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Abstract 

When asked to remember a color, do people remember a point estimate (e.g., a particular 

shade of red), a point estimate plus an uncertainty estimate, or are memory representations rich 

probabilistic distributions over feature space? We asked participants to report the color of a circle 

held in working memory. Rather than collecting a single report per trial, we had participants place 

multiple bets to create trialwise uncertainty distributions. Bet dispersion correlated with 

performance, indicating that internal uncertainty guided bet placement. While the first bet was on 

average the most precisely placed, the later bets systematically shifted the distribution closer to the 

target, resulting in asymmetrical distributions about the first bet. This resulted in memory 

performance improvements when averaging across bets, and overall suggests that memory 

representations contain more information than can be conveyed by a single response. The later 

bets contained target information even when the first response would generally be classified as a 

guess or report of an incorrect item, suggesting that such failures are not all-or-none. This 

paradigm provides multiple pieces of evidence that memory representations are rich and 

probabilistic. Crucially, standard discrete response paradigms underestimate the amount of 

information in memory representations. 
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Introduction  

Working memory (WM) refers to the capacity to keep information active and accessible 

when it is no longer present in the environment. This capacity is involved in nearly all domains of 

cognition and its central importance is reflected by its high correlation with measures such as fluid 

intelligence[1,2] and academic success[3,4]. Despite the importance of WM in our daily lives, it has a 

surprisingly limited capacity[5,6,7,8]. The amount of information that can be stored online in working 

memory (WM) is of central theoretical and practical importance in understanding the limits of our 

cognitive abilities. Importantly, memory for simple features is correlated with memory for complex 

objects[9,10], enabling insights into everyday limitations in working memory through the study of 

memory for simple visual features which can be presented in a well-controlled manner.  

Contemporary theories have constructed elaborate models of WM based on data from 

adjustment tasks, which require participants to report the color of a remembered object from a 

color space. Researchers perform many trials of such studies to generate aggregate distributions in 

order to differentiate between models of WM[5,11,12,13,14]. While this approach has yielded many 

important insights into memory, it compresses knowledge of individual memories into point 

estimates. This is suboptimal, as the richness of individual memories is a core issue at stake in 

theories of memory representation.  

There are several theoretical perspectives on the richness of individual memories. Some 

argue that most of the sensory information is lost by the time a decision must be made[15] such that 

memories consist of a point representation only (e.g., a particular shade of red) rather than a full 

sensory distribution. Models of visual working memory where memories ‘drift’ over time[16] or with 

noiseless representations[17] often assume this is true. Another possibility is that memories 

may be ‘rich’–by rich we mean a representation that is more than a point estimate, 

but also includes a sense of certainty, such as “pink but I’m not sure”. Consistent 

with this, researchers have shown that subjective measures of confidence[18,19,20], or 



2 

 

other measures that tap into a sense of certainty[11,21], correlate with performance on 

a per trial basis. Since working memory is for more than just passively encoding 

objects, but is for reasoning and acting on information, rich representations would 

be beneficial as it would allow one to act with more or less confidence depending on 

the uncertainty of the information[21]. Yet another possibility is that memory 

representations are not only ‘rich’, but also ‘probabilistic’, consisting, for example, of 

stored distributions over a feature space or a full population code[6,22,23,24,25] or a large 

number of likely samples[26]. Note that our usage of probabilistic could reflect a 

continuum—if a representation consisted of a handful of samples[26] the resulting 

memory representation would have some distributional properties, without being a 

full probability distribution.  

If WM representations might be rich and probabilistic, then why are our report methods 

discrete and limited? Research has assumed that discrete reports are a reasonable summary of 

internal information, even if that information is complex (e.g., the mean of a probability 

distribution). However, it could also be that representations are sufficiently complex to preclude 

description by discrete responses. Alternatively, responses may be sub-optimal relative to internal 

knowledge. If either of these are true, then it is incomplete and potentially misleading to assume 

that discrete responses are equivalent to the memory. For example, if responses are noisy samples 

from a probability distribution[26,27,28], then existing estimates of memory constraints could be 

significantly underestimating the amount of information represented in memory. Some models 

predict rich potentially asymmetric internal distributions in feature space[24,25,29] in which there is 

no straightforward conversion of the probability distribution to a single response. To determine the 

richness of WM representations, we developed a betting game task (Figure 1) that encouraged 

participants to report probability distributions of individual memory representations (uncertainty 

profiles) by constructing a distribution over color space rather than a single report plus 

uncertainty. The richness of reports allowed us to compare how the reported uncertainty profile 
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compared to the first report, to test whether discrete reports are representative of stored 

information. The critical question is whether taking in the full information from reports (for 

example taking the average of multiple responses) reveals more information than a single report. 

This could occur if representations are probabilistic, and responses are either noisy samples or sub-

optimal summaries of stored probabilistic information. In this case, additional responses can, on 

average, yield additional information (i.e., be biased towards the true value). However, if 

representations are point estimates (or if discrete responses can fully capture complex probabilistic 

information) then additional responses will yield no new information and will not improve 

performance. Critically, a benefit from multiple responses requires an asymmetry in future bets 

distributed around the first response that is biased towards the true value. Therefore, content-

independent notions of confidence[30] or noisy responses should provide no benefit as they contain 

no inherent bias towards the true value. Thus, gathering multiple responses is a method of 

determining whether existing tasks fully capture the information contained within participants 

working memory representations. Refer to the Supplemental Materials for different models and 

the predictions these models would make about multiple reports.  

To preview the results, participants created uncertainty profiles that were close facsimiles 

to the error distribution across trials. Moreover, the placement of bets tracked internal 

uncertainty—when bets were more widely spaced, participants were less accurate, and vice versa, 

suggesting some access to the underlying uncertainty in a memory representation. Most 

provocatively, participants had more information about the memory items than was contained in 

the first report, regardless of whether participants were approximately on-target or showed guess-

like error magnitudes. Later bets also biased participants’ uncertainty profiles towards the target, 

creating asymmetric distributions that cannot be explained if memory representations are only 

discrete. These findings suggest that our memories are complex probability distributions, but that 

we are unable to fully capture this information with single reports. Existing theories/models—built 



4 

 

on assumptions that equate responses with internal representations—thus underestimate the 

amount of information in memory representations.  

 

Methods 

Experiment 1 

Participants 

Forty naïve participants were recruited for Experiment 1. Demographic (14 female, 26 male, 

age range 18-32 [median = 23.5]) information were obtained from self-reports (of age, gender, 

handedness) collected before the main experiment (this is also true for subsequent experiments). 

This sample size is based on pilot data collected in-lab. With twenty participants we had sufficient 

power to detect the decrease in cumulative error about 80% of the time. Since we conducted this 

study online and we expected increased noise (e.g., due to variations in participant equipment set-

up), we decided to double the sample size. All participants declared normal or corrected-to-normal 

visual acuity and color vision. Participants were recruited online (via http://www.prolific.co) for a 

base allowance of 5.20GBP per hour and were told that they could also receive a monetary bonus 

depending on their performance (mean bonus = 2.00 GBP). The experiments were approved by the 

New York University Abu Dhabi Institutional Review Board and carried out in accordance with 

relevant guidelines and regulations. Informed consent was obtained from all participants. As six 

participants had abnormally large guess rates (>66%) and were either non-compliant (randomly 

placing bets) or could not perform the task, we removed them from the analyses. This cutoff was 

used for all subsequent experiments as well. 

 

http://www.prolific.co/
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Apparatus and stimuli 

Because of the online nature of the experiment, stimulus sizes could vary slightly depending 

on the participant’s screen size/viewing distance. Assuming that a 27-inch 1920 x 1080 resolution 

monitor placed 70 cm away was used, targets would be located approximately 4° away from the 

center of the screen, with the target circles themselves occupying 1° of visual angle. The 

background of the screen was black throughout the experiment. Targets appeared in the same five 

equidistant locations (see Figure 1a for positions). The response color bar was approximately 6° 

from the center of the screen with a thickness of 1.0°. Effort was made particularly to ensure that 

the drawn display fit within the participant’s browser page. Participants were also asked to 

maximize their browser window prior to launching the experiment. The colors chosen for a given 

trial and for the response bar were sampled from the MemToolbox[31] 360° color space, translated 

into RGB assuming an equal energy whitepoint. All experiments were programmed entirely in 

HTML Canvas/JavaScript. Data obtained from this study and a demo HTML is available online: 

https://osf.io/7srv4/. This study was not preregistered. 

Procedure 

In Experiment 1, each trial began with a 500ms blank screen with a fixation cross. Five 

colored stimuli appeared on-screen for 300ms. These five colors were randomly chosen for each 

trial. Stimulus presentation was followed by another blank screen for 1000ms, during which time 

participants maintained the color information in WM. After this delay period, the location of one of 

the five targets (each location equally probable) was then cued as the tested location. The response 

color bar appeared and for the first bet, participants used a mouse to laterally shift the colors of the 

response bar (see Figure 1a). Participants were asked to make the color they thought was in the 

cued location to be the center of the bar, where a white Gaussian distribution was located (standard 

deviation of 6° in color space). Participants confirmed their choice with a mouse click.  

For the 2nd to 6th bets, a standard Gaussian appeared at a random position on the bar, and 

participants were asked to move the mouse to place the Gaussian over the color bar, again 

https://osf.io/7srv4/
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confirming the bet with a mouse click (iteratively, for a total of six bets). With these additional bets, 

participants were told to spread them according to how certain they were, and that simply stacking 

the bets on top of each other would reduce the height of the distribution built. Participants were 

also explicitly told that the points they earned per trial was dependent on the height of their drawn 

distribution at the correct color. During each bet, the updated uncertainty profile (based on current 

mouse position) was updated per frame and previewed to participants. The six Gaussians summed 

to create a final uncertainty profile for that trial. The choice in shape of individual bets is not meant 

to imply a similar shape in the internal error distributions; the use of Gaussians allows participants 

to make graded and non-discrete responses over the feature space. Participants were free to stack 

responses on top of one another (see Figure 1b, left column) or to spread it across a larger color 

space (right column). As a result, the uncertainty profile ‘drawn’ at the end of the sixth response 

need not have a Gaussian shape, and can be asymmetrical. Note that the Gaussians appeared in a 

random location between responses to prevent stereotyped successive clicks (e.g., participants 

responding in a lazy manner) on the same color location, and participants had to wait a minimum 

of 300ms and make a lateral mouse movement before they could register the next click. 

To encourage participants to report something resembling the true internal uncertainty, 

participants were awarded points based on the height of the final drawn distribution over the target 

color: 

points = Height of final distribution at target color * 500  

 

The first bet was twice as tall (worth twice as many points) to encourage participants to 

place the first bet accurately. Even if memory representations have uncertainty, the optimal 

strategy when placing bets would be to stack all bets on the peak of their internal uncertainty 

distribution. We implemented subtle diminishing returns to rewarded points when stacking bets 

on existing bets. Critically, while this might encourage participants to spread bets (although pilot 

data suggests it does not impact participants performance) it would not lead to meaningful bet 
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placement unless the participant already had information about an item not captured in the first 

response. This penalty was scaled by height. Specifically, the height of the Gaussian component to 

be added was penalized by the current height of the drawn profile raised to a penalty parameter. 

For example, if the current bet is b, and the profile already drawn due to the previous bets is y, then 

the new bet y’ is: 

y’ = y + standard Gauss * (1 - Heighty at b
0.4), where 0.4 is the penalty value 

 

The taller the current height at the new bet value, the smaller the possible gain in height 

(and therefore the smaller the gain in points). Importantly, this penalty was built into the 

visualization of the drawn distribution seen by participants. After the six bets were placed, the trial 

score, total score, as well as the current accumulated monetary bonus (every 200 points earned 

0.10 GBP) were displayed on the feedback screen until the participant re-centered the mouse on 

the central fixation. To be clear, the theoretical maximum number of possible points per trial, 

despite the penalties to stacking, still occurs if the participant places their all their bets on the 

target color. This maximum possible points per trial was 146. Each participant first completed 6 

practice trials, followed by 150 main trials, with a break every 50 trials. Practice trials were 

excluded from the analyses. The primary reason for the penalty is that an optimal observer would 

stack all bets on the same point, regardless of whether they were certain or uncertain. Although it 

is unknown whether this penalty encourages or is required for spreading bets in actual data, it is 

important to clarify that spreading bets, by itself, is insufficient to cause our observed results.  
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Figure 1. Experiment protocol. a) Five color targets were shown, followed by a delay period. A color response bar then 

appeared, and one of the target locations was highlighted. In Experiment 1 participants were always asked to make 6 

‘bets’. b) In the first bet, participants used a mouse to laterally shift the colors of the response bar. Participants were 

asked to place the color they remembered in the cued location at the center of the bar, where the white Gaussian is. 

Participants confirmed their choice with a mouse click. For the 2nd to 6th bets, another Gaussian (with half the height of 

the original), appeared at a random position on the bar, and participants were asked to move the mouse to place the 

Gaussian over what they thought was the color they remembered, again confirming the bet with a mouse click. This was 

repeated for six bets per trial. Participants were free to spread out the bets as they wished. Changes to the profile were 

previewed to participants before each response. If they were very certain, they could stack the bets, forming a narrow 

uncertainty profile (left column). Doing this could earn them more points if they were on-target, but at the risk of no 

reward if there was no height of the drawing over the target color. In this case, participants would have received 132 

points. If uncertain (right column), participants could spread the bet, as a lower-risk, but lower-reward option (in this 

case receiving 21 points due to the reduced height at the target color). 
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Motor Control Experiment 

A control study of Experiment 1 was done on 20 additional naïve participants (10 female, 10 

male, age range 18-31 [median = 23.5]). We used the same betting protocol as Experiment 1 but 

stripped away the memory demands by leaving the stimulus on screen during the delay and report 

in order to isolate the response error (and other non-memory sources of error) involved in 

reporting an onscreen stimulus. Because precision was expected to be high (and therefore data 

would be low in noise), participants were only required to do 80 trials, preceded by 6 practice 

trials. Three participants were removed due to random betting, and the remaining participants had 

a very small magnitude of error (first bet mean absolute error = 3.91°) showing that non-memory 

sources of error are low.   

 

Experiment 2 

As a replication of Experiment 1, and to minimize the possibility that the predictability of 

always having to make multiple responses affected the precision of the first bet, Experiment 2 was 

conducted using 40 additional naïve participants (11 female, 29 male, age range 18-31 [median = 

23]). We used the same betting protocol as Experiment 1 except that we randomly interspersed 

trials that required only a single response (e.g., just the first bet) amongst the trials that required 

placing a sequence of 6 bets. Participants completed 100 trials of each type. Critically, the response 

condition was not known until the second response; thus, participants could not anticipate at the 

time of the first response whether they would have the opportunity to make multiple bets. Of the 

40 participants, 9 made many random clicks (guess rate > 66%, same cutoff as Experiment 1) and 

were dropped from the analysis. 
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Results 

Evidence that the reported distributions incorporate uncertainty 

To explore the degree to which participants’ bets captured their memory uncertainty, we 

first looked at whether the spread of bets predicted memory performance. This analysis leverages 

the findings that memories vary in quality[11,12] and that participants have some metaknowledge of 

the uncertainty in memory[18,21,32,33]. Thus, to maximize performance, a participant should place 

bets narrowly when the uncertainty of the true color is low and spread bets widely when 

uncertainty is high. Indeed, we found significant positive correlations (p< .05) between the 

magnitude of the error of the first response and the median absolute distance between adjacent 

bets for 32 of the 34 participants (mean r = .393). These individual correlations were Fisher-

transformed (mean z = .430, 95% CI = [0.010, 0.977]) and a t-test found this distribution to be 

significantly different from zero (t(33) = 12.57, p <.001). Similar results were found using other 

measures of the bet spread, including the standard deviation (mean z = .379) or the interquartile 

range[34] (mean z = .362) of the uncertainty profile. 

 

 

Evidence that uncertainty profiles reflect trial-specific information 

The above analysis demonstrates that the way the bets are placed reflects the error in 

participants’ first response, but how closely does the reported uncertainty within trials match 

participants’ across-trial error, as assessed by the profile of the error in first responses across 

trials? If participants were accurately recreating the uncertainty in memory and sampling from this 

to derive first responses[27], the across trial error distributions would reflect the average of the 

uncertainty profiles reported within a single trial (e.g., if a participant has high uncertainty this 

individual should distribute bets more widely). We examined this possibility using two-sample 

Kolmogorov-Smirnov (KS) tests[35] to compare the across-trial error distribution (error of the first 



11 

 

response relative to the correct answer) to the trial averaged uncertainty profile for each 

participant. Uncertainty profiles were circularly shifted to align the target colors and averaged at 

each integer value of the color space (e.g., at 360 discrete points). For 31 of the 34 participants, the 

D-value (the KS statistic which measures the maximum difference between the two empirical 

cumulative distribution functions) was small (mean D = .042, SD = .015) and non-significant 

(p>.05), highlighting that the average reported uncertainty was not significantly different from the 

across-trial error of the first response (Figure 2).  To construct a bootstrap simulation to see the 

distribution of D-values under the null hypothesis we compared the first bet error distributions and 

uncertainty profiles from non-paired, random participants, rather than for paired individuals. 

These random pairings were repeated 1000 times to yield a 95% confidence interval [.088 .124] for 

the D statistic under the null hypothesis (that the two distributions do not share the same shape). 

Because the actual D statistic fell below this range, it suggests that the distribution of bets is being 

informed by the participants underlying memory uncertainty.  

 

Evidence that uncertainty profiles are asymmetric 

One strategy that participants could use would be to spread bets around a best-remembered 

color according to a notion of confidence, which would produce roughly equal numbers of bets on 

each side of the first response. However, bet placement was more asymmetric than this strategy 

would predict: 65.7% (SD = 3.1%) of the distribution was on the side with more bets. This is larger 

than would be expected by chance (even due to the limited number of responses). To show this, we 

compared this amount to a control analysis in which bets 2-6 were assigned random signs. The 

resulting asymmetry in bets, 57.1% (SD = 4.0%) of the distribution on the side with more bets, was 

significantly lower than the actual data, t(33) = 8.34, p < .001.  
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Evidence that the bets contain more information than found in the first response 

Additional responses were not only asymmetric relative to the first response, but this 

asymmetry was related to the target. This is critical, because models and theories from continuous 

report tasks estimate memory representations based on a single response, which either explicitly or 

implicitly assumes that this response is synonymous with the memory. However, such tasks may be 

underestimating how much is maintained in memory by confusing uncertainty in individual 

reports with uncertainty in the content of working memory. Does the quality of memory get better 

if we consider multiple reports? 

To investigate this, we analyzed the placement of individual bets, as well as the cumulative 

circular average of the bets (e.g., if the first bet was a color 10° clockwise and the second was 4° 

counterclockwise, the cumulative average would be 3° clockwise). As shown in Figure 3, the first 

bet placement is the most accurate, with a relatively monotonic decline in the accuracy of 

individual bets across the trial (when considering the center of bets in isolation). To examine this, 

we subjected the bets to a one-way ANOVA with the six levels of bet order as a within-subjects 

factor. Errors generally increased with bet number (bet 1 = 31.0°, bet 6 = 32.5°), F(5,165) = 3.39, p 

=.006, η2 =.093. This result is not surprising given that the first response was worth double the 

points of subsequent responses. Since participants are asked to and were given incentive to place 

their most confident bets first, it stands to reason that subsequent bets would be associated with 

less confidence and likely have larger error magnitudes, particularly since revisiting the top bet was 

subtly discouraged. On top of that, the subsequent responses occurred after increasing delays and 

potential interference from previous responses, adding more noise.  

Despite being less accurate than the first responses, subsequent responses could 

nevertheless contain additional, unique information about the target item[28] if memory is rich and 

probabilistic, but not if memory simply consisted of a point representation or a point 

representation plus a sense of uncertainty. This is something that can be shown computationally 

(see Supplemental Materials). To test this in our data, we examined whether additional bets were 
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providing novel information not contained in the first response by testing whether the center of the 

uncertainty profile approaches the true color with repeated placement of bets. We subjected mean 

bet placement to a one-way ANOVA and found that performance improved with additional bets 

(bet 6 = 28.3°), F(5,165) = 5.35, p < .001, η2 =.140, despite the fact that average error trended 

worse for the later bets, suggesting that the combination of responses contains more information 

than any individual response, including the first response. In addition, a further analysis 

demonstrated that relative to bet 1, bet 2 was made towards the direction of the target at a 

proportion significantly above chance (M = 57.7% vs. 50.0%), t(33) = 7.47, p <.001, BF = 945352). 

The same held true when also considering bets 3 to 6 (M = 56.9% vs. 50%), t(33) = 8.06, p <.001, 

BF = 4415101. These findings go beyond previous evidence that participants have a notion of 

memory confidence and imply that participants have more information in mind than is conveyed 

by a single report. 

One possibility is that the benefit of averaging is solely due to averaging out individual noisy 

motor responses or output error (but see Sutterer, Rosca & Woodman[36] for evidence that motor 

noise plays no significant role in continuous report tasks). However, motor error is a tiny fraction 

of the error variance for remembering 5 items and is unlikely to play a decisive role in our effect. To 

test this directly, we conducted a motor control task (see Methods). Unsurprisingly, we observed a 

benefit when combining multiple responses, F(5,80) = 15.6, p <.001, η2 =.0.49, but the change in 

error was less than a degree (bet 1 vs all 6 combined: difference  = 0.75°). To show that the benefit 

of averaging across bets in Experiment 1 is not solely from motor area we added the average 

amount of cumulative improvement found in the motor control Experiment (black line in Fig 3c) 

for responses 2-6 to the corresponding cumulative response error (blue line Figure 3a) (on a per 

participant basis). This had the effect of slightly narrowing the measured improvement, but we still 

found evidence of significantly reduced error when averaging bets, F(5,165) = 3.63, p =.004, η2 

=.099. Motor error cannot explain the effect seen in Experiment 1. Critically, our conclusions are 

not affected by differences in participant count or subject number. The increase in cumulative 
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precision for Experiment 1 (Bet 1 mean = 31.1°, Bet 6 cumulative mean = 28.3°) was evident within 

just the first 80 trials, F(5,165) = 4.45, p <.001, η2 =.119 (this suggests that learning or other 

changes in behavior over time are not necessary for the findings). Further, sub-sampling down to 

an equivalent 20 participants still yielded significant results on the cumulative benefit of multiple 

responses in greater than 99% of resamples.  

 

Performance for our first response was comparable to single report tasks 

An important implication of our results is that estimates of working memory capacity may 

be based more on memory responses than memory content. Notably, first response 

performance is comparable to results of studies that rely on single reports, providing 

evidence that our findings have implications for the way working memory is 

performance typically assessed. This is most clearly seen when we decompose our 

errors using mixture models to facilitate comparisons to previous work (using 

MemToolBox[31]). We find a guess rate of 37.1% with a set size of five, which is 

between the 16% found with set size 3 and 59% found with set size 6 in Zhang & 

Luck[8]. The amount of guessing reflects a capacity of 3.15, compared to a capacity of 

2.46 found in Zhang & Luck[8]. Precision SD in our online task after factoring out ‘guesses’ was 

approximately 29.4°, which is also close to our previous (unreported) in-lab iteration of the betting 

task (with set size of 5, mean guess rate = 31%, SD = 28.1°). Since first bet performance is 

consistent with studies using single reports, this suggests that our paradigm is not underestimating 

performance due to demand characteristics or low effort. Further, our first bet was weighted 

higher than others to encourage participants to emphasize this response. In addition, this effect is 

unlikely one that occurs through learning or strategy (or becoming lazier over time): As stated in 

the previous section, the increase in cumulative precision was evident within just the first 80 trials. 

However, to address this issue more fully we ran a replication study that unpredictably 

interspersed single- and multi-bet trials. 
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Figure 2. Comparing the error distribution of the first response across trials (red) versus the uncertainty profiles (after all 
six bets) averaged across trials (blue).  a) The comparison between the two distributions for each of the 34 participants. 
b) Aggregate of the distributions across participants. The shaded region represents 1 standard error above and below the 
mean.  
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Figure 3. Individual response errors (red) and cumulative errors (blue) as a function of response order. Cumulative 
errors are calculated as the error of the mean of responses. For example, the cumulative error for response 3 would be 
influenced by response 2 and response 1, whereas the individual response error for response 3 is solely determined by 
that bet. a) Errors for Experiment 1. Adjustments were made on the cumulative errors based on the results of the motor 
control experiment to try to minimize the impact of motor noise. b) The equivalent errors for Experiment 2. The green 
marker is the mean for the single response trials. c) Errors for the motor control experiment where the stimuli stayed on-
screen.  
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Interspersing single response trials does not impact the results 

We replicated the results under conditions in which participants were uncertain if they were 

to make one report or multiple bets (Experiment 2). The first bets in Experiment 2 (M = 27.6°, SD 

= 12.0°) did not significantly differ in error magnitudes compared to Experiment 1 (M = 31.0°, SD 

= 11.3°), t(63) = 1.13, p = .260. Bayes Factor[37] analyses (BF = 0.4) suggest anecdotal evidence for 

the null hypothesis over the alternative hypothesis (the BF approached the cutoff of <1/3 to 

support the null but did not surpass it). The single response trial errors (M = 28.2°, SD = 12.0°) did 

not differ from the errors on the first bet of the multiple bet trials in error magnitude, t(30) = 0.56, 

p = .582. For the individual errors of the multiple bet trials, errors increased from bet 1 to bet 6 (M 

= 30.5°, SD = 12.6°), with the one-way ANOVA showing F(5,150) = 3.45, p =.006, η2 =.103. For the 

cumulative errors of the multiple bet trials, errors decreased from bet 1 to bet 6 (M = 25.3°, SD = 

11.1°), with the one-way ANOVA showing F(5,150) = 5.47, p <.001, η2 =.154. Adjusting these 

cumulative errors by the motor benefits still suggested a decrease, F(5,150) = 3.70, p =.004, η2 

=.110. Although Experiment 2 tested less participants and used less trials per condition (due to the 

need to have two conditions) than Experiment 1, our conclusions are affected neither by the 

differences in participant numbers nor trial numbers between the two studies as demonstrated by 

our earlier sub-sampling analysis.  

Taken together, these results, combined with the fact that our first response 

accuracy in for Experiments 1 and 2 was in line with previous studies utilizing one 

response[8], suggest that multiple responses is not meaningfully distorting results 

relative to existing approaches. This rules out alternative explanations for our 

results such as strategic or low-effort first responses.  

 

Examining speed-accuracy tradeoffs 

One concern is that performance improvements reflect that participants sometimes 

respond lazily on their first response but correct this in later responses. This effect could be 
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expected to be particularly pronounced in Experiment 1, since participants knew they had multiple 

responses. Of note, in Experiment 2 participants did not know in advance whether they would have 

the opportunity to make multiple responses. However, we conducted a reaction time (RT) analysis 

to examine this in more detail. A speed-accuracy tradeoff account predicts that participants 

sometimes respond quickly instead of accurately. However, there was no correlation between speed 

of the first bet response (the period between the end of the delay, and the time of the mouse click) 

and the precision of the response in our studies (ps>.05). A median split comparing the fastest 

versus slowest bet 1 responses also yielded a null result (ps > .05, BFs < 1/3) for both experiments. 

Another prediction of this account is that the change in precision between bet 1 and the mean after 

the 6 bets had been made would be higher when bet 1 RTs are fastest. However, this ‘improvement 

metric’ did not correlate with the time taken to make the first bet, and a median split corroborated 

the null result (all ps > .05). Note that while we do not report the RT effects for the remaining 

experiments, we observed similar null effects in these studies. Because guessing or swap errors 

(responses not sampled from the internal representation of the target) can result in large errors 

that could affect the pattern of results, we also repeated these speed-accuracy tradeoff analyses 

with these trials removed, which did not alter the null results. Taken as a whole, these results 

provide strong evidence that low effort during the first response is not driving our findings, and 

that additional responses allow for improvement.  

 

An argument for uncertainty profiles: The case of ‘guess’ and ‘swap’ errors 

Thus far we have focused on how the uncertainty profiles provided by participants generally 

match their aggregate performance, with the cumulative error analyses further suggesting that 

these profiles contain more information than any single response. However, the benefit of 

measuring these profiles is that it affords the ability to explore novel issues, like how much 

information is available about the target when participants’ initial report is far from the target.  
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Many models of visual WM make claims that distinct ‘states’ underlie some kinds of 

memory errors. For example, some models suggest that far away responses reflect ‘guesses’, where 

no target-specific information is available to participants[8]. Other models suggest that some far 

away reports reflect ‘swaps’, where participants report a non-target item[5,38] either erroneously / 

due to cue confusion[38,39,40] or strategically[19]. The betting game task allows us to examine whether 

these responses truly reflect distinct states with no target-specific information by more closely 

examining the uncertainty profiles for such “swap” trials and “guess” trials. 

We classified trials into three trial types: target, swap, and guess trials using the method 

outlined in Bays, Catalao & Husain[5] and Schneegans & Bays[38]. Unsurprisingly, based on the first 

bet errors the majority of trials were classified as target trials (M = 73.3%). There were significantly 

more guess trials (M = 20.1%) than swap trials (M = 6.6%), (all comparisons, p<.001). The lack of 

swap errors likely stemmed from the fact that the locations of the colors were fixed and predictable 

across trials[5,39]. Only 33 of the 65 available data sets had trials that could be classified as swap 

trials. To have sufficient power to examine swaps, we combined the data from Experiment 1 and 

the multiple bet trials from Experiment 2. Swap trials (M = 39.1°) did not significantly differ from 

guess trials (M = 43.8°) in terms of bet spread, t(26) = 0.88, p = .387, BF = 0.32. When combined 

with our previous finding that bet spread was correlated with initial response error and thus may 

reflect memory uncertainty, this result is consistent with other work (e.g., Pratte[19]) demonstrating 

that confidence ratings do not differ between swap and guess trials. In contrast, the bet spread for 

the target trials (M = 24.2°) was significantly smaller than the two other trial types (ps < .001). 

Most importantly, one-way ANOVAs revealed that all three trial types had a decrease in cumulative 

bet errors from bet 1 to bet 6 (ps < .001, η2s > .01). This suggests that single response methods tend 

to underestimate the amount of information about the target item that participants store not only 

for on-target reports, but also for swap or guess reports, and that participants do indeed have 

target-specific information on such trials. Further, this rules out that the cumulative improvement 

in bets can arise solely from one source of error (e.g., recovery from swaps).  
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Residual target encoding in cases of ‘swap’ and ‘guess’ errors can be further examined via 

participants’ bet placement over the target color. For example, if a ‘swap’ reflects a complete 

replacement of the tested item (at either encoding, storage, or retrieval), then we expect the height 

of the uncertainty profile over the target color to be no higher than over other random positions. To 

examine this, we took the uncertainty profiles for each trial and centered them on the first response 

such that errors biased towards the target side were coded as positive (see Figure 4c). We found 

that the sum of heights over the estimates biased towards the direction of the target were higher 

than estimates biased away, for all three target types (Figure 4a, all ps < .001, η2s > .31). Finally, we 

compared the height of the distribution over the target to the height over a “control” color that was 

equidistant from the first bet but in the opposite direction as the target (Figure 4b). If the profiles 

contain no target information, these two heights should be identical. Instead, bet height was 

significantly greater for target versus control color on guess and target trials (both ps<.001, η2s > 

.23) and marginally significant for swap trials t(32) = 1.80. p = .081, η2 = .09 (notably, swap trials 

had reduced power due to low trial counts).  

We find that participants know something about target identity even when their first 

response would suggest otherwise. This finding suggests that traditional interpretations of guess 

and swap trials need to be revisited. Guess responses may reflect issues of report or retrieval more 

than outright failures to encode the item into memory. The rate of true guessing is likely smaller 

than what single response methods suggest (see Supplemental Materials). Swap responses may 

reflect a momentary misattribution error[41] or a strategic guess based on a failed retrieval[19] 

instead of a failure of binding during memory consolidation. 

A possible concern with the setup of Experiments 1 & 2 is that the results do not necessarily 

result strictly from visual WM. It could be that there is additional information from verbal WM 

(e.g., participants verbalizing the colors in the array) or in some lingering perceptual trace. We 

replicated the experiment with modifications to eliminate the contribution of these sources of 

memory.  
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Figure 4. Post-classification analyses. a) Sum of profile heights either towards or away from the target. b) Height over the 
actual target compared to the anti-target (the color that is equidistant to the target from response 1, but in the opposite 
direction). c) Distribution of bets around bet 1, with the positive end being towards the true target. Note that the 
distributions are bimodal because these exclude the Bet 1 contribution and participants tend to spread subsequent bets 
away from the initial response. Also note that the distribution is asymmetrical, with a greater proportion of the area 
biased towards the target (+ve x-direction) 
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Experiment 3 

We introduced modifications to Experiment 1 (see Figure 5). Firstly, participants were 

explicitly told not to name the colors. To facilitate this, each trial began with a two-digit number 

(presented for 500ms) which participants were asked to repeat to themselves/subvocalize[42,43]. 

Participants were given a probe digit after the color task and asked whether it was one of the two 

digits shown earlier. Participants were warned that they would not get points for the color task if 

they were incorrect on the digit task. As a color mask, after the 300ms of presentation, there was a 

further 300ms in which the patches within the five circular markers were replaced with random 

colors each frame (there are approximately 100 random patches per circle). Lastly, we changed the 

setup such that the response was done on a color wheel instead of a color bar. Unlike Experiment 

1, the first response did not shift the color space/cause the Gaussian to appear in the middle of the 

response (bar). This was to demonstrate that the results are generalizable and not dependent on 

the exact design of the betting task. Bet 1 now behaved exactly like Bets 2-6, aside from the 

Gaussian component being twice as tall. Each Gaussian component now had a width (standard 

deviation) of 4° instead of 6°. Again, this was done to ensure that the results are generalizable and 

that uncertainty profiles drawn are not dependent on specific bet shape components. Otherwise, 

the score system was the same as Experiment 1 & 2. We ran this experiment on 40 naïve 

participants (9 female, 29 male, 2 self-identified as non-binary, age range 18-32 [median = 21]). 

Four sets of data were removed because >66% of the trials were guesses.  
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Figure 5. a) Experiment 3 paradigm. As with previous experiments, participants were given 6 bets per trial, only that the 
bets took place on a color wheel instead of a horizontal bar. The digit probe test occurred after the 6th color bet. b) 
Individual response errors (red) and cumulative errors (blue) as a function of response order (regardless of digit probe 
accuracy). 
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Results 

For the digit probe test, participants scored an average of 76.3% (SD = 10.1%). Other trends 

closely mirrored that of Experiments 1&2. Bet spread correlated with median absolute error (mean 

r = .301), with 30/36 participants showing this significantly (p <.05). The shape of the distribution 

of 1st bet errors across trials closely matched that of the average uncertainty profiles, with 31 of 36 

participants having a non-significant KS-test (p>.05), (mean KS statistic = .041). 

Individual bet errors increased across bets, F(5,175) = 16.20, p <.001, η2 =.316, while 

cumulative bet errors decreased across bets, F(5,175) = 3.32, p =.007, η2 =.087. Importantly, 

equivalent results were found if the trials where the digit probes were responded to incorrectly 

were dropped: individual bet errors increased F(5,175) = 14.90, p <.001, η2 =.299, while cumulative 

bet errors decreased, F(5,175) = 2.64, p =.025, η2 =.070, ruling out the possibility that bet error 

decreases arise only due to the presence of unattended-to trials (e.g., where the later best might 

randomly have better guesses than bet 1). In order to test whether our results generalize to a 

different stimulus space, we modified the task to use a complex shape space. 

 

Experiment 4 

The validated circular shape space[44], comparable to the color space, consists of 360 

shapes. Angular distance along its 2D circle is correlated to visual similarity. As with Experiment 3, 

the task was performed on a circle (Figure 6a), with 5 stimuli (shapes, subtending approximately 

1.5 times the visual angle of the color circles in Experiments 1-3). Stimulus display duration was 

1000ms. Memory duration was also 1000ms. To minimize naming of the shapes which might 

introduce some effect of verbal memory, participants were asked to repeat ‘THE’ across the trial. 

Forty naïve participants were recruited (15 female, 24 male, 1 self-identified as non-binary, age 

range 18-31 [median = 22]). Three datasets were removed because of large guess rates > 66%. The 

feedback and score system was the same as Experiment 3, despite the shift to using shape stimuli. 
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Figure 6. a) Experiment 4 paradigm. Shape stimuli used was adapted from Li et al. (2020). Participants remembered five 
shapes and later reported an uncertainty profile for the probed shape. As with Experiment 3, six bets were made on a 
circle. b) Individual response errors (red) and cumulative errors (blue) as a function of response order. 
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Results 

Trends for the shape space closely mirrored that of the color space. Bet spread correlated 

with median absolute error (mean r = .379), with 36/37 participants showing this significantly (p 

<.05). The shape of the distribution of 1st bet errors across trials closely matched that of the average 

uncertainty profiles. 30 of 37 participants had a non-significant KS-test (p>.05), (mean KS stat = 

.042). Individual bet errors went up across bets, F(5,180) = 14.97, p <.001, η2 = .294. Critically, 

cumulative bet errors went down across bets, F(5,180) = 4.54, p <.001, η2 = .112 (Figure 6b). 

General Discussion 

There has been considerable focus on understanding visual WM. Most of this work has 

focused on categorizing the structural limitations of our WM system—How much information are 

we able to store and what is the unit of this limit (e.g., objects, features, bits)? However, very little 

is known about the nature of individual representations and critically, how this information is 

converted into responses in WM tasks. Researchers have focused on minimizing decision aspects of 

WM tasks and using analysis techniques that examine the average memory state across many 

trials. In contrast, an underlying assumption of many models, particularly physiologically plausible 

models, is that representations consist of patterns of activity that can be effectively described as 

probability distributions that exist over some feature space[24,25,29]. Unfortunately, there has been a 

near exclusive focus on evaluating and comparing theoretical models using tasks in which single, 

discrete responses, sometimes paired with subjective estimates of certainty, are the sole basis of 

performance. At best, these discrete responses are capturing a representative summary of this 

probability distribution (e.g., the mode of a Gaussian). However, discrete reports may represent 

something besides the best estimate of the memory, or the underlying distributions may be 

sufficiently complex that any method of condensing them into a single response throws away 

considerable information.  
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To explore this, and test whether participants have access to a richer representation than 

simply a point estimate plus a sense of uncertainty, we developed a betting game task where 

participants were asked to do more than render a single discrete judgment. Instead, participants 

placed six independent Gaussian bets over a feature space, which were combined cumulatively to 

form a final response distribution. The trial-specific distributions drawn revealed that participants 

could access some information about their internal representation of the item on a trial-by-trial 

basis. We found considerably larger response errors for trials in which bets were widely spaced 

(indicating high uncertainty) than for trials that were closely spaced (indicating low uncertainty). 

Moreover, the uncertainty profiles drawn by participants on individual trials were comparable to 

the across trial aggregate distributions, suggesting that participants are tapping into something 

akin to an internal probability distribution to guide bet placement. This finding mirrors previous 

studies showing that participants have metaknowledge of memory quality[18,21,32,33] but goes further 

in that it suggests memory is richer than simply a sense of uncertainty, since the data suggests that 

uncertainty profiles are asymmetrical towards the target, indicating participants do not just know 

how certain they are about their chosen response, but also know which other responses are second 

or third best (e.g., know more about the actual answer). This is something that the use of 

symmetrical confidence intervals is unable to capture and is inconsistent with the idea that 

representations are discrete representations plus a notion of confidence[30]. 

Most critically, we find that the uncertainty distributions revealed more than just trial-by-

trial memory uncertainty. The average response error for the mean of the uncertainty distribution 

decreased monotonically from the first to the last bet, even though the average error of each bet 

increased. This was true even when participants did not know if they were placing one or multiple 

responses, and even after accounting for motor error at response. This cannot be explained by 

speed-accuracy tradeoffs, nor by participants supplementing their visual memory with either 

perceptual or verbal memory. Neither are these findings specific to simple features like color; 

Memory for complex shapes shows the same pattern of findings.  
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Because participants’ responses become more accurate when averaging in subsequent 

responses, this indicates that their initial response did not contain all they knew about the target 

(e.g., it was not their single best possible guess). This could be because they either do not have full 

access to internal probability, or at least make sub-optimal discrete responses even when given 

incentive to be accurate. What might be causing participants to sub-optimally respond given the 

stimulus encoding? One possibility is that we only have access to discrete samples from internal 

probability distributions[26,27]. Given that evidence of noisy sampling has been found in many 

paradigms including decision-making[45], object recognition[46], attention[47], etc., it would not be 

surprising if our conscious access to the contents of memory at any given instance reflects noisy 

samples. Indeed, independent samples from an internal probability distribution can explain our 

findings, including the accumulation of additional information with additional responses (Figure 

S1, see Supplemental Materials). Critically, by contrast, strategic bet placement (from a confidence 

interval, for example) is unable to explain information accrual. The pattern of results can only be 

explained by a mechanism that produces non-optimal responses (allowing responses to tap into 

independent pieces of evidence). Whether the mechanism is noisy sampling (or something else 

akin to that) will require future work. Further, our results do not necessarily entail 

participants having access to a full probability distribution or versus ‘probabilistic-

like’ representations consisting that consist of multiple independent samples. 

However, our results suggest that existing theoretical models are underestimating the amount of 

information encoded into WM by assuming that the responses gathered in memory tasks are a 

veridical reflection of memory.  

All WM tasks require decision-making. A common strategy has been to minimize these 

decision-components and to treat the responses as synonymous with representation. Assuming 

that WM representations are rich and complex, it is impossible to derive a task where the output is 

a pure reflection of memory. Theoretical or computational models with sufficiently specified 

mechanisms ought to predict what an internal distribution of uncertainty (on a trial-by-trial basis) 
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might look like. Many models propose rich representations composed of uncertainty distributions 

over feature space[24,25,48,49,50,51,52] such as how competing encoded representations might interfere 

or influence one another in biologically plausible ways[25,39,53]. Research that takes seriously the 

question of what an individual memory looks like will help to bridge the gap between cognitive 

models and biologically inspired neural models.  

Our work does not completely answer the myriad of questions about the nature of WM, but 

it does suggest a novel framework that could also be extended to study other aspects of cognition, 

such as the nature of perceptual representations[54]. Given that our memories are rich and complex, 

our report methods would do well to embrace this complexity.  
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Figure Captions 

Figure 1. Experiment protocol. a) Five color targets were shown, followed by a delay period. A color 
response bar then appeared, and one of the target locations was highlighted. In Experiment 1 
participants were always asked to make 6 ‘bets’. b) In the first bet, participants used a mouse to laterally 
shift the colors of the response bar. Participants were asked to place the color they remembered in the 
cued location at the center of the bar, where the white Gaussian is. Participants confirmed their choice 
with a mouse click. For the 2nd to 6th bets, another Gaussian (with half the height of the original), 
appeared at a random position on the bar, and participants were asked to move the mouse to place the 
Gaussian over what they thought was the color they remembered, again confirming the bet with a 
mouse click. This was repeated for six bets per trial. Participants were free to spread out the bets as they 
wished. Changes to the profile were previewed to participants before each response. If they were very 
certain, they could stack the bets, forming a narrow uncertainty profile (left column). Doing this could 
earn them more points if they were on-target, but at the risk of no reward if there was no height of the 
drawing over the target color. In this case, participants would have received 132 points. If uncertain 
(right column), participants could spread the bet, as a lower-risk, but lower-reward option (in this case 
receiving 21 points due to the reduced height at the target color). 

 
Figure 2. Comparing the error distribution of the first response across trials (red) versus the uncertainty 
profiles (after all six bets) averaged across trials (blue).  a) The comparison between the two 
distributions for each of the 34 participants. b) Aggregate of the distributions across participants. The 
shaded region represents 1 standard error above and below the mean.  
 
Figure 3. Individual response errors (red) and cumulative errors (blue) as a function of response order. 
Cumulative errors are calculated as the error of the mean of responses. For example, the cumulative 
error for response 3 would be influenced by response 2 and response 1, whereas the individual response 
error for response 3 is solely determined by that bet. a) Errors for Experiment 1. Adjustments were 
made on the cumulative errors based on the results of the motor control experiment to try to minimize 
the impact of motor noise. b) The equivalent errors for Experiment 2. The green marker is the mean for 
the single response trials. c) Errors for the motor control experiment where the stimuli stayed on-
screen.  
 
Figure 4. Post-classification analyses. a) Sum of profile heights either towards or away from the target. 
b) Height over the actual target compared to the anti-target (the color that is equidistant to the target 
from response 1, but in the opposite direction). c) Distribution of bets around bet 1, with the positive 
end being towards the true target. Note that the distributions are bimodal because these exclude the Bet 
1 contribution and participants tend to spread subsequent bets away from the initial response. Also note 
that the distribution is asymmetrical, with a greater proportion of the area biased towards the target 
(+ve x-direction) 
 
Figure 5. a) Experiment 3 paradigm. As with previous experiments, participants were given 6 bets per 
trial, only that the bets took place on a color wheel instead of a horizontal bar. The digit probe test 
occurred after the 6th color bet. b) Individual response errors (red) and cumulative errors (blue) as a 
function of response order (regardless of digit probe accuracy). 
 
Figure 6. a) Experiment 4 paradigm. Shape stimuli used was adapted from Li et al. (2020). Participants 
remembered five shapes and later reported an uncertainty profile for the probed shape. As with 
Experiment 3, six bets were made on a circle. b) Individual response errors (red) and cumulative errors 
(blue) as a function of response order. 
 


