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Abstract

This work studies the behaviors of two large-population
teams competing in a discrete environment. The team-level
interactions are modeled as a zero-sum game while the
agent dynamics within each team is formulated as a collab-
orative mean-field team problem. Drawing inspiration from
the mean-field literature, we first approximate the large-
population team game with its infinite-population limit. Sub-
sequently, we introduce two fictitious coordinators and trans-
form the infinite-population game to an equivalent zero-sum
game between the two coordinators. Via a novel reachability
analysis, we study the optimal coordination strategies, which
induce decentralized strategies under the original informa-
tion structure. We establish the e-optimality of the resulting
team strategies for the finite-population game, with the sub-
optimality diminishing as the team size approaches infinity.
The theoretical guarantees are verified by numerical exam-
ples.

Introduction

Multi-agent decision-making arises in many applications,
ranging from warehouse robots (Li et al. 2021) to organi-
zational economics (Gibbons, Roberts et al. 2013). While
the majority of the literature formulates the problems within
either the cooperative or competitive setting, results on
mixed collaborative-competitive team behaviors are rela-
tively sparse. In this work, we consider a competitive team
game, where two teams, each comprising a large number of
intelligent agents, compete at the team level, while agents
collaborate within each team. Such hierarchical interactions
hold significant relevance in domains such as military op-
erations (Tyler et al. 2020) and other multi-agent systems
operating in adversarial environments.

There are two major challenges when trying to solve such
competitive team problems:

1. Large-population team problems are computationally
challenging since the solution complexity increases ex-
ponentially with the number of agents, and, in general,
the team optimal control problems belong to the NEXP
complexity class (Bernstein et al. 2002).

2. Competitive team problems are conceptually challeng-
ing due to the elusive nature of the opponent team,
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and thus one cannot directly deploy approximation tech-
niques available in the large-population game literature.

The scalability challenge in large-population multi-agent
systems has been addressed for a specific class of games
known as the mean-field games (Huang, Malhamé, and
Caines 2006). The salient feature of a mean-field game is
that agents are weakly-coupled in their dynamics and re-
wards through their state distribution (the so-called mean-
field). The intractable interactions among agents can then
be approximated as the interaction between a typical agent
and the “mass” of infinitely many other agents. This approx-
imation technique has been extended to single-team settings
known as the mean-field team problem (Arabneydi and Ma-
hajan 2014). A dynamic programming decomposition is de-
veloped for this problem, where all agents within the team
deploy the same strategy prescribed by a fictitious coordina-
tor. However, in the competitive team setting, although one
may restrict the strategies used by his/her team to be iden-
tical, extending the same assumption to the opponent team
may lead to a substantial underestimation of the opponent’s
capabilities and thus requires further justification.

Main Contributions

We address the two previous challenges by introducing
a class of discrete zero-sum mean-field team games (ZS-
MFTGs) as an extension to the mean-field team problems.
Importantly, ZS-MFTG models competitive team behaviors
and draws focus to the approximation of the opponent team
strategies.

We develop a dynamic program that constructs e-optimal
strategies to the proposed large-population team problem.
Notably, our approach finds an optimal solution at the
infinite-population limit and considers only identical team
strategies. This avoids both the so-called “curse of dimen-
sionality” issue in multi-agent systems and the book-keeping
of individual strategies. Our main results provide a sub-
optimality bound on the exploitability for our proposed so-
Iution in the original finite-population game, even when
the opponent’s team strategy is non-identical. Specifically,
we show that the sub-optimality decreases at the rate of
O(N 70'5), where [V is the size of the smaller team.

Our results stem from a novel reachability-based analy-
sis of the mean-field approximation. In particular, we show
that any finite-population team behavior can be effectively



approximated by an infinite-population team that uses iden-
tical team strategies. This result allows us to approximate
the original problem with two competing infinite-population
teams and transform the resulting infinite-population prob-
lem into a zero-sum game between two fictitious coordina-
tors. Such transformation leads to a dynamic program based
on the common-information technique (Nayyar, Mahajan,
and Teneketzis 2013) that efficiently constructs the optimal
team strategies.

Related Literature

Mean-Field Games The mean-field game (MFG) model
was introduced in (Huang, Caines, and Malhamé 2007;
Lasry and Lions 2007) to address scalability issues in large-
population games. The salient feature of MFG is that self-
ish agents are weakly-coupled in their dynamics and re-
wards through the mean-field (state distribution). If the pop-
ulation is sufficiently large, then an approximately optimal
solution can be obtained by solving the infinite-population
limit which is known as the mean-field equilibrium (MFE).
See (Lauricre et al. 2022) for an overview of the results in the
MEFG literature. The main differences between our setup and
the MFG are the following: (a) we seek team optimal strate-
gies while MFG seeks a Nash equilibrium. In particular, we
provide performance guarantees when the entire opponent
team deviates, while MFG only considers single-agent devi-
ations; (b) The MFE assumes that all agents apply the same
strategy and solves the mean-field flow offline. Hence, the
MEFE strategy is open-loop to the MF. However, under the
ZS-MFTG setting, different opponent team strategies lead to
different mean-field trajectories. Consequently, we require
feedback on the MFs to respond to the strategies deployed
by the opponent team.
Mean-Field Teams The single-team problem was explored
in (Arabneydi and Mahajan 2014), where agents share a
common team reward, resulting in a collaborative problem.
The work of (Arabneydi and Mahajan 2015) directly as-
sumes that all agents within the team apply the same strategy
and the optimality for the finite-population game is only as-
sured in the LQG setting (Mahajan and Nayyar 2015). Our
work encompasses a more intricate two-team zero-sum sce-
nario and justifies the identical team strategy assumptions.
The concurrent work of (Sanjari, Saldi, and Yiiksel 2023)
studies a similar team-against-team problem but in a con-
tinuous state and action setting. The authors analyze the ex-
istence of equilibria by modeling randomized strategies as
Borel probability measures. Our work differs in the follow-
ing aspects: (a) The work of Sanjari, Saldi, and Yiiksel re-
lies on the Kakutani fixed point theorem to establish the ex-
istence of a Nash equilibrium. In contrast, the discrete na-
ture of our formulation renders the convexity of the best-
response correspondence invalid, as exemplified in Numer-
ical Example 1. Therefore, our approach focuses on the
single-sided optimality based on the lower and upper game
values; (b) our approach transforms the team-against-team
problem into a zero-sum game between two coordinators,
which allows the deployment of dynamic programming; (c)
the analysis in (Sanjari, Saldi, and Yiiksel 2023) primar-
ily offers asymptotic performance guarantees. In contrast,

our results, which incorporate reachability-analysis and ad-
ditional Lipschitz assumptions, provide the convergence rate
of the finite-population team performance to its infinite-
population limit.

Notations

We use [n] to denote {1, 2,...,n}. The indicator function is
denoted as 1. () such that 1, (b) =1 if a = b and 0 other-
wise. We use uppercase letters to denote random variables
(e.g., X and M) and lowercase letters to denote their real-
izations (e.g., x and w). For a finite set E, we denote the
space of all probability measures over E as P(E).

Problem Formulation
Finite-Population Team Games

Consider a discrete-time system with two large teams of
agents that operate over a finite horizon 7'. The Blue team
consists of N1 homogeneous agents, and the Red team con-
sists of Ny homogeneous agents. The total system size is
denoted as N = N; + Na, and p = N1 /N reflects the size
ratio between the two teams. Let X N . € X and UN teld
denote the random variables representlng the state and ac-
tion taken by Blue agent ¢ € [V1] at time ¢. Here, X and U
are the finite individual state and action spaces for each Blue
agent, independent of ¢ and ¢. Similarly, we use le\tb ey
and Vj]\t[2 € V to denote the individual state and action of
Red agent j € [N3]. The joint state and action of the Blue
team and the Red team are denoted as (X', UM) and
(Y N2 VN2 respectively.

Definition 1. The empirical distribution (ED) for the Blue
and Red teams are defined as

N-
len (XM, zex, (1a)

N (y) *NZH Y'?), yey. (b

Note that MM € P(X) and NNz e P(Y), and MM (z)
gives the fractlon of Blue agents at state . We use the fol-
lowing two operators to denote the computations in (1):
MY = EmpM(XNl) N2 = Emp,, (Y]?).
Note that the Emp operators remove agent index informa-
tion and thus one cannot tell the state of a specific Blue agent
¢ given only the Blue ED.
We use total variation to measure the distance between
distributions. Formally, for a finite set F, the total variation
between two probability measures p, ' € P(F) is given by

oy (s, 1) Z\u
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Dynamics We consider weakly-coupled dynamics, where
the dynamics of each individual agent is coupled with other
agents through the EDs. For Blue agent ¢, its stochastic tran-
sition is governed by the transition kernel f; and satisfies

N N1 . N1 N1 1 N2 J— N2
P(th+1 zt+1U uzt’X =x; 5, Y = )



P
= fi(x zt+1|xzt7 1t’Mt 2 0)
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where V! Empu(xt ) and Vi N2 — Emp, (y¥?). Simi-
larly, the dynamlcs of Red agent j is governed by the transi-

N
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Assumption 1 (Lipschitz Dynamics). Forall z € x, u, i/ €
P(X), v, €P(Y) and t €{0,...,T—1}, there exist a posi-
tive constant L such that

Z |ft(x/|m7uvﬂ7 V) - ft(m'|x7u7u/, V/)|
vex < Lf (dTV<M7 ,U/) +dTV(V7 V/))-
We assume that g; is L4-Lipschitz as well.

Reward Structure Under the team-game framework,
agents in the same team share the same reward. Similar to
the dynamics, we consider a weakly-coupled team reward

T¢t P(X) X P(y) — [_Rmavamax]~

Assumption 2 (Lipschitz Rewards). For all p, i’ € P(X),
v,V €P(Y)andt€{0,...,T}, there exists L, > 0 such that

|7 (p,v) — Tt(,u/’l/ﬂ < Lr(dTV(MM/) + dTV(Vy Vl))-

Under the zero-sum structure, we let the Blue team maxi-
mize the reward while the Red team minimizes it.

Information Structure We assume a mean-field shar-
ing information structure (Arabneydi and Mahajan 2015).
Specifically, at each time step ¢, Blue agent 7 observes its
own state X}\! and the EDs M}"* and N}¥2. Similarly, Red

agent j observes Y'; Nz /\/l ! and MN 2. We consider the fol-
lowing mixed Markov pollcles:

Gip UXX X PX)xP) —[0,1],
i VXY xP(X)xPY)—[0,1],

where ¢; ¢ (u| X\, M}, N{¥2) is the probability that Blue
agent 7 selects action u given its state X i]’\? and the team

EDs /\/liv ! and /\/tNQ. An individual strategy is defined as
a time sequence ¢; = {¢;:}i_o.- A Blue team strategy

N1 = {¢;}11, is the collection of individual strategies used
by each Blue agent. We use ®; and ® to denote, respectively,
the set of individual policies and strategies available to each
Blue agent. The set of Blue team strategies is then defined as
the Cartesian product ®V1 = x &, The notations extend
naturally to the Red team.

In summary, an instance of a finite-population zero-sum
mean-field team game is defined as the tuple ZS-MFTG =
<X, yvua V7 ftagtaTtha N27T>-

Optimization Problem The performance of the team
strategy pair (¢™1,1V2) is given by the expected cumula-
tive reward
JET ()
T

—_ E(/)I\H N2 [Z Tt (Mivl B MNQ)

t=0

N1 . Nl N2 _ N2
Xo'=%0Y0" =Yy0"|,

where M, = Emp,(X;"") and A}**> = Emp, (Y,"),
and the expectation is with respect to the distribution of all
system variables induced by ¢’V and ¢™V2.

When the Blue team considers its worst-case perfor-
mance, we have the following max-min optimization:

Nx/ N1 _ No — . N7¢N1,1/)N2 N1 _ No
SV (%00 yo )¢erng§Nrizr1€1$N;J (%050 )2

where JV* is the lower game value for the finite-population
game. Note that the game value may not always exist, i.e.,
max-min value may differ from the min-max value (Elliott
and Kalton 1972). Consequently, we consider the following
optimality condition for the Blue team strategy.

Definition 2. A Blue team strategy ¢’V** is e-optimal if

JV* > min JNeTLT e > JN* e

P N2 W N2

The strategy ¢™"1* is optimal if € = 0.

Similarly, the minimizing Red team considers a min-max
optimization problem, which leads to the upper game value

H . Ny N2
JN* = min max  JNVOTVTE
1/)N2E‘I/N2 ¢N1 E@Nl

The e-optimality of Red team strategies is defined similarly.

A ZS-MFTG Example

Consider a simple team game on a two-node graph, where
the Blue team aims to maximize its presence at node 2. The
state spaces are given by X = {z!, 2%} and Y = {y',%?},
and the action spaces are U = {u',u?} and V = {v!,v?}.
The Blue action u! corresponds to staying on the current
node and u? represents moving to the other node. The same
connotations apply to Red actions v! and v2. This scenario
is visualized in the following figure.

ul/Ul u2/v2 ul/vl

Figure 1: An example of ZS-MFTG over a two-node graph,
where N1 = 2, Ny = 2 and p = 0.5.

The reward is r4(u1, v) = p(z?), which incentivizes Blue
team agents to concentrate at node 2. An example of the Blue
transition kernel at ! under u? can be

fr(@tat u? p,v) = 0.5(1 = (pu(z') — (1 - p)v(yh)),
fr(@®at u? p,v) =051+ (pu(z') — (1 — p)v(yh))).

Under this transition kernel, the probability of a Blue agent
transitioning from node 1 to node 2 depends on the Blue
team’s numerical advantage over the Red team at node 1.
The initial joint states depicted in Figure 1 are given by
x2 = [z',2'] and y2 = [y',y?]. The corresponding EDs
are 2 = [1,0], 2 = [0.5,0.5], and the running reward
is 79 = 0. Suppose the Blue team applies a team strategy



such that ¢ (u?|z!, u2,12) = 1 for both i € [2]. The prob-
ability of an individual Blue agent transitioning to node 2 is
0.625. Thus, the next Blue ED is a random vector with three
possible realizations: (i) M3 = [1,0] with probability 0.14
(both Blue agents remain on node 1); (ii) M? = [0.5,0.5]
with probability 0.47 (one moves and one remains); and (iii)
M?2 =10, 1] with probability 0.39 (both move). Suppose the
game terminates at T' = 1, then the value under ¢ is given
by J49" %% (x2, y2) = 0+ (0.14-0+0.47-0.540.39- 1) =
0.63.

Infinite-Population Team Game

The preceding max-min optimization in (2) is intractable for
large-population systems since the dimension of the joint
policy spaces ®V1 and ¥V2 grows exponentially with the
number of the agents. To address this scalability issue, we
consider the infinite-population limit of the ZS-MFTGs, and
further assume that agents in the same infinite-population
team deploy the same strategy. As a result, we can model
the behavior of an entire team as the distribution of a typical
agent, i.e., the mean-field (Lasry and Lions 2007).
We first introduce the class of identical team strategies.

Definition 3 (Identical Blue Team Strategy). The Blue team
strategy o™ = {¢1, ..., dn, } is an identical team strategy,
if piy, 1 = ¢y, ¢ foralliq,io € [Ny]andt € {0,1,...,T—-1}.

When all Blue agents apply the same individual strat-
egy ¢, we slightly abuse the notation and use ¢ to denote
the identical Blue team strategy. Consequently, we use ® to
denote both the set of Blue individual strategies and the set
of identical Blue team strategies. The definitions and nota-
tions extend to the identical Red team strategies.

We define the mean-field (MF) as the state distribution of
a typical agent in an infinite-population team game.
Definition 4. Given identical team strategies ¢ € @ and
1 € W, the MFs propagate according to the following deter-
ministic dynamics with (uf, /{) as initial conditions:

1 (@)= 30 [ D7 @ af vf) e (ula, i o) i (),
reEX uelU
Vi) = 0 [ 30 0wl v it vE o (oly, ) | ().

yeY veV

For simplicity, we express the above MF dynamics in a
compact matrix form as

Merl = Mth(Mfa Vfa ¢t)a
Vf—‘rl = VfGt(/’(’fvyfawt)7

3

where F; € RI*¥I¥I*! is the transition matrix for a typical
Blue agent under ¢;, which can be computed based on the
transition kernel f;. The matrix G is defined similarly.

Consider the infinite-population limit of the example in
Figure 1 with pd® = [1,0], 9 = [0.5,0.5] and p =
0.5. If the Blue team applies the identical team strategy
do(u?|zt, ud>,v3-%) = 1, then the next Blue MF is deter-
ministically given by u{-°> = [0.375,0.625].

Later, in Theorem 2 and Lemma 1 we will show that the
deterministic MF above is an approximation of the (stochas-
tic) finite-population ED, and the approximation error goes

to zero when Ny, No — oo. Thus, we can regard the mean-
field as the empirical distribution of an infinite-population
team. On the other hand, Theorem 2 justifies the identical
team strategy assumption we made when constructing the
infinite-population game.

For the infinite-population game, the performance of the
identical team strategies (¢, ) € ® x W is given by

T

JP@#/’(MS’ V([))) = Zrt(ﬂtp7 th)’
t=0

where the propagation of 4} and v/ are subject to (3).

The worst-case performance of the maximizing Blue team
is then given by the lower game value

PE( P P — iq JPOY (P P
I (kb vh) = max min J (1o v5)- )

Remark 1. As shown in Numerical Example 1 below, the
max-min and min-max coordinator game value can differ,
since the team best-response correspondence may not be
convex-valued (Owen 2013). In the extended version of this
work (Guan, Afshari, and Tsiotras 2023), we show that a
Nash equilibrium exists when the agents’ dynamics are com-
pletely decoupled from each other.

Remark 2. Different from the infinite-population game
value in (4), the finite-population value in (2) takes joint
states as arguments rather than the EDs. The difference
comes from the non-identical strategies considered in the
finite-population game, which require agents’ index infor-
mation to sample actions and predict the game’s evolution.

Reachable Sets

Due to the deterministic dynamics in (3), designing the poli-
cies ¢ and 1 at time ¢ is equivalent to selecting the next de-
sirable MFs. Consequently, we examine the set of MFs that
can be reached at the next time step. Weuse 7 : U X X —
[0, 1] to denote a local Blue policy, which is open-loop with
respect to the MFs. Specifically, 7;(u|z) is the probability
that the typical Blue agent selects action u at state x regard-
less of the current MFs. The set of open-loop Blue local poli-
cies is denoted as IT;. Similarly, o; : V x ) — [0,1] and X;
denote a Red local policy and its admissible set. Under the
local policy 7y, the Blue MF propagates as

il (@) = 30 [0 Sl i v ()| (),
rzeX ueU

and the Red team MF dynamics under Red local policies is
defined similarly.

The reachable sets are then defined as the collection of all
MFs that can be reached using a local policy at the next step.

Definition 5. The Blue team reachable set, starting from uf
and v/, is defined as

R;L,t (/’Lf7 th) £ {/Lf-&-l |E|7Tt S Ht S-t‘“f-&-l :M;)Ft(ufp7 tha Wt)}'
Similarly, the Red team reachable set is defined as
Ru,t(lutpv yf)é{nyEUt SP S~t~Vf+1 = v/ Gy(ufvi,00)}

Later on, we regard the reachable sets as correspondences,
i.e., set-valued functions (Freeman and Kokotovic 2008).



Zero-Sum Game Between Coordinators

To obtain a dynamic program that effectively solves (4), we
construct a fictitious centralized coordinated system (Maha-
jan and Nayyar 2015) for the infinite-population game with
a Blue and a Red team coordinator. At time ¢, the Blue co-
ordinator observes the MFs of both teams and prescribes a
local policy 7; € II; to all agents within its team. The local
policy is selected according to:

Ty = O‘t()u’é)7yf)7

where ay : P(X) x P(Y) — II; is a deterministic Blue co-
ordination policy, and ¢ (ug|zs) = (1, vf) (ug|xs) gives
the probability that a Blue agent selects action u; at state x.
Similarly, the Red coordinator observes the MFs and selects
a local policy oy € X according to oy = B¢ (uf, 7).

We refer to the time sequence o = (ov,...,ar) as
the coordination strategy for the Blue team and § =
(ﬁl, cee BT) as the Red team coordination strategy. The sets

of admissible coordination strategies are denoted as A and
B.

Remark 3. There is a one-to-one correspondence between
the Blue (Red) coordination strategies and the identical Blue
(Red) team strategies such that
o (ule, 1,v) = oy (u,v) (ul2).
N——
Tt

The equivalent centralized system can be viewed as a
zero-sum game played between the two coordinators, where
the game state is the joint MF (uf, /) that follows the
dynamics in (3), and the actions are the local policies
and o; selected by the coordinators. Formally, the zero-
sum coordinator game is defined as the tuple ZS-CG =
(P(X),P(Y),I1;, %y, Fy, Gy, 1, p, T), where both the state
and action spaces are continuous.

Coordinator Game Values

Similar to the standard two-player zero-sum games, we
use a dynamic programming backward recursion scheme
to find the lower value of the coordinator game. The lower

value at the terminal time 7" is given by JZ (7, v7) =
ro(p4, V). For all previous time steps ¢t = 0,...,7 — 1,

the two coordinators optimize their cumulative reward func-
tions by choosing their actions (i.e., local policies) m; and
o:. Consequently, we have

lﬁ;r,t(ué)?Vf):rt(Mf?Vf) )

+ max min lg::r,t—i—l (M?Ft(,uf? thv ﬂt)? VfGt(lutpv thv Ut))'

m €l o1 €3y

With the optimal value function, the optimal Blue team co-
ordination policy can then be easily constructed via

o (uf,vf) € (©6)

argmax min J2 o (uf Fy(uf, vf,m), v Ge(uf vl ov)).

me€ll, TtE€D

Exploiting the deterministic mean-field dynamics, we can
change the optimization domains in (5) from the policy
spaces to the corresponding reachable sets as follows

St (1, vf) = 1o (uf, vf) (7

max min

W €R (s vf) v €Ru e (1t vf)
We can then employ a dynamic programming scheme to
solve the previous equation backward in time, starting from
J e (W, V) = rr(pf, v7). Later on, we primarily work
with the reachability-based optimization in (7). There are
two advantages to such an approach: First, the reachable sets
generally have a lower dimension than the coordinator ac-
tion spaces', which is desirable for numerical algorithms,
and; Second, the reachability-based optimization allows us
to apply the forthcoming Theorem 2 and study the perfor-
mance loss due to the identical-strategy assumption intro-
duced by the mean-field approximation.

p* p P
lcor,tﬂ (ﬂt+17 Vt+1)'

Lipschitz Continuity of the Value Functions

We examine the continuity of the coordinator game values,
which is essential for the performance guarantees. We start
with the continuity of the reachability correspondences un-
der the Hausdorff distance disty;.

Lemma 1. For all p;, p; € P(X) and vy, v, € P(Y), the
reachability correspondence R, ; satisfies

distir (Rt (e ve), Ryt (ps, v4)) ®)
< Lg, (drv (pe, pr) + dov (ve, 1))
where the Lipschitz constant is given by Lr, = 1 + %L e
The Red reachability correspondence satisfies a similar in-
equality with a Lipschitz constant Lp, = 1 + %Lg.
Leveraging the continuity of the reachability correspon-

dences, the following theorem establishes the Lipschitz con-
tinuity of the optimal coordinator game value.
Theorem 1. For all i1, 1" € P(X) and vf,vf" € P(Y),
the lower coordinator game value satisfies

| Leoe o (1 vF) = Lo (i, 17| ©)
S LJ,t (dTV (/J/é)a Mf/) + dTV (/”4)7 th/))7
where the Lipschitz constant is given by Ly, = Lr(l +
Lr(1— L5 ")/(1—Lg)) and Lr = Lg, + Lg,.

Proof. Observe that the lower value in (7) takes the form:
f(x,y) = c(z,y)+maxper(q,y) Mingeo(s,y) 9(p; ¢), Which
is an extension of the maximization marginal function (Free-
man and Kokotovic 2008) to the max-min case. We present
a continuity result for this type of marginal function in the
extended version of this paper (Guan, Afshari, and Tsio-
tras 2023), based on which we can prove the above theorem
through an inductive argument. O

Main Results

Recall that the optimal Blue team coordination strategy «*
is constructed for the infinite-population game assuming
identical team strategies. This section establishes the per-
formance guarantees for o* in the finite-population games
where both teams are allowed to deploy non-identical strate-
gies.

'The Blue reachable set is a subset of (X)), while the Blue
coordinator action space is given by (P(U))!*!.

>The Hausdorff distance between sets A, B C X is defined as
distu (A4, B) =max{sup,¢ 4 infees||a — b|| ,sup,c g infacalla — b||}.



Approximation Error

As a* is solved at the infinite-population limit, it is essential
to understand how well the infinite-population game approx-
imates the original finite-population problem. The follow-
ing theorem states that the reachable set constructed using
identical strategies is rich enough to approximate the empir-
ical distributions induced by non-identical team strategies in
finite-population games.

Theorem 2. Let XM, YN2, MM and N2 be the joint
states and the corresponding EDs of a finite-population
game. Denote the next Blue team ED induced by a ( poten-
tially non-identical) Blue team policy d)f € <I>N1 as Mt+1

Then, there exists iz, € Ry+(M*, N]¥?) such that

1%
2

Proof. The key step is to construct an identical local policy
Tapprx,t that has its action distribution matching the average
of the policies used by the Blue agents at each state. One can
then leverage m,pprx,: t0 mimic the population behavior and
use a modified law of large numbers to show that the MF
induced by Tapprx,: satisfies the error bound in (10). This
idea is visualized in Figure 2. A detailed proof is presented
in the extended version (Guan, Afshari, and Tsiotras 2023).

O

E g [ (M o) XY, Y72 < . (10)

Ny
M

N1y
t

(potentially
non-identical)

Figure 2: An illustration of the key idea behind Theorem 2.

Corollary 1. Let XN, Y2, MM, and N}N? be the joint
states and the corresponding EDs of a finite-population
game. Denote the next Blue ED induced by an identical Blue
team policy ¢, € P, as Mﬁll. Then, the following holds:

X
Es, [dov (M )| X2 Y% | < |7| I
1
where 111 = Mivl Ft(Mévl 7-/\[tN27 bt).

Performance Guarantees

The following main theorem compares the worst-case per-
formance of the identical Blue team strategy induced by
o (Remark 3) to the original max-min optimization in (2),
where non-identical strategies are allowed.

Theorem 3. The optimal Blue coordination strategy o*

in (6) induces an e-optimal Blue team strategy. Formally, for
all xNt e xM cma’yN2 e YNz,

iN*(le,yN2)> min JN’Q*’wM(le,yNZ) (11)

P N2 W N2 1
> JN*(xN1 N2 70( )
( 7y ) \/E ?
where N = min{Ny, Na}.

Proof. The first inequality is straightforward. We break the
second inequality into two steps: (i) min v, JN* EUREEDS
JP — O(1/y/N); and (i) J?:, > JNV* — O(1/y/N). The
proofs for both steps are constructed based on induction, and
we only present the proof for step (i) in the appendix of this
paper. A detailed proof of Theorem 3 is presented in the ex-
tended version (Guan, Afshari, and Tsiotras 2023). L]

Remark 4. Step (i) suggests that the Red team’s perfor-
mance improvement, when employing non-identical team
strategies against o*, is limited to O(1/+/IN). Step (ii) sug-
gests a similar result for the Blue team.

Remark 5. The continuity of the coordinator game value
(Theorem 1) is essential in the proof of Theorem 3, as
bridges the mean-field approximation error (Theorem 2) and
the performance loss. Hence, Assumptions 1 and 2 are nec-
essary to translate the infinite-population performance back
to the finite-population game. See the appendix of (Guan,
Afshari, and Tsiotras 2023) for a discontinuous example
where the infinite-population game value is different from
that of the finite-population counterpart.

Numerical Examples

In this section, we provide two numerical examples. For
both examples, the state spaces are X = {z' 2%} and
Y = {y',y?}, and the action spaces are U = {u', u?}
and V = {v!,v?}. The two-state state spaces allow the joint
MFs to be characterized solely by p;(x') and 14 (y*).

Numerical Example 1

This example serves to illustrate the reachability-based op-
timization in equation (7) and to demonstrate that the co-
ordinator game value may not exist, contrary to the continu-
ous setting as discussed in (Sanjari, Saldi, and Yiiksel 2023).
For a comprehensive description of the dynamics and reward
setup, see (Guan, Afshari, and Tsiotras 2023).

The coordinator game values in Figure 3 are computed
through discretization, where the two-dimensional sim-
plexes P(X) and P())) are meshed into 1,000 bins.>. Note
that the value function J/7 ; in subplot (b) is not convex-
concave, which implies that the upper (max-min) and lower
(min-max) game values at the previous step t =0 may differ,

as observed in subplot (a). Specifically, at uf; = [0.96, 0.04]
and v}j = [0.04,0.96], we have the lower value J. é’; 0 =

0.5298 and the upper value Jfor o = 0.5384, which are vi-
sualized as the green and yellow pomts This discrepancy in
the game values implies the absence of a Nash equilibrium
in this coordinator game.

Based on (7), the optimization domains of J.) , are

R p,0(pf, V) for the maximization and R, o(pf, ) for the
minimization, both of which are plotted in (d). Since R, o
lives in a two-dimensional simplex, it is fully characterized
by the range of x(z!), which enables us to visualize the op-
timization domain as the box in (c). Subplot (c) presents a

3 An error bound on the difference between the discretized value
and the true optimal value can be readily derived using the Lips-
chitz constants of the coordinator game values.
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Figure 3: Subplots (a)-(c) present the game values computed via discretization. The x- and y-axes correspond to yf (z1) and
vf (y'), respectively. Subplot (d) illustrates the reachable sets starting from po = [0.96, 0.04] and v = [0.04, 0.96].

. . . . . p*
zoom-in for the optimization Maxg,, , Ming, Jeor,1 and
its min-max counterpart. The marginal functions are also
plotted, from which the max-min and min-max values at

t = 0 can be directly obtained.

Numerical Example 2

It is generally challenging to verify the suboptimality bound
in Theorem 3, since computing the true optimal performance
of a finite-population team game is intractable. However, for
the following designed example, we have the optimal team
strategies for large finite-population teams.

Consider a ZS-MFTG with T'=2. The game setup is sim-
ilar to the one in Figure 1 but with different dynamics and
rewards. The (minimizing) Red team’s objective is to maxi-
mize its presence at state y1 at t = 2, which translates to the
following reward function.

ro(p,v) =ri(p,v) =0,  ra(p,v) = —v(y').

The Blue transition is time-invariant, deterministic, and
independent of the MFs. Formally, for all y,v and ¢ €

{0,1},

ft(x1|x1,u1,,u,u) =1, ft(x2|‘rlvu27ﬂ71/) =1,

(12)
ft($2|$2aU17M,V) = 13 ft(:c1|sc2,u2,u,1/) =1

Att = 0, all Red agents are frozen at both states, i.e., no
action can change a Red agent’s state. At ¢ = 1, Red agents
at y! are frozen, and Red agents at > can use v? to transition
to y! and the transition probability is given by

9y v, pa, ) (13)

1 1
= min 5( ) =) (22) — (1——= 2),1}.
{3 = 5P+ - a-5)
Note that, under the above dynamics, if the Blue team
achieves the target distribution y1; = [1/v/2,1—1//2], no
Red agent can transition from y? to y'.

Infinite-population case. For the Red team, only the de-
cisions of Red agents at y2 at time ¢ = 1 have an impact
on the game outcome. As a result, the above setup leads to
a dominant optimal Red team strategy: all Red team agents
at y2 use v? at t = 1 to transit to state y'. On the other
hand, the Blue team should try to match the distribution

p1 = [1/4/2,1—1//2] to minimize the probability of Red
team agents transitioning from y? to y! at t= 1. The dynam-
ics in (12) ensures that the Blue team reachable set covers
the entire simplex P(X) regardless of the initial distribu-
tions. Hence, the target distribution can always be achieved
at t =1 with an infinite population.

Under the optimal strategies discussed above, the Blue
team completely blocks the Red team agents’ migration
from 32 to y', and thus only the Red agents spawn on y'
will count towards the terminal rewards. Consequently, the
inﬁnitel—population game value is given by J**(uo,vp) =
—vo(y*).

Finite-population case. The Red team’s optimal strategy
remains the same as the infinite-population case. Note that
this Red team strategy is optimal against all Blue team strate-
gies. The Blue team, on the other hand, cannot achieve the
irrational target distribution with a finite number of agents.
While the Blue team can still match the target distribution
in expectation using a stochastic identical team strategy, the
following analysis shows that a non-identical deterministic
team strategy achieves a better performance.

Consider a Blue team with three agents and p = [1,0].
The optimal Blue coordination strategy prescribes that all
Blue agents pick u' (“stay”) with probability 1/1/2 and
u? (“move to x2”) with probability (1 —1/v/2) to reach
the target distribution in expectation. Such action selection
leads to the following four possible outcomes of the next
Blue team ED p$: P([1,0]) = 0.354, P([2/3,1/3]) =
0.439, P([1/3,2/3]) = 0.182, and P(]0,1]) = 0.025. In
expectation, these empirical distributions lead to a tran-
sition probability of 0.518 for a Red team agent mov-
ing from 32 to y*. Consequently, we have the worst-case
performance of the optimal Blue coordinator strategy as
min v, S35V (g, 1) = —vo(y*) — 0.518v9(y?).

Next, consider the non-identical deterministic Blue team
strategy, such that Blue team agents 1 and 2 apply action
u! and Blue team agent 3 applies u2. This Blue team strat-
egy deterministically leads to u§ = [2/3,1/3] att = 1, and
the resultant Red team transition probability from y? to '
is 0.016. Clearly, the non-identical Blue team strategy sig-
nificantly outperforms the identical mixed team strategy in
this three-agent case. Furthermore, this Blue team strategy is



optimal over the entire non-identical Blue team strategy set,
resulting in a finite-population game value J3* (g, 1) =
1 (y") — 0.0161(y?).

The red line in Figure 4 plots the suboptimality of the
coordinator strategy, which verifies the O(1/v/N) decrease
rate predicted by Theorem 3.

10! 4

100 4

Difference

10-1 4

N Blue agents

Figure 4: Performance loss of the optimal Blue coordination
strategy with o = [1,0] and vy = [0.4, 0.6].

Conclusion

In this work, we introduced a discrete zero-sum mean-field
team game to model the behaviors of competing large-
population teams. We developed a dynamic programming
approach that approximately solves this large-population
game at its infinite-population limit where only identical
team strategies are considered. Our analysis demonstrated
that the identical strategies constructed are e-optimal within
the general class of non-identical team strategies when de-
ployed in the original finite-population game. The derived
performance guarantees are verified through numerical ex-
amples. Future work will investigate the LQG setup of this
problem and explore machine-learning techniques to ad-
dress more complex zero-sum mean-field team problems.
Additionally, we aim to generalize our results to the infinite-
horizon discounted problems, the general-sum case, and
problems with heterogeneous teams.

Appendix
Proof of Theorem 3. We only show the proof for the first
step here, i.e., min,,~, JNat N s gee _ 0(1//N).
The proof for part (i) is constructed based on induction.
Fix an arbitrary Red team strategy 1)™V2 € W2,

Base case: At time T', we have for all XJIY t and y¥ 2 that

N,a* 2
I v (X¥17y¥2) lé);T(/‘glvV{FVl)—rT(MT 7V]T\LZ

where ' = Emp, (x3) and N2 = Emp,, (y2?).

Inductive hypothesis: Assume that for all xﬁjl and yivfl,

N,o* N2 N N 1
e (Xtil’yﬂrl) > o t+1(ﬂt+17”t+21) O(ﬁ)

Induction: At timestep ¢, consider arbitrary joint states
(xM, yN2) and the corresponding EDs (p'*, v¥?). Define

No
/Lt-‘rl::ut Ft(.“t y Vi aat)'

),

Note that, from the optimality of &} in (6), we have

Mt+1€ argmax mln

lcor 1 (Mt+1, Vt+1)
pet1 ER e (g N I/NQ) Vi41E€ERY, t(H/ a’/« )

(14)
Furthermore, from Theorem 2, there exists a Vapprx,t+1 €

R+ (i, v)Y?) for the fixed Red policy ;' such that
B, [doe (VY v )]<M —. (5
b, 2 TV t+1 Yapprx,t+1 = 9 N2 .

Then, for all x)'* € XNt and y¥? € YN2, we have

JtN’(l ﬂ/) ( 1ayt )

N ; N, N2 o N N:
= Tt(ﬂt iz 2) “'Ea*,szz [JH? v (Xt+l1 th1)]
()

> Tt(ﬂiv ) ) +Eq- N2 [lwr t+1(Mt+l7N )] - (%)
= Tt(,ut NQ) - O(%) + Ea*,wN2 [lé);r,t-&—l(Mﬁ;l?M]-vﬁ—Ql)

px *
- lcor7t+1(lj’t+17 Vapprx,t+1) T Loor 41 (Ht+1> Vapprx, tH)}
(ii)

1
N N- *
> (g ) +lzor,t+l(/'tz(+l’ Vapprx,t4+1) — O(ﬁ)

—L,,J“(Em [dry (M t+17:u’t+1)}+EwN2 [drv(V t+l7VaPP1X t+1)})
O(1/+/Nz) due to (15)

(iii) 1
N N.
> Tt(Ut Ly 2) + lggr,t+1(“§+17 Vapprx,tJrl) - O(*)

v
(@iv)

1
N1 N :
> re(py b %) + min N%f:);r,t+1(ﬂ:+lvyt+1) - O(ﬁ)

N
Vi1 €ER (g

O(1/+/N7) due to Lemma 1

© 7o A 1
lgort( Y VtN)_O(ﬁ)

Inequality (i) is due to the inductive hypothesis; inequality
(i1) leverages the Lipschitz continuity of the coordinator
value function (Theorem 1); inequality (iii) bounds the error
terms using Theorem 2 and Lemma 1; inequality (iv) is due
to the fact that v, pp,x 41 15 in the reachable set; equality (v)
comes from the optimality of i}, ; in (14).

Finally, since ¢V2 € W2 is arbitrary, we have

. N,a* N2, N, N Ni N
OO 2 ) =

thus completing the proof. O
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