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OPTIMAL QUANTIZER SCHEDULING AND CONTROLLER
SYNTHESIS FOR PARTIALLY OBSERVABLE LINEAR SYSTEMS*

DIPANKAR MAITY\dagger AND PANAGIOTIS TSIOTRAS\ddagger 

Abstract. In networked control systems, the sensory signals are often quantized before be-
ing transmitted to the controller. Consequently, performance is affected by the coarseness of this
quantization process. Modern communication technologies allow users to obtain resolution-varying
quantized measurements based on the prices paid. In this paper, we consider the problem of joint
optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback
linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the
controller. The system is presented with several choices of quantizers, along with the cost of using
each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike
an optimal balance between control performance and quantization cost. When the innovation signal
is quantized instead of the measurement, the problem is decoupled into two optimization problems:
one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal
controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found
by solving a linear program---both of which can be solved offline.

Key words. quantized optimal control, communication constrained control
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1. Introduction. Networked control systems operating under finite data-rate
constraints employ signal quantization to reduce the amount of data for communi-
cation. System-specific quantizers (encoders) and decoders are designed to compress
signals with a finite number of bits and to incur minimal signal reconstruction er-
rors, respectively. The available bit-rate to quantize the signals, as well as the choice
of the quantizers and the decoders, determine the error in the reconstructed signal
and, consequently, they affect the performance of the control system [20, 27]. Often,
these quantizers are required to be time varying and their dynamics are tied to the
dynamics of the control system for optimal performance [27].

Time-varying quantizers provide the flexibility to send high resolution quantized
signals when needed, and use a coarser resolution otherwise. Typically, design of dy-
namic quantizers requires solving a joint optimization problem for the quantizer and
the controller [40] to obtain optimal performance. Such codesign problems quickly be-
come intractable due to the nonlinear/saturation behavior of the quantization process.
Even the linear-quadratic optimal control problem---which is one of the simplest prob-
lems in optimal control for which an analytical closed-form solution exists -- becomes
intractable when quantized measurements are fed back to the controller. In [14]
the authors show the lack of a separation principle for a linear-quadratic-Gaussian
(LQG) system with quantized feedback. In [40] the authors demonstrate that a sep-
aration principle exists when predictive quantizers are used. Furthermore, [40] also
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demonstrated that the use of predictive quantizers can be made without loss of gen-
erality. Similar results on the separation principle can also be found in [3, 5, 29, 35].
The interested reader is referred to the article in [41] that specifically discusses the
separation principle under quantization. While these works provide some character-
ization of the optimal quantizer, the exact solution of the optimal quantizer is not
available. Owing to the intractability of the problem, prior works do not readily
provide the optimal quantizers. An exception is [3], where an iterative method is pro-
posed to find a quantizer and a controller for LQG systems. In principle, this iterative
method converges in the special case of open-loop encoder systems. However, such
a convergence is likely to happen at a local optimum. Besides, as mentioned in that
work, this iterative method does not necessarily converge for the general case with
partial side information. In summary, all these results point to the fact that finding
the optimal quantizers is an intractable, still unsolved, problem.

One of the key motivations for this work is to revisit this decades-old problem
from a new perspective and propose a new formulation where the problem becomes
tractable and scalable. To circumvent the intractability associated with this problem,
we formulate a modified problem by which one selects the optimal quantizer from a
given finite collection of quantizers. This way, our formulation is one of quantizer
scheduling/selection, where the best quantizer at each time instance is selected from
a given finite set. Beyond computational tractability, another motivation for consid-
ering this framework stems from the fact that the optimal quantizer is time varying
(with complex dynamics) and, therefore, physically changing/reconfiguring the quan-
tizer on-the-fly is impractical for several applications (e.g., high-speed robotics). On
the other hand, scheduling a quantizer from a given collection of quantizers is easy,
practically feasible, and highly desirable. Furthermore, this set of quantizers can
be optimized beforehand and could include any number, from a few quantizers to a
large number of quantizers, depending on the scale of the application. Although the
idea of considering a pre-designed set of quantizers is new to the controls commu-
nity, such systems have already been used in signal processing applications [26, 30].
Last, we note that the vast majority of the existing work on quantized LQG systems
is for a single system. The extension of the existing results to multiple systems is
not straightforward. More importantly, the resource allocation problem (e.g., which
system gets how much data rate) is extremely challenging even for a simple commu-
nication system. Our proposed framework, on the other hand, can provide a scalable
formulation to this problem, where the controller synthesis for each system can be
decoupled. The coupling occurs through the quantizer-selection part, where no more
than a single system can select the same quantizer.

In this paper, we restrict ourselves to a single system, and to this end, we consider
a partially observed linear system that can choose from a given set of quantizers to
quantize its measurements (or a function thereof) and transmit the resulting quantized
signal to the controller. The system can schedule different quantizers at different
time instances to meet the need for time-varying quantizer resolution. We further
assume that these quantizers are costly to use, and different quantizers have possibly
different costs of operation. The performance of the system is thus measured by an
expected quadratic cost plus the total cost of using the quantizers. Quantizers with
higher resolution are generally more costly than ones with lower resolution. Therefore,
better control performance can be achieved at the expense of a higher quantization
cost. This way, our framework provides a control-quantization tradeoff, where the
selection of the quantizers is not only dependent on the system's control objective but
also depends on the incurred quantization cost.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2684 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

In existing works (e.g., LQG optimal control [5, 34, 20], stability of systems
[38, 28, 11, 7, 13, 16, 21], state estimation [37, 9, 12, 19], and Markov sources [42, 6,
15, 39]), the importance of quantization has been discussed and analyzed. However,
for a given control objective, how to select and schedule from a set of available quan-
tizers, which have a cost associated with them, has not been addressed. To the best
of our knowledge, [25] is the first work where a joint optimization framework is con-
sidered to synthesize an optimal controller and schedule the optimal quantizers from
a given set of costly quantizers. That work considered a fully observed linear system
and considered two information structures for scheduling the quantizers, namely, the
perfect-measurement based and the quantized measurement based quantizer-selection
policies. In this work, we adopt the quantized measurement based quantizer-selection
policy for partially observed linear systems with noisy sensors. Moreover, we con-
sider quantizer-specific time-varying delays and analyze the effects of these delays in
control performance. It is to be noted that while some existing works may have also
considered delays, such delays, however, are either time invariant and independent of
the quantizers or they do not introduce out-of-order packet arrivals. While keeping
the relationship between the delay and the quantizer to be generic in our analysis,
we also discuss the special case where the delay is proportional to the number of bits
produced by the quantizers. That is, a coarsely quantized message is less delayed
than a finely quantized one. Therefore, the question of quality-versus-freshness of
data is naturally integrated within the proposed framework. Age-of-Information is an
emerging topic in communication and information theory, where the freshness of the
data is of paramount interest. We are able to couple measurement quality and fresh-
ness in the context of an LQG cost function and, more importantly, the formulated
optimization problem helps in trading-off freshness-versus-quality through the choice
of the quantizers. This inherently makes the problem difficult since the experienced
delay is a function of the quantizer-selection process and this coupling makes the
problem more complicated than the standard scenario where the delay is constant or
not affected by the choice of the quantizer. The optimal quantizer scheduling in our
case may result in an out-of-order delivery of the quantized signals to the controller,
an effect that is quantified and rigorously incorporated into our analysis. Therefore,
the control performance is affected by the selection of quantizers not only through
the coarseness of the received messages, but also through their freshness. This delay
and out-of-order delivery, along with the lack of perfect state measurements, require
a different mathematical approach than that of [25].

Contributions. In contrast to the majority of existing works that consider in-
finite horizon problems and study the asymptotic behavior of the system, we fo-
cus on studying the joint quantizer-selection and controller design problem over a
finite horizon. We show that quantizing the innovation signal separates the con-
troller synthesis problem from the quantizer-selection problem, similarly to the case
of predictive quantization. While the idea of innovation-quantization was originally
proposed in [5] for a fully observed system with a deterministic initial state and
later on used for the quantizer-selection problem in [25], in this work, we extend the
innovation-quantization idea for partially observed systems with noisy measurements
and uncertain initial states. Furthermore, we explicitly consider the quantizer in-
duced time-varying delays in the arrival of the measurements at the controller. We
study the optimal controller and show that the controller is of a certainty-equivalence
type where the control gains can be computed offline and they do not depend on the
parameters of the quantizers. The analysis of the quantizer-selection problem reveals
that the optimal strategy for the selection of the quantizers can also be computed
offline by solving a linear program. The objective function of the linear program

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

3/
23

 to
 1

28
.6

1.
50

.1
83

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



QUANTIZED OUTPUT FEEDBACK LQG 2685

encapsulates the tradeoff between coarser-but-faster measurement availability versus
finer-but-delayed measurement availability. Furthermore, this tradeoff is coupled with
the control cost function.

The rest of the paper is organized as follows: in section 2 we discuss some back-
ground on random variables; in section 3 we formally define the problem addressed in
this paper; section 4 provides the structure of the optimal controller and the quantizer-
selection scheme. Finally, we conclude the paper in section 7.

2. Preliminaries. In this section we provide some background on random vari-
ables. In particular, Lemmas 2.1 and 2.2 will be used in our later derivations.

Define the probability space (\Omega ,\sansF ,\sansP ), where \Omega is the sample space, \sansF is the
set of events, and the measure \sansP : \sansF \rightarrow [0,1] defines the probability of an event
occurring. In this probability space, X : \Omega \rightarrow \scrX is a random variable defined as a
measurable function from the sample space \Omega to a measurable space \scrX , such that for
any measurable set S \subseteq \scrX , X - 1(S) = \{ \omega \in \Omega : X(\omega ) \in S\} \in \sansF . \sansE [X] denotes the
expected value of X with respect to \sansP , defined as \sansE [X] =

\int 
\Omega 
X(\omega )d\sansP (\omega ).

Let us define the space \scrH of real-valued (\scrX = R) random variables X : \Omega \rightarrow R
such that \scrH = \{ X| \sansE [X2] < \infty \} . For X,Y \in \scrH , \alpha X + \beta Y \in \scrH for all \alpha ,\beta \in R. The
inner product in \scrH is defined by \langle X,Y \rangle = \sansE [XY ].

Fact 1 [24, section 4.2]: \scrH is a Hilbert space.
Let X1, . . . ,X\ell be a collection of \ell random variables belonging to \scrH . The \sigma -field

generated by these random variables is denoted by \sigma (X1, . . . ,X\ell ), and the linear span
of these random variables is denoted by \scrL (X1, . . . ,X\ell ) \triangleq \{ Y | Y =

\sum \ell 
i=1 ciXi, ci \in R\} .

The function g(X1, . . . , X\ell ) :R\ell \rightarrow R is a measurable function of the random variables
X1, . . . ,X\ell if g - 1(S) \in \sigma (X1, . . . ,X\ell ) for all measurable S \subseteq R. Let \scrG denote the set
of all such measurable functions g(X1, . . . ,X\ell ).

The following lemma is adapted from [31, Theorem 3.6].

Lemma 2.1. For any random variable Y , the solution to the optimization problem

inf
g\in \scrG 

\sansE [(Y  - g)2]

is g\ast (X1, . . . ,X\ell ) = \sansE [Y | X1, . . . ,X\ell ].

The following lemma, presented without proof, states that in the case of Gaussian
random variables the conditional expectation can be represented as an affine combi-
nation of X1, . . . ,X\ell .

Lemma 2.2 (see [10, Chapter 11]). Let Y,X1, . . . ,X\ell be jointly Gaussian random
variables. Then, there exists c0, . . . , c\ell \in R such that

\sansE [Y | X1, . . . ,X\ell ] = c0 +
\ell \sum 

i=1

ciXi \in \scrL (1,X1, . . . ,X\ell ).

The study in [1] provides necessary and sufficient conditions for the conditional
expectation \sansE [Y | X1, . . . ,X\ell ] to be a linear function of X1, . . . ,X\ell when the variables
are not jointly Gaussian. The previous definitions and lemmas can be extended to
multidimensional random variables [24, 4, 31, 10].

3. Problem formulation. Let us consider a discrete-time partially observed
linear stochastic system

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2686 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

Fig. 1. Schematic diagram of the system. The top-right gray block contains the quantizer se-
lector that selects the optimal quantizer at each time, and the innovation block that produces the
innovation signals from the measurements. The down-right gray block contains the set of M quan-
tizers whose outputs are sent through the communication channel to the controller.

Xt+1 =AtXt +BtUt +Wt,(3.1)

Yt =CtXt + \nu t,(3.2)

where, for all t \in N0 (= N \cup \{ 0\} ), Xt \in Rn, Ut \in Rm, and Yt \in Rp, At, Bt, and Ct

are matrices of compatible dimensions, \{ Wt\} t\in N0 and \{ \nu t\} t\in N0 are two independent
and identically distributed (i.i.d.) noise sequences in Rn and Rp with statistics W0 \sim 
\scrN (0,\scrW ) and \nu 0 \sim \scrN (0,\scrV ), respectively, and Wk, \nu j are independent for all j, k \in N0.
The initial state, X0, is also a Gaussian random variable distributed according to
\scrN (\mu 0,\Sigma x), and independent of the noises Wt and \nu t for all t \in N0. For notational
convenience, we will write X0 = \mu 0 +W - 1, where W - 1 \sim \scrN (0,\Sigma x). Thus, X0, Wk,
W\ell , \nu i, and \nu j are independent random variables for all k, \ell , i, j = 0,1, . . ., such that
k \not = \ell and i \not = j. In what follows, we will consider At,Bt, and Ct to be time invariant
in order to maintain notational brevity.

In this work, we address the quantized output feedback LQG optimal control
problem defined as follows. Referring to Figure 1, we assume that M quantizers are
provided to quantize the measurement Yt and transmit the quantized output to the
controller. The range of the ith quantizer is denoted by \scrQ i = \{ qi1, qi2, \cdot \cdot \cdot , qi\ell i\} , where
each qij is a symbol. Thus, the ith quantizer has \ell i quantization levels. Without any
loss of generality, we assume that \ell 1 \leq \cdot \cdot \cdot \leq \ell M . Associated with the ith quantizer, let
\scrP i = \{ \scrP i

1,\scrP i
2, \cdot \cdot \cdot ,\scrP i

\ell i
\} denote a partition of Rp such that \scrP i

j gets mapped to symbol
qij for each j \in \{ 1,2, \cdot \cdot \cdot , \ell i\} . Specifically, one may think of the ith quantizer as a
mapping gi :Rp \rightarrow \scrQ i such that gi(y) = qij if and only if y \in \scrP i

j .
The quantized measurements are transmitted through a communication chan-

nel that has a finite data-rate. Consequently, some quantized measurements may
need more than one time step to complete the sensor-to-controller transmission and
the decoding at the controller's site [2] and, hence, the availability of that measure-
ment to the controller will be delayed. Furthermore, quantized signals of different
lengths may experience different amounts of delay and, hence, out-of-order measure-
ment availability is inevitable [18]. In this work, we do not adhere to any particular
model for characterizing this delay, rather, we simply consider the case where a quan-
tized signal with a larger number of bits may experience a longer delay before it is
available to the controller. That is, the delay di associated with the ith quantizer is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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QUANTIZED OUTPUT FEEDBACK LQG 2687

nondecreasing with i, i.e., d1 \leq d2 \leq \cdot \cdot \cdot \leq dM . The number of quantization levels \ell i
generally captures the resolution of the quantization, i.e., a higher \ell i typically means a
better resolution and lesser quantization error, but, at the same time, it induces longer
delay di. Therefore, this work will also reveal the tradeoff between choosing a coarser
but faster quantization service versus a finer but delayed service. In fact, we will see
later on that, for a finite-horizon optimal control problem, different resolution-delay
(finer-delayed versus coarser-faster) characteristics are preferred at different times.

Associated with each quantizer there is an operating cost that must be paid
in order to use this quantizer. Let \lambda (\scrQ i) = \lambda i \in R+ denote the cost associated
with using the ith quantizer. This cost may also include communication cost or
computation/data-processing cost or both. For example, \lambda i \propto log2 \ell i represents the
case where the cost is proportional to the code-length of the encoded quantizer out-
put. This cost may also be related to the delay di associated with the quantizer.
Furthermore, this cost may also be time varying to regulate the system's quantizer
preference with the time-varying availability of the communication resources. Simi-
larly, \lambda i \propto \phi (\scrP i) represents a cost that is proportional to the average complexity of
encoding an input to its right symbol qij and decoding it at the controller (\phi (\cdot ) denotes
the encoding and decoding computation complexity). In this work, we do not adhere
to any specific structure for \lambda . We just assume that the values of \lambda i's are given to us
a priori. This cost can be appropriately designed depending on the applications.

Note that, in contrast to previous works [37, 13], we do not aim at designing
a quantization scheme; rather, a set of quantizers is already given by some service
provider. For a given horizon [0, T ], our objective is to find the optimal schedule for
the quantizers. Also, we will assume that the costs \lambda i are determined by the service
provider and presented to us a priori. Designing such costs in order to regulate the
use of the quantizers is an equally interesting problem for the service provider that
will be addressed elsewhere. We will further assume that the communication channel
between each quantizer and the controller always transmits the quantized information
without any distortion.

The objective is to minimize a performance index that takes into account the
quantization cost. Contrary to some of the existing literature on the quantization-
based LQG problem [5, 33, 34, 35, 36, 22], in our case there are two decision mak-
ers instead of a single one: One decision maker (the controller) decides the input
(\{ Ut\} t\in N0

) to apply to the system, and the other decision maker (the quantizer selec-
tor) decides the quality and delay of the measurements (quantized state values) which
are transmitted to the controller. To that end, we introduce a new decision variable
\theta it for the quantizer selector in the following way:

\theta it =

\Biggl\{ 
1, ith quantizer is used at time t,

0, otherwise.

Let us denote the vector \theta t \triangleq [\theta 1t , \theta 
2
t , . . . , \theta 

M
t ]\sansT \in \{ 0,1\} M , that characterizes the decision

of the quantizer selector at time t. We enforce the quantizer selector to select exactly
one quantizer at any time instance and, hence for all t\in N0, we have

M\sum 
i=1

\theta it = 1.(3.3)

The decoded measurement(s) available to the controller at time t is denoted as
\^Ot. Note that \^Ot may contain delayed quantized measurements; also, several mea-
surements may be made available simultaneously at the controller. The delay and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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0 1 2 3 4 5 6 7
\^O0 = \emptyset 

\^O1 = \emptyset 

\^O2 = \{ \^Y1\} 
\^O3 = \{ \^Y0, \^Y2\} 

\^O4 = \emptyset 

\^Y0\^Y1
\^Y2

Fig. 2. Out-of-order measurement availability at the controller when the second quantizer (with
delay 3) is selected at times t = 0,3,4 and the first quantizer (with delay 1) is selected at other

time instances. The new decoded measurements available at time t at the controller is \^Ot, i.e.,
\^O0 = \^O1 = \emptyset , \^O2 = \{ \^Y1\} , \^O2 = \{ \^Y0, \^Y2\} , and so on. In this example, \^Y1 is available before \^Y0 and \^Y5

is available before \^Y4.

out-of-order arrival are time varying and dependent on the choice of the \theta i's. There-
fore, the \theta i's not only affect the coarseness of the quantization process, but also affect
the delays in the measurement arrivals. For example, as shown in Figure 2, if there
are two quantizers with d1 = 1 and d2 = 3, and if the second quantizer is selected
at time 0 followed by the selection of the first quantizer at times t = 1,2, then no
decoded measurements are available at times t= 0,1, i.e., \^O0 = \^O1 = \emptyset . The decoded
information about Y1, denoted as \^Y1, is available at time t = 2, i.e., \^O2 = \{ \^Y1\} , and
the decoded information about Y0 and Y2 are available simultaneously at time t= 3,
i.e., \^O3 = \{ \^Y0, \^Y2\} . Thus, \^Ot is a function of \{ \theta 0, . . . , \theta t\} (to be precise, \^Ot is only a
function of \{ \theta t - di : i = 1, . . . ,M, t  - di \geq 0\} ). A detailed description of \^Ot will be
provided later in section 4.2.

To streamline the discussion, we introduce the following sets at time t: \scrY t \triangleq 
\{ Y0, Y1, . . . , Yt\} is the measurement history set, \^\scrO t \triangleq \{ \^O0, \^O1, \cdot \cdot \cdot , \^Ot\} is the set of the
quantized measurement history at the controller, \scrU t \triangleq \{ U0,U1, \cdot \cdot \cdot ,Ut\} is the control
history set, and \Theta t \triangleq \{ \theta 0, \theta 1, \cdot \cdot \cdot , \theta t\} is the quantization-selection history set.

The information available to the controller at time t is Ict = \{ \^\scrO t,\scrU t - 1\} = Ict - 1 \cup 
\{ \^Ot,Ut - 1\} , where Ic0 = \{ \^O0\} . It should be noted that Ict depends on \Theta t through \^\scrO t.
In classical optimal LQG control, the information available to the controller is not
decided by any active decision maker, unlike the situation here. An admissible control
strategy at time t is a measurable function from the Borel \sigma -field generated by Ict to
Rm. Let us denote such strategies by \gamma u

t (\cdot ) and the space they belong to by \Gamma u
t .

On the other hand, the information available to the quantizer selector at time t is
Iqt = \{ \scrY t, \^\scrO t - 1,\scrU t - 1,\Theta t - 1\} = Iqt - 1 \cup \{ Yt, \^Ot - 1,Ut - 1, \theta t - 1\} , where Iq0 = \{ Y0\} . We will

use the information \{ \^\scrO t - 1,\Theta t - 1\} \triangleq \=I
q
t \subset Iqt to schedule a quantizer at time t. Further-

more, we will quantize the innovation signal \xi t = Yt - \sansE [Yt| Y0, . . . , Yt - 1] at time t and
send the quantized version to the controller. It should be noted that the proposed
structure is suboptimal.1 However, we impose this structure to make the problem
tractable and obtain a solution that is computationally inexpensive. Otherwise, the
general problem is intractable even for simple cases; for example, see [12, 8, 19, 32]
and the references therein. Quantizing the innovation signal not only makes the prob-
lem tractable, but also allows us to show that a separation principle between control
and quantizer-selection is retained. The existence of such a separation principle has
been noted in earlier works as well; for example, see [5, 3, 35, 40, 41]. It is well
known [17] that the information contained in the innovation signals \{ \xi 0, . . . , \xi t\} is the

1It can be shown (see [40], for example) that a predictive coding structure, i.e., quantizing\sum t
k=0\Psi (t, k)\xi k maintains optimality. The fixed matrices \Psi (t, k) are derived later in (4.8). However,

the problem becomes highly complex and intractable due to the presence of past signals \xi 0, . . . , \xi t - 1

when considering a predictive quantization scheme.
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QUANTIZED OUTPUT FEEDBACK LQG 2689

same as the information contained in the observations \{ Y0, . . . , Yt\} . Therefore, design-
ing an output-feedback controller is equivalent to designing an innovation-feedback
controller. However, after quantization, the information contained in the quantized
innovations is not necessarily the same as the information contained in the quantized
outputs, and that is precisely why, in general, it cannot be claimed that the perfor-
mance of the optimal output-quantized feedback controller will be the same as that
of the optimal innovation-quantized feedback.

The admissible strategies for the selection of the quantizers are measurable func-
tions from the Borel \sigma -field generated by \=I

q
t to \{ 0,1\} M and satisfying (3.3). Let us

denote such strategies by \gamma \theta 
t (\cdot ), and the space they belong to by \Gamma \theta 

t . Thus, the entire
quantization process is characterized by the following two equations:

\xi t =Yt  - \sansE [Yt| Y0, . . . , Yt - 1],(3.4a)

\theta t =\gamma \theta 
t (
\=I
q
t ).(3.4b)

For brevity, we will often use \gamma u
t instead of \gamma u

t (\cdot ) or \gamma u
t (I

c
t), and \gamma \theta 

t in place of \gamma \theta 
t (\cdot )

or \gamma \theta 
t (
\=I
q
t ). Let \gamma 

\Theta denote the entire sequence \{ \gamma \theta 
0 , \gamma 

\theta 
1 , . . . , \gamma 

\theta 
T - 1\} and let \Gamma \Theta denote the

space \gamma \Theta belongs to. Likewise, \gamma \scrU and \Gamma \scrU are defined similarly. Let us also define
Ic = \{ Ict\} T - 1

t=0 and Iq = \{ Iqt\} T - 1
t=0 . The cost function to be minimized cooperatively

by the quantizer selector and the controller is a finite horizon expected quadratic
criterion, given as

J(\scrU T - 1,\Theta T - 1) = \sansE 

\Biggl[ 
T - 1\sum 
t=0

(X\sansT 

tQ1Xt +U \sansT 

t RUt + \theta \sansT 

t\Lambda )+X\sansT 

TQ2XT

\Biggr] 
,(3.5)

where \Lambda = [\lambda 1, \lambda 2, . . . , \lambda M ]\sansT is the cost for quantization, Q1,Q2 \succeq 0, R \succ 0, \scrU =
\gamma \scrU (Ic) = \{ \gamma u

0 (I
c
0), \gamma 

u
1 (I

c
1), . . . , \gamma 

u
T - 1(I

c
T - 1)\} and \Theta = \gamma \Theta (\=I

q
) = \{ \gamma \theta 

0(
\=I
q
0), \gamma 

\theta 
1(
\=I
q
1), . . . ,

\gamma \theta 
T - 1(

\=I
q
T - 1)\} . For convenience, we will use the notation \scrU for \scrU T - 1 and, likewise, we

will use \Theta for \Theta T - 1. We seek to find the optimal strategies \gamma \scrU \ast = \{ \gamma u\ast 
0 , \gamma u\ast 

1 , . . . , \gamma u\ast 
T - 1\} 

and \gamma \Theta \ast = \{ \gamma \theta \ast 
0 , \gamma \theta \ast 

1 , . . . , \gamma \theta \ast 
T - 1\} that minimize (3.5). We will also rewrite (3.5) in terms

of \gamma \scrU and \gamma \Theta as

J(\gamma \scrU , \gamma \Theta ) = \sansE 

\Biggl[ 
T - 1\sum 
t=0

(X\sansT 

tQ1Xt +U \sansT 

t RUt + \theta \sansT 

t\Lambda )+X\sansT 

TQ2XT

| Ut = \gamma u
t (I

c
t), \theta t = \gamma \theta 

t (
\=I
q
t )
\bigr] 
.(3.6)

4. Optimal control and quantization selection. In this section we find the
optimal \gamma \scrU \ast and \gamma \Theta \ast that minimize the cost function (3.6) amongst all admissible
strategies, that is,

(\gamma \scrU \ast , \gamma \Theta \ast ) = argmin
\gamma \scrU \in \Gamma \scrU ,\gamma \Theta \in \Gamma \Theta 

J(\gamma \scrU , \gamma \Theta ).(4.1)

Before proceeding further to solve (4.1), let us discuss, in some detail, the input
for the quantization process (i.e., the innovation signal) since it will play a crucial role
in the following analysis.

4.1. The innovation process. The control Ut is a function of the quantized
innovations which are not Gaussian random variables. Therefore, the state Xt and the
measurement Yt are no longer Gaussian random variables under quantized innovation
feedback. Although the innovation signal is a Gaussian random variable for partially
observed classical LQG systems without quantization, in our case, this may no longer

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2690 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

be true since the control is a function of quantized signals (which are not Gaussian
random variables). We therefore need to independently verify whether the distribution
of the innovation signal is Gaussian or not.

It can be verified that the innovation \xi t is not affected by the control strategy,
although, Yt is affected. Furthermore, the innovation \xi t retains its Gaussian distribu-
tion and the parameters of this distribution can be computed offline. This observation
is presented in the following proposition.

Proposition 4.1. For all t, \xi t is a Gaussian random variable with zero mean
and covariance Mt such that

Mt+1 =C\Sigma t+1| tC
\sansT + \scrV ,

\Sigma t+1| t =A\Sigma tA
\sansT +\scrW , \Sigma 0|  - 1 =\Sigma x,

\Sigma t+1 =\Sigma t+1| t  - \Sigma t+1| tC
\sansT M - 1

t+1C\Sigma t+1| t.

Moreover, the sequence of random variables \{ \xi 0, . . . , \xi t\} is uncorrelated for all t.

Proof. The proof is presented in Appendix A.

Proposition 4.1 is equivalent of the following facts:
1. The innovation sequence \{ \xi t\} t\in N0 does not depend on the control history

\scrU t - 1.
2. The innovation sequence is a Gaussian uncorrelated noise sequence with zero

mean and covariance Mt.
3. Since the sequence of random variables \{ \xi t\} t\in N0

is uncorrelated and Gaussian,
each \xi t and \xi k is independent for all k \not = t.

4.2. Implications of delay. Let gi(\xi t) \in \scrQ i denote the quantized version of \xi t
if the ith quantizer is selected. Notice that gi(\xi t) \in \scrQ i is a random variable. The
quantized information sent to the controller is

\^\xi t =
M\sum 
i=1

gi(\xi t)\theta 
i
t,(4.2)

and this information will be decoded and available at the controller at time t +\sum M
i=1 \theta 

i
tdi. It is noteworthy that, unlike the infinite horizon problem, the measure-

ments arriving after time T are of no use to the controller for an optimal control
problem defined over the horizon [0, T ]. Therefore, even though a quantization cost
is paid, such delayed information does not help in computing the control input and,
thus, it does not help in reducing the objective cost (3.5). Therefore, the delay must
be appropriately incorporated in the analysis so that the above scenario is avoided.

In addition, since the delays may result in out-of-order availability of the decoded
signal to the controller, it is important that every quantized signal is time stamped,
i.e., when the controller receives a decoded measurement \^q at time t, it should be able
to uniquely determine which of the signals \{ \xi 0, . . . , \xi t\} was quantized to produce this
measurement along with the quantizer that was used. In order to uniquely decode
which of the signals \{ \xi 0, . . . , \xi t\} produced the data \^q, the pair (\^\xi t, i) will be sent
at each time t, where i is the index of the quantizer that was used to quantize \xi t.
Consequently, if the pair (\^q, i) is received by the controller at time t, then the controller
can immediately infer that the ith quantizer was used and that this signal is delayed
by di units and, hence, \^q corresponds to \xi t - di . Thus, (\^q, i) reveals that \theta 

i
t - di

= 1 and
\^q = gi(\xi t - di). At any time t, there can be at most M (delayed) new simultaneously
available decoded measurements. We define the set of indexes present in \^Ot by
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QUANTIZED OUTPUT FEEDBACK LQG 2691

idxt = \{ i : \exists q \in Rp s.t. (q, i) \in \^Ot\} \subseteq \{ 1, . . . ,M\} .

Therefore, \theta it - di
= 1 if i \in idxt, otherwise \theta it - di

= 0. It follows that the new
decoded measurements available to the controller at time t can be expressed as

\{ \theta 1t - d1
, . . . , \theta Mt - dM

\} \cup \{ \^\xi t - di
: i\in idxt\} .

With a slight abuse of notation, the above set is equivalent to:\Bigl\{ 
\theta 1t - d1

, . . . , \theta Mt - dM
, \theta 1t - d1

\^\xi t - d1
, . . . , \theta Mt - dM

\^\xi t - dM

\Bigr\} 
.

Notice that there is a bijective relationship between \^Ot and the set \{ \theta 1t - d1
, . . . , \theta Mt - dM

,

\theta 1t - d1

\^\xi t - d1 , . . . , \theta 
M
t - dM

\^\xi t - dM
\} . Therefore, for notational brevity, we will simply write

\^Ot =
\Bigl\{ 
\theta 1t - d1

, . . . , \theta Mt - dM
, \theta 1t - d1

\^\xi t - d1
, . . . , \theta Mt - dM

\^\xi t - dM

\Bigr\} 
.(4.3)

Having characterized the effects of delays in the information available to the controller,
we next discuss the optimal controller that minimizes cost (3.6).

4.3. Optimal control policy. Let us define the innovation history by \Xi t \triangleq 
\{ \xi 0, . . . , \xi t\} . With a slight abuse of notation, we also denote \Xi t = \sigma (\xi 0, . . . , \xi t) to be
the \sigma -field generated by these innovation signals. We then define the state estimate
by

\=Xt \triangleq \sansE [Xt| Ict ].(4.4)

Recall from section 3 that \^\scrO t = \{ \^O0, \^O1, . . . , \^Ot\} . Based on (4.3), the set \^\scrO t can
now be expressed as \^\scrO t = \{ \vargamma 0,t

\^\xi 0, \vargamma 1,t
\^\xi 1, . . . , \vargamma t,t

\^\xi t\} \cup t
k=0 \{ \theta ik - di

: i = 1, . . . ,M,k \geq 
di\} , where \vargamma k,t, as expressed below, is an indicator of whether \^\xi k is available to the
controller by time instant t or not:

\vargamma k,t =
M\sum 
i=0

\theta ik1di\leq t - k.(4.5)

Clearly, if t - k \geq dM for some k, then the above expression for \vargamma k,t becomes \vargamma k,t =\sum M
i=0 \theta 

i
k = 1 ensuring that the quantized version of \xi k is present at the controller.

Similarly to \^\scrO t, let us define the set \scrO t = \{ \vargamma 0,t\xi 0, \vargamma 1,t\xi 1, . . . , \vargamma t,t\xi t\} \cup t
k=0 \{ \theta ik - di

:
i= 1, . . . ,M,k \geq di\} , which contains the innovation signals whose quantized versions
are included in \^\scrO t. Similarly to \^\scrO t, the set \scrO t also contains the corresponding indexes
of the quantizers that were used. Due to the construction of \scrO t, \^\scrO t does not contain
any new information when \scrO t is given. Therefore, we have

\=Xt = \sansE [Xt| Ict ] = \sansE [Xt| \^\scrO t,\scrU t - 1] = \sansE [\sansE [Xt| \scrO t, \^\scrO t,\scrU t - 1]| \^\scrO t,\scrU t - 1]

= \sansE [\sansE [Xt| \scrO t,\scrU t - 1]| \^\scrO t,\scrU t - 1].
(4.6)

In order to compute \=Xt, we compute \sansE [Xt| \scrO t,\scrU t - 1] which is inside the outer expec-
tation of the last equation.

Lemma 4.1. For any t,

\sansE [Xt| \scrO t,\scrU t - 1] =At\mu 0 +
t\sum 

k=0

\Psi (t, k)\vargamma k,t\xi k +
t - 1\sum 
k=0

At - 1 - kBUk,(4.7)

and, for all t\geq k, the matrices \Psi (t, k) are given by

\Psi (t, k) =At - k\Sigma k| k - 1C
\sansT M - 1

k .(4.8)
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2692 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

Proof. The proof is given in Appendix B.

Therefore, using Lemma 4.1 we obtain from (4.6) that

\=Xt =\sansE [\sansE [Xt| \scrO t,\scrU t - 1]| \^\scrO t,\scrU t - 1]

=At\mu 0 +
t\sum 

k=0

\Psi (t, k)\vargamma k,t\sansE [\xi k | \^\scrO t] +
t - 1\sum 
k=0

At - 1 - kBUk,
(4.9)

where we have used the fact that Ut is a measurable function of Ict = \{ \^\scrO t,\scrU t - 1\} and,
hence, given \^\scrO t, the control history \scrU t - 1 does not provide any new information about
\xi k, i.e., \sansE [\xi k | \^\scrO t,\scrU t - 1] = \sansE [\xi k | \^\scrO t]. Next, we focus on computing \sansE [\xi k | \^\scrO t]. To that
end, let us define \=\xi it \triangleq \sansE [\xi t| \^\xi t, \theta it = 1]. Based on (3.3) and (4.2), we may write

\=\xi it = \sansE [\xi t| gi(\xi t), \theta it = 1] =

\ell i\sum 
j=1

1gi(\xi t)=qij
\sansE [\xi t| gi(\xi t) = qij , \theta 

i
t = 1]

=

\ell i\sum 
j=1

1gi(\xi t)=qij
\sansE [\xi t| \xi t \in \scrP i

j ] =

\ell i\sum 
j=1

1gi(\xi t)=qij

\int 
\scrP i

j

\xi \sansP t(d\xi | \scrP i
j),

where 1a=b is an indicator function that is equal to 1 if and only if a = b, oth-
erwise it equals 0. Therefore, \=\xi it is a random variable taking values in the set
\{ 
\int 
\scrP i

j
\xi \sansP t(d\xi | \scrP i

j) : j = 1, . . . , \ell i\} and it depends on the realization of \xi t through

1gi(\xi t)=qij
. Using Proposition 4.1, one may compute \sansP t(d\xi | \scrP i

j) as follows:

\sansP t(d\xi | \scrP i
j) =

\Biggl\{ 
\alpha te

 - \xi \sansT M - 1
t \xi /2d\xi , \xi \in \scrP i

j ,

0, otherwise,

(\alpha t)
 - 1 =

\sqrt{} 
(2\pi )p det(Mt)\sansP (\xi t \in \scrP i

j) =

\int 
\scrP i

j

e - \xi \sansT M - 1
t \xi /2d\xi .

Furthermore, from Proposition 4.1, we have that \xi t \sim \scrN (0,Mt). Since Mt can be
computed offline, the prior distribution of \xi t is known to the controller. After receiving
the quantized value \^\xi t, the controller updates the distribution of \xi t. If the quantized
value of \xi t, after being quantized by the ith quantizer, is \^\xi t = qij , then the controller
can infer that \xi t \in \scrP i

j . This is illustrated in Figure 3.

\underbrace{}  \underbrace{}  
\scrP i

2

\underbrace{}  \underbrace{}  
\scrP i

3

\underbrace{}  \underbrace{}  
\scrP i

1

Fig. 3. Left: The blue curve denotes the prior distribution \sansP t(d\xi ). The partitions \scrP i
j for the

ith quantizer are also shown, where \scrP i
2 is highlighted with the orange block. Right: The posterior

distribution \sansP t(d\xi | \scrP i
2) of \xi t is shown for the case when the received quantized measurement \^\xi t is qi2,

equivalently, \xi t \in \scrP i
2.
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QUANTIZED OUTPUT FEEDBACK LQG 2693

The entity \=\xi it is the expected value of \xi t given that the ith quantizer was used in
the process of quantization and the quantized value is \^\xi t \in \scrQ i. We further define

\=\xi t \triangleq \sansE [\xi t| \^\xi t, \theta t] =
M\sum 
i=1

\theta it
\=\xi it(4.10)

and

\~\xi t \triangleq \xi t  - \=\xi t.(4.11)

From this definition of \=\xi t, along with the constraint
\sum M

i=1 \theta 
i
t = 1, we have that \=\xi t = \=\xi it

if and only if the ith quantizer was selected at time t. The conditional covariance
\scrM t(\theta t)\triangleq \sansE [\~\xi t \~\xi 

\sansT 
t | \theta t] turns out to be

\scrM t(\theta t) =\sansE 
\bigl[ 
\xi t\xi 

\sansT 

t  - \xi t \=\xi 
\sansT 

t  - \=\xi t\xi 
\sansT 

t +
\=\xi t \=\xi 

\sansT 

t | \theta t
\bigr] 

=\sansE [\xi t\xi 
\sansT 

t | \theta t] - \sansE [\=\xi t \=\xi 
\sansT 

t | \theta t] = \sansE [\xi t\xi 
\sansT 

t | \theta t] - \sansE [\=\xi t \=\xi 
\sansT 

t | \theta t],(4.12)

where we have used the fact that \sansE [\xi t \=\xi 
\sansT 
t | \theta t] = \sansE [\sansE [\xi t \=\xi 

\sansT 
t | \^\xi t, \theta t] | \theta t] = \sansE [\sansE [\xi t| \^\xi t, \theta t]\=\xi \sansT 

t | 
\theta t] = \sansE [\=\xi t \=\xi 

\sansT 
t | \theta t]. By defining Ft(\theta t)\triangleq \sansE [\=\xi t \=\xi 

\sansT 
t | \theta t] and using the expression of \=\xi t from

(4.10), we obtain

Ft(\theta t) = \sansE [\=\xi t \=\xi 
\sansT 

t | \theta t] =
M\sum 
i=1

\theta it\sansE [
\=\xi it
\=\xi i

\sansT 

t ] =
M\sum 
i=1

\theta itF
i
t ,(4.13)

where

F i
t = \sansE [\=\xi it

\=\xi i
\sansT 

t ] =

\ell i\sum 
j=1

\sansP (\xi t \in \scrP i
j)\sansE [\xi t| \xi t \in \scrP i

j ]\sansE [\xi t| \xi t \in \scrP i
j ]

\sansT .(4.14)

Therefore, using the definition of Ft(\theta t), we may rewrite (4.12) as \scrM t(\theta t) = \sansE [\xi t\xi 
\sansT 
t | 

\theta t] - Ft(\theta t) and, furthermore, we also obtain \sansE [\scrM t(\theta t)] =Mt  - \sansE [Ft(\theta t)]. The linear
dependence of Ft(\theta t) on \theta t will be useful in designing a linear program for selecting
the optimal quantizers, as shown later in the paper.

At this point, recall from Proposition 4.1 and the discussion thereafter that
\{ \xi t\} t\in N0

is a sequence of uncorrelated zero-mean Gaussian noises (hence, \xi k, \xi \ell are
independent for k \not = \ell ) and \{ \^\xi t\} t\in N0 is the corresponding sequence of the quantized
version of \{ \xi t\} t\in N0 . Therefore, \xi k and \^\xi \ell are independent for all k \not = \ell . Hence,

\sansE [\xi k| \^\scrO t] =

\Biggl\{ 
\sansE [\xi k| \^\xi k, \theta k] = \=\xi k if \^\xi k \in \^\scrO t,

\sansE [\xi k] = 0 otherwise,
(4.15)

where we have used the definition of \=\xi t from (4.10). From this observation, and using
Lemma 4.1, the expression of \=Xt is computed in the following lemma.

Lemma 4.2. For any t, \=Xt = \sansE [Xt| Ict ] is given by

\=Xt =At\mu 0 +
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k +

t - 1\sum 
k=0

At - 1 - kBUk.(4.16)

Proof. Notice that, from (4.9) we have

\sansE [Xt| Ict ] =At\mu 0 +
t\sum 

k=0

\Psi (t, k)\vargamma k,t\sansE [\xi k| \^\scrO t] +
t - 1\sum 
k=0

At - 1 - kBUk.

The lemma follows immediately after we substitute the expression for \sansE [\xi k| \^\scrO t] from
(4.15) into the last equation and noting that \vargamma k,t = 1 if \^\xi k \in \^\scrO t and zero otherwise.
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2694 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

Define the error et \triangleq Xt  - \=Xt. It follows from (4.16) that

et =AtX0 +
t - 1\sum 
k=0

At - k - 1Wk  - At\mu 0  - 
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k.

Notice that et does not depend on the control strategy \gamma \scrU . However, it does depend
on the quantizer-selection strategy \gamma \Theta through the last term in the above equation.
Furthermore, for all t, \sansE [et] = 0 since \sansE [ \=Xt] = \sansE [Xt] due to the law of total expectation.

At this point, we are ready to return to the cost function (3.6) and find the
optimal controller and the optimal quantizer-selection policies.

Associated with the cost function (3.6), let us define the value function as follows:

Vk(Ik) = min
\{ \gamma u

t \} T - 1
t=k ,\{ \gamma \theta 

t \} 
T - 1
t=k

\sansE \gamma 

\Biggl[ 
T - 1\sum 
t=k

(X\sansT 

tQ1Xt+U \sansT 

t RUt+\theta \sansT 

t\Lambda )+X\sansT 

TQ2XT | Ik

\Biggr] 
,(4.17a)

VT (IT ) = \sansE \gamma [X
\sansT 

TQ2XT | IT ],(4.17b)

where the information set Ik = \{ Ick, \=I
q
k\} and \sansE \gamma [\cdot ] denotes the expectation under the

strategy pair \gamma = (\gamma \scrU , \gamma \Theta ). In the subsequent analysis, we will suppress the argument
of Vk and the condition on Ik in the expectation of (4.17) to maintain brevity. Using
the dynamic programming principle,

Vk = min
\gamma u
k\in \Gamma u

k ,\gamma 
\theta 
k\in \Gamma \theta 

k

\sansE \gamma 

\Bigl[ 
(X\sansT 

kQ1Xk +U \sansT 

kRUk + \theta \sansT 

k\Lambda )+ Vk+1

\Bigr] 
.(4.18)

If \gamma u\ast 
k and \gamma \theta \ast 

k minimize the right-hand side of (4.18), then the optimal strategies are
U\ast 
k = \gamma u\ast 

k (Ick) and \theta \ast k = \gamma \theta \ast 
k (\=I

q
k). From (4.17), we also have that

min
\gamma \scrU \in \Gamma \scrU ,\gamma \Theta \in \Gamma \Theta 

J(\gamma \scrU , \gamma \Theta ) = \sansE [V0].(4.19)

The following theorem characterizes the optimal policy \gamma u\ast 
k (\cdot ) for all k= 0,1, . . . , T - 1.

Theorem 4.2 (optimal control policy). Given the information Ick to the con-
troller at time k, the optimal control policy \gamma u\ast 

k : Ick \rightarrow Rm that minimizes the right-
hand side of (4.18) has the following structure,

U\ast 
k = \gamma u\ast 

k (Ick) = - Lk
\=Xk,(4.20)

where \=Xk is computed in Lemma 4.2 for all k = 0,1, . . . , T  - 1, and the matrices Lk

and Pk are obtained by

Lk = (R+B\sansT Pk+1B) - 1B\sansT Pk+1A,(4.21a)

Pk =Q1 +A\sansT Pk+1A - L\sansT 

k(R+B\sansT Pk+1B)Lk,(4.21b)

PT =Q2.(4.21c)

Proof. The proof of this theorem is based on the dynamic programming principle.
Specifically, if there exist value functions Vk for all k = 0,1, . . . , T that satisfy (4.18),
then the optimal control U\ast 

k and the optimal quantizer selection \theta \ast k are obtained by
the policies \gamma u\ast 

k and \gamma \theta \ast 
k that minimize (4.18).

Let us assume that the value function at time k= 0,1, . . . , T  - 1 is of the form

Vk = \sansE \gamma [X
\sansT 

kPkXk] +Ck + rk,(4.22)

where Pk is as in (4.21b) and, for all k= 0,1, . . . , T  - 1,
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QUANTIZED OUTPUT FEEDBACK LQG 2695

Ck = min
\{ \gamma \theta 

t \} 
T - 1
t=k

\sansE \gamma \theta 

\Biggl[ 
T - 1\sum 
t=k

e\sansT 

tNtet + \theta \sansT 

t\Lambda 

\Biggr] 
,(4.23)

where Nk \in Rn\times n and rk \in R are given by

Nk =L\sansT 

k(R+B\sansT Pk+1B)Lk,(4.24a)

rk =rk+1 + tr(Pk+1\scrW ),(4.24b)

rT =0.(4.24c)

Equation (4.23) can be rewritten as

Ck =min
\gamma \theta 
k

\sansE \gamma \theta [e\sansT 

kNkek + \theta \sansT 

k\Lambda +Ck+1] , CT = 0.

We first verify that VT - 1 is of the form (4.22)

VT - 1 = min
\gamma u
T - 1,\gamma 

\theta 
T - 1

\sansE \gamma 

\Bigl[ 
X\sansT 

T - 1Q1XT - 1 +U \sansT 

T - 1RUT - 1 + \theta \sansT 

T - 1\Lambda +X\sansT 

TPTXT

\Bigr] 
.(4.25)

Substituting into (4.25) the equation XT = AXT - 1 + BUT - 1 + WT - 1, after some
simplifications, yields

VT - 1 = min
\gamma u
T - 1,\gamma 

\theta 
T - 1

\sansE \gamma 

\Bigl[ 
\| UT - 1+LT - 1XT - 1\| 2(R+B\sansT PTB) + \| XT - 1\| 2PT - 1

+ \theta \sansT 

T - 1\Lambda + tr(PT\scrW )
\Bigr] 
,

where \| L\| 2K \triangleq L\sansT KL for any two matrices L and K of compatible dimensions. In the
previous expression, \| UT - 1+LT - 1XT - 1\| 2(R+B\sansT PTB) is the only term that depends on
UT - 1. Therefore, we seek \gamma u

T - 1 : IcT - 1 \rightarrow Rm that minimizes the mean square error
\sansE 
\bigl[ 
\| UT - 1 + LT - 1XT - 1\| 2(R+B\sansT PTB)

\bigr] 
. Thus, the optimal UT - 1 is a minimum mean

squared estimate of  - LT - 1XT - 1 based on the \sigma -field generated by IcT - 1. Hence,
from Lemma 2.1,

U\ast 
T - 1 = \gamma u\ast 

T - 1(I
c
T - 1) = - LT - 1\sansE [XT - 1| IcT - 1] = - LT - 1

\=XT - 1.(4.26)

After substituting the optimal U\ast 
T - 1 into (4.25), we obtain

VT - 1 = min
\gamma \theta 
T - 1

\sansE \gamma 

\Bigl[ 
\| XT - 1  - \=XT - 1\| 2NT - 1

+ \theta \sansT 

T - 1\Lambda + tr(PT\scrW ) +X\sansT 

T - 1PT - 1XT - 1

\Bigr] 
.

The above expression of VT - 1 can be rewritten as follows:

VT - 1 =min
\gamma \theta 
T - 1

\sansE \gamma \theta 

\bigl[ 
e\sansT 

T - 1NT - 1eT - 1 + \theta \sansT 

T - 1\Lambda 
\bigr] 
+ \sansE 

\bigl[ 
X\sansT 

T - 1PT - 1XT - 1

\bigr] 
+ tr(PT\scrW ).

Therefore, using the definitions of CT - 1 and rT - 1 from (4.23) and (4.24b), we obtain
VT - 1 = \sansE [X\sansT 

T - 1PT - 1XT - 1]+CT - 1+rT - 1. Thus, VT - 1 is of the form (4.22). Next, we
prove the hypothesis (4.22) using mathematical induction. To that end, we assume
that (4.22) is true for some k+ 1. Then,

Vk = min
\gamma u
k ,\gamma \theta 

k

\sansE \gamma 

\Bigl[ 
(X\sansT 

kQ1Xk +U \sansT 

kRUk + \theta \sansT 

k\Lambda )+ Vk+1

\Bigr] 
= min

\gamma u
k ,\gamma \theta 

k

\sansE \gamma 

\Bigl[ 
(X\sansT 

kQ1Xk +U \sansT 

kRUk + \theta \sansT 

k\Lambda )+X\sansT 

k+1Pk+1Xk+1 + rk+1 +Ck+1

\Bigr] 
.
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2696 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

Using (3.1), and after some simplifications, it follows that

Vk = min
\gamma u
k ,\gamma \theta 

k

\sansE \gamma 

\Bigl[ 
\| Uk +LkXk\| 2(R+B\sansT Pk+1B) +X\sansT 

kPkXk + \theta \sansT 

k\Lambda (4.27)

+ tr(Pk+1\scrW ) + rk+1 +Ck+1

\Bigr] 
.

One may notice from the definition of ek that it does not depend on the past control
history \scrU k but, rather, it depends on the quantizer-selection history \Theta k. Thus, Ck

does not depend on the control history \scrU k. Furthermore, from (4.24a), (4.24b), and
(4.21b), one notices thatNk, rk, and Pk do not depend on the past (or future) decisions
on the control or quantizer selection. Therefore, \| Uk+LkXk\| 2(R+B\sansT Pk+1B) is the only
term in the above expression of Vk that depends on Uk. Using Lemma 2.1, the optimal

Ick-measurable control U\ast 
k that minimizes \sansE 

\Bigl[ 
\| Uk +LkXk\| 2(R+B\sansT Pk+1B)

\Bigr] 
is given by

U\ast 
k = \gamma u\ast 

k (Ick) = - Lk\sansE [Xk| Ick] = - Lk
\=Xk.(4.28)

After substituting the optimal control into (4.27) and using (4.24b), we obtain

Vk =\sansE [X\sansT 

kPkXk] +min
\gamma \theta 
k

\sansE \gamma 

\bigl[ 
e\sansT 

k(L
\sansT 

k(R+B\sansT Pk+1B)Lk)ek + \theta \sansT 

k\Lambda +Ck+1

\bigr] 
+ rk

=\sansE [X\sansT 

kPkXk] +min
\gamma \theta 
k

\sansE \gamma \theta 

\bigl[ 
e\sansT 

kNkek + \theta \sansT 

k\Lambda +Ck+1

\bigr] 
+ rk = \sansE [X\sansT 

kPkXk] +Ck + rk.

Thus, the value function is indeed of the form (4.22) and, hence, the optimal control
at time k= 0,1, . . . , T  - 1 is given by (4.28). This completes the proof.

Remark 4.3. From Theorem 4.2, the optimal control is linear in \=Xk. The optimal
gain  - Lk can be computed offline without knowledge of \gamma \Theta \ast . The effect of \gamma \Theta \ast on
\gamma \scrU \ast is through the term \=Xk, which can be computed online using (4.16).

Having computed the optimal controller, we now focus on solving for the optimal
selection of the quantizers. To that end, from (4.19) and (4.22), we obtain

min
\gamma \scrU \in \Gamma \scrU ,\gamma \Theta \in \Gamma \Theta 

J(\gamma \scrU , \gamma \Theta ) = \sansE [V0] = \mu \sansT 

0P0\mu 0 + tr(P0\Sigma x) + r0 + \sansE [C0],

where, from (4.23), C0 can be written as

C0 = min
\{ \gamma \theta 

t \} 
T - 1
t=0

\sansE \gamma \theta 

\Biggl[ 
T - 1\sum 
t=0

e\sansT 

tNtet + \theta \sansT 

t\Lambda 

\Biggr] 
.(4.29)

Notice that the effect of the quantizer-selection policy \gamma \Theta on the cost J(\gamma \scrU , \gamma \Theta ) is
reflected only through the term C0. The optimal quantizer-selection policy can thus
be found by performing the minimization associated with C0 as represented in (4.29).

4.4. Optimal quantizer-selection policy. In this section, we study the opti-
mal quantizer-selection policy \gamma \Theta \ast , which can be found by solving (4.29). We may
write \sansE [e\sansT 

tNtet] = tr(Nt\sansE [ete
\sansT 
t ]), and the following lemma computes \sansE [ete

\sansT 
t ].

Lemma 4.3. For all t\in N0,

\sansE [ete
\sansT 

t ] = \Sigma t+

t\sum 
k=0

\Psi (t, k)(Mk  - \sansE [\vargamma k,tFk(\theta k)])\Psi (t, k)\sansT .
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QUANTIZED OUTPUT FEEDBACK LQG 2697

Proof. The proof is given in Appendix C.

Using Lemma 4.3, the cost C0 can be simplified as

C0 = constant + min
\{ \gamma \theta 

t \} 
T - 1
t=0

\sansE \gamma \theta 

\Biggl[ 
T - 1\sum 
t=0

tr (\Pi t(\Theta )Ft(\theta t)) + \theta \sansT 

t\lambda 

\Biggr] 
,(4.30)

where the constant term is
\sum T - 1

t=0

\bigl( 
tr(\Sigma tNt) +

\sum t
k=0 tr(

\~Nk,tMk)
\bigr) 
and

\~Nk,t =\Psi (t, k)\sansT Nt\Psi (t, k),(4.31a)

\Pi t(\Theta ) = - 
T - 1\sum 
\ell =t

\vargamma t,\ell 
\~Nt,\ell .(4.31b)

The optimal quantizer-selection policy is found by solving the mixed-integer-nonlinear
program in (4.30).

At this point it may appear that the expression
\sum T - 1

t=0 tr(\Pi t(\Theta )Ft(\theta t)) in (4.30)
is a nonlinear function of \Theta . However, we now show that after some simplifications,
it can be written as a linear function of \Theta . By expressing (4.30) as a linear function
of \Theta , we can recast (4.30) as a mixed-integer-linear-program (MILP), which further
can be solved efficiently using existing efficient solvers [23].

To express (4.30) as an MILP, we construct a matrix \Phi \in RT\times M as follows: for
all i= 0, . . . , T  - 1 and j = 1, . . . ,M , let

[\Phi ]ij =

\Biggl\{ 
1 if i\geq dj ,

0 otherwise,
(4.32)

where [\Phi ]ij is the ijth component of the \Phi matrix. It directly follows from the
definition of \Phi that 1dj\leq t - k = [\Phi ]t - k,j . Consequently, we can express (4.5) as

\vargamma k,t =
M\sum 
i=1

\theta ik[\Phi ]t - k,i.

Thus, \Pi t(\Theta ) in (4.31b) can be rewritten as \Pi t(\Theta ) =  - 
\sum T - 1

\ell =t

\sum M
i=1 \theta 

i
t[\Phi ]\ell  - t,i

\~Nt,\ell .

Also, from (4.13), we have that Ft(\theta t) =
\sum M

i=1 \theta 
i
tF

i
t . Thus,

tr(\Pi t(\Theta )Ft(\theta t)) = - tr

\Biggl( 
M\sum 
i=1

\Biggl( 
\theta it

T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) 
Ft(\theta t)

\Biggr) 

= - tr

\left(  \Biggl( M\sum 
i=1

\Biggl( 
\theta it

T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) \Biggr) \left(  M\sum 
j=1

\theta jtF
j
t

\right)  \right)  
(a)
=  - tr

\Biggl( 
M\sum 
i=1

\theta it

\Biggl( 
T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 
= - 

M\sum 
i=1

\theta it\beta 
i
t ,

where \beta i
t = tr((

\sum T - 1
\ell =t [\Phi ]\ell  - t,i

\~Nt,\ell )F
i
t ) and the last equality follows from the fact that

\theta it\theta 
j
t = 0 if i \not = j. Note that the coefficients \beta i

t can be computed offline.
From the previous derivation, C0 in (4.30) becomes

C0 = \alpha + min
\{ \gamma \theta 

t \} 
T - 1
t=0

\sansE \gamma \theta 

\Biggl[ 
T - 1\sum 
t=0

c\sansT t\theta t

\Biggr] 
,(4.33)
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2698 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

where the constants are \alpha =
\sum T - 1

t=0

\bigl( 
tr(\Sigma tNt)+

\sum t
k=0tr(

\~Nk,tMk)
\bigr) 
and ct = [c1t , . . . , c

M
t ]\sansT 

with cit = \lambda i - \beta i
t . Notice that, in (4.33), the cost function is linear in \theta t, and the coeffi-

cients cit are deterministic (and can be computed offline). Therefore, it is sufficient to
look for a deterministic strategy to minimize the linear cost

\sum T - 1
t=0 c\sansT t\theta t, as the class of

deterministic strategies contains an optimal solution for min\{ \gamma \theta 
t \} 

T - 1
t=0

\sansE \gamma \theta 

\Bigl[ \sum T - 1
t=0 c\sansT t\theta t

\Bigr] 
.

The following lemma presents an MILP formulation to obtain the optimal quantizer-
selection policy.

Lemma 4.4. The optimal quantizer-selection strategy is found by solving the fol-
lowing MILP

min
\Theta 

T - 1\sum 
t=0

c\sansT t\theta t,(4.34a)

s.t.
M\sum 
i=1

\theta it = 1, \theta it \in \{ 0,1\} , t= 0, . . . , T  - 1, i= 1, . . . ,M.(4.34b)

Proof. The proof directly follows from the derivation of (4.33) and the subsequent
discussion.

Notice that in the optimization problem above there is no constraint coupling
\theta k and \theta \ell , and the cost function in (4.34a) is also decoupled in \theta k and \theta \ell for all
k \not = \ell \in \{ 0, . . . , T  - 1\} . Therefore, the optimal \theta t at time t can be found by min-
imizing c\sansT t\theta t subject to the constraints

\sum M
i=1 \theta 

i
t = 1, \theta it \in \{ 0,1\} . Thus, the opti-

mal quantizer-selection strategy for this problem turns out to be remarkably sim-
ple: if i\ast = argmini=1,...,M\{ c1t , . . . , cMt \} , then the optimal strategy is to use the i\ast th
quantizer2 such that

\gamma \theta \ast 
t = \theta \ast t = [1i\ast =1, . . . ,1i\ast =M ]\sansT .

This result is summarized in the following theorem.

Theorem 4.4 (optimal quantizer-selection). At time t, the jth quantizer is opti-
mal if and only if cjt =min\{ c1t , . . . , cMt \} , where, for all i= 1, . . . ,M ,

cit = \lambda i  - tr

\Biggl( \Biggl( 
T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 
,

and \~Nt,\ell , [\Phi ]\ell  - t,i, and F i
t are defined in (4.31a), (4.32), and (4.14), respectively.

The following remark is immediate from Theorem 4.4.

Remark 4.5. The optimal strategy for selecting the quantizers can be computed
offline. This requires an offline computation of \~Nt,\ell and F i

t , but it does not require
knowledge of the optimal control strategy.

4.5. Discussion and remarks. Let us delve into the cost c\sansT t\theta t in (4.34) to
discuss how the three factors, namely, the cost of quantization, the quantization res-
olution, and the delay, affect the cost function. The coefficients cit which determine
the optimal quantizer-selection strategy at time t have two components, namely, \lambda i,
and \beta i

t , where \lambda i is the cost for using the ith quantizer, and \beta i
t captures the trade-

off between quantization quality and the associated delays. Let us discuss each of

2In case there exists multiple minimizers for argmini=1,...,M\{ c1t , . . . , cMt \} , one of these minimizers
can be chosen randomly without affecting optimality.
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QUANTIZED OUTPUT FEEDBACK LQG 2699

these two terms in greater detail. First, cit being proportional to the cost \lambda i, reflects
the fact that lower quantization cost is desirable. The quantity \beta i

t is arguably more
interesting. Note that \beta i

t is of the form tr(Gi
tF

i
t ), where for all i, Gi

t is a positive
(semi)definite matrix whose expression can be easily identified from the expression
of \beta i

t . Moreover, since 1 \geq [\Phi ]i,1 \geq [\Phi ]i,2 \geq \cdot \cdot \cdot \geq [\Phi ]i,M \geq 0 for all i = 0, . . . , T  - 1,
we have G1

t \succeq G2
t \succeq \cdot \cdot \cdot \succeq GM

t . On the other hand, by using the ith quantizer, the
reduction in uncertainty covariance is F i

t . By uncertainty covariance we mean the
following: before the arrival of any measurement (\^\xi t), \xi t is a Gaussian distributed
random variable with covariance Mt. Once a quantized version (\^\xi t) of \xi t arrives
at the controller, the controller receives information on the realization of the random
variable \xi t. Specifically, at this point, the controller knows the region \scrP i

j \subset Rp wherein
the random variable \xi t belongs. Therefore, the posterior distribution of \xi t changes
after receiving \^\xi t, and the difference between the covariance of this posterior distri-
bution and the prior distribution is F i

t if the ith quantizer is used. Needless to say,
had there been a quantizer that could ensure \^\xi t = \xi t, i.e., no loss during quantization
for every realization of \xi t, then the reduction in covariance is exactly Mt and the
posterior distribution of \xi t at the controller is a Dirac measure around \^\xi t. The use
of quantized measurements is similar to operating somewhere in-between open-loop
and closed-loop control. In open loop, no measurement is sent, and in closed loop,
the exact measurement is sent without any distortion. By means of quantization, the
controller receives something but not everything. Furthermore, since \beta i

t \geq 0 and since
it appears with a negative sign in the cost function, it is clearly desirable to choose a
quantizer that would maximize \beta i

t . The matrix F i
t directly reflects how much reduc-

tion in covariance will occur if the ith quantizer is used. The matrix Gi
t, on the other

hand, incorporates the delay associated with the ith quantizer. As i is increased from
1 to M , Gi

t decreases tr(Gi
tF

i
t ), reflecting the fact that a smaller delay is preferable.

However, as i is varied, F i
t shows the variation in covariance reduction. For example,

if the reduction in covariance increases with the increase in \ell i, then F i
t is attempting

to increase tr(Gi
tF

i
t ) as i is varied from 1 to M . Thus, there is a dual behavior between

F i
t and Gi

t as i changes, and this duality is captured by the parameters of the channel
and the quantizers, namely, \scrP i, \ell i, and the delay di.

We conclude this section with a few more remarks.

Remark 4.6. The cost function in (4.34) resembles the component
\sum T - 1

t=0 \Lambda \sansT \theta t in
(3.6), except that all the state and control costs are absorbed in the coefficients cit.
Here cit can be viewed as the adjusted cost for operating the ith quantizer at time t,
and the adjustment factor is \beta i

t , which can be computed offline.

Remark 4.7. The approach allows for the case when the set of available quantizers
contains a quantizer \scrQ 0 with only one quantization level, i.e., \ell 0 = 1, \scrP 0 = \{ \scrP 0

1 =Rp\} ,
and quantization cost \lambda 0 = 0. This quantizer produces the same quantized output
for every input signal, hence, providing the option to remain open loop. For such a
quantizer, it can be verified from (4.14) that F 0

t = 0 for all t. Therefore, c0t = \lambda 0  - 
\beta 0
t = 0 for all t, and the selection of this quantizer at any time t reflects the fact that

the optimal strategy is not to send any information to the controller at that time. If
the quantization costs are very high,3 \lambda i \gg 1, the optimal choice of the quantizers

3Alternatively, the quantization cost is higher than the reward from using quantization, i.e.,
\lambda i >\beta i

t for all t.
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2700 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

would be \scrQ 0 and, hence, the controller will not be receiving any information, which
in principle, is equivalent to open-loop control.

4.6. Choice of the quantizers. In this work, we assume that the set of quan-
tizers are given a priori. However, from our analysis it follows that the final LQG
cost depends on the quantizer parameters through the variables \beta i

t for i = 1, . . . ,M
and t = 0, . . . , T  - 1. Specifically, notice that \beta i

t = tr((
\sum T - 1

\ell =t [\Phi ]\ell  - t,i
\~Nt,\ell )F

i
t ) and,

thus, the quantizer resolution and the delay affect \beta i
t through F i

t and [\Phi ]\ell  - t,i, respec-
tively. Equation (4.14) directly relates the quantization cells \scrP i

j and F i
t . Therefore,

in principle, one can choose to optimize over \scrP i
j 's to find \beta i

t 's, even though such an
optimization can be computationally very expensive.

5. Special cases. In this section, we simplify some of the expressions obtained in
section 4.4 by considering some special cases. In particular, we show that the expres-
sion of cit in Theorem 4.4 can be substantially simplified under these special cases.
These simplifications will be helpful for fast and efficient computation of the opti-
mal solution for the optimal quantizer scheduling problem described in Theorem 4.4.
To this end, we consider (i) the constant-delay case, and (ii) the full observation
case.

5.1. Constant-delay. In this section, we consider the case where d1 = d2 =
\cdot \cdot \cdot = dM = d, i.e., the delay induced by each quantizer is the same. Intuitively, since
the delay is not affected by the choice of the quantizer, then the quantizer selection
problem should reduce to a tradeoff between the quantization cost and the quality
of quantization. To see this, let us first note that [\Phi ]i,1 = \cdot \cdot \cdot = [\Phi ]i,M = 1i\geq d for all
i= 0, . . . , T  - 1. Therefore,

\beta i
t =tr

\Biggl( \Biggl( 
T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 
= tr

\Biggl( \Biggl( 
T - 1\sum 
\ell =t

1\ell  - t\geq d
\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 

= tr

\Biggl( \Biggl( 
T - 1\sum 
\ell =t+d

\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 
= tr

\bigl( 
H(t, d)F i

t

\bigr) 
,

where H(t, d) =
\sum T - 1

\ell =t+d
\~Nt,\ell \succeq 0. Thus, for fixed t and d, whether the ith quantizer is

optimal at time t is entirely determined by F i
t , where we recall that F

i
t represents the

uncertainty covariance reductions. Also notice that H(t, d) = 0 for all t\geq T  - d, and
hence \beta i

t = 0. Therefore, the optimal selection for the quantizers for t\geq T  - d would
be the one with the lowest \lambda i. This is due to the fact that the quantized information
\^\xi T - d, \^\xi T - d+1, . . . will not be available at the controller before time T  - 1, and hence
these quantized measurements would be of no use to the controller. Therefore, the
quality of the quantization for time T  - d onward is immaterial to the controller and,
hence, the lowest cost quantizer would be optimal.

5.2. Full observation. For the full observation case, we substitute \scrV = 0 and
C = I in the analysis presented above. As a direct consequence, one can verify that
\xi t =Wt - 1 for all t. Therefore, \{ \xi t \sim \scrN (0,\scrW )\} t\in N0

are i.i.d. signals and, consequently,
the matrices F i

t given in (4.13) will be time invariant, i.e., F i
1 = \cdot \cdot \cdot = F i

T \triangleq F i.
For all t\in N0, \Sigma t = 0, \Sigma t+1| t =Mt+1 =\scrW . This also implies that, for all t\geq k,

\Psi (t, k) =At - k and \~Nk,t =At - k\sansT 

NtA
t - k.
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QUANTIZED OUTPUT FEEDBACK LQG 2701

Therefore, the state estimate can be written as

\=Xt =At\mu 0+
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k +

t - 1\sum 
k=0

At - 1 - kBUk

=At\mu 0 +
t\sum 

k=0

At - k\vargamma k,t
\=\xi k +

t - 1\sum 
k=0

At - 1 - kBUk

=A \=Xt - 1 +BUt - 1 + \vargamma t,t
\=\xi t +

t - 1\sum 
k=0

At - k(\vargamma k,t  - \vargamma k,t - 1)\=\xi k.(5.1)

The expression for \beta i
t is now given by

\beta i
t =tr

\Biggl( \Biggl( 
T - 1\sum 
\ell =t

[\Phi ]\ell  - t,i
\~Nt,\ell 

\Biggr) 
F i
t

\Biggr) 
= tr

\biggl( \biggl( \sum T - 1

\ell =t+di

A\ell  - t\sansT N\ell A
\ell  - t

\biggr) 
F i

\biggr) 
.

Let us define a symmetric matrix \Upsilon t as follows,

\Upsilon t =A\sansT \Upsilon t+1A+Nt, \Upsilon T = 0,

which allows us to rewrite \beta i
t = tr(\Upsilon min\{ t+di,T\} F

i). We conclude this section by
discussing the constant delay case for fully observed systems.

Under the assumption of constant delay, i.e., d1 = \cdot \cdot \cdot = dM = d, we obtain
\beta i
t = tr(\Upsilon min\{ t+d,T\} F

i). Furthermore, \vargamma k,t = 1 if and only if t  - k \geq d, otherwise,
\vargamma k,t = 0. This implies, from (5.1) that, for all t\in N0,

\=Xt =

\Biggl\{ 
A \=Xt - 1 +BUt - 1 +Ad \=\xi t - d if t\geq d,

A \=Xt - 1 +BUt - 1 otherwise.
(5.2)

6. Numerical examples. In this section, we illustrate our theory on a linearized
inverted pendulum system whose discretized equations of motion are given by4

Xt+1 =

\biggl[ 
1 0.05
0.5 0.95

\biggr] 
Xt +

\biggl[ 
0

0.05

\biggr] 
Ut ++

\biggl[ 
0
1

\biggr] 
Wt,(6.1a)

Yt =

\biggl[ 
1 0
0 1

\biggr] 
Xt + \nu t,(6.1b)

where X0 \sim \scrN (0, I), Wt \sim \scrN (0,0.05), and \nu t \sim \scrN (0, 14I). The control cost has
parameters Q=Qf = 0.5 I, R= 0.5, and the time horizon is set to T = 50.

The simulation was performed with three quantizers (\scrQ 1,\scrQ 2,\scrQ 3), where \scrQ i has
2i numbers of quantization levels, i.e., \scrQ 1 = \{ 0,1\} , \scrQ 2 = \{ 00,01,10,11\} , and so on.
The partitions associated with the quantizers are \scrP 1 = \{ R+ \times R, R<0 \times R\} , \scrP 2 =
\{ R+\times R+, R+\times R<0, R<0\times R+, R<0\times R<0\} , and \scrP 3 = \{ [0,1)\times R+, [1,\infty )\times R+, [0,1)\times 
R<0, [1,\infty )\times R<0, [ - 1,0)\times R+, ( - \infty , - 1)\times R+, [ - 1,0)\times R<0, ( - \infty , - 1)\times R<0\} . The
costs associated with the quantizers are \Lambda = [10, 11,12]\sansT .

We consider two scenarios, where in the first scenario the delays associated with
the quantizers are di = 1 for all i, and in the second scenario di = i for all i. Under these

4Let the angular displacement and velocity of the pendulum be denoted as x1 and x2. The
dynamics of the system are given by \.x1 = x2 and dx2 = ( - g sin(x1)/l  - kx2 + u)dt + dw, where
g = 10ms - 2 is the gravitational acceleration, l = 1m is the length of the pendulum, k = 1s - 1 is the
damping coefficient, u is the input and dw is a standard Brownian motion. We consider a linearized
model around x1 = \pi for the system operating at 20 Hz.
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2702 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

Fig. 4. Optimal selection of quantizers over time.

Fig. 5. Optimal selection of quantizers over time when the second dimension of Yt is pure noise.

conditions, the optimal selection for the quantizers is plotted in Figure 4. Although
both plots in Figure 4 portray similar behavior, there are a few differences (see the
time interval [18,22]) in the optimal selection of the quantizers due to the delays. We
notice that during the interval from t= 18 to 22, \scrQ 3 is optimal when d3 = 1, whereas
\scrQ 2 is optimal when d3 = 3. The reason behind this is the fact that the quantized
output of both \scrQ 3 and \scrQ 2 will be available with the same delay when di = 1 for all
i, whereas the quantized output of \scrQ 3 will reach later than that of \scrQ 2 when di = i,
although the quantized output of \scrQ 3 will be less distorted than that of \scrQ 2. During
the time period [18,22], it turned out to be beneficial to have a coarser measurement
faster than a finer, more delayed, measurement. This simple example reflects the
combined (dual) effect of the quantization resolution and the associated delays in the
optimal choice of the quantizers.

We next considered the same example while observing the angular position only.
We modify the Yt equation as follows: Yt =

\bigl[ 
1 0
0 0

\bigr] 
Xt + \nu t. In this case, although Yt

is two dimensional, the second dimension of the observation is pure noise and does
not contain any useful state information. The optimal selection for the quantizers
is shown in Figure 5. We notice that \scrQ 2 is a finer version of \scrQ 1 along the second
dimension only. There is no difference in the quantization quality between \scrQ 1 and \scrQ 2

for the first dimension. Since the second dimension of Yt is pure noise, \scrQ 2 is never
selected for this problem (since \scrQ 1 performs equally well as \scrQ 2 with lesser cost).

7. Conclusions. In this work, we have considered a quantization-based partially
observed LQG problem with a quantization cost. The problem is to choose an optimal
quantizer among a set of available quantizers that minimizes the combined cost of
quantization and control performance. The number of bits required to represent the
quantized value increases as the quantization resolution gets better, and hence the
delay in transmitting the measurement also increases. We illustrate how the quality
of quantization and delay together emerge in the cost function and we demonstrate
their dual role in the optimal solution.

We have shown that the optimal controller exhibits a separation principle and
it has a linear relationship with the estimate of the state. The optimal gains for
the controller are found by solving the classical Riccati equation associated with the
LQG problem. We have also shown that the optimal selection of the quantizers can
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QUANTIZED OUTPUT FEEDBACK LQG 2703

be found by solving a linear program that can be solved offline independently from
the calculation of the optimal controller gain. Furthermore, the special cases of full
observation and constant delay are also discussed. The possibility of the system to
remain open loop at time t by not sending any quantized information is discussed as
well in Remark 4.7.

Appendix A.
Proof of Proposition 4.1. Let us consider a state process Xnew

t \triangleq Xt  - \sum t - 1
k=0A

t - 1 - kBUk - At\mu 0 and an observation process Y new
t \triangleq CXnew

t +Vt. Therefore,

Xnew
t+1 =AXnew

t +Wt,(A.1a)

Y new
t =CXnew

t + Vt,(A.1b)

Xnew
0 =X0  - \mu 0 =W - 1 \sim \scrN (0,\Sigma x).(A.1c)

Here Xnew
t is the process associated with Xt, which is independent of the control

strategy. Using this definition of Xnew
t and Y new

t , we have Xt =Xnew
t +\varphi (t,\scrU t - 1) and

Yt = Y new
t +C\varphi (t,\scrU t - 1), where \varphi (t,\scrU t - 1) =

\sum t - 1
k=0A

t - 1 - kBUk+At\mu 0. Therefore, the
information sets (\scrY t - 1,\scrU t - 1) and (Y new

0 , . . . , Y new
t - 1 ,\scrU t - 1) are equivalent, i.e., one can

be constructed from the other.
The innovation process associated with system (A.1) is given by

\xi newt = Y new
t  - \sansE [Y new

t | Y new
0 , . . . , Y new

t - 1 ].

Let \xi t be the innovation process associated with the system (3.1). It can be shown
that \xi newt = \xi t for all t. In order to prove this statement, notice that

\xi t = Yt  - \sansE [Yt| \scrY t - 1,\scrU t - 1]

= Y new
t +C\varphi (t,\scrU t - 1) - \sansE [Y new

t | \scrY t - 1,\scrU t - 1] - \sansE [C\varphi (t,\scrU t - 1)| \scrY t - 1,\scrU t - 1]

= Y new
t  - \sansE [Y new

t | Y new
0 , . . . , Y new

t - 1 ,\scrU t - 1]

= Y new
t  - \sansE [Y new

t | Y new
0 , . . . , Y new

t - 1 ] = \xi newt .

Thus, \xi t does not depend on the control history \scrU t - 1.
The standard results of Kalman filtering hold for the process Xnew

t with observa-
tion Y new

t . It follows that \{ \xi newt \} t\in N0
is a sequence of uncorrelated Gaussian noises.

Thus, using standard Kalman filtering theory, we define

enewt = Xnew
t  - \sansE [Xnew

t | Y new
0 , . . . , Y new

t - 1 ],(A.2a)

\Delta new
t = Xnew

t  - \sansE [Xnew
t | Y new

0 , . . . , Y new
t ],(A.2b)

\Sigma t| t - 1 = \sansE [enewt enewt
\sansT ],(A.2c)

\Sigma t = \sansE [\Delta new
t \Delta new

t
\sansT ].(A.2d)

Moreover,

\sansE [Xnew
t | Y new

0 , . . . , Y new
t ] = \sansE [Xnew

t | Y new
0 , . . . , Y new

t - 1 ] +Kt\xi 
new
t ,

whereKt is the Kalman gain at time t. Thus, \Delta new
t = enewt  - Kt\xi 

new
t = (I - KtC)enewt  - 

KtVt. The initial conditions are enew0 =Xnew
0 \sim \scrN (0,\Sigma x) and \Sigma 0|  - 1 =\Sigma x. Therefore,

\sansE [\xi newt ] = 0 and Mt,\Sigma t| t - 1 and \Sigma t satisfy

Mt = \sansE [(Cenewt + Vt)(Cenewt + Vt)
\sansT ] =C\Sigma t| t - 1C

\sansT + \scrV ,
\Sigma t| t - 1 = \sansE [enewt enewt

\sansT ] = \sansE [(A\Delta new
t - 1 +Wt - 1)(A\Delta new

t - 1 +Wt - 1)
\sansT ] =A\Sigma t - 1A

\sansT +\scrW ,

\Sigma t = \sansE [(I  - KtC)enewt enewt
\sansT (I  - KtC)\sansT ] +KtC\scrV C\sansT K\sansT 

t

= (I  - KtC)\Sigma t| t - 1(I  - KtC)\sansT +Kt\scrV K\sansT 

t =\Sigma t| t - 1  - \Sigma t| t - 1C
\sansT M - 1

t C\Sigma t| t - 1,
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2704 DIPANKAR MAITY AND PANAGIOTIS TSIOTRAS

where Kt =\Sigma t| t - 1C
\sansT M - 1

t is the Kalman gain. This concludes the proof.

Appendix B.
Proof of Lemma 4.1. The information contained in (\scrY t,\scrU t - 1) is the same as that

contained in (\Xi t,\scrU t - 1), where \Xi t = \{ \xi 0, . . . , \xi t\} . Therefore,

\sansE [Xt| \scrY t,\scrU t - 1] = \sansE [Xt| \Xi t,\scrU t - 1] = \sansE [Xnew
t | \Xi t,\scrU t - 1] +

t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0

= \sansE [Xnew
t | \Xi new

t ] +
t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0,

where \Xi new
t = \{ \xi newt \} t\in N0

= \{ \xi t\} t\in N0
=\Xi t. It follows from Kalman filtering that

\sansE [Xnew
t | \Xi new

t ] = \sansE [Xnew
t | \Xi new

t - 1 ] +Kt\xi 
new
t =A\sansE [Xnew

t - 1 | \Xi new
t - 1 ] +Kt\xi 

new
t ,

since Wt - 1 is independent of \Xi new
t - 1 . We need to show that

\sansE [Xnew
t | \Xi new

t ] =
t\sum 

k=0

\Psi (t, k)\xi newk(B.1)

for some \Psi (t, k). We show this by induction. To this end, notice that (B.1) is true for
t = 0 with \Psi (0,0) = \Sigma xC

\sansT (C\Sigma xC
\sansT + \scrV ) - 1, where \Sigma x is the covariance of the initial

state X0. Next, if (B.1) is true for t= \tau , then we have that, for t= \tau + 1,

\sansE [Xnew
\tau +1| \Xi new

\tau +1] = A\sansE [Xnew
\tau | \Xi new

\tau ] +K\tau +1\xi 
new
\tau +1

= A
\tau \sum 

k=0

\Psi (\tau , k)\xi newk +K\tau +1\xi 
new
\tau +1 =

\tau +1\sum 
k=0

\Psi (\tau + 1, k)\xi newk ,

where K\tau +1 is the Kalman gain at time \tau + 1, \Psi (\tau + 1, k) = A\Psi (\tau , k) for all k =
0, . . . , \tau , and \Psi (\tau + 1, \tau + 1) = K\tau +1. Therefore, for all t \geq k, \Psi (t, k) = At - kKk =
At - k\Sigma k| k - 1C

\sansT M - 1
k , and

\sansE [Xt| \scrY t,\scrU t - 1] = \sansE [Xnew
t | \Xi new

t ] +

t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0

=
t\sum 

k=0

\Psi (t, k)\xi newk +
t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0

=
t\sum 

k=0

\Psi (t, k)\xi k +
t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0.

The set \scrO t may not contain all the elements of \Xi t due to delays. In fact, for k\leq t, we
have that \xi k \in \scrO t if and only if \vargamma k,t = 1. Since \xi k and \xi t are independent for t \not = k,
we have

\sansE [\xi k| \scrO t] =

\Biggl\{ 
\xi k if \xi k \in \scrO t,

0 otherwise.
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QUANTIZED OUTPUT FEEDBACK LQG 2705

Therefore, we can write \sansE [\xi k| \scrO t] = \vargamma k,t\xi k. Thus,

\sansE [Xt| \scrO t,\scrU t - 1] = \sansE [\sansE [Xt| \Xi t,\scrU t - 1]| \scrO t,\scrU t - 1]

= \sansE 

\Biggl[ 
t\sum 

k=0

\Psi (t, k)\xi k| \scrO t,\scrU t - 1

\Biggr] 
+

t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0

=
t\sum 

k=0

\Psi (t, k)\vargamma k,t\xi k +
t - 1\sum 
k=0

At - 1 - kBUk +At\mu 0.

This completes the proof.

Appendix C.
Proof of Lemma 4.3. Let us define \Delta t = \sansE [et | \scrY t, \^\scrO t,\scrU t - 1], and notice that,

\sansE [ete
\sansT 

t | \scrY t, \^\scrO t,\scrU t - 1] = \sansE [(et  - \Delta t)(et  - \Delta t)
\sansT | \scrY t, \^\scrO t,\scrU t - 1] + \sansE [\Delta t\Delta 

\sansT 

t | \scrY t, \^\scrO t,\scrU t - 1],

since \sansE [\Delta t(et  - \Delta )\sansT | \scrY t, \^\scrO t,\scrU t - 1] =\Delta t\sansE [(et  - \Delta )\sansT | \scrY t, \^\scrO t,\scrU t - 1] = 0. Taking expecta-
tions on both sides of the last equation, we obtain

\sansE [ete
\sansT 

t ] = \sansE [(et  - \Delta t)(et  - \Delta t)
\sansT ] + \sansE [\Delta t\Delta 

\sansT 

t ].(C.1)

Substituting the expression for \=Xt from (4.9) into et =Xt  - \=Xt yields

et =Xt  - 
t - 1\sum 
k=0

At - 1 - kBUk  - At\mu 0  - 
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k.

Therefore,

\Delta t = \sansE [et | \scrY t, \^\scrO t,\scrU t - 1]

= \sansE [Xt | \scrY t, \^\scrO t,\scrU t - 1] - 
t - 1\sum 
k=0

At - 1 - kBUk  - At\mu 0  - 
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k

=
t\sum 

k=0

\Psi (t, k)\xi k  - 
t\sum 

k=0

\Psi (t, k)\vargamma k,t
\=\xi k =

t\sum 
k=0

\Psi (t, k)(\xi k  - \sansE [\xi k | \^\scrO t]),

(C.2)

where we have used \sansE [Xt | \scrY t, \^\scrO t,\scrU t - 1] = \sansE [Xt | \scrY t,\scrU t - 1] since \^\scrO t is a \scrY t-measurable
function and we have also used (4.15) to write \vargamma k,t

\=\xi k as \sansE [\xi k | \^\scrO t]. Using the expression
of \Delta t from (C.2), we obtain

et  - \Delta t = Xt  - 
t - 1\sum 
k=0

At - 1 - kBUk - At\mu 0 - 
t\sum 

k=0

\Psi (t, k)\xi k

= Xnew
t  - \sansE [Xnew

t | \Xi new
t ] =\Delta new

t ,

where Xnew
t , \sansE [Xnew

t | \Xi new
t ], and \Delta new

t are defined in (A.1) and (B.1) and (A.2),
respectively. Thus, we may rewrite (C.1) as follows

\sansE [ete
\sansT 

t ] = \sansE [(et  - \Delta t)(et  - \Delta t)
\sansT ] + \sansE [\Delta t\Delta 

\sansT 

t ]

= \sansE [\Delta new
t \Delta new

t
\sansT ]+

t\sum 
k=0

t\sum 
\ell =0

\Psi (t, k)\sansE [(\xi k - \sansE [\xi k | \^\scrO t])(\xi \ell  - \sansE [\xi \ell | \^\scrO t])
\sansT ]\Psi (t, \ell )\sansT (C.3)

=\Sigma t+
t\sum 

k=0

t\sum 
\ell =0

\Psi (t, k)\sansE [(\xi k  - \sansE [\xi k | \^\scrO t])(\xi \ell  - \sansE [\xi \ell | \^\scrO t])
\sansT ]\Psi (t, \ell )\sansT ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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where we used the definition \Sigma t = \sansE [\Delta new
t \Delta new

t
\sansT ] from (A.2).

To further simplify (C.3), we recall that \xi k and \xi \ell are independent random vari-
ables when k \not = \ell and, therefore, we obtain

\sansE [(\xi k  - \sansE [\xi k | \^\scrO t])(\xi \ell  - \sansE [\xi \ell | \^\scrO t])
\sansT ] = \sansE 

\bigl[ 
\sansE [(\xi k  - \sansE [\xi k | \^\scrO t])(\xi \ell  - \sansE [\xi \ell | \^\scrO t])

\sansT | \xi k, \^\scrO t]
\bigr] 

= \sansE 
\bigl[ 
(\xi k  - \sansE [\xi k | \^\scrO t])\sansE [(\xi \ell  - \sansE [\xi \ell | \^\scrO t])

\sansT | \xi k, \^\scrO t]
\bigr] 

= \sansE [(\xi k  - \sansE [\xi k | \^\scrO t])(\sansE [\xi \ell | \^\scrO t] - \sansE [\xi \ell | \^\scrO t])
\sansT ] = 0

for all k \not = \ell . On the other hand, for k= \ell , we obtain

\sansE [(\xi k - \sansE [\xi k | \^\scrO t])(\xi k  - \sansE [\xi k | \^\scrO t])
\sansT ] = \sansE [\xi k\xi 

\sansT 

k] - \sansE [\sansE [\xi k | \^\scrO t]\sansE [\xi k | \^\scrO t]
\sansT ]

(a)
= Mk  - \sansE [\vargamma k,t

\=\xi k \=\xi 
\sansT 

k] =Mk  - \sansE [\sansE [\vargamma k,t
\=\xi k \=\xi 

\sansT 

k | \theta k]]
(b)
= Mk  - \sansE [\vargamma k,t\sansE [\=\xi k \=\xi 

\sansT 

k | \theta k]]
(c)
= Mk  - \sansE [\vargamma k,tFk(\theta k)],

where (a) follows from (4.15) and the fact that \vargamma 2
k,t = \vargamma k,t since \vargamma k,t \in \{ 0,1\} , and

(b) follows from the fact that \vargamma k,t is a deterministic function of \theta k due to (4.5),
and finally, (c) follows from (4.13). Consequently, (C.3) reduces to the following
equation:

\sansE [ete
\sansT 

t ] = \Sigma t+

t\sum 
k=0

\Psi (t, k)(Mk  - \sansE [\vargamma k,tFk(\theta k)])\Psi (t, k)\sansT .
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