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Abstract— We consider a multi-agent linear quadratic optimal
control problem. Due to communication constraints, the agents
are required to quantize their local state measurements before
communicating them to the rest of the team, thus resulting in
a decentralized information structure. The optimal controllers
are to be synthesized under this decentralized and quantized
information structure. The agents are given a set of quantizers
with varying quantization resolutions—higher resolution incurs
higher communication cost and vice versa. The team must
optimally select the quantizer to prioritize agents with ‘high-
quality’ information for optimizing the control performance
under communication constraints. We show that there exist a
sepatation between the optimal solution to the control problem
and the choice of the optimal quantizer. We show that the
optimal controllers are linear and the optimal selection of the
quantizers can be determined by solving a linear program.

I. INTRODUCTION

Networked control systems are widely used in various
applications, such as sensor networks, intelligent transporta-
tion systems, self-deriving vehicles, and robotics [1]. These
systems often employ quantization to reduce the communica-
tion bandwidth required to close the feedback loop from the
sensor to the controller [2]–[5]. For multi-agent systems with
multiple controllers and sensors, the need for quantization is
even more pronounced to judiciously utilize communication
resources. The quantization process aims to strike a balance
between control performance and communication constraints.
Higher resolution quantizers incur less quantization error,
leading to better control performance but at the expense of
larger communication bandwidth required to transmit their
output. Conversely, coarser quantizers require fewer bits to
be transmitted but result in degraded control performance.

While the trade-off between quantization bit-rate and
optimal control performance for single-agent systems has been
investigated [6]–[8], this trade-off for multi-agent systems is
not equally well understood. This knowledge gap primarily
stems from the fact that determining the optimal design for the
quantizer and the controller, even for a linear-quadratic single
agent, is a computationally intractable problem [5], [8]. For
multi-agent systems, the problem becomes significantly more
challenging due to the decentralized information structure
[9]–[11].
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For a single agent, the primary challenge lies in the design
of the quantizers. While several works have been able to
characterize the optimal controller, the optimal quantizer
design problem remains to be unsolved. Recently, the works in
[12], [13] considered a different formulation where quantizers
are not designed but rather chosen from a given set. These
works, primarily focusing on the single agent case, aimed
to design the optimal controller and then select the optimal
quantizer to minimize a weighted cost function combining
control and communication costs.

In this paper, we adopt the framework of [12] and extend
it to the multi-agent case. Here, each agent must select
the optimal quantizer at each time instance to maintain a
balance between control performance and communication
constraints/costs. While the agents share quantized states
with the team, they retain the true state values to themselves,
thus resulting in a decentralized information structure.

The contribution and significance of this work lie in
deriving the optimal controller and the optimal selection
of the quantizers in decentralized settings. We show that the
optimal controller for each agent has two components: one
that depends on the common information communicated by
each agent to others, and another that solely depends on
the local information each agent processes. We show that
the optimal selection of the quantizers is time-varying for
finite-horizon problems, and it can be determined by solving
a linear program.

The rest of the paper is organized as follows: We formulate
the problem in Section II. We discuss the decentralized infor-
mation structure and the quantization scheme in Section III.
The optimal controller is derived in Section IV and the optimal
selection of the quantizers are obtained in Section V. Finally,
we conclude the work in Section VI.

A. Notations

Given a matrix A, A ⪰ 0 and A ≻ 0 denote that A
is positive semi-definite and positive definite, respectively.
vec(v1, . . . , vn) denotes the column vector formed by ver-
tically stacking the vectors vi’s. Given any vector valued
process {yt}t≥0 and any time instances t1, t2 such that t1 ≤
t2, yt1:t2 is a shorthand notation for vec(yt1 , yt1+1, . . . , yt2).

II. PROBLEM FORMULATION

Consider a system of n agents (see Fig. 1) evolving in
discrete time with linear dynamics. Let xi

t ∈ Rdx denote
the state and ui

t ∈ Rdu denote the control action of agent
i, i ∈ N := {1, 2, . . . , n} at time t. The dynamics of each
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Fig. 1. The n agent model with all-to-all communication framework.

agent are given by

xi
t+1 = Aixi

t +Biui
t + wi

t, (1)

where Ai and Bi are matrices of compatible dimensions and
{wi

t}T−1
t=0 is a zero-mean i.i.d noise process with finite second

moment Σi
w. We do not assume that wi

t is Gaussian. The
initial state xi

0 is a random vector with zero mean and finite
second moment Σi

x. For convenience of notation, we often
use wi

−1 to denote xi
0.

Assumption 1: For all i, j ∈ {1, 2, . . . , n} and t, s ∈
{−1, 0, . . . , T − 1}, we assume that wi

t and wj
s are inde-

pendent for i ̸= j or t ̸= s.
By concatenating the linear dynamics for all of the agents

we may write

xt+1 = Axt +But + wt, (2)

where A = diag(A1, . . . , An), B = diag(B1, . . . , Bn), and
wt = vec(w1

t , . . . , w
n
t ). In (2), xt = vec(x1

t , . . . , x
n
t ) and

ut = vec(u1
t , . . . , u

n
t ) are the vectors representing the states

and controls of all the agents.
Each agent perfectly observes its own state. However,

due to communication constraints and limited power of
agents in transmitting information (as we will discuss in
detail in Section II-A), the agents must use quantizers when
transmitting information to the other agents to reduce the
communication bandwidth. We assume that a set of M
quantizers are provided to quantize the state value for each
agent.1 The symbols of the m-th quantizer are denoted by
Qm = {qm1 , . . . , qmℓm}. Associated with the m-th quantizer,
let Pm = {pm1 , . . . , pmℓm} denote a partition in Rdx such that
pmj gets mapped to the symbol qmj for each m ∈ {1, . . . , ℓm}.
Thus, the m-th quantizer provides a mapping/encoding δm :
Rdx → Qm such that δm(x) = qmj if and only if x ∈ pmj .

A. System Performance

The control objective for these agents is to jointly minimize
the finite-horizon quadratic cost function

JControl = E
[
xT
TQxT +

T−1∑
t=0

(
xT
t Qxt + uT

t Rut

)]
, (3)

where Q ⪰ 0 and R ≻ 0. Let Qij ∈ Rdx×dx denote the ij-th
block element of Q that couples the states of agents i and j

1The analysis remains the same when different agents have different sets
of quantizers.

via the term (xi
t)

TQijxj
t . Similarly, we define Rij to be the

ij-th block element of R.
Although the agents’ dynamics are decoupled (see (1)),

the objective function (3) couples the states and control
actions. Hence, the optimal control for each agent depends
on the global state xt, which necessitates each agent to
share their local state information xi

t with the other agents to
increase performance. In this work, we assume that agents
can broadcast their messages to the entire team (i.e., an all-
to-all communication architecture), to better coordinate and
lower the control cost of the whole team. However, the agents
must use quantizers to judiciously use the communication
resources (e.g., bandwidth). In other words, the agents must be
prioritized to use the communication resources based on how
their state information helps in reducing the global objective
function (3).

The (communication) cost of using the m-th quantizer is
λm > 0. For instance, λm = log2(ℓ

m) denotes the number
of bits required to transmit the quantized message from the
m-th quantizer. Let us define the new decision variable

θimt =

{
1, agent i selects quantizer m at time t,

0, otherwise.
(4)

In general, the quantizer selection policy could be a random-
ized policy and, therefore, the outcomes θimt are random
variables. Hence, the expected communication cost for the
entire team at time t can be expressed as

JComm,t =
n∑

i=1

M∑
m=1

E[θimt ]λm =
n∑

i=1

(E[θit])Tλ, (5)

where θit = vec(θi1t , . . . , θiMt ) and λ = vec(λ1, . . . , λM ).
The total communication cost for the entire horizon therefore
becomes

JComm =
T−1∑
t=0

JComm,t. (6)

For the communication constrained control problem, we will
consider the following three variations.
Per-time communication constraint:

min JControl

subject to JComm,t ≤ ct, t = 0, . . . , T − 1,
(P1)

for given time-varying communication budgets ct’s.
Cumulative communication constraint:

min JControl

subject to JComm ≤ c,
(P2)

for a given cumulative budget c > 0.
Weighted cost formulation:

min JControl + αJComm, (P3)

where α ≥ 0 is a trade-off parameter between the commu-
nication and the control costs. The optimization problems
in (P1)-(P3) are carried out w.r.t the control variables (i.e.,
u1:n
0:T−1) and the quantizer selection variables (i.e., θ1:n0:T−1).



In this work, we assume that each agent may select only
one quantizer at any given time, which imposes the constraint

M∑
m=1

θimt = 1, (7)

for all i = 1, . . . , n and t = 0, . . . , T − 1.

III. INFORMATION STRUCTURE AND QUANTIZATION
SCHEME

We denote the quantized measurement of agent i at time
t as zit. If agent i uses the m-th quantizer to quantize xi

t,
then zit = δm(xi

t). Using the quantizer selection variables
θimt defined in (4), we may also express zit as

zit =
M∑

m=1

θimt δm(xi
t),

which explicitly shows how the choice of the quantizer (i.e.,
θimt ) affects zit .

Remark 1: Instead of quantizing xi
t, one may quantize

any other signal, say ξit , that depends on the entire history
xi
0:t, u

i
0,t−1 at time t. In fact, often one quantizes ξit = xi

t −∑t−1
j=0(A

i)t−1−jBiui
j , which is known as predictive coding

[14, Definition 3.1]. In this work, we also do not quantize
xi
t, as will be explained later.
While each agent shares its quantized state with others, it

retains the true state locally and may use it for synthesizing
its control inputs. Therefore, our problem formulation has
a decentralized information structure. At time t, agent i
observes its own state and selects the quantizer θit to broadcast
zit to all agents. Next, the agents use the broadcast information
to take optimal actions to solve (P1)-(P3). The information
available to agent i prior to quantization and communication
at time t is

Iit− = {xi
0:t, u

i
0:t−1, z0:t−1, θ0:t−1}; Ii0− = {xi

0}, (8)

where t− indicates that Iit− is the available information prior
to any decision taken (on control or quantizer selection) at
time t, and zt ≜ vec(z1t , . . . , z

n
t ) is the vector created by con-

catenating all communicated signals and θt ≜ vec(θ1t , . . . , θ
n
t )

is the concatenation of all quantizer choices. After the
quantized measurements are received by the agents, the
available information to agent i is

Iit = {xi
0:t, u

i
0:t−1, z0:t, θ0:t} = Iit− ∪ {zt, θt}. (9)

We may split the information Iit into two parts: The infor-
mation available to all agents, i.e., the common information,
and the information available to each individual agent, i.e.,
the local information. We denote the common and local
information as Ict and Ii,lt , respectively:

Ict = {θ0:t, z0:t}, (10)

Ii,ℓt = {xi
0:t, u

i
0:t−1}. (11)

Agent i’s controller is a measurable function of the
local information Iit , whereas the quantizer selector is Ict−1

measurable. One may notice that the information set Iit is

equivalent to the information set {wi
−1:t−1, u

i
0:t−1, z0:t, θ0:t},

which is expressed in terms of the primitive variables wi
t’s.

In this work, we restrict ourselves to the innovation quanti-
zation framework where each agent shares a quantized version
of wi

t−1 instead of xi
t at time t. When xi

t is quantized and
shared, the optimal controller synthesis becomes an intractable
problem even for a single agent case. This issue becomes
significantly more complicated for the decentralized multi-
agent case considered in this work. A detailed discussion on
quantization of wi

t instead xi
t can be found in earlier literature

[2] and in our recent works [12], [13]. Therefore, from this
point onward, for all t = 0, . . . , T − 1, we will consider

zit =
M∑

m=1

θimt δm(wi
t−1). (12)

Remark 2: Due to the restriction imposed by (12) (i.e.,
quantizing wi

t−1 instead of xi
t) we may lose optimality. It

is noteworthy that there is no such loss of optimality if
we quantize

∑t
s=0(A

i)t−swi
s−1 instead of wi

t−1 at time
t; see for instance [14, Lemma 3.1]. Quantizing/encoding∑t

s=0(A
i)t−swi

s−1 is known as predictive coding, where
the quantizer removes the contribution of the control before
quantization. A brief discussion on the trade-off between
computational tractability and optimality for considering (12)
instead of predictive coding can be found in [13]. Studying
our proposed multi-agent problem in the predictive coding
setup is a promising and challenging future direction.

Remark 3: If each agent has a partial and noisy state
measurement yit = Cixi

t+vit, one would need to quantize the
innovation signal ξit = xi

t−E[xi
t | yi0:t, ui

0:t−1], as mentioned
in [13]. One may verify that ξit = wi

t−1 when Ci
t = I and

vit = 0, which is the case considered in this work. We refer
to our quantization scheme as innovation quantization since
we quantize the innovation signal.

Under the innovation quantization scheme (12), our objec-
tive is to find the optimal controller and quantizer selector
strategies for each agent to solve the optimization problems
in (P1)–(P3).

IV. OPTIMAL CONTROLLER

In standard linear-quadratic optimal control problems,
the solution typically consists of two components: a state
estimator and a feedback gain. The state estimator depends
on available information, while the feedback gain depends
on system matrices through Riccati equations. However, for
multi-agent systems, this is not always the case. [9], [15]
showed that the solution is not necessarily linear, and even
with linear strategies, certainty equivalent controllers might
not be optimal. In our paper, we show that the optimal
controller is indeed a certainty equivalent controller.

Given that we have both local and common information,
we define the estimators and the Riccati equations upfront for
subsequent uses. To that end, following [16], [17] we define
the following estimates based on the common information

ût = E[ut|Ict ], x̂t = E[xt|Ict ]. (13)



Additionally, we also define following error variables with
respect to the conditional expectations defined above

x̃t = xt − x̂t, (14a)
ũt = ut − ût. (14b)

Lemma 1: The state estimates and estimation errors evolve
as follows:

x̂t+1 = Ax̂t +Bût + ŵt, (15)
x̃t+1 = Ax̃t +Bũt + w̃t, (16)

where ŵt = E[wt | zt+1, θt+1] and

w̃t =

w1
t − E[w1

t | z1t , θ1t+1]
...

wn
t − E[wn

t | znt , θnt+1]

 . (17)

Proof: The proof is presented in Appendix A.
We define a global Riccati equation whose solution (Pt) is

used by all the agents in their controllers, and we also define
local Riccati equations (P̃ i

t ) for each agent, as follows.

Pt = Q+ATPt+1A− LT
t (R+BTPt+1B)Lt,

PT = Q,

Lt = (R+BTPt+1B)−1BTPt+1A,

(18)

and for each individual agent i, we define

P̃ i
t = Qii + (Ai)TP̃ i

t+1A
i − (L̃i

t)
T(Rii + (Bi)TP̃ i

t+1B
i)L̃i

t,

P̃ i
T = Qii, (19)

L̃i
t = (Rii + (Bi)TP̃ i

t+1B
i)−1(Bi)TP̃ i

t+1A
i.

The main result of this section is summarized in the
following theorem.

Theorem 1: The optimal controller for the i-th agent is

ui
t = −Li

tx̂t − L̃i
tx̃

i
t, (20)

where Li
t is the i-th block-row of the matrix Lt defined in

(18) and L̃i
t is defined in (19).

Furthermore, the optimal control cost under (20) is

JControl = tr (P0Σx) +
T−1∑
t=0

tr (Pt+1Σw)

+

n∑
i=1

T−1∑
t=0

E[(βi
t)

Tθit],

(21)

where βi
t is a constant given in (29).

Proof: A proof sketch is presented in Appendix C.
Using (14), one may express (20) in the form of ui

t =
−L̃i

tx
i
t −Gi

tx̂t, where an expression for Gi
t can be obtained

from Li
t and L̃i

t. This demonstrates that the choice of
quantizers (i.e., θ1:n0:t ) affects ui

t only through the term x̂t.
Furthermore, it can be verified that when the cost is decoupled
(i.e., Qij = 0 and Rij = 0), we have Gi

t = 0, as expected.
Theorem 1 not only reveals how the optimal controller is

affected by the quantization process, but also demonstrates
how the control performance (i.e., JControl) is influenced by the
choice of quantizers. This enables us to optimize the quantizer
selection policy further to minimize JControl, a discussion of

which will be provided in Section V. We conclude this section
with the following remarks.

Remark 4: The optimal controller for the i-th agent con-
sists of two parts: the −Li

tx̂t part that depends on the common
information and the part −L̃i

tx̃
i
t, that depends on the local

information.
Remark 5: In the case of non-quantized communication,

the optimal control cost is tr (P0Σx) +
∑T−1

t=0 tr (Pt+1Σw),
and therefore, the adverse effects of the quantization
on the control performance is quantified by the term∑n

i=1

∑T−1
t=0 E[(βi

t)
Tθit]. A similar observation is also made

in [18], where the communication suffered from packet
dropouts and delays instead of quantization.

V. OPTIMAL QUANTIZER SELECTION

In this section, we derive the optimal quantizer selection
strategies for the agents. Let µi

t(· | Iit−) denote the quantizer
selection policy, which is assumed to be a randomized policy
without loss of any generality. In other words, we have
P(θimt = 1 | Iit−) = µi

t(m | Iit−), for all m = 1, . . . ,M .
For notational convenience, we define µim

t to denote µi
t(m |

Iit−). For µi
t(· | Iit−) to be a valid randomized strategy,

we impose
∑M

m=1 µ
im
t = 1 for all t. Finally, we define

µt = (µ1
t , . . . , µ

n
t ) and µi

t = (µi1
t , . . . , µiM

t ).
Optimizing JControl in (21) is equivalent to optimizing the

last term only since the first two terms are constants. At
this point we consider each of the optimization problems
(P1)–(P3) separately and discuss their corresponding optimal
quantizer selections.

A. Per-time and Cumulative Communication Constraints

In this section we consider (P1) and (P2) and derive the
optimal quantizer selection strategies for these two cases.
Using (21) and the definition of µi

t, we may rewrite (P1) as

min
T−1∑
t=0

n∑
i=1

(µi
t)

Tβi
t (22)

subject to

n∑
i=1

(µi
t)

Tλ ≤ ct,

1Tµi
t = 1, µi

t ≥ 0,

 t = 0, . . . , T − 1,

i = 1, . . . , n,

which is a linear programming (LP) problem in µ. The
constraints 1Tµi

t = 1 and µi
t ≥ 0 are to ensure that µi

t

is a valid probability distribution. Since the cost function can
be decoupled in t and the constraints are already decoupled,
the optimal selection strategy at any given time t can be
found by solving the following optimization

min
n∑

i=1

(µi
t)

Tβi
t (23)

subject to

n∑
i=1

(µi
t)

Tλ ≤ ct,

1Tµi
t = 1, µi

t ≥ 0,

 t = 0, . . . , T − 1,

i = 1, . . . , n.

This results in a linear program and can be solved efficiently.
Remark 6: Although it may appear that the optimal selec-

tion of the quantizers at time t is not concerned with the



system’s future performance, this is not the case. The βi
t

variable encapsulates the effects of the selected quantizer at
time t on the future performance.

In a similar fashion, the cumulative communication con-
strained problem (P2) is expressed as

min
T−1∑
t=0

n∑
i=1

(µi
t)

Tβi
t (24)

subject to

T−1∑
t=0

n∑
i=1

(µi
t)

Tλ ≤ c,

1Tµi
t = 1, µi

t ≥ 0,


t = 0, . . . , T − 1,

i = 1, . . . , n.

which is also a linear program. However, unlike the previous
case, the optimal choice at time t cannot be decoupled.

B. Weighted Cost Formulation

Following the same steps as in the previous section, the
weighted cost formulation yields

min
T−1∑
t=0

n∑
i=1

(µi
t)

T(βi
t + αλ), (25)

subject to 1Tµi
t = 1, µi

t ≥ 0,
t = 0, . . . , T − 1,

i = 0, . . . . , n.

This problem is particularly interesting as the class of
deterministic policies (i.e., µim

t ∈ {0, 1}) always contains the
optimal policy. In particular, agent i’s optimal quantizer at
time t is

m∗ = argminm{βim
t + αλm}. (26)

It is noteworthy that (P3) can be though of a Lagrangian
relaxation of (P2). Therefore, one might be tempted to solve
(P2) via (P3). However, (P3) will always return a deterministic
selection policy (for every value of α) which is not necessarily
an optimal solution to (P2). In other words, one may not
be able to recover the solution of (P2) from (P3) by simply
varying α. A detailed discussion on this is beyond the scope
of this letter and will be addressed elsewhere.

We conclude the discussion on quantization selection by
the remark that the optimal selection strategy can be found by
solving a centralized linear program. This LP can be solved
offline, similar to the computation of the Riccati equations
that can be carried out offline as well. This significantly aids
the practical implementation of the framework, where one
does not need to carry out an online optimization at every
time instance.

VI. CONCLUSIONS

In this letter, we revisited a decentralized linear-quadratic
optimal control problem with communication constraints. We
derived the optimal controllers as well as the optimal choice
of quantizers for the agents. We analytically quantified the
degradation in control performance due to the communication
constraints. We demonstrated that the optimal controller can
be designed based on the solution of the matrix Riccati
equations, while the optimal quantizers can be determined by

solving a linear program. Furthermore, this linear program
can be further simplified depending on the nature of the
communication constraints.
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APPENDIX

A. Proof of Lemma 1

We start by

x̂0 = E[x0 | Ic0 ] = E[x0 | z0, θ0].

Next, we use (2) to derive the definition of x̂t+1. We have,

x̂t+1 = E[xt+1 | Ict+1] = E[Axt +But + wt | Ict , zt+1, θt+1]

(a)
= E[Axt +But | Ict ] + E[wt | zt+1, θt+1],



where (a) follows the fact that wt is independent of Ict and
(xt, ut) are independent of zt+1, θt+1 which only depend on
wt. Finally,

x̂t+1 = Ax̂t +Bût + ŵt,

where ŵt = E[wt | zt+1, θt+1]. Then, the error process
evolves as

x̃t+1 = Axt +But + wt −Ax̂t +Bût + ŵt

= Ax̃t +Bũt + w̃t,

where w̃t = wt −E[wt | zt+1, θt+1], which by Assumption 1
can be further simplified to

w̃t =

w1
t − E[w1

t | z1t , θ1t+1]
...

wn
t − E[wn

t | znt , θnt+1]

 . (27)

B. Some Useful Lemmas

Lemma 2 (Completion of Square): Given a linear dynam-
ics xt+1 = Axt+But+wt, with wt being independent from
(xt, ut), we may write

E
[
xT
TQxT +

T−1∑
t=0

xT
t Qxt + uT

t Rut

]
=

E

[
T−1∑
t=0

(ut + Ltxt)
TPt+1(ut + Ltxt)

]
+ tr

(
P0E[x0x

T
0 ]
)

+
T−1∑
t=0

tr
(
Pt+1E[wtw

T
t ]
)

where Pt follows the Riccati equation (18).
Proof: The proof follows from [19].

Lemma 3 (Conditional Independence): For any fixed fea-
sible control strategy g and quantization strategy δ, the random
vectors x1:n

t , u1:n
t are conditionally independent given the

common information Ict . That is, for the collection of events
E1:n

t , where Ei
t is any measurable subset of Rdx+du ,

P
(
{xi

0:t, u
i
0:t ∈ Ei

0:t}i∈N | Ict ) =
n∏

i=1

P
(
(xi

0:t, u
i
0:t) ∈ Ei

0:t|Ict
)

Proof: Arbitrarily fix a control and quantization strate-
gies for all of the agents and define the following sigma
algebra:

Fc
t = σ(z0:t, θ0:t),

F i
t = σ(xi

0, w
i
0:t, z0:t, θ0:t).

It follows from the independence of {xi
0, w

i
0:n}i∈N that

{F i
t}i∈N are conditionally independent given Fc

t . Next, we
show the result by induction. At time t = 0, the above
statement is true because the initial conditions are independent.
Suppose this statement is true at time t. At time t + 1 we

have

P
(
{xi

0:t+1, u
i
0:t+1 ∈ Ei

0:t+1}i∈N | Ict+1)

= P
(
{xi

0:t+1, u
i
0:t+1 ∈ Ei

0:t+1}i∈N | Ict , {zit+1, θ
i
t+1}i∈N )

= P
(
{xi

0:t+1, u
i
0:t+1 ∈ Ei

0:t+1}i∈N | Ict ,

{
M∑

m=1

θimt+1δ
m(wi

t), θ
i
t+1}i∈N )

= P
(
{(Gx(xi

0:t, w
i
t, I

c
t ),Gu(xi

0:t, I
c
t )) ∈ Ei

t+1,

xi
0:t, u

i
0:t ∈ Ei

0:t}i∈N | Ict , {
M∑

m=1

θimt+1δ
m(wi

t), θ
i
t+1}i∈N ),

where Gx and Gu are functions given by the choice of the
control and quantization strategies. In the last equality, {xi

0:t

and ui
0:t are independent of wi

t and conditionally independent
of Ict for i ̸= j by the induction assumption. Furthermore,
(xi

0:t, w
i
t, I

c
t ) ∈ F i

t and hence is conditionally independent of
Fc

t . Hence, we can write

P
(
{(Lx(xi

0:t, w
i
t, I

c
t ),Lu(xi

0:t, I
c
t )) ∈ Ei

t+1

, xi
0:t, u

i
0:t ∈ Ei

0:t}i∈N | Ict , {
M∑

m=1

θimt+1δ
m(wi

t), θ
i
t+1}i∈N

)
=

n∏
i=1

P
(
(Lx(xi

0:t, w
i
t, I

c
t ),Lu(xi

0:t, I
c
t )) ∈ Ei

t+1

, xi
0:t, u

i
0:t ∈ Ei

0:t}i∈N | Ict , {
M∑

m=1

θimt+1δ
m(wi

t), θ
i
t+1

)
=

n∏
i=1

P
(
xi
0:t+1, u

i
0:t+1 ∈ Ei

0:t+1}i∈N | Ict+1

)

Corollary 1: At any given t and for given matrices Mx

and Mu,

E[x̃i
tMxx̃

j
t ] = 0, E[ũi

tMuũ
j
t ] = 0. for i ̸= j.

for any matrices Mx and Mu with compatible dimensions.
Proof: The proof follows directly from Lemma (3).

C. Proof of Theorem 1

We write JControl using the estimates in (13) and (14) as
follows:

JControl = E
[
x̂T
TQx̂T + x̃T

TQx̃T

+
T−1∑
t=0

(
x̂T
t Qx̂t + x̃T

t Qx̃t + ûT
t Rût + ũT

t Rũt

)]
= ĴControl + J̃Control,

where

ĴControl = E
[
x̂T
TQx̂T +

T−1∑
t=0

(
x̂T
t Qx̂t + ûT

t Rût

)]
J̃Control = E

[
x̃T
TQx̃T +

T−1∑
t=0

(
x̃T
t Qx̃t + ũT

t Rũt

)]
,



and one can use the tower rule to show that E[x̂T
t Qx̃t] =

E[ûT
t Qũt] = E[x̂T

TQx̃T ] = 0. For instance, we have

E[ûT
t Rũt] = E

[
E[ûT

t Rũt | Ict ]
]

(a)
= E

[
ûT
t RE[ũt | Ict ]

]
(b)
= 0

where (a) follows from the fact that ût is Ict measurable and
(b) follows from (13) and (14). We further use Corollary 1
to show

J̃Control =
n∑

i=1

E
[
(x̃i

T )
TQiix̃i

T

+
T−1∑
t=0

(
(x̃i

t)
TQiix̃i

t + (ũi
t)

TRiiũi
t

)]
.

Next, we use the following lemma.
Lemma 4: For any given matrix M̂ and M̃ with proper

dimensions, we can show that

E[
[
x̂T
t ûT

t

]
M̂ŵt] = 0

E[
[
(x̃i)Tt (ũi

t)
T
]
M̃w̃i

t] = 0
Proof: The proof stems from the fact that, for any fixed

quantization and control strategies, x̂t, ût, x̃i
t, and ũi

t are
functions of w0:t−1, while ŵt and w̃t are functions of wt.
Therefore, by Assumption 1, we can show that

E[
[
x̂T
t ûT

t

]
M̂ŵt] = E[

[
x̂T
t ûT

t

]
]M̂E[ŵt] = 0,

where the last equality holds because

E[ŵt] = E[E[wt|zt+1, θt+1]] = E[wt] = 0.

Similarly one can show that

E[
[
(x̃i

t)
T (ũi

t)
T
]
M̃w̃i

t] = E[
[
(x̃i

t)
T (ũi

t)
T
]
]M̃E[w̃i

t] = 0,

where the last equality holds because E[w̃i
t] = E[wi

t−ŵi
t] = 0.

Now, we can perform the completion of squares of Lemma 2
to both ĴControl and J̃Control. We get

JControl = tr (P0Σx̂) +
T−1∑
t=0

tr (Pt+1Σŵ)

+
n∑

i=1

[
tr
(
P̃ i
0Σ

i
x̃

)
+

T−1∑
t=0

tr
(
P̃ i
t+1Σ

i
w̃

) ]
+ E

[
T−1∑
t=0

(ût + Ltx̂t)
TPt+1(ût + Ltx̂t)

]

+
n∑

i=1

E

[
T−1∑
t=0

(ũi
t + L̃i

tx̃
i
t)

TP̃ i
t+1(ũ

i
t + L̃i

tx̃
i
t)

]
,

where

Σx̂ ≜ E[x̂0(x̂0)
T] Σŵ ≜ E[ŵt(ŵt)

T]

Σx̃ ≜ E[x̃t(x̃t)
T] = diag(Σx̃1 , . . . ,Σx̃n), Σi

x̃ ≜ E[x̃i
0(x̃

i
0)

T]

Σw̃t ≜ E[w̃t(w̃t)
T] = diag(Σ1

w̃t
, . . . ,Σn

w̃t
), Σi

w̃t
≜ E[w̃i

t(w̃
i
t)

T],

and the matrices Pt, Lt, P̃ i
t and L̃i

t are defined in (18)
and (19). It is worth noting that Pt is the common estimate
error covariance and P̃ i

t is the quantization error covariance
at each agent.

From the decomposition of JControl in above equation and
the fact that ŵt and w̃t are control free, one may conclude
that ût = −Ltx̂t and ũi

t = −L̃i
tx̃

i
t are the optimal choices.

Thus, combining the optimal choices for ût and ũt, we obtain

u∗
t = −Ltx̂t − diag(L̃1

t , . . . , L̃
n
t )x̃t,

and therefore the optimal input of agent i is

ui
t = −Li

tx̂t − L̃i
tx̃

i
t,

where Li
t is the i-th block-row of the matrix Lt. This

completes the derivation of the optimal controller. Therefore
we have,

JControl = tr (P0Σx̂) +
T−1∑
t=0

tr (Pt+1Σŵ)

+
n∑

i=1

[
tr
(
P̃ i
0Σ

i
x̃

)
+

T−1∑
t=0

tr
(
P̃ i
t+1Σ

i
w̃

) ]
.

Let us define P̃0 = diag(P̃ 1
0 , . . . , P̃

n
0 ), P̃t =

diag(P̃ 1
t , . . . , P̃

n
t ) in (a), and P̄t ≜ P̃t − P0 and denote P̄ i

t

to be the i-th diagonal block of P̄t. Consequently, we may
write

JControl = tr (P0Σx) +
T−1∑
t=0

tr (Pt+1Σw)

+
n∑

i=1

(
tr
(
P̄ i
0Σ

i
x̃

)
+

T−1∑
t=0

tr
(
P̄ i
t+1Σ

i
w̃t

) )
.

This expression helps to show explicitly how the choice of
the quantizers affects JControl. To that end, recall that Σi

w̃t
=

E[w̃i
t(w̃

i
t)

T], w̃i
t = wi

t − E[wi
t | zit+1, θ

i
t+1], and zit+1 =∑M

m=1 θ
ij
t+1δ

m(wi
t). Therefore,

w̃i
t = wi

t −
M∑

m=1

θimt+1E[wi
t | δm(wi

t)]

=
M∑

m=1

θimt+1(w
i
t − E[wi

t | δm(wi
t)]) ≜

M∑
m=1

θimt+1w̃
im
t ,

where we have used the constraint that
∑M

m=1 θ
im
t = 1 and

w̃im
t is the quantization error of quantizer m on the signal

wi
t. Consequently,

Σi
w̃t

= E

[
M∑

m=1

θimt+1w̃
im
t (w̃im

t )T

]

= E

[
E
[ M∑
m=1

θimt+1w̃
im
t (w̃im

t )T | θit+1

]]
≜ E

[
M∑

m=1

θimt+1F
im

]
,

where

F im =

ℓm∑
j=1

∫
pm
s

(w − E[w ∈ pmj ])(w − E[w ∈ pmj ])TPi(dw)

(28)



is the quantization error covariance that depends on the parti-
tions of Pm and the number of the quantization levels ℓm of
the m-th quantizer and the distribution of the source signal Pi.
Notice that F im does not depend on time since the distribution
of wi

t does not change with time due to the i.i.d assumption.
Similarly, one may obtain Σi

x̃ = E
[∑M

m=1 θ
im
0 F im

0

]
, where

F im
0 has the same expression as F im, except Pi is replaced

with the distribution of xi
0. Finally, we obtain

JControl = tr (P0Σx) +
T−1∑
t=0

tr (Pt+1Σw)

+
n∑

i=1

E
[ M∑
m=1

θim0 tr
(
P̄ i
0F

im
0

)
+

T−1∑
t=0

M∑
m=1

θimt+1tr
(
P̄ i
t+1F

im
) ]

.

We define the constants

βim
t =

{
tr
(
P̄ i
0F

im
0

)
, t = 0,

tr
(
P̄ i
tF

im
)
, otherwise,

(29)

and the vector βi
t = vec(βi1

t , . . . , βiM
t ), which yields

JControl = tr (P0Σx) +

T−1∑
t=0

tr (Pt+1Σw) +

n∑
i=1

T−1∑
t=0

E[(βi
t)

Tθit].

This completes the proof.
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