Noisy and hierarchical visual memory across time scales

Timothy F. Brady', Maria M. Robinson’, Jamal R. Williams'
'Department of Psychology, University of California San Diego, La Jolla, CA, USA

Temail: tforady@ucsd.edu



Abstract

Both in everyday life and in memory research, one tends to think of items as being ‘held’
in mind, in the same way that a real-world object can be held in one’s hand. Inspired by
this metaphor, traditional work on visual working memory and visual long-term memory
focuses on understanding how many objects are remembered or forgotten, or held or lost
in particular circumstances. By contrast, newer computational and empirical work on
visual memory focuses on the role of noise in memory representations — conceiving of
memories as continually varying in ‘strength’ or ‘precision’ — as well as the role of the
visual hierarchy and priors in structuring memory. In this Review, we merge these
contemporary theories and evidence. We describe how fundamentally noisy memory
representations are instantiated at different levels of the visual hierarchy and support both
visual-working and long-term memory. We also discuss how conceiving of memory in this
way can direct further research and illuminate the nature of cognitive function more
broadly.



[H1] Introduction

Consider what your dinner plate looked like last night, including the color, size, and
positions of food on the plate. When you try to bring these images to mind, you are trying
to retrieve the details of a particular visual experience, using your visual memory. Visual
memory refers to information that can be successfully accessed from past visual
experiences, and the structure of that information.

Visual memory is of broad interest because of its impressive capabilities, which can be
appreciated in the method of loci, widely used to turn arbitrary words or playing cards into
rich visual images by the best memorizers in the world®. Visual memory is also of broad
interest because it provides key insights into the nature of memory representations. While
traditional memory research has often focused on identifying separate memory systems
and on establishing a taxonomy of memory systems and their function?2, and focused
less on examining the nature of stored memory representations. By contrast, research on
visual memory places a major emphasis on the structure and format of the
representations of objects and scenes in memory, and how properties of these
representations impose limits on what information can be remembered accurately*®.
Because the perceptual representations underlying visual processing are (comparatively)
well understood compared to many other domains®2, research at the intersection
between visual perception and memory can provide unique insights into memory
processes by building on what is known about perceptual representations and examining
how they change when held in memory.

A key insight is that visual memory representations are noisy — that is, that people can
never remember them perfectly accurately, and that the accuracy of their memory tends
to vary in a continuous manner. This insight derives in part from visual memory
research’s emphasis on visual features that themselves vary continuously, such as color
and orientation, and the metrics of performance that asking people to remember these
features allows in visual memory tasks. However, the finding that visual memory
representations are noisy conflicts with the tendency to use a physical metaphor to
describe and understand memory. That is, people tend to think of an object they are
trying to remember as either in mind or not in mind, and to talk about items as being ‘held
in mind to describe working memory, just like a real object can be held in the hand®. This
physical metaphor often serves as a core mental model for how memory has traditionally
been conceived: as all-or-none, discrete, and operating over entire objects or chunks of
information.

Given their continuous and noisy nature, however, the idea that memory representations
are physical objects that can be held, or can be defined as simply existing or not existing,
is not a useful metaphor for memory. Therefore, instead of using this physically inspired
mental model for memory, here we propose a model based on an analogy to the nature
of processing in the visual system (Fig. 1). In particular, the visual system is usually
conceived of in terms of population codes, with many neurons representing a given
feature and a given location— and each doing so with substantial noise'®. Furthermore,



the visual system contains a hierarchy of representations, where representations are
richer and more complex as one moves from primary visual cortex up to more anterior
visual regions.

In this Review, we detail how we conceive of visual memory in a similar way, as a noisy
and hierarchical system. We begin by reviewing work that suggests that representations
for objects or scenes are strongly related across visual working memory and visual long-
term memory, and in both cases are best conceived of as noisy and variable in strength.
We then describe how such noisy memories are stored in terms of hierarchical memory
representations. Finally, we discuss how these ideas lead to a reconceptualization of the
limits of visual memory at different timescales, and the role of visual memory in other
cognitive capacities.

[H1] Visual memory across time scales

We begin with the question of whether it makes sense to consider visual memory as a
single construct, or, whether the more traditional view, where long-term memories are
considered fundamentally distinct from working memories, is most appropriate. As in
more traditional memory research, visual working memory and visual long-term memory
are often studied separately, using different paradigms, by different researcher groups,
and are often thought of as distinct systems. Although we acknowledge that a systems
taxonomy can have heuristic value, this view is grounded in theories which posit that
visual working memory and visual long-term memory differ in their mental representations
and intrinsic structure. By contrast, contemporary evidence suggests that visual working
memory and visual long-term memory share mental representations, even though varying
task demands can lead to the differential recruitment of additional cognitive processes
that operate over those representations.

Mainstream theories of memory often postulate that visual working and long-term
memory representations differ from each other in key ways. One reason for this is
distinctive neural correlates. For example, neuropsychological research suggests a
distinction between visual long-term and working memory based on purported evidence
of selective and distinct impairments to visual long-term and visual working memory'"2, |t
has also been suggested that short-term memory reflects transitory electrical activity,
whereas long-term memory reflects durable neurochemical changes in the brain’.
Broadly in line with this view, some evidence indicates there are distinct neural
signatures associated with visual working memory and long-term memory, with the
sustained and active firing of neurons involved particularly in working memory
maintenance’'® but not long term memory. In humans, such working memory-specific
activity can be tracked with electrophysiology, for example with the contralateral delay
activity'®'°, a robust component thought to track the amount of information ‘actively’
stored in visual working memory?® and that disappears when items are available in long-
term memory?! Similarly, information in working memory can be seen in parietal and
frontal region activity® and decoded from ongoing activity during the maintenance period
using neuroimaging®*24,



However, these neural coding differences do not necessitate differences in the
fundamental representations or intrinsic structure underlying working memory and long-
term memory. For example, the neuropsychology work must be interpreted with caution
based on the observation that participants from clinical populations suffer from a wide
range of processing deficits that make claims of selective deficits to a specific cognitive
system difficult?®. Similarly, the evidence of distinct neural correlates for working memory,
involving active maintenance processes, do not necessarily indicate distinct
representations are used in working memory compared to long-term memory. Instead,
the distinction between typical working memory and long-term memory tasks can reflect
the amount of activation of a particular representation?®-?° or the engagement of
attentional maintenance processes to maintain such activation, with the representations
themselves being fundamentally the same. For example, the classic modal model of
memory posited that short-term or working memory exists as a buffer that maintains
information in a readily accessible state®’®! . It is therefore often posited that working
memory is capacity limited such that only a small amount of information can be maintain
in an active state at once, perhaps due to limitations in attentional maintenance
processes®2. Thus, rather than requiring two systems, the neural evidence is consistent
with the view that representations in working memory and long-term memory are
fundamentally the same, but long-term memory is mostly passive use of these
representations and working memory is a form of attentional demanding, activated
memory, involving control systems that manipulate and maintain the same underlying
memory representations. According to this account, once activated in working memory, a
subset of information related to pertinent representations can be continuously protected
from noise accumulation by attentional processes, but the representations remain
fundamentally similar to those used in long-term memory.

Behavioral evidence is consistent with this account. Despite a long history of evidence
that suggests long-term memory is often less precise than working memory (such as
theories that suggest only the gist survives in long-term memory, causing false
memories®®) —new evidence shows that there is not any fundamental difference in the
range of levels of precision or memory strength that are possible in visual-working and
long-term memory. Distributions of memory errors obtained from continuous reproduction
visual-working and long-term memory tasks®* fit with a one parameter model that
captures memory strength across tasks®® (Fig. 2). This suggests that as memory gets
weaker in the two systems, it degrades in an identical fashion. Of course, typical working
memory and long-term memory tasks may differ in key ways, even with the same
representations underlying them. For example, online attentional selection might often be
more necessary in working memory tasks because many items are often presented at
once in such tasks, and there is often less spatiotemporal context in long-term memory
tasks compared to working memory tasks, with many items all presented in the same
spatial location being relevant. Thus, although long-term memories on average might be
weaker than working memories in everyday-life situations, evidence suggests that this
difference strength does not necessarily reflect a fundamental difference in memory



systems or their representations but rather the way they tend to be used and
investigated.

Thus, evidence is consistent with a view that visual-working memory is a form of
activated long-term memory, with similar representations that differ in their degree of
activation or in the processes being used to manipulate and maintain them. Through this
lens, attention ‘selects’ and upweights goal-relevant information, and provides protection
against the accumulation of noise across populations of neurons throughout the visual
hierarchy®, and memories protected in this way are working memories.

Prior work has criticized the unidimensional view of visual memory in part because the
idea that memories are active in working memory (and less active in long-term memory)
has not been consistently operationalized. For instance, activation has been used to
describe both the strength of mental representations, as well as dynamics in neural
processing. Furthermore, the conception that activation alone differs between working
memory and long-term memory is generally insufficient to explain the differences across
working memory and long-term memory tasks. For example, many theories treat
activation levels as varying even among different long-term memories, and some work
suggests that working memory can make use of inactive states®”* in addition to active
ones. This notion of ‘activation’ leads to theories arguing that up to a hundred or more
recently seen items can be active in long-term memory®°, as compared to ‘inactive’ items
that are seen equally often but are not relevant in the current context*?. Reconciling all the
notions of activation across both neural and cognitive meanings of the term and across
both working memory and long-term memory remains a difficult and important task for
unidimensional theories of memory, and one that has been the source of a number of
proposals about the architecture of working memory3241-44,

In summary, within this unidimensional view of visual memory, visual working and visual
long-term memory are not distinct systems, but instead both involve computations over
the same types of memory representations. Importantly, the nature of these computations
is constrained by the demands of the task, such that some visual memory tasks elicit
processing constraints which the others do not. In the remainder of this article, we
develop this unidimensional framework by integrating findings from the visual working
and long-term memory literature on the nature of visual memory representations. We
then detail how differential demands can elicit processing bottlenecks in visual memory
tasks. Finally, we discuss how the unidimensional view fits parsimoniously with more
ecological theories that take into account the role of prior knowledge, stimulus complexity
and meaning in visual memory across time scales.

[H1] Memories are noisy and vary in strength

A major dichotomy in the visual memory literature has been between views in which
memories are conceptualized as all-or-none—with bound objects that are either
remembered with complete accuracy or fully lost*>*¢—and views in which memory



representations are noisy, hierarchically structured, and distributed—with object features
that degrade continuously and relatively independently*’*° . This question of how to
construe the fundamental properties of visual memory representations have dominated
the visual working memory literature for the last couple of decades, and physical
analogies based on holding items in mind have long pushed researchers toward more
discrete views of memory.

In the following sections, we describe behavioral, neural, and computational evidence
that visual memory representations are noisy, which is synonymous with the view that
they vary in strength. We also discuss how noise accumulates over short and long time-
scales and how memory representations can vary at different levels of abstraction: from
individual features to entire objects, as well as how the graded nature of memory
representations underscores the role of decision making in mainstream memory tasks.

[H2] Graded memory strength in working memory tasks

The question of whether memory is noisy vs. all-or-none has been most often examined
in the domain of short-term, working memory tasks. All-or-none theories of memory in
which items are either present (and perfectly represented) or absent entirely, have
traditionally dominated the analysis of visual working memory data from change detection
tasks (Fig. 3a). In a typical change detection task, people are shown an array of simple
stimuli that they have to remember over a brief delay. After a retention interval, people
are shown a single stimulus and asked to make a discrete judgement regarding whether
it changed or did not change compared to the stimulus shown in that location in the
original memory array. The discrete nature of “change” or “no change” responses provide
only a coarse measure of memory errors and often incorrectly leads to inferences like
items are either “present” or “absent” in memory®°.

By contrast, most contemporary work uses tasks which yield a more fine-grained
measure of visual memory representations. Continuous reproduction tasks (Fig. 3b)
provide a way of assessing gradations in memory representations and are common in
visual working memory. In such tasks, instead of providing a binary response®'-%3, people
are asked to reproduce their memory of a probed feature or object using a continuous
response wheel, which provides fine-grained information about both the magnitude and
direction of memory errors. In these tasks, responses generate a distribution of memory
errors in a single, continuous feature dimension (such as color or orientation). For
instance, like in the change detection task, people are shown a memory array with simple
stimuli and are instructed to remember these stimuli and their locations over a brief
retention interval. After the memory delay, however, people are shown a spatial probe
along with a continuous wheel that shows all possible values in the continuous feature
space. Accordingly, people are instructed to select the feature value they think most
closely matches the value of the probed item. Therefore, unlike change detection tasks,
the continuous reproduction wheel provides a fine-grained measure of people’s memory.
Similar fine-grained performance metrics can also be arrived at when using forced-choice
recognition tests that vary the similarity of the seen and unseen items3554,



A first major insight from continuous reproduction tasks is that the distribution of errors in
visual working and long-term memory tasks are incompatible with fully all-or-none
theories of memory (Fig. 3c). These tasks reveal that noise (variance) of memory errors
increases with memory load*® and delay®+8, and decreases with more encoding time®°,
as well as repeated study, and do so in a way that is not solely due to all-or-none
failures®. These results challenge a fully all-or-none interpretation because they indicate
that simple task manipulations can expose the graded changes that exist in memory
strength and accuracy.

A second major insight from tasks that allow continuous measurement of memory
accuracy is that some task conditions introduce subtle memory biases, such that similar
representations sometimes repulse towards or attract away from one another®>-°. For
instance, when people are presented with many red items that slightly vary in hue the
representations of these items can be pulled or attracted towards their average hue.
Alternatively, when people are presented with just a few similar red items, their
representations can become more distinct and repel from one another (Fig. 3c). These
results imply that items are not represented and recalled independently of each other, but
are represented in a way that causes subtle interactions between them. Both of these
insights are broadly inconsistent with the typical physical analogy of holding discrete
items in mind and therefore with all-or-none theories of memory representation.

Thus, all contemporary theories of visual working memory have moved beyond the
concept of complete discreteness in memory, broadly agreeing that information in
memory is represented imperfectly and that this imprecision varies with a number of
factors such as working memory load, encoding time, delay, and several others. Most
neural and cognitive theories broadly endorse the view that there is internal noise in
perceptual, attentional and memory processes, as well as sources of external noise from
the environment. These sources of noise can be affected by how attention is distributed
during encoding®" memory load®?, retention intervals®. All of these sources jointly
determine the extent to which fluctuations in internal and external noise impact the fidelity
of memory representations.

While nearly all models agree that memories must be considered noisy and imprecise, an
increasingly large number of theories of visual working memory now subscribe to the
view that noise accumulation among items alone is fully sufficient to explain the limits on
performance and the pattern of errors obtained in such tasks; without any additional
factor of all-or-none loss of items3%6465. However, some hybrid ‘mixture models’ include
additional factors that postulate that continuously graded memories exist, but also that all-
or-none loss of items can occur in some conditions®”- These models posit that some
items that were seen and processed by the visual system while they were visually
present are nonetheless completely unavailable and that observers have no remaining
information about them, even less than 1 second later, such that when people are probed
on those items, they are forced to give completely information-less guesses®¢7- Although
such hybrid models were initially influential because they were unique in providing an
account of the distribution of errors in reproduction tasks®, later work showed that



continuous models can parsimoniously account for these distributions of errors just as
well®® For example, the finding that people tend to have little information about the 5" or
6" items when asked to report a set of 6 briefly-shown items follows naturally from
models without all-or-none failures®:. Thus, modern models without any added
assumptions about all-or-none failures generally account for data as well or better than
such hybrid models3®%45, Moreover, hybrid models that attempt to predict how often
pure, informationless ‘guesses’ arise when an item is not in memory, across different set
sizes (e.g., how many putative “guesses” there are when shown 4 vs 6 items)®, generally
fail to accurately predict the full pattern of errors as memory load increases’. Thus,
modern hybrid models generally cannot sufficiently explain performance across set size,
as they do not tend to provide any quantitative account of how often all-or-none losses
are expected to occur across different conditions or set sizes, which was initially
considered a major strength of hybrid models (for further discussion, see’"). Overall,
current findings about how visual working memory varies as a function of different
variables, such as memory load and delay, can be parsimoniously explained with a
unidimensional view according to which memory representations vary in noisiness, and
do not require postulating additional assumptions about all-or-none coding that are
necessary in hybrid models.

[H2] Noise across time

If working memory and long-term memory representations are fundamentally similar, we
would expect models that focus on long-term memory rather than working memory to
also be focused on understanding memory noise and imprecision. However, one notable
difference between traditional theories of visual working and long-term memory is how
they conceptualize noisy memory representations. Theories of visual long-term memory
typically conceive of noise as affecting the ‘strength’ of memory representations rather
than the noisiness or precision of those memories. This construct of memory strength
follows from a long tradition of signal detection theory approaches for measuring
memory’273, Within the signal detection framework, previously seen and unseen items
give rise to two different distributions of familiarity signals. When asked to make a
memory judgment (such as which of two items you saw), familiarity signals that can arise
from comparing memories to stimuli along different dimensions are collapsed into a
unidimensional continuum of signal strength, with seen items having higher average
signal strength than unseen items’™. Accordingly, the standardized distance between the
seen and unseen distributions (traditionally referred to as ‘noise’ and ‘signal+noise’
distributions are often captured by the signal detection measure d') is assumed to reflect
the relative ‘strength’ of remembered items (i.e., how much more familiar, on average,
previously seen items feel compared to previously unseen items).

By contrast, most visual working memory models, as described in the previous section,
conceive of noise in memory representations in terms of precision (e.g., how tight the
errors are when asked to reproduce an item) rather than strength®:57.75- The construct of
visual memory precision follows from characteristics of the continuous reproduction task.



In this task, the variance of the error distribution around the true item value is typically
interpreted as a measure of how precisely a given feature or object was remembered®’.

The constructs of memory strength and precision ultimately rest on the same
fundamental assumption: that memory representations are noisy and therefore vary in
their match to the information that was actually seen. Additionally, the two constructs can
be formally linked by using signal detection theory with an entire population of signals®*
(Box 1). Importantly, how confident someone is in their memory tracks both precision and
strength of memory representations, which provides another empirical bridge between
the two constructs. In the long-term memory domain, it is generally found that confidence
tracks memory performance extremely well, and that such confidence judgments are
generally unaffected by demand characteristics’®. Similarly, in working memory,
confidence also tracks performance accurately even in continuous feature spaces’”’8,
and this relationship can be naturally accounted for by models that relate precision to
confidence®® or those that use signal-detection based measures of strength to predict
confidence®.

Other measures that serve as an index of confidence — for example, asking participants
to report the full range of feature values they think an object might have had rather than a
single value’7® — also suggest that participants have an internal sense of uncertainty
that tracks with memory performance in working memory tasks, similar to the relationship
between confidence and accuracy that is fundamental to measures of performance in
long-term memory tasks. Collectively, this suggests that there might be a direct mapping
between people’s confidence judgments and a latent, continuous memory signal that is
used on both visual working and long-term memory tasks. Together, confidence
judgments and other judgments of uncertainty®*2° can be seen as providing convergent
support for the view that precision and strength ultimately describe the same fundamental
properties of visual memory representations, which is that visual memory
representations are noisy and vary continuously in both working memory and long-term
memory tasks.

[H2] Noise across multiple features

The view that visual memory representations for single features, like color or orientation,
are noisy raises the question of how to think about items that consist of a conjunction of
multiple features such as shape, orientation, and color. Although this ‘binding problem’s"
has traditionally been framed in discrete terms (e.g., are both features remembered or is
just one forgotten?), in the context of noisy memory representations the question is
whether features accrue noise independently or jointly or both. This question continues to
be actively debated, but the latest evidence suggests that features seem to accrue noise
largely independently®?. For instance, memory errors in a continuous reproduction task
are largely uncorrelated across feature dimensions®384, Likewise, independent-feature
resource models, which postulate that a separate set of resources are used to support
memory for different features, such as color and orientation, outperform shared resource

10



models, where color and orientation compete for the same pool of resources, in a version
of the change detection paradigm®®.

Evidence for independent noise accrual of features has also been reported for real-world
objects. People commit more binding errors (swapping features such as color across
objects) when state (object configuration, like a full or empty mug of coffee) and exemplar
(category, like mug or wallet) are jointly manipulated, suggesting the two features can be
forgotten or misbound separately from each other*’. This is consistent with the finding
from continuous reproduction tasks that different stimulus dimensions accrue noise
independently, and provides convergent support for the view that object features are
stored at least somewhat independently and not as all-or-none, holistic units that accrue
noise holistically and are forgotten holistically. Similarly, in long-term memory tasks,
different object features also seem to be represented at least to some degree
independently®.

Despite this evidence for independent noise accrual across stimulus dimensions, visual
working memory studies do tend to find a clear memory benefit when visual features are
part of the same object®”- For example, it is easier to remember two features when these
are bound to the same object (such as, color and orientation), compared to separate
objects®. This benefit of objecthood might reflect the benefits of attending to a single as
opposed to multiple spatial locations®. However, classic work on visual attention also
reveals evidence for benefits of object-based attention mechanisms, even when spatial
distance is controlled®® (for a critical analysis of object-based attention effects see®).
Collectively, the joint finding for independent noise accrual and spatial and object-based
benefits for memory for features is consistent with the view that different features
generally accumulate noise independently, but spatial and object-based attentional
mechanisms can introduce additional, correlated sources of noise accrual during
encoding or modulate external and internal noise accrual across feature dimensions.

[H2] Decision making under noise

A critical implication of the view that memories are always noisy and imprecise is that
people must make probabilistic inferences based on noisy evidence to decide how to
respond on memory Tasks®®2, Thus, unlike in traditional all-or-none views, according to
which people make memory judgments in a straightforward way by reading out whether
an item is or is not in memory, within a continuous memory framework people have to
use additional criteria for reporting whether they do or do not remember an item well
enough to endorse it, and, accordingly, researchers must always consider the decision-
making processes that underpin memory tasks. This point has often been made
previously in the context of recognition memory tasks’”:9-5 such as old/new and change
detection tasks in long-term and working memory research, respectively. These tasks are
frequently mis-used and mis-interpreted because the decision process is not carefully
considered’’. Decision-making processes are integral in such tasks because each
stimulus elicits a noisy familiarity signal, people must set a decision criterion for
responding whether an item is old or new, or whether a change occurred or did not

11



occur® and variations in people’s criterion setting can lead to large differences in
measures like overall accuracy without reflecting any underlying change in the memory
representation itself.

The study of decision-making processes in visual memory tasks is especially central in
more applied settings, like eyewitness memory tasks in which people must select the face
of the guilty suspect amongst a lineup of faces or report that the guilty suspect is not part
of the lineup®. Much work suggests that in such tasks people do not simply process each
face independently, but might use higher-level decision-making strategies, such as
discounting features that are common to all faces®”. The development of computational
models to capture such strategies is extremely important to help dictate how to construct
lineups that increase the likelihood that the guilty suspect is correctly identified and
decrease the likelihood that an innocent suspect is incorrectly identified.

Decision models have been rigorously applied in many visual memory tasks beyond
eyewitness memory®-"%"_ For instance, in one study researchers applied sequential
sampling models to examine the decision processes that underpin performance in
continuous reproduction tasks'%2. This modeling work provided insight into how memory
precision relates to a noisy process of evidence accumulation in perception and memory
that underpins memory based decisions.

In sum, the view that visual memory representations are fundamentally noisy highlights
that both short and long-term memory representations are continuous and share the
same fundamental properties (Fig. 2). These assumptions apply to memory
representations at different levels, from features to objects, and fits parsimoniously with
neuro-computational population coding theories of perception and memory. Finally, the
continuous representation view highlights that people must have ways of using noisy
evidence to make memory-based judgments and actions, which highlights the
fundamental role of decision-making processes in laboratory and real-world memory
tasks.

[H1] Capacity limits

Given evidence that memory representations are continuous, a critical research goal has
been to characterize limits in visual memory through a continuous framework. The
working memory and long-term memory literatures have taken different approaches to
this question. Whereas in long-term memory much work has accepted that no single fixed
capacity limit can be found because the effect of interference between items and the role
of retrieval cues will be complex and stimulus dependent, the working memory literature
has been much more focused on attempts to find a fixed resource limit that explains
performance in simplified settings.

One major difference between visual working and long-term memory is often framed as
differences in their putative capacities. Unlike visual long-term memory, which is thought
to be virtually unlimited, visual working memory is thought to be extremely limited, with
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performance dropping quickly as more information must be maintained®*'% While there is
no doubt that there are limits on how much information can be actively maintained in
working memory, especially due to limits on attention or maintenance processes that
work to reduce noise in task relevant representations, most tasks designed to tap into
working memory limits also artificially constrain memory capacity by intentionally
employing situations in which the most useful memory cues are limited in their availability
(due to interference or cue overload). In such tasks, one would expect a greater
accumulation of memory-based noise than in tasks with reduced attentional demands,
where there is less interference are more diagnostic retrieval cues. Since attentional
mechanisms improve the quality of actively maintained information, these paradigms are
informative about the capacity of attention and working memory maintenance processes,
which is what they are designed to probe. However, they may not be very reflective of
real-world uses of working memory, which will rarely occur under conditions designed to
reflect solely the limits of attentional maintenance processes. Instead, many working
memory tasks reveal primarily how accurately people can maintain information over short
intervals only in quite unfavorable and unnatural circumstances. For example, typical
visual working memory tasks involve the simultaneous flash of many meaningless, single
feature items for less than a second®® whereas by contrast, typical visual long-term
memory tasks involve the sequential presentation of meaningful items for several
seconds each®. As we explain in detail in the following sections, the contrast between
these tasks makes it unsurprising that performance in the former would be limited relative
to the latter, and many purported differences between memory systems can instead be
interpreted through a unidimensional view, where different visual memory tasks place
differential demands on attention and provide different amounts of task relevant
information that can be used to retrieve memories with higher fidelity.

[H2] Capacity in the lab versus the world

Differences in presentation format and stimuli across many working memory and long-
term memory tasks introduce differential effects of spatial and temporal context that do
not always reflect the true differences in everyday uses of shorter- and longer-term visual
memory. However, there are some differences between typical working memory and
long-term memory paradigms may in fact reflect genuine differences in the real-world use
of memory at short and long duration. For instance, spatiotemporal cues about an
object—such as the spatial location in which it was shown and the context of other items
around it—might be readily available in the environment in shorter-term but not longer-
term memory tasks'® because such cues tend to be available and stable only at short
durations in the real-world (e.g., while pouring tea, my mug will likely stay in the same
place, but over the course of a day it will like change position quite often). These effects
of context might differentially aid retrieval through external cues'®*% and introduce
biases into memory representations®”*°.

However, other differences between lab-based working memory and long-term memory
tasks are not necessarily typical of shorter- and longer-term visual memory in the world.
As an example, differences in encoding demands between typical working memory and
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long-term memory tasks are introduced if stimuli are presented simultaneously in several
spatial positions or sequentially in the same position. For instance, a typical visual
working memory task involves the simultaneous presentation of many objects, and
people must distribute visual attention broadly amongst multiple items at once with no
priority difference between the items and little time for elaborative encoding. By contrast,
in sequential tasks, where objects are presented one at a time, like those typically used to
assess long-term memory may be more representative of real-world situations where
selective priority and elaborative encoding can take place. These and other differences in
presentation format can drastically change estimates of working memory capacity for
meaningful stimuli; people seem to have a higher capacity for meaningful objects
presented serially'® an under some conditions people seem to have no upper bound in
how many objects can be recognized after serial presentation'”- Indeed, in contrast to
prominent claims®"53.108.108 that visual working memory tasks are not encoding limited, but
only limited by maintenance capacity: additional encoding time significantly enhances
performance in working memory tasks even for objects with a single feature®>110.11,
Critically, in many realistic situations people might largely use working memory by
sequentially focusing on a small number of items''2''3 implying that visual working
memory tasks where many items, all of equal relevance, are simultaneously presented at
once for a brief duration may be less characteristic of real-world demands. In summary,
it is important to consider the role of such attentional limits and differential encoding
demands in visual working and visual long-term memory tasks, before attributing
performance differences in these tasks to true differences in capacity or to core difference
between distinct memory systems.

[H2] Visual working memory resources

In the working memory domain, many attempts have been made to formalize a single,
limited capacity. This limited capacity view was popularized by the famous report that
people seem to maintain only about 7 ‘chunks’ of information'"4. The idea that working
memory capacity is set in terms of discrete chunks or items dominated the traditional
view of visual working memory capacity through the lens of ‘slot’ theories. According to
these theories, the architecture of working memory is composed of a discrete number of
slots that store objects composed of single or bound features and these slots are directly
responsible for the limits of working memory capacity*>46:68115-119 This framework
provides an intuitive way of thinking about capacity limits as a discrete number of items
that can be ‘held’ in memory. Despite this intuitive appeal, strong versions of this view
also construe memory representations as all-or-none, which cannot account for the
extensive evidence that memory representations vary in strength or noise.

However, while there is overwhelming evidence that memory representations are
continuous, it has proved conceptually challenging to provide a rigorous characterization
of working capacity in terms of resources'?%'2'. Attempts to measure and define a single
resource limit often hold many of the factors that would be expected to influence
performance in working memory tasks fixed (such as encoding time, delay, contextual
cues, and/or presentation format). Once fixed, they manipulate and measure how many
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simultaneously presented simple items can be remembered. These tasks thus investigate
a highly limited subset of what would be required to truly understand what constrains
performance in tasks in which attention is used to protect items in memory over short
delays. It is thus unclear if any putatively fixed resource limits are meaningful in more
real-world contexts or across even small variations in task. Within these confines, there is
substantial computational modeling work that is devoted towards developing concrete
definitions of resources. For instance, some researchers define resources as ‘neural real
estate’”'?? and suggest that visual memory representations are distributed across
populations of neurons in the visual cortex. In such models, the main source of resource
limits arises from the fact that a fixed firing rate is used to represent both a few and many
items in memory (the basic concept of divisive normalization'?3).

At the level of cognitive representations’%>'?* researchers use principles from signal
detection and sampling theory'? to define resources as a limited number of ‘evidence
samples’?, which determine performance across variations in memory load. Although
sampling theory makes more principled predictions than theories that simply postulate
‘resources’, the construct of samples is also poorly defined. It will therefore be important
to ground out the idea of samples more rigorously, such as a new proposal that retrieval
of representations from visual working memory reflect draws of samples from noisy
spiking activity in a population of neurons™. It will also be key to expand the
understanding of resources beyond an understanding of how well people represent
different numbers of simple objects flashed up briefly.

There has also been a resurgence of work using information-theoretic modeling
approaches that has yielded new insights into properties of resource limited memory
systems. These approaches frame memory systems in terms of information theoretic
concepts like compression'?” or rate distortion theory'?8. For instance, rate distortion
theory, which aims to explain how a capacity limited system should store information, can
be coupled with prior knowledge and task-relevance within deep neural network
modeling'?® to simulate many fundamental aspects of people’s memory errors, such as
biases towards the ensemble of remembered items®®. Broadly, this modeling approach
falls in line with ‘resource rational’ models'%'3'" according to which people select
computations that optimize outcomes but minimize the resource cost of implementing
these computations. Such models have promise for understanding resources in a more
general way, and across a broader set of tasks including visual working and long-term
memory tasks.

As noted above, many of these computational modeling frameworks of capacity were
developed using laboratory tasks that require short-term memorization of simple stimuli
presented simultaneously. Such a simultaneous presentation format does not necessarily
reflect how information is encoded over the short-term in real-world scenarios, where
each item might generally be encoded serially and where one might often re-sample
items rather than push the limits of working memory capacity''2132-134 Indeed, estimates
of visual working memory capacity when people encode meaningful, but not meaningless
items serially rather than simultaneously increase substantially, likely because this format
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provides time to connect online memory representations to existing knowledge'%. Even
for simple stimuli, claims that encoding time was not a limit on performance®"% have not
held up to more psychophysical methods, which reveal that performance increases
relatively smoothly with increasing encoding time, even with simple stimuli®>'1%1"", These
findings underscore that there are many experimental levers which can, and should, be
used to investigate and build ecological models of visual memory processes across time
(Box 2).

[H2] Attention and encoding limits

Another major source of capacity limits in both visual working and long-term memory
tasks are due to attentional processes during the initial encoding of items rather than
maintenance processes. This insight initially stems from research on change blindness: A
phenomenon wherein people fail to detect changes in an image after a brief transient,
such as an eye movement or a flicker of the display'®. Importantly, these changes can be
large and appear in salient parts of the display, meaning that change blindness does not
simply reflect failures of the perceptual system'®. Change blindness effects have been
used to motivate theories of consciousness'”'* and working memory'°'4° pecause they
suggest that people remember only a small portion of what they see despite having a rich
phenomenological experience of their immediate environment. Critically, one major way
to nearly eliminate change blindness effects is to direct people’s attention to objects’"41,
which ensures that objects are encoded into memory.

Other work suggests that encoding in visual working memory predicts the bandwidth of
visual long-term memory. For instance, the effects of interference can be offset via
attentional processes'?-146 that induce repulsive biases at encoding and individuate
similar memory representations in visual long-term memory®”-'4’. Other researchers have
found that individual differences in performance on visual working memory tasks
predicted performance on visual long-term memory tasks, but only under conditions in
which visual working memory load is taxed'®. These results suggest that effects on
visual long-term memory were due to failures of encoding rather than maintenance
capacity, and underscores how controlling for task demands aligns with a unidimensional
model of visual memory across timescales. Other work also provides converging support
for the view that manipulations of attention can help upweight and improve long-term
memory for objects'® However, attentional processes might only be used to deprioritize
irrelevant memory representations indirectly, under conditions of biased competition®®
More precisely, some evidence suggests that beneficial effects of attention occur only
when multiple (two) stimuli were presented simultaneously and the irrelevant item was
paired with an item than needed to be attended. This work directly connects to the finding
that simultaneous as opposed to serial presentation in visual memory tasks can introduce
attentional capacity limits and uncover structural bottlenecks™"

Thus, attentional limits at encoding are common to both visual working and long-term
memory despite being generally understudied in visual long-term memory. Attentional
limits at encoding, as well as online activation, fit well with the view that memory
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representations are fundamentally noisy. These limits can therefore be viewed as one
kind of resource that places limits on memory performance when encoding demands are
high either in short or long-term visual memory tasks. More broadly, poor performance in
most visual working memory tasks might reflect differences in encoding demands of
visual working-memory and visual long-term memory laboratory tasks in addition to or
instead of differential memory maintenance abilities or differential memory
representations over different timescales per se. Thus, rather than viewing visual working
and long-term memory as distinct systems that differ in capacity, a cognitive architecture
in which attentional maintenance supports working activation of a subset of items that
otherwise share the same underlying representation as long-term memory is a useful
framework.

[H1] Influence of knowledge on visual memory

Visual memory is often assumed to be inherently perceptual in nature. However, existing
knowledge and hierarchical knowledge structures help scaffold memory of real-world
visual stimuli in both working-memory and long-term memory. This influence is taken for
granted in visual long-term memory tasks, in which participants tend to be shown real-
world scenes, objects, or faces as stimuli'**'52 and where conceptual knowledge has long
been known to scaffold visual memories. For example, one of the most classic studies in
constructive memory had people repeatedly draw an ambiguously face-like visual
stimulus from memory and found that these drawings slowly morphed over repeated
reproductions to be more like a genuine face?®. These results demonstrate that people
scaffold their memory for visual features using their knowledge of faces. Similarly, classic
work has found that visual reproductions of ambiguous images are pulled in the direction
of a label that was associated with them?”.

By contrast, the role of knowledge in visual working memory tasks has largely been
underappreciated. In the following sections, we begin by describing how considering the
role of meaning in shorter-term visual memory tasks has transformed views on how visual
memory representations are maintained in everyday memory tasks. We then disentangle
the joint contribution of stimulus complexity and meaning in shaping visual memory
representations. Next, we integrate these points by discussing cognitive and neural
evidence for the hierarchical nature of visual memory and discuss how such hierarchical
structures as well as priors, scaffold memories for visual information in the real-world.

[H2] Meaning in working memory

In traditional visual working memory tasks, people tend to be shown meaningless stimuli,
such as circles, defined by simple features, such as color*®5365  These simple,
meaningless stimuli are often assumed to best assess the core capacity of working
memory because they have no semantic associations and therefore require ongoing
active maintenance to remember them*>'%3, Sensory recruitment models based on such
tasks reinforce the idea that people store visual working memories within the sensory
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regions that process such stimuli (mainly low-level visual areas®’), which can lead to
inferences because they are stored solely in an inherently perceptual format.

Using simple, single feature stimuli likely does increase the need for attentional
maintenance to protect stimuli from noise, as such stimuli provide very poor long-term
memory traces'*. However, reducing the number of features that can be stored about an
object, for example by using meaningless stimuli such as colored shapes, also reduces
how distinctive each object is in memory. This lack of distinctiveness leads to inter-item
interference and confusability at retrieval which inevitably reduces performance in
working memory tasks, leading to an underestimation of both visual working memory
performance and the role of knowledge in scaffolding such performance. While such
simple stimuli help to ensure the use of attentional maintenance, their use does not
necessarily uncover the true architecture or computations that these visual working
memory tasks rely on'%-1%8,

Consider memory for Mooney faces, two tone images that are sometimes perceived as a
face and other times appear as a meaningless black and white blob (Fig. 4). In long-term
memory, such stimuli have been used to show that recognition memory for the exact
same item can be improved when they are perceived as meaningful (as faces) vs. not (as
shape blobs)'%:1% |ater work built on this idea in the study of working memory,
demonstrating that perceiving a Mooney face as a face rather than a meaningless blob
improves working memory performance and leads to an increase in the contralateral
delay activity, a neural index of active maintenance engagement'®® This result indicates
that there is more active maintenance activity when a stimulus is perceived as meaningful
(such as a face or real-world object) than when it is not- There are further examples in
which visually identical stimuli are better remembered in working memory tasks when
they can be processed in a way that connects them to higher-level features or previous
knowledge®"1%%-162- These benefits extend to visual working memory performance
whenever prior knowledge and expertise'®®'% can be used to scaffold memory, such as
for real world objects'®®, famous faces'®®, and functional relationships between objects'”:
Overall, this points to the fact that visual working memory, like visual long-term memory,
is not based solely on perceptual features. Instead, more meaningful stimuli are better
remembered than less meaningful stimuli that are perceptually identical.

[H2] Complexity and meaning

In contrast to the predictions of rudimentary information theoretic models, people are far
better at representing complex, meaningful stimuli in comparison to their performance for
simple meaningless stimuli, an idea that dates to very early work on ‘chunking’''* (Fig.
4a). Although this early work subscribed to very discrete views of chunking and capacity
limits that are inconsistent with modern noise-based theories, its core message remains
critical and underappreciated as an explanatory factor in visual working memory studies.

One explanation for the memory benefits of perceiving a meaningful and complex,
multidimensional stimulus'® is that doing so enhances the ability to extract features from
that image. One specific hypothesis is that people are not completely flexible in their
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encoding, relying heavily on pre-learned features (for instance, using phonological
features to store both binary and decimal digits, rather than adaptively switching to a
code that takes advantage of the additional compressibility of binary digits'*’. Thus, when
remembering an unfamiliar, meaningless image one can only encode it in terms of its
low-level shape, spatial frequency, and other low-level and mid-level features (Fig. 4b).
However, when perceiving the same stimulus as meaningful, one unlocks higher level
visual features, such as face-specific features like eye position, age, and nose angle. This
additional complexity likely improves performance because they make each stimulus
more distinctive from the other stimuli (Fig. 4c). This role of featural distinctiveness is
commonly modeled in the long-term recognition memory literature®® but rarely in working
memory tasks. Furthermore, recognizing features at a higher-level uncovers relations
between features and makes it possible to efficiently encode and chunk multiple lower-
level features jointly instead of separately, which also improves memory'27:169,

Importantly, however, it is not the case that adding arbitrary features to an object
improves memory performance when those features are not part of one’s library of pre-
learned features. For instance, although scrambled or inverted stimuli can be more
complex and perceptually rich than simpler single feature stimuli, they do not offer the
opportunity to make use of existing higher-level features in the same way as realistic,
meaningful stimuli presented in their pre-learned configuration. Indeed, memorizing more
versus less visually complex meaningless stimuli hurts rather than helps visual memory
performance’®® 179171 Thus, the benefits for extracting additional features from a visual
object are only observed with stimuli with existing ways to encode high-level visual and
semantic information, not scrambled yet perceptually complex stimuli'®2%7_ This concept
is sometimes formalized in working memory as a kind of ‘model mismatch’'?8: Stimuli that
match an internal model of the world are easier to remember than those that do not.

As we elaborate below, the beneficial role of prior knowledge bridges many findings on
how complexity and meaning can jointly improve visual working memory performance.
These include benefits when multiple features are chunked into a single object as
compared to separate ones?’, better performance at remembering recognized Mooney
faces than unrecognized Mooney faces'®® and other aspects of model mismatch'?, as
well as improvements in working memory performance after learning about which
features tend to go together'?’. Conceptualizing chunking in a more continuous way,
consistent with noisy representations, remains an important goal for future work on visual
memory'’2. Conceptions of chunking construed in terms of more sophisticated formal
models of information compression or rate-distortion theory'?%22, which have the
potential to take into account differential effects of stimulus complexity, will likely be
critical to future progress in understanding these phenomena. Through this more
contemporary lens, visual memory chunking can be seen as a form of ‘lossy’
compression of continuous multidimensional variables, that is, compression of memory
representations that results in some information loss by forming more efficient, more
abstract representations that are linked to prior knowledge structures . More generally,
although item-based theories have often been used to explain chunking in memory'"3-175,
continuous theories of memory strength are equally compatible with the view that
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memory representations can be translated into more efficient formats, and that the
common link between discrete-slot models and compressibility is historical rather than
logical.

[H2] Elaborative encoding and hierarchical memories

The idea that recognizing and connecting an object to high-level visual and semantic
features improves memory is closely related to the popular idea of ‘levels of processing’
which is more commonly studied for verbal materials'’®'"”. According to this view,
processing of stimuli at a ‘deeper’ level leads to more elaborated memory traces'’®. Such
memory traces are then more distinctive'’®'8° and easier to retrieve because they are
more connected to multiple distinct knowledge structures that can serve as retrieval
cues'’®'81_Elaborative encoding in visual memory can occur when encoding semantic
features, but also mid-level (such as shape) and high-level (such as the distance between
two eyes on a face) visual features. Thus, the hierarchical structure of visual objects and
scenes, in terms of low-level to high-level visual features and semantic information can
enable improved memory performance.

Currently, how the hierarchy of visual features scaffold memory performance and improve
the ability to remember realistic stimuli has not been explained by most models of visual
working memory performance. Instead, even models that focus on the prior knowledge
tend to focus on memory capacity rather than memory representations (e.g., rate
distortion or information theoretic models, as discussed above). Thus, these models tend
to focus on how performance varies as a function of the number of simple visual features
shown. Important recent work has attempted to model representations of realistic stimuli
using generative deep learning neural nets to capture how stimuli are represented at
multiple levels of the visual hierarchy'® This model attempts to mimic the hierarchical
structure of the ventral visual pathway, capturing the encoding of low-level visual features,
such as orientation, and mid-level features, such as shape. Critically, by using recurrent
feedback mechanisms, the model can be used to reconstruct important memory
phenomena, such as more resource-efficient representation of familiar items, and
efficient recognition of novel objects that share high-level features with familiar items.
These findings and related work 88 highlight that interactions across the visual
hierarchy are bidirectional, meaning that signals from early areas of the visual hierarchy
influence representations at higher levels, and vice versa and studying these interactions
is an important step toward expanding models of visual working memory to account for a
feature hierarchy.

In contrast to the visual working memory literature, the role of elaborative encoding and
the availability of high-level or semantic features has more frequently been studied in the
domain of visual long-term memory. For example, the role of categories in memory, such
as the finding that memories might be biased towards commonly encountered instances
of a category, suggests that semantic features, in addition to perceptual features, play a
substantial role in memory encoding'®-¥”. Recent work has also shown that normal,
unmodified faces, activate higher-dimensional neural representations (including the
involvement of high-level face processing regions) and results in better memory
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compared to modified faces'®. The literature on memorability also taps into these
concepts. Memorability is based on the empirical finding that some stimuli are more often
remembered successfully, compared to other—sometimes very similar— stimuli.
Although this concept is sometimes labeled intrinsic memorability, classic memory
theories'”®'"® would suggest that some stimuli are more memorable because they connect
more directly to higher-level visual and semantic features, enabling more elaborative
encoding and are thus more distinctive (have lowered summed similarity to the current
memory set'®), rather than an intrinsic property of the stimulus itself. Teasing apart the
relative contributions of elaborative encoding and distinctiveness within the set of items in
memory to reliability in responses across individuals remains an active area of work in the
memorability literature*'%°,

In addition to the fact that features of a visual stimulus can be represented at multiple
levels in the visual hierarchy (e.g., more perceptual, or more conceptual), there is even a
stronger sense in which visual memory can be considered hierarchical. Visual memory
might be fundamentally structured, with distinct representations at different levels of
abstraction. One reliable phenomenon that supports this view is that people’s memories
are biased towards, but are not replaced with, their priors®19"192_ For example, people’s
memories for the size of specific instances of natural objects (such as fruits and
vegetables) are biased towards the average size of the object categories (size of all
apples) and superordinate categories (size of all fruits'?; Box 3). This effect of priors on
memory even holds in tasks in which priors are not informative for the stimulus selection
process. For instance, people use knowledge of color categories even in a task where
items’ colors are randomly chosen'®* — such that even for extremely simple stimuli like
colored dots, visual memories naturally drift toward prior knowledge of color categories'®.
More precisely, evidence suggests that people see some hues of a color as being more
representative of the color category, and their memory will tend to drift towards these
representative feature values.

In addition to memory depending on knowledge acquired before encoding, memories also
seem to be encoded hierarchically within an episode. For example, when faced with
sequences of items, in visual working- or long-term memory tasks, people make use of
similarity among multiple items to store abstractions and those abstractions influence
subsequent memory for individual items'®6-"%8: For instance, scenes help provide a
structure to the objects within them as shown by evidence that if people are presented an
array of objects that are embedded within a scene, people encode both the ensemble
structure of the entire scene in addition to individual items%!:199.200- Similarly, when trying
to remember real-world scenes, people encode the gist plus detailed information about
some specific objects?°'292 Moreover, they use the gist to guide their choice of which
specific objects to remember?32%4 and are influenced by the gist when later trying to
recall the details of the scene, tending to remember objects that are consistent with the
scene gist even if they were not present?®>-2%7, Even in randomly generated displays of
simple colors, people are typically able to extract some spatial or feature-based structure
from the display, which they use to encode the items with respect to each other rather
than totally independently?®* Finally, in some situations, people seem to encode relatively
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separate texture or ensemble information in addition to individual items and use it to alter
their responses?®,

In long-term memory, a similar view prevails that episodic memories, are hierarchical.
Episodic long-term memories integrate across several levels?®® or storing both gist and
detailed item information and trading them off*3. These episodic memory processes
flexibly integrate disparate components (including details and related information) of an
autobiographical event into a coherent representation of the past or future2°°:210,

To summarize, visual memory in the real-world operates on meaningful and familiar
items, such as real-world objects and scenes. Memory for real-world objects is jointly but
differentially influenced by stimulus meaning and complexity, where meaning can bolster
memory by distributing information across levels of the visual hierarchy, with memory for
perceptual features influenced by and supported by memory for more abstract conceptual
features, and added complexity can further scaffold memory by providing additional
relational information that can be used to compress meaningful information, or serve as
an additional retrieval cue. Likewise, such information is heavily influenced by prior
knowledge, which can adaptively bias memory representations to optimize memory
performance. Collectively, the study of memory for meaningful as opposed to
meaningless, degraded visual information can help ground theories and models of visual
memory in the real-world.

[H1] Summary and future directions

The visual system is usually conceived of in terms of a hierarchy of population codes,
with representations that become more complex as we move from the primary visual
cortex up to more anterior visual regions. In this Review, we have suggested that a
similar set of ideas can provide a useful mental model for understanding visual memory
representations, with representations for objects or scenes conceived of as population-
based, noisy (variable in strength), and stored in terms of hierarchical and distributed
memory representations.

This conception of visual memory raises major challenges for measuring memory
performance. In particular, modeling the decision process people use to integrate across
an entire hierarchy of noisy representations will be critical to successfully measuring and
understanding the memory representations themselves. In this context, a fruitful direction
for future research is to examine how model-based approximations of representations —
such as those instantiated via convolutional neural nets?''2'2, or probabilistic models of
knowledge structures?' — can yield insights into how continuous representations arise
and are integrated across the visual hierarchy.

Greater synergy between the kinds of models and mechanisms proposed in visual
working and visual long-term memory tasks will be critical to progress across both
domains, but particularly in the domain of working memory. Existing working memory
models are largely focused on manipulations of memory load for brief, simultaneous
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presentations of low level visual features, and more cohesive models that use many of
the same principles proposed in models of long-term memory are needed to examine and
explain how encoding, delay, frequency of item presentation, context, testing
conditions?' and item influence visual working memory processes. Such modeling
approaches can also help illuminate the intersection between visual working and long-
term memory and the role of limits on attentional protection of items from noise
accumulation in real world tasks. To this point, it is also important to continue work that
precisely defines — at the cognitive and neural level — how differences in ‘activation’ or
attentional engagement can distinguish visual working-memory and long-term memory.

Finally, a focus on precise quantification of memory representations in visual memory (as
in continuous reproduction) and on research domains in which representations are well
understood, such as in perception and other domains where neuroscience informs the
precise representation structure of items, will enable the development of detailed
computational models that can help elucidate performance. However, it is also critical to
consider that impoverished stimuli like single visual features do not capture the full
breadth of scenarios where memory is used, such as in the real-world, and so models—
particularly of visual working memory performance—must carefully consider the role of
elaborative encoding of more realistic stimuli.
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Figure captions

Figure 1. Visual memory at different time scales. Features of a visual object (1) are
extracted and processed, eliciting a noisy population of activity over feature values, such
as edges, color, and shape (2). Here we depict a simple case in which the color of the
object is relatively arbitrary. Perception of the relevant color is noisy, and multiple colors
near the shown green color all feel somewhat familiar after encoding the item (3).
Focusing on actively holding an item in mind using attention can slow, but not stop, the
accumulation of noise in that item’s representation (4). Sampling the same memory
representation at different time points reveals that the accumulated noise corrupts and
alters the qualities of the originally encoded information, resulting in a noisy and
imprecise sense of the color of the original object (5-6).

Figure 2. Memory strength across time. Distributions of memory errors (gray) obtained
from continuous reproduction visual-working and long-term memory tasks** fit with a
model (blue line®®) that requires only a single parameter which captures memory strength.
When the same stimulus features are used and are probed in the same way,
representations across the two timescales can be strong and precise or weak and noisy
and degrade in an identical fashion as memory strength weakens.

Figure 3. Categorical and continuous reproduction of memory. A. Early methods for
measuring memory performance used binary tasks, such as old/new for visual working
memory and change detection tasks for long-term memory. Data from binary tasks have
most commonly been interpreted as providing support for discrete memory
representations*>°. B. Continuous reproduction tasks are memory versions of the
psychophysics method of adjustment. These tasks provide a fine-grained measure of the
magnitude and direction of memory errors, which reveal that representations are noisy
and are rarely completely lost in discrete fashion. C. Major insights from tasks in B are
that precision of memory representations declines monotonically with memory load,
declines with increasing delay, and that memory representations can be biased (for
example, repulsed away from one another) depending on the relationship between
currently active items.

Figure 4 A. As individual items become more complex, a computer or other agent that
encodes the stimulus relatively optimally and flexibly can store many fewer of the items
(because they have a fixed capacity in bits). However, human performance remains
relatively constant as complexity increases so long as the information is meaningful, or
capable of being scaffolded by previously acquired information. People have flexibility in
their encoding but rely heavily on pre-learned features (for instance, using phonological
features to store both binary and decimal digits, rather than adaptively switching to a
code that takes advantage of the additional compressibility of binary digits).] B. When
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inverted Mooney faces (meaningless stimuli) are maintained in memory, human
performance is relatively poor compared to when the same faces are upright (and
recognized as faces). One hypothesis is that existing high-level features that apply to
perceived faces but not shapes add meaningful dimensions to the stimuli, therefore
making them more separable and robust to interference and noise (such as age of the
face, shown as the Z axis).
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BOX 1: Memory as a point or a population

Conceiving of memory representations as noisy helps bridge the gap between cognitive
and neural models of visual working and long-term memory. Much neural evidence
suggests that cognitive representations are instantiated in distributed patterns of activity
across neural populations and that activity across and within these populations is
corrupted by noise®%215216 By contrast, many cognitive models of memory — especially
long-term memory — tend to treat memory for an object as being effectively a single
unitized familiarity signal, perhaps aided by other context-based sources of memory when
determining whether an item has been seen before’*2'". In the past few years, other work
has suggested that in working memory and long-term memory, these two views can be
naturally reconciled by taking the signal-detection-based approach common in
understanding familiarity and turning it into a population of familiarity signals modulated
by psychophysical similarity®®. On the neural level, psychophysical similarity can arise
from the tuning functions in feature-selective populations of neurons®, and memory
retrieval involves decoding these neural patterns of activations of stored features.
[Approaches like these therefore provide a common framework for thinking about noise
across both cognitive decision models and neural models, bridging different levels of
processing?'e,

Conceptions of memory based on a population of signals for remembering a single color
are quite different from views in which what is stored is just a single point representation
(‘1 think it was red’). An actively debated question that is deeply connected to the
population coding view of visual memory?'®, is whether people truly represent perceptual
and visual memories as point estimates or as a probability distribution over features
values??, This question is difficult to address because versions of point estimates models
can mimic models that postulate probabilistic cognitive representations??'. Thus,
addressing this question might depend critically on understanding the linking function
between neural activity and cognitive representations. For instance, while population
coding neural models are strongly compatible with the idea that people represent visual
memories probabilistically (in early visual cortex), it is possible that this activity is
inaccessible to higher-level processing and thus cannot be used to make decisions in
memory tasks®2. Nevertheless, people’s subjective uncertainty in their memories tracks
qualitative and quantitative properties of their memory errors’®7, indicating that at a
minimum people do have access to and readout information regarding how noisy their
memory representations are, which suggests the possibility that visual memories are truly
populations, not points.
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BOX 2: Continuity in memory demands richer models
The finding that performance increases relatively continuously across different visual

working and long-term memory manipulations and tasks raises the question of whether a
single capacity limit is a useful construct, particularly in the domain of working memory
where it is often used to motivate models and debates*6%°,

Models of visual working memory are typically developed to explain how performance
varies as a function of how many items are simultaneously, briefly presented®468222, As
such, these models explain just a single slice through the space of possible levels of
memory performance (top graph in figure). For instance, modulating encoding time, set
size, delay, and how distinctive test items are to those in memory influences
performance, but these variables are not often manipulated in systematic ways because
‘resource’ models generally do not provide an integrative framework for understanding
how these levers influence the availability of a resource or noise accrual.

Given these limitations, a fruitful direction for visual working memory research is one
taken in the study of long-term recognition and recall memory. In this domain,
researchers often build integrative architectural models that describe processes that limit
performance as a function of the particular encoding and retrieval manipulations for a
given set of stimuli'%>168223 35 opposed to simply using more vague constructs such as
capacity or limited resources. For example, considerations of how the distinctiveness of
stimuli relate to the memory cues used will likely be fruitful in working memory research
because the similarity of alternative items presented at test plays an important role in
shaping memory performance. Similarly, some stimuli spaces — such as real-world
objects — have a higher upper bound on distinctiveness (right graph in figure) than those
typically modeled (such as colors)'%. Taking into account the full set of manipulations that
impact performance, as opposed to heavily prioritizing how many items are
simultaneously present, will lead to a deeper understanding of how visual memory
representations are affected by task demands and provide a common framework for
thinking about visual memory at different time-scales.
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BOX 3: Random guesses in memory

It is often proposed that memory performance includes many responses that are
completely independent of the information held in working memory, with no relationship
between the response and the encoded nor the remembered information. In such a view,
quantifying such ‘pure guesses’ is critical to understanding working memory®”¢® and long-
term memory??4-226, However, if we accept the view that memory is both hierarchical and
continuous in strength, the utility of a construct such a pure guessing is unclear.

Consider a visual working memory task in which one sees several different apples
presented on a display and must remember their sizes for a memory probe a few
seconds later. The vast majority of evidence suggests that although noise will accumulate
for each item independently, this noise cannot be characterized as instantaneous and
infinite (which is what is necessary for an item to be a pure guess). Instead, every item
will likely be represented, even if this is with a very large degree of noise3-50.64.82
However, even if items are so noisy that they may functionally be completely gone from
memory, continuous models do not conceive of this a distinct state of ‘guessing’. Such
models instead hold the core assumption that even under conditions where an item is
encoded extremely poorly, people still have some information in memory about that item;
that information is simply almost total noise. However, this noise still has content
information, and it is this content information people use to make their response.

Even if, in contrast to this view®” an item representation is fully lost from memory, it is still
unclear whether considering a response to that item as a guess is useful (as in??’). Even
without any information about that specific item, one has substantial information about the
presented items in a more general sense. For instance, one will know what size the items
were in general on the display®® will likely know all the items present were apples, will
have strong expectations about the expected size of an apple in general (versus other
fruit such as a watermelon'228), and will know the expected size of each item on a
display with just 3 apples on it. All of this information was acquired during the episode
and informs the response about the size of the particular item, even if the individual
representation of the actual size of a single apple is indistinguishable from noise at test.
Thus, rather than a focus on whether or not participants are ‘guessing’, researchers
should focus on capturing the true contents of memory, taking into account the fact that
memory is noisy, reconstructive in nature'! and depends on integration across multiple
levels of representational abstraction®:1%,
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