of K contained in L we have that 
[A(F ) : A(K)] is finite.

For every such F , define a homomorphism

κF : A(F ) −→ H1(F/K,A(F )tors) = Hom(Gal(F/K), A(F )tors)

by sending x ∈ A(F ) to the Gal(F/K)-cocycle g 1→ gx − x. Note that gx − x ∈ A(F )tors
since [A(F ) : A(K)] is finite. It is easy to see that the kernel of κF is A(K), and hence 
A(F )/A(K) is killed by w. This holds for every field extension F of K in L, so w
annihilates A(L)/A(K) as well, i.e.,

A(L) ⊂ {x ∈ A(Q̄) : wx ∈ A(K)}.

Since the right-hand side is finitely generated, so is A(L). Thus (2) ⇒ (1). !

A lower bound for diophantine stability is given by the following theorem from [MR18].

Theorem 16.5 (Theorem 1.2 of [MR18]). Suppose A is a simple abelian variety over K
and all K̄-endomorphisms of A are defined over K. Then there is a set S of rational 
primes with positive density such that for every ℓ ∈ S and every n ≥ 1, there are infinitely 
many cyclic extensions L/K of degree ℓn such that A(L) = A(K).

If A is an elliptic curve without complex multiplication, then S can be taken to contain 
all but finitely many rational primes.

Proof. All but the last sentence is proved in [MR18]. In the case that A is a non-CM 
elliptic curve, the proof in [MR18] shows that we can take S to contain all primes ℓ such 
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that the ℓ-adic representation GK → Aut(A[ℓ∞]) → GL2(Zℓ) is surjective. By Serre’s 
theorem [Ser72] this holds for all but finitely many ℓ. !

The next two conjectures are formulated in [MR22], where they are motivated by 
the statistical properties of modular symbols. They were inspired by earlier conjec-
tures (based on random matrix theory) given by others; notably David, Fearnley, and 
Kisilevsky [DFK07,FK12].

Conjecture 16.6 (Conjecture 10.2 of [MR22]). Suppose E is an elliptic curve over Q, 
and L ⊂ Qab is a real abelian field that contains only finitely many extensions of Q of 
degree 2, 3, or 5. Then E(L) is finitely generated.

Conjecture 16.7 (Conjecture 10.1 of [MR22], combined with the Birch and Swinnerton-
Dyer conjecture). Suppose E is an elliptic curve over Q. Let X denote the set of even 
characters of Gal(Qab/Q). Then

{χ ∈ X : order(χ) ≥ 7, order(χ) ̸= 8, 10 or 12, and χ occurs in E(Qab)}

is finite.

We now give some consequences of these conjectures for diophantine stability of 
abelian varieties over Q.

Consequence 16.8. Suppose Conjecture 16.6 holds, E is an elliptic curve over Q, and 
L ⊂ Qab is a real abelian field that contains only finitely many extensions of Q of degree 
2, 3, or 5. Then there is a finite extension M/Q such that for every number field F
satisfying F ⊂ L and F ∩M = Q, we have that F/Q is diophantine stable for E.

Proof. Take M to be the field generated by the coordinates of points in E(L), so E(M) =
E(L). Conjecture 16.6 says that E(L) is finitely generated, so M/Q is finite. If F ⊂ L
and F ∩M = Q, then

E(F ) = E(F ) ∩ E(L) = E(F ) ∩ E(M) = E(F ∩M) = E(Q). !

Definition/Proposition 16.9. Suppose A is an abelian variety defined over a number field 
K, and F/K is a finite cyclic extension. Let G := Gal(F/K), let Q[G]F be the unique 
irreducible Q[G]-submodule of Q[G] on which G acts faithfully, and let

Z[G]F := Q[G]F ∩ Z[G].

Following [MRS07, §5] we construct an abelian variety AF over K (the twist of A by 
F/K) that has these properties:

(1) dim(AF ) = ϕ([F : K]) dim(A), where ϕ denotes the Euler ϕ-function.
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(2) The base change of AF to F is canonically (and G-equivariantly) isomorphic to 
A ⊗ Z[G]F (over F ).

(3) Suppose L is a field containing K and L ∩ F = K. Then:
(a) There is a natural inclusion AF (L) ⊂ A(FL) that identifies

AF (L) ∼= {x ∈ A(FL) : NFL/MLx = 0 for every M with K ⊆ M ! F}.

(b) Suppose χ is a character of Gal(L/K). Then χ occurs in AF (L) if and only if 
χρ occurs in A(FL) for some faithful character ρ of Gal(F/K).

Proof. Assertion (1) is [MRS07, Theorem 2.1(i)], (3.a) is [MRS07, Theorem 5.8(ii)], and 
(3.b) follows from (3.a). !

Corollary 16.10. Let F/K, A, and AF be as in Proposition 16.9. If [F : K] is prime, 
then rankAF (K) > 0 if and only if rankA(F ) > rankA(K).

Proof. Taking L = K in Proposition 16.9(3) shows that rankAF (K) > 0 if and only 
if some faithful character ρ of Gal(F/K) occurs in A(F ). If [F : K] is prime, then ρ is 
faithful if and only if it is nontrivial. By Lemma 16.2(1,4) a nontrivial ρ occurs in A(F )
if and only if rankA(F ) > rankA(K). This proves the corollary. !

Consequence 16.11. Suppose F/Q is a cyclic extension of prime degree p ≥ 7, and E is 
an elliptic curve over Q. Let A := EF be the twist of E as in Definition 16.9. Suppose 
Conjecture 16.7 holds and L is a real abelian extension of Q not containing F . Then:

(1) A(L) is finitely generated.
(2) If rankE(F ) > rankE(Q) then rankA(Q) > 0.

Proof. Proposition 16.9(3b) shows that a character χ of Gal(L/Q) occurs in A(L) if and 
only if χρ occurs in E(FL) for some nontrivial character ρ of Gal(F/Q). Since L ∩F = Q, 
we have Gal(LF/Q) = Gal(L/Q) ×Gal(F/Q), so such a character χρ has order divisible 
by p ≥ 7. Thus Conjecture 16.7 predicts that only finitely many characters occur in 
A(L). Now (1) follows by Lemma 16.4, and (2) follows from (1) by Corollary 16.10. !

The following construction shows that there is a large collection of abelian fields L
“close” to Qab to which we can try to apply Consequence 16.11.

Example 16.12. Fix a prime p ≥ 7, and another prime ℓ ≡ 1 (mod p) but ℓ ̸≡ 1 (mod p2). 
Let F denote the unique cyclic extension of Q of degree p and conductor ℓ. It follows 
from class field theory that there are infinitely many real abelian extensions L/Q such 
that

• [Qab,+ : L] = p,
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• L ∩ F = Q

(where Qab,+ denotes the real subfield of Qab).

In order to apply Consequence 16.11 to the arithmetic of the “big” fields of Exam-
ple 16.12 (see Consequences 17.3 and 18.4), we need to have that rankE(F ) > rankE(Q). 
This leads to the following question:

Question 16.13. Suppose F/Q is a cyclic extension of prime degree p. Is there an elliptic 
curve E defined over Q such that rankE(F ) > rankE(Q)?

Remark 16.14. Computer calculations and heuristics similar to [MR22] suggest that when 
p = 7, the answer to Question 16.13 is “yes”. When p > 7 the answer is less clear, but 
Fearnley and Kisilevsky [FK12] produce some examples with p = 7 and 11. Our own 
calculations, assuming the Birch and Swinnerton-Dyer conjecture, found four examples 
with p = 13. For instance, if E is the curve labeled 4025.c1 in [Col], and F is the extension 
of degree 13 in Q(ζ53), then L(E/F, s)/L(E/Q, s) vanishes at s = 1. Thus the Birch and 
Swinnerton-Dyer conjecture predicts that rankE(F ) > rankE(Q).

Consequence 16.15. Suppose Conjecture 16.7 holds, and p = 7 or 11. Then there is an 
abelian variety A over Q and infinitely many real abelian fields L such that [Qab,+ : L] =
p, and A(L) is infinite and finitely generated.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same 
statement holds for p = 13.

Proof. If p = 7, let E be the elliptic curve y2 + xy + y = x3 − x2 − 6x + 5 and F
the abelian field of degree 7 and conductor 29. If p = 11, let E be the elliptic curve 
y2 + xy = x3 + x2 − 32x + 58 and F the abelian field of degree 11 and conductor 23. 
Let L be a real abelian field as in Example 16.12, and let A := EF be the twist of E as 
in Definition 16.9. Fearnley and Kisilevsky [FK12] show that rankE(F ) > rankE(Q). 
Thus for p = 7 or 11 the desired conclusion follows from Consequence 16.11.

For p = 13 the proof is the same, except that for the elliptic curve E labeled 4025.c1 
in [Col], and the cyclic extension F of degree 13 and conductor 53, we need the Birch 
and Swinnerton-Dyer conjecture in order to conclude that rankE(F ) > rankE(Q). !

The following consequence of Conjecture 16.7 gives rise to a collection of “big” abelian 
fields L over whose ring of integers Hilbert’s Tenth Problem has a negative answer. 
Although these fields are not as close to Qab as those of Example 16.12, we can produce 
them without needing to know the answer to Question 16.13.

Consequence 16.16. Suppose Conjecture 16.7 holds. There is a positive integer n and an 
abelian variety A/Q such that
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(1) rankA(Q) > 0,
(2) if L is a finite real abelian extension of Q and [L : Q] is relatively prime to n, then 

rankA(L) = rankA(Q),

Proof. Fix an elliptic curve E defined over Q. By Conjecture 16.7 there is a finite cyclic 
extension F of Q that is maximal in the sense that

(a) there is a faithful character ψ of Gal(F/Q) that occurs in E(F ),
(b) there is no cyclic extension F ′ of Q with property (a) that properly contains F .

Fix such an F , and let n := [F : Q] and A := EF . By property (a) and 16.9(3b), the 
trivial character occurs in A(Q), so A(Q) is infinite.

Now fix an abelian extension L/Q of degree prime to n. In particular L ∩ F = Q. 
Suppose χ is a nontrivial character of Gal(L/Q), and let L′ be the cyclic extension of Q
cut out by χ. Since [L : Q] is prime to [F : Q], the compositum FL′ is also cyclic over 
Q. By the maximality of F (property (b)) and 16.9(3.b), we conclude that χ does not 
occur in A(L). Lemma 16.4 now shows that rankA(L) = rankA(Q). !

It is natural to try to generalize Conjectures 16.6 and 16.7 by asking whether they 
still hold for abelian varieties over number fields instead of elliptic curves over Q.

Question 16.17. How much diophantine instability can there be? For example, suppose 
K is a totally real number field, and A is an abelian variety over K. Is there a con-
stant C(A, K) such that for every finite abelian extension L/K, and every character 
χ : Gal(L/K) → C× of order greater than C(A, K), χ does not occur in the representa-
tion of Gal(L/K) on A(L) ⊗C? If there is such a constant C(A, K), how does it depend 
on A, and on K?

Remark 16.18. The reason to restrict to totally real fields in Question 16.17 is that 
otherwise the Birch and Swinnerton-Dyer conjecture can be used to force diophantine 
instability. For example, suppose K is an imaginary quadratic field, and E is an elliptic 
curve over Q with the property that every prime where E has bad reduction splits into 
2 distinct primes in K. Then the theory of Heegner points gives rise to arbitrarily large 
cyclic extensions L/K such that

rankE(L) > rank
∑

K⊆F!L

E(F ).

The fields in question are anticylotomic extensions of K, i.e., Galois extensions of Q
with Gal(K/Q) acting as −1 on Gal(L/K). These extensions are “sparse” in the set of 
all abelian extensions of K.
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17. Totally real fields

The biggest difference between definability problems over finite and infinite extensions 
of Q lies in the difficulty of bounding heights of elements in infinite extensions. Recall 
that for finite extensions, the bound in Section 11 was generated by using explicitly the 
degree of the extension over Q. For obvious reasons such a method of producing bounds 
on the height of elements will not work over a ring of integers of an infinite extension. 
However, over a totally real field there is a substitute method relying on sums of squares 
that we used in Section 11 and other sections of Part 3. So in order to prove existential 
undecidability over the ring of integers of an infinite totally real extension L of Q, all we 
need is an abelian variety A over L with A(L) finitely generated and of positive rank.

Corollary 17.1. Let L be a totally real infinite extension of Q and let A be an abelian vari-
ety such that A(L) is infinite and finitely generated. Then Z has a diophantine definition 
over OL.

Proof. Let K be the field generated over Q by points in A(L). Then K is a totally real 
number field and A(K) = A(L). By Proposition 14.4, we have that OK is diophantine 
over OL. As was described in the introduction, J. Denef showed that the ring of integers of 
any totally real number field has a diophantine definition of Z. Therefore from Lemma 4.3
we can deduce that Z is diophantine over OL. !

Consequence 17.2. Suppose Conjecture 16.6 holds, and L ⊂ Qab,+ is a real abelian field 
that contains only finitely many extensions of Q of degree 2, 3, or 5. Then Z has a dio-
phantine definition over OL and Hilbert’s Tenth Problem for OL has a negative solution.

Proof. By Conjecture 16.6, we can find an elliptic curve E such that E(L) is infinite and 
finitely generated. Thus the assertion of the consequence holds by Corollary 17.1. !

From Consequence 16.15 combined with Corollary 17.1, we also obtain the following 
consequence.

Consequence 17.3. Suppose Conjecture 16.7 holds. If p = 7 or 11, then there exists a 
totally real abelian extension L such that [Qab,+ : L] = p and Z has a diophantine 
definition over OL.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same 
is true with p = 13.

18. Quadratic extensions of totally real fields again

A reduction to the maximal totally real subfield. As has been noted above, totally real 
fields are special in the sense that sums of squares allow us to impose bounds on heights 
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of variables using existential language of the rings only. Much of this definability “ad-
vantage” is inherited by quadratic extensions of totally real fields; in other words one 
can reduce a definability problem over a quadratic extension of a totally real field to 
a definability problem over this totally real field. From Proposition 14.5 we have the 
following corollary.

Corollary 18.1. Let F be a quadratic extension of a totally real field. If there exists an 
abelian variety A over F such that A(F) is infinite and finitely generated, then Z is 
existentially definable over OF, and Hilbert’s Tenth Problem is undecidable over OF.

Proof. Let F = L(γ) where L is totally real and γ2 ∈ L. Let F be the subfield of 
F generated over Q by the points in A(F). Since A(F) is finitely generated, F is a 
number field, so we have F = Q(δ) where δ ∈ F, i.e., δ = a + bγ with a, b ∈ L. 
Let L := F (a, b, γ2) ∩ L and K := L(δ). Then L is totally real, and a, b, γ2 ∈ L, so 
[K : L] = 2. Thus K is a quadratic extension of a totally real number field, and F ⊂ K

so A(K) = A(F).
By a result of Denef ([Den75]) and a result Denef and Lipshitz ([DL78]) we have 

that Z has a diophantine definition over OK . By Proposition 14.5 we have that OK has 
a diophantine definition over OF. Finally by Lemma 4.3 (Transitivity of diophantine 
definitions), we can now conclude that Z has a diophantine definition over OF and the 
assertion of the corollary follows. !

Then following corollary provides a slightly different way of establishing diophantine 
undecidability of quadratic extensions of totally real fields.

Corollary 18.2. Let F be a quadratic extension of a totally real field L. If there exists 
an abelian variety A over L such that A(L) is infinite and finitely generated, then Z is 
existentially definable over OF, and Hilbert’s Tenth Problem is undecidable over OF.

Proof. Let K be the number field generated by the points in A(L), so A(K) = A(L). By 
Proposition 14.4, there exists a diophantine definition f(t, ̄x) of OK over OL such that 
for all t ∈ OK the equation f(t, x1, . . . , xr) = 0 has solutions in OK . By Proposition 14.6, 
we have that there exists D ⊂ OF such that D is diophantine over OF and N ⊂ D ⊂ OL.

Let γ ∈ OK generate K over Q and define D̂ ⊂ OF in the following manner.

D̂ = {
[K:Q]−1∑

i=0
aiγ

i| ± ai ∈ D}.

Observe that since D is diophantine of over OF, we have that D̂ is diophantine over 
OF. Further, OK ⊂ D̂ ⊂ OF. Let g(x, ȳ) be a diophantine definition of D̂ over OF. Now 
consider the following system of equations:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(x1, ȳ1) = 0,
. . .

g(xr, ȳr) = 0,
g(t, z1, . . . , zr),

f(t, x1, . . . , xr) = 0

(18.3)

Suppose (18.3) has solutions in OF. Then by assumption on g being the diophantine 
definition of D̂, we have that t, x1, . . . , xr ∈ D̂ ⊂ OL. Since f is a diophantine definition 
of OK over OL, we conclude that t ∈ OK . Conversely, suppose t ∈ OK , then there exist 
x1, . . . , xr ∈ OK ⊂ D̂ such that f(t, x1, . . . , xr) = 0. Since t, x1, . . . , xr ∈ OK ⊂ D̂, there 
exist ȳ1, . . . , ȳr, ̄z with all components in OF such that all g-equations are satisfied. Thus 
(18.3) is a diophantine definition of OK over OF.

From [Den75] we have that OK has a diophantine definition of Z. Thus applying 
Lemma 4.3 to the tower Z ⊂ OK ⊂ OF, we have that Z has a diophantine definition 
over OF. !

Combining Corollary 18.2 with Consequence 16.15 we get another consequence of 
Conjecture 16.7.

Consequence 18.4. Suppose Conjecture 16.7 holds. If p = 7 or 11, then there exists an 
abelian extension L such that [Qab : L] = p and Z has a diophantine definition over OL.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic curves, then the same 
is true with p = 13.

Data availability

No data was used for the research described in the article.

Appendix A. A geometric formulation of diophantine stability

19. The same structures described in a different vocabulary

If K is a number field let OK denote its ring of integers.

Definition 19.1 (Compare with Definition 1.2). Let L/K be an extension of number fields. 
Let

F : fi(t;x1, x2, x3, . . . xn)

be a system of m polynomials (i = 1, 2, . . . , m) with coefficients in OK . We’ve singled 
out the first variable t, which will play a special role. Say that F is diophantine stable 
at t for L/K if all the simultaneous solutions
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fi(a; a1, a2, . . . , an) = 0

for a, a1, a2, . . . , an ∈ OL and i = 1, 2, . . . , m have the property that the “singled out”
entry t = a lies in OK .

Example 19.2. Let F be the equation over OK that says that t is a unit:

f(t;x1) := 1 − t · x1 = 0.

So F is diophantine stable at t for any L/K where OL and OK have the same unit 
group.

Any system of equations F over OK (as in Definition 19.1 above) determines a finitely 
presented affine OK-scheme

V = VF := Spec(OK [t;x1, x2, . . . , xn]/(f1, f2, . . . , fm))

Let Aff1 = Spec(OK [t]) be 1-dimensional affine space, viewed as (an affine) scheme over 
OK . The homomorphism OK [t] →

{
OK [t; x1, x2, . . . , xn]/(f1, f2, . . . , fm)

}
induced by 

sending t 1→ t can be viewed as an OK-morphism:

V
t−−→ Aff1

which in turn induces a map on OL-valued points

V (OL) t−−→ OL. (19.3)

The diophantine stable at t property of F relative to L/K is equivalent to the property 
that the image of V (OL) under (19.3) is contained in the subset OK of OL.

If we denote the image of (19.3) in OL by E, then

V (OL) onto−−−→ E ⊂ OL = Aff1(OL)

shows that F (or equivalently, the pair (V, t)) is a diophantine definition of E over OL

(see Definition 2.2). We are especially interested in the case where E = OK ⊂ OL.

Proposition 19.4. If L/K is an extension of number fields, F is a system of polynomials 
as in Definition 19.1, and the image E of the map (19.3) on OL-valued points of VF
satisfies N ⊂ E ⊂ OK , then there is a system F ′ such that the corresponding pair 
(VF ′ , t) is a diophantine definition of OK over OL.

Proof. This is Lemma 4.7 above. !
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A diophantine definition (V, t) of OK over OL can be used to transport any algorithm 
that determines whether a system of polynomials with coefficients in OL has a solution 
over OL to a similar algorithm for systems of polynomials with coefficients in OK , as 
follows.

Construction 19.5. Suppose we are given a diophantine definition (V, t) of OK over OL. 
For every finitely presented affine scheme B over S = Spec(OK) we can construct an 
S-scheme V = VB with a surjective S-morphism τ : V ! B:

V τ B

S

with the property that the image of the set of OL-valued points of V under τ is equal to 
the set of OK-valued points of B:

V(OL)

τ
onto

B(OK) B(OL)

Proof. Let (V, t) be the diophantine definition, and

G : gi(z1, z2, . . . , zν) ∈ OK [z1, z2, . . . , zν ] for i = 1, 2, . . . , µ

the presentation of the affine scheme B. We can view this presentation as giving us a 
closed embedding

Spec(OK [z1, z2, . . . , zν ]/(g1, g2 . . . , gµ)) = B
j
↪→ Affν = Spec(OK [z1, z2, . . . , zν ]).

Let V {ν} := V ×OK V ×OK . . . V be the ν-fold power of V (fiber-product over S =
Spec(OK)) and form the cartesian diagram:

VB = V

τ

V {ν}

φ (t,t,...,t)

B Affν .

(19.6)

Since the map φ of (19.6) is a surjective morphism of schemes, so is the projection 
τ : V → B. Since (V, t) is a diophantine definition, the mapping φ is a surjection of 
V {ν}(OL), the set of OL-valued points of V {ν}, onto Affν(OK). If v is an OL-valued 
point of V then, by commutativity of (19.6), τ(v) is an OK-valued point of B; and, 
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by cartesian-ness of (19.6), any OK-valued point of B, viewed in Affν(OK) lifts to an 
OL-valued point of V {ν}. !

Therefore

Corollary 19.7. Suppose (V, t) is a diophantine definition of OK over OL. Then the 
following are equivalent:

(1) The OK-scheme B has an OK-rational ‘point’ (meaning: a Spec(OK)-section).
(2) The system of equations G : gi(z1, z2, . . . , zν) ∈ OK [z1, z2, . . . , zν ] for i = 1, 2, . . . , µ

has a simultaneous solution in OK .
(3) The finitely presented OL-scheme VB has an OL-rational ‘point’ (meaning: a 

Spec(OL)-section).
(4) The system of equations over OL finitely presenting the OL-scheme VB has a simul-

taneous solution in OL.

Remark 19.8. Suppose G is a finite system of polynomial equations over OK defining 
a scheme B as in Construction 19.5, and we are given a diophantine definition (V, t)
of OK over OL. If we have a finite algorithm to determine whether or not a finite 
system of polynomial equations over OL has a simultaneous solution over OL, then—by 
Corollary 19.7—applying this algorithm to the system of equations over OL that finitely 
present the OL-scheme VB will tell us whether or not G has a simultaneous solution over 
OK . In particular, a negative answer for OK to the question posed by Hilbert’s Tenth 
Problem implies a similar negative answer for OL.

Remark 19.9. What can be said about the category comprising the various diophantine 
definitions of rings of integers related to a given L/K? E.g., beyond the fact that:

• The diophantine definitions, (V, t), of OK over OL are closed under fiber product 
over Aff1.

• Any (V, t) sandwiched between two diophantine definitions of OK in OL is again one:

V1 V

t

V2

Aff1

Question 19.10. Given L/K what is the smallest Krull dimension of a diophantine def-
inition (V, t) of OK over OL? For example, what is the smallest Krull dimension of a 
diophantine definition of Z over Z[i]?

A related question concerns the smallest number of variables one needs to define 
OK over OL. The smallest number of variables question has a long history. In its first 
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version, the question concerned the smallest number of variables necessary to define a 
non-recursive c.e. subset of natural numbers or integers. Yu. Matiyasevich, J. Robinson 
and J. Jones were the first people considering this problem. Later on they were joined by 
Zhi-Wei Sun, among others. His recent paper [Sun21] contains the most recent survey of 
the results in the area. H. Pasten in [Pas22a] and independently A. Fehm, P. Dittman 
and N. Daans in [DDF21] considered the smallest number of variables question in the 
context of diophantine definitions over rings and fields. They called this number the 
diophantine rank of a set.
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