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Abstract. This paper investigates particle deposition driven by fluid evaporation in a single pore channel rep-5
resentative of those found in porous membranes. A moving boundary problem for the 2D heat6
equation is coupled with an evolution equation for the pore radius, and describes the physical pro-7
cesses of fluid evaporation, diffusion of the particle concentration, and deposition on the pore channel8
wall. Furthermore, a stochastic differential equation (SDE) approach based on a Brownian motion9
particle-level description of diffusion is used as a similar phenomenological representation to the10
partial differential equation (PDE) model. Sensitivity analysis reveals trends in dominant model11
parameters such as evaporation rate, deposition rate, the volume scaling coefficient, and investigates12
the monotonicity of concentration. Evaluations of the asymptotically reduced model and the SDE13
model against the 2D PDE model are done in terms of the pore radius and solute concentration over14
time. For further exploration, we apply the model to a 2D droplet as well with both deterministic15
and stochastic approaches.16
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1. Introduction. When fluid in an open container evaporates, any non-volatile impurities19

will eventually deposit as residue on the walls of the container. Evaporation of the solvent20

increases particle concentration until a saturation point is reached, where particles then exit21

the solution and adhere to the internal walls. The process leaves a distribution of particle mass22

on dried portions of the container. This phenomenon exists in porous media, which can be23

described as numerous layers of thin filter membranes composed of microscopic pores, where24

invasion of a volatile liquid occurs. The evaporation of the impure fluid leads to accumulation25

of deposited particles such as dirt and dust inside the pore structure. The accumulation of26

these particles has the potential to cause clogging within the pores, leading to contamination27

and overall degradation of the material. The problem is well worth investigating as different28

types of porous media appear in deep filtration and fluid transport problems, occurring natu-29

rally from extracellular space to industrial material structure [2, 6]. Pore structure, transport30

processes, and contaminant deposition all influence the solvent evaporation rate [14]. Thus,31

given the interplay of these processes, understanding the behavior and patterns of particle32

deposition and solvent evaporation can provide helpful information for industrial and medical33

fields to limit contamination and prevent clogging through improved material design.34

Existing models have investigated the evaporation process from different perspectives and35

fields, including factors such as medium properties, internal transport processes, pore geome-36

try, and pore wettability [8, 10]. For this article, the model presented follows along the lines37

of those presented in a series of annual workshops on Mathematical Problems in Industry38
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(MPI) in 2020 and 2021, where several industrial representatives from W. L. Gore & As-39

sociates presented the problem of contamination in porous media or filters. In their work,40

researchers developed a model that describes evaporation and deposition in a single cylin-41

drical pore structure [1], examined the effect of physical parameters such as pore length and42

fluid wetting properties, and observed the response of particle mass distribution to cycles of43

wetting and drying [14]. This paper makes use of similar important physical phenomena such44

as evaporation, deposition, and key model attributes (pore radius, fluid concentration).45

However, the MPI solutions require a limiting case where pores have small aspect ratios46

(i.e. they are long and narrow). This study considers the model for two-dimensional (2D)47

domains (with finite aspect ratios) with two moving boundaries, eliminating those geometric48

assumptions. Additionally, finite difference methods used on irregular boundaries can have49

lower accuracy due to limited spatial resolution, causing mass to leak from the system. To50

prevent the loss of mass, rather than having irregular domains shrink as boundaries move,51

we instead implement fixed computational domains through a change of variables. Moreover,52

this paper uses stochastic differential equations (SDEs) to model particle behavior in the bulk53

through tracking individual particle trajectories rather than the fluid body as a whole. The54

use of SDEs requires the formulation of boundary conditions at the edges of the pore channel55

and at the fluid-air interface. SDE boundary conditions are still being studied or are very56

complicated [9], so we are interested in creating SDE boundary conditions that are simpler57

and easier to manipulate. If the SDE and PDE models show phenomenological similarity, we58

will have shown the two approaches can describe evaporation and deposition processes in a59

micro-scale pore.60

Other scenarios possessing evaporation-deposition interactions include the case where fluid61

no longer spans the entirety of an open pore channel after evaporation. Surface tension62

causes the remaining fluid to adhere to side walls as droplets. Droplets along a pore channel63

are analogous to liquid spills leaving particle-laden drops on a horizontal surface. Further64

evaporation of fluid in these cases typically results in particles dispersing and leaving unique65

deposition patterns around the perimeter of the droplet or spill. The mechanism behind66

development of these ring-like deposits is commonly attributed to the coffee ring effect, and67

the phenomenon can be detrimental in materials that require uniform deposition [16]. It has68

been shown that the coffee ring effect originates from outward capillary flow and the droplet’s69

surface tension [7]. However, even without these conditions, understanding deposition patterns70

through constructing mathematical models can be helpful for many applications. Thus, to71

conduct a more comprehensive study of particle evaporation and deposition behavior, it is72

also important to investigate how these droplets evolve.73

The outline of this paper begins with the construction of the 2D PDE model, detailed from74

solving the dimensional problem to constructing the non-dimensional model on the computa-75

tional domain. The subsequent section describes the SDE model with a proposed stochastic76

algorithm and boundary conditions. Next, an asymptotically reduced 1D model is derived77

from the 2D model. Results are presented by visual comparison and numerical metrics such78

as mass and pore radius or concentration evolution, and are followed by a systematic summary79

of parameter analyses. Lastly, we apply similar computational methods and PDE vs. SDE80

comparisons to a model of an evaporating droplet.81
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accumulating wall, and thus we closely investigate the effect of these properties in our model.103

Furthermore, since the random motion of particles in the fluid is given by Brownian104

motion, it is of interest to see how an SDE model may perform alongside the PDE model,105

further described in section 3. Concentration can likewise be defined as a probability density106

function of individual particle trajectories [11]. By computationally tracking each particle107

trajectory over time as shown in Figure 1 (right), the SDE model defines concentration as108

the proportion of particles present in a given area to determine levels of saturation at the109

pore wall, from which the probability of local deposition is evaluated. The SDE model gives a110

micro-particle approach rather than illustrating macroscopic behavior. However, it is expected111

to demonstrate a good agreement of behavior with the PDE model.112

The initial pore radius is denoted as R, and the initial height of the fluid surface to the113

vertical center of the pore isH as shown in Figure 1 (left). This model assumes the dilute case;114

therefore, the pore channel is initially completely filled with fluid of low particle concentration.115

The particle concentration is also uniform across the entire fluid body. Adsorption will occur116

on the wall of the channel when local concentration near the boundary exceeds the saturation117

concentration defined in the model. The adsorption process is also irreversible, meaning118

once the particles deposit onto the wall, they do not re-enter the fluid. For computational119

purposes, we ignore the thermodynamic effects to the model including the effect of phase120

changes, temperature variations, or humidity variations. Lastly, we also neglect the net drift121

velocity of particles in the fluid.122

2.1. 2D PDE problem. As shown in Figure 1, a single 2D pore channel is sectioned with123

ẑ = 0 and x̂ = 0 being planes of symmetry horizontally and vertically. A system of partial124

differential equations is used to model the quarter section of the pore where ẑ ≥ 0 and x̂ ≥ 0,125

and t̂ as the time variable. With the assumptions above and for t̂ ≥ 0, Ĥ(t̂) is used to denote126

the height of the top flat surface from the axis x̂ = 0. The radius of the pore is represented127

by128

(2.1) R̂full(ẑ, t̂) =

{
R̂dry(ẑ) Ĥ(t̂) < ẑ ≤ H,

R̂wet(ẑ, t̂) 0 ≤ ẑ ≤ Ĥ(t̂).
129

The region Ĥ(t̂) < ẑ ≤ H, above the fluid, is considered as the ’dry’ region where the radius130

does not further evolve, and we define R̂dry(Ĥ(t̂)) := R̂wet(Ĥ(t̂), t̂) at each time by continuity131

at the interface. For the rest of the paper, the model will focus on R̂wet(ẑ, t̂), simply referred132

to as R̂(ẑ, t̂). To denote the fluid concentration, we use133

(2.2) Ĉ(x̂, ẑ, t̂) defined on the evolving domain

{
0 ≤ x̂ ≤ R̂(ẑ, t̂),

0 ≤ ẑ ≤ Ĥ(t̂).
134

The particle concentration in the pore channel is modeled by the diffusion equation, given by135

(2.3)
∂Ĉ

∂t̂
= D

(
∂2Ĉ

∂x̂2
+
∂2Ĉ

∂ẑ2

)
,136

where D is the diffusion constant. Since the model works upon a quarter section of the entire137

pore channel, the left and bottom boundaries are the planes of symmetry of the fluid body.138
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Thus, they are treated as reflecting boundaries, or Neumann symmetry boundary conditions,139

written as140

(2.4)
∂Ĉ

∂ẑ

∣∣∣∣
ẑ=0

= 0,
∂Ĉ

∂x̂

∣∣∣∣
x̂=0

= 0.141

The height of the fluid decreases due to evaporation, rendering the top surface, ẑ = Ĥ, a142

moving boundary. The decreasing height is determined by the constant evaporation rate143

(2.5)
dĤ

dt̂
= −E0,144

and the corresponding no-flux condition at the moving boundary is145

(2.6)

(
−Ĉ ∂Ĥ

∂t̂
−D

∂Ĉ

∂ẑ

)∣∣∣∣
ẑ=Ĥ(t̂)

= 0.146

Additionally, while fluid evaporates, deposition occurs when local concentration near the wall147

exceeds a defined saturation concentration Csat. The resulting precipitation flux is defined by148

Q̂(Ĉ) where149

Q̂(Ĉ) = λmax(Ĉ − Csat, 0),(2.7)150151

with λ > 0 as a dimensional deposition rate. Since deposition happens gradually at the right152

wall as time goes by, this side wall is also a moving boundary and could be represented by153

the surface x̂ = R̂(ẑ, t̂). The moving boundary condition describing a narrowing pore radius154

is then represented through a Robin boundary condition as155

(2.8)

(
−Ĉ ∂R̂

∂t̂
−D

∂Ĉ

∂x̂
+D

∂Ĉ

∂ẑ

∂R̂

∂ẑ
− Q̂(Ĉ)

√
1 + R̂2

ẑ

)∣∣∣∣
x̂=R̂(ẑ,t̂)

= 0,156

where the right boundary condition contains a flux term built upon Q̂(Ĉ). Flux exiting the157

fluid body yields particles accumulating on the wall and narrowing the pore radius. Thus, the158

inward-moving wall can be described as159

(2.9)
∂R̂

∂t̂
= −χQ̂(Ĉ)

√
1 + R̂2

ẑ, ẑ ∈ [0, Ĥ(t̂)],160

where χ > 0 is a dimensional volume scaling coefficient [14]. We use χ to describe the161

compression of particles when exiting the solvent and adhering to the wall.162

To derive the boundary conditions for Equations (2.6) and (2.8), we apply the Leibniz163

integral rule to a general expression for the rate of change of mass. The derivation is detailed164

in Appendix A. Equation (A.5), a general moving boundary condition with flux, is applied165

to: (i) the surface x̂ = R̂(ẑ, t̂) at the wall with prescribed flux of particles Q and (ii) the166

evaporating surface ẑ = Ĥ(t̂) with no flux to obtain the two Robin boundary conditions in167
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Table 1: Table of Dimensional Parameters. Values displayed comprise an example set of
parameters taken from [14]. The volume scaling coefficient is set to 0.8 as a conversion factor
between fluid concentration and the corresponding deposited volumes on the pore wall, and
the saturation concentration is chosen as 0.5 M as per [4]. These values may represent generic
reference scales that are physically plausible, or re-scaled through non-dimensionalization, as
discussed in Section 2.1.1.

Parameter Symbol Value

Evaporation rate (mm/h) E0 0.5

Diffusion rate (mm2/h) D 1

Precipitation rate coefficient (mm/h) λ 1

Volume scaling coefficient χ 0.8

Saturation concentration (mol/L) Csat 0.5

this section. Additionally, the initial conditions at t̂ = 0 of the system of PDE describing the168

pore channel is denoted as169

Ĥ(0) = H, R̂(ẑ, 0) = R on 0 ≤ ẑ ≤ H, Ĉ(x̂, ẑ, 0) = C0 on

{
0 ≤ x̂ ≤ R,

0 ≤ ẑ ≤ H.

(2.10)

170

171

Example choices of the constant parameters used in the PDE system are defined in Table 1.172

With the above initial condition, (2.5) can be solved to give the height as173

(2.11) Ĥ(t̂) = H − E0t̂.174

Then the ultimate ending time equals t̂end = H/E0, where Ĥ(t̂end) = 0 and the model stops175

as the fluid is completely evaporated. However, the model assumes dilute regimes and the176

concentration Ĉ diverges to infinity as time approaches t̂end and as the solvent evaporates.177

Thus, we will stop simulations before reaching t̂end, before the concentration becomes too178

high.179

2.1.1. Non-dimensionalization. In order to have a better understanding of the model’s180

intrinsic behavior, non-dimensionalization is applied to the 2D model with equations (2.3)-181

(2.8) so the influence of parameters does not depend on dimensional values. The results in this182

section are also implemented in the droplet model discussed in a further section. To conduct183

non-dimensionalization, the variables are re-scaled such that184

x̃ = x̂/R, x̂ ∈ [0, R̂(ẑ, t̂)] z̃ = ẑ/H, ẑ ∈ [0, Ĥ(t̂)].185186

For further convenience, the timescale T is chosen to be dependent on the rate of diffusion187

and the length of the pore: T = H
2/D. Thus, t̂ is re-scaled as188

t̃ = t̂/T.189190
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Table 2: Table of Non-dimensional Parameters

Description Symbol Value

Aspect ratio ϵ R

H

Peclet number (evaporation rate) β E0H

D

Damkohler number (deposition rate) ω λH2

DR

Volume scaling fraction γ χCsat

Initial concentration scaling ρ C0/Csat

These re-scales are then applied to concentration, radius, and precipitation flux function of191

the model, generating192

Ĉ(x̂, ẑ, t̂) = CsatC̃(x̃, z̃, t̃), R̂(ẑ, t̂) = RR̃(z̃, t̃), Q̂(Ĉ) = λCsatQ̃(C̃),193194

where now the precipitation flux is Q̃(C̃) = max(C̃−1, 0). These scaled variables and functions195

replace the dimensional counterparts in the previous equations. The dimensionless height196

(2.11) is then197

H̃(t̃) = 1− βt̃,(2.12)198199

where the Péclet number β is adopted to describe the evaporation rate. Furthermore, other200

dimensional constants are replaced with non-dimensional parameters, where a summary of201

all dimensionless parameters is listed in Table 2. For example, aspect ratio ϵ = R/H is202

used to define the geometry of the pore, and if the pore is long and narrow, ϵ approaches203

zero. That is, the original diffusion equation and boundary conditions are first scaled with204

the scaled coefficients, and then the non-dimensional parameters are substituted. The 2D205

diffusion equation (2.3) becomes206

(2.13) ϵ2C̃t̃ = C̃x̃x̃ + ϵ2C̃z̃z̃.207

The boundary conditions at the bottom and left reflecting surfaces (2.4) remain208

(2.14) C̃z̃ = 0 C̃x̃ = 0.209

The boundary condition for the top surface (2.6) transforms to210

(2.15) βC̃ − C̃z̃ = 0,211

The right boundary condition with flux due to deposition (2.8) is calculated as212

(2.16) ϵ2(C̃z̃R̃z̃ − C̃R̃t̃)− C̃x̃ = ωϵ2Q̃(C̃)

√
1 + ϵ2(R̃z̃)2213
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with ω acting as a deposition rate. The rescaled equation for the evolution of the wall (2.9)214

is now215

(2.17) ϵ2R̃t̃ = −ωγϵ2Q̃(C̃)

√
1 + ϵ2(R̃z̃)2216

with γ incorporated as the non-dimensional volume scaling coefficient. The initial conditions217

for the non-dimensional model becomes218

(2.18) C̃(x̃, z̃, 0) = ρ, R̃(z̃, 0) = 1, H̃(0) = 1.219

In the next section, we execute a change of variables to simplify numerical computation. The220

motivation behind having this nondimensionalized and non-computationally modified version221

of the system as an intermediate step is to use it for asymptotically reducing the model which222

is described later in the paper.223

2.1.2. Computational Method. To produce an accurate study of the particle concen-224

tration in the irregular domain due to the nonuniform pore wall, a numerical approach of225

transforming the physical domain onto a fixed computational domain is applied. This trans-226

formation is necessary because finite difference methods provide limited spatial resolution,227

which cannot fully capture the irregular shape of the boundary over time. Without compu-228

tational scaling, finite difference methods would introduce errors when calculating flux and229

when applying boundary conditions, often causing the system to lose mass. Therefore, the230

moving boundary problem is mapped onto fixed computational domains in both the x̃ and z̃231

direction. This is done by scaling232

x =
x̃

R̃(z̃, t̃)
, z =

z̃

H̃(t̃)
, t = t̃,233

234

such that x ∈ [0, 1] and z ∈ [0, 1]. To define C(x, z, t) and R(z, t), we apply the following235

change of variables,236

(2.19) C̃(x̃, z̃, t̃) = C

(
x̃

R̃(z̃, t̃)
,

z̃

H̃(t̃)
, t̃

)
, R̃(z̃, t̃ ) = R

(
z̃

H̃(t̃)
, t̃

)
.237

Substituting the scaled variables x and z and the scaled functions C and R into the system238

of non-dimensionalized PDEs describing the simplified 2D pore channel problem, Equation239

(2.13) simulating the main fluid body becomes240
241

(2.20) ϵ2
(
Ct +

zβ

H
Cz +

(
x

R

zβRz

H
− xRt

R
− 2xR2

z

R2H2
+
xRzz

RH2

)
Cx

)
=242

1

R2
Cxx + ϵ2

(
− 2xRz

RH2
Cxz +

(
xRz

RH

)2

Cxx +
1

H2
Czz

)
.243

244

The new equation holds on the computational domain [0, 1] × [0, 1] and the four boundary245

conditions are then transformed into246
[
ϵ2
{
−C

(
Rt −

zRz

H2

)
+
Rz

H

(
Cz

H
− CxRz

R2H

)}
− Cx

R

]

x=1

= ωϵ2Q(C)

√
1 + ϵ2

1

H2
R2

z
,(2.21)247

[
Cβ − Cz

H

]

z=1

= 0,
1

R
Cx

∣∣∣∣
x=0

= 0,
1

H
Cz

∣∣∣∣
z=0

= 0,(2.22)248
249
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and the deposition equation that describes the evolution of the wall geometry250

(2.23) ϵ2
(
Rt −

βz

H2
Rz

)
= −ωγϵ2Q(C)

√
1 +

ϵ2R2
z

H2
.251

The system of non-dimensionalized PDEs on the computational domain is solved in MATLAB,252

making use of the forward Euler method in time with an upwind scheme for Equation (2.23)253

and a centered finite difference method in space for Equation (2.20). One-sided derivatives254

were used for boundary conditions. Table 1 summarizes parameters like evaporation rate,255

precipitation rate, and other initial conditions used in the model and gives example values256

used in determining a computational solution. We may also use a range of values for each257

parameter that we use to systematically analyze the model’s behavior.258

3. SDE problem. A stochastic representation for the particle concentration will allow for259

simulations of individual particle trajectories and a particle-level understanding of the model.260

In higher dimensions, SDEs can be less computationally demanding than finite difference261

methods for PDEs and can operate on parallel machines [9]. Diffusion of particle concentration262

is inherently stochastic and is described by Brownian motion [11]. Equation (2.3) models 2D263

isotropic diffusion and can be expressed in terms of the SDEs264

(3.1) dX̂t = σ̂xdWt dẐt = σ̂zdWt.265

Here, a standard Wiener process (i.e. Brownian motion) is comprised of dWt ∼ N (0,∆t) and266

σ̂ is found from the diffusion constant D with the relationship σ̂x = σ̂z =
√
2D. However,267

in the nondimensionalized diffusion equation, Equation (2.13), the diffusion coefficient is re-268

scaled in the X̃ and Z̃ directions, and is dependent on the parameter ϵ. Values for σ̃x and σ̃z269

are
√
2/ϵ and

√
2, respectively.270

In the computational version of the problem, additional drift terms µ are generated and271

diffusion σ in the x and z directions also become interdependent. Written in vector form, the272

resultant stochastic process becomes273

dX⃗t = µ⃗(X⃗t, t)dt+ σ(X⃗t, t)dW⃗t,(3.2)274275

where µ⃗ is the drift vector, X⃗t = (Xt, Zt), and σ is a 2 by 2 matrix found from the diffusion276

tensor D = 1
2σσ

⊤. The density function for the distribution of X⃗t is governed by the Fokker-277

Planck (FP) equation [11]. In 2D, the FP equation for C(x, z, t) is278
279

(3.3)
∂C

∂t
+

∂

∂x
(µxC) +

∂

∂z
(µzC) =

∂2

∂x2
(Dxx(x, z, t)C)+280

2
∂2

∂z∂x
(Dxz(x, z, t)C) +

∂2

∂z2
(Dzz(x, z, t)C),281

282

which comes in similar form as our 2D diffusion equation (2.20) in the computational domain:283
284

(3.4) Ct +

(
x

R

zβRz

H
− xRt

R
− 2xR2

z

R2H2
+
xRzz

RH2

)
Cx +

zβ

H
Cz =285

(
1

ϵ2R2
+

(
xRz

RH

)2)
Cxx −

2xRz

RH2
Cxz +

1

H2
Czz.286

287
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We proceed with matching terms between Equations (3.3) and (3.4) (i.e. time derivatives288

term, diffusive terms with second partials, advective terms with first partials) to obtain forms289

for the drift and diffusion coefficients, µ(x, z, t) and σ(x, z, t). Then, application of these290

coefficients to Equation (3.2) gives an SDE representation of the 2D scaled model.291

Discretization of the SDE model relies on the Euler-Maruyama method, commonly used292

to simulate SDEs. The numerical approximation of Equation (3.2) becomes X⃗t+∆t − X⃗t =293

µ⃗(X⃗t, t)∆t + σ∆W⃗t. If we let ζi :=
1√
∆t

∆Wi,t ∼ N (0, 1), the step equations that govern all294

numerics for this SDE system are295

Xt+∆t −Xt = µx∆t+ (σxxζX + σxzζZ)
√
∆t(3.5)296

Zt+∆t − Zt = µz∆t+ (σxzζX + σzzζZ)
√
∆t297298

with, again, ζX and ζZ composing a 2D standard Wiener process.299

3.1. Boundary Conditions and Deposition Algorithm. The 2D SDE model consists of300

an ensemble of individual particle trajectories over time, where particles move freely in the301

fluid until encountering a boundary. The stochastic models in the previous section do not302

incorporate the influence of any boundary conditions. To supplement the SDE with boundary303

conditions, we have reflective boundary conditions following Erban and Chapman’s algorithm304

for simple reflective boundary conditions [3]. Rather than the complex Robin boundary con-305

ditions proved in Leimkuhler et al. [9], we instead govern the moving boundary condition306

with flux by probability function (3.6). Particles that hit the wall, Xt = 1, may be deposited307

depending on the local concentration of particles. The concentration will be calculated as the308

number particles in a small area near the wall divided by that area. If concentration near the309

wall is above the threshold C = 1, our approximation is to take the probability that particles310

hitting the wall actually deposit as311

(3.6) P (C) =

{
1− e−k(C−1) C ≥ 1,

0 C < 1.
312

This probability increases to 1 as C becomes large, and also includes the small possibility that313

particles do not deposit despite the concentration being over-saturated. After finding P (C),314

we generate a uniform random number and determine whether it is above P (C), depositing315

the particle if so.316

A representative step (Xt, Zt) −→ (Xt+∆t, Zt+∆t) with conditions at all four boundaries317

is described by the algorithm in Algorithm 3.1 [3]. All coordinates are scaled to a fixed318

computational domain similar to the PDE model, so particles must stay in the domain [0, 1]×319

[0, 1]. In the algorithm, a uniform random variable, called U , is compared against P (C). If320

U < P (C), the particle trajectory is terminated. If deposition occurs, the wall inches into321

the fluid and the radius decreases by a small amount δ, set to be around 0.1-1% the width of322

the pore [12]. Similar to how the volume scaling fraction γ in the PDE model accounts for323

reduction in particle size after deposition, δ is set to be a small particle size relative to the324

pore channel. As evaporation occurs, particles in the main fluid body are computationally325

scaled, but the pore channel radius is not. Thus, in response to the fluid level lowering,326
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Algorithm 3.1 Particle Trajectory (Xt, Zt) −→ (Xt+∆t, Zt+∆t)

Given Xt, Zt, t, and C(Xt, Zt, t), compute (Xt+∆t, Zt+∆t) from Equation (3.5). Also,
calculate probability P (Ct) based on an average Ct according to the number of particles in
a small neighborhood of the wall at height Zt.
while Zt+∆t < 0 or Zt+∆t > 1 do

if Zt+∆t < 0 then

Reflect: Zt+∆t = −Zt+∆t

end if

if Zt+∆t > 1 then

Reflect: Zt+∆t = 2− Zt+∆t

end if

end while

while Xt+∆t < 0 or Xt+∆t > 1 do

if Xt+∆t < 0 then

Reflect: Xt+∆t = −Xt+∆t

end if

if Xt+∆t > 1 then

Calculate probability P (Ct) from Equation (3.6) and generate a uniform random num-
ber U from (0,1)
if U < P (Ct) then

Terminate particle trajectory and decrease pore radius by approximated particle size
at height Zt (deposition)

else

Reflect: Xt+∆t = 2−Xt+∆t

end if

end if

end while

return (Xt+∆t, Zt+∆t)

the number of particles deposited on the walls is distributed according to a new partition327

of the radius in order to preserve mass. In Equation (3.6), the parameter k is a constant328

chosen to minimize mean-squared error (MSE) between the dry deposition patterns of the329

PDE and SDE model. To determine this constant, we found values for k across different330

initial conditions where the MSE is minimized, then the average, k = 0.036, is taken as the331

constant. While Leimkuhler et al. proposed a sophisticated stochastic approximation for332

Robin boundary conditions, Equation (3.6) will be shown in later sections to be a simpler,333

yet physically reasonable formulation for deposition. We recognize that the choice for (3.6)334

breaks the mathematical connection between the PDE and SDE boundary conditions, but335

also highlight that even with its simplicity it can capture the physical process of deposition336

and produce comparable deposition results.337

4. 1D Asymptotic problem. Using the same nondimensionalized parameters from Ta-338

ble 2, we now let ϵ→ 0, which implies R/H will approach zero. Recalling that ω, appearing339
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in equations (2.8) and (2.9), is defined as λH2

DR
, if the other dimensional values are held con-340

stant, ω will approach infinity. But introducing a new parameter ψ such that the relation341

λ = ψϵ holds with ψ held constant will prevent ω from producing singular limits. In Equation342

(2.13), by letting ϵ go to zero, perturbation expansions for both C̃ and R̃ to their second lead-343

ing order terms with respect to ϵ2 are C̃ = C̃0 + ϵ2C̃2 +O(ϵ4), R̃ = R̃0 + ϵ2R̃2 +O(ϵ4)[1]. We344

group by powers of ϵ for the diffusion equation (Equation (2.13)) and each boundary condition345

(Equations (2.14)-(2.17)) at O(ϵ0) and O(ϵ2). Grouped by order, the O(ϵ0) sub-problem can346

be written as347

C̃0x̃x̃ = 0, βC̃0 − C̃0z̃ = 0

∣∣∣∣
z̃=H̃

, C̃0z̃ = 0

∣∣∣∣
z̃=0

, C̃0x̃ = 0

∣∣∣∣
x̃=0,R̃0

In O(ϵ0), C̃0x̃x̃ = 0 is the PDE representing the system, and βC̃0− C̃0z̃ = 0 represents the

top boundary, C̃0z̃ = 0 represents the bottom boundary, and C̃0x̃ = 0|x̃=0,R̃0

represents the

left and right boundaries. The O(ϵ2) sub-problem is

C̃2x̃x̃ + C̃0z̃z̃ − C̃0t̃ = 0, βC̃2 − C̃2z̃ = 0, −C̃2x̃ − Q̃(C̃0)ω − C̃0R̃0t̃ + C̃0z̃R̃0z̃ = 0,

Q̃(C̃0)ωγ + R̃0t̃ = 0.

Solving for C̃0 by integration and using boundary conditions at the top and bottom reveal348

that C̃0 is independent of x̃. Further substitution derives the following asymptotically reduced349

equation for the model:350

(4.1a) − Q̃(C̃0)ω + R̃0(C̃0t̃ − C̃0z̃z̃)− C̃0R̃0z̃ + C̃0z̃R̃0z̃ = 0351

352

(4.1b) R̃0t̃ = −Q̃(C̃0)ωγ353

The simplified equation with its boundary conditions is354

(4.2a) (C̃R̃)t̃ = (C̃z̃R̃)z̃ − ωQ̃(C̃), 0 ≤ z̃ ≤ 1− βt̃355

356

(4.2b)

(
βC̃ − C̃z̃

)∣∣∣∣
z̃=1−βt̃

= 0, C̃z̃

∣∣∣∣
z̃=0

= 0357

with initial conditions H̃(0) = 1, R̃(z̃, 0) = 1, C̃(z̃, 0) = ρ. With the asymptotic model, a358

change in variables was performed similar to that of the computational version of the main359

PDE as seen in Section 2.1.2.360

5. Comparison of Results in Pore Channel Geometry. In this section, results from the361

1D asymptotic model and the SDE model are compared against the 2D PDE problem. Pore362

evolution, concentration evolution, and deposition mass are analyzed as a means of determin-363

ing if models corroborate each other.364
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Figure 4: Pore radius and concentration evolution graphs for different combinations of evapo-
ration (β) and deposition (ω) rates. Top row: low β = 0.3, high ω = 8, ρ = 0.8, and γ = 0.4.
Bottom row: high β = 2, low ω = 1, ρ = 0.8, and γ = 0.4.

evaporation limits the time for particles to accumulate, while a lower deposition rate prevents411

deposition despite a high local concentration.412

Figure 5 displays changes in R̃(z̃, t̃) due to various values for R, the initial pore width, in413

both the PDE 2D model and the asymptotically reduced model. The left graph displays the414

decrease of radius due to deposition from initial radius, that is R̃(z̃, 0.3) − R, with respect415

to z̃ at different initial radii. At ϵ = 0.1, we only see one profile because the two models416

virtually overlap. The figure supports that as ϵ goes to zero, the results from the scaled417

2D PDE model approach those of the asymptotic PDE model. An examination of deposited418

mass further validates this notion. The right graph in Figure 5 shows deposited mass, scaled419

by initial mass, in both the PDE asymptotic model (red) and the primary PDE 2D model420

(blue). In the range R ∈ [0.05, 0.1], there is a region where the two graphs coincide. Looking421

back at Figure 2, the general uniformity in concentration across x̃ also suggests that the422

1D asymptotically reduced model is a good approximation of the 2D model. In fact, the423

simulation for Figure 2 was not performed with a small aspect ratio, where ϵ = 1. Then,424

Figure 2 and Figure 5 both reveal that the asymptotic model is a reasonable approximation425
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Figure 6: Left: SDE pore evolution at t = 0.8 and with ρ = 1, D = 1, and E = 1. Right: SDE
(dotted) pore evolution compared with the PDE (solid) 2D model with ρ = 1 or C0 = 0.5,
D = 1, and β = 1.
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Figure 7: SDE and PDE 1− R̃ (left) and dry mass (right) over time until t = 0.8, with D = 1,
ρ = 1 or C0 = 0.5, and β = 1.

conditions to approximate reflected stochastic differential equations, but to our knowledge,448

how to properly treat boundary conditions with flux, like Equation (2.21), has not been449

resolved. Our proposed probabilistic boundary condition in Algorithm 3.1 can at least produce450

comparable results for the dry portion of the deposition pattern in the dilute case.451

6. Parameter Analysis in the 2D Model. This section explores how some of the param-452

eters listed in Table 2 influence model attributes, such as the pore radius at a given height453

or the monotonicity of the concentration evolution. Deposition and evaporation are noted as454

opposite processes, where the former decreases particle concentration within the fluid and the455

latter increases it. The combined mechanism is analyzed at different degrees by varying their456
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rates.457

6.1. Effects of Parameters. Highlighting specific characteristics of the model by per-458

forming sensitivity analyses on model parameters can provide critical information to improve459

industrial design. For example, the distinction between brine water and pure water (differ-460

ences in concentration, evaporation rate, and concentration evolution) is crucial for designing461

anti-fouling/anti-salt accumulation solar evaporator technology for desalination [15].462

For the following results, the system consistently evaporates to half height, or to 0.5 (with463

initial height of 1). First, we observe the relationship between pore radius at half height and464

parameters of interest. As expected, the radius decreases as the rate of deposition increases,465

though the negative relationship is not dramatic. We expect deposition and evaporation to466

work as opposing processes, where the former decreases particle concentration in the fluid467

and the latter increases concentration. Even when particles deposit from the fluid quickly,468

the rapid rate at which concentration is expected to change may be mitigated by a lower469

evaporation rate. Furthermore, the resulting radius at half height and evaporation rate have470

a positive relationship. Again, the rate at which the concentration changes is mitigated due471

to a higher evaporation rate and a relatively lower deposition rate, leading to a positive slope472

with small magnitude. In both cases, the concentration would fluctuate between being under473

and above saturation levels.474

Other observations show that decreasing the initial concentration, ρ, results in pore radii475

that are significantly larger. The converse is also true: when ρ is higher, particle deposition476

is expected to occur earlier because ρ is initially closer to the saturation concentration. Ad-477

ditionally, an inverse relationship is observed between the pore radius and the volume scaling478

coefficient, γ. If γ is low, then there is less accumulation of particles inside of the pore. A479

higher value for γ implies that the pore would clog earlier. Thus, with increasing γ, the radius480

decreases continuously until it hits 0, since a radius cannot be negative.481

In our investigation of these parameter properties, we are most interested how the system482

behaves when the evaporation rate β changes. It is not immediately obvious when exactly483

concentration reaches its saturation point. Figure 8 (left) displays results from a sensitivity484

analysis test of β and shows a curve is almost parabolic in a certain region. Therefore, there485

exists a point of stability at the critical point, where changes in β cause minimal changes486

in dR
dβ

. Labeling these points β∗, we seek to understand how stability changes when system487

parameters are altered. Relationships between β∗ and both γ (volume scaling fraction) and ω488

(deposition rate) are found to be positive and monotonically increasing. This is because the489

system constantly seeks stability, correspondingly shifting the point of stability after changing490

some parameter. In other words, one can infer the influence of a balancing force; modifying491

γ and ω require corresponding changes in the point of stability.492

6.2. Analyzing Monotonicity of Concentration. Again, due to assumptions, the radius493

must be monotonically decreasing; however, this is not the case for concentration. For ex-494

ample, Figure 8 (right) shows that in the heavily over-saturated regime, the concentration495

evolution is not monotonically increasing. This can be shown by the concentration increasing,496

then decreasing, and then increasing for parts of the profiles. Furthermore, this can be more497

easily identified by the fact that the concentration curves overlap, signifying a lack of mono-498
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Figure 10: Particle distribution within a droplet with a fully absorbing floor. Parameters are
H0 = 0.5, Hend = 0.4, D = 1, N = 40000. Left: PDE with approximated boundary conditions.
Middle: SDE with approximated boundary conditions. Right: SDE on a fixed computational
domain with a partially absorbing floor.

contains a non-flat surface, thus each surface grid point is given an averaged corner boundary,540

with one-sided derivatives following the equation DCx +
∂H(x,t)

∂t
C = 0. We compare the SDE541

and PDE model with a fully absorbing floor in Figure 10. The highest concentration of par-542

ticles occurs at the top center of the droplet and disperses as they reach the floor, where they543

are 100% absorbed. However, due to the curved surface, the gradient is not uniform across544

the horizontal, leaving the corner with the least amount of particles. This pattern can be seen545

in both cases.546

The sparsity of particles at the corner of the droplet may be attributed to 1) a lower number547

of particles reaching the corner or 2) more immediate absorption due to closer proximity to548

the floor. To determine which reason is more dominant, flux out of bottom of the droplet is549

observed for the PDE and SDE cases. For the PDE, flux is calculated at z = 0 using −D ∂C
∂z

,550

whereas its SDE counterpart simply counts the number of particle trajectories eliminated from551

the fluid after touching the floor. In Figure 11, both measurements of flux display similarly-552

shaped monotone decreasing curves, describing higher flux near the center of the droplet and553

less at the corner. If the sparsity of particles were attributed to faster adsorption (from a lower554

droplet height), the curves would be monotone increasing. Low flux at the corner indicates a555

lower number of particles reaching the droplet corner. For that reason, we expect no coffee556

ring effect [5]. This corroborates with assumptions because the model neglects surface tension557

properties needed to precipitate a ring of particles at the edge of the droplet.558

The rightmost graph in Figure 10 is a heat map of particle concentration in a compu-559

tationally scaled version of the SDE modeled droplet. Again, the Euler-Maruyama Method560

was used to approximate the SDEs found from Equation (7.2) for particles within the fluid561

body. A partially absorbing boundary is set at the floor, using the algorithm and probability562

function described in Section 3.1 and Equation (3.6). Similar patterns can be observed, where563

highest concentration exists at the peak of the droplet and the lowest concentration is found564

in the corner of the droplet. We also observed that accumulating floor deposition patterns565

indeed do not show a coffee ring effect, confirming conclusions made from graphing flux from566
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9. Future Work. Throughout this paper, we assume that the particle-laden fluids are593

originally dilute. In each simulation, we terminate the model before the evaporating surface594

reaches small ẑ, at which particles become too condensed [18, 13]. The model also assumes that595

particles are non-interacting and have negligible volume. This could be corrected using multi-596

phase mixture models that deal with higher particle density by incorporating non-constant597

diffusion. The nonlinear diffusion equation would then be598

∂ϕ

∂t
= ∇2(D(ϕ)ϕ).599

600

Utilizing the nonlinear diffusion equation and PDE-related numerical methods, we can both601

validate existing assumptions with constant diffusion and dilute regimes, and generalize initial602

conditions to non-dilute solutions.603

Additionally, we only consider a 2D quarter of the pore channel symmetric along the x̂604

and ẑ axes. A more realistic geometry would be a 3D circular cylinder; the axi-symmetric605

version was done in [14]. Other physical considerations include curved interfaces due to606

surface tension, making the height Ĥ(x̂, t̂). Depending on the mixture and the material of607

the walls, the fluid may have inward or outward curved surfaces instead, forming menisci that608

evolves over time. In our model, local concentration also has a strong correlation with the609

concentration in the whole solution. As fluid evaporates and particle concentration increases,610

local concentration near the wall becomes greater than Csat and yields deposition. We may611

also want to consider coupling the particle concentration to fluid dynamics for convection in612

the bulk. Ultimately, there is still much to be explored and expanded upon as we aim for a613

more comprehensive and thorough framework for fluid-filter phenomena.614
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Appendix A. Derivation of Moving Boundary Condition. Here we derive the form

of a prescribed-flux moving boundary condition (with prescribed normal flux J(x, t)); this is

needed on two boundaries of our model. Let C(x, z, t) be particle concentration defined on

the region 0 < x < L, 0 < z < G(x, t), and evolving according to the diffusion equation

Ct = D(Cxx + Czz).

Let F (x, z, t) := z − G(x, t) be the level set function defining the moving (top) boundary as627

F = 0. Assume there is no flux out through the left (x = 0), right (x = L), and bottom628
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(z = 0) boundaries. Define M(t) :=
∫ L

0

∫ G(x,t)
0 C(x, z, t) dzdx to be the total mass of particles629

in the domain at time t. Then, there is only flux through the top (z = G) boundary, and we630

have631

dM

dt
= −

∫

F=0
J(x, t)ds = −

∫ L

0
J(x, t)|∇F |dx(A.1)632

633

because the line integral can be represented as a single integral with respect to x, where the634

arclength ds is given by |∇F | dx. From another perspective, the rate of change in mass can635

also be expressed as636

(A.2)
dM

dt
=

∫ L

0

(∫ G(x,t)

0

∂C

∂t
dz + C(x,G(x, t), t)

∂G

∂t

)
dx637

by the Leibniz integral rule. Using the diffusion equation then gives638

dM

dt
= D

∫ L

0

∫ G(x,t)

0
∇ · ∇Cdzdx+

∫ L

0
C(x,G(x, t), t)

∂G

∂t
dx.(A.3)639

640

The double integral can be written as a line integral using the 2D Divergence Theorem,641

resulting in642

dM

dt
= D

∫

{F=0}
∇C · ∇F

|∇F |ds−
∫ L

0
C
∂F

∂t
dx.(A.4)643

644

Again, rewriting the line integral gives645

dM

dt
= D

∫ L

0
∇C · ∇Fdx−

∫ L

0
C
∂F

∂t
dx.646

647

Equating Equation A.1 and Equation A.4 gives648

D∇C · ∇F − C
∂F

∂t
= −|∇F |J649

650

and finally, using ∇F = (−Gx, 1),651

DCxGx −DCz − CGt =
√

1 +G2
x J(A.5)652653

which is then applied to the top and right boundaries in Section 2.1.654
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