
  
 
 
 
 
 
 
 
 
 
 
 

 
Perceptual awareness occurs along a graded continuum:  

No Evidence of All-or-None Failures in Continuous Reproduction Tasks 
 
 

Michael A. Cohen1,2, Jonathan Keefe3, & Timothy F. Brady3 
 

1 McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, 

Massachusetts Institute of Technology  
2 Department of Psychology and Program in Neuro science, Amherst College 

3 Department of Psychology, University of California, San Diego 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract  

Does sensory information reach conscious awareness in a discrete, all-or-nothing manner, 
or a gradual, continuous manner? To answer this question, we examined behavioral 
performance across four different paradigms that manipulate visual awareness: the 
attentional blink, backwards masking, the Sperling iconic memory paradigm, and retro-
cueing. We then asked how well we could account for participants’ behavior using a signal 
detection framework that factors in psychophysical scaling to model participants’ responses 
along a single continuum. Overall, we found that this model easily accounted for the data 
from each of these diverse paradigms. Moreover, in some cases, we re-analyzed the data 
from prior studies that had argued for a discrete view of perceptual awareness and found 
that our continuous signal detection model outperformed the models that had been used to 
support an all-or-nothing view of consciousness. Together, these results suggest that 
information is accessed by conscious awareness along a graded continuum. 

 

Statement or Relevance 

At any given moment, the human senses (e.g., vision, hearing, etc.) are presented with more 
information than the brain can process. Some of this information ultimately reaches 
conscious awareness (e.g., the sight of an animal crossing the road in front of you), while 
other information remains unconscious (e.g., the pothole on the street that you drive right 
over). How does information transition for unconscious to conscious? Does it enter in a 
discrete, all-or-nothing manner? Or does it enter along a graded continuum? Here, we used 
a wide array of paradigms that manipulate perceptual awareness and found that a signal 
detection based model, which posits that information reaches consciousness in a graded 
fashion, easily explains all of these results. Moreover, this model outperforms other models 
that have been cited to claim information reaches consciousness in a discrete fashion. Thus, 
we argue that information reaches consciousness along a grade continuum.  

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 



Introduction  

     How does information transition from being unconsciously processed to being accessed 
by conscious awareness? According to some models, information reaches awareness in a 
graded fashion that varies along a continuum associated with the intensity of the stimulus, 
attention, or cortical activity (Overgaard et al., 2006; Nieuenhuis & de Klieijn, 2011; Elliot et 
al., 2016; Phillips, 2020). Under this view, there is a continuous transition from unconscious 
to conscious processing leading to varying levels of “vague” or “unclear” perceptual 
experiences. According to other models, information reaches awareness in a discrete 
manner associated with all-or-nothing changes in neural activity (Dehaene et al., 2001; 
Lamme, 2003; Sergent & Dehaene, 2004; Vul et al., 2009). In this case, the transition from 
unconscious to conscious is binary, such that participants either do or do not perceive a 
particular stimulus. 

     Over the past few decades, researchers on both sides of this debate have used 
numerous experimental paradigms (e.g., the attentional blink, visual masking, etc.) and 
methodologies (e.g., objective measurements, subjective ratings, etc.) to assess this 
question, often making it hard to compare studies to one another. Recently, however, one 
tool that has been applied to this debate is probabilistic mixture modeling. This particular 
modeling framework takes participants’ responses in a continuous reproduction task (e.g., 
what color was this stimulus on a color wheel?) and models the errors participants make on 
this task (Zhang & Luck, 2008; Bays et al., 2009; van den Berg et al., 2014). Although it was 
initially proposed to model visual working memory, mixture modeling has since been applied 
to nearly all areas of perception, attention, and long-term memory research (Brady et al., 
2013; Golomb et al., 2014; Salahub & Emrich, 2018). In its simplest form, the mixture model 
framework posits that the representation of a stimulus often fails completely (i.e., it is not 
encoded/remembered, resulting in guesses) and that when it does not fail completely, its 
representation varies in precision, which can be quantified. These two states are often 
modeled by a combination of a von Mises distribution and a uniform distribution to quantify 
the precision of represented items and the rates of not having a representation of an item. 
Since this modeling approach differentiates between instances in which items are and are 
not successfully represented in both a continuous (i.e., precision) and discrete (i.e., guess 
rate) manner, it is a natural tool for asking if information transitions into conscious awareness 
in a discrete or graded manner.  

     One example of this approach is the nature of perceptual awareness in the attentional 
blink (Raymond et al., 1992). The attentional blink is a perceptual phenomenon in which 
participants less accurately perceive the second of two targets when it appears close in time 
to the first target. By asking participants to report the identity of the second target in a 
continuous manner (e.g., on a color wheel), the precision and guess rates of the second 
target can be modeled, assessing whether the second item sometimes goes unnoticed (i.e., 
guess rate increases) or is always perceived but less precisely (i.e., precision degrades). 
Using this approach, Asplund et al. (2014) found that the guess rate of the second target 
increased while the precision of those responses stayed the same. In other words, 
information reached conscious awareness in a quantal, all-or-nothing manner (but see Sy 
et al., 2021). Similar work has been done in many other paradigms, including the Sperling 
iconic memory paradigm (Pratte, 2018) and a related retro-cueing paradigm (Thibault et al., 



2016), with each case supporting some form of discrete failures of consciousness based on 
mixture model fits.  

     Recently, however, theoretical work by Schurgin et al. (2020) has undermined 
foundational assumptions of mixture models and shown that in the case of visual working 
memory and visual long-term memory, this modeling approach does not reveal two distinct 
psychological processes. Specifically, Schurgin et al. (2020) showed that precision and 
guess rate do not change independently of one another; instead, they always change 
together, as though they are really just different reflections of a single underlying construct. 
Schurgin et al. (2020) showed how a simple model with only a single latent variable – what 
they call memory strength – can account for data that has previously thought to require a 
mixture of guesses and precision errors. The reason this was not previously recognized is 
because standard mixture models do not consider the psychophysical similarity of items, 

which is deeply non-linear. For example, colors that are 5 apart on the color wheel appear 

more similar to one another than colors that are 35 apart. However, colors that are 120 

apart appear do not appear more similar than colors that are 150 apart. By considering the 
psychophysical similarity of items in a given stimulus space, Schurgin et al. (2020) showed 
that performance on working memory and long-term memory tasks could be explained by a 
signal-detection framework in which a continuous representational strength (d’) is the only 
varying parameter. This work forms the basis of the Target Confusability Competition (TCC) 
model, which posits that all stimuli in a memory or perception task are processed with varying 
degrees of noise, leading to reproduction errors.  

     In the current work, we asked how well this continuous TCC model fits the data from four 
different paradigms that manipulate visual awareness: the attentional blink, backwards 
masking, the Sperling paradigm, and retro-cueing. For three of these paradigms, we re-
analyzed data from prior studies claiming to show discrete failures of conscious awareness. 
In each of these cases, however, formal model comparisons show that the continuous TCC 
model outperforms mixture models, which suggests that information reaches conscious 
awareness in a continuous, graded manner. 

Open Practices Statement 

All code and data will be made publicly available on OSF prior to final publication.  

Methods 

     The Target Confusability Competition (TCC) model: In a standard working memory 
experiment, participants are asked to remember a small number of items (e.g., 5 colors) and 
respond in a continuous space (e.g., a color wheel, Fig. 1a). The resulting data from these 
experiments are a distribution centered around zero with long, fat tails with many errors far 
from zero. Under the mixture modeling framework proposed by Zhang and Luck (2008) and 
since elaborated (e.g., Bays et al. 2009; Pratte et al. 2017), this distribution is thought to be 
comprised of two components related to the (a) precision of items successfully processed 
and reported (i.e., the standard deviation) and (b) how frequently items fail to be processed 
and are not represented (i.e., the guess rate). Recent work has strongly questioned this idea 
that there are two distinct factors underlying performance in continuous reproduction tasks, 



however (e.g., Bays, 2014; Schurgin et al. 2020; van den Berg et al. 2012). In the TCC 
framework of Schurgin et al. (2020), for example, this response distribution is thought of as 
a relatively simple outcome of noise being added to perceptual signals. In particular, TCC 
proposes that psychophysical similarity (i.e., measuring how perceptually confusable each 
item is with the item to be remembered; target confusability) and signal detection theory (i.e., 
noisy decision making; a kind of competition: MacMillan & Creelman, 1991) accounts for 
performance. Critically, according to the TCC model, there is no distinction between how 
precisely and how many items are processed -- only a single latent variable, the strength of 
the item’s representation, is needed to account for performance in continuous reproduction 
(Schurgin et al. 2020). Thus, if the TCC model accurately fits data from tasks where 
perception is challenging, this would suggest that conscious perception can potentially be 
thought of as a graded phenomenon with the strength of a given percept varying along a 
single continuum. 

 

Figure 1. The target confusability (TCC) model). a) Continuous report working memory task. Participants are shown a stimulus display 
and then after a delay are asked to report the exact color of a cued item with the color wheel. In the lower panel, is an example of a mixture 
model’s fit to continuous report data. Most results land within a small range centered around the target’s true color, with some responses 
being far off. The standard mixture model (Zhang & Luck, 2008) approach states that these responses can be successfully modeled by 
assuming that errors occur because an observer either remembers nothing about the item (guesses) or the observer has a noisy 



representation of that item (precision). b) Left: To measure the psychophysical similarity function of a stimulus space, participants 
performed a triad similarity task and reported which of two colors (bottom) was more similar to the target (top). Although the difference 

between the two colors is always exactly the same (30), d’ decreased as the choices were further from the target. Right: From this, we 
can plot the global psychophysical function for all colors using this triad task. The key point here is that this similarity function is not linear 
and is approximately exponential once perceptual noise is properly considered. c) This model can be visualized with a single trial. When 
an observer encodes the color purple with a strength of d’=3, the familiarity of purple, as well as nearby/similar colors, is increased relative 
to the psychophysical similarity function (see panel b). Then, after adding noise to every color channel, observers make decisions based 
on which color has the maximum signal. d) Predicted error distributions can be generated simply as a function of varying d’ and combining 
it with correlated noise. Thus, for any observed error distribution, d’ is simply altered until the best fit to the data is found.  

      To intuitively understand the TCC model, consider a situation in which an observer is 
shown a colored item and is asked to report the color of that item in a continuous report task 
with a color wheel. It is natural to assume that every color around the color wheel would get 
varying degrees of a “familiarity boost” depending on the similarity between the target color 
and the response colors. For example, when the presented color is a shade of purple, this 

color gets a big boost in familiarity, and colors almost identical to it (e.g., 2 away on the 
color wheel), which are perceptually nearly impossible to distinguish and which activate 
nearly the same population of neurons in early visual cortex (e.g., Bays, 2014) also get a 
boost in familiarity. Other colors nearby to purple (e.g., blue) would also get a familiarity 
boost, approximately in line with how likely they are to share neural resources and have 
overlapping tuning functions (Bays, 2014). Meanwhile, colors far from purple (e.g., yellow) 
would get little to no boost from having been shown purple. The amount of familiarity boost 
each item gets is based on a psychophysical similarity function that is strongly non-linear. 
Thus, the first step of TCC is to empirically measure the perceptual similarity of a particular 
feature space (i.e., color, orientation, etc.) as an index of familiarity-spreading (Fig. 1b). 
Once this familiarity gradient is measured, the model simply combines this similarity space 
with noise (i.e., via signal detection, with the signal-to-noise ratio being d’) that is varied 
along a continuous gradient (Fig. 1c). In this case, d’ is a quantification of the strength of a 
particular conscious percept (Fig. 1d).  

Model details. In general, the TCC model is typical of a m-AFC signal detection 
model of memory, but adapted to the case of continuous report, which we treat as a 360 
alternative forced-choice for the purposes of the model. The analysis of such data focuses 
on the distribution of errors people make measured in degrees along the response wheel, 
x, where correct responses have x=0° error, and errors range up to x=±180° for a color wheel 
(or x=±90° for oriented gratings), reflecting the incorrect choice of the most distant item from 
the target on the response wheel. In the TCC model, when probed on a single item and 
asked to report its value, (1) each of the colors on the color wheel generates a memory-
match signal mx, with the strength of this signal drawn from a Gaussian distribution, mx ~ N( 
dx, 1), (2) participants report whichever color x has the maximum mx, (3) the mean of the 
memory-match signal for each color, dx, is determined by its psychophysical similarity to the 
target according to the measured function (f(x)), such that dx = d′ f(x) and (4) the noise is 
correlated across nearby colors according to confusability in a perceptual matching task. As 
sampling from a normal distribution with a standard deviation of 1 (the typical framing of 
signal detection) is equivalent to adding standard deviation 1 noise, the model can be written 
straightforwardly: 

   𝑟𝑖,𝑉𝑊𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥( 𝑓(𝑥)𝑖 𝑑′ + 𝜎𝑁𝑜𝑖𝑠𝑒 ).                   



Where the index 𝑖 denotes the probed item,  𝑟𝑖,𝑉𝑊𝑀 is the predicted response on the 

continuous report task for that item,  𝑓(𝑥) is the measured similarity of each color 𝑥 with 
respect to item 𝑖, 𝑑′ is a free parameter that quantifies the signal-to-noise ratio, 𝜎𝑁𝑜𝑖𝑠𝑒, the 
noise, generated from a multivariate normal with SD=1 and the correlation derived from 
the perceptual matching task, and 𝑎𝑟𝑔𝑚𝑎𝑥 denotes the decision rule that memory reports 
are based on the feature that generates the maximum familiarity signal.  Note that because 
d’ in the TCC model is always scaled by similarity, this parameter represents hypothetical 
2-afc performance between a target and a maximally dissimilar foil object (e.g., a 90 deg. 
orientation foil); in a more difficult task (e.g., 2-afc between an orientation and one 10 deg. 
away), measured d’ would be worse, but when scaled by similarity, TCC d’ would be the 
same as the 90 deg. task (as tested by Schurgin et al. 2020). Thus, TCC d’ values from 
continuous report should not be taken to be on the same scale with measured d’ in other 
tasks that may not use maximally dissimilar foils. 

For f(x), the psychophysical similarity function, in the color tasks we use the same 
function used by Schurgin et al. (2020), which is measured in an independent similarity task 
performed by independent observers and then held fixed for all fitting in all conditions and 
all experiments using the same color wheel; we also use Schurgin et al. (2020)’s perceptual 
matching data. For orientation, we use similar data published in the preprint version of 
Schurgin et al. (2020) but removed before the final paper due to space considerations; the 
details of this task are reported both in that preprint and, for clarity, in the supplemental 
information of this paper. The psychophysical similarity data and code for fitting the models 
using MemToolbox (Suchow et al. 2013) are available on OSF. 

   Overall, this model combines a measurement of the perceptual structure of a stimulus 
space (i.e., psychophysical scaling) with a standard signal detection theory of perceptual 
decision making. It denies the existence of discrete failures of conscious awareness and 
discrete failures of memory, instead suggesting the “long tails” of the error distribution are a 
natural consequence of the fact that all items far from the target in stimulus space (e.g., all 
colors far from purple) have effectively zero representational overlap with the target (e.g., 
share no neural coding overlap with purple, as no tuning functions are so widely tuned). 
Below, we show that this simple model can easily account for performance across numerous 
paradigms that manipulate perceptual awareness.  

Model comparisons. For each paradigm, we compared the fit of mixture models, which 
propose discrete failures of consciousness, to the fit of the TCC model, which proposes 
performance reflects a single continuous value of strength, and ask if there is a difference 
in the fit between the two models after accounting for the simplicity of TCC. We use a version 
of the mixture model normalized to predict only integer errors to make it comparable to TCC 
(Schurgin et al. 2020). To compare the models per condition, we used the Bayesian 
information criterion (BIC), as our metric to directly compare mixture models and the 
continuous TCC model (Schwarz, 1978). This is because we have previously shown via 
model recovery simulations in which data is simulated from each model and then re-fit by 
both models, that BIC is well-calibrated for accurately distinguishing mixture models from 
TCC in continuous reproduction data (Schurgin et al. 2020 Supplement). The supplemental 
information (SI) explains and expands those model recovery simulations. However, in the 
‘Across Experiments’ section below, we highlight that comparing the models in each 



condition can fail to capture the main evidence in favor of a simpler model, like TCC. Simpler 
models are far more constrained in what patterns of data they can predict across all 
conditions, which is poorly accounted for in considering only goodness of fit, or even 
adjusted goodness of fit like BIC (Roberts & Pashler, 2000). If the pattern across all 
conditions is what is predicted by a 1 parameter model rather than a 2-parameter model, in 
terms of a state-trace plot (Dunn & Kalish, 2018), this provides even stronger evidence in 
favor of a simpler model like TCC.   

Results 

     Attentional blink: We reanalyzed the data from two papers that used mixture modeling 
to examine responses made during the attentional blink. One paper by Asplund and 
colleagues (2014) argued in support of a discrete, all-or-nothing view of conscious 
perception, while another paper by Sy and colleagues (2021) claimed that awareness can 
be discrete or continuous depending on task demands. We asked how well this data can be 
accounted for by the simpler TCC model, which just allows for variation in a single latent 
variable, the representational strength of the items, rather than a mixture model that requires 
two variables (i.e., precision and guess rates) and posits discrete all-or-none failures of 
consciousness. 

     In Experiment 1 of Asplund et al. (2014), participants were shown a rapid serial visual 
presentation (RSVP) of colored circles with two square targets (Fig. 2a). At the end of each 
trial, participants first used the color wheel to report the color of the second target (T2) and 
then reported whether the first target (T1) was black or white. These targets were separated 
by 1, 2, 4, or 8 circular distractors. The authors used a 2-parameter mixture model to 
estimate the precision and guess rate of T2 reports (Zhang & Luck, 2008). Overall, the 
authors found that the attentional blink was characterized only by an increase in the guess 
rate and not by a change in precision (see Figure 2 of Asplund et al., 2014). These findings 
were used to support the claim that conscious perception is a discrete, all-or-nothing 
process.  

 

Figure 2: (a) Structure of color attentional blink paradigm used in Experiment 1 of Asplund et al., (2014) (b) TCC fits to group data (N=28) 
with varying lags between T1 and T2. Grey bars signify the error distribution between the target color and the response color plotted as a 
function of distance in degrees of error. Blue lines signify the model fit to the continuous report data. The line graph shows TCC d’ on the 
y-axis and the lags between T1 and T2 on the x-axis.  
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     We fit the same data using the 1-parameter TCC model and directly compared its 
performance to the 2-parameter mixture model. Overall, we found that the d’ parameter of 
the TCC model recapitulated hallmark properties of the attentional blink (Fig. 2b). 
Specifically, we found that Lag 2 performance was lower than both lag 4 (t(27)=4.23, 
p<0.001, dz=0.80) and lag 8 (t(27)=5.99, p<0.001, dz=1.13) after Bonferonni correcting for 
multiple comparisons. While a Lag 1 sparing was not statistically reliable (Lag 1 vs Lag 2: 
t(27)=1.54, p=0.134, dz=0.29), performance did trend in the direction of sparing (Mean d’: 
1.53 at Lag 1, 1.41 at Lag 2, 1.65 at Lag 4 and 1.91 at Lag 8). We found that the fit of the 
TCC model was preferred over the mixture model at each lag. Definitive evidence in favor 
of a model is considered in cases where there is BIC>20. For each lag, we found BIC sums 
well over this (Lag 1: 92.6; Lag 2: 121.3; Lag 4: 142.8; Lag 8: 130.3), suggesting the data 
were best accounted for by the continuous TCC model rather than by a mixture of all-or-
none failures and precision errors. Summing across conditions, BIC preferred TCC in 27 of 
28 participants. 
 
     In Experiment 1 of Sy et al. (2021), participants were shown an RSVP of non-oriented 
noise distractors and searched for two oriented colorful gratings (Fig. 3a). These targets 
were separated by either 2, 4, or 9 noise distractors. For this experiment, rather than report 
the color of the targets, participants reported the orientation of the second target in a 
continuous manner. These responses were then modeled using a 3-parameter mixture 
model to estimate the precision, guess rate, and confusion error of responses for the second 
target (Bays et al., 2009). In the dual task condition, participants reported the orientation of 
both targets, while in the single task condition, participants ignored the first target and only 
reported the second target’s orientation. In this study, the authors found that the attentional 
blink can result in an impairment in the precision of the second target. Specifically, they 
claimed this occurred when attention has to be divided across the same features for the first 
and second targets, which was not the case in Asplund et al., 2014 (see Figure 2 of Sy et 
al., 2021). In contrast to this claim about why the Sy et al. (2021) work found a precision 
difference and the Asplund et al. (2014) data did not, the TCC model makes an a priori 
prediction that since because of the way representations strength changes the memory 
distribution’s shape, when performance is higher, a “precision” difference will arise, whereas 
when performance is lower, only a “guess rate” difference will arise, even though both arise 
from the same underlying representational strength and are not in fact distinct (see Schurgin 
et al. 2020 Supplement for simulations). Thus, we fit the Sy et al. (2021) data with the TCC 
model to test this claim that only a single latent variable – d’, a measure of strength – was 
relevant to performance in this experiment as well. 
 

 



 

Figure 3: (a) Structure of orientation attentional blink paradigm used in Experiment 1 of Sy et al., (2021). (b) TCC fits to group data (N=14) 
with varying lags between T1 and T2. Grey bars signify the error distribution between the target orientation and the response orientation 
plotted as a function of distance in degrees of error. Blue lines signify the model fit to the continuous report data. The line graph shows 
TCC d’ on the y-axis and the lags between T1 and T2 on the x-axis. The dual task condition is marked in grey, the single task condition is 
marked in black.  

     Since in this experiment “swap” errors – misreports of the first target as the second – 
were common (see Williams et al. 2022 for a description of such errors), we fit the data using 
a 2-parameter orientation version of the TCC model that allowed for swaps (Williams et al. 
2021; 2022) and directly compared its performance to the 3-parameter swap-based mixture 
model (Bays et al. 2009) used by Sy et al. (2021). We found that the d’ parameter of the 
TCC model recapitulated standard properties of the attentional blink (Fig. 3b). In the dual 
task conditions, performance was d’ of 1.9 at Lag 2, 2.3 at Lag 4 and 2.8 at Lag 9, with swap 
rates of 0.26 at Lag 2, 0.06 at Lag 4 and 0.004 at Lag 9. Lag 2 performance was reliably 
worse than Lag 4 (t(11)=3.87, p=0.003, dz=1.12) and Lag 4 performance was worse than 
Lag 9 (t(11)=-4.45, p=0.001, dz=1.28). Swap rates were also increased at Lag 2 relative to 
other lags (vs. Lag 4: t(11)=3.24, p=0.008, dz=0.94, vs Lag 9: t(11)=3.19, p=0.009, dz=0.92). 
Moreover, performance on the dual task condition was significantly worse than the single 
task condition (Lag 2: t(11)=10.29, p<0.001, dz=2.97; Lag 4: t(11)=4.27, p=0.001, dz=1.23; 
Lag 9: t(11)=3.03, p=0.011, dz=0.87). It should be noted that each of these analyses reach 
statistical significance after Bonferonni correcting for multiple comparisons. Critically, we 
also found that the fit of the TCC model was preferred over the mixture model at all lags and 
in both single and dual tasks, with BIC sums over 50 at all lags (i.e., extremely definitive). In 
the single task condition, BIC preferred TCC (Lag 2: 56.9; Lag 4: 30.2; Lag 9: 31.3). In the 
dual task condition, BIC also preferred TCC (Lag 2: 42.3; Lag 4: 57.9; Lag 9: 64.8). Summing 
across conditions, BIC preferred TCC in 9 of 12 participants. 
 
     Thus, whereas Asplund et al. (2014) claimed all-or-none failures dominate the attentional 
blink and Sy et al. (2021) claimed precision differences also arose, we find both are better 
fit by the TCC model, which says “precision” vs “guess rate” differences are illusory and that 
says a single latent variable – the strength of the representation – is decreased by the 
attentional blink. This simpler model better accounted for both the data that was previously 
claimed as evidence for “all-or-none” representation as well as the data that was previously 
used as evidence for “precision” differences also arising (Asplund et al. 2014; Sy et al. 2021).  

     Backwards masking: Does the better fit of the TCC model, where performance 
degrades in a single dimension (representational strength, d’) rather than in two (precision, 
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guess rate) hold with other paradigms that manipulate perceptual awareness? To answer 
this question, we collected new data that used a visual masking paradigm that rendered a 
target Gabor less visible (Kouider & Dehaene, 2007). Here, the target Gabor was presented 
for ~17ms and was followed by a series of masks made out of white noise and two 
checkerboard patterns (one normal checkerboard and another through a low pass filter 
blended together) that were randomly oriented (4 total masks, ~17ms/mask; see Fig. 4a). 
There were four blank stimulus duration periods between the target and the first mask: 33ms, 
50ms, 67ms, and 83ms. At the end of each trial (200 total), participants reported the 
orientation of the target item in a continuous manner (see Supplemental Materials for more 
details). 

  

Figure 4: (a) Structure of backwards masking paradigm. Note that in the experiment, the target Gabor was shown at lower opacity but is 
displayed at full opacity for display purposes. (b) TCC fits to group data (N=15) across the different SOAs. Grey bars signify the error 
distribution between the target orientation and the response orientation plotted as a function of distance in degrees of error. Blue lines 
signify the model fit to the continuous report data. The line graph shows TCC d’ on the y-axis and the SOA on the x-axis.  

     We found that the d’ parameter of the TCC model fit the behavioral errors participants 
made quite well and that d’ steadily decreased as the duration between the target and the 
masks decreased (Fig. 4b), with mean d’s of 2.6, 2.0, 1.4, and 0.7 at lags 83ms, 67ms, 50ms 
and 33ms respectively. Next, we directly compared the 1-parameter TCC model with a 2-
parameter mixture model (Zhang & Luck, 2008) and found that the TCC model was strongly 
preferred over the mixture model at every stimulus onset asynchrony (BIC differences: 33ms 
48.8; 50ms: 40.6; 67ms: 59.4; 83ms: 46.3). Summing across conditions, BIC preferred TCC 
in 14 out of 15 participants. Thus, even in the case of backwards masking, considering 
participants responses as arising from continuous degradation of a single underlying 
strength parameter is a better account of the data than an account that supposes a mixture 
of some “visible” and some “invisible” trials (i.e., a mixture model).  

     Sperling paradigm: Although the Sperling paradigm (1960) does not render stimuli 
invisible, it is one of the most extensively studied perceptual paradigms in consciousness 
studies. Indeed, it sits at the center of an extensive debate about the capacity limits of 
perceptual awareness, with some arguing that perception is “rich” (Lamme, 2003; Sligte et 
al., 2008; Block, 2011) and others maintaining that it is “sparse” (Kouider et al., 2010; Cohen 
& Dennett, 2011; Phillips, 2011; Sergent et al., 2013; Dehaene, 2014). Given its relevance 
to the study of perceptual awareness, we asked how well the TCC model’s single latent 
representational strength parameter – as opposed to a mixture of precision errors and 
discrete failures (e.g., Zhang & Luck, 2008) – could account for performance in this 
paradigm.  
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     Pratte (2018) used the Sperling paradigm with continuous reproduction of both color and 
orientation and collected large amounts of data per participant. The color wheel they used 
was quite distinct from the color wheel for which we had TCC similarity data; therefore, we 
re-fit the data from their orientation experiment (Experiment 2b). In Experiment 2b of Pratte 
(2018), ten Gabor patches were briefly shown (200ms) in a circular configuration (Fig. 6a). 
After a variable retention interval, a black line cued participants to one of the ten locations 
previously occupied by a Gabor. This cue appeared between 33-1,000ms after the offset of 
the initial display. Once cued, participants reported the orientation of the target item using 
continuous reproduction. Pratte then used a 2-parameter mixture model to estimate the 
precision and guess rate of the cued item (Zhang & Luck, 2008). In this study, the author 
ultimately concluded that iconic memories “die a sudden death” since the guess rate 
changed over time while the precision of the remembered items remained approximately the 
same (see Figure 3 of Pratte, 2018). In other words, the modeling results of this experiment 
were taken to support a discrete, all-or-nothing view of perceptual awareness. Does the TCC 
model, with just a single strength parameter, fit this data better than the mixture model?  

 

Figure 6: (a) Structure of Sperling paradigm. (b) TCC fits to group data (N=35) across the match and non-match conditions. Grey bars 
signify the error distribution between the target orientation and the response orientation plotted as a function of distance in degrees of 
error. Blue lines signify the model fit to the continuous report data. The line graph shows TCC d’ on the y-axis and the match/non-match 
conditions on the x-axis. 

     We found the 1-parameter TCC model accurately fit participants’ responses quite well, 
with d’ gradually decreasing as the retention interval increased (Fig. 6b, F(7,42)=55.9, 
p<0.0001). We then compared the fit of the TCC model to the same 2-parameter mixture 
model used by Pratte (2018) and found that the fit of the TCC model was preferred over the 
mixture model at every retention interval (BIC differences, 33ms: 46.4, 67ms: 31.3, 100ms: 
39.2, 150ms: 45.9, 233ms: 45.9, 383ms: 62.5, 617ms: 53.2, 1000ms: 48.9), and across 
conditions in 5 of 7 participants. Thus, we find the best account of this data is that memory 
strength drops continuously with delay and there is no need to posit discrete failures of 
perceptual consciousness to account for participants’ patterns of errors. 

     Retro-cueing: One paradigm closely related to the Sperling paradigm is a retro-cueing 
paradigm that cues attention after a stimulus disappears and subsequently improves 
perception of a target at threshold (Sergent et al., 2013). These findings have been cited to 
support the view that the initial sensory processing of a stimulus can occur subconsciously 



and then later be elevated into consciousness, consistent with the “sparse” view of 
perceptual awareness.  

     One study by Thibault et al. (2016) combined this paradigm with mixture modeling to ask 
if retro-cueing attention increases the frequency of conscious processing – which is seen as 
discretely occurring or not occurring – or increases the precision of recollection for those 
items that were consciously processed. In this study, a target Gabor grating was presented 
in one of two circular placeholders at perceptual threshold (Fig. 7a). This target was either 
preceded by a pre-cue or followed by a retro-cue, indicated by one of the placeholders being 
dimmed. The cues could be either valid (i.e., same side as the target) or invalid (i.e., opposite 
side of the target. After a brief delay, participants were instructed to continuously adjust the 
orientation of a probe item to match the orientation of the previously seen target. Thibault et 
al. (2016) then used a 2-parameter mixture model to estimate the precision and guess rate 
of the cued item (Zhang & Luck, 2008). This modeling claimed to show that the benefits to 
perception from retro-cueing arise by reducing the frequency of guesses, not by changing 
the precision of responses (see Figure 3 of Thibault et al., 2016). In other words, these 
modeling results were taken to support a discrete, all-or-nothing view of perceptual 
awareness. Does the TCC model fit this data better than the mixture model, supporting an 
alternative, graded view of performance improvement from retro-cues? 

 

Figure 7: (a) Structure of retro-cueing paradigm. (b) TCC fits to group data (N=20) across the different cueing conditions (i.e., interstimulus 
intervals). Grey bars signify the error distribution between the target orientation and the response orientation plotted as a function of 
distance in degrees of error. Blue lines signify the model fit to the continuous report data. The line graph shows TCC d’ on the y-axis and 
the different interestimulus intervals on the x-axis. 

     We found the 1-parameter TCC model accurately fit participants’ responses quite well, 
with d’ being higher for the valid cue in the shorter cueing intervals and this effect decreasing 
as the cue arrives later (Fig. 7b). In particular, we observed a main effect of SOA 
(F(2,16)=15.5, p<0.001), a main effect of cue validity (F(1,32)=76.3, p<0.0001) and an 
interaction between these two factors (F(2,32)=43.1, p<0.0001). These results closely 
matched the model-free (i.e., non-mixture-model) analyses done by Thibault et al. (2016; 
see Figure 4).  We then compared the fit of the TCC model to the same 2-parameter mixture 
model used by Thibault et al. and found that the fit of the TCC model was preferred over the 
mixture model at every retention interval in both valid (BIC differences, -100ms: 50.1; 100ms: 
71.8; 1400ms: 22.7) and invalid cues (-100ms: 26.1; 100ms: 37.5; 1400ms: 59.1). Summing 
across conditions, BIC preferred TCC in 15 out of 17 participants. Thus, simple degradation 
of performance with delay to the cue, combined with a benefit of valid cues, is sufficient to 
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account for this data without any discrete failures of consciousness or discrete re-activation 
of items into consciousness.  
 
     Across Experiments. The fact that the results from the attentional blink, backwards 
masking, iconic memory, and retro-cuing can all be fit by varying a single representational 
strength parameter appears to falsify the idea that errors in these paradigms represent 
changes in two psychologically distinct constructs (e.g., precision vs. guess rate). Another 
way to test this, in line with what was done by Schurgin et al. (2020) for working memory 
and long-term memory, is to fit the mixture model to data from these datasets in a single 
stimulus space and plot the guess rate and standard deviation of the results against one 
another in state-trace plots (Dunn & Kalish, 2018). In this case, the TCC framework argues 
that as long as the stimulus space is held constant, the perceptual confusion structure is 
constant, and so the guess rate and standard deviation should always change together 
along a single continuum. By contrast, the mixture modeling framework argues that precision 
and guess rate are genuinely separate constructs. Thus, there are many patterns of data 
possible in a state-trace that would strongly falsify TCC by virtue of them simply not falling 
along the TCC continuum.  

 
     Figure 8 shows the state-trace plot for all orientation data, which is the dominant stimulus 
in the data we have re-fit, from the current paper (i.e., the 24 conditions using orientation 
shown above). As can be clearly seen in this plot, the guess rate and standard deviation 
parameters of the mixture always change together along the zero-free-parameter prediction 
of TCC (e.g., TCC’s prediction across a range of d′ values). While their relationship is not 
linear, they are nearly perfectly related. Again, it should be stressed that any pattern of data 
that falls far off the TCC continuum would be completely incompatible with TCC. For 
instance, 1) ‘precise’ perception but many ‘guesses’ (the top left corner), 2) or ‘imprecise’ 
perception and no ’guesses’ (the bottom right corner), could not be accounted for under this 
framework. These results lends further support to the idea that TCC’s single parameter 
conception of performance is correct and that mixture models are not measuring distinct 
psychological constructs. With respect to studies of perceptual awareness, this means that 
there is no need to posit discrete, all-or-none failures of perceptual access (“guesses”) to 
account for the errors participants make in these paradigms.  

 

 

Figure 8: TCC makes a strong counter prediction to mixture models about their own parameters: that if the stimulus space, and thus 
psychophysical similarity function, is held constant, memory report distributions vary in only one way: in memory strength. To visualize 



this, we show a state-trace plot of mixture model parameters across the wide range of experimental results we have re-fit, focusing only 
on the orientation data. We find that despite the huge number of different ways that representational strength is varied, all the points lie 
approximately on a single line, consistent with only a single parameter being varied, which is well predicted by the 0-free-parameter 
prediction of TCC. TCC can only predict an extremely small part of the possible space the mixture model can predict, and only a very 
particular relationship between the two mixture model parameters, and the data from all of these conditions land directly on this line. This 
provides strong evidence against mixture models measuring two distinct parameters and in favor of the TCC conception of memory. 

We find that greater standard deviations are associated with greater guess rates, in a 
predictable non-linear pattern, and in line with the prediction of the TCC model. Note that 
this is in the opposite direction to what is predicted by noisy data: Uncertainty or noisy fits in 
mixture models lead to the reverse of the trend we report in the current results: larger 
standard deviations leads to lower guess rates and vice versa (Suchow et al. 2013 explains 
his occurs because the data right at the edge of the “von Mises” part of the mixture model 
can be seen as either arising from a larger standard deviation, or arising due to guesses, 
resulting in a trade-off between these two parameters with noisy data). Thus, imprecise 
estimates of these parameters due to insufficient data result in a negative correlation 
between them, in contrast to the particular positive, non-linear pattern predicted by TCC that 
we observe here.  

General Discussion 

     Does information reach perceptual awareness in a continuous or discrete manner? A 
common tool used to try and answer this question is probabilistic mixture modeling (Zhang 
& Luck, 2008). This technique separates how often an item does or does not reach 
awareness (i.e., the guess rate) from how precisely that item is represented in awareness 
(i.e., the standard deviation), using continuous reproduction tasks. Contrary to this mixture 
model approach, however, recent work with the TCC model has shown that once the 
nonlinear way familiarity spreads through a stimulus space is considered, there is no 
evidence for separate concepts of precision and guessing (Schurgin et al. 2020). Instead, 
the TCC model states that memory and perception can be modeled by taking the spread of 
familiarity through a stimulus space and adding noise, with d’ being the only free parameter. 
In the current work, we asked how well this continuous model captures responses across a 
variety of paradigms that manipulate perceptual awareness. Specifically, we re-analyzed 
data from prior studies (Asplund et al., 2014; Thibault et al., 2016; Pratte, 2018; Sy et al., 
2021) and one new backwards masking experiment. Across four paradigms and two 
stimulus classes we found that the TCC model easily fit the data and outperformed mixture 
models in every single instance. We also found that across these studies, the putative 
“precision” and “guess rate” parameters were nearly perfectly confounded, always changing 
together (Figure 8), as would be expected if there is only a single construct – 
representational strength – changing as the tasks are made more difficult. Together, these 
results support a framework in which information enters conscious awareness in a 
continuous manner. 

     What exactly does it mean for information to reach consciousness along a continuum? 
Instead of claiming that there is no merit to the discrete, all-or nothing view of perceptual 
awareness, one unifying possibility is that performance on tasks like those studied here are 
more sensitive to the strength of information representation than to whether stimuli have 
reached “awareness,” which could be an all-or-none state, but one that is not necessary to 
support performance (Lau & Rosenthal, 2011). For example, consider the backwards 



masking paradigm described above (Fig. 4a). An intuitive description of participants’ 
experience is that the content of that information varies along a continuum and can be 
reported regardless of awareness, while the mechanisms that allow information to be 
accessed by awareness could still be all-or-none (i.e., “I am certain I saw something, but I 
only have a vague sense that it was oriented to the right.”). This idea was previously 
proposed by Kouider et al. (2010), who argued in favor of a “partial awareness” hypothesis 
in which the representations of an object can be continuous, while the mechanisms that 
allow those representations to be access by consciousness are discrete. This particular 
framework is supported by prior studies showing that observers will sometimes provide 
“intermediate” reports about the contents of their experience (i.e., a brief glimpse or a vague 
sense of what was present) when given several options on a perceptual awareness scale 
(Sandberg et al., 2010). A similar idea has been proposed by Michel (2019) who made a 
critical distinction between the graded contents of consciousness, as opposed to graded 
consciousness overall. Of course, in spite of these claims, there are still those who maintain 
that consciousness itself (not just the contents of consciousness) is fundamentally graded 
(Carruthers, 2019; Morales, 2021). 

    In each paradigm examined here, observers frequently feel as if there are instances 
where they completely failed to perceive the target and are simply guessing when asked to 
make a judgement about it. This feeling appears to be captured under a mixture modelling 
framework since one of the parameters of the model is the guess rate, which is thought to 
corresponds to instance in which the target was not successfully encoded. However, 
previous work has shown this is not accurate: People often give highly confident reports of 
items that are extremely dissimilar to the actual item (Adam et al., 2017), which mixture 
models would classify as “guesses’”. The TCC framework, by contrast, is based on signal 
detection theory, which explains the feeling of guessing as one of low subjective confidence, 
which is expected to regularly arise when a task is difficult (as modeled by Schurgin et al. 
2020).  In other words, although TCC claims that there are rarely situations in which an 
observer has a discrete failure with no information and is objectively guessing, it easily 
accounts for the subjective feeling of guessing and poor performance – and how they are 
linked -- by appealing to noisy variation in the familiarity signal (Wixted, 2020). This 
conception of perceptual awareness also helps unite the current behavioral results with 
established findings from neuroscience. Indeed, one reason that researchers have argued 
for a discrete view of consciousness is that studies have shown an all-or-none change in 
neural activity in response to stimuli that observers report having seen, which is not present 
for unseen stimuli (Dehaene et al., 2001; Sergent et al., 2005). This non-linear processing 
is referred to as the “ignition” of consciousness and is characterized by a sudden, coherent, 
and exclusive activation of neurons associated with conscious processing (Dehaene, 2014). 
Under the framework described here, information may be “ignited” into conscious awareness 
in an all-or-none manner, but the content of what is elevated into consciousness varies along 
a continuum, and even in the absence of this spark of conscious awareness, noisy 
information is still accessible for report. 

     Finally, there are two points worth stressing about TCC’s success in modeling perceptual 
awareness. First, TCC’s success with these tasks is surprising given the different 
mechanisms that limit awareness across these paradigms. For example, the attentional blink 
prevents stimuli from reaching consciousness due to limitations of attention (Raymond et 



al., 1992), while masking renders stimuli invisible by disrupting feedback between higher 
and lower-level visual areas (Lamme, 2003). In addition, the attentional blink is a limitation 
across time while the Sperling paradigm is more limited across space (Pratte, 2018). The 
fact that behavioral performance across these tasks are captured by TCC is a testament to 
the versatility of an approach based on continuous variation in a population of signals in 
understanding visual cognition. Moreover, TCC’s success with these perceptual tasks was 
not a given considering that it was initially conceived as a model of visual memory (Schurgin 
et al., 2020). Altogether, this collection of results highlights how a simple signal detection 
theoretic framework can capture numerous aspects of human cognition.  
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