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Abstract. In networked control systems, the sensory signals are often quantized before be-
ing transmitted to the controller. Consequently, performance is affected by the coarseness of this
quantization process. Modern communication technologies allow users to obtain resolution-varying
quantized measurements based on the prices paid. In this paper, we consider the problem of joint
optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback
linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the
controller. The system is presented with several choices of quantizers, along with the cost of using
each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike
an optimal balance between control performance and quantization cost. When the innovation signal
is quantized instead of the measurement, the problem is decoupled into two optimization problems:
one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal
controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found
by solving a linear program—both of which can be solved offline.

Key words. quantized optimal control, communication constrained control
MSC codes. 49N10, 93E03, 49N35, 93C41, 49K45, 94A05

DOI. 10.1137/21M1448707

1. Introduction. Networked control systems operating under finite data-rate
constraints employ signal quantization to reduce the amount of data for communi-
cation. System-specific quantizers (encoders) and decoders are designed to compress
signals with a finite number of bits and to incur minimal signal reconstruction er-
rors, respectively. The available bit-rate to quantize the signals, as well as the choice
of the quantizers and the decoders, determine the error in the reconstructed signal
and, consequently, they affect the performance of the control system [20, 27]. Often,
these quantizers are required to be time varying and their dynamics are tied to the
dynamics of the control system for optimal performance [27].

Time-varying quantizers provide the flexibility to send high resolution quantized
signals when needed, and use a coarser resolution otherwise. Typically, design of dy-
namic quantizers requires solving a joint optimization problem for the quantizer and
the controller [40] to obtain optimal performance. Such codesign problems quickly be-
come intractable due to the nonlinear/saturation behavior of the quantization process.
Even the linear-quadratic optimal control problem—which is one of the simplest prob-
lems in optimal control for which an analytical closed-form solution exists — becomes
intractable when quantized measurements are fed back to the controller. In [14]
the authors show the lack of a separation principle for a linear-quadratic-Gaussian
(LQG) system with quantized feedback. In [40] the authors demonstrate that a sep-
aration principle exists when predictive quantizers are used. Furthermore, [40] also
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demonstrated that the use of predictive quantizers can be made without loss of gen-
erality. Similar results on the separation principle can also be found in [3, 5, 29, 35].
The interested reader is referred to the article in [41] that specifically discusses the
separation principle under quantization. While these works provide some character-
ization of the optimal quantizer, the exact solution of the optimal quantizer is not
available. Owing to the intractability of the problem, prior works do not readily
provide the optimal quantizers. An exception is [3], where an iterative method is pro-
posed to find a quantizer and a controller for LQG systems. In principle, this iterative
method converges in the special case of open-loop encoder systems. However, such
a convergence is likely to happen at a local optimum. Besides, as mentioned in that
work, this iterative method does not necessarily converge for the general case with
partial side information. In summary, all these results point to the fact that finding
the optimal quantizers is an intractable, still unsolved, problem.

One of the key motivations for this work is to revisit this decades-old problem
from a new perspective and propose a new formulation where the problem becomes
tractable and scalable. To circumvent the intractability associated with this problem,
we formulate a modified problem by which one selects the optimal quantizer from a
given finite collection of quantizers. This way, our formulation is one of quantizer
scheduling/selection, where the best quantizer at each time instance is selected from
a given finite set. Beyond computational tractability, another motivation for consid-
ering this framework stems from the fact that the optimal quantizer is time varying
(with complex dynamics) and, therefore, physically changing/reconfiguring the quan-
tizer on-the-fly is impractical for several applications (e.g., high-speed robotics). On
the other hand, scheduling a quantizer from a given collection of quantizers is easy,
practically feasible, and highly desirable. Furthermore, this set of quantizers can
be optimized beforehand and could include any number, from a few quantizers to a
large number of quantizers, depending on the scale of the application. Although the
idea of considering a pre-designed set of quantizers is new to the controls commu-
nity, such systems have already been used in signal processing applications [26, 30].
Last, we note that the vast majority of the existing work on quantized LQG systems
is for a single system. The extension of the existing results to multiple systems is
not straightforward. More importantly, the resource allocation problem (e.g., which
system gets how much data rate) is extremely challenging even for a simple commu-
nication system. Our proposed framework, on the other hand, can provide a scalable
formulation to this problem, where the controller synthesis for each system can be
decoupled. The coupling occurs through the quantizer-selection part, where no more
than a single system can select the same quantizer.

In this paper, we restrict ourselves to a single system, and to this end, we consider
a partially observed linear system that can choose from a given set of quantizers to
quantize its measurements (or a function thereof) and transmit the resulting quantized
signal to the controller. The system can schedule different quantizers at different
time instances to meet the need for time-varying quantizer resolution. We further
assume that these quantizers are costly to use, and different quantizers have possibly
different costs of operation. The performance of the system is thus measured by an
expected quadratic cost plus the total cost of using the quantizers. Quantizers with
higher resolution are generally more costly than ones with lower resolution. Therefore,
better control performance can be achieved at the expense of a higher quantization
cost. This way, our framework provides a control-quantization tradeoff, where the
selection of the quantizers is not only dependent on the system’s control objective but
also depends on the incurred quantization cost.
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In existing works (e.g., LQG optimal control [5, 34, 20], stability of systems
[38, 28, 11, 7, 13, 16, 21], state estimation [37, 9, 12, 19], and Markov sources [42, 6,
15, 39]), the importance of quantization has been discussed and analyzed. However,
for a given control objective, how to select and schedule from a set of available quan-
tizers, which have a cost associated with them, has not been addressed. To the best
of our knowledge, [25] is the first work where a joint optimization framework is con-
sidered to synthesize an optimal controller and schedule the optimal quantizers from
a given set of costly quantizers. That work considered a fully observed linear system
and considered two information structures for scheduling the quantizers, namely, the
perfect-measurement based and the quantized measurement based quantizer-selection
policies. In this work, we adopt the quantized measurement based quantizer-selection
policy for partially observed linear systems with noisy sensors. Moreover, we con-
sider quantizer-specific time-varying delays and analyze the effects of these delays in
control performance. It is to be noted that while some existing works may have also
considered delays, such delays, however, are either time invariant and independent of
the quantizers or they do not introduce out-of-order packet arrivals. While keeping
the relationship between the delay and the quantizer to be generic in our analysis,
we also discuss the special case where the delay is proportional to the number of bits
produced by the quantizers. That is, a coarsely quantized message is less delayed
than a finely quantized one. Therefore, the question of quality-versus-freshness of
data is naturally integrated within the proposed framework. Age-of-Information is an
emerging topic in communication and information theory, where the freshness of the
data is of paramount interest. We are able to couple measurement quality and fresh-
ness in the context of an LQG cost function and, more importantly, the formulated
optimization problem helps in trading-off freshness-versus-quality through the choice
of the quantizers. This inherently makes the problem difficult since the experienced
delay is a function of the quantizer-selection process and this coupling makes the
problem more complicated than the standard scenario where the delay is constant or
not affected by the choice of the quantizer. The optimal quantizer scheduling in our
case may result in an out-of-order delivery of the quantized signals to the controller,
an effect that is quantified and rigorously incorporated into our analysis. Therefore,
the control performance is affected by the selection of quantizers not only through
the coarseness of the received messages, but also through their freshness. This delay
and out-of-order delivery, along with the lack of perfect state measurements, require
a different mathematical approach than that of [25].

Contributions. In contrast to the majority of existing works that consider in-
finite horizon problems and study the asymptotic behavior of the system, we fo-
cus on studying the joint quantizer-selection and controller design problem over a
finite horizon. We show that quantizing the innovation signal separates the con-
troller synthesis problem from the quantizer-selection problem, similarly to the case
of predictive quantization. While the idea of innovation-quantization was originally
proposed in [5] for a fully observed system with a deterministic initial state and
later on used for the quantizer-selection problem in [25], in this work, we extend the
innovation-quantization idea for partially observed systems with noisy measurements
and uncertain initial states. Furthermore, we explicitly consider the quantizer in-
duced time-varying delays in the arrival of the measurements at the controller. We
study the optimal controller and show that the controller is of a certainty-equivalence
type where the control gains can be computed offline and they do not depend on the
parameters of the quantizers. The analysis of the quantizer-selection problem reveals
that the optimal strategy for the selection of the quantizers can also be computed
offline by solving a linear program. The objective function of the linear program
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encapsulates the tradeoff between coarser-but-faster measurement availability versus
finer-but-delayed measurement availability. Furthermore, this tradeoff is coupled with
the control cost function.

The rest of the paper is organized as follows: in section 2 we discuss some back-
ground on random variables; in section 3 we formally define the problem addressed in
this paper; section 4 provides the structure of the optimal controller and the quantizer-
selection scheme. Finally, we conclude the paper in section 7.

2. Preliminaries. In this section we provide some background on random vari-
ables. In particular, Lemmas 2.1 and 2.2 will be used in our later derivations.

Define the probability space (2,F,P), where Q is the sample space, F is the
set of events, and the measure P : F — [0,1] defines the probability of an event
occurring. In this probability space, X : 2 — X is a random variable defined as a
measurable function from the sample space 2 to a measurable space X, such that for
any measurable set S C X, X~ 1(S) = {w € Q: X(w) € S} € F. E[X] denotes the
expected value of X with respect to P, defined as E[X] = [, X (w)dP(w).

Let us define the space H of real-valued (X = R) random variables X : Q@ — R
such that H = {X| E[X?] < oo}. For X,Y € H, aX + Y € H for all o, 3 € R. The
inner product in H is defined by (X,Y) =E[XY].

Fact 1 [24, section 4.2]: H is a Hilbert space.

Let X1,...,X, be a collection of £ random variables belonging to H. The o-field
generated by these random variables is denoted by o (X7, ..., X/), and the linear span
of these random variables is denoted by £(X71,...,X,) = {Y|Y = Zle ¢iXi,c; € RY.
The function g(X71,..., X;): R = R is a measurable function of the random variables
X1,..., X, if g71(S) € 0(X1,...,X,) for all measurable S CR. Let G denote the set
of all such measurable functions g(X7,...,Xp).

The following lemma is adapted from [31, Theorem 3.6].

LEMMA 2.1. For any random variable Y, the solution to the optimization problem
inf E[(Y — g)?
inf B[(Y —g)7]
is g*(Xh' e 7XZ) = E[Y|X1, .. ,Xg].

The following lemma, presented without proof, states that in the case of Gaussian
random variables the conditional expectation can be represented as an affine combi-
nation of Xq,..., X,.

LEMMA 2.2 (see [10, Chapter 11]). Let Y, X1,..., X, be jointly Gaussian random
variables. Then, there exists cg,...,cy € R such that

4
E[Y|X1,..., X/ :co—|—ZciXi eL(1,Xy,...,X,).

i=1

The study in [1] provides necessary and sufficient conditions for the conditional
expectation E[Y|X7,...,X/] to be a linear function of X3,..., X, when the variables
are not jointly Gaussian. The previous definitions and lemmas can be extended to
multidimensional random variables [24, 4, 31, 10].

3. Problem formulation. Let us consider a discrete-time partially observed
linear stochastic system
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Fic. 1. Schematic diagram of the system. The top-right gray block contains the quantizer se-
lector that selects the optimal quantizer at each time, and the innovation block that produces the
innovation signals from the measurements. The down-right gray block contains the set of M quan-
tizers whose outputs are sent through the communication channel to the controller.

(3.1) Xip1= A Xy + BUp + Wi,
Y =Ci Xt + o,

where, for all t € Ny (= NU{0}), X; € R, U; € R™, and Y; € RP, A;, By, and C}
are matrices of compatible dimensions, {W;}ien, and {vt}ien, are two independent
and identically distributed (i.i.d.) noise sequences in R™ and R? with statistics Wy ~
N(0,W) and vy ~N(0,V), respectively, and Wy, v; are independent for all j, k € Ny.
The initial state, X, is also a Gaussian random variable distributed according to
N (po,2:), and independent of the noises W; and v for all ¢ € Ny. For notational
convenience, we will write Xo = pg + W_1, where W_; ~ N(0,3;). Thus, Xq, Wy,
Wy, v, and v; are independent random variables for all k,/¢,i,7 = 0,1,..., such that
k # ¢ and i # j. In what follows, we will consider Ay, By, and C; to be time invariant
in order to maintain notational brevity.

In this work, we address the quantized output feedback LQG optimal control
problem defined as follows. Referring to Figure 1, we assume that M quantizers are
provided to quantize the measurement Y; and transmit the quantized output to the
controller. The range of the ith quantizer is denoted by Q' = {¢i, g3, - ,qéi}, where
each q§ is a symbol. Thus, the ith quantizer has ¢; quantization levels. Without any
loss of generality, we assume that ¢; <--- < /;;. Associated with the ith quantizer, let
Pi={Pi Pi - 7P}i} denote a partition of R? such that P} gets mapped to symbol
qj- for each j € {1,2? RN Speciﬁcally, one may think of 'the ith quantizer as a
mapping g; : RP — Q" such that g;(y) = ¢; if and only if y € P;.

The quantized measurements are transmitted through a communication chan-
nel that has a finite data-rate. Consequently, some quantized measurements may
need more than one time step to complete the sensor-to-controller transmission and
the decoding at the controller’s site [2] and, hence, the availability of that measure-
ment to the controller will be delayed. Furthermore, quantized signals of different
lengths may experience different amounts of delay and, hence, out-of-order measure-
ment availability is inevitable [18]. In this work, we do not adhere to any particular
model for characterizing this delay, rather, we simply consider the case where a quan-
tized signal with a larger number of bits may experience a longer delay before it is
available to the controller. That is, the delay d; associated with the ith quantizer is
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nondecreasing with i, i.e., d; <ds <--- <dp;. The number of quantization levels ¢;
generally captures the resolution of the quantization, i.e., a higher ¢; typically means a
better resolution and lesser quantization error, but, at the same time, it induces longer
delay d;. Therefore, this work will also reveal the tradeoff between choosing a coarser
but faster quantization service versus a finer but delayed service. In fact, we will see
later on that, for a finite-horizon optimal control problem, different resolution-delay
(finer-delayed versus coarser-faster) characteristics are preferred at different times.

Associated with each quantizer there is an operating cost that must be paid
in order to use this quantizer. Let A(Q') = \; € R, denote the cost associated
with using the ith quantizer. This cost may also include communication cost or
computation/data-processing cost or both. For example, \; o log, ¢; represents the
case where the cost is proportional to the code-length of the encoded quantizer out-
put. This cost may also be related to the delay d; associated with the quantizer.
Furthermore, this cost may also be time varying to regulate the system’s quantizer
preference with the time-varying availability of the communication resources. Simi-
larly, \; o< ¢(P?) represents a cost that is proportional to the average complexity of
encoding an input to its right symbol q§ and decoding it at the controller (¢(-) denotes
the encoding and decoding computation complexity). In this work, we do not adhere
to any specific structure for \. We just assume that the values of \;’s are given to us
a priori. This cost can be appropriately designed depending on the applications.

Note that, in contrast to previous works [37, 13], we do not aim at designing
a quantization scheme; rather, a set of quantizers is already given by some service
provider. For a given horizon [0,T], our objective is to find the optimal schedule for
the quantizers. Also, we will assume that the costs A; are determined by the service
provider and presented to us a priori. Designing such costs in order to regulate the
use of the quantizers is an equally interesting problem for the service provider that
will be addressed elsewhere. We will further assume that the communication channel
between each quantizer and the controller always transmits the quantized information
without any distortion.

The objective is to minimize a performance index that takes into account the
quantization cost. Contrary to some of the existing literature on the quantization-
based LQG problem [5, 33, 34, 35, 36, 22|, in our case there are two decision mak-
ers instead of a single one: One decision maker (the controller) decides the input
({Ut}ten, ) to apply to the system, and the other decision maker (the quantizer selec-
tor) decides the quality and delay of the measurements (quantized state values) which
are transmitted to the controller. To that end, we introduce a new decision variable
0% for the quantizer selector in the following way:

; 1, 4th quantizer is used at time ¢,
0; = .
0, otherwise.

Let us denote the vector 6; 2 [0},07,...,0M]" € {0,1}M that characterizes the decision
of the quantizer selector at time ¢. We enforce the quantizer selector to select exactly
one quantizer at any time instance and, hence for all ¢ € Ny, we have

M
(33) > oi=1.
=1

~ The decoded measurement(s) available to the controller at time ¢ is denoted as
O;. Note that O; may contain delayed quantized measurements; also, several mea-
surements may be made available simultaneously at the controller. The delay and
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FI1G. 2. Out-of-order measurement availability at the controller when the second quantizer (with
delay 3) is selected at times t = 0,3,4 and the first quantizer (with delay 1) is selected at other
time instances. The new decoded measurements available at time toat the controller is Ot, ie.,
Op = O1= 0, Oy = {Yl} Oy = {YO,YQ} and so on. In this example, Yi is available before Yo and Y5

is available before Ya.

out-of-order arrival are time varying and dependent on the choice of the 6;’s. There-
fore, the 6;’s not only affect the coarseness of the quantization process, but also affect
the delays in the measurement arrivals. For example, as shown in Figure 2, if there
are two quantizers with d; = 1 and ds = 3, and if the second quantizer is selected
at time O followed by the selection of the first quantizer at times ¢ = 1,2, then no
decoded measurements are available at times ¢t =0, 1, i.e., Op = O1 = 0. The decoded
information about Y;, denoted as Y7, is available at time ¢t =2, i.e., Oy = {Yl}, and
the decoded information about Yy and Y, are available simultaneously at time t = 3,
ie., O3 = {YO,YQ}. Thus, O, is a function of {bo, ...,0:} (to be precise, O, is only a
function of {f;_q, : i =1,...,M, t —d; > 0}). A detailed description of O; will be
provided later in section 4.2.

To streamline the discussion, we introduce the following sets at time ¢: V&
{Yo,Y1,...,Y;} is the measurement history set, 0,2 {Oo, Oy, Ot} is the set of the
quantized measurement hlstory at the controller, U; = {Uy,Uy,--- ,U;} is the control
history set, and ©; 2 {6, 6;,---,0;} is the quantization-selection history set.

The information available to the controller at time ¢ is 3¢ = {Oy,Uy_1} = T5_ LU
{Ot7 Ui—1}, where J5 = {OO} It should be noted that J¢ depends on ©; through O;.
In classical optimal LQG control, the information available to the controller is not
decided by any active decision maker, unlike the situation here. An admissible control
strategy at time ¢ is a measurable function from the Borel o-field generated by J¢ to
R™. Let us denote such strategies by ~;(-) and the space they belong to by I'}'.

On the other hand, the information available to the quantizer selector at time ¢ is

{yt,C’)t 1,U 1,@t 1} jq 1U{Y},Ot 1, Us_1,04_ 1} Wherej {YO} We will
use the information {(’)t 1,0 1} 3t C 3% to schedule a quantizer at time ¢. Further-
more, we will quantize the innovation signal & =Y; — E[Y;|Yp,...,Y;—1] at time ¢ and
send the quantized version to the controller. It should be noted that the proposed
structure is suboptimal.! However, we impose this structure to make the problem
tractable and obtain a solution that is computationally inexpensive. Otherwise, the
general problem is intractable even for simple cases; for example, see [12, 8, 19, 32]
and the references therein. Quantizing the innovation signal not only makes the prob-
lem tractable, but also allows us to show that a separation principle between control
and quantizer-selection is retained. The existence of such a separation principle has
been noted in earlier works as well; for example, see [5, 3, 35, 40, 41]. Tt is well
known [17] that the information contained in the innovation signals {&o,...,&:} is the

11t can be shown (see [40], for example) that a predictive coding structure, i.e., quantizing
22:0 (¢, k)€, maintains optimality. The fixed matrices ¥ (¢, k) are derived later in (4.8). However,
the problem becomes highly complex and intractable due to the presence of past signals £o,...,§t—1
when considering a predictive quantization scheme.
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same as the information contained in the observations {Yp,...,Y:}. Therefore, design-
ing an output-feedback controller is equivalent to designing an innovation-feedback
controller. However, after quantization, the information contained in the quantized
innovations is not necessarily the same as the information contained in the quantized
outputs, and that is precisely why, in general, it cannot be claimed that the perfor-
mance of the optimal output-quantized feedback controller will be the same as that
of the optimal innovation-quantized feedback.

The admissible strategies for the selection of the quantizers are measurable func-
tions from the Borel o-field generated by 37 to {0,1} and satisfying (3.3). Let us
denote such strategies by 77(-), and the space they belong to by T'Y. Thus, the entire
quantization process is characterized by the following two equations:

(3.4a) & =Y — E[V3[Yo,.... Yi4],
(3.4b) 0+ Z’Yf(jg)'

For brevity, we will often use 7 instead of v%(-) or v*(J¢), and 4¢ in place of /(")
or 47 (37). Let v© denote the entire sequence {v§,77,...,7%_,} and let I'® denote the
space v© belongs to. Likewise, 7 and TY are defined similarly. Let us also define
3¢ = {36} and 39 = {39}2". The cost function to be minimized cooperatively
by the quantizer selector and the controller is a finite horizon expected quadratic
criterion, given as

T—1
(35) JUr-1,07-1)=E [Z(X;QJQ T U/ RU +0;A) + X7Q2 X7 |

t=0
where A = [A1, Ag,..., Apf]" is the cost for quantization, Q1,Q2 = 0, R = 0, U =
GH(3) = {A8(3). A (). A, (35} and © = 79(T) = {103,243,
78, (3%_1)}. For convenience, we will use the notation U for Ur_; and, likewise, we
will use © for ©7_;. We seek to find the optimal strategies v* = {y&*, y4*, ..., y%* |}
and v9* = {v8*,79*, ..., v% |} that minimize (3.5). We will also rewrite (3.5) in terms
of Y and v© as

T—1
JOMA°)=E | Y (X[ Qi X + Uf RU, + 0] A) + XJ.Q2 X7
t=0
(3.6) | Uy =7(39), 00 =7 (3])] -

4. Optimal control and quantization selection. In this section we find the
optimal v* and ®* that minimize the cost function (3.6) amongst all admissible
strategies, that is,

(4.1) (V7% = argmin _ J(¥*,4°).
AUETU © cTO

Before proceeding further to solve (4.1), let us discuss, in some detail, the input
for the quantization process (i.e., the innovation signal) since it will play a crucial role
in the following analysis.

4.1. The innovation process. The control U, is a function of the quantized
innovations which are not Gaussian random variables. Therefore, the state X; and the
measurement Y; are no longer Gaussian random variables under quantized innovation
feedback. Although the innovation signal is a Gaussian random variable for partially
observed classical LQG systems without quantization, in our case, this may no longer
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be true since the control is a function of quantized signals (which are not Gaussian
random variables). We therefore need to independently verify whether the distribution
of the innovation signal is Gaussian or not.

It can be verified that the innovation & is not affected by the control strategy,
although, Y; is affected. Furthermore, the innovation & retains its Gaussian distribu-
tion and the parameters of this distribution can be computed offline. This observation
is presented in the following proposition.

PRrROPOSITION 4.1. For all t, & is a Gaussian random variable with zero mean
and covariance M; such that

My =C% ) CT 4V,
Sipip=ASAT+W,  Eg-1 =g,
Et-|-1 = Zt+1|t - zt+1\tCTMt:_11CZt+1|t-
Moreover, the sequence of random variables {&o, ..., &} is uncorrelated for all t.
Proof. The proof is presented in Appendix A. O

Proposition 4.1 is equivalent of the following facts:
1. The innovation sequence {& }ien, does not depend on the control history
Ut,l.
2. The innovation sequence is a Gaussian uncorrelated noise sequence with zero
mean and covariance Mj.
3. Since the sequence of random variables {; }+en, is uncorrelated and Gaussian,
each & and & is independent for all k #¢.

4.2. Implications of delay. Let g;(¢;) € Q' denote the quantized version of &
if the ith quantizer is selected. Notice that ¢;(§;) € Q" is a random variable. The
quantized information sent to the controller is

~ M .
(4.2) & = Zgi(ft)927
i=1

and this information will be decoded and available at the controller at time t +
Efvil 0id;. Tt is noteworthy that, unlike the infinite horizon problem, the measure-
ments arriving after time 7" are of no use to the controller for an optimal control
problem defined over the horizon [0,7]. Therefore, even though a quantization cost
is paid, such delayed information does not help in computing the control input and,
thus, it does not help in reducing the objective cost (3.5). Therefore, the delay must
be appropriately incorporated in the analysis so that the above scenario is avoided.
In addition, since the delays may result in out-of-order availability of the decoded
signal to the controller, it is important that every quantized signal is time stamped,
i.e., when the controller receives a decoded measurement ¢ at time ¢, it should be able
to uniquely determine which of the signals {&,..., &} was quantized to produce this
measurement along with the quantizer that was used. In order to uniquely decode
which of the signals {&o,...,&:} produced the data ¢, the pair (ét,i) will be sent
at each time ¢, where ¢ is the index of the quantizer that was used to quantize &;.
Consequently, if the pair (§,4) is received by the controller at time ¢, then the controller
can immediately infer that the ith quantizer was used and that this signal is delayed
by d; units and, hence, § corresponds to &;—4,. Thus, (§,i) reveals that Gz_di =1 and
G=9i(&—_a,). At any time t, there can be at most M (delayed) new simultaneously
available decoded measurements. We define the set of indexes present in O, by
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idx; = {i: 3¢ €RP s.t. (¢,4) € O} C{1,..., M}.

Therefore, 0;_, =1 if i € idx;, otherwise #;_; = 0. It follows that the new
decoded measurements available to the controller at time ¢ can be expressed as

{9g7d17' .. ,eig\ng} @] {ét*dl NS idXt}.

With a slight abuse of notation, the above set is equivalent to:

1 M 1 F M F
{9t7d17’ .. ,etid]v[,etidlftfdl,. .. 79t*d]\4£t7dl\l} .

Notice that there is a bijective relationship between O, and the set {01}_ dyre o 9% dar?
th_dlgt,dl yen >9%dM &t—d,, |- Therefore, for notational brevity, we will simply write

(4.3) Ot = {etl—dla EER oijt\sz ) etl—dl ét—d1 IR otA{dMét—dM} :

Having characterized the effects of delays in the information available to the controller,
we next discuss the optimal controller that minimizes cost (3.6).

4.3. Optimal control policy. Let us define the innovation history by =, £
{€o,...,&}. With a slight abuse of notation, we also denote E; = o(&p,...,&) to be
the o-field generated by these innovation signals. We then define the state estimate
by

(4.4) X, 2 E[X,|3).

Recall from section 3 that O, = {00,01,...,Ot}. Based on (4.3), the set O, can
now be expressed as O, = {ﬁo,téo,%,téh--~,?9t,tét} Ui o {Gz_di ci=1,....M,k >
d;}, where 9y, as expressed below, is an indicator of whether ék is available to the
controller by time instant ¢ or not:

M
(4.5) Dre =D Oila,<i—x.

i=0
Clearly, if t — k > dps for some k, then the above expression for ¢y ; becomes ¥ ; =
Zf\io 0i =1 ensuring that the quantized version of & is present at the controller.

Similarly to @t, let us define the set Op = {90,+&0, V1,41, - -, 14t} Ub_y {Giidi :

i=1,...,M,k >d;}, which contains the innovation signals whose quantized versions
are included in O;. Similarly to (’jt, the set O, also contains the corresponding indexes
of the quantizers that were used. Due to the construction of O, O, does not contain

any new information when O, is given. Therefore, we have
(46) Xy = E[Xy|35] = E[X¢|O1, Uy 1] = E[E[X¢| O, Or, Uy 1]|O1, Uy 1]
= E[E[X¢|O,Us—1]|Or,Us1].

In order to compute X;, we compute E[X;|O;,U;_1] which is inside the outer expec-
tation of the last equation.

LEMMA 4.1. For any t,

t t—1
(47) E[Xi]OUs 1] = Alpo + Y W(t, k)0 + Y A FBU,
k=0 k=0
and, for all t >k, the matrices U(t, k) are given by
(4.8) U(t, k) =A"FSy ) CTM
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Proof. The proof is given in Appendix B. 0

Therefore, using Lemma 4.1 we obtain from (4.6) that

X; =E[E [Xt|0taut 1O, Uy 1]

4.9 1
(4.9) _Atu0+2\1/ (t,k)0k 4E[&x | O + > AR BU,
k=0 k=0

where we have used the fact that U, is a measurable function of J§ = {@t,ut 1} and,
hence, given (’)t7 the control history U;_; does not provide any new information about
&g,y 1.y E[E | O, Uy 1] = E[¢k | (’)t] Next, we focus on computing E[¢j, | (’)t] To that
end, let us define & 2 E[¢,|¢;,0¢ = 1]. Based on (3.3) and (4.2), we may write

£;
& =Ellgi(&).0i=1]=_14,(c)=q: Elet|0i (&) = ¢}, 6, =1]
j=1
£;

£;
Z i(§0)= qlEgt‘gtEP Zlgi(ft):qj. /Pigpt(dﬂpjz')’
j=1 3

where 1,—; is an indicator function that is equal to 1 if and only if a = b, oth-
erwise it equals 0. Therefore, €l is a random variable taking values in the set
{fpbfPt (CHZ .,4;} and it depends on the realization of & through

1g1(£t)—qj Using Prop051t10n 4.1, one may compute Pt(d§|791) as follows:

—&"Me/2q i
, e t , eP
Po(dg|P)) =1 SN

0, otherwise,

=/(2m)P det(M;)P(& € PY) / —€'ME/2qe

J

Furthermore, from Proposition 4.1, we have that & ~ N(0,M;). Since M; can be
computed offline, the prior distribution of ; is known to the controller. After receiving
the quantized value fu the controller updates the distribution of &. If the quantized
value of &, after being quantized by the ith quantizer, is 5,5 = qj, then the controller
can infer that & € 791 This is illustrated in Figure 3.

Al

Pi ’P’ P

Fi1G. 3. Left: The blue curve denotes the prior distribution Pi(d€). The partitions Pi for the
ith quantizer are also shown, where 7’2 is highlighted with the orange block. Right: The postemor

distribution Pt(d§|732) of & is shown for the case when the received quantized measurement ft s q2,
equivalently, & € P3.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/23 to 128.61.50.183 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

QUANTIZED OUTPUT FEEDBACK LQG 2693

The entity ! is the expected value of & given that the ith quantizer was used in
the process of quantization and the quantized value is §t € Q. We further define

(4.10) El&l4:,0:] Zezﬁt
and
(4.11) G264 -4&.

From this definition of &, along with the constraint Zf\il 0 =1, we have that & = £}
if and only if the ith quantizer was selected at time ¢. The conditional covariance
My (0;) 2 E[6,£] | 6] turns out to be

M (6) =E [&&] — &8 —ﬁ_fftT +&&1 164 B
(4.12) =E[§:&; 0] — E[Se&; | 0:] = E[S:&¢ | 04] — E[S:&¢ | 04],
where we have used the fact that E[ftgt | 6] = E[E [ftf_t | ét,(?t] | 6;] = E[E [§t|§t,9t]§t |

0;] = E[&:£] | 0;). By defining Fy(6;) = E[&:£] | 0;) and using the expression of & from
(4.10), we obtain

M

(4.13) Fy(0,) =E[&&] |0, = Zef &1 =>"0F,
=1

where

(4.14) E[Gie] ] ZPsteP El¢:|¢: € PIE[&|& € P

Therefore, using the deﬁnltlon of Fi(6:), we may rewrite (4.12) as M. (6;) = E[&&] |
0] — F;(0;) and, furthermore, we also obtain E[M;(0;)] = M; — E[F;(0:)]. The linear
dependence of F;(6;) on 6; will be useful in designing a linear program for selecting
the optimal quantizers, as shown later in the paper.

At this point, recall from Proposition 4.1 and the discussion thereafter that
{&}ten, is a sequence of uncorrelated zero-mean Gaussian noises (hence, &,&, are
independent for k # £) and {ét}teNO is the corresponding sequence of the quantized
version of {& }ten,. Therefore, & and ég are independent for all k # ¢. Hence,

E[gk@t]:{E[gkgk,ok]:fk if & € Oy,

4.15
(4.15) €] =0 otherwise,

where we have used the definition of & from (4.10). From this observation, and using
Lemma 4.1, the expression of X; is computed in the following lemma.

LEMMA 4.2. For any t, X; = E[X;|J¢] is given by

t—1
(4.16) X = Auo+z\lltk19ktgk+ZAt kB,
k=0 =0
Proof. Notice that, from (4. 9) we have
t—1
E[X:|3¢] = uo+Z\P £ k)i ElGh O] + 3 AR B,
k=0 o

The lemma follows immediately after we substitute the expression for E[¢x|Oy] from
(4.15) into the last equation and noting that 9, =1 if £ € O, and zero otherwise. O
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Define the error e; = X; — X;. It follows from (4.16) that

t—1 t
e =A'Xo+ ) ATEIWy = Ao =YW (t k) Or, i
k=0 k=0

Notice that e; does not depend on the control strategy v. However, it does depend
on the quantizer-selection strategy v© through the last term in the above equation.
Furthermore, for all ¢, E[e;] = 0 since E[X;] = E[X;] due to the law of total expectation.
At this point, we are ready to return to the cost function (3.6) and find the
optimal controller and the optimal quantizer-selection policies.
Associated with the cost function (3.6), let us define the value function as follows:

-1
(4.17a)  Vi(3p) = min E, | (X7 Q1 Xy+U] RU A0 A)+ X7.Q2 X7 [ I
G PR 14 Hiwt t=k
(4.17b) Vr(3r) = EW[X}QQXT [I7],

where the information set J; = {J¢,3{} and E,[] denotes the expectation under the
strategy pair 7= (7*/,7®). In the subsequent analysis, we will suppress the argument
of Vi, and the condition on Jj in the expectation of (4.17) to maintain brevity. Using
the dynamic programming principle,

(4.18) Vi= min E, [(X,;lek + UIRU; + 01A) + Vies |

Vi e ALED],

If v¢* and ,YZ* minimize the right-hand side of (4.18), then the optimal strategies are
Uy =~2*(3%) and 0; =~9*(3}). From (4.17), we also have that

4.19 min  J(WY,~®) =E[Vy].
(4.19) e, 07 7) =EVo]
The following theorem characterizes the optimal policy i**(-) for all k=0,1,...,T—1.

THEOREM 4.2 (optimal control policy). Given the information I to the con-
troller at time k, the optimal control policy v;* : 35, — R™ that minimizes the right-
hand side of (4.18) has the following structure,

(4.20) Ut =1 (35) = ~Li X,

where Xy, is computed in Lemma 4.2 for all k=0,1,...,T — 1, and the matrices Ly,
and Py are obtained by

(4.21a) Ly=(R+ B Py 1B) "B Py A,

(4.21Db) P.=Q1+ A"Pyy1A— L (R+ B"Pyy1B) Ly,

(4.21c¢) Pr=0Q-.

Proof. The proof of this theorem is based on the dynamic programming principle.
Specifically, if there exist value functions Vj, for all k=0,1,...,T that satisfy (4.18),
then the optimal control U}, and the optimal quantizer selection §; are obtained by
the policies 7* and 79* that minimize (4.18).

Let us assume that the value function at time £=0,1,...,7 — 1 is of the form
(4.22) Vi =E, (X1 P Xk] + Ck + 7,

where Py is as in (4.21b) and, for all k=0,1,...,7 — 1,
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)

T-1
(4.23) Cr,= min E.e [Z e; Nier + 07 A

Y
T—1
{'Yf o t=k

where N € R"*"™ and ri € R are given by

(4.24a) Ny, =LL(R + B"Py1B) Ly,
(424b) Tk =Tk4+1 + tI‘(Pk+1W),
(4.24¢) r =0.

Equation (4.23) can be rewritten as

C’f:mi@nEv" [ep Nier + 0L A + Cria], Cr=0.
Tk

We first verify that Vp_; is of the form (4.22)

(4.25) Vr_i= min E, [X;,lleT,l + U RU_, +9;,1A+X;PTXT].
7%71775“71

Substituting into (4.25) the equation Xy = AXr_1 + BUr_1 + Wrp_1, after some

simplifications, yields

Vi = min E, [||UT—1 +LraXralpyprpes) + I1Xallp,, + 070 A+ tr(PTW)] ;

P
T—17VT—1

where ||L||% £ LTK L for any two matrices L and K of compatible dimensions. In the
previous expression, ||Ur—1+Lr—1 X711 H?R+BTPTB) is the only term that depends on
Ur—i1. Therefore, we seek v§_; : 35_; — R"™ that minimizes the mean square error
E[||UT_1 + LT-lXT_lH?R+BTPTB)]' Thus, the optimal Ur_; is a minimum mean
squared estimate of —Lp_1X7_; based on the o-field generated by J5._;. Hence,
from Lemma 2.1,

(4~26) U;’fl = 7%*71(3%71) = _LTflE[XTflwchﬂ = _LTleTfl-

After substituting the optimal UZ_, into (4.25), we obtain

Vr_1 = minE, [||XT_1 — Xpa|%, 405 A+t (PrW) + X}_lpT_le_l} .

YT-1

The above expression of Vr_1 can be rewritten as follows:

Vr_1= Helin E,ye [6;_1NT_16T_1 + 0}_1A] +E [X;“_lpT—lXT—l} +tI‘(PTW).

YT-1

Therefore, using the definitions of Cr_; and r7_; from (4.23) and (4.24b), we obtain
Vo1 =E[X}_Pr_1Xp_1]+Cp_1+7rp_1. Thus, Vp_q is of the form (4.22). Next, we
prove the hypothesis (4.22) using mathematical induction. To that end, we assume
that (4.22) is true for some k + 1. Then,

Vi = min B, [(X[Q1 Xg + ULRUy + 01A) + Vi |

ViV

= min E, [(XZQ1X1€ +UpRU, + 0, A) + Xy Poy1 X1 + 7641 + Crpa } ~

ViV
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Using (3.1), and after some simplifications, it follows that

(4.27) Ve = min E, [HUk + L Xp | Cryprp, By T XiPrXk + O1A

Vi Vi

+ tI‘(Pk+1W) + Tk+1 + Ck+1 .

One may notice from the definition of e; that it does not depend on the past control
history U but, rather, it depends on the quantizer-selection history ©y. Thus, Cj
does not depend on the control history Uy. Furthermore, from (4.24a), (4.24b), and
(4.21Db), one notices that N, rg, and Py do not depend on the past (or future) decisions
on the control or quantizer selection. Therefore, | Uy + Lka||%R+BTPk+1B) is the only
term in the above expression of Vj, that depends on Uy. Using Lemma 2.1, the optimal
J¢-measurable control U} that minimizes E [HUk + LkaH%

R+BTPy. B)| 1S glven by

(4.28) Ui = %" (3%) = —LyE[Xy|35] = — L X
After substituting the optimal control into (4.27) and using (4.24b), we obtain
Vi, =E[X[ P Xy +minE, [ef (LL(R + BT Piy1 B)Ly)ey, + Of A + Cpia] + 7
T

ZE[X,IPka-] + mien E,ye [eLNkek + HLA + Ck;_f_l} + 7= E[X;Pka] + Ck, + 7g.
Tk

Thus, the value function is indeed of the form (4.22) and, hence, the optimal control
at time k=0,1,...,7 — 1 is given by (4.28). This completes the proof. ]

Remark 4.3. From Theorem 4.2, the optimal control is linear in X. The optimal
gain —Lj can be computed offline without knowledge of v®*. The effect of v©* on
A"* is through the term X, which can be computed online using (4.16).

Having computed the optimal controller, we now focus on solving for the optimal

selection of the quantizers. To that end, from (4.19) and (4.22), we obtain

. u e\ __ T
werllil,ly%ere J(v*,77) = E[Vo] = o Popio + tr(PoXs) + 1o + E[Co],

where, from (4.23), Cp can be written as

T-1
{'Yf}t=o +=0

T—-1
(4.29) Co= min E.o [Ze;NtetJro;A

Notice that the effect of the quantizer-selection policy v© on the cost J(7¥,~®) is
reflected only through the term Cjy. The optimal quantizer-selection policy can thus
be found by performing the minimization associated with Cj as represented in (4.29).

4.4. Optimal quantizer-selection policy. In this section, we study the opti-
mal quantizer-selection policy 7®*, which can be found by solving (4.29). We may
write E[e} Nie;] = tr(IN:Elesef]), and the following lemma computes E[e.e;f].

LEMMA 4.3. For all t € Ny,

Elesef] =S+ W(t, k) (Mg — E[x ¢ Fi(06)]) W (L, k)"
k=0
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Proof. The proof is given in Appendix C. 0
Using Lemma 4.3, the cost Cy can be simplified as

(4.30) Co = constant + mln E Z tr (T1(©) Fy(6;)) + 07 A
{2z

where the constant term is ZtT;Ol (tr(Z,Ny) + ZZ:O tr(Nk,th)) and
(4.31a) Nyt = U(t, k) N (t, k),

(4.31b) M (0)=— > ¢ eNes.

The optimal quantizer-selection policy is found by solving the mixed-integer-nonlinear
program in (4.30).

At this point it may appear that the expression Zt 0 ' tr(I1,(©)F,(6,)) in (4.30)
is a nonlinear function of ©. However, we now show that after some simplifications,
it can be written as a linear function of ©. By expressing (4.30) as a linear function
of O, we can recast (4.30) as a mixed-integer-linear-program (MILP), which further
can be solved efficiently using existing efficient solvers [23].

To express (4.30) as an MILP, we construct a matrix ® € RT*M as follows: for
alli=0,...,T—1land j=1,..., M, let

1 ifi>d;
4.32 P|;; = =
( ) (Bl {0 otherwise,

where [®];; is the ijth component of the ® matrix. It directly follows from the
definition of ® that 14,<¢—# = [®];—,;. Consequently, we can express (4.5) as

M .
Dip = 0[Pl pi-
i=1

Thus, II;(©) in (4.31b) can be rewritten as Ht( ) = [T;t1 ZL 191[<I>]g_t7i]§7t,g.
Also, from (4.13), we have that F;(0;) = Z L 0;F}. Thus,

M T-1
tr(II,(©) Fy(6;)) = —tr (Z (9;‘ Z[(I)]g_t,ijvﬂ) Ft(Gt)>
=t

=1
M T-1 M o
= tr (Z (932[@]e_t,1-1§7t75>> > 6lF
i=1 0=t j=1
M T-1
@—“<29§<2[‘1’]4 MNM> ) Zmﬁt,
=1 =t

where ] = tr(( ET:_tl [®]¢_s.:N:.¢)F}) and the last equality follows from the fact that
0i0] =0 if i # j. Note that the coefficients 3! can be computed offline.
From the previous derivation, Cj in (4.30) becomes

(4.33) Co=a+ rgnn E.e [Z cth],
1GFe
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where the constants are « :Zf:_ol(tr(EtNt) +ZZ:0tT(Nk,th)) and ¢; = [c},...,cM]T
with ¢! = \; — 3{. Notice that, in (4.33), the cost function is linear in 6;, and the coeffi-
cients ¢} are deterministic (and can be computed offline). Therefore, it is sufficient to
look for a deterministic strategy to minimize the linear cost Zz:ol ¢ 0, as the class of
deterministic strategies contains an optimal solution for min (40370 E o [ZtT:_Ol c{&t} .
The following lemma presents an MILP formulation to obtain the optimal quantizer-
selection policy.

LEMMA 4.4. The optimal quantizer-selection strategy is found by solving the fol-
lowing MILP

T—-1
(4.34a) min Y  cff;,
© t=0
M . .
(4.34b) st. > 0i=1, 6;€{0,1}, t=0,...,T—1, i=1,...,M.
=1

Proof. The proof directly follows from the derivation of (4.33) and the subsequent
discussion. ]

Notice that in the optimization problem above there is no constraint coupling
0 and 6, and the cost function in (4.34a) is also decoupled in 6, and 6, for all
k # ¢ € {0,...,T —1}. Therefore, the optimal 6; at time t can be found by min-
imizing c{f; subject to the constraints Zgl 0i = 1, 0 € {0,1}. Thus, the opti-
mal quantizer-selection strategy for this problem turns out to be remarkably sim-
ple: if i* = argmin;_; 5 {cf,..., ¢/}, then the optimal strategy is to use the i*th
quantizer? such that

V=07 = Loty Liooad]T
This result is summarized in the following theorem.

THEOREM 4.4 (optimal quantizer-selection). At time t, the jth quantizer is opti-
mal if and only if ¢, =min{c},...,cM}, where, for alli=1,...,M,

T-1
ch= N\ —tr <<Z [(I)]é—t,iNt,é) Ftl) )
—t

and ]\7@@, [@]¢—t.:, and F{ are defined in (4.31a), (4.32), and (4.14), respectively.
The following remark is immediate from Theorem 4.4.

Remark 4.5. The optimal strategy for selecting the quantizers can be computed
offline. This requires an offline computation of N, and Fy, but it does not require
knowledge of the optimal control strategy.

4.5. Discussion and remarks. Let us delve into the cost ¢j6; in (4.34) to
discuss how the three factors, namely, the cost of quantization, the quantization res-
olution, and the delay, affect the cost function. The coefficients ¢ which determine
the optimal quantizer-selection strategy at time ¢ have two components, namely, A;,
and i, where )\; is the cost for using the ith quantizer, and 3! captures the trade-
off between quantization quality and the associated delays. Let us discuss each of

2]In case there exists multiple minimizers for argmin,-:Lm’M{ctl, ey c{”}, one of these minimizers
can be chosen randomly without affecting optimality.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/23 to 128.61.50.183 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

QUANTIZED OUTPUT FEEDBACK LQG 2699

these two terms in greater detail. First, ci being proportional to the cost \;, reflects
the fact that lower quantization cost is desirable. The quantity S} is arguably more
interesting. Note that 3} is of the form tr(GLF}), where for all i, Gi is a positive
(semi)definite matrix whose expression can be easily identified from the expression
of Bf. Moreover, since 1 > [®];1 > [®];2 > -+ > [®]ia >0 for all i =0,...,T — 1,
we have G% = G% == Giw. On the other hand, by using the ith quantizer, the
reduction in uncertainty covariance is Ff. By uncertainty covariance we mean the
following: before the arrival of any measurement (ét), & is a Gaussian distributed
random variable with covariance M;. Once a quantized version (ét) of & arrives
at the controller, the controller receives information on the realization of the random
variable &. Specifically, at this point, the controller knows the region 77;: C RP wherein
the random variable & belongs. Therefore, the posterior distribution of & changes
after receiving ét, and the difference between the covariance of this posterior distri-
bution and the prior distribution is F} if the ith quantizer is used. Needless to say,
had there been a quantizer that could ensure ét =&, i.e., no loss during quantization
for every realization of &, then the reduction in covariance is exactly M; and the
posterior distribution of & at the controller is a Dirac measure around ét. The use
of quantized measurements is similar to operating somewhere in-between open-loop
and closed-loop control. In open loop, no measurement is sent, and in closed loop,
the exact measurement is sent without any distortion. By means of quantization, the
controller receives something but not everything. Furthermore, since 3i > 0 and since
it appears with a negative sign in the cost function, it is clearly desirable to choose a
quantizer that would maximize ;. The matrix F} directly reflects how much reduc-
tion in covariance will occur if the ith quantizer is used. The matrix G%, on the other
hand, incorporates the delay associated with the ith quantizer. As i is increased from
1 to M, G¢ decreases tr(GLF}), reflecting the fact that a smaller delay is preferable.
However, as i is varied, F} shows the variation in covariance reduction. For example,
if the reduction in covariance increases with the increase in ¢;, then F} is attempting
to increase tr(GLF}) as i is varied from 1 to M. Thus, there is a dual behavior between
F} and G! as i changes, and this duality is captured by the parameters of the channel
and the quantizers, namely, P?, ¢*, and the delay d;.
We conclude this section with a few more remarks.

Remark 4.6. The cost function in (4.34) resembles the component Z?:_ol A0, in
(3.6), except that all the state and control costs are absorbed in the coefficients c}.
Here ci can be viewed as the adjusted cost for operating the ith quantizer at time ¢,
and the adjustment factor is 3¢, which can be computed offline.

Remark 4.7. The approach allows for the case when the set of available quantizers
contains a quantizer Q° with only one quantization level, i.e., £y =1, P? = {P) = RP},
and quantization cost \g = 0. This quantizer produces the same quantized output
for every input signal, hence, providing the option to remain open loop. For such a
quantizer, it can be verified from (4.14) that F? = 0 for all t. Therefore, ¢) = \g —
B; =0 for all ¢, and the selection of this quantizer at any time ¢ reflects the fact that
the optimal strategy is not to send any information to the controller at that time. If
the quantization costs are very high,®> \; > 1, the optimal choice of the quantizers

3 Alternatively, the quantization cost is higher than the reward from using quantization, i.e.,
Ai > By for all .
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would be Q° and, hence, the controller will not be receiving any information, which
in principle, is equivalent to open-loop control.

4.6. Choice of the quantizers. In this work, we assume that the set of quan-
tizers are given a priori. However, from our analysis it follows that the final LQG
cost depends on the quantizer parameters through the variables 3} for i = 1,..., M
and t = 0,...,7 — 1. Specifically, notice that 8 = tr((3,_, [®]¢—¢iN:.)F}) and,
thus, the quantizer resolution and the delay affect 3; through Fy{ and [®],_; ;, respec-
tively. Equation (4.14) directly relates the quantization cells P and F}. Therefore,
in principle, one can choose to optimize over PZ s to find B¢’s, even though such an

optimization can be computationally very expensive.

5. Special cases. In this section, we simplify some of the expressions obtained in
section 4.4 by considering some special cases. In particular, we show that the expres-
sion of ¢! in Theorem 4.4 can be substantially simplified under these special cases.
These simplifications will be helpful for fast and efficient computation of the opti-
mal solution for the optimal quantizer scheduling problem described in Theorem 4.4.
To this end, we consider (i) the constant-delay case, and (ii) the full observation
case.

5.1. Constant-delay. In this section, we consider the case where d; = dy =

-+ =dp =d, i.e., the delay induced by each quantizer is the same. Intuitively, since

the delay is not affected by the choice of the quantizer, then the quantizer selection

problem should reduce to a tradeoff between the quantization cost and the quality

of quantization. To see this, let us first note that [®];1 =+ = [®]; s = 1i>4 for all
1=0,...,T — 1. Therefore,

ol (o))

((ZN> )—tf(H<t7d>Fz),

where H(t,d) = Ze rd Ni.¢ = 0. Thus, for fixed ¢t and d, whether the ith quantizer is
optimal at time ¢ is entirely determined by F¢, where we recall that F} represents the
uncertainty covariance reductions. Also notice that H(¢,d) =0 for all t > T — d, and
hence 3f = 0. Therefore, the optimal selection for the quantizers for t > T — d would
be the one with the lowest A;. This is due to the fact that the quantized information
fT_d,éT_d_H, ... will not be available at the controller before time T — 1, and hence
these quantized measurements would be of no use to the controller. Therefore, the
quality of the quantization for time T — d onward is immaterial to the controller and,
hence, the lowest cost quantizer would be optimal.

5.2. Full observation. For the full observation case, we substitute ¥V = 0 and
C =1 in the analysis presented above. As a direct consequence, one can verify that
& =Wy for all t. Therefore, {£; ~ N (0, W) }ien, are i.i.d. signals and, consequently,
the matrices F} given in (4.13) will be time invariant, i.e., Fj = ... = FL £ F,

For all t € No, ¥y =0, X1y = M1 =W. This also implies that, for all ¢ > k,

U(t,k)=A"" and Nj, = A" F N, A,
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Therefore, the state estimate can be written as

t t—1
X, ZAtM0+Z‘I’(t7 k)Ok,1Ek +ZAt717kBUk
k=0 k=0
t t—1

=Alpo +) A6 +) AR BUL
k=0 k=0
t—1

(5.1) =AX; 1+ BU;_1 +94.4& + ZAtik(ﬁk,t — g t—1)Ek-
k=0

The expression for 3} is now given by

T-1
/BZ =tr <<Z [‘I’]é—t,iNt/> FZ) - ((Zj—tidi AZtTNZAZt) Fl) .

{=t

Let us define a symmetric matrix Y; as follows,
YT, =A"T 1A+ N, YTr=0,

which allows us to rewrite 8! = tr(Tmin{Hth}F"). We conclude this section by
discussing the constant delay case for fully observed systems.

Under the assumption of constant delay, ie., di = --- = djy; = d, we obtain
Bt = tr(Yrmin{t+a,r} F*). Furthermore, ¥y, = 1 if and only if ¢t — k > d, otherwise,
Ui+ = 0. This implies, from (5.1) that, for all ¢ € Ny,

- AX, 1 +BU,_1+ A%, _, ift>d
(5.2) X, = Y1 +BU; 1+ A% g ift> :
AX; 1+ BU;_1 otherwise.

6. Numerical examples. In this section, we illustrate our theory on a linearized
inverted pendulum system whose discretized equations of motion are given by*

1 0.05 0 0
(6.12) Xig1 = [0.5 0.95] X+ {0.05] Uit + H Wi,
(6.1b) Y= [(1) ﬂ X+,

where Xo ~ N(0,1), Wy ~ N(0,0.05), and v, ~ N(0,1I). The control cost has
parameters () = Q =0.51, R=0.5, and the time horizon is set to T" = 50.

The simulation was performed with three quantizers (Ql, Q2 Q3), where Q' has
2% numbers of quantization levels, i.e., Q' = {0,1}, Q% = {00,01,10,11}, and so on.
The partitions associated with the quantizers are P* = {R,. x R, R x R}, P? =
{Ry xRy, Ry xR, Reg xRy, RegxRoo}, and P3 = {[0,1) xR, [1,00) xR, ,[0,1)x
Reo, [1,00) xRcg,[-1,0) xR, (—o0,—1) xR4,[—1,0) xR, (—o0,—1) xR.g}. The
costs associated with the quantizers are A = [10,11,12]".

We consider two scenarios, where in the first scenario the delays associated with
the quantizers are d; = 1 for all 4, and in the second scenario d; = for all 5. Under these

4Let the angular displacement and velocity of the pendulum be denoted as x; and z2. The
dynamics of the system are given by 1 = z2 and dzxo = (—gsin(z1)/l — kz2 + u)dt + dw, where
g = 10ms~2 is the gravitational acceleration, | = 1m is the length of the pendulum, k = 1s~! is the
damping coefficient, u is the input and dw is a standard Brownian motion. We consider a linearized
model around z1 = 7 for the system operating at 20 Hz.
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FiG. 4. Optimal selection of quantizers over time.
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Fic. 5. Optimal selection of quantizers over time when the second dimension of Yi is pure noise.

conditions, the optimal selection for the quantizers is plotted in Figure 4. Although
both plots in Figure 4 portray similar behavior, there are a few differences (see the
time interval [18,22]) in the optimal selection of the quantizers due to the delays. We
notice that during the interval from ¢ =18 to 22, Q3 is optimal when ds = 1, whereas
Q? is optimal when d3 = 3. The reason behind this is the fact that the quantized
output of both @3 and Q? will be available with the same delay when d; = 1 for all
i, whereas the quantized output of @3 will reach later than that of Q2 when d; =1,
although the quantized output of @3 will be less distorted than that of Q2. During
the time period [18,22], it turned out to be beneficial to have a coarser measurement
faster than a finer, more delayed, measurement. This simple example reflects the
combined (dual) effect of the quantization resolution and the associated delays in the
optimal choice of the quantizers.

We next considered the same example while observing the angular position only.
We modify the Y; equation as follows: Y; = [(1, 8] Xi + v¢. In this case, although Y;
is two dimensional, the second dimension of the observation is pure noise and does
not contain any useful state information. The optimal selection for the quantizers
is shown in Figure 5. We notice that 0Q? is a finer version of Q! along the second
dimension only. There is no difference in the quantization quality between Q' and Q2
for the first dimension. Since the second dimension of Y; is pure noise, Q2 is never
selected for this problem (since Q! performs equally well as Q% with lesser cost).

7. Conclusions. In this work, we have considered a quantization-based partially
observed LQG problem with a quantization cost. The problem is to choose an optimal
quantizer among a set of available quantizers that minimizes the combined cost of
quantization and control performance. The number of bits required to represent the
quantized value increases as the quantization resolution gets better, and hence the
delay in transmitting the measurement also increases. We illustrate how the quality
of quantization and delay together emerge in the cost function and we demonstrate
their dual role in the optimal solution.

We have shown that the optimal controller exhibits a separation principle and
it has a linear relationship with the estimate of the state. The optimal gains for
the controller are found by solving the classical Riccati equation associated with the
LQG problem. We have also shown that the optimal selection of the quantizers can
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be found by solving a linear program that can be solved offline independently from
the calculation of the optimal controller gain. Furthermore, the special cases of full
observation and constant delay are also discussed. The possibility of the system to
remain open loop at time ¢ by not sending any quantized information is discussed as
well in Remark 4.7.

Appendix A.
Proof of Proposition 4.1. Let us consider a state process Xp°V £ X, —
At 1=k BU,, — Atpp and an observation process Y,V £ C X eV + Vt Therefore,

(A.la) XPOY = AXP 4+,
(A.1b) YoV = OXPOY 4V,
(A.lc) X = Xo — pio=W_1 ~N(0,5,).

Here X[V is the process associated with X;, which is independent of the control
strategy. Using this definition of X}**™ and Y;**V, we have X; = XV +¢(t,U;—1) and
Y: =YV 4+ Co(t,U;—1), where <p(t Up_1) = 22 %]At -k BU, +Atu0 Therefore, the
information sets (V¢—1,U;—1) and (YW, ..., V", U;—1) are equivalent, i.e., one can
be constructed from the other.

The innovation process associated with system (A.1) is given by

new YHEW _ E [Ytnew |YOII8W }/tn_eiN] .

P

Let & be the innovation process associated with the system (3.1). It can be shown
that £V =&, for all £. In order to prove this statement, notice that

& =Y —E[Y3|Vi—1,Us 1]
=YV + Co(t,Us—1) — E[Y V| Vi1, Us—1] — E[Co(t,Us—1)|Vi—1,Us—1]
— }/tnew _ EI:'}/'tl'leVV|}/"Ol1eVV7 . tner/7ut 1]
Y BN Y] — .
Thus, & does not depend on the control history ;1.
The standard results of Kalman filtering hold for the process X with observa-

tion Y;**W. It follows that {£]°V }ien, is a sequence of uncorrelated Gaussian noises.
Thus, using standard Kalman filtering theory, we define

(A.20) e = X — BTV, YY)
(A.2D) A“ew = XPOV — E[XPOV YV, ., Ve,
(A.2¢) Sye—1 = ElefVefT],
(A.2d) 3, = E[ADew AnewT],

Moreover,

E[X;leW|YOneW’ e Y'tnew} — EI:X;IEW|Y0H6W, }/;neiiv] + ‘Z'('tgﬂew7

where K is the Kalman gain at time ¢t. Thus, APV = ePV — K, PV = (I - K,;C)epe™ —
K;V;. The initial conditions are ef®" = Xg§V NN(O ¥z) and Yg_1 = X,. Therefore,
E[§fV] =0 and My, %1 and X, satlsfy

M, = E[(Cei™ + V,)(Cef™ +V;) '] = CEyy 1 CT + V),

Bijp—1 = Elef™Ve™ ] = E[(AAYSY + Wi 1) (AAPSY + Wiy)T] = AS 1 AT+ W,
Y= E[(I — K;C)e}*Vep™ (I — K,C)'] + K,CVC'K]
= - KC)Syp—1(I — K:C)" + K VK] =S4—1 — Sy CTM; Oy,
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where K; = Et”,lCTM[l is the Kalman gain. This concludes the proof. 0
Appendix B.
Proof of Lemma 4.1. The information contained in ();,U;_1) is the same as that
contained in (Z;,U;—1), where Z; = {&,...,&}. Therefore,
t—1
E[X2|Vs,Us 1] = E[Xe[Z0,Up 1] = EIXPVIZ0, Uy 1]+ Y A FBU + Al g
k=0

t—1
[chw|'—ncw +ZAt_1_kBUk+AtIJ/O7
k=0

where EY = {0V }en, = {&t Hren, = ¢ It follows from Kalman filtering that
ELXP™ (2] = ELXP™ 23] + Ko™ = AELXY 1Y) + K™,

since W;_; is independent of Z}*Y. We need to show that
t
(Bl) [Xnew|~new le tk gnew
k=0

for some (¢, k). We show this by induction. To this end, notice that (B.1) is true for
t =0 with ¥(0,0) = £,C7(CX,C" 4+ V)~!, where %, is the covariance of the initial
state Xo. Next, if (B.1) is true for ¢ =7, then we have that, for t=7+1,

XS [EI9S] = AE[XIE1] 4 Ko a5
T+1
_ AZ\II k) nCW+KT+1g£$g_Z\IJ (7 + 1, k)enew,

where K4 is the Kalman gain at time 7+ 1, U(7 + 1,k) = A¥(7,k) for all k =
0,...,7, and U(7 + 1,7 + 1) = K,;1. Therefore, for all t > k, U(t,k) = A" FK; =
ARy CTM ! and

t—1

E[Xt|yt7ut—l} [Xnewlf—new +2At717kBUk+At‘u0

k=0
t t—1
=Y U(tE)EG™ + > ATTFBU + Al pg
k=0 k=0
t t—1
W(t k)é+ Y _ATFBUL + Alpo.
k=0 k=0

The set O; may not contain all the elements of Z; due to delays. In fact, for k <t, we
have that &, € O, if and only if ¥4+ = 1. Since & and & are independent for ¢t # k,
we have

0 otherwise.

E[£k|ot] — {gk if €k€0t7
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Therefore, we can write E[{x]|O;] = ¥ &k Thus,
E[X¢|Os,Us 1] = E[E [Xt\Et,Ut 1|0, Uy 1]

t—1

—E qutkgkwt,ut 1|+ > ATTRBU + Alpg

k=0 k=0
t t—1
= Z\IJ (t, k) ’l9kf§k+ZAt ""FBU, + A' po.
k=0 k=0
This completes the proof. 0

Appendix C. R
Proof of Lemma 4.3. Let us define Ay = E[ey | Vi, O, Uz —1], and notice that,

E[etez \ ytyétautfl] = E[(et - At)(et - At)T | yhétyutfl] + E[AtAI | yu@mutfl],

since E[At(et - A)T | yt, @t,ut_l] = AtE[(et - A)T | yt7 @t,ut_l] =0. Taklng expecta—
tions on both sides of the last equation, we obtain

(C.1) Elecel] = E[(e; — Ay) (e — Ay)] + E[AATL

Substituting the expression for X; from (4.9) into e; = X; — X yields

t—1

t
ee =X, — Y ATVFBU, — Alpg = W(t k) 46
k=0 k=0

Therefore,
Ay = E[et | yu@uutfﬂ

t—1

t
= E[X¢| V0, 00Uy 1] = > ATV FEBUE — Alpg = U (t, k) Ok
(C.2) k=0 k=0

Zwkfk—leftwmgk—zwk (& —Elgx | O1]),
k=0

k=0 =

where we have used E[X; | ), Ot,ut,l] E[X¢ | Vi,Up—1] since O, is a Yy-measurable
function and we have also used (4.15) to write ¥ (&, as E[¢, | O;]. Using the expression
of A, from (C.2), we obtain

t—1

e — A= X, ZAt =k BU,— Al g Z\I/tk

— X;’IQW [Xnew‘ ’_‘HGW] A?QW7

where XV, E[XPV | 2P°%], and APV are defined in (A.1) and (B.1) and (A.2),
respectively. Thus, we may rewrite (C.1) as follows

Elece;] = E[(es _At)( —At)THE[A Ayl

(C.3) E[APVAR™T) +ZZ@ t,k)E[(&x—E[€|Ou)) (& —E[€| O])T1 W (2, 0)T
k=0¢=0
=S+Y Y (L, k)E[(& —E[& | Od) (& — Elée | O (E,0)T,
k=0¢=0
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where we used the definition ¥y = E[AJ*VAP*¥T] from (A.2).
To further simplify (C.3), we recall that & and & are independent random vari-
ables when k # ¢ and, therefore, we obtain

E[(&k — E[ | O1)) (& — E[&e | On))"] = E[E[(& — E[&k | Ou]) (& — E[&e | O)T | &k, O]
E[( k—E[§k|@t])E[( [€Z|Ot T‘fk;ot}
E[(& — E[é1 | O:))(El¢r | O] —E[Er | O:)T] =0

for all k£ £. On the other hand, for k =/, we obtain

E[(&x—E[& | Od]) (& — Elér | Ox))"] = E[6167] — E[E[& | OUJE[6k | OT)
@ M, — E[0x 1 6xE]] = My — E[Ewk 1k | Ok

L VA [ﬁktE[EkﬁkaH 9 My, — B[Okt Fr(0r)],

where (a) follows from (4.15) and the fact that 07, = Oy, since 5, € {0,1}, and
(b) follows from the fact that ¥y, is a deterministic function of 6 due to (4.5),
and finally, (c) follows from (4.13). Consequently, (C.3) reduces to the following
equation:

t
Elesef] =i+ W(t,k) (Mg — E[ e Fi(06)]) W (L, k)" 0
k=0
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