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ABSTRACT

The ability to sustain internal representations of the sensory environment beyond immediate perception
is a fundamental requirement of cognitive processing. In recent years, debates regarding the capacity
and fidelity of the working memory (WM) system have advanced our understanding of the nature of
these representations. In particular, there is growing recognition that WM representations are not
merely imperfect copies of a perceived object or event. New experimental tools have revealed that
observers possess richer information about the uncertainty in their memories and take advantage of
environmental regularities to use limited memory resources optimally. Meanwhile, computational models
of visuospatial WM formulated at different levels of implementation have converged on common principles
relating capacity to variability and uncertainty. Here we review recent research on human WM from a
computational perspective, including the neural mechanisms that support it.

Introduction
Since the dawn of perception research, theoretical frameworks have been built around the notions of
representation and computation1. A key aspect of internal representations is that they are noisy: they vary
even upon repeated presentations of the same physical stimulus. A key aspect of computation is inference:
because the brain has no direct access to stimulus properties, it has to build beliefs about them based on
the available representations2. In perception research, great progress in understanding representation and
computation has been made by combining experiments with mathematical process models, which specify
precisely how information is received and processed, leading up to a decision. Such models allow the
researcher to disentangle representation and computation and to compare theories for each stage.

While this agenda has been pursued for over 150 years in perception research, it has only recently become
widespread in the field of visual WM. This field initially3 used rather simplistic notions of representation
and overlooked computation altogether. The dominant notion was that visual WM “holds” internal copies
of visual objects or features, which can be directly accessed for judgment or decision making at a later
point in time. In the past 20 years, the shortcomings of this metaphor have become clear, in part driven by
the “slots-versus-resources” debate (see Box 1). The general conception emerging from this debate is that
a combination of visual processing and attention to objects induces a high-dimensional memory state (e.g.
a pattern of neural activity) that is informative about the objects’ features and can be sustained once they
are no longer available to the senses. In this framework, recall can be understood as probabilistic inference,
based on the memory state, of the past features and their relationships. This process is illustrated in Fig. 1

1



for the elementary experimental task of reproducing from memory a colour stimulus, corresponding to a
specific point in a space of hues (Fig. 1, left). Due to a combination of factors – including internal noise,
limited neural signal, interactions with other stimuli in memory and dynamics during the delay period
– the same stimulus can result in many different memory states at the time of the memory test (Fig. 1,
middle).

Unlike the stimulus itself, the information that a particular memory state provides about the stimulus
cannot in general be captured by a single point in the parameter space. Instead, it is fully described
by a likelihood function (Fig. 1, right), which can be interpreted as showing the degree to which the
obtained memory state is compatible with different hypothesized stimulus inputs. If the observer is
instructed to choose a best estimate of the previously presented hue, they might choose the peak of the
likelihood (the “maximum-likelihood estimate”) and the experimenter might record the observer’s error
as the distance between this estimate and the presented hue. The distribution of recall errors over many
trials, and in particular the changes in distribution observed when multiple items are held in memory
simultaneously, have provided important evidence for discriminating between models of WM (see Models
section below). However, unlike the error distribution, a full likelihood function exists on each single
trial. For different memory states, the likelihood function could be relatively narrow (compatible with
only a small range of possible inputs, top right) or broad (providing little or no information to discriminate
between inputs, bottom right). Memory uncertainty can be quantified as the width (e.g. standard deviation)
of the likelihood function, but even this description is incomplete, for example when the likelihood is
asymmetric (centre right) or multimodal.

Access to memory uncertainty
Just because the memory state provides this richer information does not mean the brain makes use of
it or the observer has conscious access to it. In research on human perception, the question of whether
perceptual decisions take into account uncertainty is a classic one. The literature on Bayesian integration
and Bayesian cue combination4 has demonstrated convincingly that the mind takes into account uncertainty
on a trial-by-trial basis when weighing evidence. In the realm of WM, recent experimental methods have
begun to probe in detail the information observers can extract from their memory state (Fig. 2). The
familiar sense that we are more certain about some memories than others is experimentally validated by
studies that ask observers to report their confidence alongside a point estimate (Fig 2A). As the number of
items to remember increases, error becomes more broadly distributed and average reported confidence
declines (Fig 2B). Confidence ratings also vary across trials with a fixed set size, and the error distribution
is narrower for trials with higher confidence ratings (Fig. 2C;5), revealing access to latent information
about uncertainty.

Other studies have tried to quantify uncertainty in the stimulus dimension itself rather than using a
confidence judgment. Instead of asking subjects for a confidence rating, observers may be instructed to
make a secondary, uncertainty-based decision6–8 (Fig. 2D). For example, the observer could first recall the
stimulus, then set an interval around the recalled value, intended to “capture” the true value. Points are
awarded for a successful capture, but fewer points when the interval is larger. Thus, a point-maximizing
observer would set a larger interval when uncertainty is high and a smaller interval when uncertainty is
low. This technique reveals a strong relationship between interval size and error magnitude (Fig. 2E;6–8),
consistent with the studies that use confidence ratings. Moreover, in parallel to perceptual studies9,
observers combine their memory-based likelihood with prior information about a feature, even if that
information varies from trial to trial7.
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Change detection tasks, even when not paired with a confidence report, can serve to establish whether
uncertainty is taken into account implicitly in WM-based decisions10, 11. This property makes change
detection useful for studying the WM representation of uncertainty in non-human animals12. A large
difference between the memory representation of the study and the probe provides less evidence for a
true change if uncertainty is higher (Fig. 2F). In these studies, variations in uncertainty not only arose
spontaneously, but were also experimentally induced by varying the reliability of the stimulus information
from trial to trial and from item to item. The studies used formal model comparison to conclude that
observers take into account WM uncertainty in their decision.

Taken together, the evidence that uncertainty is maintained in WM, and that uncertainty can be estimated
continuously – not just whether the memory is present or absent – is strong at this point. Fundamentally,
this means that WM is much richer than previously believed. An open question in perception is whether
observers use full probability distributions or only summary statistics such as the width of the distribu-
tion13–15. WM researchers have started to study the analogous question8, with initial evidence suggesting
use of the likelihood function extends beyond its width.

Models that implement WM uncertainty
Despite variation between models of WM in their levels of implementation and their descriptive language,
recent years have seen a notable convergence on a common set of principles required to capture behavioural
performance on reproduction tasks. Crucially, the modern models of visual WM described in this section
all imply a richer underlying stimulus representation that carries information about memory uncertainty.
Other recent models16–18 have made important advances in understanding how conjunctions of features
are stored, and these are reviewed in a separate section (Feature binding) below.

Population coding accounts19, inspired by similar models of attention, sensory integration and decision-
making20–22, describe WM in terms of encoding and decoding of stimulus information from the noisy
activity of large populations of neurons tuned to different features (Fig. 3A). Variability arises in this
model as a consequence of the probabilistic generation of spikes. Resource limitations are identified with
the allocation of a limited quantity of neural signal or gain between neurons responding to different items.
This constraint explains why recall fidelity declines with the number of items held simultaneously in
memory, and also accounts for effects of stimulus salience and behavioural priority on recall.

Access to uncertainty in this model is automatic, in the sense that a decoder with knowledge of the
population tuning functions can reconstruct a full likelihood function23, 24. Li and colleagues25 combined
the theory of probabilistic population coding26, 27 with a generative model for fMRI activity22, 28 to decode
uncertainty along with the behavioral estimate from the pattern of voxel responses on each trial. The
decoded uncertainty correlated with a behavioral read-out of certainty or confidence.

Under specific simplifying assumptions, the decoding of stochastically generated spikes in a neural
population response can be viewed as equivalent to averaging of noisy samples of a stimulus feature
(Fig. 3B;29). This provides a connection to cognitive models that describe resource allocation as distributing
a limited (but in some cases arbitrarily large) number of discrete samples between memory items30–32, a
concept that was originally proposed to model selective attention33 and that was later successfully applied
to multiple-object tracking34, 35. With a fixed, small number of samples, this account has been presented
as a variant of the classic slot model (slots-plus-averaging;31). However, fits to continuous recall data are
improved when the number of samples varies randomly and independently between items29, in analogy to
stochastic spiking. Samples are discrete in this account, but moment-to-moment variability in the number
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of samples fits less well with the concept of slots, and the resource that is shared among items (the mean
number of samples) is a continuous variable.

As an alternative perspective, the TCC model36 describes WM decisions as based on a noisy familiarity
signal whose mean is highest for the shown color (or other stimulus) and lower for stimuli that are
less similar to the shown item (Fig. 3C). This model makes an explicit connection to signal detection
concepts commonly used in long-term memory measurement, associating WM performance with the
discriminability (d’) between maximally distant stimuli and confidence with the peak familiarity amplitude.
The familiarity function in the TCC model is closely related to the tuning in population coding models,
which in turn have a geometric representation in terms of how distinct the representations associated with
different stimuli are from each other37; A proposed relationship between the familiarity function in the
TCC model and empirical measures of psychological similarity is disputed36, 38.

The mathematics of averaging dictate that the dispersion of errors under sampling and population coding
models varies with the number of samples or spikes (Fig. 3E), such that their estimates can be succinctly
described in terms of particular distributions over precision. Abstracted from a specific implementation,
variable-precision models6, 11, 39–42 identify WM resource with mean precision, and draw individual
precision values from a distribution (Fig. 3D), the key characteristic of which may be a variance that scales
with the mean29.

As noted above, all of these models contain information about uncertainty, not just error. In addition to
capturing the changes in error distribution induced by set size (as illustrated in Fig. 2B), both population
coding23, 29 and variable-precision models24 have been shown to account quantitatively for the results of
conditioning on confidence in continuous reproduction tasks, shown in Fig. 2C. The relationship between
certainty and error in these models predicts that the long-tailed distributions of error commonly observed
in WM recall can be decomposed on the basis of subjective certainty into individual distributions that
differ in precision. These models also predict the distribution of confidence ratings in continuous report
(Fig. 3F), account for performance changes with confidence in change detection tasks43 and quantitatively
reproduce error distributions on whole-report tasks (44; Fig. 3G) on the basis that participants choose items
to report in decreasing order of confidence29.

A lesson emerging from these noise-based accounts of WM has been that computation during the retrieval
stage is interesting in its own right and requires a non-trivial modeling step. Except in the very simplest
tasks, retrieval is not a passive, straightforward recall of features of memorized stimuli. Even in a delayed
estimation task with more than one item, computations must be performed to determine which item
in memory is indicated by the cue (see Feature binding section below). In other tasks, memory-based
likelihood functions associated with individual features need to be combined with a prior (see Introduction),
or transformed into a decision about a categorical global variable such as presence of a target40 or of
a change10–12, 41, 45. For example in change detection, if memories are noisy, then every item changes
in terms of its internal representation, creating a hard decision problem (see Fig. 2F). The brain might
make such retrieval-stage decisions in a Bayesian way, that is, by inverting a generative model while
minimizing a cost function. Indeed, Bayesian observer models augmented with a resource limitation in the
encoding stage have proven successful in capturing WM-based decisions in quantitative detail7, 10–12, 40.
The computations during WM retrieval have also been addressed in neural process models46, 47 discussed
in later sections.
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Resource allocation, rationality and incentives
Most modern models of visual WM allow for flexibility in how resources are allocated. This flexibility is
necessary to account for a range of findings in which observers prioritize certain memoranda over others,
as a result of differences in their attentional salience or relevance to behavioural goals48–50. Control over
resource allocation is also critical to many of the sensorimotor functions ascribed to visual WM (Box 2).
The assumption that resources are allocated optimally to minimize expected error across trials has been
used to quantitatively reproduce the observation that the average precision of an item’s representation
increases with the probability that the item will be probed for recall6, 19 .

Manipulations of incentives have also been successful in modulating allocation. In a multiple-item delayed-
discrimination task of spatial location, items that were marked with a pre-cue as yielding higher reward
were remembered better51. While in that study, attentional priority and reward coincided, in another study,
reward improved performance even when these cues were dissociated52. Finally, reward-associated items
are remembered better even when task-irrelevant53.

These results are compatible with a structural constraint on the representational capacity of the WM
system. Divisive normalization54 has been identified as a possible neural basis for such a constraint,
whereby inhibition between pools of neurons representing different stimuli in memory implements a limit
on combined activity amplitude. Population coding models can account for both effects of set size and
flexibility in resource allocation based on this principle19.

An alternative perspective is based on the theory of resource rationality55, which proposes that the brain
maximizes task performance while at the same time minimizing a biologically relevant cost, such as the
cost of neural spiking. Assuming a cost that is linear in encoding precision, this idea can account for
effects of set size and probe probability on precision in delayed estimation56. In this view, a decrease of
precision with set size is not a signature of a structural limitation of WM, but the outcome of a rational
cost-benefit analysis – is greater precision “worth” the associated cost?

The resource-rational account can be tested by manipulating the incentives for a task. An increased reward
should shift the balance towards higher performance by compensating for the higher associated cost.
Delayed estimation performance did not significantly improve when monetary reward was higher57, nor
when the total attainable reward was raised by increasing cue validity52. In a change detection experiment,
subjects who were asked to try to remember all items performed better than those who were asked to just
do their best58. However, in another study, “gamification” of a working memory task increased motivation
but did not improve recall performance59.

Taken together, it seems that resource allocation in WM is responsive to reward differences between items
or locations, while evidence for effects at the condition or task level is very limited. This might point
to different underlying mechanisms: responsivity to inter-item differences might rely on neural circuits
dedicated to prioritization, whereas responsivity to overall reward might rely on motivation. Alternatively,
it is possible that the differences in reward were too small to elicit an effect.

WM limitations have also been recognized as being an important factor in reward-based instrumental
learning60. In a task in which subjects had to learn, based on feedback, which of three responses was
associated with each of N stimuli, with one stimulus being presented at a time, a pure reinforcement
learning model failed to capture the effects of N and delay. A reinforcement learning model augmented
with a WM mechanism, consisting of a slot-like limited capacity and forgetting, was able to account for
the data61, 62. Further work should test alternative, resource-based models of WM within this task.
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WM in a structured environment
The information we need to hold in WM in real world situations is generally statistically structured and
predictable. That is, unlike in typical WM experiments where stimuli tend to be randomly generated and
unrelated to each other, when we remember information in a real scene, we have prior knowledge that can
help constrain our memories. Knowing we saw a stove on the left of our view is informative about the
object that was likely on the right (it is more likely to be a blender than a mailbox63; and knowing the
object was on a kitchen counter and approximately banana-shaped provides a strong hint it may have been
yellow. Thus, a critical aspect of understanding how we use WM in the natural world is understanding how
our WM system uses our prior knowledge about what is present and what objects and features generally
co-occur to structure our memory representations.

This problem can be recast as one of communication (Fig. 1): to store information successfully in WM, we
need to communicate to our future selves only what is unexpected or unknown about the given object or
scene. This view focuses on how we could optimally encode information if we know we will later decode
it using the same statistical knowledge of the environment. For example, if our environment and body were
entirely static, we wouldn’t have to encode any information in WM. If they were entirely unpredictable,
we would have to encode everything. In theory, if our brain makes use of the learned regularities about
what objects are likely to occur and co-occur, then the stronger our prior expectations in a given situation,
the less entropy the stimulus has and the less we need to encode about it, and thus the easier it should be
to store in memory.

The formal frameworks used to understand the impact of such knowledge on WM thus have often relied
on information theoretic principles like compression64, 65 and rate-distortion theory66, 67, which attempt
to formalize the entropy of the stimulus and the communication problem faced by our memory system.
Another line of work has formalized benefits from prior knowledge by considering that our memory system
may encode information with respect to a generative model of the world that constrains the possible scenes
we will see68–70. Storing information in memory conditioned on such a model reduces the entropy relative
to storing it on its own, and so such models also help to provide frameworks for thinking about how our
brain makes use of such prior knowledge. Such models also often suggest we preferentially encode objects
that are least consistent with our priors, to enhance how much total information we can remember70.

While these models focus on conjunctions of features and objects, the influence of environmental statistics,
and encoding items with respect to these statistics, may also be responsible for anisotropies in the internal
representation of individual visual features such as orientation, colour and location71, 72. These take the
form of ‘stimulus-specific’ variation in precision within a feature dimension (e.g. cardinal orientations
are reproduced with less variability than obliques) and systematic biases in reproduction and comparison
of features (e.g. reported orientations are on average biased away from the nearest cardinal). It has been
proposed that these anisotropies are an adaptation to the unequal distribution of stimulus features in the
environment (e.g. cardinal orientations are more prevalent than obliques in natural scenes). According to
one expression of the efficient coding principle, encoding resources are preferentially allocated to more
frequently encountered stimuli in order to maximize the information transmitted, with consequences for
both discriminability and bias73–75. This principle can be naturally incorporated into population coding
models of WM (Fig. 3A) via an optimal redistribution of tuning functions76, providing a quantitative
account of stimulus-specific effects in memory and their interactions with set size.

More discrete frameworks that have traditionally dominated WM research have often focused on treating
WM limits as a limit on how many independent items can be remembered3, 77. Such frameworks have
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generally formalized the usage of prior knowledge via the concept of chunking3, 78. The most common
conception of chunking in WM is entirely discrete, proposing that we learn co-occurrences and use these
to create chunks in long-term memory. The content of WM is then often thought to be entirely replaced by
a pointer to this information in long-term memory. For example, you could remember the word “cow”
as a single pointer to your long-term conception of cows and then, if asked what the 3rd letter was,
reconstruct this by decompressing the chunk into the letters by decoding your long-term memory. In
this framework, chunks improve performance by replacing to-be-remembered items with compressed
representations, which can be decompressed when required from long-term memory3, 78, 79. A similar
principle has been invoked to explain anisotropies in recall of individual features, based on supplementing
a detailed and continuous memory representation with a coarse categorical one80, 81. In an information
theoretic framework, chunking can be recast as an approximation to more general compression schemes:
that is, chunking can be seen as a way of implementing such compression in models where items are
treated like discrete units, but many non-discrete compression mechanisms are also possible65, 82, 83.

Qualitatively, these theories all make the same basic prediction: that we should be better at holding
in mind information if it more strongly matches our prior knowledge. This seems to hold in a wide
variety of situations: people are better at remembering stimuli that match real-world co-occurrence
statistics67 or newly learned co-occurrence statistics65, 84. And they are better at remembering stimuli that
are familiar than perceptually-matched stimuli that are scrambled or otherwise do not connect to their
prior knowledge85–87, and better with realistic objects and configurations of objects compared to simple
meaningless stimuli or random configurations of objects88–91. This is in line with classic work in verbal
memory showing semantic coding in working memory92.

Theories based on chunking or information theoretic principles like rate distortion or compression propose
that we change our initial encoding of stimuli based on environmental regularities. However, better recall
of stimuli that match prior experience can also arise in many real-world situations from an informed
decoding strategy even if encoding is uninformed. For example, even if someone remembered a scene
by just randomly sampling a few objects to remember, they would be best served by making informed
decisions when tested on their memory: assuming a stove is present in a kitchen will on average improve
memory performance even if the stove was not explicitly encoded, since stoves are nearly always present
in kitchens. Many studies testing information theoretic accounts of encoding do explicitly test for the
coarsest versions of such strategies (for example, Brady and colleagues65 showed people do not report
a priori likely items more often when they are not present), but making precise statements about how
much of the benefit of environmental regularities arises at encoding vs. decoding is often impossible.
Indeed, the exact predictions for how encoding should vary as a function of environmental regularities will
vary with details of the optimization, including the loss function that describes the relative undesirability
of different errors93. There are also limits to encoding flexibility94, 95, in terms of what adaptation of
encoding strategy is possible and how rapidly it can be achieved in response to new information about
environmental statistics.

From features to objects
A long-standing question about WM is whether its basic unit is a feature or an object. This question can
have different meanings, all of which have recently been recast in the modern noise/resource view of WM.
One meaning is whether or not different feature dimensions within an object share the same resource.
Using a change localization task and formal comparison of noisy-memory models with an optimal decision
stage, it was found that orientation and colour have independent pools of resource96, broadly consistent
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with previous results from delayed estimation97, 98. Other findings, however, suggest that resource pools
are not completely independent. Retrospective cues indicating the feature dimension to be tested in a
continuous report task have been found to impact performance, suggesting that resources can to some
degree be shifted across feature dimensions99–101. Moreover, a modest decline in performance when
adding more relevant feature dimensions was observed in delayed comparison102 and change detection
tasks103, 104. However, it is important to note that in a noisy-memory framework, a decline in accuracy in
change detection does not necessarily imply reduced resource; instead, the noise added by the additional
features could decrease the overall signal-to-noise ratio in the integration of information across items96.

A second meaning is whether or not an irrelevant feature of a relevant object is automatically represented
in WM. Several studies employing surprise tests for previously irrelevant non-spatial features showed
either near-chance performance (when using change detection tasks;105, 106) or very low precision (in
delayed reproduction tasks;107, 108), and decoding from fMRI or EEG data has shown little evidence for
maintenance of task-irrelevant features109, 110. However, the presence of task-irrelevant features in memory
items – and even in items merely inspected in a perceptual task – has been found to degrade recall of other
items to the same extent as task-relevant features111. Based on formal modeling of change localization
performance, Shin & Ma96 suggested that task-irrelevant features of attended objects are automatically
encoded, occupying WM resources, but they are subsequently only weakly maintained under the control
of top-down processes, causing their representations to rapidly degrade.

A third meaning is whether an object takes up resources for a feature even when it is neutral with respect
to that feature (e.g., a circle is neutral for orientation), as long as the object is task-relevant because of
other features. In WM tasks in which N colors and N orientations were divided either over N two-feature
objects or over 2N one-feature objects, some such “leaking away” of resources to neutral features was
observed96, 97. Two further studies indicate that to prevent this, it is sufficient for different features to share
the same location, even if they are not fully integrated into a smaller number of objects112, 113.

Theoretical proposals attempting to unify the different aspects of the feature/object question have included
that of a hierarchically structured feature bundle114 and of partially packaged resource96. Further progress
will require more systematic investigation of different feature pairs, a reconsideration of older studies
in light of the concept of noisy memories, and potentially favoring delayed estimation and delayed
comparison over change detection and change localization as paradigms (because the latter require more
assumptions about the decision stage).

Feature binding
Beyond memorizing individual feature values, for many tasks both in real life and in experiments it
is necessary to maintain the correspondence (binding) between multiple features of a single stimulus.
Delayed reproduction tasks in particular require participants to recall the binding between cue and report
features in order to make an accurate response when presented with the cue. Failure to accurately retrieve
the cued target item leads to swap errors, which are reflected in a specific concentration of responses
around the report feature values of non-target items115–117.

Our understanding of this type of error has substantially improved in recent years. The frequency of
swap errors depends on the feature (or features) used as a cue118, 119, and they occur most often between
a target and a non-target item that are similar in their cue feature120–124. This would not be predicted if
swap errors arose from a failure of a separate memory system for storing the binding between features,
as employed in some traditional models125. The observations are instead consistent with a view that
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emphasises uncertainty in memory representations, which applies not only to the reported feature, but also
to the cue feature. This uncertainty can lead to a non-target item in memory being judged as matching the
given cue, especially if the non-target item is similar to the target in its cue feature. Figure 4A&B illustrates
how this mechanism can give rise to swap errors, even if the underlying (noisy) memory representation
explicitly encodes feature conjunctions. Recent findings suggest that such an account based on variability
in memory for cue features is sufficient to fully explain swap errors in analogue report tasks126.

Consistent with this mechanism, most current models of WM assume that binding between features
is inherently encoded in the memory representation. This is either implemented through activity in
conjunctive neural population codes, in which each neuron’s activity is modulated by multiple stimulus
features17, 18, 47, or through rapidly formed synaptic connections between neurons sensitive for a single
feature16, 127. For instance, the interference model16 employs a two-dimensional binding space as its
central working memory substrate, which encodes feature conjunctions with limited precision and gives
rise to swap errors dependent on cue feature similarity, as outlined above. This mechanism is combined
with separate single-feature representations and set-size dependent background noise to give rise to
different forms of recall errors, and can quantitatively fit experimental data from continuous reproduction
as well as change detection tasks128. Models based on conjunctive coding have likewise been successful at
fitting behavioral results17, 18, with an interesting recent extension additionally describing feature binding
across multiple levels of visual processing129.

Among visual features, location has long been considered to have a special role in both perception and
WM130, 131. Unlike other features, location is robustly recalled even when task-irrelevant132–135, albeit
with reduced precision136. Location is a particularly effective retrieval cue119, and spatial congruency
between stimuli affects recall performance137, 138.

It has sometimes been argued that binding of objects to locations constitutes a weaker (relational or
extrinsic) binding than that between an object’s features such as shape and color139, 140. In contrast,
Schneegans and Bays18 proposed that binding in WM, as in visual perception, is achieved through feature
maps over visual space, with different non-spatial features of an object bound to each other only indirectly
via their shared location. This account allows for independent resource pools for different non-spatial
features while still employing inherently conjunctive memory representations, and it explains patterns of
error correlations in dual-report paradigms98, 141–143. Recent work further indicates that for sequentially
presented stimuli, presentation time may take a similar role as location in binding visual features (144–146;
see also17, 147). However, Son and colleagues148 criticized the dual-report methodology employed in
several of these studies18, 141, 144, arguing that it may underestimate error correlations for different visual
features of an object by using sequential reports. The authors found that a simultaneous report method
revealed reliable correlations of memory quality for color and orientation (though still weaker than those
between location and other features,149), which they interpreted as evidence that features in WM are
organized at least partly in an object-based manner.

Feature binding in WM has also been investigated in clinical populations and older adults. Recent work
shows no specific decline in binding performance associated with healthy aging150–152, nor with most
other clinical conditions153, 154. However, a specific binding impairment has been observed in association
with Alzheimer’s disease153, 155 and has been proposed as a diagnostic tool to differentiate Alzheimer’s
from other forms of dementia156.
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Multiple competing sources of bias in WM
In addition to swap errors, where one feature is inadvertently reported in place of another, a diverse
range of influences have been identified that produce graded shifts in target feature estimates towards or
away from other points in the feature space. For example, Golomb and colleagues137 found that shifting
attention between memory items increased the frequency of swap errors, whereas attending to items
simultaneously tended to result in reports being shifted slightly towards each other (Fig 4C).

One important source of biases is the history of previously observed stimuli with similar features. Attempts
to characterize these influences have identified multiple competing sources of bias, some attracting current
representations toward preceding stimuli and some repulsing them away, with systematic differences in
strength, time course, and specificity157–159.

Classical adaptation effects160, exemplified by the tilt after-effect (Fig 4D) and the waterfall illusion, are
typically repulsive, tightly spatially localized, and have their effects in immediate perception of stimuli,
feeding through to WM representations. Such short-term adaptation may co-exist with or contribute to
efficient encoding strategies based on long-term environmental statistics (see above). In contrast, more
recently identified biases associated with the term “serial dependence”161, 162 are primarily attractive
and appear to generalize across a broader range of spatial locations while specifically affecting stimulus
features similar to those of preceding stimuli (Fig 4E). These attractive effects are typically observed only
for stimulus features maintained in WM, and grow in strength with delay interval163–165. One possibility
is that this reflects a greater reliance on stimulus history when the representation of the current stimulus
becomes less precise, following Bayesian principles166–168; in perceptual tasks, where uncertainty is less,
smaller attractive biases may be masked or cancelled out by repulsive biases associated with classical
adaptation.

The attractive biases to preceding stimuli described as serial dependence are typically observed experi-
mentally as influences of items presented on previous trials, which have therefore ceased to be relevant to
the instructed task. In contrast, previously-presented stimuli within the same trial, which remain relevant
to the current task and are presumably actively maintained in WM, have been found to have a repulsive
influence on subsequent stimuli (Fig 4F;169–171). It is currently unclear whether the mechanisms that
attract recall estimates towards previous stimuli are inactive while those stimuli remain relevant, or are
active but overwhelmed by stronger repulsive biases between items held simultaneously in memory.

Repulsion is also commonly observed between two similar stimuli when they are presented simultaneously
(169, 172, 173). This bias causes the stimuli to be reported as more distinct from each other than they really
were, and it has has been suggested that implicitly differentiating memory representations in this way
could serve to reduce inter-item confusion (174). By contrast, when many items are held in mind, or
when memories are weak for another reason (175), items tend to be reported as more similar to each other
than they really were (Fig 4G;69, 169, 172, 173, 176, 177). This has been explained in terms of memories being
‘compressed’ (see above).

Finally, there are biases that variously attract or repel stimulus estimates relative to fixed points or
landmarks in the stimulus space, some evident in immediate perception (e.g. cardinal repulsion, discussed
above; Fig 4H), some that develop during a memory delay (e.g. compressive biases in spatial memory;178),
and others that may arise at the decision stage (e.g. reference repulsion;179). A unifying theory of such
biases has not yet been found.
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Changes in WM over delay
The maintenance of information in WM over delays is imperfect, and the results from analogue report tasks
confirm that the precision of individual memory representations deteriorates over time180, 181. However,
this effect is relatively subtle and variable182 in comparison to the strong and robust effects of set size.

The gradual deterioration of WM representations has been addressed in continuous attractor models
(Figure 5A). This type of model employs an idealized population of neurons whose tuning functions cover
the space of possible feature values. A memorized feature is then represented by activity in a group of
neurons with similar preferred feature values, sustained over time by recurrent excitation. Delay effects
can be explained in these models by random drift, i.e. gradual shifts in the subset of active neurons due to
noise in neural activity46, 183, 184.

Several memory decoding studies have observed gradual changes in encoded feature values over time
that correlate with response errors, consistent with this theoretical account185–187. This account is further
supported by behavioural results comparing response errors and latencies across different set size and
delay conditions181, and is consistent with findings from signal detection analyses of behavioural data
indicating that deterioration of memory is driven by accumulation of internal noise188. Another study
observed that drift over delays is not entirely random, but rather shows biases towards specific feature
values189.

While attractor models of WM have typically been designed to maintain only a point estimate of a stimulus,
recent work aims to incorporate uncertainty as well, e.g. represented in the amplitude of the population
activity190, 191. In future work, neural models of WM could focus on how this richer representation is used
in decision-making; trained recurrent networks have already proven useful to yield mechanistic insights in
tandem with accounts of behavioural data192.

Deterioration of memory over time may also be driven by interference between multiple memory items193.
One proposed model explains this effect by a combination of sharing representational resources in
an attractor model with efficient encoding194. Another model combines separate continuous attractor
networks, each storing a single feature, with a randomly connected neural network in which different
feature representations interfere with each other to explain both set size and delay effects195.

Directed interactions between items as described in the previous section also evolve over time. In
particular, repulsion between memorized feature values has been observed to increase with longer retention
intervals173, 174. Such interactions also occur in continuous attractor models as a result of mutual excitation
and inhibition between active sub-populations46, 184, 196, 197, although it is not clear whether these effects
can fully account for the behavioural observations.

Dynamic neural representations
The continuous attractor models addressed in the previous section reflect a traditional view on the neural
mechanism underlying WM, in which information is maintained through persistent activity in feature-
sensitive neurons, driven by some form of recurrent excitation. This yields stable representations in
the state space of neural activities (Figure 5B, left panel). Support for such a mechanism comes from
electrophysiological studies in monkeys, in particular in delayed oculomotor response tasks185, 198–200.
Persistent activity has also been observed in rare electrophysiology studies in humans201, 202.

However, a number of recent works have challenged various aspects of this view, primarily based on
studies that decode memory content from fMRI or EEG recordings using techniques such as inverted

11/37



encoding models203, 204. In this type of study, it has often been found that there is little generalization
in decoder efficacy between sample and delay period205, 206, or between different phases of the delay
period207–209. While changes in neural representations immediately after stimulus presentation may
reflect transitions from perceptual and iconic memory210 to WM, qualitative changes in representational
format during maintenance are inconsistent with traditional conceptualizations of WM as implemented
in attractor models. This has lead to postulates that WM activity is substantially more dynamic than
previously recognized211, 212 (Figure 5B, middle panel). This view is also supported by a number of
electrophysiological studies in rodents and monkeys that found a reproducible sequence of activation
states during the memory delay, rather than a single stable state205, 213–215. In neural network models, it
has been shown that both stable persistent activity and reproducible sequences of activation states can
arise as WM mechanisms dependent on task demands and network parameters192.

The conflicting findings may at least in part be reconciled by recent studies analyzing the neural coding of
WM content in macaque monkeys. These confirmed the presence of strong temporal dynamics, allowing
for instance the decoding of time passed since stimulus presentation, but also found stable subspaces
in the neural code (Figure 5B, right panel) within which time-invariant decoding of memory content is
possible216–219. This would in particular allow the read-out of memory via fixed synaptic weights despite
changing activation states. Consistent results have also been obtained in an EEG experiment in humans187.

Activity-silent WM and the focus of attention
Beyond the debate on stable vs dynamic representations, it has also been questioned in recent years
whether continuous neural activity is necessary at all for WM maintenance. An alternative proposal is
that at any time only a small portion of working memory content that is currently behaviorally relevant is
represented through neural activity, often just a single item. This active memory is sometimes equated with
the “focus of attention” in previous models220, 221. Other items are proposed to be held in an activity-silent
state211 realized through mechanisms classically associated with long term memory, such as rapid synaptic
plasticity or short-term changes in neural excitability222, 223.

The primary motivation for this idea is findings from the dual retro-cue paradigm, in which participants
view two sample stimuli, and then perform two sequential memory tests for which one sample item is
cued. LaRocque and colleagues224, 225 observed that the identity of the currently attended (cued) item
could be decoded from neural activity using either EEG or fMRI recordings, but the currently unattended
item could not (Figure 5C). Critically, a previously unattended item became decodable again if it was cued
for the second test, demonstrating that it was still held in memory. A similar restoration in the decodability
of memory items has also been observed following an informative retrospective cue226, and transiently
following a transcranial magnetic stimulation pulse227 or a salient, but task-irrelevant visual stimulus206.
The latter result has been explained by interactions of the stimulus with activity-silent WM states, e.g. in
the form of altered synaptic connectivity, that elicit an identifiable impulse response in the neural activity
(see also205, for a similar account of findings in monkey electrophysiology).

Computational models based on activity-silent memory mechanisms have accounted for neurophysiologi-
cal data from working memory tasks, including noise correlations228 and trial-to-trial variations in neural
responses127, 229. Moreover, a recurrent neural network endowed with short-term synaptic plasticity devel-
oped predominantly activity-silent mechanisms to solve working memory tasks as long as these required
no active manipulation of information230. An alternative to the standard activity-silent account proposes
that unattended memory items are maintained actively, but in an altered representational format231, 232.
This has also been explored in computational models233.

12/37



Several other papers have countered the claims of activity-silent working memory. The results of the de-
coding studies, which relied primarily on null results, have been called into questions by work successfully
decoding the identity of unattended items234, 235 (Figure 5D), even in data that had previously been used
as support for activity-silent states236. Schneegans and Bays237 further demonstrated in a neural network
model that restoration of decodability following an informative cue can also arise in a system with purely
active WM states, and is no evidence for activity-silent memory states.

Activity-silent memory states are in conflict with assumptions underlying commonly used methods
of estimating the number of items held in memory from neural activity. In particular, the strength of
contralateral delay activity in EEG data increases with memory load238, 239, saturating at higher set sizes240,
and memory load can also be estimated through classification methods applied to multivariate EEG241 or
fMRI data242. It is possible that these measures arise despite the presence of activity-silent states, e.g. due
to switching of the active state between multiple memory items. Sutterer and colleagues243 tested this
by comparing the strength of reconstructions for memorized locations from EEG data across different
set sizes, and concluded that multiple locations are maintained concurrently in neural activity. In view of
these results, some authors have argued that the findings supporting activity-silent memory simply reflect
contributions of classical long-term memory in WM tasks, without demonstrating a specific neural WM
mechanism244, 245. The debate about the activity state of WM representations is also linked to the ongoing
question of their anatomical localization246–249, although the latter has generally been studied without the
possibility of activity-silent memory in mind.

The debate on different neural WM states has parallels in the debate over different functional states in
cognitive models, although caution must be taken when equating the two250. Models that assume that
only a single item can be in the focus of attention16, 220, giving it a privileged role in influencing visual
attention, contrast with alternative conceptualizations in which the focus of attention can encompass
multiple items251. This debate takes a more concrete form in the question of whether only one252, 253 or
multiple WM representations254, 255 can serve simultaneously as templates for visual search. A possible
resolution to this question may be provided by recent findings indicating that multiple search templates
may be prepared in parallel with little cost, but a bottleneck arises when these templates are engaged to
select multiple targets256. Alternatively, due to variations in noise across items, it may be that it is rare for
more than a single item to be represented accurately enough to successfully guide attention257.

Another proposal is that WM is maintained by intermittent bursts of activity258–260, bridged by mechanisms
such as synaptic plasticity222, 223. Proponents of this model point out that the appearance of persistent
firing is often an artifact of averaging across trials, which hides trial-to-trial variability in neural activity261.
The debate on the degree of persistence in neural firing during WM maintenance is still ongoing262, 263.
Unlike the proposal of activity-silent memory, the intermittent activity account does not imply different
neural mechanisms for different functional memory states (e.g. attended vs. unattended items), but it may
explain observations of rhythmic fluctuations in the strength of attentional guidance between multiple
memory items264.

WM versus perception and future directions
The past decade of research has brought into focus similarities and differences between visual WM and
visual perception, two strongly overlapping psychological constructs studied using similar experimental
methods but to a large extent by separate researchers in independent literatures. Many theoretical and
experimental findings conceived of in terms of perception have counterparts in WM and vice versa, e.g.
prioritization based on stimulus salience and goal relevance, probabilistic inference and use of uncertainty,
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efficient coding and influences of environmental statistics. Whereas the limited capacity of visual WM
was once considered fundamentally different in nature to the factors limiting visual perception, it is
increasingly clear that both can be described in terms of the relative amplitude of signal to noise (SNR),
with increasing WM load decreasing SNR for each stimulus in memory similarly to how decreasing visual
contrast affects a discrimination judgement. Indeed, introducing perceptual or attentional bottlenecks on
performance seems to change error distributions in a similar way to increasing set size23, 265, 266.

Despite these areas of similarity, it is clear that WM is much more than a passive persistence of sensory-
invoked activity. There are unique challenges associated with maintaining selected elements of sensory
information over time independently of subsequent input, and controlling what information is added,
removed, replaced and updated in memory. Key questions for further research include: How is sensory
information selected for maintenance in WM – is the mechanism of selection distinct from the operation of
selective visual attention (e.g.,267)? What mechanisms allow sensory input to be segregated from existing
WM representations, or integrated with it, according to behavioural requirements (e.g.,268)? Are errors in
long-term memory representations fundamentally different from those in WM and perception269, or can
they all be unified in a single model?

In answering these questions it will be critical to move beyond lab-based studies using sparse, static
displays and single responses to consider richer, uncertainty-based representations, as well as how WM is
deployed during natural behaviour in everyday environments. While initial steps have been taken in this
direction experimentally270–272, most computational models of WM aim only to capture recall of visual
stimuli with low dimensionality. The rapidly advancing capability of artificial neural networks (ANNs) to
perform dimensionality reduction on complex images may represent an opportunity to extend WM models
into the real world (e.g.,273).
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190. Carroll, S., Josić, K. & Kilpatrick, Z. P. Encoding certainty in bump attractors. J. computational
neuroscience 37, 29–48 (2014).

191. Kutschireiter, A., Basnak, M. A., Wilson, R. I. & Drugowitsch, J. Bayesian inference in ring attractor
networks. Proc. Natl. Acad. Sci. 120, e2210622120, DOI: 10.1073/pnas.2210622120 (2023).

192. Orhan, A. E. & Ma, W. J. A diverse range of factors affect the nature of neural representations
underlying short-term memory. Nat. Neurosci. 22, 275–283, DOI: 10.1038/s41593-018-0314-y
(2019).

193. Pertzov, Y., Manohar, S. & Husain, M. Rapid forgetting results from competition over time
between items in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 43, 528–536, DOI:
10.1037/xlm0000328 (2017).

194. Koyluoglu, O. O., Pertzov, Y., Manohar, S., Husain, M. & Fiete, I. R. Fundamental bound on the
persistence and capacity of short-term memory stored as graded persistent activity. eLife 6, e22225,
DOI: 10.7554/eLife.22225 (2017).

195. Bouchacourt, F. & Buschman, T. J. A Flexible Model of Working Memory. Neuron 103, 147–160.e8,
DOI: 10.1016/j.neuron.2019.04.020 (2019).

196. Almeida, R., Barbosa, J. & Compte, A. Neural circuit basis of visuo-spatial working memory
precision: A computational and behavioral study. J. Neurophysiol. 114, 1806–1818, DOI: 10.1152/
jn.00362.2015 (2015).

197. Johnson, J. S., van Lamsweerde, A. E., Dineva, E. & Spencer, J. P. Neural interactions in working
memory explain decreased recall precision and similarity-based feature repulsion. Sci. Reports 12,
17756 (2022).

198. Fuster, J. M. & Alexander, G. E. Neuron Activity Related to Short-Term Memory. Science 173,
652–654, DOI: 10.1126/science.173.3997.652 (1971).

199. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey’s
dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349, DOI: 10.1152/jn.1989.61.2.331 (1989).

200. Hart, E. & Huk, A. C. Recurrent circuit dynamics underlie persistent activity in the macaque
frontoparietal network. eLife 9, e52460, DOI: 10.7554/eLife.52460 (2020).
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Boxes:

BOX 1: Slots versus resource models
Influential initial models of visual WM3, 77 were often based on the idea that, to be remembered, an
object must be stored in one of a fixed number of memory slots, such that up to around four items
could be remembered without error and beyond that limit no further items could be remembered at all.
Such models were simple and made strong predictions that initially appeared to be borne out in tasks
such as change detection, leading them to be highly influential. However, as evidence grew that items
in memory were subject to significant variability, and that this noise increased with memory load
even from one to two items (e.g.,30, 45, 274), the simple picture painted by slot models was no longer
sufficient to capture the data. Alternative resource models were developed in which a fixed quantity of
representational signal is distributed between memory items, with no fixed upper limit on the number
of items represented.

Faced with the argument that noise-based accounts made the notion of slots redundant, attempts to
adapt slot models have taken two main routes. First, early evidence that certain changes to complex
object can be detected when it is the only item in memory but not when multiple items must be
remembered (e.g.,85), led to the proposal that the limit of four slots coexisted with noisy storage within
each slot (e.g.,275). Second, the influential slots-plus-averaging model proposed to adapt the slot
model by allowing a single item to be represented in multiple slots, with averaging of the independent
representations31. However, this model has been criticized on multiple fronts: for being functionally
identical to a discrete resource model (specifically, the sample-size model, with samples re-branded
as slots;29), for failures in self-consistency (e.g.,276, 277) and for failing to fit performance across set
sizes as accurately as the best resource models without the slot constraint19, 41, 42, 278. While one
study279 argued that the better fit of resource models disappeared when stimulus-dependent sources of
variability were accounted for, subsequent work76 showed that a resource-based model incorporating
efficient coding fit the same data better while also predicting the patterns of stimulus-dependent
variability from first principles (see WM in a structured environment).
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This has resulted in the slots-plus-averaging model losing favour and a return to slot models that allow
for memory precision to be resource-based and vary continuously, but with an additional upper bound
on how many representations can exist and hence on overall performance (e.g.,44). Arguments for this
kind of model are typically based on observations interpreted as “true guesses” (i.e. responses that do
not appear to be based on any knowledge of the previously-presented stimulus). However, all current
resource models predict such zero-precision estimates (or estimates indistinguishably close to zero) as
arising from probabilistic variation in precision (Fig 3), and when models have been formally fit to
such data, resource models have been found to reproduce the patterns interpreted as guesses without
needing an additional mechanism (e.g. in whole-report delayed estimation;29). Thus, pure resource
accounts are criticized on the basis of patterns of data that they accurately account for, with those
patterns claimed as evidence for an alternative model that has not been fully formulated in quantitative
terms and has not been shown to reproduce the data.

Importantly, while slot models have changed over time from simple models that made strong pre-
dictions to resources-plus-guessing models that retain little of the original slot concept, the wider
field has not always kept track of this evolution. For example, many researchers continue to report
K values based on change detection data (counts of how many items are "in memory"), even though
the all-or-nothing assumption underlying the calculation of K3, 280 is incompatible even with modern
slot models, which assume that items are not simply present or absent from memory but at minimum
also have an associated precision31, 44. This may lead to researchers misinterpreting response biases as
memory limits43. Relatedly, many studies fit mixture models that assume a some-or-none mixture
of imprecise memories and guesses to continuous reproduction data to account for the long tail of
errors, even though such models have been shown not to isolate independent precision and guess
rate parameters36, 266. In a change detection study, a variable-precision model accounted best for
apparent guesses, even though it did not contain a guessing component41. Overall, then, the field
should carefully specify what is meant when appealing to slot models, since such models are not
generally slot-like in their character anymore, allowing for many kinds of continuous variation but
specifying an additional item limit that is superfluous in accounting for empirical performance.

BOX 2: Sensorimotor functions of visual WM
Visual WM has been conceptualized as a workspace in which visual object representations are not
only maintained but also manipulated (as in mental rotation), compared (as in visual search) or
integrated with new input. WM has long been assumed to play a critical role in bridging interruptions
of sensory input, so that processing does not have to start anew when the input is restored. In vision,
common forms of interruption affecting the processing of objects in our environment include dynamic
occlusions by other objects (e.g. as a result of motion parallax), movements of the head or body that
briefly take the object out of the field of view, and whole-field interruptions in the form of blinks and
saccadic shifts of gaze.

Saccades are the most frequent form of interruption to visual input, dislocating and briefly smearing
the retinal image several times per second during natural vision. Recent studies have shown that
information about an object obtained in sequential gaze fixations is integrated in a statistically near-
optimal manner281–283 and that this process relies on the allocation of limited VWM resources to
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behaviourally relevant objects in advance of the eye movement284, 285. Multiple object representations
can be integrated across a saccade, including objects that are never brought into foveal vision281, 286;
however, dynamic allocation of WM resources to upcoming saccade targets seems to be obligatory
and to require the withdrawal of resources from previously fixated objects274, 287–290.

WM has a broad role in supporting goal-directed movement (see291–293 for detailed reviews). Recent
studies have demonstrated enhanced recall for visual items at locations relevant to reaching move-
ments294, 295 and also for feature dimensions relevant to a movement, e.g. object size for grasp296.
These benefits have been observed even for movements specified shortly after disappearance of the
memory array, perhaps reflecting reallocation of WM resources supported by shifts of attentional
focus within sensory memory.

Action planning is thought to rely on representations of spatial location in multiple reference frames292,
that is, the encoding of an object’s location relative to a stable visual landmark (allocentric coding)
may be at least as relevant to action as its location in the visual field (a form of egocentric coding).
The presence of a landmark at both encoding and retrieval enhances recall of object locations297, 298,
increasing precision for items near to the landmark in a manner consistent with integration of allocentric
and egocentric representations of an object’s location maintained in independent WM stores299. The
ability to supplement memory of an object’s individual spatial location with memory for its location
in relation to another object, seemingly without cost, is conceptually similar to some descriptions of
inter-item interaction and ensemble representation in visual WM (see main text); future work could
aim to synthesise these accounts.

Figures:

Figure 1: Recall as inference about the past. In this minimal illustration, viewing a single colour patch
drawn from a continuous space of hues (left) at time t1 induces stochastic changes in the neural system
that propagate in time, resulting in one of many possible “memory states” (middle) at time t2 when the
memory is probed. The information a memory state contains about the stimulus hue is described by a
likelihood function (right), the probability of obtaining that particular memory state given each stimulus
hue that could have been presented at time t1. If, as in a typical delayed estimation task, the observer is
asked to select a single hue that best matches the memory (a “point estimate”), a good choice might be
the maximum-likelihood estimate (coloured pins). However, the full likelihood function contains richer
information about the plausibility of different hues that, to the extent the observer has access to it, may be
revealed using other experimental methods (see Fig. 2).
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Figure 2: Tools for measuring WM uncertainty. (A) A typical task testing orientation recall with confidence
reported on an ordinal scale. (B) Increasing the number of items to be remembered (the set size) reduces the
signal strength relative to noise, increasing variability (broadening of error distribution). (C) Even within a
given set size (here, six items) error distributions can be decomposed on the basis of subjective confidence
ratings into components that differ in precision. Panels A–C adapted from5. (D–E) Reporting a confidence
interval (D); arc length is correlated with absolute error in the point estimate (E). Adapted from7. (F)
In change detection, the optimal decision criterion depends on uncertainty. The x-axis represents the
measured change based on noisy WM representations in a single-item change detection task. The lines
represent the probability distribution of the measured change on change (blue) and no-change (red) trials.
The grey areas indicate where the optimal observer would report a change. When uncertainty is high, the
optimal observer tolerates a larger measured change before reporting “change”. Adapted from11.

Figure 3: (A–D) Four models of visual WM that share common principles and predict similar patterns
of error in recall (see main text for details). (A) Encoding-decoding model based on representation in a
population code. Stimulus features are encoded in the activity of idealized neurons individually tuned
to different parts of the feature space (inset). Recall errors arise at decoding due to limited activity
amplitude and Poisson variability in spike counts. (B) Sample-based model with stochastic variation in
number of samples. Recall errors arise from averaging over a limited and variable number of individually
noisy samples. (C) Signal detection model with correlated random noise. Recall error arises from the
addition of noise to an underlying familiarity function that peaks at the stimulus feature. (D) Model
based on probabilistic variability in mnemonic precision. Recall errors comprise scale mixtures of normal
distributions with differing precisions. (E) Relationship between variability and uncertainty common to
these models: memories that are compatible with a narrow range of stimuli (high certainty as measured
by likelihood width; top) correspond to point estimates with low variability (coloured pins; top); low
certainty memories correspond to high variability estimates (bottom). (F) Confidence ratings (from task
shown in Fig. 2A) can be explained as a logarithmic transformation of precision and fit jointly with error.
Adapted from24. (G) Whole-report delayed estimation with the reporting order chosen by the participant.
The estimate distribution gets wider for later responses (left), consistent with selecting items in order of
increasing uncertainty (right). Adapted from29.

Figure 4: (A & B) Swap errors arising from cue feature similarity in a conjunctive coding model. (A)
Example of a likelihood function over all possible combinations of cue and report feature value based on a
fully conjunctive memory representation of a memory array (shown in inset, numbers for reference), with
random noise. Numbered points indicate the true feature combinations of target (item 2) and non-target
items. Likelihood of the report feature value associated with the cue (matching the cue value of the target
item, dashed white line) is shown in the lower part of the panel, with corresponding decoded estimates, for
three repetitions with the same stimuli but independent noise. (B) Distribution of decoded report feature
values over many repetitions. While the majority of decoded values are concentrated around the report
feature of the target item (green dashed line), a substantial proportion are close to the report feature values
of non-target items (red dashed lines), in particular item 3 which has a similar cue feature value (angular
location) as the target. (C) Recall error distributions display dissociable contributions from swap errors
(secondary peak at non-target value) and biases (shift or skew of central peak away from target value).
Data from137. (D–H) A diverse range of factors contributing to VWM biases.
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Figure 5: Dynamics of WM representations. (A) Left: Architecture of a continuous attractor model
of WM, with neurons shown as circles coloured with their preferred feature value, arranged on a ring
reflecting the topology of the feature space. The pattern of synaptic connectivity is shown for one example
neuron, with local excitatory connections (green) and global inhibitory connections (red). The blue circular
plot shows neural firing rate briefly after stimulus presentation. Right: Neural activity during a single
WM trial, showing persistent firing after stimulus offset due to recurrent excitation, and random drift
in the represented feature value over time due to noise in neural activity. (B) State-space plots of WM
activity for different coding schemes. The plots show a projection of the high-dimensional space of
activities in a neural population onto a low-dimensional state space. Each coloured line shows the time
course of the activity state in a single trial (from light to dark), with different colours corresponding to
different memorized feature values. Left: Stable neural representations, in which activity states remain
largely fixed for the duration of the trial, except for effects of noise and possibly an initial transient phase.
Middle: Dynamic representation, with activity states changing along different trajectories for different
features. Right: Representation with stable sub-spaces (here in components 1 and 2), but dynamic in
orthogonal spaces (here component 3 reflects time). (C) Time course of decoding strengths from fMRI
data for different stimulus categories in a dual retro-cue task (adapted from227). Decoding strength for
the category of a currently uncued item transiently drops to chance level, suggestive of representation
in an activity-silent state. (D) Decoding strength for features of different sample stimuli in another dual
retro-cue task. Here, decoding strength in higher cortical areas is significantly above chance for a currently
uncued memory item (adapted from234).
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