

Particle Deposition Driven by Evaporation in Membrane Pores and Droplets

Dominic Jeong, Juliet Jiang, Ruohan Zhang [†]

Faculty project advisor: Thomas Witelski[†]; Graduate Student project manager: Yuqing Dai[§]

Abstract. This paper investigates particle deposition driven by fluid evaporation in a single pore channel representative of those found in porous membranes. A moving boundary problem for the 2D heat equation is coupled with an evolution equation for the pore radius, and describes the physical processes of fluid evaporation, diffusion of the particle concentration, and deposition on the pore channel wall. Furthermore, a stochastic differential equation (SDE) approach based on a Brownian motion particle-level description of diffusion is used as a similar phenomenological representation to the partial differential equation (PDE) model. Sensitivity analysis reveals trends in dominant model parameters such as evaporation rate, deposition rate, the volume scaling coefficient, and investigates the monotonicity of concentration. Evaluations of the asymptotically reduced model and the SDE model against the 2D PDE model are done in terms of the pore radius and solute concentration over time. For further exploration, we apply the model to a 2D droplet as well with both deterministic and stochastic approaches.

Key words. diffusion, evaporation, particle deposition, stochastic differential equations, partial differential equations, moving boundary problem

1. Introduction. When fluid in an open container evaporates, any non-volatile impurities eventually deposit as residue on the walls of the container. Evaporation of the solvent increases particle concentration until a saturation point is reached, where particles then exit solution and adhere to the internal walls. The process leaves a distribution of particle mass on dried portions of the container. This phenomenon exists in porous media, which can be described as numerous layers of thin filter membranes composed of microscopic pores, where evaporation of a volatile liquid occurs. The evaporation of the impure fluid leads to accumulation of deposited particles such as dirt and dust inside the pore structure. The accumulation of these particles has the potential to cause clogging within the pores, leading to contamination and overall degradation of the material. The problem is well worth investigating as different types of porous media appear in deep filtration and fluid transport problems, occurring naturally from extracellular space to industrial material structure [2, 6]. Pore structure, transport processes, and contaminant deposition all influence the solvent evaporation rate [14]. Thus, given the interplay of these processes, understanding the behavior and patterns of particle deposition and solvent evaporation can provide helpful information for industrial and medical applications to limit contamination and prevent clogging through improved material design.

Existing models have investigated the evaporation process from different perspectives and fields, including factors such as medium properties, internal transport processes, pore geometry, and pore wettability [8, 10]. For this article, the model presented follows along the lines of those presented in a series of annual workshops on Mathematical Problems in Industry

[†]Department of Mathematics, Duke University (dominic.jeong@duke.edu, juliet.jiang@duke.edu, ruohan.zhang690@duke.edu)

[†]Department of Mathematics, Duke University (witelski@math.duke.edu)

[§]Department of Mathematics, Duke University (ydai39@math.duke.edu)

39 (MPI) in 2020 and 2021, where several industrial representatives from W. L. Gore & As-
40 sociates presented the problem of contamination in porous media or filters. In their work,
41 researchers developed a model that describes evaporation and deposition in a single cylin-
42 drical pore structure [1], examined the effect of physical parameters such as pore length and
43 fluid wetting properties, and observed the response of particle mass distribution to cycles of
44 wetting and drying [14]. This paper makes use of similar important physical phenomena such
45 as evaporation, deposition, and key model attributes (pore radius, fluid concentration).

46 However, the MPI solutions require a limiting case where pores have small aspect ratios
47 (i.e. they are long and narrow). This study considers the model for two-dimensional (2D)
48 domains (with finite aspect ratios) with two moving boundaries, eliminating those geometric
49 assumptions. Additionally, finite difference methods used on irregular boundaries can have
50 lower accuracy due to limited spatial resolution, causing mass to leak from the system. To
51 prevent the loss of mass, rather than having irregular domains shrink as boundaries move,
52 we instead implement fixed computational domains through a change of variables. Moreover,
53 this paper uses stochastic differential equations (SDEs) to model particle behavior in the bulk
54 through tracking individual particle trajectories rather than the fluid body as a whole. The
55 use of SDEs requires the formulation of boundary conditions at the edges of the pore channel
56 and at the fluid-air interface. SDE boundary conditions are still being studied or are very
57 complicated [9], so we are interested in creating SDE boundary conditions that are simpler
58 and easier to manipulate. If the SDE and PDE models show phenomenological similarity, we
59 will have shown the two approaches can describe evaporation and deposition processes in a
60 micro-scale pore.

61 Other scenarios possessing evaporation-deposition interactions include the case where fluid
62 no longer spans the entirety of an open pore channel after evaporation. Surface tension
63 causes the remaining fluid to adhere to side walls as droplets. Droplets along a pore channel
64 are analogous to liquid spills leaving particle-laden drops on a horizontal surface. Further
65 evaporation of fluid in these cases typically results in particles dispersing and leaving unique
66 deposition patterns around the perimeter of the droplet or spill. The mechanism behind
67 development of these ring-like deposits is commonly attributed to the coffee ring effect, and
68 the phenomenon can be detrimental in materials that require uniform deposition [16]. It has
69 been shown that the coffee ring effect originates from outward capillary flow and the droplet's
70 surface tension [7]. However, even without these conditions, understanding deposition patterns
71 through constructing mathematical models can be helpful for many applications. Thus, to
72 conduct a more comprehensive study of particle evaporation and deposition behavior, it is
73 also important to investigate how these droplets evolve.

74 The outline of this paper begins with the construction of the 2D PDE model, detailed from
75 solving the dimensional problem to constructing the non-dimensional model on the computa-
76 tional domain. The subsequent section describes the SDE model with a proposed stochastic
77 algorithm and boundary conditions. Next, an asymptotically reduced 1D model is derived
78 from the 2D model. Results are presented by visual comparison and numerical metrics such
79 as mass and pore radius or concentration evolution, and are followed by a systematic summary
80 of parameter analyses. Lastly, we apply similar computational methods and PDE vs. SDE
81 comparisons to a model of an evaporating droplet.

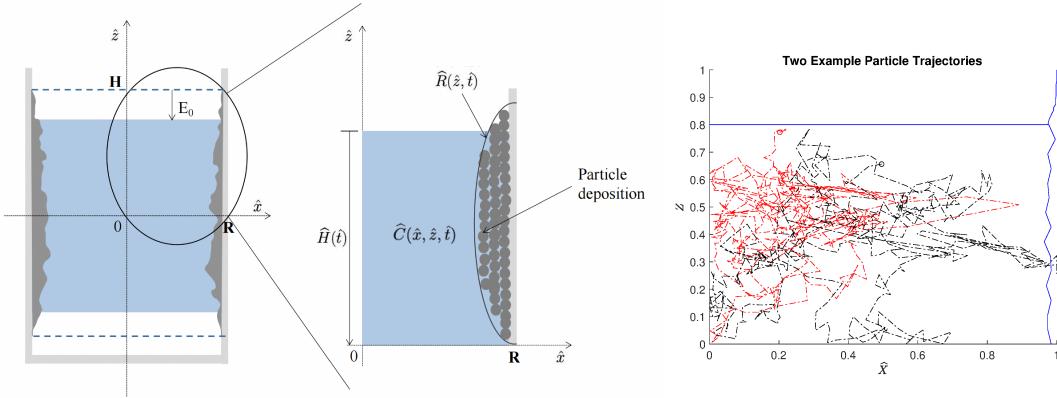


Figure 1: **Left:** Schematic of the reduction from the physical pore to the 2D quarter section described in the PDE model. \mathbf{H} and \mathbf{R} describe the initial state of the physical pore channel, whereas $\hat{R}(\hat{z}, \hat{t})$ and $\hat{H}(\hat{t})$ represent the evolving dimensions of the pore in the mathematical model. $\hat{C}(\hat{x}, \hat{z}, \hat{t})$ describes concentration in the particle-laden fluid, and E_0 , the evaporation rate, lowers the fluid height. Circular particles illustrate mass accumulation along the right wall. **Right:** Two example particle trajectories in the fluid of the SDE model. Particles move randomly and are contained in the fluid. If adsorption occurs at the wall, accumulation causes the pore radius to narrow.

82 **2. Model Formulation.** In this section, investigation of the reduced 2D model for a single
 83 pore filled with fluid is conducted. As shown in Figure 1 (left), the rectangular pore is sectioned
 84 into symmetrical quarters from the horizontal and vertical center. In the vertical direction,
 85 evaporation takes place at the upper and lower fluid-air interfaces. As evaporation occurs,
 86 fluid height decreases and particles in the fluid, represented in Figure 1 (left) in gray, are
 87 continuously deposited along the internal pore surface in the wet portions of the channel. In
 88 the dry portions of the pore, particles remain on the wall, forming a fixed distribution mass
 89 as the interface lowers. In the horizontal direction, the radius of the pore channel narrows
 90 over time due to particle accumulation on the internal wall. Therefore, the presented problem
 91 consists of two types of moving boundaries: the uniform air-fluid evaporation interface and the
 92 nonuniform, shrinking radius for the fluid-solid deposition interface. Instead of the physical
 93 meniscus shape, we assume the fluid-air interface to be flat and independent of the horizontal
 94 position \hat{x} . The fluid-air interface lowers according to a constant evaporation rate, denoted
 95 by E_0 .

96 Figure 1 (left) also shows that the model in this paper only examines the top-right section
 97 of the channel. The complete behavior of the rectangular pore with suspended liquid can be
 98 inferred from the quarter section. Gravity is neglected in the model to achieve this vertical
 99 symmetry between the upper and lower part of the fluid. The 2D diffusion equation is used to
 100 model the concentration of particles in the fluid body, and is coupled with a PDE describing
 101 the radius of the pore channel. The solvent evaporation rate, particle deposition rate, fluid
 102 initial concentration, and the diffusion of the concentration all contribute to the shape of the

103 accumulating wall, and thus we closely investigate the effect of these properties in our model.

104 Furthermore, since the random motion of particles in the fluid is given by Brownian
 105 motion, it is of interest to see how an SDE model may perform alongside the PDE model,
 106 further described in [section 3](#). Concentration can likewise be defined as a probability density
 107 function of individual particle trajectories [11]. By computationally tracking each particle
 108 trajectory over time as shown in [Figure 1](#) (right), the SDE model defines concentration as
 109 the proportion of particles present in a given area to determine levels of saturation at the
 110 pore wall, from which the probability of local deposition is evaluated. The SDE model gives a
 111 micro-particle approach rather than illustrating macroscopic behavior. However, it is expected
 112 to demonstrate a good agreement of behavior with the PDE model.

113 The initial pore radius is denoted as \mathbf{R} , and the initial height of the fluid surface to the
 114 vertical center of the pore is \mathbf{H} as shown in [Figure 1](#) (left). This model assumes the dilute case;
 115 therefore, the pore channel is initially completely filled with fluid of low particle concentration.
 116 The particle concentration is also uniform across the entire fluid body. Adsorption will occur
 117 on the wall of the channel when local concentration near the boundary exceeds the saturation
 118 concentration defined in the model. The adsorption process is also irreversible, meaning
 119 once the particles deposit onto the wall, they do not re-enter the fluid. For computational
 120 purposes, we ignore the thermodynamic effects to the model including the effect of phase
 121 changes, temperature variations, or humidity variations. Lastly, we also neglect the net drift
 122 velocity of particles in the fluid.

123 **2.1. 2D PDE problem.** As shown in [Figure 1](#), a single 2D pore channel is sectioned with
 124 $\hat{z} = 0$ and $\hat{x} = 0$ being planes of symmetry horizontally and vertically. A system of partial
 125 differential equations is used to model the quarter section of the pore where $\hat{z} \geq 0$ and $\hat{x} \geq 0$,
 126 and \hat{t} as the time variable. With the assumptions above and for $\hat{t} \geq 0$, $\hat{H}(\hat{t})$ is used to denote
 127 the height of the top flat surface from the axis $\hat{x} = 0$. The radius of the pore is represented
 128 by

$$129 \quad (2.1) \quad \hat{R}_{full}(\hat{z}, \hat{t}) = \begin{cases} \hat{R}_{dry}(\hat{z}) & \hat{H}(\hat{t}) < \hat{z} \leq \mathbf{H}, \\ \hat{R}_{wet}(\hat{z}, \hat{t}) & 0 \leq \hat{z} \leq \hat{H}(\hat{t}). \end{cases}$$

130 The region $\hat{H}(\hat{t}) < \hat{z} \leq \mathbf{H}$, above the fluid, is considered as the 'dry' region where the radius
 131 does not further evolve, and we define $\hat{R}_{dry}(\hat{H}(\hat{t})) := \hat{R}_{wet}(\hat{H}(\hat{t}), \hat{t})$ at each time by continuity
 132 at the interface. For the rest of the paper, the model will focus on $\hat{R}_{wet}(\hat{z}, \hat{t})$, simply referred
 133 to as $\hat{R}(\hat{z}, \hat{t})$. To denote the fluid concentration, we use

$$134 \quad (2.2) \quad \hat{C}(\hat{x}, \hat{z}, \hat{t}) \quad \text{defined on the evolving domain} \quad \begin{cases} 0 \leq \hat{x} \leq \hat{R}(\hat{z}, \hat{t}), \\ 0 \leq \hat{z} \leq \hat{H}(\hat{t}). \end{cases}$$

135 The particle concentration in the pore channel is modeled by the diffusion equation, given by

$$136 \quad (2.3) \quad \frac{\partial \hat{C}}{\partial \hat{t}} = D \left(\frac{\partial^2 \hat{C}}{\partial \hat{x}^2} + \frac{\partial^2 \hat{C}}{\partial \hat{z}^2} \right),$$

137 where D is the diffusion constant. Since the model works upon a quarter section of the entire
 138 pore channel, the left and bottom boundaries are the planes of symmetry of the fluid body.

139 Thus, they are treated as reflecting boundaries, or Neumann symmetry boundary conditions,
 140 written as

141 (2.4)
$$\frac{\partial \hat{C}}{\partial \hat{z}} \Big|_{\hat{z}=0} = 0, \quad \frac{\partial \hat{C}}{\partial \hat{x}} \Big|_{\hat{x}=0} = 0.$$

142 The height of the fluid decreases due to evaporation, rendering the top surface, $\hat{z} = \hat{H}$, a
 143 moving boundary. The decreasing height is determined by the constant evaporation rate

144 (2.5)
$$\frac{d\hat{H}}{d\hat{t}} = -E_0,$$

145 and the corresponding no-flux condition at the moving boundary is

146 (2.6)
$$\left(-\hat{C} \frac{\partial \hat{H}}{\partial \hat{t}} - D \frac{\partial \hat{C}}{\partial \hat{z}} \right) \Big|_{\hat{z}=\hat{H}(\hat{t})} = 0.$$

147 Additionally, while fluid evaporates, deposition occurs when local concentration near the wall
 148 exceeds a defined saturation concentration C_{sat} . The resulting precipitation flux is defined by
 149 $\hat{Q}(\hat{C})$ where

150 (2.7)
$$\hat{Q}(\hat{C}) = \lambda \max(\hat{C} - C_{sat}, 0),$$

152 with $\lambda > 0$ as a dimensional deposition rate. Since deposition happens gradually at the right
 153 wall as time goes by, this side wall is also a moving boundary and could be represented by
 154 the surface $\hat{x} = \hat{R}(\hat{z}, \hat{t})$. The moving boundary condition describing a narrowing pore radius
 155 is then represented through a Robin boundary condition as

156 (2.8)
$$\left(-\hat{C} \frac{\partial \hat{R}}{\partial \hat{t}} - D \frac{\partial \hat{C}}{\partial \hat{x}} + D \frac{\partial \hat{C}}{\partial \hat{z}} \frac{\partial \hat{R}}{\partial \hat{z}} - \hat{Q}(\hat{C}) \sqrt{1 + \hat{R}_{\hat{z}}^2} \right) \Big|_{\hat{x}=\hat{R}(\hat{z}, \hat{t})} = 0,$$

157 where the right boundary condition contains a flux term built upon $\hat{Q}(\hat{C})$. Flux exiting the
 158 fluid body yields particles accumulating on the wall and narrowing the pore radius. Thus, the
 159 inward-moving wall can be described as

160 (2.9)
$$\frac{\partial \hat{R}}{\partial \hat{t}} = -\chi \hat{Q}(\hat{C}) \sqrt{1 + \hat{R}_{\hat{z}}^2}, \quad \hat{z} \in [0, \hat{H}(\hat{t})],$$

161 where $\chi > 0$ is a dimensional volume scaling coefficient [14]. We use χ to describe the
 162 compression of particles when exiting the solvent and adhering to the wall.

163 To derive the boundary conditions for Equations (2.6) and (2.8), we apply the Leibniz
 164 integral rule to a general expression for the rate of change of mass. The derivation is detailed
 165 in [Appendix A](#). Equation (A.5), a general moving boundary condition with flux, is applied
 166 to: (i) the surface $\hat{x} = \hat{R}(\hat{z}, \hat{t})$ at the wall with prescribed flux of particles Q and (ii) the
 167 evaporating surface $\hat{z} = \hat{H}(\hat{t})$ with no flux to obtain the two Robin boundary conditions in

Table 1: Table of Dimensional Parameters. Values displayed comprise an example set of parameters taken from [14]. The volume scaling coefficient is set to 0.8 as a conversion factor between fluid concentration and the corresponding deposited volumes on the pore wall, and the saturation concentration is chosen as 0.5 M as per [4]. These values may represent generic reference scales that are physically plausible, or re-scaled through non-dimensionalization, as discussed in Section 2.1.1.

Parameter	Symbol	Value
Evaporation rate (mm/h)	E_0	0.5
Diffusion rate (mm^2/h)	D	1
Precipitation rate coefficient (mm/h)	λ	1
Volume scaling coefficient	χ	0.8
Saturation concentration (mol/L)	C_{sat}	0.5

168 this section. Additionally, the initial conditions at $\hat{t} = 0$ of the system of PDE describing the
169 pore channel is denoted as

(2.10)

170
$$\hat{H}(0) = \mathbf{H}, \quad \hat{R}(\hat{z}, 0) = \mathbf{R} \quad \text{on } 0 \leq \hat{z} \leq \mathbf{H}, \quad \hat{C}(\hat{x}, \hat{z}, 0) = \mathbf{C}_0 \quad \text{on } \begin{cases} 0 \leq \hat{x} \leq \mathbf{R}, \\ 0 \leq \hat{z} \leq \mathbf{H}. \end{cases}$$

171

172 Example choices of the constant parameters used in the PDE system are defined in Table 1.
173 With the above initial condition, (2.5) can be solved to give the height as

174 (2.11)
$$\hat{H}(\hat{t}) = \mathbf{H} - E_0 \hat{t}.$$

175 Then the ultimate ending time equals $\hat{t}_{end} = \mathbf{H}/E_0$, where $\hat{H}(\hat{t}_{end}) = 0$ and the model stops
176 as the fluid is completely evaporated. However, the model assumes dilute regimes and the
177 concentration \hat{C} diverges to infinity as time approaches \hat{t}_{end} and as the solvent evaporates.
178 Thus, we will stop simulations before reaching \hat{t}_{end} , before the concentration becomes too
179 high.

180 **2.1.1. Non-dimensionalization.** In order to have a better understanding of the model's
181 intrinsic behavior, non-dimensionalization is applied to the 2D model with equations (2.3)-
182 (2.8) so the influence of parameters does not depend on dimensional values. The results in this
183 section are also implemented in the droplet model discussed in a further section. To conduct
184 non-dimensionalization, the variables are re-scaled such that

185
$$\tilde{x} = \hat{x}/\mathbf{R}, \quad \hat{x} \in [0, \hat{R}(\hat{z}, \hat{t})] \quad \tilde{z} = \hat{z}/\mathbf{H}, \quad \hat{z} \in [0, \hat{H}(\hat{t})].$$

187 For further convenience, the timescale T is chosen to be dependent on the rate of diffusion
188 and the length of the pore: $T = \mathbf{H}^2/D$. Thus, \hat{t} is re-scaled as

189
$$\tilde{t} = \hat{t}/T.$$

Table 2: Table of Non-dimensional Parameters

Description	Symbol	Value
Aspect ratio	ϵ	$\frac{R}{H}$
Peclet number (evaporation rate)	β	$\frac{E_0 H}{D}$
Damkohler number (deposition rate)	ω	$\frac{\lambda H^2}{DR}$
Volume scaling fraction	γ	χC_{sat}
Initial concentration scaling	ρ	C_0/C_{sat}

191 These re-scales are then applied to concentration, radius, and precipitation flux function of
 192 the model, generating

$$193 \quad \tilde{C}(\tilde{x}, \tilde{z}, \tilde{t}) = C_{sat} \tilde{C}(\tilde{x}, \tilde{z}, \tilde{t}), \quad \tilde{R}(\tilde{z}, \tilde{t}) = R \tilde{R}(\tilde{z}, \tilde{t}), \quad \tilde{Q}(\tilde{C}) = \lambda C_{sat} \tilde{Q}(\tilde{C}),$$

195 where now the precipitation flux is $\tilde{Q}(\tilde{C}) = \max(\tilde{C} - 1, 0)$. These scaled variables and functions
 196 replace the dimensional counterparts in the previous equations. The dimensionless height
 197 (2.11) is then

$$198 \quad (2.12) \quad \tilde{H}(\tilde{t}) = 1 - \beta \tilde{t},$$

200 where the Péclet number β is adopted to describe the evaporation rate. Furthermore, other
 201 dimensional constants are replaced with non-dimensional parameters, where a summary of
 202 all dimensionless parameters is listed in Table 2. For example, aspect ratio $\epsilon = R/H$ is
 203 used to define the geometry of the pore, and if the pore is long and narrow, ϵ approaches
 204 zero. That is, the original diffusion equation and boundary conditions are first scaled with
 205 the scaled coefficients, and then the non-dimensional parameters are substituted. The 2D
 206 diffusion equation (2.3) becomes

$$207 \quad (2.13) \quad \epsilon^2 \tilde{C}_{\tilde{t}} = \tilde{C}_{\tilde{x}\tilde{x}} + \epsilon^2 \tilde{C}_{\tilde{z}\tilde{z}}.$$

208 The boundary conditions at the bottom and left reflecting surfaces (2.4) remain

$$209 \quad (2.14) \quad \tilde{C}_{\tilde{z}} = 0 \quad \tilde{C}_{\tilde{x}} = 0.$$

210 The boundary condition for the top surface (2.6) transforms to

$$211 \quad (2.15) \quad \beta \tilde{C} - \tilde{C}_{\tilde{z}} = 0,$$

212 The right boundary condition with flux due to deposition (2.8) is calculated as

$$213 \quad (2.16) \quad \epsilon^2 (\tilde{C}_{\tilde{z}} \tilde{R}_{\tilde{z}} - \tilde{C} \tilde{R}_{\tilde{t}}) - \tilde{C}_{\tilde{x}} = \omega \epsilon^2 \tilde{Q}(\tilde{C}) \sqrt{1 + \epsilon^2 (\tilde{R}_{\tilde{z}})^2}$$

214 with ω acting as a deposition rate. The rescaled equation for the evolution of the wall (2.9)
215 is now

216 (2.17)
$$\epsilon^2 \tilde{R}_{\tilde{t}} = -\omega \gamma \epsilon^2 \tilde{Q}(\tilde{C}) \sqrt{1 + \epsilon^2 (\tilde{R}_{\tilde{z}})^2}$$

217 with γ incorporated as the non-dimensional volume scaling coefficient. The initial conditions
218 for the non-dimensional model becomes

219 (2.18)
$$\tilde{C}(\tilde{x}, \tilde{z}, 0) = \rho, \quad \tilde{R}(\tilde{z}, 0) = 1, \quad \tilde{H}(0) = 1.$$

220 In the next section, we execute a change of variables to simplify numerical computation. The
221 motivation behind having this nondimensionalized and non-computationally modified version
222 of the system as an intermediate step is to use it for asymptotically reducing the model which
223 is described later in the paper.

224 **2.1.2. Computational Method.** To produce an accurate study of the particle concen-
225 tration in the irregular domain due to the nonuniform pore wall, a numerical approach of
226 transforming the physical domain onto a fixed computational domain is applied. This trans-
227 formation is necessary because finite difference methods provide limited spatial resolution,
228 which cannot fully capture the irregular shape of the boundary over time. Without compu-
229 tational scaling, finite difference methods would introduce errors when calculating flux and
230 when applying boundary conditions, often causing the system to lose mass. Therefore, the
231 moving boundary problem is mapped onto fixed computational domains in both the \tilde{x} and \tilde{z}
232 direction. This is done by scaling

233
$$x = \frac{\tilde{x}}{\tilde{R}(\tilde{z}, \tilde{t})}, \quad z = \frac{\tilde{z}}{\tilde{H}(\tilde{t})}, \quad t = \tilde{t},$$

234

235 such that $x \in [0, 1]$ and $z \in [0, 1]$. To define $C(x, z, t)$ and $R(z, t)$, we apply the following
236 change of variables,

237 (2.19)
$$\tilde{C}(\tilde{x}, \tilde{z}, \tilde{t}) = C\left(\frac{\tilde{x}}{\tilde{R}(\tilde{z}, \tilde{t})}, \frac{\tilde{z}}{\tilde{H}(\tilde{t})}, \tilde{t}\right), \quad \tilde{R}(\tilde{z}, \tilde{t}) = R\left(\frac{\tilde{z}}{\tilde{H}(\tilde{t})}, \tilde{t}\right).$$

238 Substituting the scaled variables x and z and the scaled functions C and R into the system
239 of non-dimensionalized PDEs describing the simplified 2D pore channel problem, Equation
240 (2.13) simulating the main fluid body becomes

241 (2.20)
$$\epsilon^2 \left(C_t + \frac{z\beta}{H} C_z + \left(\frac{x}{R} \frac{z\beta R_z}{H} - \frac{x R_t}{R} - \frac{2x R_z^2}{R^2 H^2} + \frac{x R_{zz}}{R H^2} \right) C_x \right) =$$

242
$$\frac{1}{R^2} C_{xx} + \epsilon^2 \left(-\frac{2x R_z}{R H^2} C_{xz} + \left(\frac{x R_z}{R H} \right)^2 C_{xx} + \frac{1}{H^2} C_{zz} \right).$$

243
244

245 The new equation holds on the computational domain $[0, 1] \times [0, 1]$ and the four boundary
246 conditions are then transformed into

247 (2.21)
$$\left[\epsilon^2 \left\{ -C \left(R_t - \frac{z R_z}{H^2} \right) + \frac{R_z}{H} \left(\frac{C_z}{H} - \frac{C_x R_z}{R^2 H} \right) \right\} - \frac{C_x}{R} \right]_{x=1} = \omega \epsilon^2 Q(C) \sqrt{1 + \epsilon^2 \frac{1}{H^2} R_z^2},$$

248 (2.22)
$$\left[C \beta - \frac{C_z}{H} \right]_{z=1} = 0, \quad \left. \frac{1}{R} C_x \right|_{x=0} = 0, \quad \left. \frac{1}{H} C_z \right|_{z=0} = 0,$$

249

250 and the deposition equation that describes the evolution of the wall geometry

251 (2.23)
$$\epsilon^2 \left(R_t - \frac{\beta z}{H^2} R_z \right) = -\omega \gamma \epsilon^2 Q(C) \sqrt{1 + \frac{\epsilon^2 R_z^2}{H^2}}.$$

252 The system of non-dimensionalized PDEs on the computational domain is solved in MATLAB,
 253 making use of the forward Euler method in time with an upwind scheme for Equation (2.23)
 254 and a centered finite difference method in space for Equation (2.20). One-sided derivatives
 255 were used for boundary conditions. Table 1 summarizes parameters like evaporation rate,
 256 precipitation rate, and other initial conditions used in the model and gives example values
 257 used in determining a computational solution. We may also use a range of values for each
 258 parameter that we use to systematically analyze the model's behavior.

259 **3. SDE problem.** A stochastic representation for the particle concentration will allow for
 260 simulations of individual particle trajectories and a particle-level understanding of the model.
 261 In higher dimensions, SDEs can be less computationally demanding than finite difference
 262 methods for PDEs and can operate on parallel machines [9]. Diffusion of particle concentration
 263 is inherently stochastic and is described by Brownian motion [11]. Equation (2.3) models 2D
 264 isotropic diffusion and can be expressed in terms of the SDEs

265 (3.1)
$$d\hat{X}_t = \hat{\sigma}_x dW_t \quad d\hat{Z}_t = \hat{\sigma}_z dW_t.$$

266 Here, a standard Wiener process (i.e. Brownian motion) is comprised of $dW_t \sim \mathcal{N}(0, \Delta t)$ and
 267 $\hat{\sigma}$ is found from the diffusion constant D with the relationship $\hat{\sigma}_x = \hat{\sigma}_z = \sqrt{2D}$. However,
 268 in the nondimensionalized diffusion equation, Equation (2.13), the diffusion coefficient is re-
 269 scaled in the \hat{X} and \hat{Z} directions, and is dependent on the parameter ϵ . Values for $\tilde{\sigma}_x$ and $\tilde{\sigma}_z$
 270 are $\sqrt{2}/\epsilon$ and $\sqrt{2}$, respectively.

271 In the computational version of the problem, additional drift terms μ are generated and
 272 diffusion σ in the x and z directions also become interdependent. Written in vector form, the
 273 resultant stochastic process becomes

274 (3.2)
$$d\vec{X}_t = \vec{\mu}(\vec{X}_t, t)dt + \boldsymbol{\sigma}(\vec{X}_t, t)d\vec{W}_t,$$

276 where $\vec{\mu}$ is the drift vector, $\vec{X}_t = (X_t, Z_t)$, and $\boldsymbol{\sigma}$ is a 2 by 2 matrix found from the diffusion
 277 tensor $D = \frac{1}{2}\boldsymbol{\sigma}\boldsymbol{\sigma}^\top$. The density function for the distribution of \vec{X}_t is governed by the Fokker-
 278 Planck (FP) equation [11]. In 2D, the FP equation for $C(x, z, t)$ is
 279

280 (3.3)
$$\frac{\partial C}{\partial t} + \frac{\partial}{\partial x}(\mu_x C) + \frac{\partial}{\partial z}(\mu_z C) = \frac{\partial^2}{\partial x^2}(D_{xx}(x, z, t)C) +$$

 281
$$2 \frac{\partial^2}{\partial z \partial x}(D_{xz}(x, z, t)C) + \frac{\partial^2}{\partial z^2}(D_{zz}(x, z, t)C),$$

283 which comes in similar form as our 2D diffusion equation (2.20) in the computational domain:
 284

285 (3.4)
$$C_t + \left(\frac{x}{R} \frac{z\beta R_z}{H} - \frac{xR_t}{R} - \frac{2xR_z^2}{R^2 H^2} + \frac{xR_{zz}}{RH^2} \right) C_x + \frac{z\beta}{H} C_z =$$

 286
$$\left(\frac{1}{\epsilon^2 R^2} + \left(\frac{xR_z}{RH} \right)^2 \right) C_{xx} - \frac{2xR_z}{RH^2} C_{xz} + \frac{1}{H^2} C_{zz}.$$

288 We proceed with matching terms between Equations (3.3) and (3.4) (i.e. time derivatives
289 term, diffusive terms with second partials, advective terms with first partials) to obtain forms
290 for the drift and diffusion coefficients, $\mu(x, z, t)$ and $\sigma(x, z, t)$. Then, application of these
291 coefficients to Equation (3.2) gives an SDE representation of the 2D scaled model.

292 Discretization of the SDE model relies on the Euler-Maruyama method, commonly used
293 to simulate SDEs. The numerical approximation of Equation (3.2) becomes $\vec{X}_{t+\Delta t} - \vec{X}_t =$
294 $\vec{\mu}(\vec{X}_t, t)\Delta t + \sigma \Delta \vec{W}_t$. If we let $\zeta_i := \frac{1}{\sqrt{\Delta t}} \Delta W_{i,t} \sim \mathcal{N}(0, 1)$, the step equations that govern all
295 numerics for this SDE system are

296 (3.5)
$$X_{t+\Delta t} - X_t = \mu_x \Delta t + (\sigma_{xx} \zeta_X + \sigma_{xz} \zeta_Z) \sqrt{\Delta t}$$

297
$$Z_{t+\Delta t} - Z_t = \mu_z \Delta t + (\sigma_{xz} \zeta_X + \sigma_{zz} \zeta_Z) \sqrt{\Delta t}$$

299 with, again, ζ_X and ζ_Z composing a 2D standard Wiener process.

300 **3.1. Boundary Conditions and Deposition Algorithm.** The 2D SDE model consists of
301 an ensemble of individual particle trajectories over time, where particles move freely in the
302 fluid until encountering a boundary. The stochastic models in the previous section do not
303 incorporate the influence of any boundary conditions. To supplement the SDE with boundary
304 conditions, we have reflective boundary conditions following Erban and Chapman's algorithm
305 for simple reflective boundary conditions [3]. Rather than the complex Robin boundary con-
306 ditions proved in Leimkuhler et al. [9], we instead govern the moving boundary condition
307 with flux by probability function (3.6). Particles that hit the wall, $X_t = 1$, may be deposited
308 depending on the local concentration of particles. The concentration will be calculated as the
309 number particles in a small area near the wall divided by that area. If concentration near the
310 wall is above the threshold $C = 1$, our approximation is to take the probability that particles
311 hitting the wall actually deposit as

312 (3.6)
$$P(C) = \begin{cases} 1 - e^{-k(C-1)} & C \geq 1, \\ 0 & C < 1. \end{cases}$$

313 This probability increases to 1 as C becomes large, and also includes the small possibility that
314 particles do not deposit despite the concentration being over-saturated. After finding $P(C)$,
315 we generate a uniform random number and determine whether it is above $P(C)$, depositing
316 the particle if so.

317 A representative step $(X_t, Z_t) \rightarrow (X_{t+\Delta t}, Z_{t+\Delta t})$ with conditions at all four boundaries
318 is described by the algorithm in [Algorithm 3.1](#) [3]. All coordinates are scaled to a fixed
319 computational domain similar to the PDE model, so particles must stay in the domain $[0, 1] \times$
320 $[0, 1]$. In the algorithm, a uniform random variable, called U , is compared against $P(C)$. If
321 $U < P(C)$, the particle trajectory is terminated. If deposition occurs, the wall inches into
322 the fluid and the radius decreases by a small amount δ , set to be around 0.1-1% the width of
323 the pore [12]. Similar to how the volume scaling fraction γ in the PDE model accounts for
324 reduction in particle size after deposition, δ is set to be a small particle size relative to the
325 pore channel. As evaporation occurs, particles in the main fluid body are computationally
326 scaled, but the pore channel radius is not. Thus, in response to the fluid level lowering,

Algorithm 3.1 Particle Trajectory $(X_t, Z_t) \rightarrow (X_{t+\Delta t}, Z_{t+\Delta t})$

Given X_t , Z_t , t , and $C(X_t, Z_t, t)$, compute $(X_{t+\Delta t}, Z_{t+\Delta t})$ from Equation (3.5). Also, calculate probability $P(C_t)$ based on an average C_t according to the number of particles in a small neighborhood of the wall at height Z_t .

```

while  $Z_{t+\Delta t} < 0$  or  $Z_{t+\Delta t} > 1$  do
    if  $Z_{t+\Delta t} < 0$  then
        Reflect:  $Z_{t+\Delta t} = -Z_{t+\Delta t}$ 
    end if
    if  $Z_{t+\Delta t} > 1$  then
        Reflect:  $Z_{t+\Delta t} = 2 - Z_{t+\Delta t}$ 
    end if
end while
while  $X_{t+\Delta t} < 0$  or  $X_{t+\Delta t} > 1$  do
    if  $X_{t+\Delta t} < 0$  then
        Reflect:  $X_{t+\Delta t} = -X_{t+\Delta t}$ 
    end if
    if  $X_{t+\Delta t} > 1$  then
        Calculate probability  $P(C_t)$  from Equation (3.6) and generate a uniform random number  $U$  from  $(0,1)$ 
        if  $U < P(C_t)$  then
            Terminate particle trajectory and decrease pore radius by approximated particle size
            at height  $Z_t$  (deposition)
        else
            Reflect:  $X_{t+\Delta t} = 2 - X_{t+\Delta t}$ 
        end if
    end if
end while
return  $(X_{t+\Delta t}, Z_{t+\Delta t})$ 

```

327 the number of particles deposited on the walls is distributed according to a new partition
 328 of the radius in order to preserve mass. In Equation (3.6), the parameter k is a constant
 329 chosen to minimize mean-squared error (MSE) between the dry deposition patterns of the
 330 PDE and SDE model. To determine this constant, we found values for k across different
 331 initial conditions where the MSE is minimized, then the average, $k = 0.036$, is taken as the
 332 constant. While Leimkuhler et al. proposed a sophisticated stochastic approximation for
 333 Robin boundary conditions, Equation (3.6) will be shown in later sections to be a simpler,
 334 yet physically reasonable formulation for deposition. We recognize that the choice for (3.6)
 335 breaks the mathematical connection between the PDE and SDE boundary conditions, but
 336 also highlight that even with its simplicity it can capture the physical process of deposition
 337 and produce comparable deposition results.

338 **4. 1D Asymptotic problem.** Using the same nondimensionalized parameters from Table 2, we now let $\epsilon \rightarrow 0$, which implies \mathbf{R}/\mathbf{H} will approach zero. Recalling that ω , appearing

340 in equations (2.8) and (2.9), is defined as $\frac{\lambda H^2}{DR}$, if the other dimensional values are held con-
 341 stant, ω will approach infinity. But introducing a new parameter ψ such that the relation
 342 $\lambda = \psi\epsilon$ holds with ψ held constant will prevent ω from producing singular limits. In Equation
 343 (2.13), by letting ϵ go to zero, perturbation expansions for both \tilde{C} and \tilde{R} to their second lead-
 344 ing order terms with respect to ϵ^2 are $\tilde{C} = \tilde{C}_0 + \epsilon^2 \tilde{C}_2 + O(\epsilon^4)$, $\tilde{R} = \tilde{R}_0 + \epsilon^2 \tilde{R}_2 + O(\epsilon^4)$ [1]. We
 345 group by powers of ϵ for the diffusion equation (Equation (2.13)) and each boundary condition
 346 (Equations (2.14)-(2.17)) at $O(\epsilon^0)$ and $O(\epsilon^2)$. Grouped by order, the $O(\epsilon^0)$ sub-problem can
 347 be written as

$$\tilde{C}_{0\tilde{x}\tilde{x}} = 0, \quad \beta\tilde{C}_0 - \tilde{C}_{0\tilde{z}} = 0 \Big|_{\tilde{z}=\tilde{H}}, \quad \tilde{C}_{0\tilde{z}} = 0 \Big|_{\tilde{z}=0}, \quad \tilde{C}_{0\tilde{x}} = 0 \Big|_{\tilde{x}=0, \tilde{R}_0}$$

In $O(\epsilon^0)$, $\tilde{C}_{0\tilde{x}\tilde{x}} = 0$ is the PDE representing the system, and $\beta\tilde{C}_0 - \tilde{C}_{0\tilde{z}} = 0$ represents the top boundary, $\tilde{C}_{0\tilde{z}} = 0$ represents the bottom boundary, and $\tilde{C}_{0\tilde{x}} = 0|_{\tilde{x}=0, \tilde{R}_0}$ represents the left and right boundaries. The $O(\epsilon^2)$ sub-problem is

$$\begin{aligned} \tilde{C}_{2\tilde{x}\tilde{x}} + \tilde{C}_{0\tilde{z}\tilde{z}} - \tilde{C}_{0\tilde{t}} = 0, \quad \beta\tilde{C}_2 - \tilde{C}_{2\tilde{z}} = 0, \quad -\tilde{C}_{2\tilde{x}} - \tilde{Q}(\tilde{C}_0)\omega - \tilde{C}_0\tilde{R}_{0\tilde{t}} + \tilde{C}_{0\tilde{z}}\tilde{R}_{0\tilde{z}} = 0, \\ \tilde{Q}(\tilde{C}_0)\omega\gamma + \tilde{R}_{0\tilde{t}} = 0. \end{aligned}$$

348 Solving for \tilde{C}_0 by integration and using boundary conditions at the top and bottom reveal
 349 that \tilde{C}_0 is independent of \tilde{x} . Further substitution derives the following asymptotically reduced
 350 equation for the model:

351 (4.1a)
$$-\tilde{Q}(\tilde{C}_0)\omega + \tilde{R}_0(\tilde{C}_{0\tilde{t}} - \tilde{C}_{0\tilde{z}\tilde{z}}) - \tilde{C}_0\tilde{R}_{0\tilde{z}} + \tilde{C}_{0\tilde{z}}\tilde{R}_{0\tilde{z}} = 0$$

352

353 (4.1b)
$$\tilde{R}_{0\tilde{t}} = -\tilde{Q}(\tilde{C}_0)\omega\gamma$$

354 The simplified equation with its boundary conditions is

355 (4.2a)
$$(\tilde{C}\tilde{R})_{\tilde{t}} = (\tilde{C}_{\tilde{z}}\tilde{R})_{\tilde{z}} - \omega\tilde{Q}(\tilde{C}), \quad 0 \leq \tilde{z} \leq 1 - \beta\tilde{t}$$

356

357 (4.2b)
$$\left(\beta\tilde{C} - \tilde{C}_{\tilde{z}} \right) \Big|_{\tilde{z}=1-\beta\tilde{t}} = 0, \quad \tilde{C}_{\tilde{z}} \Big|_{\tilde{z}=0} = 0$$

358 with initial conditions $\tilde{H}(0) = 1$, $\tilde{R}(\tilde{z}, 0) = 1$, $\tilde{C}(\tilde{z}, 0) = \rho$. With the asymptotic model, a
 359 change in variables was performed similar to that of the computational version of the main
 360 PDE as seen in Section 2.1.2.

361 **5. Comparison of Results in Pore Channel Geometry.** In this section, results from the
 362 1D asymptotic model and the SDE model are compared against the 2D PDE problem. Pore
 363 evolution, concentration evolution, and deposition mass are analyzed as a means of determin-
 364 ing if models corroborate each other.

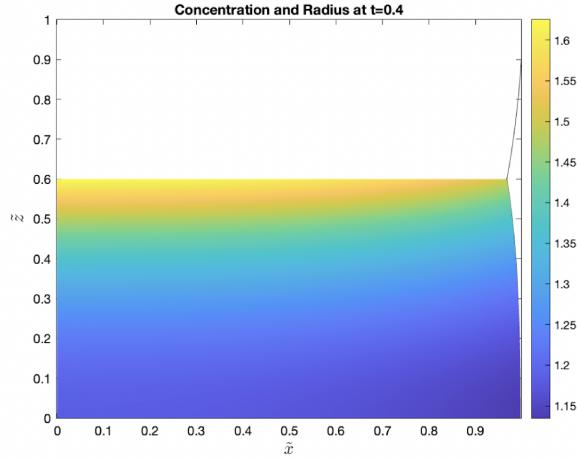


Figure 2: Concentration color plot and deposition pattern of the 2D PDE model at $t = 0.4$ with $\beta = 1$, $\omega = 0.6$, and $\mathbf{R} = 1$.

365 **5.1. 2D PDE vs. 1D Asymptotic PDE.** When the evaporating interface reaches a small
 366 height, the diminishing fluid volume and the increasing concentration of particles causes the
 367 model to enter a high concentration regime. Given that the model is dependent upon the
 368 assumption that particles have negligible volume, we no longer have confidence in the model
 369 when the concentration is no longer dilute. For all following results, simulations terminate at
 370 around heights 0.2 or 0.3, chosen from observation based on the combination of parameters
 371 in Table 1 as an estimation of the margin before the remaining fluid becomes too dense.

372 Figure 2 is a color plot of particle concentration when fluid height reaches 0.6 with $\beta = 1$.
 373 The figure is not displayed in the computational domain but in the non-dimensionalized
 374 physical \tilde{x} - \tilde{z} plane. The radius profile is $\tilde{R}_{full}(\tilde{z}, \tilde{t})$, but plotted with inverted axes to visually
 375 show how a deposition pattern may appear on a vertical pore channel wall. Greater adsorption
 376 occurs where local concentration far exceeds saturation ($\tilde{C} > 1$), which we can see is most
 377 common near the evaporating surface, where the yellow color demonstrates highest particle
 378 concentration. Concentration is usually highest at the surface due to evaporation, and thus,
 379 regardless of different initial conditions, the pore radius at the surface will also be the narrowest
 380 at the current fluid height. Note that concentration is relatively uniform across \tilde{x} , besides
 381 slightly higher values towards the top center of the pore. Thus, averaging concentration
 382 values across \tilde{x} will give a representative measurement of particle concentration at a given
 383 height \tilde{z} . In order to reduce the multi-variate function \tilde{C} shown in the color plot to 1D
 384 curves, we find

385 (5.1)
$$\langle \tilde{C} \rangle := \frac{1}{\tilde{R}} \int_0^{\tilde{R}} \tilde{C}(\tilde{x}, \tilde{z}, \tilde{t}) d\tilde{x}.$$

386 Figure 3 is an example of a pore radius evolution plot and its corresponding concentration
 387 evolution plot. In Figure 3 (left), the horizontal arrow indicates the pore radius narrowing

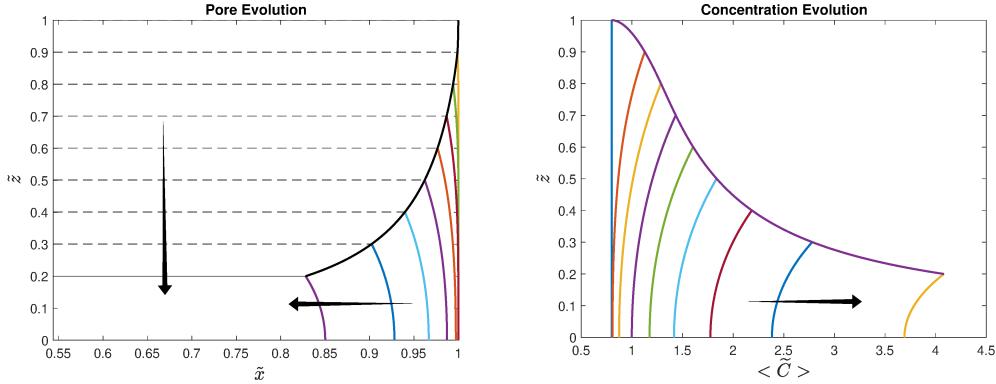


Figure 3: Evolution profiles produced by the 2D PDE model with $\mathbf{R} = 1$ and $\rho = 0.8$. Left: Pore Wall Evolution. Dotted lines demonstrate the decreasing fluid surface level at specific time points, and arrows indicate the direction of motion for top and right boundaries. Right: Concentration Evolution. The arrow shows direction of concentration evolution over time. Concentration profiles are determined from taking the mean concentration across \tilde{x} for a given \tilde{z} .

388 inward over time due to deposition and the vertical arrow illustrates the fluid height decreasing
 389 during evaporation. Curves drawn at each 0.1 decrease in fluid height show particle deposition
 390 adding mass to the changing pore wall. $\tilde{R}_{dry}(\tilde{z})$ lies above the fluid-air interface. At $\tilde{t} = 0.8$,
 391 the dry region above $\tilde{z} = 0.2$ (solid black line) is fixed and no longer experiences deposition,
 392 while anything below the black line is still submerged in fluid. We also plot the lowering
 393 interface with dashed black lines at each 0.1 increment. It is also noticeable in the figure that
 394 deposition does not begin immediately. Instead, deposition starts at around $\tilde{z} = 0.95$ due to
 395 the fluid starting under-saturated at $\rho = 0.8$.

396 The concentration evolution graph uses Equation (5.1) to find 1D concentration profiles,
 397 and plots them sideways to match the pore radius evolution graph. The initial profile in
 398 Figure 3 (right) is vertical line at ρ , with uniform concentration and no change in the system
 399 yet. Again at every 0.1 decrease in height, we plot the 1D curve at each time step, signified
 400 by different colors. The concentration is not uniform at each $\tilde{z} \neq 0$. The arrow further
 401 demonstrates to read the plot from left to right, since generally, the concentration increases
 402 as the height of the pore decreases. In both plots, we end the simulation at $\tilde{z} = 0.2$.

403 Deposition coefficient ω and evaporation rate β can be altered to investigate variations in
 404 the radius and concentration evolution. The radius evolution graph in Figure 4 reveals that
 405 a higher deposition rate coupled with a lower evaporation rate results in the radius rapidly
 406 shooting inward after a delayed initiation of deposition at around $\tilde{z} = 0.85$. For concentration,
 407 on the other hand, the low β high ω parameter combination leads to a drastic increase in fluid
 408 concentration towards the beginning but slows down dramatically after the fluid height reaches
 409 0.7. Where there are high evaporation and low deposition rates instead, we see significantly
 410 less deposition and a concentration profile with larger concentration values in general. Faster

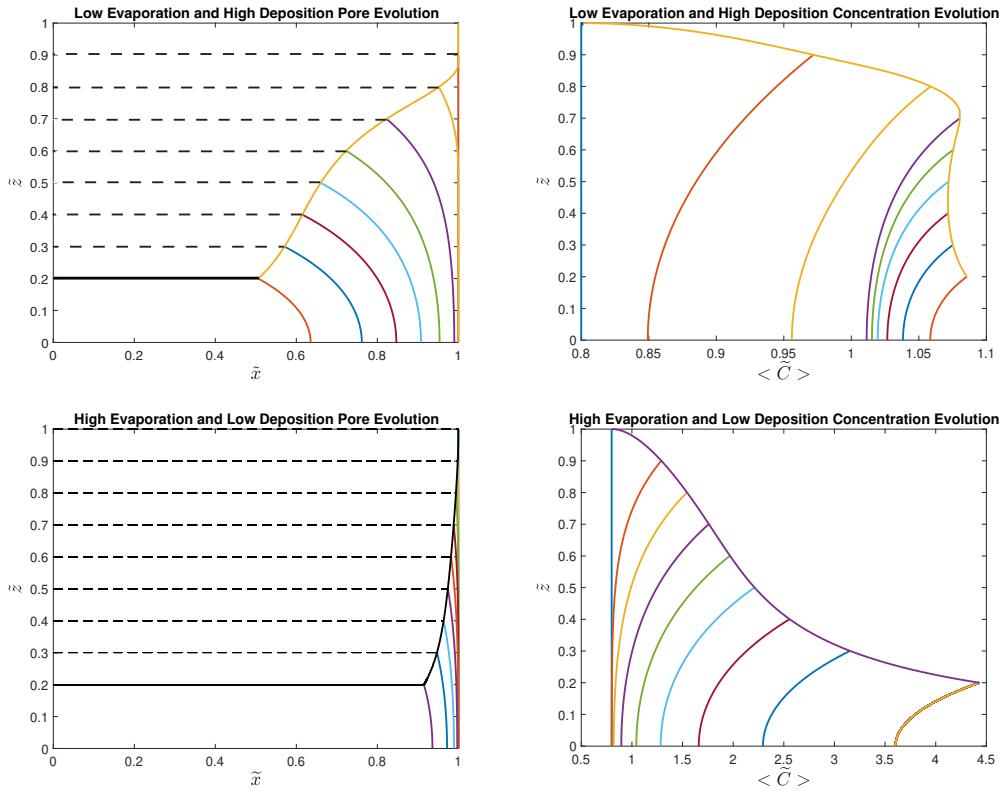


Figure 4: Pore radius and concentration evolution graphs for different combinations of evaporation (β) and deposition (ω) rates. Top row: low $\beta = 0.3$, high $\omega = 8$, $\rho = 0.8$, and $\gamma = 0.4$. Bottom row: high $\beta = 2$, low $\omega = 1$, $\rho = 0.8$, and $\gamma = 0.4$.

411 evaporation limits the time for particles to accumulate, while a lower deposition rate prevents
 412 deposition despite a high local concentration.

413 **Figure 5** displays changes in $\tilde{R}(\tilde{z}, \tilde{t})$ due to various values for \mathbf{R} , the initial pore width, in
 414 both the PDE 2D model and the asymptotically reduced model. The left graph displays the
 415 decrease of radius due to deposition from initial radius, that is $\tilde{R}(\tilde{z}, 0.3) - \mathbf{R}$, with respect
 416 to \tilde{z} at different initial radii. At $\epsilon = 0.1$, we only see one profile because the two models
 417 virtually overlap. The figure supports that as ϵ goes to zero, the results from the scaled
 418 2D PDE model approach those of the asymptotic PDE model. An examination of deposited
 419 mass further validates this notion. The right graph in **Figure 5** shows deposited mass, scaled
 420 by initial mass, in both the PDE asymptotic model (red) and the primary PDE 2D model
 421 (blue). In the range $\mathbf{R} \in [0.05, 0.1]$, there is a region where the two graphs coincide. Looking
 422 back at **Figure 2**, the general uniformity in concentration across \tilde{x} also suggests that the
 423 1D asymptotically reduced model is a good approximation of the 2D model. In fact, the
 424 simulation for **Figure 2** was not performed with a small aspect ratio, where $\epsilon = 1$. Then,
 425 **Figure 2** and **Figure 5** both reveal that the asymptotic model is a reasonable approximation

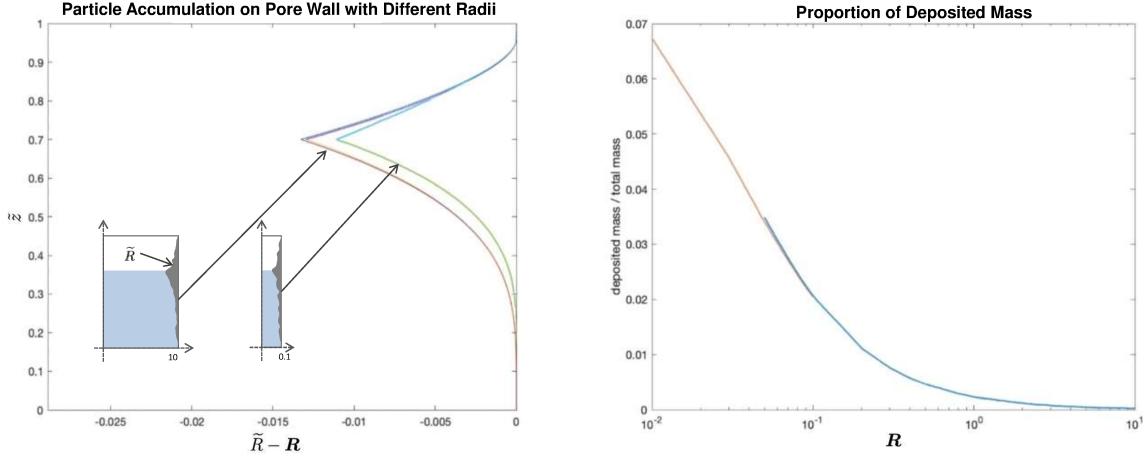


Figure 5: Left: $\tilde{R}(\tilde{z}, 0.3) - R$ with $R = 10$, $R = 1$, $R = 0.1$ from left to right. Right: Mass of Deposited Particles/Total particles with respect to R , with R on a logarithmic scale ($R = 0.01$ to $R = 0.1$ for asymptotic model (red); $R = 0.05$ to $R = 10$ for PDE 2D model (blue)).

426 of the 2D model, especially at relatively small aspect ratios.

427 **5.2. Comparing PDE Model and SDE Model.** Pore evolution in the SDE 2D model can
428 also be graphed with both dry and wet sections shown together at different times, shown in
429 Figure 6. As described in Section 3.1, we calculate the probability that particles exit the
430 fluid by measuring local concentration at the wall. As fluid evaporates, particles become more
431 packed and dense, resulting in higher probability for deposition and thus a gradual decrease in
432 pore radius over time. The SDE model was also simulated in MATLAB. Comparing the SDE
433 and PDE models on the same graph in Figure 6 shows that the dry portions of the deposited
434 pattern agree, even more so at earlier times. Deposition patterns in the wet sections are
435 dissimilar; however, we observe that when more fluid evaporates, the accumulated dry patterns
436 still match up well. Differences in the PDE and SDE models appear to emerge towards the
437 end of the simulation, but at that time, both models may be inaccurate from failure in holding
438 the dilute assumption.

439 In both models, accumulation on the walls shows a concave-up pattern, with the peak
440 height of accumulation at the fluid-air interface. Figure 7 (left) is a graph of the maximum
441 accumulation $(1 - \tilde{R})$ over time for one set of parameters, giving a percent error of 16.7% with
442 the PDE model as the theoretical result. The right graph shows total dry mass over time,
443 or total accumulation in $\tilde{R}_{dry}(\tilde{z})$. There is close agreement between the two models, with a
444 percent error of 5.4%.

445 We have observed general similarities between the SDE and PDE results, but we believe
446 that differences appear from how boundary conditions are treated, particularly in the presence
447 of flux or partial adsorption. Leimkuhler et al. [9] derived accurate stochastic Robin boundary

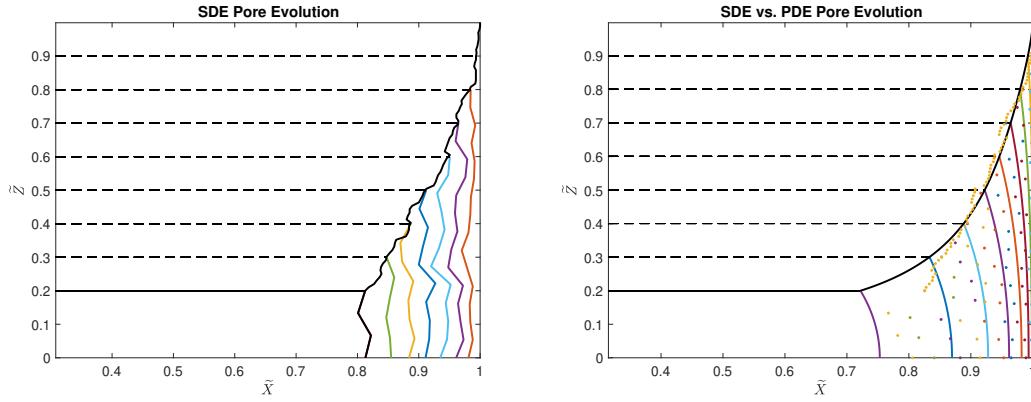


Figure 6: Left: SDE pore evolution at $t = 0.8$ and with $\rho = 1$, $D = 1$, and $E = 1$. Right: SDE (dotted) pore evolution compared with the PDE (solid) 2D model with $\rho = 1$ or $C_0 = 0.5$, $D = 1$, and $\beta = 1$.

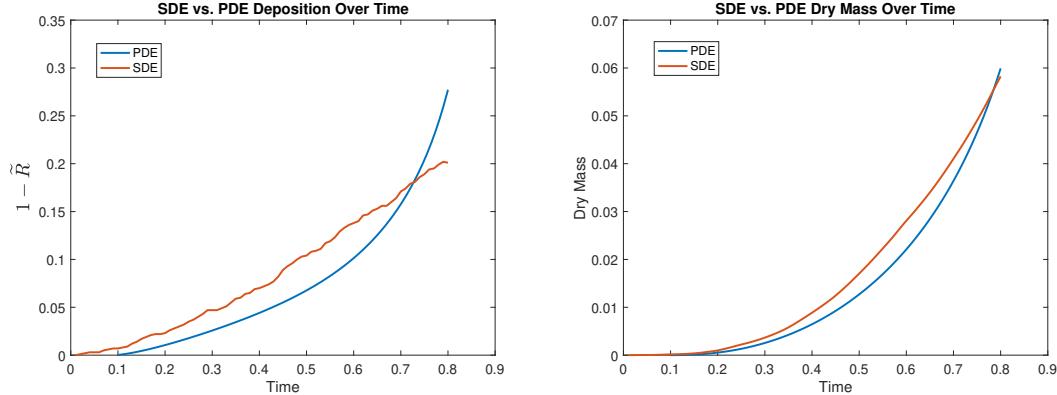


Figure 7: SDE and PDE $1 - \tilde{R}$ (left) and dry mass (right) over time until $t = 0.8$, with $D = 1$, $\rho = 1$ or $C_0 = 0.5$, and $\beta = 1$.

448 conditions to approximate reflected stochastic differential equations, but to our knowledge,
 449 how to properly treat boundary conditions with flux, like Equation (2.21), has not been
 450 resolved. Our proposed probabilistic boundary condition in [Algorithm 3.1](#) can at least produce
 451 comparable results for the dry portion of the deposition pattern in the dilute case.

452 **6. Parameter Analysis in the 2D Model.** This section explores how some of the parameters listed in [Table 2](#) influence model attributes, such as the pore radius at a given height
 453 or the monotonicity of the concentration evolution. Deposition and evaporation are noted as
 454 opposite processes, where the former decreases particle concentration within the fluid and the
 455 latter increases it. The combined mechanism is analyzed at different degrees by varying their

457 rates.

458 **6.1. Effects of Parameters.** Highlighting specific characteristics of the model by per-
 459 forming sensitivity analyses on model parameters can provide critical information to improve
 460 industrial design. For example, the distinction between brine water and pure water (differ-
 461 ences in concentration, evaporation rate, and concentration evolution) is crucial for designing
 462 anti-fouling/anti-salt accumulation solar evaporator technology for desalination [15].

463 For the following results, the system consistently evaporates to half height, or to 0.5 (with
 464 initial height of 1). First, we observe the relationship between pore radius at half height and
 465 parameters of interest. As expected, the radius decreases as the rate of deposition increases,
 466 though the negative relationship is not dramatic. We expect deposition and evaporation to
 467 work as opposing processes, where the former decreases particle concentration in the fluid
 468 and the latter increases concentration. Even when particles deposit from the fluid quickly,
 469 the rapid rate at which concentration is expected to change may be mitigated by a lower
 470 evaporation rate. Furthermore, the resulting radius at half height and evaporation rate have
 471 a positive relationship. Again, the rate at which the concentration changes is mitigated due
 472 to a higher evaporation rate and a relatively lower deposition rate, leading to a positive slope
 473 with small magnitude. In both cases, the concentration would fluctuate between being under
 474 and above saturation levels.

475 Other observations show that decreasing the initial concentration, ρ , results in pore radii
 476 that are significantly larger. The converse is also true: when ρ is higher, particle deposition
 477 is expected to occur earlier because ρ is initially closer to the saturation concentration. Ad-
 478 ditionally, an inverse relationship is observed between the pore radius and the volume scaling
 479 coefficient, γ . If γ is low, then there is less accumulation of particles inside of the pore. A
 480 higher value for γ implies that the pore would clog earlier. Thus, with increasing γ , the radius
 481 decreases continuously until it hits 0, since a radius cannot be negative.

482 In our investigation of these parameter properties, we are most interested how the system
 483 behaves when the evaporation rate β changes. It is not immediately obvious when exactly
 484 concentration reaches its saturation point. [Figure 8](#) (left) displays results from a sensitivity
 485 analysis test of β and shows a curve is almost parabolic in a certain region. Therefore, there
 486 exists a point of stability at the critical point, where changes in β cause minimal changes
 487 in $\frac{dR}{d\beta}$. Labeling these points β^* , we seek to understand how stability changes when system
 488 parameters are altered. Relationships between β^* and both γ (volume scaling fraction) and ω
 489 (deposition rate) are found to be positive and monotonically increasing. This is because the
 490 system constantly seeks stability, correspondingly shifting the point of stability after changing
 491 some parameter. In other words, one can infer the influence of a balancing force; modifying
 492 γ and ω require corresponding changes in the point of stability.

493 **6.2. Analyzing Monotonicity of Concentration.** Again, due to assumptions, the radius
 494 must be monotonically decreasing; however, this is not the case for concentration. For ex-
 495 ample, [Figure 8](#) (right) shows that in the heavily over-saturated regime, the concentration
 496 evolution is not monotonically increasing. This can be shown by the concentration increasing,
 497 then decreasing, and then increasing for parts of the profiles. Furthermore, this can be more
 498 easily identified by the fact that the concentration curves overlap, signifying a lack of mono-

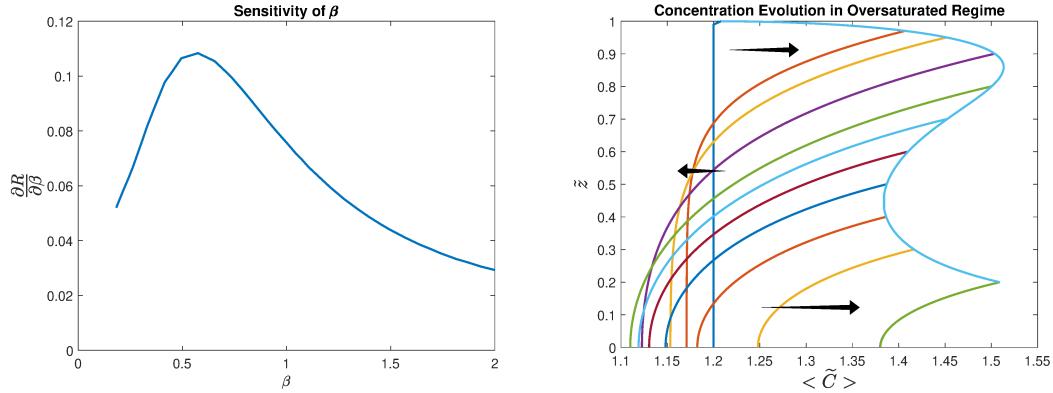


Figure 8: Top: $\partial R / \partial \beta$ (at height 0.5) against varying values of β . Bottom: Non-monotone concentration evolution in the over-saturated regime with $\beta = 1$, $\gamma = 0.4$, $\omega = 10$, and $\rho = 1.2$.

tonicity. To determine the criteria condition for non-monotone concentration evolution, the relationship between monotonicity of concentration evolution, ρ (scaled initial concentration), and γ is investigated. The result is demonstrated in the heat map Figure 9, where dark blue represents non-monotone concentration evolution and light blue represents monotone concentration evolution, γ is the horizontal axis and ρ is the vertical axis. Concentration appears to be non-monotone for large ρ . However, some points beyond C_{sat} (i.e. $\rho = 2$) contain initial conditions that still produce a monotone concentration evolution, possibly due to model assumptions creating close relations between local concentration and concentration in the rest of the fluid. Model assumptions also neglect that drift velocity (assumed to be zero) within the fluid which can contribute to imbalances in concentration in the fluid.

7. Droplet Model. Previously, we discussed models in which it was assumed that fluids reached from end of the wall to the other. However, in events in which this may not occur, droplets may potentially form. With this in mind, the two most prevalent scenarios for modeling a droplet is fixing either the radius of the droplet or the contact angle [17]. This paper will work with the former, and models the droplet surface with the parabolic equation

$$(7.1) \quad \tilde{H}(\tilde{x}, \tilde{t}) = \tilde{h}(\tilde{t}) \left(1 - \left(\frac{\tilde{x}}{\mathbf{R}} \right)^2 \right),$$

where $\tilde{h}(\tilde{t}) = 1 - \beta \tilde{t}$ is the maximum height and \mathbf{R} is the fixed contact radius, set to 1. Again, only a half section of the 2D droplet is considered, drawn as a 2D parabola with an axis of symmetry at $\tilde{x} = 0$. In the PDE droplet model, the 2D nondimensionalized diffusion equation (2.13) is used to describe concentration within the droplet.

Discretizing the evolution of curved boundaries is more complex, so the top boundary of the droplet is approximated in a way that conserves particle mass. After evaporation, particles above the fluid-air interface are redistributed normal to the boundary, back into the

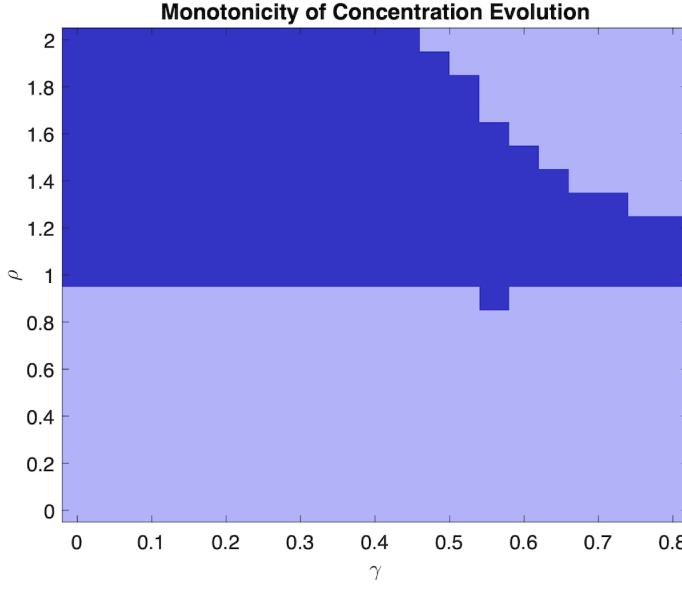


Figure 9: Regions of monotone vs. non-monotone concentration evolution according to variations in γ and ρ . Dark blue: non-monotone concentration evolution. Light blue: monotone concentration evolution.

522 computational domain. A fully absorbing boundary condition is chosen for the floor. Again,
 523 one-sided derivatives are implemented for the PDE boundary conditions.

524 The SDE algorithm is similar to the 2D model, where particles are reflected from the
 525 left and bottoms walls according to [Algorithm 3.1](#); but, particles are reflected according to
 526 the normal vector at the boundary. Computational scaling for the droplet model in the SDE
 527 version of the droplet model similarly consists of bridging the scaled diffusion equation with
 528 the 2D FP equation, given by

529

$$530 \quad (7.2) \quad \frac{\partial C}{\partial t} - \frac{\partial C}{\partial z} \frac{\partial H}{\partial t} \frac{z}{H} = \\ 531 \quad D \left(\frac{\partial^2 C}{\partial x^2} - \frac{\partial^2 C}{\partial x \partial z} \frac{\partial H}{\partial x} \frac{z}{H} + \left(\frac{\partial H}{\partial t} \right)^2 \frac{\partial^2 C}{\partial z^2} \left(\frac{z}{H} \right)^2 + 2 \frac{\partial C}{\partial z} \left(\frac{\partial H}{\partial x} \right)^2 \frac{z}{H^2} - \frac{\partial C}{\partial z} \frac{\partial^2 H}{\partial x^2} \frac{z}{H} + \frac{\partial^2 C}{\partial z^2} \frac{1}{H^2} \right)$$

533 for $0 \leq z \leq 1$. Matching the velocity terms and the scaled diffusion coefficients, again the 2
 534 by 2 matrix $\sigma(\vec{x}, t)$ and the 2D vector $\vec{\mu}$ are solved for to write step equations just like [\(3.5\)](#).

535 **7.1. Droplet Results.** As previously mentioned, the PDE droplet has boundary condi-
 536 tions that match those of the SDE droplet in 1D. For the left boundary, one-sided Neumann
 537 boundaries are used in the PDE model and particles are reflected in the SDE model. At the
 538 floor, we implement a fully absorbing Dirichlet boundary for the PDE model and eliminate
 539 any trajectories that cross the floor for the SDE model. Unlike the 2D model, the droplet

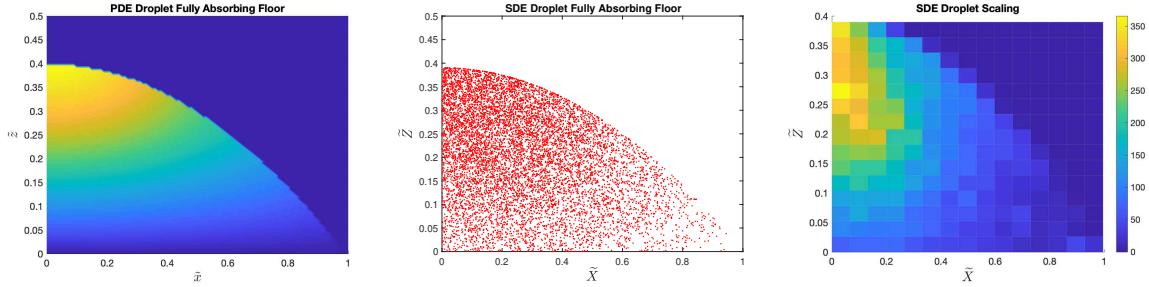


Figure 10: Particle distribution within a droplet with a fully absorbing floor. Parameters are $H_0 = 0.5$, $H_{end} = 0.4$, $D = 1$, $N = 40000$. Left: PDE with approximated boundary conditions. Middle: SDE with approximated boundary conditions. Right: SDE on a fixed computational domain with a partially absorbing floor.

540 contains a non-flat surface, thus each surface grid point is given an averaged corner boundary,
 541 with one-sided derivatives following the equation $DC_x + \frac{\partial H(x,t)}{\partial t}C = 0$. We compare the SDE
 542 and PDE model with a fully absorbing floor in Figure 10. The highest concentration of par-
 543 ticles occurs at the top center of the droplet and disperses as they reach the floor, where they
 544 are 100% absorbed. However, due to the curved surface, the gradient is not uniform across
 545 the horizontal, leaving the corner with the least amount of particles. This pattern can be seen
 546 in both cases.

547 The sparsity of particles at the corner of the droplet may be attributed to 1) a lower number
 548 of particles reaching the corner or 2) more immediate absorption due to closer proximity to
 549 the floor. To determine which reason is more dominant, flux out of bottom of the droplet is
 550 observed for the PDE and SDE cases. For the PDE, flux is calculated at $z = 0$ using $-D \frac{\partial C}{\partial z}$,
 551 whereas its SDE counterpart simply counts the number of particle trajectories eliminated from
 552 the fluid after touching the floor. In Figure 11, both measurements of flux display similarly-
 553 shaped monotone decreasing curves, describing higher flux near the center of the droplet and
 554 less at the corner. If the sparsity of particles were attributed to faster adsorption (from a lower
 555 droplet height), the curves would be monotone increasing. Low flux at the corner indicates a
 556 lower number of particles reaching the droplet corner. For that reason, we expect no coffee
 557 ring effect [5]. This corroborates with assumptions because the model neglects surface tension
 558 properties needed to precipitate a ring of particles at the edge of the droplet.

559 The rightmost graph in Figure 10 is a heat map of particle concentration in a computa-
 560 tionally scaled version of the SDE modeled droplet. Again, the Euler-Maruyama Method
 561 was used to approximate the SDEs found from Equation (7.2) for particles within the fluid
 562 body. A partially absorbing boundary is set at the floor, using the algorithm and probability
 563 function described in Section 3.1 and Equation (3.6). Similar patterns can be observed, where
 564 highest concentration exists at the peak of the droplet and the lowest concentration is found
 565 in the corner of the droplet. We also observed that accumulating floor deposition patterns
 566 indeed do not show a coffee ring effect, confirming conclusions made from graphing flux from

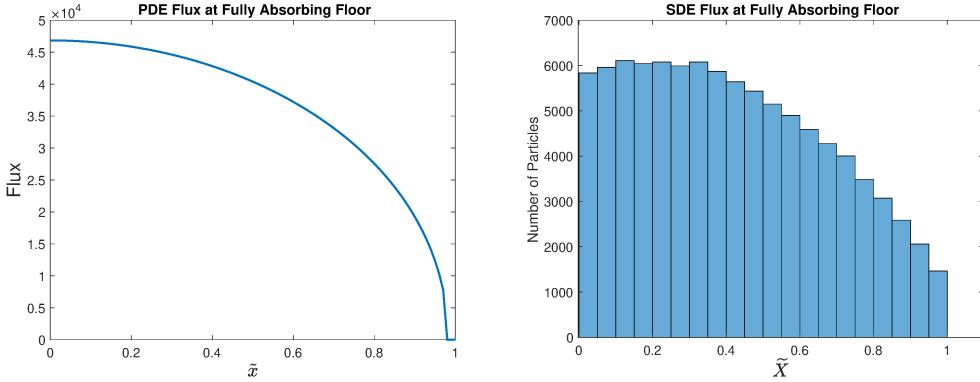


Figure 11: Flux distribution of a droplet with $H_0 = 0.5, H_{end} = 0.3, D = 1, n = 40000$ particles. Left: PDE, Right: SDE.

567 a fully absorbing floor.

568 **8. Conclusion.** Greater understanding of particle deposition in porous material resulting
 569 from the evaporation of impure fluids can help mitigate long-term contamination or clogging,
 570 optimizing membrane performance in various industrial applications, such as fabrics and other
 571 filtration systems. This study provides a comprehensive study and parameter analysis on
 572 particle behavior in pores with a 2D model that does not rely on a small aspect ratio. Vi-
 573 sualizations of particle concentration give insight to particle distribution throughout a fluid,
 574 as well as pore radius and averaged concentration evolution patterns over time. Results show
 575 that particle deposition must accumulate given the assumption that deposition is irreversible,
 576 whereas concentration evolution is not necessarily monotonically increasing. The 2D PDE
 577 model produces steady results with initial radii between 0.05 to 10, where smaller radii begin
 578 exhibiting a small aspect ratio and give way to the asymptotically-reduced 2D PDE model.
 579 The asymptotic model is more computationally efficient for small initial radius (< 0.1).

580 Furthermore, the PDE model is compared with a stochastic interpretation that originates
 581 from leveraging connections between the 2D scaled diffusion equation and the 2D Fokker-
 582 Planck equation. A new algorithm for a partially absorbing SDE boundary is proposed.
 583 While there are some discrepancies in the behaviors of the PDE and SDE models, there
 584 are noticeable similarities between the models that allow for both a macro- and micro-scale
 585 understanding of physical phenomena in a fluid-filled pore channel. In particular, the SDE
 586 model is simpler when exploring different wall geometries, altering boundary conditions, and
 587 adding variation to particle-specific behaviors.

588 Since the PDE 2D model allows us to accommodate curved surfaces, the last part of
 589 the study investigates the behavior of a parabolic fluid-air interface through modeling the
 590 evaporation and deposition in a droplet. Concentration of particles and flux are visually
 591 comparable, exhibiting similar patterns. The SDE model, scaled or unscaled, is easier to
 592 manipulate and account for complex boundary conditions.

593 **9. Future Work.** Throughout this paper, we assume that the particle-laden fluids are
 594 originally dilute. In each simulation, we terminate the model before the evaporating surface
 595 reaches small \hat{z} , at which particles become too condensed [18, 13]. The model also assumes that
 596 particles are non-interacting and have negligible volume. This could be corrected using multi-
 597 phase mixture models that deal with higher particle density by incorporating non-constant
 598 diffusion. The nonlinear diffusion equation would then be

$$\frac{\partial \phi}{\partial t} = \nabla^2(D(\phi)\phi).$$

601 Utilizing the nonlinear diffusion equation and PDE-related numerical methods, we can both
 602 validate existing assumptions with constant diffusion and dilute regimes, and generalize initial
 603 conditions to non-dilute solutions.

604 Additionally, we only consider a 2D quarter of the pore channel symmetric along the \hat{x}
 605 and \hat{z} axes. A more realistic geometry would be a 3D circular cylinder; the axi-symmetric
 606 version was done in [14]. Other physical considerations include curved interfaces due to
 607 surface tension, making the height $\hat{H}(\hat{x}, \hat{t})$. Depending on the mixture and the material of
 608 the walls, the fluid may have inward or outward curved surfaces instead, forming menisci that
 609 evolves over time. In our model, local concentration also has a strong correlation with the
 610 concentration in the whole solution. As fluid evaporates and particle concentration increases,
 611 local concentration near the wall becomes greater than C_{sat} and yields deposition. We may
 612 also want to consider coupling the particle concentration to fluid dynamics for convection in
 613 the bulk. Ultimately, there is still much to be explored and expanded upon as we aim for a
 614 more comprehensive and thorough framework for fluid-filter phenomena.

615 **Acknowledgments.** This article would not have been possible without the exceptional
 616 support of our faculty supervisor, Dr. Thomas Witelski, and our graduate student supervi-
 617 sor, Yuqing Dai. We give credit to the study group report written during the 37th Annual
 618 Workshop on Mathematical Problems in Industry (MPI) in 2021, published in Mathemat-
 619 ics in Industry Reports, for proposing the topics discussed in this paper and for laying the
 620 foundation for our research. We would also like to show our gratitude to Dr. Vasu Venkatesh-
 621 waran from W. L. Gore & Associates, a material science company, who gave an industrial
 622 perspective to our work. An additional acknowledgement goes to Dr. Jonathan Mattingly for
 623 providing insight to stochastic boundary conditions. Lastly, we are also immensely grateful
 624 to Dr. Heekyoung Hahn and Dr. Lenhard Ng, co-directors for the D0math program, for pro-
 625 viding us with this opportunity. Some support for our project was provided by Dr. Witelski's
 626 grant, NSF DMS 2008255.

Appendix A. Derivation of Moving Boundary Condition. Here we derive the form
 of a prescribed-flux moving boundary condition (with prescribed normal flux $J(x, t)$); this is
 needed on two boundaries of our model. Let $C(x, z, t)$ be particle concentration defined on
 the region $0 < x < L$, $0 < z < G(x, t)$, and evolving according to the diffusion equation

$$C_t = D(C_{xx} + C_{zz}).$$

627 Let $F(x, z, t) := z - G(x, t)$ be the level set function defining the moving (top) boundary as
 628 $F = 0$. Assume there is no flux out through the left ($x = 0$), right ($x = L$), and bottom

629 $(z = 0)$ boundaries. Define $M(t) := \int_0^L \int_0^{G(x,t)} C(x, z, t) dz dx$ to be the total mass of particles
 630 in the domain at time t . Then, there is only flux through the top ($z = G$) boundary, and we
 631 have

632 (A.1)
$$\frac{dM}{dt} = - \int_{F=0} J(x, t) ds = - \int_0^L J(x, t) |\nabla F| dx$$

634 because the line integral can be represented as a single integral with respect to x , where the
 635 arclength ds is given by $|\nabla F| dx$. From another perspective, the rate of change in mass can
 636 also be expressed as

637 (A.2)
$$\frac{dM}{dt} = \int_0^L \left(\int_0^{G(x,t)} \frac{\partial C}{\partial t} dz + C(x, G(x,t), t) \frac{\partial G}{\partial t} \right) dx$$

638 by the Leibniz integral rule. Using the diffusion equation then gives

639 (A.3)
$$\frac{dM}{dt} = D \int_0^L \int_0^{G(x,t)} \nabla \cdot \nabla C dz dx + \int_0^L C(x, G(x,t), t) \frac{\partial G}{\partial t} dx.$$

641 The double integral can be written as a line integral using the 2D Divergence Theorem,
 642 resulting in

643 (A.4)
$$\frac{dM}{dt} = D \int_{\{F=0\}} \nabla C \cdot \frac{\nabla F}{|\nabla F|} ds - \int_0^L C \frac{\partial F}{\partial t} dx.$$

645 Again, rewriting the line integral gives

646
$$\frac{dM}{dt} = D \int_0^L \nabla C \cdot \nabla F dx - \int_0^L C \frac{\partial F}{\partial t} dx.$$

648 Equating Equation A.1 and Equation A.4 gives

649
$$D \nabla C \cdot \nabla F - C \frac{\partial F}{\partial t} = -|\nabla F| J$$

651 and finally, using $\nabla F = (-G_x, 1)$,

652 (A.5)
$$DC_x G_x - DC_z - CG_t = \sqrt{1 + G_x^2} J$$

654 which is then applied to the top and right boundaries in Section 2.1.

655

REFERENCES

656 [1] C. BREWARD, F. B. PLANELLA, D. A. EDWARDS, K. KIRADJIEV, A. KOVACS, S. L. SMITH, D. RUM-
 657 SCHITZKI, P. SANAEI, Y. SUN, T. WITELSKI, AND M. ZYSKIN, Evaporation from porous media,
 658 pore-level analysis. 36th MPI workshop report, 2020.

659 [2] M. K. DAS, P. P. MUKHERJEE, AND K. MURALIDHAR, Porous media applications: biological systems,
 660 in Modeling Transport Phenomena in Porous Media with Applications, Springer, 2018, pp. 123–154.

661 [3] R. ERBAN AND S. J. CHAPMAN, Stochastic modelling of reaction–diffusion processes, vol. 60, Cambridge
662 University Press, 2020.

663 [4] D. GROLIMUND, M. ELIMELECH, AND M. BORKOVEC, Aggregation and deposition kinetics of mobile
664 colloidal particles in natural porous media, *Colloids and Surfaces A: Physicochemical and Engineering*
665 *Aspects*, 191 (2001), pp. 179–188.

666 [5] E. HE, D. GUO, AND Z. LI, A widely applicable strategy for coffee-ring effect suppression and controllable
667 deposition of nanoparticles utilizing ice drying, *Advanced Materials Interfaces*, 6 (2019), p. 1900446.

668 [6] J. HERZIG, D. LECLERC, AND P. L. GOFF, Flow of suspensions through porous media—application to
669 deep filtration, *Industrial & Engineering Chemistry*, 62 (1970), pp. 8–35.

670 [7] C. N. KAPLAN AND L. MAHADEVAN, Evaporation-driven ring and film deposition from colloidal droplets,
671 *Journal of Fluid Mechanics*, 781 (2015), p. R2, <https://doi.org/10.1017/jfm.2015.496>.

672 [8] P. LEHMANN, S. ASSOULINE, AND D. OR, Characteristic lengths affecting evaporative drying of porous
673 media, *Phys. Rev. E*, 77 (2008), p. 056309, <https://doi.org/10.1103/PhysRevE.77.056309>.

674 [9] B. LEIMKUHLER, A. SHARMA, AND M. V. TRETYAKOV, Simplest random walk for approximating robin
675 boundary value problems and ergodic limits of reflected diffusions, *The Annals of Applied Probability*,
676 33 (2023), pp. 1904–1960.

677 [10] T. METZGER AND E. TSOTSAS, Influence of pore size distribution on drying kinetics: A simple capillary
678 model, *Drying Technology*, 23 (2005), pp. 1797–1809, <https://doi.org/10.1080/07373930500209830>.

679 [11] G. A. PAVLIOTIS, Stochastic processes and applications: diffusion processes, the
680 Fokker-Planck and Langevin equations, vol. 60, Springer, 2014.

681 [12] A. J. PELLEY AND N. TUFENKJI, Effect of particle size and natural organic matter on the migration
682 of nano-and microscale latex particles in saturated porous media, *Journal of colloid and interface*
683 *science*, 321 (2008), pp. 74–83.

684 [13] A. F. ROUTH AND W. B. ZIMMERMAN, Distribution of particles during solvent evaporation from films,
685 *Chemical Engineering Science*, 59 (2004), pp. 2961–2968.

686 [14] P. SANAEI, C. BREWARD, M. ELLIS, S. HAN, B. HOLZER, H. JI, H. EL KAHZA, S. L. SMITH, S. PARSA,
687 H. REYNOLDS, J. TROY, T. WITELSKI, N. ZHANG, AND M. ZYSKIN, Evaporation and deposition in
688 porous media, *Mathematics in Industry Reports*, (2021).

689 [15] Y. SHI, C. ZHANG, R. LI, S. ZHUO, Y. JIN, L. SHI, S. HONG, J. CHANG, C. ONG, AND P. WANG, Solar
690 evaporator with controlled salt precipitation for zero liquid discharge desalination, *Environmental*
691 *science & technology*, 52 (2018), pp. 11822–11830.

692 [16] S. F. SHIMOBAYASHI, M. TSUDOME, AND T. KURIMURA, Suppression of the coffee-ring effect by
693 sugar-assisted depinning of contact line, *Scientific reports*, 8 (2018), p. 17769.

694 [17] J. M. STAUBER, S. K. WILSON, B. R. DUFFY, AND K. SEFIANE, On the lifetimes of evaporating droplets,
695 *Journal of Fluid Mechanics*, 744 (2014).

696 [18] T. YOO, B. CHUN, AND H. W. JUNG, Practical drying model for horizontal colloidal films in rapid
697 evaporation processes, *Drying Technology*, 40 (2022), pp. 516–526.