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Abstract
Propelled by the omnipresence of versatile data capture, communication, and computing technologies, physical sensing has
revolutionized the avenue for decisively interpreting the real world. However, various limitations hinder physical sensing’s
effectiveness in critical scenarios such as disaster response and urban anomaly detection. Meanwhile, social sensing is contriving
as a pervasive sensing paradigm leveraging observations from human participants equipped with portable devices and ubiquitous
Internet connectivity to perceive the environment. Despite its virtues, social sensing also inherently suffers from a few drawbacks
(e.g., inconsistent reliability and uncertain data provenance). Motivated by the complementary strengths of the two sensing
modes, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that explores the collective intelligence of
humans and machines to reconstruct the “state of the world,” both physically and socially. While a good number of interesting
SPS applications have been studied, several critical unsolved challenges still exist in SPS. In this paper, we provide a comprehensive
survey of SPS, emphasizing its definition, key enablers, state-of-the-art applications, potential research challenges, and roadmap
for future work. This paper intends to bridge the knowledge gap of existing sensing-focused survey papers by thoroughly
examining the various aspects of SPS crucial for building potent SPS systems.
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Introduction

With the advent of high-precision transducers in conjunc-
tion with multi-faceted communication and computation

hardware, physical sensing has matured into an avenue for
accurate and agile information absorption from the real
world. Broadly speaking, the term physical sensing refers to
the process of leveraging hardware sensors (e.g., infrared
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detectors, proximity sensors, and microphones) to capture
the physical world stimuli and can be predominantly
classified into two variants: stationary (e.g., surveillance
cameras, digital thermostats) and mobile (e.g., unmanned
aerial vehicles (UAV), robots, satellites) (Mitchell and Chen
2014). A few notable application domains enabled by
physical sensing include: (i) environmental monitoring,
where arrays of sensors (e.g., temperature, pressure, and
humidity sensors) are utilized to assess environmental
conditions (Catlett et al., 2017); (ii) traffic surveillance, in
which cameras are used to identify roadside incidents such
as traffic accidents (Bramberger et al., 2006); (iii) industrial
process monitoring, where lasers and scanners are used to
coordinate manufacturing processes (Chen et al., 2016); and
(iv) personal fitness monitoring where wearable fitness
trackers assess individuals’ daily physical activities (Banos
et al., 2014).

Besides physical sensing, social sensing has progressed
as a new sensing paradigm fueled by the pervasive influence
of human-centric information discovery and the widespread
prevalence of Internet connectivity, where knowledge
contributed by human sensors on social data collection
platforms (e.g., Twitter, Waze) are acquired and analyzed to
perceive real-world occurrences (Wang et al., 2015a). Social
sensing can be generally categorized into two variants:
social media sensing and crowdsensing (Wang et al.,
2014c). In social media sensing, online users proactively
report occurrences around them through online social media
(e.g., Twitter, Instagram, and Facebook) and form virtual
relationships with other users (e.g., friends or followers)
(Stieglitz et al., 2018). In crowdsensing, interested partic-
ipants are assigned to carry out specialized distributed
sensing tasks through various crowdsensing platforms (e.g.,
mobile apps such as Citizen and Waze or websites such as
CrimeMapping.com). In specific scenarios, crowdsensing
might be incentivized/monetized to encourage greater
participation. Examples of social sensing applications

include studying human mobility in urban areas (Noulas
et al., 2012); obtaining situation awareness in the aftermath
of disasters (Zhang et al., 2017a), poverty prediction and
mapping (Ledesma et al., 2020), locating power outages in
cities (Hultquist et al., 2015), urban land usage classification
(Soliman et al., 2017), and contact tracing of contagious
diseases such as COVID-19 (Rashid and Wang 2020).
Figure 1 (a) and (b) illustrate examples of physical and
social sensing applications, respectively.

While physical sensing has an established reputation for
accurately capturing raw data from the environment, it
suffers from several fundamental limitations such as: (i)
physical sensors are designed to be application-specific and
are limited by the events they can sense (Khalil et al., 2014),
restricting their sensing scope (e.g., a temperature sensor
can only capture the surrounding temperature while a mi-
crophone is designed to only record sound); (ii) autonomous
mobile physical sensing systems such as networks of un-
manned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) do require some form of human assistance
to locate events of interest, regardless of being autonomous
(Rashid et al., 2019a); (iii) physical sensors are typically
scarce resources and need to be deployed sparingly, making
their sensing coverage limited (e.g., a group of ground
robots might not be able to cover a large forest during a
wildfire) (Casbeer et al., 2005); (iv) stationary physical
sensors such as proximity sensors and surveillance cameras
are installed in particular locations cannot be relocated
easily (Rashid and Wang 2021); and (v) physical sensors
have an initial deployment cost as well as periodic main-
tenance costs (Blaszczyszyn and Radunovic 2008).

Social sensing enjoys an array of benefits not typical in
physical sensing, such as: (i) multifaceted information ac-
quisition (e.g., people who report traffic incidents on social
media can also report crime incidents) (Wang et al., 2019a);
(ii) greater mobility (e.g., human sensors tend to sponta-
neously move from one location to another in contrast to

Figure 1. (a) Examples of physical sensing applications; (b) Examples of social sensing applications.
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stationary physical sensors) (Zhang et al., 2019b); (iii) lower
management costs (e.g. hardware sensors require periodic
maintenance and repairs in contrast to human sensors which
do not require such service from the application end) (Li
et al., 2019); and (iv) wider sensing coverage due to the
pervasive nature of social signals and the active partici-
pation of individuals (e.g., any person possessing a smart
device with Internet connectivity can post on the social
media from any part of the world) (Wang et al., 2012b).
However, despite its immense benefits, social sensing also
has a number of drawbacks: (i) inconsistent reliability since
social sensing innately relies on noisy social signals con-
tributed by unvetted human users (e.g., people can report
observations that are biased or influenced by personal
views) (Zhang et al., 2018b); (ii) uncertain data provenance
since human sensors tend to be correlated and may prop-
agate rumors or falsified facts initiated by other users (Shang
et al., 2019); (iii) limited sensing availability since social
sensing relies on the participatory nature of individuals
(e.g., people may be less interested in certain types of public
occurrences and not report them through crowdsensing
platforms) (Zhang et al., 2018g); (iv) privacy concerns
whereby the personal information of the participants of
social sensing remains at risk of falling into the wrong hands
(e.g., the whereabouts of an individual may be obtained
from crowdsensing apps and used by criminals to threaten
them) (Pournajaf et al., 2016); and (v) unstructured data
since human sensors can use any combination of text (which
can further consist of emojis, special characters, and dif-
ferent languages), images, or video to report on social data
platforms (Zhang et al., 2016).

Motivated by the complementary virtues of social and
physical sensing, social-physical sensing (SPS) is
emerging as an integrated sensing paradigm that explores
the collective intelligence of both humans and machines to
reconstruct the state of the world, both physically and so-
cially (Qiu et al., 2016; De et al., 2017; Wang et al., 2013a).
Let us consider an SPS application known as social airborne
sensing (SAS) (Rashid et al., 2020b) as shown in Figure 2.
In SAS, social media signals are analyzed to discover events
of interest (e.g., a building on fire) and dispatch unmanned
aerial vehicles (UAVs) to validate the authenticity of the
reported events using onboard sensors (e.g., cameras and
thermal scanners). The validation results from the UAVs can
be further used to filter out unreliable social media users.
Thus, SPS-based systems capitalize on the versatile sensing
potentials of social and physical sensors by integrating them
and mitigating their individual drawbacks for more holistic
information retrieval and interpretation. In this survey pa-
per, we explore the existing literature on SPS, emphasizing
the enabling technologies behind SPS, state-of-the-art SPS
applications, recurring challenges in SPS, and opportunities
for future research in this emerging domain. Several recent
papers on collaborative sensing, such as (Chen et al., 2016;

O’Hare et al., 2015) present schemes that embody human
discretion alongside physical sensing, exemplifying the
principle of human-in-the-loop (e.g., assigning dedicated
human agents to fine-tune the data captured by physical
sensors). By definition, collaborative sensing leverages the
cooperation of different sensors to complete large-scale
sensing tasks (Yi et al., 2018). While there are a few ap-
parent similarities, a set of crucial distinctions between
collaborative sensing and SPS are that: (i) SPS is a much
broader concept that not only considers human judgment
but also explicitly models humans as “sensors” contributing
raw knowledge through social data platforms; (ii) SPS
applications need to characterize the dependencies between
the social and physical data sources and correlate the col-
lected data across the two sensing paradigms, a challenge
which is not necessarily present for collaborative sensing
applications (Chen et al., 2016); and (iii) human agents in
collaborative sensing are often dedicated individuals (He
et al., 2022) who are generally trustworthy and reliable and
have high availability, whereas in SPS the human data
sources can be unvetted online users on social media
platforms who participate opportunistically and can be
unreliable (Li et al., 2019).

A few other notable application domains empowered by
SPS include urban search and rescue (Dubey 2019), smart
healthcare (Chen et al., 2018), simultaneous localization
and mapping (Jiang et al., 2019), human mobility modeling
(Noulas et al., 2012), and anomaly detection (Lyu et al.,
2016). Figure 3 highlights several recent examples of
representative SPS applications which encompass: (i)
anomalistic crowd detection with social media and sur-
veillance cameras; (ii) social vehicular sensor network
(S-VSN)-based plate recognition; (iii) fire monitoring with
UAV and crowdsensing; (iv) road damage detection with
satellites and social media; (v) crime reporting with wireless
sensor networks (WSN) and crowdsensing; and (vi) contact
tracing with social media and wearable sensors. The key
design philosophy of such SPS applications is to harness the
complementary information from social and physical sen-
sors and draw a complete picture of real-world occurrences

Figure 2. The architecture of a social airborne sensing (SAS)
system.
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that otherwise might not be possible with standalone sen-
sors. For instance, in an anomalistic crowd detection ap-
plication based solely on networked surveillance cameras,
the cameras might only be able to detect crowd events of
interest (e.g., election campaigns, protests) and estimate
their size without deducing the key attributes of the crowds,
such as nature and cause. In contrast, people might post their
plans for accumulating in public places across social media
platforms (e.g., Twitter, Facebook) and post real-time up-
dates on the progress of the crowds. However, the size and
exact duration of the crowds might not be attainable from
just the social media reports. When the complementary
information from the social and physical sensing sources are
merged, it can potentially be used to infer the critical at-
tributes of the crowd (e.g., duration, nature, and cause of the
crowd) and tell the complete story behind the crowd
gathering in the first place (e.g., for staging a public
demonstration in support of a protest).

While SPS promises the groundwork for a paradigm shift
in sensing and data collection, it also brings new challenges
to address. Examples of such challenges include: (i) how to
simultaneously collect relevant data from multitudes of
social and physical sensors scattered around the world and
relate the collected data to each other in a reliable fashion
given their diverse characteristics? (ii) How to efficiently
handle the complex interactions between the human, cyber,
and physical components in SPS when melding social
sensing with physical sensing? (iii) How to handle the data
and device heterogeneity originating from the two distinct
sensing paradigms (e.g., text data from social media vs.
image data from cameras)? (iv) How to characterize the
dependency and correlation between the data sources when
physical and social sensors are melded together? (v) How to
ensure end-user privacy and security considering the diverse
sets of complementary information contained in the social
and physical sensing mediums (e.g., geo-location data from

mobile devices can be combined with information from
social media posts of users to reveal sensitive information)?
(vi) How to adapt to the intricate dynamics that arise when
jointly exploring the physical world and the social domain
(e.g., how to concurrently cope with the rapidly evolving
physical world events and the escalating social media re-
ports during an emergency response)?

Although the above challenges impose difficulty in
developing effective SPS systems, they also set forth
opportunities to instigate future research directions. To
address the highlighted challenges, we envision the
potential to incorporate techniques from multiple dis-
ciplines, such as networked sensing, communication
systems, estimation theory, control theory, artificial
intelligence (AI), distributed systems, and cryptogra-
phy. Several current survey papers on physical sensing
have investigated the functionality and features of re-
cent physical sensing approaches (e.g., roadside sur-
veillance systems, wildfire monitoring systems, indoor
localization using wireless networks) (Lee and Gerla
2010; Zafari et al., 2019). On the same note, several
survey papers on social sensing have provided com-
parative studies on representative social sensing
schemes (e.g., fuel availability finder using crowd-
sensing apps, social media-driven interesting place
discovery) (Ferreira et al., 2019; Xintong et al., 2014; Li
et al., 2016). While a few survey papers have explored
some sensing approaches that fall at the intersection of
social sensing and physical sensing and are partially
related to SPS (Shi et al., 2011; Zeng et al., 2020;
Dressler 2018), they do not focus on an extensive
overview of the SPS paradigm itself or present a
comparative study of existing SPS applications. Most
importantly, past studies have not fully addressed the
need for highlighting the key challenges prevalent in
emerging SPS systems, which are necessary for

Figure 3. Examples of representative SPS applications: (a) Anomalistic Crowd Detection with Social Media and Surveillance Cameras;
(b) S-VSN-based Plate Recognition; (c) Fire Monitoring with UAV and crowdsensing; (d) Crime Reporting with WSN and
Crowdsensing; (e) Damage Detection with Satellites and Social Media; and (f) Contact Tracing with Social Media andWearable sensors.
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designing, implementing, and evaluating emerging SPS
systems and applications. This survey paper aims to
reduce this knowledge gap in the existing literature and
extensively explore SPS.

The rest of the paper is organized as follows. Section
2 presents an in-depth overview of SPS. Section 3 outlines
the key enabling technologies for SPS. In Section 4, we
identify the different applications propelled by SPS and
discuss the corresponding state-of-the-art solutions. Section
5 elucidates the key potential research challenges in con-
structing reliable and pervasive SPS. In Section 6, we
highlight a few research directions and opportunities for
future work in SPS to mitigate the identified challenges.
Lastly, in Section 7, we manifest a reflection of our findings
and conclude our survey of SPS.

Overview of SPS

This section provides a detailed overview of social-physical
sensing (SPS). Specifically, we discuss the deficiency of
earlier literature in defining SPS and describe the possible
formats of SPS.

Before detailing the underpinnings of SPS, it is essential
to highlight why prior studies have not acknowledged the
need for a generalized definition of SPS. First, depending on
the application context, the lines between social and
physical sensors often tend to be blurred. For example, at
first glance, an urban air quality monitoring application that
uses a crowdsourcing app and social media to take user
inputs for assessing the air quality might appear to be a
purely social sensing application. However, if the application
utilizes the GPS and accelerometers of the users’ smart-
phones to determine the location and position of the users or
relies on images taken by the users through the crowdsensing
app (e.g., pictures of the sky or surroundings), the application
also involves physical sensors. As such, it can be categorized
as an SPS scheme. Since there are diverse ways of inter-
twining the plethora of social and physical sensors in ap-
plications that can be classified as SPS, there is no single
widely accepted definition of SPS. Second, while SPS is a
versatile sensing paradigm, it is a relatively new sensing
paradigm that has not been extensively explored by existing
literature. A few early survey papers have attempted to
discuss sensing approaches that incorporate social and
physical sensors such as cyber-physical-social systems
(CPSS) (Dressler 2018) and cyber-social systems (CSS)
(Wang et al., 2019c). However, such papers solely discuss
mapping physical and social sensors to cyberspace by
considering the entities as black-box information retrieval
tools. Moreover, survey papers on CPSS and CSS primarily
focus on controlling or monitoring physical processes
through feedback loops without explicitly defining SPS.

As illustrated in Figure 4, SPS encompasses several
diverse domains based on the application requirements and

the data acquisition tools involved. While there are no strict
classification criteria for SPS schemes, the applications in
SPS may be broadly classified into a few significant types,
as discussed below.

The first major type of SPS involves information ac-
quisition from reports obtained from social media platforms
combined with sensing data from fixed physical sensors
installed across various locations. A few examples of this
form of SPS include: (i) anomaly detection using surveil-
lance cameras and social media posts (Banerjee et al., 2018)
as can be seen in Figure 3 (a); and (ii) traffic accident
detection based on social media and roadside traffic mea-
surement sensors (Tran et al., 2018).

The second major type of SPS melds social media
signals withmobile physical sensor data for knowledge
extraction. Examples of this type of SPS are: (i) contact
tracing of contagious diseases such as COVID-19 with
integrated social media and wearable sensors as illus-
trated in Figure 3 (f) (Rashid and Wang 2022a); (ii) road
damage detection using satellite imagery and social
media as illustrated in Figure 3 (e) (Zhang et al., 2020d);
and (iii) anomaly detection with social airborne sensing
(SAS) where social media signals are used to drive
UAVs to locations involved with critical events such as
natural disasters as illustrated in Figure 2 (Rashid et al.,
2020b).

The third major type of SPS involves crowdsourcing
integrated with mobile physical sensors. A few examples
of this format of SPS are: (i) environmental sensors and
crowdsensing-based air quality monitoring systems
(Leonardi et al., 2014); (ii) noise mapping in urban areas
using mobile crowdsensing and acoustic sensor networks
(Liu et al., 2020); (iii) automatic license plate recognition
(ALPR) using vehicular sensors and reports from drivers on
roads as shown in Figure 3 (b) (Zhang et al., 2019); and (iv)
smart water quality monitoring based on crowdsourcing and
IoT-enabled water quality sensors (Abualsaud et al., 2018).

Figure 4. An overview of the SPS paradigm.
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The fourth major type of SPS combines crowdsourcing
with fixed physical sensors to perceive the environment.
Some examples of this type of SPS are: (i) collaborative
disaster damage assessment (DDA) using surveillance
camera footage and crowdsourcing website such as MTurk
(Zhang et al., 2019b); and (ii) crime detection with het-
erogeneous sensor networks (e.g., cameras, microphones,
and proximity sensors) and crowdsensing apps (Du et al.,
2018) as illustrated in Figure 3 (d).

While the discussed categories represent the major
formats of SPS applications, different variants of SPS can
be further combined based on the application criteria
since there are no absolute boundaries across the appli-
cation types. For example, in a search and rescue ap-
plication in the aftermath of an earthquake, locations of
potential victims can be collectively gathered from social
media posts and crowdsensing-based crisis reporting
apps. Subsequently, ground robots might be dispatched to
the reported locations to validate the information from the
social data platforms.

By leveraging the collective wisdom of social and
physical sensors, SPS can sense the real world and help
control and actuate critical real-world processes. Ex-
amples of such control processes include mitigating
traffic accidents, reducing the spread of diseases, and
preventing crimes in high-risk areas. While traditional
social and physical sensing systems focus on acquiring
environmental stimuli, SPS applications aim to bridge the
gap between the social and physical worlds by estab-
lishing a closed-loop system connecting the human,
cyber, and physical worlds. To accomplish the above
objectives, SPS requires careful coordination and inter-
action between essential enabling technologies, which
are discussed in the following section.

Enabling technologies

This section discusses the key enabling technologies that
form the foundation of SPS. In Figure 5, we present an
abstraction model comprising the fundamental enablers for
SPS. The bottom-most layer is the data acquisition layer
containing the data acquisition tools to capture raw sensor
data from the social and physical sensors in SPS (e.g.,
Twitter, Facebook, UAVs, and surveillance cameras).
Above this layer is the communication layer comprising
various communication technologies and protocols that
enable information exchange within the entities in SPS (e.g.,
WiFi, 5G, Bluetooth, and MQTT). On top of the com-
munication layer is the computation layer, which is further
divided into cloud platforms and edge platforms that col-
lectively process data in SPS. The computation layer
consists of diverse processing devices (e.g., compute
clusters and smartphones). At the top-most position is the
applications layer representing the SPS applications that

holistically coordinate the data acquisition, communication,
and computation to capture, process, and interpret real-
world phenomena. We elaborate on the applications in
Section 4.

Figure 6 illustrates a few examples of the enabling
technologies: (i) for the data acquisition platforms, there can
be any combination of sensor-fitted autonomous UAVs,
surveillance cameras, social media websites like Twitter, or
crowdsensing apps; (ii) the communication technologies
and protocols can be comprised of WiFi, Bluetooth, LTE, or
MQTT; and (iii) the computing paradigms can be made up
of distributed compute nodes and edge devices like
smartphones. In the following section, we detail the func-
tionality of each key SPS enabler.

Data acquisition platforms

An essential component of the sensing process in SPS is
data collection. The key drivers for data acquisition in SPS
can be classified broadly into social and physical data
platforms. The details of the platforms are discussed
below.

Social data platforms. Intuitively, social data platforms
embody the mediums of information retrieval where human
sensors are directly involved in synthesizing knowledge.
Recent literature such as (Batrinca and Treleaven 2015;
Olteanu et al., 2019) has extensively reviewed solutions
incorporating social data platforms. Social data platforms
can be further subdivided into two types.

The first type of social data platform is social media
sensing where individuals in possession of smart devices
(e.g., smartphones) with Internet connectivity may volun-
tarily report nearby occurrences on social media portals
(Potts 2013; Zhang et al., 2018c; Kou et al., 2020). Typical
forms of social media include social networking services
such as Twitter, Facebook, Instagram, Pinterest, and
Snapchat (Phua et al., 2017). Within social networks, people
develop connections and relationships with other individ-
uals who are personally known to each other or who typ-
ically share similar personality traits, mutual goals,
activities, ethnicity, or community (Kietzmann et al., 2011).
Conscious individuals tend to report or share incidents
around them in the real world on social networking websites
which serve as starting points for vital information in SPS
that can be further utilized to detect the onset of critical
occurrences (e.g., floods, traffic accidents, and gas explo-
sions). Another social media variant is social news ag-
gregation websites in which news contributed by multiple
individuals from different online sources is aggregated into
one platform (Lerman 2006). News content in such ag-
gregation websites is typically ranked based on popularity,
credibility, and urgency. Examples of popular social news
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aggregation websites include Digg, Reddit, and Medium
(Wasike 2011).

The second type of social data platform is crowdsensing
which usually involves large groups of participants engaged
to carry out specialized distributed sensing tasks (e.g., traffic
condition reporting, crisis reporting, and smart urban
sensing) through individual devices (e.g., smartphones,
portable sensors) (Wazny 2018). A few representative
crowdsensing applications include: (i) interesting place
locator (Chon et al., 2012); (ii) risky traffic zone identifi-
cation (Li 2019); and (iii) urban air quality monitoring
(Leonardi et al., 2014).

Crowdsensing can be further divided into two subcat-
egories. One variant of crowdsensing is non-monetized
crowdsensing, where individuals perform small sensing
tasks on a pay-it-forward mentality with the mutual in-
centive of obtaining information from the platform in return.
For example, in traffic apps such as Waze, drivers

proactively report roadside occurrences to provide real-time
traffic information in exchange for traffic updates from other
users. Gas price reporting apps, such as GasBuddy, request
users to report gas station availability and prices in return for
providing information about gas prices at other gas stations.
The other variant of crowdsensing is monetized crowd-
sensing, where dedicated individuals perform incentivized
sensing tasks as paid freelancers. Compared to non-
monetized crowdsensing, monetized crowdsensing typi-
cally attracts a more significant number of participants and
is known to generate denser data (Borromeo and Toyama
2016). Several monetized crowdsensing platforms utilize
the Internet to allocate sensing tasks between participants in
different parts of the world (e.g., tasks involving urban
anomaly detection in a region) (Singh et al., 2018). A few
examples of monetized crowdsensing applications include
crisis reporting (Konomi et al., 2015), gas emission mon-
itoring in urban areas (Liu et al., 2013), and health moni-
toring (Schmitz et al., 2018).

Physical data platforms. As the name implies, physical data
platforms are made of hardware sensing devices for data
capture (e.g., cameras and thermal scanners) (Khalil et al.,
2014). A good amount of effort has been contributed to-
wards the development of energy-efficient and high-
resolution transducers and electronic devices for physical
sensors. Examples of such schemes can be found in
(Babiceanu and Seker 2016; Stavropoulos et al., 2020).

The first form of physical data acquisition tools is based
on fixed sensors where a collection of dedicated sensors
installed in particular locations (e.g., buildings or roadsides)
are used to gather sensing data (e.g., weather sensors, in-
frared sensors, and roadside monitoring units). The second
form of physical data acquisition tools is based on mobile
sensors where the sensors are not confined to a specific
location and may be transported to different locations as
required. Mobile sensors can be further divided into two
sub-classes. The first sub-class of mobile sensors are sensor-
fitted machines such as autonomous robots, unmanned
ground vehicles (UGVs), and unmanned aerial vehicles

Figure 5. Abstraction layers making up SPS.

Figure 6. Examples of the key enabling technologies for SPS: data
acquisition platforms, communication technologies and protocols,
and computing paradigms.
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(UAVs) which are generally deployed for delay-sensitive
and critical SPS applications in areas typically unreachable
or dangerous to humans (e.g., locating forest fires, moni-
toring flood progress, and searching for survivors in a
wreckage site). Remote sensors are another form of mobile
sensor that can obtain detailed visual representations of the
constituents on the earth’s surface using optical sensors
installed on satellites (Dash and Ogutu 2016). The second
sub-class of mobile sensors utilize transducers built into
smartphones (e.g., microphone, camera, and GPS), thereby
eliminating the need to install or maintain dedicated sensors
and providing more economical and scalable sensing
compared to UAVs and UGVs. For example, the vibrations
picked up by a phone’s accelerometer inside a car may be
utilized to locate road damage, discover potholes, or detect
accidents (Amin et al., 2014). Recently, there has been an
emergence of mobile sensing devices such as wearable
devices, health and fitness trackers, and smart tags (Noulas
et al., 2012).

While the physical data platforms are shared with other
applications, such as IoT, one crucial distinction exists. In
IoT and other related applications, the data acquisition
platforms only consist of fixed and mobile physical sensors
(Yasumoto et al., 2016) and often do not entail social media
portals or crowdsensing apps. However, in SPS, the data
sources additionally require social media and crowdsensing
platforms as the fundamental drivers of knowledge. In SPS,
the confluence of the social and physical data platforms
helps to collect an extensive and comprehensive repre-
sentation of the physical world. As an example of how the
complementary information from social and physical data
platforms in SPS can be leveraged to retrieve knowledge
from the real world, let us consider a post-disaster resource
monitoring application based on social vehicular sensor
networks (S-VSN). Following a disaster (e.g., hurricane or
flood), locating vital resources such as fuel and pharmacy is
critical. Often people report information about such re-
sources on social media websites such as Twitter. However,
the availability of fuel at gas stations or the chances of a
pharmacy being open might change at any time following
the disaster. Car drivers driving nearby can be dispatched to
the reported locations of the vital resources based on the
tweets. Afterwards, the onboard sensors of the cars (e.g.,
dashboard cameras) can be used to confirm or debunk the
information about the availability of the resources. Thus, the
mutual information exchange between the social and
physical data acquisition platforms enables SPS applica-
tions to perceive and interpret real-world phenomena with
greater fidelity.

Communication technologies and protocols

The data exchange between the entities in SPS is enabled by
diverse communication technologies and protocols (Al-

Fuqaha et al., 2015). Based on the application context
(e.g., critical vs. non-critical), nature of the environment
(e.g., outdoor vs. indoor), and energy profiles of the data
sources (e.g., battery-powered UAVs vs fixed surveillance
cameras), appropriate networking standards and protocols
can be incorporated, a selection of which are discussed
below.

Ubiquitous local wireless connectivity and cellular technology. In
SPS, communication across the entities (e.g., UAVs, data
centers, and smartphone apps) relies on ubiquitous local
wireless connectivity and cellular technology. One can
read more about local wireless standards and cellular
technology in (Mahmood et al., 2015; Sidhu et al., 2007).
Commonly used connectivity methods in SPS include
WiFi and Bluetooth, which utilize radio waves to transfer
data among connected devices (Rashid et al., 2015). For
longer-range communication in SPS or fast-traveling
mobile physical sensors (e.g., cars, UAVs, and UGVs),
cellular technology is preferred, specifically the LTE
(Long-Term Evolution) and the newer 5G standards,
which are treated as the norm for high-speed data transfer
(Sesia et al., 2011). We note that the above ubiquitous
local wireless connectivity and cellular technology can
also be used in other related applications such as IoT as
WSNs. However, in an SPS context, human sensors do
not directly use such connectivity options (e.g., WiFi or
LTE) to communicate their observations. Instead, human
sensors leverage user interfaces (UI) on their personal
devices (e.g., smartphone apps, websites on laptops) to
input knowledge, eventually communicating through the
highlighted ubiquitous local wireless connectivity and
cellular technology. Figure 7 summarizes the state-of-
the-art wireless connectivity standards enabling SPS,
highlighting short-range standards such as WiFi and
Bluetooth and longer-range standards such as LTE
and 5G.

Internet of Things (IoT) standards and protocols. The inter-
connection of the sensing devices in bandwidth-
constrained SPS applications (e.g., vehicular sensors
and surveillance cameras in an anomaly detection ap-
plication) is facilitated by several Internet of Things (IoT)
messaging standards and protocols (Al-Fuqaha et al.,
2015). In the recent past, several energy-efficient IoT
protocols have been developed, such as CoAP (Con-
strained Application Protocol) (Al-Masri et al., 2020),
MQTT (Message Queue Telemetry Transport), and XMPP
(Extensible Messaging and Presence Protocol) (Al-Masri
et al., 2020). While IoT deserves an elaborate discussion
of its own, it is important to realize the need for IoT
messaging standards that streamline communication in
SPS applications. Further study about IoT applications
can be found in (Al-Fuqaha et al., 2015).

8 Collective Intelligence



Computing paradigms

Given the colossal amount of data generated in SPS ap-
plications, it is imperative to process and analyze the
sensing signals to interpret valuable information in a
scalable and efficient manner (Hashem et al., 2015). This
paper focuses on two major computing paradigms that
enable such analytics: cloud computing and edge
computing.

Cloud computing. Cloud computing is a distributed com-
puting paradigm consisting of high-performance clustered
computing nodes in a networked environment capable of
processing huge volumes of data in parallel (Qian et al., 2009)
and thus can serve as a powerful platform for analyzing the
deluge of multi-modal data in real-time for SPS applications.
Readers can find a comprehensive study of cloud applications
in (Rimal et al., 2009).

Cloud computing provides global service interfaces to
the heterogeneous entities in SPS applications (e.g.,
vehicular sensors, smartphones, and human sensors) to
upload their data which is processed using specialized
hardware in conjunction with efficient task scheduling
frameworks. Recent advances in cloud computing that
facilitate SPS applications include: (i) serverless com-
puting, where cloud providers allocate machine resources
for on-demand sensing tasks such as anomalistic crowd
investigation using IoT sensors and crowdsensing
(Hendrickson et al., 2016); and (ii) ThingSpeak, an open-
source cloud framework for processing, analyzing,
storing, and visualizing real-time sensing data concur-
rently from wearable sensors (e.g., fitness trackers and
smartwatches) and social media platforms (e.g., Twitter,
Facebook) (Maureira et al., 2011).

Edge computing. Edge computing is an efficient computing
paradigm to conduct localized data processing on devices at
the edge of the network (Zhang et al., 2019b) and is best suited
for time-critical SPS applications such as disaster response. An
extensive study on edge computing-based applications can be
found in (Yu et al., 2017). In contrast to cloud computing, edge
computing administers computation at the “edge” of the
network, closer to the social and physical data sources. One
key feature of edge computing is computation offloading,
where an edge device can offload data processing tasks to other
idle and/or more powerful devices within a network. Dele-
gating computation tasks from resource-constrained devices
(e.g., UAVs with limited flight times) to devices with greater
resource headroom (e.g., a Tesla vehicle fitted with a powerful
Nvidia GPU) can speed up processing and ensure balanced
resource utilization. Thus, edge computing can eliminate a
single point of failure, reduce network overhead, curb trans-
mission latency between devices, and improve response times
in SPS applications.

We note that both cloud and edge computing paradigms
are also incorporated in IoT and other similar applications in
which they need to analyze continuous-time signals
(Mahmud et al., 2017) along with images, videos, and audio
data from physical sensors (Al-Fuqaha et al., 2015).
However, SPS applications not only involve the above
computation tasks but also require processing text data
generated by human sensors, which is associated with
greater computational complexity (Barkovska et al., 2021).
Moreover, the text is often unstructured in nature and might
contain misleading or sarcastic remarks that can further
increase computational overhead.

The following section discusses a collection of existing
representative SPS applications.

State-of-the-art SPS applications

This section reviews a few exciting real-world SPS appli-
cations from the current literature. In Table 1, we provide a
comprehensive summary of the representative SPS appli-
cations and the associated solutions. In particular, the first
column of the table indicates the SPS application type,
which can encompass a wide variety of areas such as
healthcare, environmental monitoring, anomaly detection,
license plate recognition, and situational awareness. The
second column indicates the data acquisition platforms
involved, which can be any combination of social and
physical sensors. The third column indicates references to
schemes from current literature for the particular application
scenario, a brief description of which is given in the fourth
column. We further detail each application scenario and its
corresponding schemes in the following subsections.

Figure 7. Overview of wireless connectivity that enables SPS.
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Contact tracing of infectious diseases using
crowdsensing and smartphone sensors

In the field of epidemiology, contact tracing is a mechanism
of identifying and monitoring individuals who may have
come in close contact with people having any infectious
disease to circumvent further disease spread (Eames and
Keeling 2003). Pinpointing and quarantining sources of an
infectious disease restricts their ability to “contact” the
disease, thereby minimizing community spread
(Altuwaiyan et al., 2018). Recently, with the pandemic of
the coronavirus disease 2019 (COVID-19), there has been a
surge of contact tracing applications that combine the power
of crowdsensing with smartphone sensors distributed
around the world to study the physical footprints of users
(Altuwaiyan et al., 2018; Google 2020; Michael and Abbas
2020; Raskar et al., 2020; Panduranga and Hecht 2020; Bay
et al., 2020). Figure 8 presents the concept of contact tracing
based on crowdsensing and smartphone sensors (Baker-
White et al., 2020). When any individual tests positive for
COVID-19 and reports his illness through a contact tracing
app installed on his smartphone, his physical footprints from
the GPS data on his smartphone can be analyzed to examine
his whereabouts and physical encounters with other indi-
viduals. If it is found that an untested or uninfected indi-
vidual came in close contact with this infected person, that
particular individual can be alerted to get tested and
quarantined to reduce the likelihood of further spread.

Several recent studies have attempted to meld non-
monetized crowdsensing with Bluetooth and WiFi radios
found in smartphones for COVID-19 contact tracing ap-
plications (Panduranga and Hecht 2020; Altuwaiyan et al.,
2018; Bay et al., 2020). For example, Google and Apple
launched a decentralized COVID-19 contact tracing
framework called Exposure Notification System (ENS) that
logs interactions with other ENS users using their smart-
phones’ Bluetooth radio (Google 2020) and augments it
with crowdsensed data provided through mobile apps

(Michael and Abbas 2020). MIT Media Lab further en-
hanced the ENS framework by developing a privacy-
preserving location extrapolation mechanism with a
smartphone’s GPS to deduce the approximate geographical
location of a contacted person (Raskar et al., 2020). The
scheme also allows healthy users to determine if they have
“crossed paths” with any infected person (Panduranga and
Hecht 2020).

The Singaporean government launched BlueTrace, a
privacy-aware open-source COVID-19 contact tracing
application based on Bluetooth-based localization and
voluntary crowdsensing application (Bay et al., 2020)
that logs Bluetooth interactions between participating
devices. When two devices “meet,” they trade encrypted
messages with temporary identifiers, and anyone sus-
pected of infection will be requested to share their contact
history with the concerned authority. Altuwaiyan et al.
proposed a contact tracing scheme with integrated WiFi
and Bluetooth-based localization technology from
smartphones combined with crowdsensing through a
mobile app (Altuwaiyan et al., 2018). Once users are
tested positive, they are presented with a questionnaire
through the app to input their memory of historical
contacts. A contact tracing project called A-Turf was
undertaken to accurately detect “encounters” between
users within close proximity (e.g., less than six feet) using
user feedback reported through a crowdsensing app and
acoustic signals emitted by smartphones (Luo et al.,
2020). By determining the “footprint” of infected indi-
viduals, crowdsensing and smartphone sensor-driven
contact tracing systems help to test, isolate, and treat
potential contacts of infected people.

Integrated social sensing and satellite-based
environmental monitoring

Several recent studies in SPS have focused on applica-
tions integrating satellite-based remote sensing with
social media and crowdsensing for capturing a wide range
of visual features of the objects residing on the earth’s
surface. Examples of such applications include urban
land usage classification (Chi et al., 2017), predicting the
poverty in underdeveloped areas (Zhao et al., 2020), post-
disaster damage assessment (Huang et al., 2017), risky
traffic location identification (Zhang et al., 2018f), and
flood inundation mapping (Rosser et al., 2017). Figure 9
exemplifies an integrated social sensing and satellite-
based environmental monitoring scheme for analyzing
human mobility in urban areas (Shao et al., 2021).
Harnessing the mutual efforts of human sensors and
physical sensors installed on satellites results in: (i) a
more pervasive and fine-grained representation of the
objects residing on the earth’s surface (Zhang et al.,

Figure 8. Concept of contact tracing with crowdsensing and
smartphone sensors.
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2018f), (ii) a reduction of their individual weaknesses
(e.g., slow update interval of satellites, poor location
accuracy of social sensing) (Zhang et al., 2016), (iii)
localized and real-time information for closely moni-
toring the environment, which is helpful for applications
involving emergency response, smart cities, and envi-
ronmental hazards (Ghamisi et al., 2018), and (iv) a
greater spatial resolution, which is crucial for applica-
tions like land cover classification, distinguishing urban-
rural regions, damage assessment, target identification,
and geological mapping (Chi et al., 2017).

The fusion of social sensing with empirical measure-
ments from satellite-based remote sensing has opened op-
portunities for various interesting SPS applications. For
example, Zhang et al. developed RiskSens, a multi-view
learning approach to identify locations with high traffic risk
by combining social media data with satellite imagery data
(Zhang et al., 2018f). Chi et al. proposed Crowd4RS, a land
usage and land cover classification scheme that combines
satellite images in urban areas with geo-tagged social
media photos for a more localized and fine-grained
analysis (Chi et al., 2017). Rosse et al. designed a
framework to infer flood inundation levels on different
terrains by melding geo-tagged images from social media,
optical satellite imagery, and high-resolution terrain
mapping using a Bayesian statistical model (Rosser et al.,
2017). Wang et al. presented an early warning system that
fuses Twitter data with historical remote sensing data for
detecting and predicting weather-driven natural disasters
in near real-time (Wang et al., 2018). A Twitter-driven
remote sensing approach has been developed to convert
geo-tagged tweets into high-resolution raster images and
integrate them with satellite-based nighttime lights to infer
socioeconomic activities (Zhao et al., 2020). Another
study has presented a framework to incorporate multi-
sourced data from social media, remote sensing, and online
databases through spatial data mining and text mining for
post-disaster damage assessment (Huang et al., 2017).
More recently, an integrated crowdsensing and remote
sensing scheme has been proposed that combines remote
sensing imagery and mobile phone positioning data for
urban land usage mapping (Ghamisi et al., 2019). By
exploiting the collective benefits of social sensing and
satellite-based environmental monitoring, the above
schemes facilitate a fine-grained interpretation of the
earth’s geological features.

Anomaly detection using social airborne sensing
(SAS) and social vehicular sensor networks (S-VSN)

4.3.1.Social airborne sensing (SAS). Social airborne sensing
(SAS) is progressing as a new SPS application domain
where social signals are used to dispatch unmanned aerial

vehicles (UAVs) for perceiving anomalous occurrences in
time-sensitive applications (e.g., disaster response,
wildfire monitoring) (Rashid and Wang 2022b). Figure 2
in Section 1 illustrates the concept of representative SAS
schemes (Terzi et al., 2020). SAS is motivated by the
agility and empirical sensing capabilities of UAVs fitted
with physical sensors (e.g., camera, LiDAR, and thermal
scanner) (Casbeer et al., 2005) and the ubiquity of social
data platforms (i.e., social media and crowdsensing).
Thus, SAS attempts to leverage the collective benefits of
UAVs and social signals to provide a more rapid response
and wider sensing scope than other SPS approaches (e.g.,
approaches that use satellite imagery or fixed sensors like
surveillance cameras). Specifically, a more rapid and
timely data acquisition can be delivered by SAS, espe-
cially in critical scenarios such as search and rescue
missions, post-disaster response and recovery, and
tracking potential suspects around crime scenes.

An SAS system collects and analyzes data from social
media and crowdsensing platforms to locate probable events
of interest (e.g., a person injured on a roadside, an area
getting flooded, or buildings damaged by an earthquake)
(Terzi et al., 2020; Rashid et al., 2019b). Afterward, UAVs
are selectively dispatched to the extracted locations using
various resource management policies (e.g., game theory,
supply chain management, and reinforcement learning) to
verify the authenticity of the event reports using their on-
board physical sensors and augment the knowledge ac-
quisition. Examples of SAS frameworks from recent
literature include: (i) a path cheapest arc-based SAS scheme
that incorporates calls for help from Twitter and dispatches
UAVs for search and rescue missions (Terzi et al., 2020); (ii)
a semantic web and machine learning-based SAS design for
disaster management in urban areas (Sukmaningsih et al.,
2020); (iii) a correlation-driven SAS solution for conducting
disaster damage assessment in the aftermath of hurricanes
(Yuan and Liu 2018); and (iv) a spatiotemporal-aware SAS
framework that identifies latent correlations among reported

Figure 9. Scenario of integrated social sensing and satellite-based
environmental monitoring.
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event locations to dispatch UAVs selectively (Rashid et al.,
2019a).

Social vehicular sensor network (S-VSN). While SAS schemes
offer pervasive and accurate information retrieval in critical
scenarios, they still require dedicated UAVs, which are ex-
pensive and scarce resources having limited flight times
Rashid et al. (2021). On the other hand, vehicular sensor
networks (VSNs) have matured into a dependable networked
sensing paradigm for vigilance and situational awareness
along roadways that uses cars equipped with physical sensors
(e.g., dashboard cameras) to opportunistically identify event
occurrences (e.g., accidents on roads) (Zhang et al., 2008).
Harnessing existing vehicular infrastructure does not require
additional dedicated sensing equipment, which in contrast to
UAVs, is more unobtrusive and reduces deployment cost and
time since dedicated agents are not required. However, one
limitation of traditional VSNs is that the information collected
by vehicles is restricted to only those regions traversed by car
drivers, restricting the scope of sensing for VSNs and their
adaptability in unraveling new events.

To this end, an integrated SPS paradigm, namely, social
vehicular sensor network (S-VSN), has recently been
studied to integrate social sensing with existing ground-
based VSN to provide more scalable and widespread
anomaly detection (Rashid et al., 2019c, 2020a). Figure 10
shows the concept of an S-VSN scheme where social media
users report events of interest (Rettore et al., 2019). A social
signal distillation model analyzes the reports to determine
the locations of the events, while a vehicular task allocation
model assigns exploration tasks for car drivers to travel to
specified locations and analyze the events using car sensors.

By augmenting the outreach of vehicular sensors with the
ubiquity of social sensors, S-VSNs attempt to provide wide-
spread sensing coverage and greater sensing accuracy than
standaloneVSNs. In specific scenarios, such as identifying risky
traffic regions or discovering essential resources in the aftermath
of a disaster in large areas (e.g., locating gas availability at gas
stations), an S-VSN might be more feasible than an SAS.
Recent examples of S-VSN frameworks include: (i) a

community-aware S-VSN architecture for road traffic anomaly
detection (Qiu et al., 2018); (ii) an S-VSN system for performing
accident investigation in smart cities (Rettore et al., 2019); and
(iii) a road damage-aware S-VSN scheme that uses a Markov
Decision Process (MDP)-based damage discovery scheme to
locate roads affected by damage after a disaster (Rashid et al.,
2020a).

Automatic license plate recognition using
crowdsensing and physical sensors

One recent SPS application domain is automatic license
plate recognition (ALPR) based on crowdsensing (e.g.,
smartphone apps) and physical sensors (e.g., roadside units,
vehicular sensors, and smartphone sensors). Figure 11 il-
lustrates an SPS-based ALPR application where informa-
tion from traffic monitoring devices (e.g., roadside cameras
and dashboard cameras) are melded with human inputs from
crowdsensing apps (e.g., Citizen, Waze, and Neighbors) to
track down the plate number of a potential suspect’s vehicle
evading from a crime scene (e.g., a hit-and-run) (Ang et al.,
2018). The analytics are typically conducted using deep-
learning algorithms (Zhang et al., 2019; Ang et al., 2018).
Thus, observations contributed by drivers, passengers, and
commuters on roads might be integrated with knowledge
from hardware sensors to narrow down searches by law
enforcement personnel and swiftly locate the whereabouts
of perpetrators.

One crucial concern of SPS-based ALPR applications is
their real-time requirements, where plate detection tasks are
expected to be accomplished within certain time bounds in
resource-constrained environments (e.g., the devices might
have limited network bandwidth). Existing standalone
ALPR approaches primarily focus on analyzing large
volumes of video footage data collected from surveil-
lance cameras and stored in the cloud platforms (Zhang
et al., 2017c). However, such schemes often introduce a

Figure 10. The concept of social vehicular sensor networks
(S-VSN).

Figure 11. Overview of automatic license plate recognition using
crowdsensing and physical sensors.
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non-trivial amount of data transmission delay to offload the
videos to the cloud, which is not favorable for the real-time
car plate detection application. More recently, there is a
growing development of ALPR schemes that harness
crowdsensing combined with existing vehicular sensors and
IoT devices (e.g., vehicles equipped with dash cameras and
smart devices owned by citizens) to form a city-wide video
surveillance network that tracks moving vehicles using the
automatic license plate recognition (ALPR) technique (Du
et al., 2012). Zhang et al. developed EdgeBatch, an SPS-
based ALPR task management framework, where reports
about license plates of probable suspects from concerned
citizens in crowdsensing apps are combined with inputs
from IoT sensors (e.g., surveillance cameras) using col-
laborative edge computing resources to detect the license
plates (Zhang et al., 2019a). Trottier et al. presented the
concept of a dashboard camera and crowdsensing platform-
driven ALPR scheme for smart cities where video footage
from dashboard cameras is analyzed by image processing
algorithms and further augmented with inputs from
crowdsensing participants through an app to recognize the
number plates (Trottier 2014).

Despite their usefulness, ALPR approaches also instill
privacy concerns in the collaborative sensing context of
SPS applications. For example, car drivers might not be
willing to share the metadata from their devices to the
cloud for fear that such data may reveal their private
information (e.g., location, speed, and driving behavior).
With concerns about user privacy, Alcaide et al. proposed
a privacy-aware ALPR scheme that maintains confi-
dentiality of the users’ data and prevents unauthorized
usage of private devices that are used for capturing and
recognizing images of plate numbers (Alcaide et al.,
2014). A privacy-aware ALPR scheme has been pro-
posed that masks and protects the identity of the owners
of license plates recognized using data from crowd-
sensing apps and roadside monitors (Yan et al., 2011). By
exploiting the knowledge from crowdsensing and
physical sensors, SPS-based ALPR applications aid in
tracking down potential criminals on roads (Zhang et al.,
2019).

Situational awareness using social media and
crowdsensing melded with IoT (Social/CrowdIoT)

The prevalence of IoT alongside social media and crowd-
sensing has opened new domains for situational awareness
in SPS. Examples of such applications include real-time
crowd density measurement, search and rescue operations,
and urban anomaly detection (Kucuk et al., 2019; Atzori
et al., 2010; Zanella et al., 2014; Brabham 2013). By in-
tegrating social media and crowdsensing with the IoT
paradigm, the emerging areas of SocialIoT and CrowdIoT,

respectively, can achieve results beyond what is possible
with traditional standalone situational awareness ap-
proaches. Figure 12 illustrates a SocialIoT-based situational
awareness application where information from Twitter and
IoT-enabled flood measurement sensors can be combined to
estimate the density of flood (Mirza et al., 2022). The
following subsections discuss a few variants of SocialIoT
and CrowdIoT.

Integrated social media sensing and IoT (SocialIoT)-based indoor
localization and tracking. In recent times, there has been a
surge in SPS applications that focus on indoor localization
based on contextual information provided on social media
and raw signals from IoT devices. While GPS provides
fairly accurate outdoor location tracking, the applicability of
GPS for indoor tracking is limited primarily due to the
inaccessibility of satellite signals inside confined spaces and
lower degrees of precision. As such, accurate indoor lo-
calization schemes require additional infrastructure support
(e.g., ranging devices) or extensive training before system
deployment (e.g., WiFi signal fingerprinting). In indoor
localization, networks of IoT devices are used to track
people or objects in confined places where GPS and other
satellite technologies usually lack precision or fail entirely,
such as inside multistory buildings, airports, alleys, parking
garages, and underground locations. Location-based ser-
vices, such as targeted advertisement, geosocial networking,
and emergency services, are becoming increasingly popular
for mobile SPS applications (Jun et al., 2013; Liu et al.,
2010).

In order to help existing localization systems to
overcome their limitations or enhance their accuracy,
approaches have been developed that combine social
media sensing with IoT for accurate location tracking
indoors. For example, a scheme called Social-Loc has
been proposed that integrates the physical traces of an
individual posted through social media (e.g., check-ins

Figure 12. Overview of situational awareness with SocialIoT.
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to a particular shop in a shopping mall) with RSSI
signals from WiFI routers to potentially derive the exact
location of individual users within a building (Jun et al.,
2013). Chu et al. designed SBOT, a social media and
sensor network-driven indoor localization scheme
which combines user statuses and updates posted
through social media (using text mining techniques)
with telemetry data from smartphone sensors (e.g., al-
titude, speed, and heading of the users) to pinpoint the
location of the users (Chu et al., 2020). Liu et al.
proposed a social-driven IoT system consisting of
backpacks equipped with 2D laser scanners and inertial
measurement units augmented with historical social
network traces of the users to perform indoor locali-
zation and visualization of complex environments such
as staircases or corridors (Liu et al., 2010). However,
with the increasing facilities for geo-locating people
using their digital footprints, concerns for individuals’
privacy also prevail. As we will discuss later in Section
V-E, the metadata obtained from the social and physical
sensors in SPS for locating people exposes the risks of
revealing their private information. A few privacy-
preserving SocialIoT schemes have been developed
which aim to protect people’s identities while geo-
locating them indoors (Hamza et al., 2020; Perera
et al., 2015).

CrowdIoT-based context awareness. Several exciting
CrowdIoT applications have emerged that are crucial to
society’s well-being, including criminal identification
and disaster response (Dunphy et al., 2015). Dunphy
et al. proposed an integrated crowdsensing and CCTV-
based video surveillance framework where surveillance
footage collected from CCTVs spread across a city is
assigned to Amazon MTurk participants to tag instances
of abnormal occurrences in real-time (e.g., traffic acci-
dents, crimes) (Dunphy et al., 2015). Abu et al. designed
an integrated risk assessment framework using crowd-
sensing apps and fixed urban IoT sensors (e.g., proximity
sensors, acoustic sensors, radars, air quality monitors,
etc.) that predicts the possibility of crisis such as multi-
vehicle accidents, major weather events, and large
fires(Abu-Elkheir et al., 2016). Vital information from
the framework might assist emergency personnel such as
firefighters and first responders. Beyond surveillance-
centric context awareness applications, stationary
CrowdIoT-based SPS schemes are also used for locating
regions of adverse weather and climatic conditions. For
example, Horita et al. developed a flood inundation
mapping (FIM) system that integrates crowdsourcing
data with data from in situ weather radars to infer
probable locations of a flood (Horita et al., 2018). Thus,
building upon the tight integration of crowdsensing and
fixed-sensor IoT devices, stationary CrowdIoT solutions

(like the ones discussed above) facilitate providing rich
context-aware SPS applications.

Another emerging context awareness sub-domain
within SPS involves integrating crowdsensing with mo-
bile devices and portable IoT devices, otherwise known as
mobile crowdsensing (MCS). Applications integrating
mobile sensors with crowdsensing in MCS utilize users
with mobile devices capable of data capturing, compu-
tation, and communication to collectively share data and
extract information to measure, assess, estimate, or predict
processes of shared interest (Ganti et al., 2011; Ma et al.,
2014; Guo et al., 2015; Wang et al., 2014a). Such mobile
devices include smartphones, wearables, and tablet com-
puters equipped with hardware sensors (e.g., GPS, mi-
crophones, and heart rate monitors) and sufficiently robust
processing units (e.g., CPU, FPGA, and GPU). The
ubiquity of such “all-in-one” data acquisition, computa-
tion, and communication devices has motivated a good
amount of work in developing a wide range of SPS-based
urban sensing tools (Zappatore et al., 2016; Yan et al.,
2017; Li and Goldberg 2018). A few essential applications
fueled by mobile crowdsensing include: i) real-time urban
crisis reporting where inputs from concerned citizens
through smartphone apps and signals from IoT sensors
(e.g., proximity sensors) are correlated to located urban
crisis (Konomi et al., 2015); ii) risky traffic zone identi-
fication where crowdsensed traffic data from dedicated
websites are combined with roadside sensor units to locate
traffic risks (Li 2019); iii) gas leakage detection in urban
areas in which gas sensors are used to measure unusual gas
concentrations and further integrated with knowledge from
citizens acquired through crowdsensing apps to identify
gas leakage (Akter and Yoon 2020); and iv) simultaneous
localization and mapping for rescue missions in which
reports of potential survivors from smartphone apps are
augmented with received signal strength indicator (RSSI)
values from WiFi routers to locate potential survivors in
the aftermath of disasters (Kucuk et al., 2019).

In addition to the above critical mobile crowdsensing
schemes, there have been significant works on utilizing
smartphones and wearable sensors (e.g., sociometric
badges, smart glass, fitness trackers, and smartwatches)
for less critical applications such as: i) monitoring
environmental conditions like noise (Zappatore et al.,
2016) and air quality (Vahdat-Nejad and Asef 2018); ii)
assessing infrastructural conditions such as traffic
congestion (Yan et al., 2017) and road damage (Li and
Goldberg 2018); and iii) determining most fuel-efficient
travel routes (Ganti et al., 2010). The integration of
crowdsensing and mobile sensors has also opened up
new possibilities for exciting applications in disaster
response. Han et al. (Han et al., 2019) proposed a
crowdsensing and mobile-IoT integration model that
aims to improve disaster response by using important
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metrics such as weather conditions, damage reports, and
infrastructure accessibility derived from crowdsensing
apps and portable devices equipped with RFID tech-
nology. Driven by the unification of crowdsensing with
sensors contained in mobile devices, mobile crowd-
sensing schemes aim to provide a more holistic repre-
sentation of the environment in SPS applications.

The following section discusses key research challenges
prevalent in current SPS applications.

Fundamental challenges in SPS

This section highlights a few fundamental open challenges
in the interaction and integration between social and
physical sensing in SPS. Table 2 presents a comprehensive
summary of the challenges. In particular, the first column of
the table indicates the challenge, which ranges across data
collection, human-cyber-physical interactions, device and
data heterogeneity, dependency and correlation, privacy,
and dynamics. The second column provides a brief de-
scription of the challenge. The third column provides ref-
erences to schemes from current literature targeting the
challenge. Lastly, the fourth column presents a set of
possible open research questions to solve to address the
challenge. In the following subsections, we discuss each
challenge in detail and highlight the measures to address the
challenges in current literature and their shortcomings.

Data collection challenge

Before valuable knowledge can be interpreted in SPS, the
relevant data must first be located, extracted, and organized.
Thus, one of the critical challenges in SPS lies in simul-
taneously harvesting the raw sensor data from myriads of
social and physical sensors (Stieglitz et al., 2018; Wang
et al., 2011c; Zhang et al., 2019c).

The first obstacle in data collection is to systematically
locate useful data from the inherently noisy social and
physical signals. In knowledge discovery from social data
platforms (e.g., social media websites), traditional search
techniques use keywords to query for the related data
(Stieglitz et al., 2018). However, such searches might return
a considerable amount of reports of unrelated incidents
(i.e., noisy data) alongside the relevant ones. On the other
hand, hardware sensors are susceptible to several types of
characteristic noise that cause deviation in the data capture
(e.g., satellites images might have low resolutions, and drifts
in GPS data might record incorrect location information)
(Tsai et al., 2014; Sundvall et al., 2006). When combined in
an SPS setting, the noises originating from the social and
physical sensors can develop a degree of interdependence
among each other, causing difficulty in collecting useful
data. For example, let us consider an integrated social media
and surveillance camera-based damage assessment

application (Bartoli et al., 2015). Unreliable human sensors
often incorrectly report sites of damage. If surveillance
cameras capture images with incorrect perspectives (e.g.,
due to occlusions or faraway positions), they might not
reveal the true state of the damage, and the reliability of the
sources might not be validated correctly (e.g., reliable
sources might get flagged as malicious). Figure 13 shows an
example of such an application where events A and B are
true reports of damaged sites, but event C is a false report
(i.e., a person posts disinformation indicating that the
building is on fire which in reality is not). Due to being
occluded by a set of burning logs and positioned far away
from the building, the surveillance camera at event C might
capture a perspective that can cause a computer vision (CV)
algorithm to “think” that the building is actually on fire,
resulting in the sensing framework to consider the unreliable
source to be trustworthy.

Existing literature on social sensing has proposed
methods to overcome the noise from social data platforms
with techniques such as machine learning (ML)
(Nur’Aini et al., 2015), artificial neural networks (ANNs)
(Jagannatha and Yu 2016), estimation theory (Wang et al.,
2019a), and adaptive sampling (Zhang et al., 2018h).
Studies on physical sensors have proposed methods to
reduce sensor noise using approaches like image en-
hancement with super-resolution (Zhang et al., 2020e),
deep learning-driven noise reduction (Lai et al., 2018),
and graph neural network-based data extrapolation
(Wang et al., 2014d). However, such standalone ap-
proaches fail to address the intrinsic interdependence
between the noise from social and physical signals in
SPS, which is non-trivial to quantify and model.

The second obstacle is gaining access to sensing data
from devices owned by individuals. While there is an
abundance of connected devices that are able to perform a
wide range of data capture, computation, and communi-
cation tasks, a significant number of them are privately
owned (e.g., smartphones, IoT devices, and surveillance
cameras) (Johnsen et al., 2018). Consequently, gaining
access to such sensors’ data is difficult primarily because the
individual entities might not be willing to share their per-
sonal devices due to reasons such as inconvenience,
draining of battery on mobile devices, usage of cellular data,
and privacy concerns (Wang et al., 2009).

Recent literature has presented several solutions like:
i) privacy-aware schemes such as game-theoretic task
allocation (Zhang et al., 2020a) and non-invasive dis-
tributed private data collection (Zhang et al., 2011); ii)
energy-preserving data transmission schemes such as
Bluetooth low energy (Heydon and Hunn 2012); and iii)
bandwidth-conserving data sharing tools such as signal
compression (Johnsen et al., 2018) and hop-by-hop flow
control (Hull et al., 2003). These approaches might
potentially help to convince people to provide access to

Rashid et al. 17



Table 2. Summary of schemes targeting the challenges in SPS and open research questions.

Challenge Description Schemes targeting challenge Open research questions

Data collection
challenge

Locating raw sensor data
from numerous social and
physical sensors

(Nur’Aini et al., 2015; Wang et al.,
2019a; Zhang et al., 2018h;
Jagannatha and Yu 2016; Zhang et al.,
2020e; Lai et al., 2018; Wang et al.,
2014d; Zhang et al., 2020a, 2011;
Heydon and Hunn 2012; Johnsen
et al., 2018; Hull et al., 2003)

• How to systematically locate useful
data from inherently noisy social and
physical signals?

• How to gain access to sensing data
from privately owned devices?

Human-cyber-
physical
interactions
challenge

Handling the complex
interactions between the
human, cyber, and physical
domains

(Lee et al., 2019; Zhang et al., 2019a;
Sathiyanarayanan and
Sokkanarayanan 2019; Rashid et al.,
2019c, 2020a)

• How to develop a closed-loop system
that seamlessly integrates social and
physical sensors?

• How to explicitly model the roles of
human participants as actuators?

• How to use physical sensors to
validate knowledge contributed by
human sensors?

• How to leverage social signals to
effectively control physical sensors’
performance?

Device and data
heterogeneity
challenge

Managing the diversity of the
devices and data associated
with the social and physical
sensors

(Shao et al., 2018; Gigan and Atkinson
2007; Scheepers 2014; Jun et al.,
2019; Kirkpatrick 2013; Khan et al.,
2015; Oza 2005; Gan and Harris
2001; Zhang et al., 2018f, 2019d)

• How to apply global policies and
control privately owned devices from
a central authority perspective?

• How to explicitly consider the
heterogeneity of tasks and
architectures for devices?

• How to manage the complex
interdependence of tasks distributed
across multiple devices?

• How to analyze the different types of
data that vary across dimensionality?

• How to handle the different rates of
data generated by social and physical
sensors?

Dependency and
correlation
challenge

Characterizing the
dependencies between
sources and correlating the
collected data

(Dey et al., 2018; Asim et al., 2019; Ahn
and Park 2011; Giridhar et al., 2016;
Tsapeli et al., 2017; Rashid et al.,
2019b)

• How tomodel source dependency and
data provenance, given the diverse
source dependency nature of social
and physical sensing?

• How to identify and incorporate
implicit correlations within events
obtained from social and physical
sensors?

• How to explore strong causal
relationships between physical and
social sensor data?

Privacy challenge Mitigating privacy issues
arising from the
integration of social
and physical sensors

(Toch et al., 2012; Liu et al., 2019;
Vance et al., 2018; Ganti et al., 2008;
Li et al., 2009; Al-Fuqaha et al., 2015;
Toch et al., 2012; Li et al., 2009)

• How to develop robust privacy-
conserving schemes to prevent the
malicious exploitation of
complementary information from
social and physical sensors?

• How to design integrated privacy-
aware SPS platforms to concurrently
consider the data heterogeneity and
protect sensitive user information?

(continued)
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their devices for obtaining sensor data. However, be-
yond the willingness of people to share their personal
devices, the devices in SPS might be unavailable for
capturing or providing access to the data. For example, a
user might be using her smartphone to play video games
or watch videos, making the device unavailable for
capturing images and processing them efficiently.
Therefore, collecting data from the social and physical
realms that direct to the appropriate information remains
an open challenge in SPS.

Human-cyber-physical interactions challenge

In SPS, one elemental challenge is handling the complex
interactions between the human, cyber, and physical (HCP)
components when integrating social sensing with physical
sensing. As events in the real world play out, human and
physical sensors are expected to spontaneously contribute
knowledge through the social and physical data platforms to
recover the truthful states of real-world occurrences. Given
this basis, developing a closed-loop system that seamlessly
integrates the social and physical sensing paradigm is crucial.

In such a closed-loop system, the social and physical
sensors effectively communicate and complement each

other to accomplish the assigned sensing tasks jointly.
Existing research on human-computer-interactions (HCI)
has explored the need for designing effective interfaces to
connect the human and cyber worlds, which include ex-
amples such as web interfaces, mobile applications, online
forms and survey questionnaires, virtual reality (VR), and
motion capture (Wich and Kramer 2015). In recent times,
there has been a surge in research on cyber-physical systems
(CPS), which explores the interactions between the cyber
and physical worlds with a focus on the problems in
sensing, computation, and control of a CPS system (Zeng
et al., 2020). Recent studies in CPS have proposed tech-
niques such as embedding human intelligence into cyber-
space and augmented reality-driven assistive technology for
humans to reduce the gap between the human and cyber
worlds (Hu et al., 2012; Zhang et al., 2020b). However,
handling the HCP interactions in SPS is much more
complex and challenging than the problems studied by
existing HCI and CPS research.

While human users typically act as sensors in SPS ap-
plications, they must also carefully consider their roles as
actuators. Let us consider an example in Figure 14, which
shows a smart water monitoring application where
crowdsensed water quality measurement is combined with
physical water quality sensor data (Fascista 2022). Here,
crowdsensing participants act as actuators. If the partici-
pants do not contribute data of sufficient quality (i.e., not
enough reliable data or low participation level), incentives
can be applied to encourage them to provide better-quality
data. The incentives serve as control signals, and the par-
ticipants act as actuators. Upon receiving higher incentives,
the participants might potentially take a response/action in
the physical world by: (i) collaborating to contribute more
data; (ii) validating the data of their peers; (iii) or en-
couraging more people to participate by referring them to
use the app (Peng et al., 2015). Thus, the incentive serves as
a signal from the cyber world (i.e., through smartphone
apps) to control response in the human world (i.e., the
human participants). When humans receive the incentives,
they respond in the physical world (i.e., collect and

Table 2. (continued)

Challenge Description Schemes targeting challenge Open research questions

Dynamics challenge Adapting to the
interrelated dynamics
from the social and
physical realms

(Rashid et al. 2019c, 2020c;
Zhang et al., 2017b;
Li et al., 2019;
Wang et al., 2013b)

• How to handle interrelated dynamics
induced by the fusion of social and
physical domains?

• How to adapt to the dynamics from
the social domain which impacts the
performance of physical sensing?

• How to adapt to the physical world
dynamics which affect the
performance of both the social and
physical sensors?

Figure 13. Example of data collection challenge in SPS
Applications.
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contribute higher quality data). Such an adaptive closed-
loop system requires a careful design that systematically
models the complex HCP interactions.

Current literature has proposed methods to develop
closed-loop systems encompassing various sensors (e.g.,
cameras, GPS sensors), actuators (e.g., robotic arms, mo-
torized doors), and controllers (e.g., proportional–integral–
derivative (PID) controllers, fuzzy logic controllers, and
reinforcement learning) for establishing effective cooper-
ation between them using techniques such as linear qua-
dratic Gaussian (LQG) control (Lee et al., 2019), supply
chain theory (Zhang et al., 2019a), and blockchain-based
smart contracts (Sathiyanarayanan and Sokkanarayanan
2019). However, the closed-loop challenge at the inter-
section of human, cyber, and physical spaces in SPS has not
been fully addressed by existing research for several rea-
sons. First, current solutions often do not explicitly model
the human participants as actuators, which is a crucial
feature of SPS applications. Second, current literature on
incentive design in crowdsensing frameworks has not ad-
dressed how to use the physical sensors to validate the
information contributed by human sensors. Third, existing
approaches have not fully explored measures to leverage
social signals to effectively control the performance of the
physical sensors. Last, current solutions have not explicitly
considered the joint dynamic nature of the human, cyber,
and physical worlds to tightly coordinate their interactions.
As such, addressing the HCP interaction prevalent in SPS
systems remains an open challenge.

Device and data heterogeneity challenge

While the abundance of physical and social sensors in SPS
provides a rich influx of knowledge across various sensing
applications, an inherent challenge in SPS lies in managing
the diverse range of devices involved in the sensing process
and the different types of data they generate. We deem this
challenge as device and data heterogeneity. Figure 15

demonstrates a scenario of the data and device heterogene-
ity challenge in the context of a smart city (Guo et al., 2017).
We can observe that multiple users and devices generate data
in various formats such as text, images, sound, video, nu-
meric, and geo-location. Such multi-modal data is non-trivial
to analyze and interpret as we shall see.

As identified in Section 3, SPS applications are centered
around a diverse collection of devices that encompasses
data acquisition, communication, and computation. In
particular, the physical sensing components rely on the
capabilities of hardware sensing devices (e.g., cameras,
UAVs, and robots), while the social sensing components
obtain observations from human sensors through crowd-
sensing and social media by implicitly leveraging user
devices (e.g., connected tablets, laptops, and smartphones).
Such devices have distinct characteristics in terms of
sensing and computation capabilities, sensitivity, power
requirements, frequency of data capture, communication
protocols, access control and authentication methods, and
runtime environments (Zhang et al. 2019a, 2019e, 2020e;
Chu et al., 2016; Shang et al., 2019), which often presents a
unique difficulty in managing them in SPS applications. For
example, in the SAS application of Figure 2 in Section 1
(Rashid et al., 2019a), smartphones capture human obser-
vations and send them to social media platforms which are
then used to dispatch UAVs to recover the veracity of the
reports. Standalone social or physical sensing applications
are unlikely to have such diverse devices working together.
As such, little work has been done in earlier research to bridge
the knowledge gap in SPS and construct a unified framework
that can efficiently manage such diverse devices.

A few efforts have attempted to mitigate device hetero-
geneity in sensor networks and distributed systems primarily
using abstraction-based approaches such as: (i) sensor em-
ulation, device clustering (Shao et al., 2018), and sensor
abstraction layer (Gigan and Atkinson 2007) for data ac-
quisition devices; (ii) containerization (Scheepers 2014) and
dynamic binary translation (Jun et al., 2019) for computation
devices; and (iii) software-defined networking (Kirkpatrick
2013) and sensor network virtualization (Khan et al., 2015)
for communication devices. However, in the context of SPS,
existing solutions are inadequate in addressing the device
heterogeneity challenge due to several reasons: (i) the devices
in SPS are mostly privately owned (i.e., smartphones, IoT
devices), which makes it hard for an SPS application to apply
global policies and control the devices from a central au-
thority perspective (Zhang et al., 2019a) (e.g., it might not be
possible to install a middleware application on a personal
device); (ii) the extent of heterogeneity of the devices in SPS
is more evident due to the added heterogeneity of tasks and
architectures which current solutions overlook (Zhang et al.,
2019a); and (iii) the devices in SPS often have complex
interdependence of the tasks (Zhu et al., 2019), which ex-
isting solutions might not preserve (Wei et al., 2019).Figure 14. Example of human’s role as actuators in SPS.
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Beyond the diversity of the devices, the social and
physical sensors in SPS typically generate data that widely
vary across modalities and formats. For example, the input
data type can range across text, image, location, audio, and
video (Birke et al., 2014), and each type can further en-
compass different dimensionality, making the data hetero-
geneity even more pronounced (Zhai et al., 2014). For
example, for image data, the dimensionality can be edges,
corners, blobs, and ridges, while for text data, the dimen-
sionality can be document frequency and n-grams (Khanina
et al., 2012). Existing methods for mitigating data hetero-
geneity include data fusion schemes such as bagging and
boosting (Oza 2005), deep learning (DL)-driven data fusion
(Gao et al., 2020), covariance intersection (Gan and Harris
2001) as well as other statistical and machine learning
methods such as dimensionality reduction (Renard and
Bourennane 2009), multi-view learning (Zhang et al.,
2018f, 2019d), and feature concatenation (Gao et al.,
2020). Despite their effectiveness in standalone sensing
applications, current approaches fail to address the data
heterogeneity issue in SPS due to the inherent complexity
injected by the different data rates generated by the social
and physical sensors in SPS applications. The diverse
sensors in SPS are known to produce data at different
frequencies, rendering existing solutions infeasible (Misra
et al., 2020; Mourtzis et al., 2016). Consequently, versatile
data management schemes must be developed to withstand
the heterogeneity of data in SPS and interpret knowledge
from the social and physical signals.

Dependency and correlation challenge

One fundamental challenge in SPS lies in characterizing
the dependencies between the social and physical data

sources and correlating the collected data across the two
sensing paradigms (Stieglitz et al., 2018). While this
challenge has been studied in social and physical sensing
independently, it is more pronounced in the context of SPS
applications and more challenging to solve due to several
hurdles.

The first hurdle is building a unified analytical frame-
work to model the source dependency and data provenance
in SPS, given the diversity of source dependencies in social
and physical sensing. For example, human sensors tend to
be naturally correlated through social networks (e.g.,
Twitter followers tend to re-tweet their friends’ tweets). In
contrast, physical sensors do not typically inherit any such
social correlations and are more likely to be correlated
through the underlying physical phenomena or geographic
locations (e.g., two air quality monitors are likely to report
similar measurements if they are in close proximity). Such
disparity in source dependency and data correlation makes it
non-trivial to seamlessly integrate the diverse social and
physical sensor measurements under a principled frame-
work (Wang et al., 2014b). Current knowledge discovery
and data mining approaches in social and physical sensing
such as semantic pattern recognition (Dey et al., 2018), trust
and influence modeling (Asim et al., 2019), and covariance
intersection (Ahn and Park 2011) model the dependencies
across social and physical sources independently. However,
due to the different source dependencies within the social
and physical sensors, such approaches are largely inade-
quate for SPS applications. A unified source dependency
modeling framework to meld the social and physical sensors
in SPS is yet to be developed.

The second hurdle is imposed by the presence of strong
causal relationships between the physical and social sensor
data in SPS applications (Giridhar et al., 2016). For in-
stance, during a traffic accident, as illustrated in Figure 16,
people might report the accident along with its location on
Twitter, while traffic flow monitoring units placed at a
different segment on the same road might detect unusually
slow traffic movements (Giridhar et al., 2016). While the
traffic accident and congestion reported by different sensing
channels might be seemingly unrelated at first glance,
aligning the temporal and spatial information from the input
signals (e.g., geo-location information and timestamps of
the events) might reveal an inherent causality between them
(i.e., the traffic congestion was probably caused due to the
traffic accident) (Tsapeli et al., 2017). Thus, even though
there might not be any direct relation between the reported
events across social and physical data platforms, the sensors
across the two paradigms might report the same chain of
occurrences or the same context but in different formats.
While this context information might help to explain the
cause of anomalous incidents, it is a non-trivial task to
explore such causality across social and physical data
platforms.

Figure 15. Scenario of data and device heterogeneity challenge in
SPS Applications.
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Given the diverse source dependency profiles and the
potential presence of causality across the physical and social
sensors in SPS, it is challenging to design a holistic
framework that can effectively connect the disparate social
and physical sensors for interpreting real-world event oc-
currences. Consequently, extensive exploration and mod-
eling of the dependency and correlation within the social
and physical domains remain an outstanding challenge in
SPS research.

Social and physical privacy challenge

Due to the integrated nature of the social and physical sensors
in SPS, one critical challenge in SPS applications is to ef-
ficiently address the privacy issues of end users of SPS
applications (Liu et al., 2019). Figure 17 illustrates an SAS
application where UAVs need to be dispatched based on
locations derived from social media (Terzi et al., 2020).
However, due to concerns about privacy, a good proportion
of users refrain from sharing their GPS data, due to which the
UAVs would be unable to determine the locations where to
fly to. Existing literature has proposed several privacy-aware
sensing approaches for social sensing, which include source
identity obfuscation (Toch et al., 2012), blind signatures and
data shuffling (Liu et al., 2019), ring signatures (Vance et al.,
2018), and data perturbation (Ganti et al., 2008). In a similar
fashion, for alleviating privacy issues in physical sensing,
current approaches have developed schemes such as slice-
mixed aggregation (Li et al., 2009), isolated virtual networks
(Al-Fuqaha et al., 2015), trace-free location tracking (Toch
et al., 2012), and routing with random walk (Li et al., 2009).
Despite the effectiveness of the above approaches in pre-
serving user privacy in social and physical sensing separately,
several unique difficulties in SPS restrict their usefulness in
solving the privacy challenge in SPS systems.

First, social and physical sensors in a connected envi-
ronment often deliver complementary information that can
be exploited to expose the users’ personal information. For
example, in a fitness tracker application using social media
and wearable sensors, reports of daily exercise activities
posted by people through social media (e.g., jogging in a
park) might be correlated with user-shared historical health
data from wearable sensors (e.g., blood pressure, pulse rate,
body temperature) to potentially infer the medical history of
an individual (e.g., whether a person has a chronic illness).

Conversely, in SPS applications, the data from physical
sensors might also be exploited to maliciously extract the
private information of individuals when augmented with
social signals. For example, in an anomalous crowd de-
tection application that combines images captured by sur-
veillance cameras with reports of crowd gatherings posted
on social media to infer the onset of sudden crowds, the
surveillance cameras can only capture the image of a person
at a specific location without further details of that person.

However, if that particular person periodically shares their
shopping history alongside geo-location information on
social media, the image data from the cameras might be
correlated with the additional data to unravel the socio-
economic status of the individual (Xiong et al., 2019).

Second, due to the inherent heterogeneity of the devices and
data in SPS, it is a non-trivial task to apply unified privacy-
preserving policies in SPS applications. As discussed in the
device and data heterogeneity challenge, SPS applications
involve diverse devices. With such a wide range of devices, it
is difficult to keep track of the data transmission and security
protocols of all the devices. As such, device vulnerabilities
such as unprotected APIs, outdated firmware, or defunct au-
thentication mechanisms (Hasan et al., 2016) might be ex-
ploited by hackers to steal personal data from user devices.
Moreover, since social and physical sensors in SPS generate a
wide variety of data (e.g., text, image, video, audio, and lo-
cation data), the capture, transmission, and processing of the
data require different energy profiles, which often leaves the
devices in SPS vulnerable to exploits such as a side-channel
attack, an attack intended to steal user data (Lerman et al.,
2011). For example, when a device is processing video frames,
the patterns of power usage within the device might be an-
alyzed by an attacker to recover the raw video data
(Abrishamchi et al., 2017). Current privacy-preserving ap-
proaches are not designed to withstand the intrinsic and
pronounced data and device heterogeneity prevalent in SPS
applications, which might lead to vulnerability of user privacy.
Thus, it is yet to be determined how to design unified privacy-
aware SPS platforms that can concurrently consider the data
and device heterogeneity and protect sensitive user informa-
tion to address the privacy challenges in SPS.

Interrelated dynamics challenge

A pivotal challenge in SPS is handling the interrelated
dynamics induced by the fusion of the social and physical

Figure 16. Example of causality among sensors in SPS.
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domains. SPS applications innately rely upon the tight
integration between social and physical realms, both of
which are dynamic in nature and exert impact over one
another.

The dynamics arising from the social domain tend to
influence the performance of physical sensing directly.
Let us consider an integrated social media and UAV-
driven crowd analysis application as shown in Figure 18
(Kaiser et al., 2017). If social events related to public
protests are initiated and organized on social media,
dynamics in the social domain (e.g., more people
tweeting, different locations being targeted, people
publicizing the activities to a greater level) might cause
dynamics in the physical world (e.g., more new ac-
tivities related to protests such as speeches and con-
certs, more people joining, events taking place in
locations far away from one another). Given that mobile
physical sensors such as UAVs and robots often suffer
from constraints such as energy, communication, and
speed, such physical sensors might not be able to ex-
plore or investigate all the events reported by social
sensors within set deadlines. Such a scenario is also
illustrated in Figure 18, where the initiated crowd
events are located at various locations with different
deadlines. Due to the presence of the social domain
dynamics, the UAVs, with their physical constraints,
might not be able to sense all the crowd events before
their deadlines. Thus, careful choices need to be made
on which subset of reports from the social data plat-
forms to prioritize for the physical sensors, which ex-
isting solutions have not addressed.

On the other hand, the dynamics from the physical world
might affect the performance of both the social and physical
sensors (Hu et al., 2012). For example, let us consider an S-VSN
application in the aftermath of a disaster (Rettore et al., 2019) as
shown in Figure 19. The disaster might cause road damage
around the affected area. Such damage can potentially restrict
the travel of cars across certain roads, which can cause car
drivers to be unable to locate and report events of interest on
social media (e.g., gas availability in a gas station). Moreover,
network infrastructure can also get damaged, leading the car
drivers to lose access to network connectivity and be unable to
post any event reports (Wisitpongphan et al., 2007). Eventually,
fewer observationsmight be reported by car drivers across social
media, yielding poor coverage from the human sensors. In the
physical world, the event occurrences might also be accom-
panied by unforeseeable circumstances such as unfavorable
weather (e.g., extreme temperatures) or damaged infrastructure
(e.g., disconnected power lines), which might impede physical
sensing. For example, strong wind or cloud might impact the
readings from different sensors such as cameras or gyroscopes
on UAVs, and bumpy roads might negate the performance of
vehicular sensors on cars (e.g., shaky images captured by
dashcams) (Li et al., 2019; Wang et al., 2013b). Therefore,

careful considerationmust be given to adapting the SPS systems
to accommodate such physical world dynamics on-the-fly,
which has not been extensively explored by current literature.

Figure 20 provides an overview of the fundamental
challenges in SPS. We note that while some of these
challenges might also be studied in AI literature, the two
areas are sufficiently different and not directly comparable
to each other for several reasons. First, SPS is a sensing
paradigm that leverages the collective knowledge from
human and physical sensors to perceive the state of the
world (Qiu et al., 2016; De et al., 2017). By contrast, AI is a
much broader topic that encompasses the theories and al-
gorithms driving systems that can perform tasks that typ-
ically require human intelligence (Joiner 2018). Second,
SPS and AI have fundamentally dissimilar problem con-
texts. For instance, while data heterogeneity is also studied
in AI literature, for SPS, the problem context is unique
because: (a) SPS applications are often involved with a
diversity of tasks (i.e., data capture, communication, and
computation) and sensing sources (e.g., social media,
UAVs, and crowdsourcing participants) (Zhang et al.,
2019a), which are less likely to be present in general AI
applications; (b) the entities in SPS (i.e., humans and
machines) often have a complex interdependence of
workflow (Zhu et al., 2019), a problem which is not fre-
quently encountered in AI applications (Wei et al., 2019);
and (c) the social and physical sensors in SPS are known to
produce data at different frequencies which injects an in-
herent complexity in the data acquisition process (Misra
et al., 2020; Mourtzis et al., 2016). In a similar fashion, the
dependency and correlation challenge is also studied by AI
literature, but solutions designed for AI applications might
be inapplicable to SPS applications because: (a) the source
dependencies within the social and physical sensors in SPS
are inherently different and; (b) the data from physical and
social sensors in SPS applications often have strong latent
causal relationships that are not explicitly considered in
general AI solutions (Giridhar et al., 2016). In the following
section, we explore possible directions for future research to
address the above challenges in SPS.

Roadmap for future work

In this section, we present several exciting avenues for future
work in the domain of SPS. As we outline each avenue, we
enlist a few potential directions of research to pursue.

Uncertainty quantification in SPS

Since SPS applications often rely on the noisy social and
physical signals contributed by a diversified set of human
and physical sensors, one potential direction for future
work lies in quantifying the uncertainty generated by the
diverse sensors in SPS applications. As discussed in the
data collection challenge in Section 5, the intrinsic
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interdependence between the noise generated by the
social and physical sensors in SPS is hard to quantify and
model. As such, the collected social and physical signals
induce a degree of uncertainty. Without carefully deter-
mining the level of uncertainty in the input data, the
performance of SPS applications might be unpredictable
(Wang et al., 2017; Zhang et al., 2017a, 2018a). Current
social sensing analytics tools such as truth discovery
algorithms primarily focus on deducing the data veracity
or source reliability from the social sensing data (Ali
et al., 2011; Huang and Wang 2016; Zhang et al., 2018b).
In a similar fashion, current physical sensor data pro-
cessing schemes have focused on inferring the infor-
mation contained in the physical signals using techniques
such as fuzzy logic (Ma et al., 2006), autoregressive
models (Cockx et al., 2014), arbitrary polynomial chaos
(Gulgec et al., 2020), perturbation theory (Zhao et al.,
2014), and full factorial numerical integration (Lee and
Chen 2009). However, the existing schemes do not ex-
plicitly focus on quantifying the interconnected uncer-
tainty between the social and physical sensors, which is
important to ensure the stable performance of SPS

systems. As illustrated in Figure 13 in Section 5-A with
the example of a structural damage assessment applica-
tion, unreliable online users might incorrectly report the
damage sites, which might dispatch robots to the wrong
locations. Likewise, if the images captured by the robots
are obscure, they might not correctly validate the reli-
ability of the users. Thus, the characteristic noise origi-
nating from social and physical sensors might adversely
affect the sensing performance of the SPS applications.
As such, it is imperative to develop methods for quan-
tifying the uncertainty signals in SPS applications.

It is essential first to realize why existing literature has not
extensively explored the domain of uncertainty quantification
in SPS. Several disparities between social and physical sensors
lead to difficulty in rigorously quantifying their signals’ un-
certainty. First, the social and physical sensors in SPS generate
dissimilar types of data (e.g., social sensors typically generate
text data while physical sensors generate continuous and
discrete time signals) (Mitchell and Chen 2014; Wang et al.,
2019a). Second, the dependencies between the sensors in social
data platforms are different from that within the sensors in
physical data platforms (Stieglitz et al., 2018). Third, the dy-
namics in the social domain are characteristically contrasting to
the dynamics in the physical world (Hu et al., 2012; Zeng et al.,
2020). Fourth, the rates of data generated by social and physical
sensors are different from physical sensors (e.g., the speed at
which UAVs capture images is different from the frequency at
which people report incidents on Twitter) (Misra et al., 2020;
Mourtzis et al., 2016). In addition, factors such as biased
opinions from human sensors in social sensing and the failure
cases of physical sensors (e.g., out of battery or affected by bad
weather) implicitly aggravate the uncertainty quantification in
SPS (Wang et al., 2019a; Diez-Gonzalez et al., 2020).

One direction for further research in SPS is to focus on
rigorously quantifying the uncertainty of social and physical
signals and leverage the quantification results to improve SPS
systems’ social and physical sensing components jointly. For
example, in anomaly detection with an SAS application, if the
uncertainty from the social signals can be determined, it may
help to dispatch theUAVs better. Similarly, if the uncertainty in
the captured UAV data can be measured, it can be used as
feedback signals to improve reliable source selection in social
sensing. Another probable research direction in SPS can be to
design schemes that can deduce the uncertainty in the social
and physical sensing data while simultaneously considering
the SPS challenges such as the data heterogeneity, the diverse
source dependencies, the social and physical world dynamics,
and the contrasting social and physical sensor data generation
rates. Existing studies on statistical analysis have proposed
principled approaches based on estimation theory. Examples
of uncertainty quantification approaches include maximum
likelihood estimation (MLE), Cramer-Rao lower bounds
(CRLB) (Wang et al., 2011b, 2012a, 2011a, 2013c, 2015b).
Alongside quantifying the uncertainty of estimation results,

Figure 17. Example of social and physical privacy challenge in
SPS.

Figure 18. Example of how social domain dynamics affect
physical sensors in SPS.
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future SPS schemes can focus on incorporating the accom-
panying factors (e.g., human bias, physical constraints) in the
uncertainty propagation models. We envision that techniques
from multiple disciplines might be applicable for alleviating
the above hurdles and modeling the uncertainty in SPS ap-
plications which includes Bayesian networks (Zhang et al.,
2018d), Monte Carlo methods (Harris and Cox 2014), evi-
dence theory (Bae et al., 2004), Markov Chain formulation
(Abdar et al., 2020), mixed integer linear programming
(MILP) (Constantinescu et al., 2010), and polynomial chaos
expansion (Kaintura et al., 2018).

Handling trade-off between privacy and sensing
quality in SPS

As identified in Section 5-E, mitigating privacy issues is
critical in SPS applications. However, in attempts to ensure
user privacy, often current SPS schemes have to compromise
the sensing quality. For example, metadata such as geo-
location information might be concealed from privately
owned devices to protect the identity of human sensors on
social media. However, the location information might be
critical for mobile sensors, such as robots, to be dispatched to
events of interest. Figure 21 shows an example scenario
where concealing private data affects sensing quality. Thus,
SPS applications often require the knowledge of supporting
information such as locations, timestamps, and contextual
information from reported social sensing data, which often
conflicts with the end users’ privacy requirements. Since
ensuring user-level privacy and maximizing sensing quality
often turn out to be two potentially conflicting objectives in
SPS (Xu et al., 2018), it is imperative to design schemes that
carefully strike trade-offs between privacy and sensing
quality for an optimized SPS system.

Existing approaches in data-driven social and
physical sensing schemes have proposed techniques to
manage user privacy by obfuscating identifying infor-
mation such as geo-location tags from the raw data from
personal devices (e.g., laptops, smartphones) (Park
et al., 2017; Zhang et al., 2018e). However, existing

privacy-preserving schemes have not addressed effec-
tively handling the trade-off between privacy and
sensing quality in SPS. Several reasons make it difficult
to simultaneously establish privacy and sensing quality
in SPS. First, the unpredictable nature of human users in
SPS applications makes it difficult to ensure that the
users will strictly abide by policies to protect their
privacy. Second, given the unique data and device
heterogeneity in SPS applications, designing a unified
framework to enforce individual privacy policies across
all the devices is a challenging task (Vance et al., 2019).
Third, regardless of the robustness of privacy-
preserving schemes, the complementary aspects of the
contributed data through social and physical data
platforms can be exploited to steal sensitive user in-
formation (Vance et al., 2018).

One future research direction to pursue for optimizing
the privacy and sensing quality in SPS applications is to
design multi-faceted cryptographic techniques such as
blockchain technology (Ali et al., 2017), smart contracts
(Christidis and Devetsikiotis 2016), and ring signatures
(Vance et al., 2018). While existing cryptographic ap-
proaches have come a long way in balancing privacy and
sensing quality individually in social and physical sensing
(Henry et al., 2018), it is difficult to apply unified
cryptography-based solutions in an SPS setting where a
diverse range of devices are associated (Marin et al., 2015).
Future work in this domain can constitute developing
cryptographic SPS approaches that can cater to the het-
erogeneity of the devices in SPS and effectively trade off
privacy and sensing quality. Another potential direction for
future work on quality-aware privacy preservation in SPS is
to explore and incorporate approaches like differential
privacy, where noise is deliberately added to the user data to
conceal the sensitive information of users (Abadi et al.,
2016; Kairouz et al., 2015). While current differential
privacy techniques have been applied in participatory
sensing and crowdsensing, such approaches have not
considered the data heterogeneity issue prevalent in SPS.
Due to the wide variety of the data generated by the social
and physical sensors in SPS (e.g., text, image, audio, and
location data), injecting deliberate noise for concealing user
identity into different data might be computationally in-
tensive and resource-demanding. As such, further work can
concentrate on alleviating the data heterogeneity in SPS
applications by developing efficient differential privacy
techniques.

Ensuring fairness and accuracy of detection in SPS

While SPS applications deliver a multifaceted sensing
package using a combination of social and physical
sensors, one remaining issue is ensuring fairness

Figure 19. Example of how physical domain dynamics affect
social sensors in SPS.

Rashid et al. 25



alongside accuracy for the data obtained from diverse
demographics (Kairouz et al., 2019; Zhang et al.,
2020c). With the advent of numerous data acquisition
platforms and processing techniques, there is a
heightening concern from various civil rights organi-
zations, governments, and analysts regarding the fair-
ness of the detection process in SPS applications and
their prevalent algorithmic bias towards specific de-
mographic groups (Roselli et al., 2019). For example, in
a contact tracing SPS application, as illustrated in
Figure 22, overrepresented classes of data might cause a
certain age of people (e.g., teenagers) to be incorrectly
represented as the prime sources of the disease. One
issue that arises when trying to ensure fairness and
accuracy in input data distribution is the loss of model
accuracy. Specifically, in order to reduce the bias, it is
crucial to incorporate a wider distribution of data from
different classes (e.g., race, ethnicity, and nationality)
of data contributors. However, to reduce bias by in-
corporating a wider distribution of data, the inference
models in SPS need to train over a larger sample of data,
causing the overfitting/underfitting problem, which
often leads to the reduction in model accuracy (Dressel
and Farid 2018). The fairness and accuracy issue in SPS
is further exacerbated by the fact that specific demo-
graphics might be more inclined to use smart devices
more often than others. For example, in an anomalistic
crowd investigation application using SAS, younger
people might use their mobile devices to post crowd-
related events more frequently on social media while
senior people might not report their observations so

often on social media. As such, a crowd inference model
might be overfitted with a younger demographic.
Current fairness and accuracy-optimizing schemes are
limited in addressing such diverse device usage sce-
narios present in SPS applications.

Existing schemes have attempted to reduce algorithmic
bias by using heuristic approaches such as genetic algorithm
(Kosmidis and Frith 2010), optimizing the model’s loss
function (Iosifidis and Ntoutsi 2019), or ensuring that the
model training process satisfies the given fairness constraints
(Zhang and Ntoutsi 2019). The problem with current ap-
proaches is that they have been originally designed for fairly
good-quality input data. However, in the context of SPS
applications, both social and physical sensors are prone to
systematic noise, which is hard to quantify and model due to
their complex interdependence with each other (Qu et al.,
2020). Thus, further research can concentrate on optimizing
the fairness and accuracy of SPS applications while con-
currently offsetting the noise generated by the social and
physical sensors. Techniques such as deep learning (DL)-
based collaborative filtering (Bobadilla et al., 2020),
discrimination-aware channel pruning (Zhuang et al., 2018),
and selective adversarial networks (Adel et al., 2019) could
be explored to develop such fairness and accuracy-
optimizing methods. In addition to mitigating the noise
contained in the input signals in SPS, one strand of research
can be focused on developing user-friendly and accessible
interactive interfaces (e.g., interactive kiosks, smartphone
applications, responsive websites, and augmented reality
experiences) for collecting fair data samples in SPS given the
potential demographic bias in the participants.

Figure 20. Overview of fundamental challenges in SPS Applications.
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Harnessing adaptive artificial intelligence in SPS

One route for future research in SPS can be focused on ad-
dressing the interrelated dynamics in SPS. As discussed in
Section V-F, a critical task in SPS applications is handling the
interrelated dynamics caused by the constantly transitioning
social and physical environments. Adaptive Artificial Intelli-
gence (AI) algorithms are known to adjust their parameters to
cater to changing stimuli (McMahan et al., 2021). As such, AI
algorithms might help to adapt to the constantly changing social
and physical environments. However, several limitations inhibit
off-the-shelf AI algorithms from being directly applied to SPS
applications to mitigate the dynamics challenge.

First, as identified in Section 5-B, one recurring issue
stemming from the human-cyber-physical interactions
challenge in SPS applications is the inconsistent availability
of the social and physical sensors, known as churn (Vance
et al., 2019). Many AI algorithms heavily rely on the
sensing devices’ participation in the training phase, which
requires multiple iterations to converge to global optima.

Given the churn involved in SPS applications, it is often
difficult for AI algorithms to classify the incoming sensing
measurements accurately. As a result, these AI algorithms
might end up with failure scenarios in SPS applications with
significant dynamics. Second, SPS applications typically
involve a large number of privately owned devices, and
often users do not provide access to their devices with
concerns about privacy or excessive bandwidth usage.
Traditional distributed AI algorithms often tend to assume
unrestricted access to local datasets from individuals’ de-
vices (McMahan et al., 2021), which may not always hold in
SPS applications. Given the inaccessibility of user data
across privately owned devices, existing distributed AI
algorithms fall short of addressing the dynamics challenge
in SPS applications. Third, SPS applications involve a
diverse set of devices and a wide range of data types
(i.e., data and device heterogeneity). However, most current
AI algorithms are intended to handle input data that is
naturally homogeneous and assume that the data is iden-
tically distributed across the devices (Li et al., 2020). While
a few existing distributed AI algorithms can handle het-
erogeneous data, the computational complexity of such
algorithms tends to be relatively high, which might overload
resource-constrained devices (e.g., smartphones, UAVs)
used in SPS applications (McMahan et al., 2021). Conse-
quently, such limitations make it challenging to apply ex-
isting distributed AI algorithms to critical SPS applications.

Several future avenues for research can be explored to
tackle the above difficulties. One potential realm of further
work can focus on using deviceless pipelining techniques to
offload and distribute AI model training subtasks in SPS
applications across devices equipped with specialized
hardware (Vance et al., 2019). For example, in a disaster
response application with SAS, a UAV fitted with a GPU
having large video RAM can be used to execute grid search
for hyperparameters in AI model training while another
UAV fitted with an FPGA can be used for pooling and
flattening subtasks. A second emerging model training
technique is to incorporate human intelligence (HI) for
augmenting AI algorithms and enhancing their performance
(Amershi et al., 2019). HI platforms such as AmazonMTurk
have allowed human participants to provide their inputs for
labels or features that might be potentially leveraged to
retrain the AI models and address their innate flaws (Zhang
et al., 2019b). Thus, further research in SPS can focus on
incorporating HI with AI to develop robust human-AI al-
gorithms for SPS applications. A third probable future
avenue of research can focus on designing decentralized
model training algorithms for collaboratively acquiring
local model updates from privately owned devices. With the
intent of preserving privacy and reducing network band-
width requirements, federated learning (FL) is gaining
traction as a decentralized AI training paradigm (Konečnỳ
et al., 2016; Zhang et al., 2021), where a shared global AI

Figure 21. Example of trading-off between privacy and sensing
quality in SPS.

Figure 22. Example of algorithmic bias affecting fairness in an
SPS-based contact tracing application.
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model is trained from a collection of edge devices owned by
end users (Wang et al., 2019b). Future research can focus on
developing FL solutions that can consider the data and
device heterogeneity originating from the social and
physical sensors in SPS.

Conclusion

In this paper, we present a comprehensive survey of SPS, an
emerging integrated sensing paradigm that exploits the
collective strengths of physical and social sensing to acquire
and interpret observations from the environment. Em-
powered by the ubiquity of versatile data capture, com-
munication, and computing technologies, SPS melds the
human wisdom-driven data acquisition from social sensors
with the multifaceted sensing capabilities of physical sen-
sors to deliver a deeper perception of the real world, both
physically and socially. In particular, this paper surveys the
various aspects that are important for constructing com-
pelling SPS systems, which includes a detailed overview of
SPS, the key motivation behind its origin, the crucial
technologies and protocols that enable SPS, real-world SPS
applications and state-of-the-art solutions, the key chal-
lenges prevalent in SPS, and the potential avenues for
further work to address the challenges. We hope this paper
will bridge the knowledge gap from the current literature on
SPS and motivate future studies to design novel SPS sys-
tems for a more holistic perception of real-world
phenomena.
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Appendix

Table A1.
List of Abbreviations and Acronyms.

AI Artificial intelligence
ALPR Automatic license plate recognition
ANNs Artificial neural networks
API Application programming interface
CoAP Constrained application protocol
COVID-19 Coronavirus disease 2019
CPS Cyber-physical systems
CPSS Cyber-physical-social systems
CRLB Cramer-Rao lower bounds
CSS Cyber-social systems
DDA Disaster damage assessment
DL Deep learning
ENS Exposure notification system
FL Federated learning
GPS Global positioning system
HCI Human-computer-interactions
HCP Human, cyber, and physical
HI Human intelligence
IoT Internet of things
LR-WPAN Low-rate wireless personal area network
LTE Long-term evolution
MCS Mobile crowdsensing
MDP Markov decision process
MEC Mobile edge computing
MILP Mixed integer linear programming
ML Machine learning
MLE Maximum likelihood estimation
MQTT Message queue telemetry transport
PID Proportional–integral–derivative
RFID Radio frequency identification
RSSI Received signal strength indicator
RSU Roadside units
SAS Social airborne sensing
SPS Social-physical sensing
S-VSN Social vehicular sensor network
UAV Unmanned aerial vehicles
UDP User datagram protocol
UGV Unmanned ground vehicles
VR Virtual reality
VSN Vehicular sensor networks
WSN Wireless sensor networks
XMPP Extensible messaging and presence protocol
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