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Abstract  

Both in everyday life and in memory research, one tends to think of items as being ‘held’ 

in mind, in the same way that a real-world object can be held in one’s hand. Inspired by 

this metaphor, traditional work on visual working memory and visual long-term memory 

focuses on understanding how many objects are remembered or forgotten, or held or lost 

in particular circumstances. By contrast, newer computational and empirical work on 

visual memory focuses on the role of noise in memory representations — conceiving of 

memories as continually varying in ‘strength’ or ‘precision’ – as well as the role of the 

visual hierarchy and priors in structuring memory. In this Review, we merge these 

contemporary theories and evidence. We describe how fundamentally noisy memory 

representations are instantiated at different levels of the visual hierarchy and support both 

visual-working and long-term memory. We also discuss how conceiving of memory in this 

way can direct further research and illuminate the nature of cognitive function more 

broadly.  
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[H1] Introduction  

Consider what your dinner plate looked like last night, including the color, size, and 

positions of food on the plate. When you try to bring these images to mind, you are trying 

to retrieve the details of a particular visual experience, using your visual memory. Visual 

memory refers to information that can be successfully accessed from past visual 

experiences, and the structure of that information.   

Visual memory is of broad interest because of its impressive capabilities, which can be 

appreciated in the method of loci, widely used to turn arbitrary words or playing cards into 

rich visual images by the best memorizers in the world1. Visual memory is also of broad 

interest because it provides key insights into the nature of memory representations. While 

traditional memory research has often focused on identifying separate memory systems 

and on establishing a taxonomy of memory systems and their function2,3, and focused 

less on examining the nature of stored memory representations. By contrast, research on 

visual memory places a major emphasis on the structure and format of the 

representations of objects and scenes in memory, and how properties of these 

representations impose limits on what information can be remembered accurately4,5. 

Because the perceptual representations underlying visual processing are (comparatively) 

well understood compared to many other domains6–8, research at the intersection 

between visual perception and memory can provide unique insights into memory 

processes by building on what is known about perceptual representations and examining 

how they change when held in memory. 

A key insight is that visual memory representations are noisy – that is, that people can 

never remember them perfectly accurately, and that the accuracy of their memory tends 

to vary in a continuous manner. This insight derives in part from visual memory 

research’s emphasis on visual features that themselves vary continuously, such as color 

and orientation, and the metrics of performance that asking people to remember these 

features allows in visual memory tasks. However, the finding that visual memory 

representations are noisy conflicts with the tendency to use a physical metaphor to 

describe and understand memory. That is, people tend to think of an object they are 

trying to remember as either in mind or not in mind, and to talk about items as being ‘held’ 

in mind to describe working memory, just like a real object can be held in the hand9. This 

physical metaphor often serves as a core mental model for how memory has traditionally 

been conceived: as all-or-none, discrete, and operating over entire objects or chunks of 

information.  

Given their continuous and noisy nature, however, the idea that memory representations 

are physical objects that can be held, or can be defined as simply existing or not existing, 

is not a useful metaphor for memory. Therefore, instead of using this physically inspired 

mental model for memory, here we propose a model based on an analogy to the nature 

of processing in the visual system (Fig. 1). In particular, the visual system is usually 

conceived of in terms of population codes, with many neurons representing a given 

feature and a given location— and each doing so with substantial noise10. Furthermore, 
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the visual system contains a hierarchy of representations, where representations are 

richer and more complex as one moves from primary visual cortex up to more anterior 

visual regions. 

In this Review, we detail how we conceive of visual memory in a similar way, as a noisy 

and hierarchical system. We begin by reviewing work that suggests that representations 

for objects or scenes are strongly related across visual working memory and visual long-

term memory, and in both cases are best conceived of as noisy and variable in strength. 

We then describe how such noisy memories are stored in terms of hierarchical memory 

representations. Finally, we discuss how these ideas lead to a reconceptualization of the 

limits of visual memory at different timescales, and the role of visual memory in other 

cognitive capacities.  

[H1] Visual memory across time scales  

We begin with the question of whether it makes sense to consider visual memory as a 

single construct, or, whether the more traditional view, where long-term memories are 

considered fundamentally distinct from working memories, is most appropriate. As in 

more traditional memory research, visual working memory and visual long-term memory 

are often studied separately, using different paradigms, by different researcher groups, 

and are often thought of as distinct systems. Although we acknowledge that a systems 

taxonomy can have heuristic value, this view is grounded in theories which posit that 

visual working memory and visual long-term memory differ in their mental representations 

and intrinsic structure. By contrast, contemporary evidence suggests that visual working 

memory and visual long-term memory share mental representations, even though varying 

task demands can lead to the differential recruitment of additional cognitive processes 

that operate over those representations.  

Mainstream theories of memory often postulate that visual working and long-term 

memory representations differ from each other in key ways. One reason for this is 

distinctive neural correlates. For example, neuropsychological research suggests a 

distinction between visual long-term and working memory based on purported evidence 

of selective and distinct impairments to visual long-term and visual working memory11,12. It 

has also been suggested that short-term memory reflects transitory electrical activity, 

whereas long-term memory reflects durable neurochemical changes in the brain13. 

Broadly in line with this view,  some evidence indicates there are distinct neural 

signatures associated with visual working memory and long-term memory, with the 

sustained and active firing of neurons involved particularly in working memory 

maintenance14,15 but not long term memory. In humans, such working memory-specific 

activity can be tracked with electrophysiology, for example with the contralateral delay 

activity16–19, a robust component thought to track the amount of information ‘actively’ 

stored in visual working memory20  and that disappears when items are available in long-

term memory21 Similarly, information in working memory can be seen in parietal and 

frontal region activity9 and decoded from ongoing activity during the maintenance period 

using neuroimaging22–24.  
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However, these neural coding differences do not necessitate differences in the 

fundamental representations or intrinsic structure underlying working memory and long-

term memory. For example, the neuropsychology work must be interpreted with caution 

based on the observation that participants from clinical populations suffer from a wide 

range of processing deficits that make claims of selective deficits to a specific cognitive 

system difficult25. Similarly, the evidence of distinct neural correlates for working memory, 

involving active maintenance processes, do not necessarily indicate distinct 

representations are used in working memory compared to long-term memory. Instead, 

the distinction between typical working memory and long-term memory tasks can reflect 

the amount of activation of a particular representation26–29 or the engagement of 

attentional maintenance processes to maintain such activation, with the representations 

themselves being fundamentally the same. For example, the classic modal model of 

memory posited that short-term or working memory exists as a buffer that maintains 

information in a readily accessible state30,31 . It is therefore often posited that working 

memory is capacity limited such that only a small amount of information can be maintain 

in an active state at once, perhaps due to limitations in attentional maintenance 

processes32. Thus, rather than requiring two systems, the neural evidence is consistent 

with the view that representations in working memory and long-term memory are 

fundamentally the same, but long-term memory is mostly passive use of these 

representations and working memory is a form of attentional demanding, activated 

memory, involving control systems that manipulate and maintain the same underlying 

memory representations. According to this account, once activated in working memory, a 

subset of information related to pertinent representations can be continuously protected 

from noise accumulation by attentional processes, but the representations remain 

fundamentally similar to those used in long-term memory.  

Behavioral evidence is consistent with this account. Despite a long history of evidence 

that suggests long-term memory is often less precise than working memory (such as 

theories that suggest only the gist survives in long-term memory, causing false 

memories33) —new evidence shows that there is not any fundamental difference in the 

range of levels of precision or memory strength that are possible in visual-working and 

long-term memory. Distributions of memory errors obtained from continuous reproduction 

visual-working and long-term memory tasks34 fit with a one parameter model that 

captures memory strength across tasks35 (Fig. 2). This suggests that as memory gets 

weaker in the two systems, it degrades in an identical fashion. Of course, typical working 

memory and long-term memory tasks may differ in key ways, even with the same 

representations underlying them. For example, online attentional selection might often be 

more necessary in working memory tasks because many items are often presented at 

once in such tasks, and there is often less spatiotemporal context in long-term memory 

tasks compared to working memory tasks, with many items all presented in the same 

spatial location being relevant. Thus, although long-term memories on average might be 

weaker than working memories in everyday-life situations, evidence suggests that this 

difference strength does not necessarily reflect a fundamental difference in memory 
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systems or their representations but rather the way they tend to be used and 

investigated.  

Thus, evidence is consistent with a view that visual-working memory is a form of 

activated long-term memory, with similar representations that differ in their degree of 

activation or in the processes being used to manipulate and maintain them. Through this 

lens, attention ‘selects’ and upweights goal-relevant information, and provides protection 

against the accumulation of noise across populations of neurons throughout the visual 

hierarchy36, and memories protected in this way are working memories.  

Prior work has criticized the unidimensional view of visual memory in part because the 

idea that memories are active in working memory (and less active in long-term memory) 

has not been consistently operationalized. For instance, activation has been used to 

describe both the strength of mental representations, as well as dynamics in neural 

processing. Furthermore, the conception that activation alone differs between working 

memory and long-term memory is generally insufficient to explain the differences across 

working memory and long-term memory tasks. For example, many theories treat 

activation levels as varying even among different long-term memories, and some work 

suggests that working memory can make use of inactive states37,38 in addition to active 

ones. This notion of ‘activation’  leads to theories arguing that up to a hundred or more 

recently seen items can be active in long-term memory39, as compared to ‘inactive’ items 

that are seen equally often but are not relevant in the current context40. Reconciling all the 

notions of activation across both neural and cognitive meanings of the term and across 

both working memory and long-term memory remains a difficult and important task for 

unidimensional theories of memory, and one that has been the source of a number of 

proposals about the architecture of working memory32,41–44.  

In summary, within this unidimensional view of visual memory, visual working and visual 

long-term memory are not distinct systems, but instead both involve computations over 

the same types of memory representations. Importantly, the nature of these computations 

is constrained by the demands of the task, such that some visual memory tasks elicit 

processing constraints which the others do not. In the remainder of this article, we 

develop this unidimensional framework by integrating findings from the visual working 

and long-term memory literature on the nature of visual memory representations. We 

then detail how differential demands can elicit processing bottlenecks in visual memory 

tasks. Finally, we discuss how the unidimensional view fits parsimoniously with more 

ecological theories that take into account the role of prior knowledge, stimulus complexity 

and meaning in visual memory across time scales.   

[H1] Memories are noisy and vary in strength  

A major dichotomy in the visual memory literature has been between views in which 

memories are conceptualized as all-or-none—with bound objects that are either 

remembered with complete accuracy or fully lost45,46—and views in which memory 
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representations are noisy, hierarchically structured, and distributed—with object features 

that degrade continuously and relatively independently47–49 . This question of how to 

construe the fundamental properties of visual memory representations have dominated 

the visual working memory literature for the last couple of decades, and physical 

analogies based on holding items in mind have long pushed researchers toward more 

discrete views of memory.  

 

In the following sections, we describe behavioral, neural, and computational  evidence 

that visual memory representations are noisy, which is synonymous with the view that 

they vary in strength. We also discuss how noise accumulates over short and long time-

scales and how memory representations can vary at different levels of abstraction: from 

individual features to entire objects, as well as how the graded nature of memory 

representations underscores the role of decision making in mainstream memory tasks.  

[H2] Graded memory strength in working memory tasks 

The question of whether memory is noisy vs. all-or-none has been most often examined 

in the domain of short-term, working memory tasks. All-or-none theories of memory in 

which items are either present (and perfectly represented) or absent entirely, have 

traditionally dominated the analysis of visual working memory data from change detection 

tasks (Fig. 3a). In a typical change detection task, people are shown an array of simple 

stimuli that they have to remember over a brief delay. After a retention interval, people 

are shown a single stimulus and asked to make a discrete judgement regarding whether 

it changed or did not change compared to the stimulus shown in that location in the 

original memory array. The discrete nature of “change” or “no change” responses provide 

only a coarse measure of memory errors and often incorrectly leads to inferences like 

items are either “present” or “absent” in memory50.   

By contrast, most contemporary work uses tasks which yield a more fine-grained 

measure of visual memory representations. Continuous reproduction tasks (Fig. 3b) 

provide a way of assessing gradations in memory representations and are common in 

visual working memory. In such tasks, instead of providing a binary response51–53, people 

are asked to reproduce their memory of a probed feature or object using a continuous 

response wheel, which provides fine-grained information about both the magnitude and 

direction of memory errors. In these tasks, responses generate a distribution of memory 

errors in a single, continuous feature dimension (such as color or orientation). For 

instance, like in the change detection task, people are shown a memory array with simple 

stimuli and are instructed to remember these stimuli and their locations over a brief 

retention interval. After the memory delay, however, people are shown a spatial probe 

along with a continuous wheel that shows all possible values in the continuous feature 

space. Accordingly, people are instructed to select the feature value they think most 

closely matches the value of the probed item. Therefore, unlike change detection tasks, 

the continuous reproduction wheel provides a fine-grained measure of people’s memory. 

Similar fine-grained performance metrics can also be arrived at when using forced-choice 

recognition tests that vary the similarity of the seen and unseen items35,54. 
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A first major insight from continuous reproduction tasks is that the distribution of errors in 

visual working and long-term memory tasks are incompatible with fully all-or-none 

theories of memory (Fig. 3c). These tasks reveal that noise (variance) of memory errors 

increases with memory load49 and delay35,48, and decreases with more encoding time35, 

as well as repeated study, and do so in a way that is not solely due to all-or-none 

failures34. These results challenge a fully all-or-none interpretation because they indicate 

that simple task manipulations can expose the graded changes that exist in memory 

strength and accuracy.  

A second major insight from tasks that allow continuous measurement of memory 

accuracy is that some task conditions introduce subtle memory biases, such that similar 

representations sometimes repulse towards or attract away from one another55–60. For 

instance, when people are presented with many red items that slightly vary in hue the 

representations of these items can be pulled or attracted towards their average hue. 

Alternatively, when people are presented with just a few similar red items, their 

representations can become more distinct and repel from one another (Fig. 3c). These 

results imply that items are not represented and recalled independently of each other, but 

are represented in a way that causes subtle interactions between them. Both of these 

insights are broadly inconsistent with the typical physical analogy of holding discrete 

items in mind and therefore with all-or-none theories of memory representation. 

Thus, all contemporary theories of visual working memory have moved beyond the 

concept of complete discreteness in memory, broadly agreeing that information in 

memory is represented imperfectly and that this imprecision varies with a number of 

factors such as working memory load, encoding time, delay, and several others. Most 

neural and cognitive theories broadly endorse the view that there is internal noise in 

perceptual, attentional and memory processes, as well as sources of external noise from 

the environment. These sources of noise can be affected by how attention is distributed 

during encoding61, memory load62, retention intervals63. All of these sources jointly 

determine the extent to which fluctuations in internal and external noise impact the fidelity 

of memory representations.  

While nearly all models agree that memories must be considered noisy and imprecise, an 

increasingly large number of theories of visual working memory now subscribe to the 

view that noise accumulation among items alone is fully sufficient to explain the limits on 

performance and the pattern of errors obtained in such tasks; without any additional 

factor of all-or-none loss of items35,64,65. However, some hybrid ‘mixture models’ include 

additional factors that postulate that continuously graded memories exist, but also that all-

or-none loss of items can occur in some conditions66,67. These models posit that some 

items that were seen and processed by the visual system while they were visually 

present are nonetheless completely unavailable and that observers have no remaining 

information about them, even less than 1 second later, such that when people are probed 

on those items, they are forced to give completely information-less guesses66,67. Although 

such hybrid models were initially influential because they were unique in providing an 

account of the distribution of errors in reproduction tasks68, later work showed that 
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continuous models can parsimoniously account for these distributions of errors just as 

well69. For example, the finding that people tend to have little information about the 5th or 

6th items when asked to report a set of 6 briefly-shown items follows naturally from 

models without all-or-none failures69.. Thus, modern models without any added 

assumptions about all-or-none failures generally account for data as well or better than 

such hybrid models35,64,65. Moreover, hybrid models that attempt to predict how often 

pure, informationless ‘guesses’ arise when an item is not in memory, across different set 

sizes (e.g., how many putative “guesses” there are when shown 4 vs 6 items)68, generally 

fail to accurately predict the full pattern of errors as memory load increases70. Thus, 

modern hybrid models generally cannot sufficiently explain performance across set size, 

as they do not tend to provide any quantitative account of how often all-or-none losses 

are expected to occur across different conditions or set sizes, which was initially 

considered a major strength of hybrid models (for further discussion, see71). Overall, 

current findings about how visual working memory varies as a function of different 

variables, such as memory load and delay, can be parsimoniously explained with a 

unidimensional view according to which memory representations vary in noisiness, and 

do not require postulating additional assumptions about all-or-none coding that are 

necessary in hybrid models.  

[H2] Noise across time  

If working memory and long-term memory representations are fundamentally similar, we 

would expect models that focus on long-term memory rather than working memory to 

also be focused on understanding memory noise and imprecision. However, one notable 

difference between traditional theories of visual working and long-term memory is how 

they conceptualize noisy memory representations. Theories of visual long-term memory 

typically conceive of noise as affecting the ‘strength’ of memory representations rather 

than the noisiness or precision of those memories. This construct of memory strength 

follows from a long tradition of signal detection theory approaches for measuring 

memory72,73. Within the signal detection framework, previously seen and unseen items 

give rise to two different distributions of familiarity signals. When asked to make a 

memory judgment (such as which of two items you saw), familiarity signals that can arise 

from comparing memories to stimuli along different dimensions are collapsed into a 

unidimensional continuum of signal strength, with seen items having higher average 

signal strength than unseen items74. Accordingly, the standardized distance between the 

seen and unseen distributions (traditionally referred to as ‘noise’ and ‘signal+noise’ 

distributions are often captured by the signal detection measure 𝑑′) is assumed to reflect 

the relative ‘strength’ of remembered items (i.e., how much more familiar, on average, 

previously seen items feel compared to previously unseen items).  

By contrast, most visual working memory models, as described in the previous section, 

conceive of noise in memory representations in terms of precision (e.g., how tight the 

errors are when asked to reproduce an item) rather than strength66,67,75. The construct of 

visual memory precision follows from characteristics of the continuous reproduction task. 
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In this task, the variance of the error distribution around the true item value is typically 

interpreted as a measure of how precisely a given feature or object was remembered51.  

The constructs of memory strength and precision ultimately rest on the same 

fundamental assumption: that memory representations are noisy and therefore vary in 

their match to the information that was actually seen. Additionally, the two constructs can 

be formally linked by using signal detection theory with an entire population of signals35 

(Box 1). Importantly, how confident someone is in their memory tracks both precision and 

strength of memory representations, which provides another empirical bridge between 

the two constructs. In the long-term memory domain, it is generally found that confidence 

tracks memory performance extremely well, and that such confidence judgments are 

generally unaffected by demand characteristics76. Similarly, in working memory, 

confidence also tracks performance accurately even in continuous feature spaces77,78, 

and this relationship can be naturally accounted for by models that relate precision to 

confidence64,69 or those that use signal-detection based measures of strength to predict 

confidence35.  

Other measures that serve as an index of confidence — for example, asking participants 

to report the full range of feature values they think an object might have had rather than a 

single value78,79 — also suggest that participants have an internal sense of uncertainty 

that tracks with memory performance in working memory tasks, similar to the relationship 

between confidence and accuracy that is fundamental to measures of performance in 

long-term memory tasks. Collectively, this suggests that there might be a direct mapping 

between people’s confidence judgments and a latent, continuous memory signal that is 

used on both visual working and long-term memory tasks. Together, confidence 

judgments and other judgments of uncertainty50,80 can be seen as providing convergent 

support for the view that precision and strength ultimately describe the same fundamental 

properties of visual memory representations, which is that  visual memory 

representations are noisy and vary continuously in both working memory and long-term 

memory tasks.  

[H2] Noise across multiple features 

The view that visual memory representations for single features, like color or orientation, 

are noisy raises the question of how to think about items that consist of a conjunction of 

multiple features such as shape, orientation, and color. Although this ‘binding problem’81 

has traditionally been framed in discrete terms (e.g., are both features remembered or is 

just one forgotten?), in the context of noisy memory representations the question is 

whether features accrue noise independently or jointly or both. This question continues to 

be actively debated, but the latest evidence suggests that features seem to accrue noise 

largely independently82. For instance, memory errors in a continuous reproduction task 

are largely uncorrelated across feature dimensions83,84. Likewise, independent-feature 

resource models, which postulate that a separate set of resources are used to support 

memory for different features, such as color and orientation, outperform shared resource 
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models, where color and orientation compete for the same pool of resources, in a version 

of the change detection paradigm85.  

Evidence for independent noise accrual of features has also been reported for real-world 

objects. People commit more binding errors (swapping features such as color across 

objects) when state (object configuration, like a full or empty mug of coffee) and exemplar 

(category, like mug or wallet) are jointly manipulated, suggesting the two features can be 

forgotten or misbound separately from each other47. This is consistent with the finding 

from continuous reproduction tasks that different stimulus dimensions accrue noise 

independently, and provides convergent support for the view that object features are 

stored at least somewhat independently and not as all-or-none, holistic units that accrue 

noise holistically and are forgotten holistically. Similarly, in long-term memory tasks, 

different object features also seem to be represented at least to some degree 

independently86.  

Despite this evidence for independent noise accrual across stimulus dimensions, visual 

working memory studies do tend to find a clear memory benefit when visual features are 

part of the same object87. For example, it is easier to remember two features when these 

are bound to the same object (such as, color and orientation), compared to separate 

objects85. This benefit of objecthood might reflect the benefits of attending to a single as 

opposed to multiple spatial locations88. However, classic work on visual attention also 

reveals evidence for benefits of object-based attention mechanisms, even when spatial 

distance is controlled89 (for a critical analysis of object-based attention effects see90). 

Collectively, the joint finding for independent noise accrual and spatial and object-based 

benefits for memory for features is consistent with the view that different features 

generally accumulate noise independently, but spatial and object-based attentional 

mechanisms can introduce additional, correlated sources of noise accrual during 

encoding or modulate external and internal noise accrual across feature dimensions.  

[H2] Decision making under noise 

A critical implication of the view that memories are always noisy and imprecise is that 

people must make probabilistic inferences based on noisy evidence to decide how to 

respond on memory Tasks91,92. Thus, unlike in traditional all-or-none views, according to 

which people make memory judgments in a straightforward way by reading out whether 

an item is or is not in memory, within a continuous memory framework people have to 

use additional criteria for reporting whether they do or do not remember an item well 

enough to endorse it, and, accordingly, researchers must always consider the decision-

making processes that underpin memory tasks. This point has often been made 

previously in the context of recognition memory tasks77,93–95, such as old/new and change 

detection tasks in long-term and working memory research, respectively. These tasks are 

frequently mis-used and mis-interpreted because the decision process is not carefully 

considered77. Decision-making processes are integral in such tasks because  each 

stimulus elicits a noisy familiarity signal, people must set a decision criterion for 

responding whether an item is old or new, or whether a change occurred or did not 
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occur80 and variations in people’s criterion setting can lead to large differences in 

measures like overall accuracy without reflecting any underlying change in the memory 

representation itself.  

The study of decision-making processes in visual memory tasks is especially central in 

more applied settings, like eyewitness memory tasks in which people must select the face 

of the guilty suspect amongst a lineup of faces or report that the guilty suspect is not part 

of the lineup96. Much work suggests that in such tasks people do not simply process each 

face independently, but might use higher-level decision-making strategies, such as 

discounting features that are common to all faces97. The development of computational 

models to capture such strategies is extremely important to help dictate how to construct 

lineups that increase the likelihood that the guilty suspect is correctly identified and 

decrease the likelihood that an innocent suspect is incorrectly identified.    

Decision models have been rigorously applied in many visual memory tasks beyond 

eyewitness memory98–101. For instance, in one study researchers applied sequential 

sampling models to examine the decision processes that underpin performance in 

continuous reproduction tasks102. This modeling work provided insight into how memory 

precision relates to a noisy process of evidence accumulation in perception and memory 

that underpins memory based decisions.  

In sum, the view that visual memory representations are fundamentally noisy highlights 

that both short and long-term memory representations are continuous and share the 

same fundamental properties (Fig. 2). These assumptions apply to memory 

representations at different levels, from features to objects, and fits parsimoniously with 

neuro-computational population coding theories of perception and memory. Finally, the 

continuous representation view highlights that people must have ways of using noisy 

evidence to make memory-based judgments and actions, which highlights the 

fundamental role of decision-making processes in laboratory and real-world memory 

tasks.  

[H1] Capacity limits 

Given evidence that memory representations are continuous, a critical research goal has 

been to characterize limits in visual memory through a continuous framework. The 

working memory and long-term memory literatures have taken different approaches to 

this question. Whereas in long-term memory much work has accepted that no single fixed 

capacity limit can be found because the effect of interference between items and the role 

of retrieval cues will be complex and stimulus dependent, the working memory literature 

has been much more focused on attempts to find a fixed resource limit that explains 

performance in simplified settings.  

One major difference between visual working and long-term memory is often framed as 

differences in their putative capacities. Unlike visual long-term memory, which is thought 

to be virtually unlimited, visual working memory is thought to be extremely limited, with 
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performance dropping quickly as more information must be maintained53,103. While there is 

no doubt that there are limits on how much information can be actively maintained in 

working memory, especially due to limits on attention or maintenance processes that 

work to reduce noise in task relevant representations, most tasks designed to tap into 

working memory limits also artificially constrain memory capacity by intentionally 

employing situations in which the most useful memory cues are limited in their availability 

(due to interference or cue overload). In such tasks,  one would expect a greater 

accumulation of memory-based noise than in tasks with reduced attentional demands, 

where there is less interference are more diagnostic retrieval cues. Since attentional 

mechanisms improve the quality of actively maintained information, these paradigms are 

informative about the capacity of attention and working memory maintenance processes, 

which is what they are designed to probe. However, they may not be very reflective of 

real-world uses of working memory, which will rarely occur under conditions designed to 

reflect solely the limits of attentional maintenance processes. Instead, many working 

memory tasks reveal primarily how accurately people can maintain information over short 

intervals only in quite unfavorable and unnatural circumstances. For example, typical 

visual working memory tasks involve the simultaneous flash of many meaningless, single 

feature items for less than a second53, whereas by contrast, typical visual long-term 

memory tasks involve the sequential presentation of meaningful items for several 

seconds each54. As we explain in detail in the following sections, the contrast between 

these tasks makes it unsurprising that performance in the former would be limited relative 

to the latter, and many purported differences between memory systems can instead be 

interpreted through a unidimensional view, where different visual memory tasks place 

differential demands on attention and provide different amounts of task relevant 

information that can be used to retrieve memories with higher fidelity.  

[H2] Capacity in the lab versus the world  

Differences in presentation format and stimuli across many working memory and long-

term memory tasks introduce differential effects of spatial and temporal context that do 

not always reflect the true differences in everyday uses of shorter- and longer-term visual 

memory. However, there are some differences between typical working memory and 

long-term memory paradigms may in fact reflect genuine differences in the real-world use 

of memory at short and long duration. For instance, spatiotemporal cues about an 

object—such as the spatial location in which it was shown and the context of other items 

around it—might be readily available in the environment in shorter-term but not longer-

term memory tasks104 because such cues tend to be available and stable only at short 

durations in the real-world (e.g., while pouring tea, my mug will likely stay in the same 

place, but over the course of a day it will like change position quite often). These effects 

of context might differentially aid retrieval through external cues104,105 and introduce 

biases into memory representations57,59.   

However, other differences between lab-based working memory and long-term memory 

tasks are not necessarily typical of shorter- and longer-term visual memory in the world. 

As an example, differences in encoding demands between typical working memory and 
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long-term memory tasks are introduced if stimuli are presented simultaneously in several 

spatial positions or sequentially in the same position. For instance, a typical visual 

working memory task involves the simultaneous presentation of many objects, and 

people must distribute visual attention broadly amongst multiple items at once with no 

priority difference between the items and little time for elaborative encoding. By contrast, 

in sequential tasks, where objects are presented one at a time, like those typically used to 

assess long-term memory may be more representative of real-world situations where 

selective priority and elaborative encoding can take place. These and other differences in 

presentation format can drastically change estimates of working memory capacity for 

meaningful stimuli; people seem to have a higher capacity for meaningful objects 

presented serially106 and under some conditions people seem to have no upper bound in 

how many objects can be recognized after serial presentation107. Indeed, in contrast to 

prominent claims51,53,108,109 that visual working memory tasks are not encoding limited, but 

only limited by maintenance capacity, additional encoding time significantly enhances 

performance in working memory tasks even for objects with a single feature35,110,111. 

Critically, in many realistic situations people might largely use working memory by 

sequentially focusing on a small number of items112,113 implying that visual working 

memory tasks where many items, all of equal relevance, are simultaneously presented at 

once for a brief duration may be less characteristic of real-world demands.   In summary, 

it is important to consider the role of such attentional limits and differential encoding  

demands in visual working and visual long-term memory tasks, before attributing 

performance differences in these tasks to true differences in capacity or to core difference 

between distinct memory systems.  

[H2] Visual working memory resources 

In the working memory domain, many attempts have been made to formalize a single, 

limited capacity. This limited capacity view was popularized by the famous report that 

people seem to maintain only about 7 ‘chunks’ of information114. The idea that working 

memory capacity is set in terms of discrete chunks or items dominated the traditional 

view of visual working memory capacity through the lens of ‘slot’ theories. According to 

these theories, the architecture of working memory is composed of a discrete number of 

slots that store objects composed of single or bound features and these slots are directly 

responsible for the limits of working memory capacity45,46,68,115–119. This framework 

provides an intuitive way of thinking about capacity limits as a discrete number of items 

that can be ‘held’ in memory. Despite this intuitive appeal, strong versions of this view 

also construe memory representations as all-or-none, which cannot account for the 

extensive evidence that memory representations vary in strength or noise.  

However, while there is overwhelming evidence that memory representations are 

continuous, it has proved conceptually challenging to provide a rigorous characterization 

of working capacity in terms of resources120,121. Attempts to measure and define a single 

resource limit often hold many of the factors that would be expected to influence 

performance in working memory tasks fixed (such as encoding time, delay, contextual 

cues, and/or presentation format). Once fixed, they manipulate and measure how many 
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simultaneously presented simple items can be remembered. These tasks thus investigate 

a highly limited subset of what would be required to truly understand what constrains 

performance in tasks in which attention is used to protect items in memory over short 

delays. It is thus unclear if any putatively fixed resource limits are meaningful in more 

real-world contexts or across even small variations in task. Within these confines, there is 

substantial computational modeling work that is devoted towards developing concrete 

definitions of resources. For instance, some researchers define resources as ‘neural real 

estate’75,122 and suggest that visual memory representations are distributed across 

populations of neurons in the visual cortex. In such models, the main source of resource 

limits arises from the fact that a fixed firing rate is used to represent both a few and many 

items in memory (the basic concept of divisive normalization123).  

At the level of cognitive representations102,124, researchers use principles from signal 

detection and sampling theory125 to define resources as a limited number of ‘evidence 

samples’126, which determine performance across variations in memory load. Although 

sampling theory makes more principled predictions than theories that simply postulate 

‘resources’, the construct of samples is also poorly defined. It will therefore be important 

to ground out the idea of samples more rigorously, such as a new proposal that retrieval 

of representations from visual working memory reflect draws of samples from noisy 

spiking activity in a population of neurons70. It will also be key to expand the 

understanding of resources beyond an understanding of how well people represent 

different numbers of simple objects flashed up briefly.  

There has also been a resurgence of work using information-theoretic modeling 

approaches that has yielded new insights into properties of resource limited memory 

systems. These approaches frame memory systems in terms of information theoretic 

concepts like compression127 or rate distortion theory128. For instance, rate distortion 

theory, which aims to explain how a capacity limited system should store information, can 

be coupled with prior knowledge and task-relevance within deep neural network 

modeling129 to simulate many fundamental aspects of people’s memory errors, such as 

biases towards the ensemble of remembered items56. Broadly, this modeling approach 

falls in line with ‘resource rational’ models130,131 according to which people select 

computations that optimize outcomes but minimize the resource cost of implementing 

these computations. Such models have promise for understanding resources in a more 

general way, and across a broader set of tasks including visual working and long-term 

memory tasks.  

As noted above, many of these computational modeling frameworks of capacity were 

developed using laboratory tasks that require short-term memorization of simple stimuli 

presented simultaneously. Such a simultaneous presentation format does not necessarily 

reflect how information is encoded over the short-term in real-world scenarios, where 

each item might generally be encoded serially and where one might often re-sample 

items rather than push the limits of working memory capacity112,132–134. Indeed, estimates 

of visual working memory capacity when people encode meaningful, but not meaningless 

items serially rather than simultaneously increase substantially, likely because this format 
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provides time to connect online memory representations to existing knowledge106. Even 

for simple stimuli, claims that encoding time was not a limit on performance51,53 have not 

held up to more psychophysical methods, which reveal that performance increases 

relatively smoothly with increasing encoding time, even with simple stimuli35,110,111. These 

findings underscore that there are many experimental levers which can, and should, be 

used to investigate and build ecological models of visual memory processes across time 

(Box 2). 

[H2] Attention and encoding limits 

Another major source of capacity limits in both visual working and long-term memory 

tasks are due to attentional processes during the initial encoding of items rather than 

maintenance processes. This insight initially stems from research on change blindness: A 

phenomenon wherein people fail to detect changes in an image after a brief transient, 

such as an eye movement or a flicker of the display135. Importantly, these changes can be 

large and appear in salient parts of the display, meaning that change blindness does not 

simply reflect failures of the perceptual system136. Change blindness effects have been 

used to motivate theories of consciousness137,138 and working memory139,140 because they 

suggest that people remember only a small portion of what they see despite having a rich 

phenomenological experience of their immediate environment. Critically, one major way 

to nearly eliminate change blindness effects is to direct people’s attention to objects127,141, 

which ensures that objects are encoded into memory.   

Other work suggests that encoding in visual working memory predicts the bandwidth of 

visual long-term memory. For instance, the effects of interference  can be offset via 

attentional processes142–146 that induce repulsive biases at encoding and individuate 

similar memory representations in visual long-term memory57,147. Other researchers have 

found that individual differences in performance on visual working memory tasks 

predicted performance on visual long-term memory tasks, but only under conditions in 

which visual working memory load is taxed148. These results suggest that effects on 

visual long-term memory were due to failures of encoding rather than maintenance 

capacity, and underscores how controlling for task demands aligns with a unidimensional 

model of visual memory across timescales. Other work also provides converging support 

for the view that manipulations of attention can help upweight and improve long-term 

memory for objects149. However, attentional processes might only be used to deprioritize 

irrelevant memory representations indirectly, under conditions of biased competition150. 

More precisely, some evidence suggests that beneficial effects of attention occur only 

when multiple (two) stimuli were presented simultaneously and the irrelevant item was 

paired with an item than needed to be attended. This work directly connects to the finding 

that simultaneous as opposed to serial presentation in visual memory tasks can introduce 

attentional capacity limits and uncover structural bottlenecks151.  

Thus, attentional limits at encoding are common to both visual working and long-term 

memory despite being generally understudied in visual long-term memory. Attentional 

limits at encoding, as well as online activation, fit well with the view that memory 



 

17 

representations are fundamentally noisy. These limits can therefore be viewed as one 

kind of resource that places limits on memory performance when encoding demands are 

high either in short or long-term visual memory tasks. More broadly, poor performance in 

most visual working memory tasks might reflect differences in encoding demands of 

visual working-memory and visual long-term memory laboratory tasks in addition to or 

instead of differential memory maintenance abilities or differential memory 

representations over different timescales per se. Thus, rather than viewing visual working 

and long-term memory as distinct systems that differ in capacity, a cognitive architecture 

in which attentional maintenance supports working activation of a subset of items that 

otherwise share the same underlying representation as long-term memory is a useful 

framework.  

[H1] Influence of knowledge on visual memory 

Visual memory is often assumed to be inherently perceptual in nature. However, existing 

knowledge and hierarchical knowledge structures help scaffold memory of real-world 

visual stimuli in both working-memory and long-term memory. This influence is taken for 

granted in visual long-term memory tasks, in which participants tend to be shown real-

world scenes, objects, or faces as stimuli144,152 and where conceptual knowledge has long 

been known to scaffold visual memories. For example, one of the most classic studies in 

constructive memory had people repeatedly draw an ambiguously face-like visual 

stimulus from memory and found that these drawings slowly morphed over repeated 

reproductions to be more like a genuine face26. These results demonstrate that people 

scaffold their memory for visual features using their knowledge of faces. Similarly, classic 

work has found that visual reproductions of ambiguous images are pulled in the direction 

of a label that was associated with them27.  

By contrast, the role of knowledge in visual working memory tasks has largely been 

underappreciated. In the following sections, we begin by describing how considering the 

role of meaning in shorter-term visual memory tasks has transformed views on how visual 

memory representations are maintained in everyday memory tasks. We then disentangle 

the joint contribution of stimulus complexity and meaning in shaping visual memory 

representations. Next, we integrate these points by discussing cognitive and neural 

evidence for the hierarchical nature of visual memory and discuss how such hierarchical 

structures as well as priors, scaffold memories for visual information in the real-world.  

[H2] Meaning in working memory  
 

In traditional visual working memory tasks, people tend to be shown meaningless stimuli , 

such as circles, defined by simple features, such as color49,53,65. These simple, 

meaningless stimuli are often assumed to best assess the core capacity of working 

memory because they have no semantic associations and therefore require ongoing 

active maintenance to remember them45,153. Sensory recruitment models based on such 

tasks reinforce the idea that people store visual working memories within the sensory 
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regions that process such stimuli (mainly low-level visual areas37), which can lead to 

inferences because they are stored solely in an inherently perceptual format.  

Using simple, single feature stimuli likely does increase the need for attentional 

maintenance to protect stimuli from noise, as such stimuli provide very poor long-term 

memory traces154. However, reducing the number of features that can be stored about an 

object, for example by using meaningless stimuli such as colored shapes, also reduces 

how distinctive each object is in memory. This lack of distinctiveness leads to inter-item 

interference and confusability at retrieval which inevitably reduces performance in 

working memory tasks, leading to an underestimation of both visual working memory 

performance and the role of knowledge in scaffolding such performance. While such 

simple stimuli help to ensure the use of attentional maintenance, their use does not 

necessarily uncover the true architecture or computations that these visual working 

memory tasks rely on155–158.  

Consider memory for Mooney faces, two tone images that are sometimes perceived as a 

face and other times appear as a meaningless black and white blob (Fig. 4). In long-term 

memory, such stimuli have been used to show that recognition memory for the exact 

same item can be improved when they are perceived as meaningful (as faces) vs. not (as 

shape blobs)106,159. Later work built on this idea in the study of working memory, 

demonstrating that perceiving a Mooney face as a face rather than a meaningless blob 

improves working memory performance and leads to an increase in the contralateral 

delay activity, a neural index of active maintenance engagement160. This result indicates 

that there is more active maintenance activity when a stimulus is perceived as meaningful 

(such as a face or real-world object) than when it is not. There are further examples in 

which visually identical stimuli are better remembered in working memory tasks when 

they can be processed in a way that connects them to higher-level features or previous 

knowledge51,160–162. These benefits extend to visual working memory performance 

whenever prior knowledge and expertise163,164 can be used to scaffold memory, such as 

for real world objects165, famous faces166, and functional relationships between objects167.  

Overall, this points to the fact that visual working memory, like visual long-term memory, 

is not based solely on perceptual features. Instead, more meaningful stimuli are better 

remembered than less meaningful stimuli that are perceptually identical. 

[H2] Complexity and meaning 
 

In contrast to the predictions of rudimentary information theoretic models, people are far 

better at representing complex, meaningful stimuli in comparison to their performance for 

simple meaningless stimuli, an idea that dates to very early work on ‘chunking’114 (Fig. 

4a). Although this early work subscribed to very discrete views of chunking and capacity 

limits that are inconsistent with modern noise-based theories, its core message remains 

critical and underappreciated as an explanatory factor in visual working memory studies.  

One explanation for the memory benefits of perceiving a meaningful and complex, 

multidimensional stimulus160 is that doing so enhances the ability to extract features from 

that image. One specific hypothesis is that people are not completely flexible in their 



 

19 

encoding, relying heavily on pre-learned features (for instance, using phonological 

features to store both binary and decimal digits, rather than adaptively switching to a 

code that takes advantage of the additional compressibility of binary digits127. Thus, when 

remembering an unfamiliar, meaningless image one can only encode it in terms of its 

low-level shape, spatial frequency, and other low-level and mid-level features (Fig. 4b). 

However, when perceiving the same stimulus as meaningful, one unlocks higher level 

visual features, such as face-specific features like eye position, age, and nose angle. This 

additional complexity likely improves performance because they make each stimulus 

more distinctive from the other stimuli (Fig. 4c).  This role of featural distinctiveness is 

commonly modeled in the long-term recognition memory literature168 but rarely in working 

memory tasks. Furthermore, recognizing features at a higher-level uncovers relations 

between features and makes it possible to efficiently encode and chunk multiple lower-

level features jointly instead of separately, which also improves memory127,169.  

Importantly, however, it is not the case that adding arbitrary features to an object 

improves memory performance when those features are not part of one’s library of pre-

learned features. For instance, although scrambled or inverted stimuli can be more 

complex and perceptually rich than simpler single feature stimuli, they do not offer the 

opportunity to make use of existing higher-level features in the same way as realistic, 

meaningful stimuli presented in their pre-learned configuration. Indeed, memorizing more 

versus less visually complex meaningless stimuli hurts rather than helps visual memory 

performance106,170,171. Thus, the benefits for extracting additional features from a visual 

object are only observed with stimuli with existing ways to encode high-level visual and 

semantic information, not scrambled yet perceptually complex stimuli162,167. This concept 

is sometimes formalized in working memory as a kind of ‘model mismatch’128: Stimuli that 

match an internal model of the world are easier to remember than those that do not.  

As we elaborate below, the beneficial role of prior knowledge bridges many findings on 

how complexity and meaning can jointly improve visual working memory performance. 

These include benefits when multiple features are chunked into a single object as 

compared to separate ones87, better performance at remembering recognized Mooney 

faces than unrecognized Mooney faces160 and other aspects of model mismatch128, as 

well as improvements in working memory performance after learning about which 

features tend to go together127. Conceptualizing chunking in a more continuous way, 

consistent with noisy representations, remains an important goal for future work on visual 

memory172. Conceptions of chunking construed in terms of more sophisticated formal 

models of information compression or rate-distortion theory120,122, which have the 

potential to take into account differential effects of stimulus complexity, will likely be 

critical to future progress in understanding these phenomena. Through this more 

contemporary lens, visual memory chunking can be seen as a form of ‘lossy’ 

compression of continuous multidimensional variables, that is, compression of memory 

representations that results in some information loss by forming more efficient, more 

abstract representations that are linked to prior knowledge structures . More generally, 

although item-based theories have often been used to explain chunking in memory173–175, 

continuous theories of memory strength are equally compatible with the view that 
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memory representations can be translated into more efficient formats, and that the 

common link between discrete-slot models and compressibility is historical rather than 

logical.  

[H2] Elaborative encoding and hierarchical memories  

The idea that recognizing and connecting an object to high-level visual and semantic 

features improves memory is closely related to the popular idea of ‘levels of processing’ 

which is more commonly studied for verbal materials176,177. According to this view, 

processing of stimuli at a ‘deeper’ level  leads to more elaborated memory traces178. Such 

memory traces are then more distinctive179,180 and easier to retrieve because they are 

more connected to multiple distinct knowledge structures that can serve as retrieval 

cues176,181. Elaborative encoding in visual memory can occur when encoding semantic 

features, but also mid-level (such as shape) and high-level (such as the distance between 

two eyes on a face) visual features. Thus, the hierarchical structure of visual objects and 

scenes, in terms of low-level to high-level visual features and semantic information can 

enable improved memory performance.  

Currently, how the hierarchy of visual features scaffold memory performance and improve 

the ability to remember realistic stimuli has not been explained by most models of visual 

working memory performance. Instead, even models that focus on the prior knowledge 

tend to focus on memory capacity rather than memory representations (e.g., rate 

distortion or information theoretic models, as discussed above). Thus, these models tend 

to focus on how performance varies as a function of the number of simple visual features 

shown. Important recent work has attempted to model representations of realistic stimuli 

using generative deep learning neural nets to capture how stimuli are represented at 

multiple levels of the visual hierarchy182. This model attempts to mimic the hierarchical 

structure of the ventral visual pathway, capturing the encoding of low-level visual features, 

such as orientation, and mid-level features, such as shape. Critically, by using recurrent 

feedback mechanisms, the model can be used to reconstruct important memory 

phenomena, such as more resource-efficient representation of familiar items, and 

efficient recognition of novel objects that share high-level features with familiar items. 

These findings and related work183,184 highlight that interactions across the visual 

hierarchy are bidirectional, meaning that signals from early areas of the visual hierarchy 

influence representations at higher levels, and vice versa and studying these interactions 

is an important step toward expanding models of visual working memory to account for a 

feature hierarchy.  

In contrast to the visual working memory literature, the role of elaborative encoding and 

the availability of high-level or semantic features has more frequently been studied in the 

domain of visual long-term memory. For example, the role of categories in memory, such 

as the finding that memories might be biased towards commonly encountered instances 

of a category, suggests that semantic features, in addition to perceptual features, play a 

substantial role in memory encoding185–187. Recent work has also shown that normal, 

unmodified faces, activate higher-dimensional neural representations (including the 

involvement of high-level face processing regions) and results in better memory 
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compared to modified faces188. The literature on memorability also taps into these 

concepts. Memorability is based on the empirical finding that some stimuli are more often 

remembered successfully, compared to other—sometimes very similar— stimuli.. 

Although this concept is sometimes labeled intrinsic memorability, classic memory 

theories176,179 would suggest that some stimuli are more memorable because they connect 

more directly to higher-level visual and semantic features, enabling more elaborative 

encoding and are thus more distinctive (have lowered summed similarity to the current 

memory set189), rather than an intrinsic property of the stimulus itself.  Teasing apart the 

relative contributions of elaborative encoding and distinctiveness within the set of items in 

memory to reliability in responses across individuals remains an active area of work in the 

memorability literature4,190.  

In addition to the fact that features of a visual stimulus can be represented at multiple 

levels in the visual hierarchy (e.g., more perceptual, or more conceptual), there is even a 

stronger sense in which visual memory can be considered hierarchical. Visual memory 

might be fundamentally structured, with distinct representations at different levels of 

abstraction. One reliable phenomenon that supports this view is that people’s memories 

are biased towards, but are not replaced with, their priors56,191,192. For example, people’s 

memories for the size of specific instances of natural objects (such as fruits and 

vegetables) are biased towards the average size of the object categories (size of all 

apples) and superordinate categories (size of all fruits193; Box 3). This effect of priors on 

memory even holds in tasks in which priors are not informative for the stimulus selection 

process. For instance, people use knowledge of color categories even in a task where 

items’ colors are randomly chosen194 – such that even for extremely simple stimuli like 

colored dots, visual memories naturally drift toward prior knowledge of color categories195. 

More precisely, evidence suggests that people see some hues of a color as being more 

representative of the color category, and their memory will tend to drift towards these 

representative feature values.   

In addition to memory depending on knowledge acquired before encoding, memories also 

seem to be encoded hierarchically within an episode. For example, when faced with 

sequences of items, in visual working- or long-term memory tasks, people make use of 

similarity among multiple items to store abstractions and those abstractions influence 

subsequent memory for individual items196–198. For instance,, scenes help provide a 

structure to the objects within them as shown by evidence that if people are presented an  

array of objects that are embedded within a scene, people encode both the ensemble 

structure of the entire scene in addition to individual items101,199,200. Similarly, when trying 

to remember real-world scenes, people encode the gist plus detailed information about 

some specific objects201,202. Moreover, they use the gist to guide their choice of which 

specific objects to remember203,204 and are influenced by the gist when later trying to 

recall the details of the scene, tending to remember objects that are consistent with the 

scene gist even if they were not present205–207. Even in randomly generated displays of 

simple colors,  people are typically able to extract some spatial or feature-based structure 

from the display, which they use to encode the items with respect to each other rather 

than totally independently200. Finally, in some situations, people seem to encode relatively 
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separate texture or ensemble information in addition to individual items and use it to alter 

their responses208.  

In long-term memory, a similar view prevails that episodic memories, are hierarchical. 

Episodic long-term memories integrate across several levels209 or storing both gist and 

detailed item information and trading them off33. These episodic memory processes 

flexibly integrate disparate components (including details and related information) of an 

autobiographical event into a coherent representation of the past or future209,210.  

To summarize, visual memory in the real-world operates on meaningful and familiar 

items, such as real-world objects and scenes. Memory for real-world objects is jointly but 

differentially influenced by stimulus meaning and complexity, where meaning can bolster 

memory by distributing information across levels of the visual hierarchy, with memory for 

perceptual features influenced by and supported by memory for more abstract conceptual 

features, and added complexity can further scaffold memory by providing additional 

relational information that can be used to compress meaningful information, or serve as 

an additional retrieval cue. Likewise, such information is heavily influenced by prior 

knowledge, which can adaptively bias memory representations to optimize memory 

performance. Collectively, the study of memory for meaningful as opposed to 

meaningless, degraded visual information can help ground theories and models of visual 

memory in the real-world.  

[H1] Summary and future directions 

The visual system is usually conceived of in terms of a hierarchy of population codes, 

with representations that become more complex as we move from the primary visual 

cortex up to more anterior visual regions. In this Review, we have suggested that a 

similar set of ideas can provide a useful mental model for understanding visual memory 

representations, with representations for objects or scenes conceived of as population-

based, noisy (variable in strength), and stored in terms of hierarchical and distributed 

memory representations.  

This conception of visual memory raises major challenges for measuring memory 

performance. In particular, modeling the decision process people use to integrate across 

an entire hierarchy of noisy representations will be critical to successfully measuring and 

understanding the memory representations themselves. In this context, a fruitful direction 

for future research is to examine how model-based approximations of representations – 

such as those instantiated via convolutional neural nets211,212, or probabilistic models of 

knowledge structures213 – can yield insights into how continuous representations arise 

and are integrated across the visual hierarchy.  

Greater synergy between the kinds of models and mechanisms proposed in visual 

working and visual long-term memory tasks will be critical to progress across both 

domains, but particularly in the domain of working memory. Existing working memory 

models are largely focused on manipulations of memory load for brief, simultaneous 
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presentations of low level visual features, and more cohesive models that use many of 

the same principles proposed in models of long-term memory are needed to examine and 

explain how encoding, delay, frequency of item presentation, context, testing 

conditions214 and item influence visual working memory processes. Such modeling 

approaches can also help illuminate the intersection between visual working and long-

term memory and the role of limits on attentional protection of items from noise 

accumulation in real world tasks. To this point, it is also important to continue work that 

precisely defines – at the cognitive and neural level – how differences in ‘activation’ or 

attentional engagement can distinguish visual working-memory and long-term memory.  

Finally, a focus on precise quantification of memory representations in visual memory (as 

in continuous reproduction) and on research domains in which representations are well 

understood, such as in perception and other domains where neuroscience informs the 

precise representation structure of items, will enable the development of detailed 

computational models that can help elucidate performance. However, it is also critical to 

consider that impoverished stimuli like single visual features do not capture the full 

breadth of scenarios where memory is used, such as in the real-world, and so models—

particularly of visual working memory performance—must carefully consider the role of 

elaborative encoding of more realistic stimuli.   
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Figure captions   
 

Figure 1. Visual memory at different time scales. Features of a visual object (1) are 

extracted and processed, eliciting a noisy population of activity over feature values, such 

as edges, color, and shape (2). Here we depict a simple case in which the color of the 

object is relatively arbitrary. Perception of the relevant color is noisy, and multiple colors 

near the shown green color all feel somewhat familiar after encoding the item (3).  

Focusing on actively holding an item in mind using attention can slow, but not stop, the 

accumulation of noise in that item’s representation (4). Sampling the same memory 

representation at different time points reveals that the accumulated noise corrupts and 

alters the qualities of the originally encoded information, resulting in a noisy and 

imprecise sense of the color of the original object (5-6).  

 

 

Figure 2. Memory strength across time. Distributions of memory errors (gray) obtained 

from continuous reproduction visual-working and long-term memory tasks34 fit with a 

model (blue line35) that requires only a single parameter which captures memory strength. 

When the same stimulus features are used and are probed in the same way, 

representations across the two timescales can be strong and precise or weak and noisy 

and degrade in an identical fashion as memory strength weakens.  

Figure 3. Categorical and continuous reproduction of memory. A. Early methods for 

measuring memory performance used binary tasks, such as old/new for visual working 

memory and change detection tasks for long-term memory.  Data from binary tasks have 

most commonly been interpreted as providing support for discrete memory 

representations45,50. B. Continuous reproduction tasks are memory versions of the 

psychophysics method of adjustment. These tasks provide a fine-grained measure of the 

magnitude and direction of memory errors, which reveal that representations are noisy 

and are rarely completely lost in discrete fashion. C. Major insights from tasks in B are 

that precision of memory representations declines monotonically with memory load, 

declines with increasing delay, and that memory representations can be biased (for 

example, repulsed away from one another) depending on the relationship between 

currently active items.  

 

Figure 4 A. As individual items become more complex, a computer or other agent that 

encodes the stimulus relatively optimally and flexibly can store many fewer of the items 

(because they have a fixed capacity in bits). However, human performance remains 

relatively constant as complexity increases so long as the information is meaningful, or 

capable of being scaffolded by previously acquired information. People have flexibility in 

their encoding but rely heavily on pre-learned features (for instance, using phonological 

features to store both binary and decimal digits, rather than adaptively switching to a 

code that takes advantage of the additional compressibility of binary digits).] B. When 
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inverted Mooney faces (meaningless stimuli) are maintained in memory, human 

performance is relatively poor compared to when the same faces are upright (and 

recognized as faces). One hypothesis is that existing high-level features that apply to 

perceived faces but not shapes add meaningful dimensions to the stimuli, therefore 

making them more separable and robust to interference and noise (such as age of the 

face, shown as the Z axis).   
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BOX 1: Memory as a point or a population  
 
Conceiving of memory representations as noisy helps bridge the gap between cognitive 

and neural models of visual working and long-term memory. Much neural evidence 

suggests that cognitive representations are instantiated in distributed patterns of activity 

across neural populations and that activity across and within these populations is 

corrupted by noise69,215,216. By contrast, many cognitive models of memory — especially 

long-term memory — tend to treat memory for an object as being effectively a single 

unitized familiarity signal, perhaps aided by other context-based sources of memory when 

determining whether an item has been seen before74,217. In the past few years, other work 

has suggested that in working memory and long-term memory, these two views can be 

naturally reconciled by taking the signal-detection-based approach common in 

understanding familiarity and turning it into a population of familiarity signals modulated 

by psychophysical similarity35. On the neural level, psychophysical similarity can arise 

from the tuning functions in feature-selective populations of neurons65, and memory 

retrieval involves decoding these neural patterns of activations of stored features. 

[Approaches like these therefore provide a common framework for thinking about noise 

across both cognitive decision models and neural models, bridging different levels of 

processing218.  

 

Conceptions of memory based on a population of signals for remembering a single color 

are quite different from views in which what is stored is just a single point representation 

(‘I think it was red’). An actively debated question that is deeply connected to the 

population coding view of visual memory219, is whether people truly represent perceptual 

and visual memories as point estimates or as a probability distribution over features 

values220. This question is difficult to address because versions of point estimates models 

can mimic models that postulate probabilistic cognitive representations221. Thus, 

addressing this question might depend critically on understanding the linking function 

between neural activity and cognitive representations. For instance, while population 

coding neural models are strongly compatible with the idea that people represent visual 

memories probabilistically (in early visual cortex), it is possible that this activity is 

inaccessible to higher-level processing and thus cannot be used to make decisions in 

memory tasks92. Nevertheless, people’s subjective uncertainty in their memories tracks 

qualitative and quantitative properties of their memory errors78,79, indicating that at a 

minimum people do have access to and readout information regarding how noisy their 

memory representations are, which suggests the possibility that visual memories are truly 

populations, not points.   
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BOX 2: Continuity in memory demands richer models   
The finding that performance increases relatively continuously across different visual 

working and long-term memory manipulations and tasks raises the question of whether a 

single capacity limit is a useful construct, particularly in the domain of working memory 

where it is often used to motivate models and debates46,69.  

Models of visual working memory are typically developed to explain how performance 

varies as a function of how many items are simultaneously, briefly presented64,68,222. As 

such, these models explain just a single slice through the space of possible levels of 

memory performance (top graph in figure). For instance, modulating encoding time, set 

size, delay, and how distinctive test items are to those in memory influences 

performance, but these variables are not often manipulated in systematic ways because 

‘resource’ models generally do not provide an integrative framework for understanding 

how these levers influence the availability of a resource or noise accrual.   

Given these limitations, a fruitful direction for visual working memory research is one 

taken in the study of long-term recognition and recall memory. In this domain, 

researchers often build integrative architectural models that describe processes that limit 

performance as a function of the particular encoding and retrieval manipulations for a 

given set of stimuli105,168,223, as opposed to simply using more vague constructs such as 

capacity or limited resources. For example, considerations of how the distinctiveness of 

stimuli relate to the memory cues used will likely be fruitful in working memory research 

because the similarity of alternative items presented at test plays an important role in 

shaping memory performance. Similarly, some stimuli spaces — such as real-world 

objects — have a higher upper bound on distinctiveness (right graph in figure) than those 

typically modeled (such as colors)106. Taking into account the full set of manipulations that 

impact performance, as opposed to heavily prioritizing how many items are 

simultaneously present, will lead to a deeper understanding of how visual memory 

representations are affected by task demands and provide a common framework for 

thinking about visual memory at different time-scales.  
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BOX 3: Random guesses in memory   
 
It is often proposed that memory performance includes many responses that are 

completely independent of the information held in working memory, with no relationship 

between the response and the encoded nor the remembered information. In such a view, 

quantifying such ‘pure guesses’ is critical to understanding working memory67,68 and long-

term memory224–226. However, if we accept the view that memory is both hierarchical and 

continuous in strength, the utility of a construct such a pure guessing is unclear.  

 

Consider a visual working memory task in which one sees several different apples 

presented on a display and must remember their sizes for a memory probe a few 

seconds later. The vast majority of evidence suggests that although noise will accumulate 

for each item independently, this noise cannot be characterized as instantaneous and 

infinite (which is what is necessary for an item to be a pure guess). Instead, every item 

will likely be represented, even if this is with a very large degree of noise35,50,64,82 . 

However, even if items are so noisy that they may functionally be completely gone from 

memory, continuous models do not conceive of this a distinct state of ‘guessing’. Such 

models instead hold the core assumption that even under conditions where an item is 

encoded extremely poorly, people still have some information in memory about that item; 

that information is simply almost total noise. However, this noise still has content 

information, and it is this content information people use to make their response.  

 

Even if, in contrast to this view67, an item representation is fully lost from memory, it is still 

unclear whether considering a response to that item as a guess is useful (as in227). Even 

without any information about that specific item, one has substantial information about the 

presented items in a more general sense. For instance, one will know what size the items 

were in general on the display56, will likely know all the items present were apples, will 

have strong expectations about the expected size of an apple in general (versus other 

fruit such as a watermelon193,228),  and will know the expected size of each item on a 

display with just 3 apples on it. All of this information was acquired during the episode 

and informs the response about the size of the particular item, even if the individual 

representation of the actual size of a single apple is indistinguishable from noise at test. 

Thus, rather than a focus on whether or not participants are ‘guessing’, researchers 

should focus on capturing the true contents of memory, taking into account the fact that 

memory is noisy, reconstructive in nature141 and depends on integration across multiple 

levels of representational abstraction56,199.   

  



 

29 

1. Foer, J. Moonwalking with Einstein: The art and science of remembering everything. 

(Penguin, 2012). 

2. Squire, L. R., Knowlton, B. & Musen, G. The structure and organization of memory. 

Annu. Rev. Psychol. 44, 453–495 (1993). 

3. Eichenbaum, H., Yonelinas, A. R. & Ranganath, C. The medial temporal lobe and 

recognition memory. Annu. Rev. Neurosci. 30, 123 (2007). 

4. Brady, T. F. & Bainbridge, W. A. Visual Memory. (Routledge, 2022). 

5. Luck, S. J. & Hollingworth, A. Visual Memory: Oxford University Press. (2008). 

6. Hubel, D. H. & Wiesel, T. N. Ferrier lecture-Functional architecture of macaque 

monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977). 

7. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 

(1996). 

8. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural 

responses in higher visual cortex. Proc. Natl. Acad. Sci. 111, 8619–8624 (2014). 

9. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior 

parietal cortex. Nature 428, 751–754 (2004). 

10. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population 

coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006). 

11. Beschin, N., Cocchini, G., Della Sala, S. & Logie, R. H. What the Eyes Perceive, 

The Brain Ignores: A Case of Pure Unilateral Representational Neglect. Cortex 33, 3–

26 (1997). 

12. Guariglia, C., Padovani, A., Pantano, P. & Pizzamiglio, L. Unilateral neglect 

restricted to visual imagery. Nature 364, 235–237 (1993). 

13. Hebb, D. O. The Organization of Behavior: A Psychological Theory. (Wiley New 

York, 1949). 



 

30 

14. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. 

Science 173, 652–654 (1971). 

15. Goldman-Rakic, P. S. Working Memory and the Mind. Sci. Am. 267, 110–117 

(1992). 

16. Berggren, N. & Eimer, M. Does contralateral delay activity reflect working memory 

storage or the current focus of spatial attention within visual working memory? J. Cogn. 

Neurosci. 28, 2003–2020 (2016). 

17. Ikkai, A., McCollough, A. W. & Vogel, E. K. Contralateral Delay Activity Provides a 

Neural Measure of the Number of Representations in Visual Working Memory. J. 

Neurophysiol. 103, 1963–1968 (2010). 

18. Kang, M.-S. & Woodman, G. F. The neurophysiological index of visual working 

memory maintenance is not due to load dependent eye movements. Neuropsychologia 

56, 63–72 (2014). 

19. Klaver, P., Talsma, D., Wijers, A. A., Heinze, H.-J. & Mulder, G. An event-related 

brain potential correlate of visual short-term memory. NeuroReport 10, 2001–2005 

(1999). 

20. Pomper, U., Ditye, T. & Ansorge, U. Contralateral delay activity during temporal 

order memory. Neuropsychologia 129, 104–116 (2019). 

21. Carlisle, N. B., Arita, J. T., Pardo, D. & Woodman, G. F. Attentional templates in 

visual working memory. J. Neurosci. 31, 9315–9322 (2011). 

22. Barbosa, J., Lozano-Soldevilla, D. & Compte, A. Pinging the brain with visual 

impulses reveals electrically active, not activity-silent, working memories. PLOS Biol. 

19, e3001436 (2021). 

23. Harrison, E. M. & Gorman, M. R. Changing the Waveform of Circadian Rhythms: 

Considerations for Shift-Work. Front. Neurol. 3, (2012). 



 

31 

24. Serences, J. T., Ester, E. F., Vogel, E. K. & Awh, E. Stimulus-Specific Delay 

Activity in Human Primary Visual Cortex. Psychol. Sci. 20, 207–214 (2009). 

25. Morey, C. C. The case against specialized visual-spatial short-term memory. 

Psychol. Bull. 144, 849–883 (2018). 

26. Bartlett, F. C. & Bartlett, F. C. Remembering: A study in experimental and social 

psychology. (Cambridge university press, 1995). 

27. Carmichael, L., Hogan, H. P. & Walter, A. A. An experimental study of the effect of 

language on the reproduction of visually perceived form. J. Exp. Psychol. 15, 73 

(1932). 

28. Logie, R. H. Visuo-spatial Working Memory. (Psychology Press, 2014). 

doi:10.4324/9781315804743. 

29. Logie, R. H., Belletier, C. & Doherty, J. M. Integrating theories of working memory. 

in Working memory: State of the science 389–429 (Oxford University Press, 2021). 

30. Atkinson, R. C. & Shiffrin, R. M. Human Memory: A Proposed System and its 

Control Processes. in Psychology of Learning and Motivation vol. 2 89–195 (Elsevier, 

1968). 

31. Baddeley, A. D. The influence of acoustic and semantic similarity on long-term 

memory for word sequences. Q. J. Exp. Psychol. 18, 302–309 (1966). 

32. Cowan, N. What are the differences between long-term, short-term, and working 

memory? Prog. Brain Res. 169, 323–338 (2008). 

33. Brainerd, C. J. & Reyna, V. F. Fuzzy-trace theory and false memory. Curr. Dir. 

Psychol. Sci. 11, 164–169 (2002). 

34. Miner, A. E., Schurgin, M. W. & Brady, T. F. Is working memory inherently more 

“precise” than long-term memory? Extremely high fidelity visual long-term memories 

for frequently encountered objects. J. Exp. Psychol. Hum. Percept. Perform. 46, 813 

(2020). 



 

32 

35. Schurgin, M. W., Wixted, J. T. & Brady, T. F. Psychophysical scaling reveals a 

unified theory of visual memory strength. Nat. Hum. Behav. 4, 1156–1172 (2020). 

36. Serences, J. T. & Yantis, S. Selective visual attention and perceptual coherence. 

Trends Cogn. Sci. 10, 38–45 (2006). 

37. Sprague, T. C., Ester, E. F. & Serences, J. T. Restoring latent visual working 

memory representations in human cortex. Neuron 91, 694–707 (2016). 

38. Stokes, M. G. ‘Activity-silent’working memory in prefrontal cortex: a dynamic 

coding framework. Trends Cogn. Sci. 19, 394–405 (2015). 

39. Cunningham, C. A. & Wolfe, J. M. The role of object categories in hybrid visual 

and memory search. J. Exp. Psychol. Gen. 143, 1585 (2014). 

40. Wolfe, J. M., Boettcher, S. E., Josephs, E. L., Cunningham, C. A. & Drew, T. You 

look familiar, but I don’t care: Lure rejection in hybrid visual and memory search is not 

based on familiarity. J. Exp. Psychol. Hum. Percept. Perform. 41, 1576 (2015). 

41. Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. 

Neurosci. 4, 829–839 (2003). 

42. Chun, M. M., Golomb, J. D. & Turk-Browne, N. B. A Taxonomy of External and 

Internal Attention. Annu. Rev. Psychol. 62, 73–101 (2011). 

43. Postle, B. R., Druzgal, T. J. & D’Esposito, M. Seeking the neural substrates of 

visual working memory storage. Cortex J. Devoted Study Nerv. Syst. Behav. 39, 927–

946 (2003). 

44. Oberauer, K. Access to information in working memory: exploring the focus of 

attention. J. Exp. Psychol. Learn. Mem. Cogn. 28, 411 (2002). 

45. Cowan, N. The magical number 4 in short-term memory: A reconsideration of 

mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001). 

46. Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics 

and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013). 



 

33 

47. Markov, Y. A., Utochkin, I. S. & Brady, T. F. Real-world objects are not stored in 

holistic representations in visual working memory. J. Vis. 21, 18–18 (2021). 

48. Rademaker, R. L., Park, Y. E., Sack, A. T. & Tong, F. Evidence of gradual loss of 

precision for simple features and complex objects in visual working memory. J. Exp. 

Psychol. Hum. Percept. Perform. 44, 925–940 (2018). 

49. Wilken, P. & Ma, W. J. A detection theory account of change detection. J. Vis. 4, 

11 (2004). 

50. Williams, J. R., Robinson, M. M., Schurgin, M. W., Wixted, J. T. & Brady, T. F. 

You cannot “count” how many items people remember in visual working memory: The 

importance of signal detection–based measures for understanding change detection 

performance. J. Exp. Psychol. Hum. Percept. Perform. 48, 1390–1409 (2022). 

51. Alvarez, G. A. & Cavanagh, P. The Capacity of Visual Short-Term Memory is Set 

Both by Visual Information Load and by Number of Objects. Psychol. Sci. 15, 106–111 

(2004). 

52. Awh, E., Barton, B. & Vogel, E. K. Visual Working Memory Represents a Fixed 

Number of Items Regardless of Complexity. 18, 7. 

53. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and 

conjunctions. Nature 390, 279–281 (1997). 

54. Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a 

massive storage capacity for object details. Proc. Natl. Acad. Sci. 105, 14325–14329 

(2008). 

55. Bae, G.-Y. & Luck, S. J. Dissociable Decoding of Spatial Attention and Working 

Memory from EEG Oscillations and Sustained Potentials. J. Neurosci. 38, 409–422 

(2018). 



 

34 

56. Brady, T. F. & Alvarez, G. A. Hierarchical Encoding in Visual Working Memory: 

Ensemble Statistics Bias Memory for Individual Items. Psychol. Sci. 22, 384–392 

(2011). 

57. Chunharas, C., Rademaker, R. L., Brady, T. F. & Serences, J. T. An adaptive 

perspective on visual working memory distortions. J. Exp. Psychol. Gen. (2022). 

58. Golomb, J. D. Divided spatial attention and feature-mixing errors. Atten. Percept. 

Psychophys. 77, 2562–2569 (2015). 

59. Lively, Z., Robinson, M. M. & Benjamin, A. S. Memory Fidelity Reveals Qualitative 

Changes in Interactions Between Items in Visual Working Memory. Psychol. Sci. 32, 

1426–1441 (2021). 

60. Scotti, P. S., Hong, Y., Golomb, J. D. & Leber, A. B. Statistical learning as a 

reference point for memory distortions: Swap and shift errors. Atten. Percept. 

Psychophys. 83, 1652–1672 (2021). 

61. Pertzov, Y., Bays, P. M., Joseph, S. & Husain, M. Rapid forgetting prevented by 

retrospective attention cues. J. Exp. Psychol. Hum. Percept. Perform. 39, 1224 (2013). 

62. Makovski, T. & Jiang, Y. V. Distributing versus focusing attention in visual short-

term memory. Psychon. Bull. Rev. 14, 1072–1078 (2007). 

63. Marini, F., Scott, J., Aron, A. R. & Ester, E. F. Task-irrelevant distractors in the 

delay period interfere selectively with visual short-term memory for spatial locations. 

Atten. Percept. Psychophys. 79, 1384–1392 (2017). 

64. van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in 

encoding precision accounts for visual short-term memory limitations. Proc. Natl. Acad. 

Sci. 109, 8780–8785 (2012). 

65. Bays, P. M. Noise in Neural Populations Accounts for Errors in Working Memory. 

J. Neurosci. 34, 3632–3645 (2014). 



 

35 

66. van den Berg, R., Awh, E. & Ma, W. J. Factorial comparison of working memory 

models. Psychol. Rev. 121, 124–149 (2014). 

67. Adam, K. C. S., Vogel, E. K. & Awh, E. Clear evidence for item limits in visual 

working memory. Cognit. Psychol. 97, 79–97 (2017). 

68. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working 

memory. Nature 453, 233–235 (2008). 

69. Schneegans, S., Taylor, R. & Bays, P. M. Stochastic sampling provides a unifying 

account of visual working memory limits. Proc. Natl. Acad. Sci. 117, 20959–20968 

(2020). 

70. Pratte, M. S. Set size effects on working memory precision are not due to an 

averaging of slots. Atten. Percept. Psychophys. 82, 2937–2949 (2020). 

71. Bays, P., Schneegans, S., Ma, W. J. & Brady, T. F. Representation and 

computation in working memory. https://osf.io/kubr9 (2022) doi:10.31234/osf.io/kubr9. 

72. Swets, J. A. Form of empirical ROCs in discrimination and diagnostic tasks: 

implications for theory and measurement of performance. Psychol. Bull. 99, 181 

(1986). 

73. Wixted, J. T. Dual-process theory and signal-detection theory of recognition 

memory. Psychol. Rev. 114, 152–176 (2007). 

74. Wixted, J. T. & Mickes, L. A continuous dual-process model of remember/know 

judgments. Psychol. Rev. 117, 1025 (2010). 

75. Taylor, R. & Bays, P. M. Theory of neural coding predicts an upper bound on 

estimates of memory variability. Psychol. Rev. 127, 700 (2020). 

76. Delay, C. G. & Wixted, J. T. Discrete-state versus continuous models of the 

confidence-accuracy relationship in recognition memory. Psychon. Bull. Rev. 28, 556–

564 (2021). 



 

36 

77. Brady, T. F., Robinson, M. M., Williams, J. R. & Wixted, J. T. Measuring memory 

is harder than you think: How to avoid problematic measurement practices in memory 

research. Psychon. Bull. Rev. 30, 421–449 (2023). 

78. Honig, M., Ma, W. J. & Fougnie, D. Humans incorporate trial-to-trial working 

memory uncertainty into rewarded decisions. Proc. Natl. Acad. Sci. 117, 8391–8397 

(2020). 

79. Jabar, S. B. et al. Using a betting game to reveal the rich nature of visual working 

memories. bioRxiv (2020). 

80. Yoo, A. H., Acerbi, L. & Ma, W. J. Uncertainty is maintained and used in working 

memory. J. Vis. 21, 13–13 (2021). 

81. Treisman, A. Features and Objects in Visual Processing. Sci. Am. 13 (1986). 

82. Schneegans, S. & Bays, P. M. Neural architecture for feature binding in visual 

working memory. J. Neurosci. 37, 3913–3925 (2017). 

83. Bays, P. M., Wu, E. Y. & Husain, M. Storage and binding of object features in 

visual working memory. Neuropsychologia 49, 1622–1631 (2011). 

84. Fougnie, D. & Alvarez, G. A. Object features fail independently in visual working 

memory: Evidence for a probabilistic feature-store model. J. Vis. 11, 3–3 (2011). 

85. Shin, H. & Ma, W. J. Visual short-term memory for oriented, colored objects. J. 

Vis. 17, 12–12 (2017). 

86. Utochkin, I. S. & Brady, T. F. Independent storage of different features of real-

world objects in long-term memory. J. Exp. Psychol. Gen. 149, 530 (2020). 

87. Fougnie, D., Cormiea, S. M. & Alvarez, G. A. Object-based benefits without 

object-based representations. J. Exp. Psychol. Gen. 142, 621–626 (2013). 

88. Wang, B., Cao, X., Theeuwes, J., Olivers, C. N. & Wang, Z. Location-based 

effects underlie feature conjunction benefits in visual working memory. J. Vis. 16, 12–

12 (2016). 



 

37 

89. Egly, R., Driver, J. & Rafal, R. D. Shifting visual attention between objects and 

locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 

123, 161 (1994). 

90. Francis, G. & Thunell, E. Excess success in articles on object-based attention. 

Atten. Percept. Psychophys. 84, 700–714 (2022). 

91. Chater, N., Tenenbaum, J. B. & Yuille, A. Probabilistic models of cognition: 

Conceptual foundations. Trends Cogn. Sci. 10, 287–291 (2006). 

92. Ma, W. J. Organizing probabilistic models of perception. Trends Cogn. Sci. 16, 

511–518 (2012). 

93. Kellen, D., Winiger, S., Dunn, J. C. & Singmann, H. Testing the foundations of 

signal detection theory in recognition memory. Psychol. Rev. 128, 1022 (2021). 

94. Rotello, C. M., Heit, E. & Dubé, C. When more data steer us wrong: replications 

with the wrong dependent measure perpetuate erroneous conclusions. Psychon. Bull. 

Rev. 22, 944–954 (2015). 

95. Starns, J. J. et al. Assessing theoretical conclusions with blinded inference to 

investigate a potential inference crisis. Adv. Methods Pract. Psychol. Sci. 2, 335–349 

(2019). 

96. Wixted, J. T. & Mickes, L. Theoretical vs. empirical discriminability: the application 

of ROC methods to eyewitness identification. Cogn. Res. Princ. Implic. 3, 9 (2018). 

97. Wixted, J. T. & Wells, G. L. The relationship between eyewitness confidence and 

identification accuracy: A new synthesis. Psychol. Sci. Public Interest 18, 10–65 

(2017). 

98. Adler, W. T. & Ma, W. J. Comparing Bayesian and non-Bayesian accounts of 

human confidence reports. PLoS Comput. Biol. 14, e1006572 (2018). 

99. Ma, W. J. Bayesian decision models: A primer. Neuron 104, 164–175 (2019). 



 

38 

100. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns 

and unknowns. Nat. Neurosci. 16, 1170–1178 (2013). 

101. Brady, T. F. & Tenenbaum, J. B. A probabilistic model of visual working memory: 

Incorporating higher order regularities into working memory capacity estimates. 

Psychol. Rev. 120, 85–109 (2013). 

102. Smith, P. L., Saber, S., Corbett, E. A. & Lilburn, S. D. Modeling continuous 

outcome color decisions with the circular diffusion model: Metric and categorical 

properties. Psychol. Rev. 127, 562 (2020). 

103. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. 

Neurosci. 17, 347–356 (2014). 

104. Schurgin, M. W. & Flombaum, J. I. Visual working memory is more tolerant than 

visual long-term memory. J. Exp. Psychol. Hum. Percept. Perform. 44, 1216 (2018). 

105. Howard, M. W. & Kahana, M. J. A distributed representation of temporal context. 

J. Math. Psychol. 46, 269–299 (2002). 

106. Brady, T. F. & Störmer, V. S. The role of meaning in visual working memory: Real-

world objects, but not simple features, benefit from deeper processing. J. Exp. 

Psychol. Learn. Mem. Cogn. (2021). 

107. Endress, A. D. & Potter, M. C. Large capacity temporary visual memory. J. Exp. 

Psychol. Gen. 143, 548 (2014). 

108. Tsubomi, H., Fukuda, K., Watanabe, K. & Vogel, E. K. Neural limits to 

representing objects still within view. J. Neurosci. 33, 8257–8263 (2013). 

109. Vogel, E. K., Woodman, G. F. & Luck, S. J. The time course of consolidation in 

visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 32, 1436 (2006). 

110. Ricker, T. J. & Hardman, K. O. The nature of short-term consolidation in visual 

working memory. J. Exp. Psychol. Gen. 146, 1551 (2017). 



 

39 

111. Li, X., Xiong, Z., Theeuwes, J. & Wang, B. Visual memory benefits from prolonged 

encoding time regardless of stimulus type. J. Exp. Psychol. Learn. Mem. Cogn. 46, 

1998 (2020). 

112. Draschkow, D., Kallmayer, M. & Nobre, A. C. When natural behavior engages 

working memory. Curr. Biol. 31, 869–874 (2021). 

113. Williams, J. & Störmer, V. S. Working Memory: How Much Is It Used in Natural 

Behavior? Curr. Biol. 31, R205–R206 (2021). 

114. Miller, G. A. The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychol. Rev. 63, 81 (1956). 

115. Balaban, H. & Luria, R. The number of objects determines visual working memory 

capacity allocation for complex items. NeuroImage 119, 54–62 (2015). 

116. Barton, B., Ester, E. F. & Awh, E. Discrete resource allocation in visual working 

memory. J. Exp. Psychol. Hum. Percept. Perform. 35, 1359–1367 (2009). 

117. Cappiello, M., Xie, W. & Zhang, W. The mental muscle: Effects of concurrent 

effortful physical action on visual working memory. J. Vis. 18, 705–705 (2018). 

118. Rouder, J. N. et al. An assessment of fixed-capacity models of visual working 

memory. Proc. Natl. Acad. Sci. 105, 5975–5979 (2008). 

119. Pratte, M. S. & Rouder, J. N. Hierarchical single- and dual-process models of 

recognition memory. J. Math. Psychol. 55, 36–46 (2011). 

120. Navon, D. Resources—A Theoretical Soup Stone? 19. 

121. Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: 

competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 

(2013). 

122. Bays, P. M. Spikes not slots: noise in neural populations limits working memory. 

Trends Cogn. Sci. 19, 431–438 (2015). 



 

40 

123. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. 

Nat. Rev. Neurosci. 13, 51–62 (2012). 

124. Smith, P. L., Lilburn, S. D., Corbett, E. A., Sewell, D. K. & Kyllingsbæk, S. The 

attention-weighted sample-size model of visual short-term memory: Attention capture 

predicts resource allocation and memory load. Cognit. Psychol. 89, 71–105 (2016). 

125. Green, D. M. & Swets, J. A. Signal detection theory and psychophysics. vol. 1 

(Wiley New York, 1966). 

126. Palmer, J. Attentional limits on the perception and memory of visual information. J. 

Exp. Psychol. Hum. Percept. Perform. 16, 332 (1990). 

127. Brady, T. F., Konkle, T. & Alvarez, G. A. Compression in visual working memory: 

Using statistical regularities to form more efficient memory representations. J. Exp. 

Psychol. Gen. 138, 487–502 (2009). 

128. Orhan, A. E., Sims, C. R., Jacobs, R. A. & Knill, D. C. The Adaptive Nature of 

Visual Working Memory. Curr. Dir. Psychol. Sci. 23, 164–170 (2014). 

129. Bates, C. J. & Jacobs, R. A. Efficient data compression in perception and 

perceptual memory. Psychol. Rev. 127, 891–917 (2020). 

130. Tomić, I. & Bays, P. M. Internal but not external noise frees working memory 

resources. PLOS Comput. Biol. 14, e1006488 (2018). 

131. Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: 

Levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 

217–229 (2015). 

132. Kristjánsson, Á. & Draschkow, D. Keeping it real: Looking beyond capacity limits 

in visual cognition. Atten. Percept. Psychophys. 83, 1375–1390 (2021). 

133. Hayhoe, M. & Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 

9, 188–194 (2005). 



 

41 

134. Ballard, D. H., Hayhoe, M. M. & Pelz, J. B. Memory Representations in Natural 

Tasks. J. Cogn. Neurosci. 7, 66–80 (1995). 

135. Simons, D. J. & Rensink, R. A. Change blindness: Past, present, and future. 

Trends Cogn. Sci. 9, 16–20 (2005). 

136. Simons, D. J. & Ambinder, M. S. Change blindness: Theory and consequences. 

Curr. Dir. Psychol. Sci. 14, 44–48 (2005). 

137. Dretske, F. What change blindness teaches about consciousness. Philos. 

Perspect. 21, 215–230 (2007). 

138. O’regan, J. K. & Noë, A. A sensorimotor account of vision and visual 

consciousness. Behav. Brain Sci. 24, 939–973 (2001). 

139. O’regan, J. K. Solving the" real" mysteries of visual perception: the world as an 

outside memory. Can. J. Psychol. Can. Psychol. 46, 461 (1992). 

140. Rensink, R. A. Change blindness. in Neurobiology of attention 76–81 (Elsevier, 

2005). 

141. Hollingworth, A. Scene and position specificity in visual memory for objects. J. 

Exp. Psychol. Learn. Mem. Cogn. 32, 58–69 (2006). 

142. Jost, K. et al. Controlling conflict from interfering long-term memory 

representations. J. Cogn. Neurosci. 24, 1173–1190 (2012). 

143. Konkle, T., Brady, T. F., Alvarez, G. A. & Oliva, A. Scene memory is more detailed 

than you think: The role of categories in visual long-term memory. Psychol. Sci. 21, 

1551–1556 (2010). 

144. Konkle, T., Brady, T. F., Alvarez, G. A. & Oliva, A. Conceptual distinctiveness 

supports detailed visual long-term memory for real-world objects. J. Exp. Psychol. 

Gen. 139, 558 (2010). 

145. Robertson, E. M. New insights in human memory interference and consolidation. 

Curr. Biol. 22, R66–R71 (2012). 



 

42 

146. Wais, P. E. & Gazzaley, A. Distractibility during retrieval of long-term memory: 

domain-general interference, neural networks and increased susceptibility in normal 

aging. Front. Psychol. 5, 280 (2014). 

147. Drascher, M. L. & Kuhl, B. A. Long-term memory interference is resolved via 

repulsion and precision along diagnostic memory dimensions. Psychon. Bull. Rev. 1–

15 (2022). 

148. Fukuda, K. & Vogel, E. K. Visual short-term memory capacity predicts the 

“bandwidth” of visual long-term memory encoding. Mem. Cognit. 47, 1481–1497 

(2019). 

149. Sundby, C. S., Woodman, G. F. & Fukuda, K. Electrophysiological and behavioral 

evidence for attentional up-regulation, but not down-regulation, when encoding 

pictures into long-term memory. Mem. Cognit. 47, 351–364 (2019). 

150. Desimone, R. & Duncan, J. Neural Mechanisms of Selective Visual Attention. 30. 

151. Beck, D. M. & Kastner, S. Top-down and bottom-up mechanisms in biasing 

competition in the human brain. Vision Res. 49, 1154–1165 (2009). 

152. Rugo, K. F., Tamler, K. N., Woodman, G. F. & Maxcey, A. M. Recognition-induced 

forgetting of faces in visual long-term memory. Atten. Percept. Psychophys. 79, 1878–

1885 (2017). 

153. Lin, P.-H. & Luck, S. J. Proactive interference does not meaningfully distort visual 

working memory capacity estimates in the canonical change detection task. Front. 

Psychol. 3, 42 (2012). 

154. Olson, I. R. & Jiang, Y. Visual short-term memory is not improved by training. 

Mem. Cognit. 32, 1326–1332 (2004). 

155. Lu, X., Dai, A., Guo, Y., Shen, M. & Gao, Z. Is the social chunking of agent actions 

in working memory resource-demanding? Cognition 229, 105249 (2022). 



 

43 

156. Snow, J. C. & Culham, J. C. The treachery of images: how realism influences 

brain and behavior. Trends Cogn. Sci. 25, 506–519 (2021). 

157. Vestner, T., Over, H., Gray, K. L. & Cook, R. Objects that direct visuospatial 

attention produce the search advantage for facing dyads. J. Exp. Psychol. Gen. 

(2021). 

158. Brady, T. F. et al. Scaling up visual attention and visual working memory to the 

real world. in Psychology of Learning and Motivation vol. 70 29–69 (Elsevier, 2019). 

159. Wiseman, S. & Neisser, U. Perceptual organization as a determinant of visual 

recognition memory. Am. J. Psychol. 675–681 (1974). 

160. Asp, I. E., Störmer, V. S. & Brady, T. F. Greater visual working memory capacity 

for visually matched stimuli when they are perceived as meaningful. J. Cogn. Neurosci. 

33, 902–918 (2021). 

161. Ngiam, W. X. Q., Brissenden, J. A. & Awh, E. “Memory compression” effects in 

visual working memory are contingent on explicit long-term memory. J. Exp. Psychol. 

Gen. 148, 1373–1385 (2019). 

162. Starr, A., Srinivasan, M. & Bunge, S. A. Semantic knowledge influences visual 

working memory in adults and children. PloS One 15, e0241110 (2020). 

163. Moore, C. D., Cohen, M. X. & Ranganath, C. Neural Mechanisms of Expert Skills 

in Visual Working Memory. J. Neurosci. 26, 11187–11196 (2006). 

164. Xie, W. & Zhang, W. Familiarity increases the number of remembered Pokémon in 

visual short-term memory. Mem. Cognit. 45, 677–689 (2017). 

165. Brady, T. F., Störmer, V. S. & Alvarez, G. A. Working memory is not fixed-

capacity: More active storage capacity for real-world objects than for simple stimuli. 

Proc. Natl. Acad. Sci. 113, 7459–7464 (2016). 



 

44 

166. Jackson, M. C., Link to external site,  this link will open in a new window & 

Raymond, J. E. Familiarity enhances visual working memory for faces. J. Exp. 

Psychol. Hum. Percept. Perform. 34, 556–568 (2008). 

167. O’Donnell, R. E., Clement, A. & Brockmole, J. R. Semantic and functional 

relationships among objects increase the capacity of visual working memory. J. Exp. 

Psychol. Learn. Mem. Cogn. 44, 1151–1158 (2018). 

168. Nosofsky, R. M. Tests of an exemplar model for relating perceptual classification 

and recognition memory. J. Exp. Psychol. Hum. Percept. Perform. 17, 3 (1991). 

169. Wyble, B., Swan, G. & Callahan-Flintoft, C. Measuring visual memory in its native. 

Trends Cogn. Sci. 20, 790–791 (2016). 

170. Sahar, T., Sidi, Y. & Makovski, T. A metacognitive perspective of visual working 

memory with rich complex objects. Front. Psychol. 11, 179 (2020). 

171. Stojanoski, B., Emrich, S. M. & Cusack, R. Representation of semantic 

information in ventral areas during encoding is associated with improved visual short-

term memory. bioRxiv 2019–12 (2020). 

172. Allen, M. G., Destefano, I. & Brady, T. F. Chunks are not “Content-Free”: 

Hierarchical Representations Preserve Perceptual Detail within Chunks. in 

Proceedings of the Annual Meeting of the Cognitive Science Society vol. 43 (2021). 

173. Mathy, F. & Feldman, J. What’s magic about magic numbers? Chunking and data 

compression in short-term memory. Cognition 122, 346–362 (2012). 

174. Wood, J. N. Visual working memory for observed actions. J. Exp. Psychol. Gen. 

136, 639–652 (2007). 

175. Shen, M., Gao, Z., Ding, X., Zhou, B. & Huang, X. Holding biological motion 

information in working memory. J. Exp. Psychol. Hum. Percept. Perform. 40, 1332 

(2014). 



 

45 

176. Craik, F. I. Levels of processing: Past, present... and future? Memory 10, 305–318 

(2002). 

177. Craik, F. I. & Lockhart, R. S. Levels of processing: A framework for memory 

research. J. Verbal Learn. Verbal Behav. 11, 671–684 (1972). 

178. Bradshaw, G. L. & Anderson, J. R. Elaborative encoding as an explanation of 

levels of processing. J. Verbal Learn. Verbal Behav. 21, 165–174 (1982). 

179. Nairne, J. S. Remembering Over THE Short-Term. Annu Rev Psychol 53, 53–81 

(2002). 

180. Nelson, D. L., Cermak, L. & Craik, F. Remembering pictures and words: 

Appearance, significance and name. Levels Process. Hum. Mem. 45–76 (1979). 

181. Tulving, E. & Thomson, D. M. Encoding specificity and retrieval processes in 

episodic memory. Psychol. Rev. 80, 352 (1973). 

182. Hedayati, S., O’Donnell, R. E. & Wyble, B. A model of working memory for latent 

representations. Nat. Hum. Behav. 6, 709–719 (2022). 

183. van Kerkoerle, T., Self, M. W. & Roelfsema, P. R. Layer-specificity in the effects of 

attention and working memory on activity in primary visual cortex. Nat. Commun. 8, 

13804 (2017). 

184. Self, M. W., van Kerkoerle, T., Goebel, R. & Roelfsema, P. R. Benchmarking 

laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up 

processing in the different layers of cortex. NeuroImage 197, 806–817 (2019). 

185. Maxcey, A. M. & Woodman, G. F. Forgetting induced by recognition of visual 

images. Vis. Cogn. 22, 789–808 (2014). 

186. Konkle, T. & Alvarez, G. Deepnets do not need category supervision to predict 

visual system responses to objects. J. Vis. 20, 498–498 (2020). 



 

46 

187. Naspi, L., Hoffman, P., Devereux, B. & Morcom, A. M. Perceptual and semantic 

representations at encoding contribute to true and false recognition of objects. J. 

Neurosci. 41, 8375–8389 (2021). 

188. Sheng, J. et al. Higher-dimensional neural representations predict better episodic 

memory. Sci. Adv. 8, eabm3829 (2022). 

189. Kahana, M. J. Foundations of human memory. (OUP USA, 2012). 

190. Rust, N. C. & Mehrpour, V. Understanding image memorability. Trends Cogn. Sci. 

24, 557–568 (2020). 

191. Hemmer, P. & Steyvers, M. A Bayesian Account of Reconstructive Memory. Top. 

Cogn. Sci. 1, 189–202 (2009). 

192. Huttenlocher, J., Hedges, L. V. & Vevea, J. L. Why do categories affect stimulus 

judgment? J. Exp. Psychol. Gen. 129, 220 (2000). 

193. Hemmer, P. & Steyvers, M. Integrating episodic memories and prior knowledge at 

multiple levels of abstraction. Psychon. Bull. Rev. 16, 80–87 (2009). 

194. Bae, G.-Y., Olkkonen, M., Allred, S. R. & Flombaum, J. I. Why some colors 

appear more memorable than others: A model combining categories and particulars in 

color working memory. J. Exp. Psychol. Gen. 144, 744–763 (2015). 

195. Destefano, I., Brady, T. & Vul, E. A Framework for Predicting Memory Errors with 

a Bayesian Model of Concept Generalization. (2021). 

196. Brady, T. F., Schacter, D. L. & Alvarez, G. A. The adaptive nature of false 

memories is revealed by gist- based distortion of true memories. 35. 

197. Bruning, A. L. & Lewis-Peacock, J. A. Long-term memory guides resource 

allocation in working memory. Sci. Rep. 10, 1–10 (2020). 

198. Dubé, C. Central tendency representation and exemplar matching in visual short-

term memory. Mem. Cognit. 47, 589–602 (2019). 



 

47 

199. Orhan, A. E. & Jacobs, R. A. A probabilistic clustering theory of the organization of 

visual short-term memory. Psychol. Rev. 120, 297 (2013). 

200. Brady, T. F. & Alvarez, G. A. No evidence for a fixed object limit in working 

memory: Spatial ensemble representations inflate estimates of working memory 

capacity for complex objects. J. Exp. Psychol. Learn. Mem. Cogn. 41, 921–929 (2015). 

201. Hollingworth, A. & Henderson, J. M. Testing a conceptual locus. Mem. Cognit. 31, 

930–940 (2003). 

202. Oliva, A. Gist of the scene. in Neurobiology of attention 251–256 (Elsevier, 2005). 

203. Friedman, A. Framing pictures: the role of knowledge in automatized encoding 

and memory for gist. J. Exp. Psychol. Gen. 108, 316 (1979). 

204. Hollingworth, A. & Henderson, J. M. Semantic informativeness mediates the 

detection of changes in natural scenes. Vis. Cogn. 7, 213–235 (2000). 

205. Miller, M. B. & Gazzaniga, M. S. Creating false memories for visual scenes. 

Neuropsychologia 36, 513–520 (1998). 

206. Brewer, W. F. & Treyens, J. C. Role of schemata in memory for places. Cognit. 

Psychol. 13, 207–230 (1981). 

207. Lampinen, J. M., Copeland, S. M. & Neuschatz, J. S. Recollections of things 

schematic: room schemas revisited. J. Exp. Psychol. Learn. Mem. Cogn. 27, 1211 

(2001). 

208. Schurgin, M. W. & Brady, T. F. When “capacity” changes with set size: Ensemble 

representations support the detection of across-category changes in visual working 

memory. J. Vis. 19, 3 (2019). 

209. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and 

beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 

105 (2016). 



 

48 

210. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The 

cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. 

Neurobiol. 16, 179–190 (2006). 

211. Jaiswal, S., Fernando, B. & Tan, C. TDAM: Top-Down Attention Module for 

Contextually Guided Feature Selection in CNNs. in Computer Vision–ECCV 2022: 17th 

European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXV 

259–276 (Springer, 2022). 

212. Bates, C. J., Alvarez, G. & Gershman, S. J. Scaling models of visual working 

memory to natural images. 2023.03.17.533050 Preprint at 

https://doi.org/10.1101/2023.03.17.533050 (2023). 

213. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning 

through probabilistic program induction. Science 350, 1332–1338 (2015). 

214. Cleary, A. M. Dependent measures in memory research: From free recall to 

recognition. in Handbook of research methods in human memory 19–35 (Routledge, 

2018). 

215. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. 

Nat. Rev. Neurosci. 1, 125–132 (2000). 

216. Rust, N. C. & Cohen, M. R. Priority coding in the visual system. Nat. Rev. 

Neurosci. 23, 376–388 (2022). 

217. Yonelinas, A. P. Receiver-Operating Characteristics in Recognition Memory: 

Evidence for a Dual-Process Model. 14. 

218. Marr, D. Vision: A Computational Investigation into the Human Representation 

and Processing of Visual Information. (MIT Press, 2010). 

219. van Bergen, R. S. & Jehee, J. F. Probabilistic representation in human visual 

cortex reflects uncertainty in serial decisions. J. Neurosci. 39, 8164–8176 (2019). 



 

49 

220. Yeon, J. & Rahnev, D. The suboptimality of perceptual decision making with 

multiple alternatives. Nat. Commun. 11, 1–12 (2020). 

221. Rahnev, D., Block, N., Denison, R. N. & Jehee, J. Is perception probabilistic? 

Clarifying the definitions. (2021). 

222. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working 

memory is set by allocation of a shared resource. J. Vis. 9, 7–7 (2009). 

223. Shiffrin, R. M. & Steyvers, M. A model for recognition memory: REM—retrieving 

effectively from memory. Psychon. Bull. Rev. 4, 145–166 (1997). 

224. Harlow, I. M. & Yonelinas, A. P. Distinguishing between the success and precision 

of recollection. Memory 24, 114–127 (2016). 

225. Nilakantan, A. S., Bridge, D. J., VanHaerents, S. & Voss, J. L. Distinguishing the 

precision of spatial recollection from its success: Evidence from healthy aging and 

unilateral mesial temporal lobe resection. Neuropsychologia 119, 101–106 (2018). 

226. Sutterer, D. W. & Awh, E. Retrieval practice enhances the accessibility but not the 

quality of memory. Psychon. Bull. Rev. 23, 831–841 (2016). 

227. Pratte, M. S. Swap errors in spatial working memory are guesses. (2018). 

228. Konkle, T. & Oliva, A. A familiar-size Stroop effect: real-world size is an automatic 

property of object representation. J. Exp. Psychol. Hum. Percept. Perform. 38, 561 

(2012). 

  



 

50 

 


