Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Smoothed Complexity of SWAP in Local Graph Partitioning”

Xi Chen' Chenghao Guot
Columbia University MIT
xichen@cs.columbia.edu chenghao@mit.edu
Emmanouil V. Vlatakis-Gkaragkounis$ Mihalis Yannakakis
University California, Berkeley Columbia University
emvlatakis@berkeley.edu mihalis@cs.columbia.edu
Abstract

We give the first quasipolynomial upper bound ¢nPY8() for the smoothed complexity of the SWAP
algorithm for local Graph Partitioning (also known as Bisection Width) under the full perturbation model,
where 7 is the number of nodes in the graph and ¢ is a parameter that measures the magnitude of perturbations
applied on its edge weights. More generally, we show that the same quasipolynomial upper bound holds for
the smoothed complexity of the 2-FLIP algorithm for any binary Maximum Constraint Satisfaction Problem,
including local Max-Cut, for which similar bounds were only known for 1-FLIP. Our results are based on an
analysis of a new notion of useful cycles in the multigraph formed by long sequences of double flips, showing
that it is unlikely for every double flip in a long sequence to incur a positive but small improvement in the cut
weight.

1 Introduction

Local search has been a powerful machinery for a plethora of problems in combinatorial optimization, from
the classical Simplex algorithm for linear programming to the gradient descent method for modern machine
learning problems, to effective heuristics (e.g. Kernighan-Lin) for basic combinatorial problems such as
the Traveling Salesman Problem and Graph Partitioning. A local search algorithm begins with an initial
candidate solution and then follows a path by iteratively moving to a better neighboring solution until a
local optimum in its neighborhood is reached. The quality of the obtained solutions depends of course on
how rich is the neighborhood structure that is explored by the algorithm. Local search is a popular approach
to optimization because of the general applicability of the method and the fact that the algorithms typically
run fast in practice. In contrast to their empirical fast convergence, however, many local search algorithms
have exponential running time in the worst case due to delicate pathological instances that one may never
expect to encounter in practice. To bridge this striking discrepancy, Spielman and Teng [26] proposed the
framework of smoothed analysis, a hybrid of the classical worst-case and average-case analyses. They used
it to provide rigorous justifications for the empirical performance of the Simplex algorithm by showing its
smoothed complexity to be polynomial. Since then, the smoothed analysis of algorithms and problems
from combinatorial optimization [5, 14, 23], among many other research areas such as numerical methods
[12, 6, 23, 16], machine learning [8, 2, 3, 25] and algorithmic game theory [9, 10, 4, 27], has been studied
extensively .

In this paper we study the smoothed complexity of local search algorithms for the classical problem of
Graph Partitioning (also known as Bisection Width in the literature). In the problem we are given edge weights

" “The full version of the paper can be accessed at https://arxiv.org/abs/2305.15804
fSupported by NSF 11S-1838154, CCF-2106429 and CCF-2107187.
*Supported by NSF TRIPODS program award DMS-2022448 and by NSF Career Award CCF-1940205, CCF- 2131115.
SSupported by Postdoctoral FODSI Simons-Fellowship.
ISupported by NSF CCF-2107187 and CCF-2212233, and by Amazon.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5057

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

X = (X : e € Epy) of a complete graph Ky, = (Va,,, Ezy) with X, € [—1,1], and the goal is to find a balanced
partition (U, V) of V,, into two equal-size subsets U and V to minimize the weight of the corresponding cut
(i.e., the sum of weights of edges with one node in U and the other node in V). Graph Partitioning has been
studied extensively, especially in practice. It forms the basis of divide and conquer algorithms and is used in
various application domains, for example in laying out circuits in VLSL It has also served as a test bed for
algorithmic ideas [19].

Given its NP-completeness [18], heuristics have been developed to solve Graph Partitioning in practice.
A commonly used approach is based on local search: starting with an initial balanced partition, local
improvements on the cut are made iteratively until a balanced partition that mimimizes the cut within its
neighborhood is reached. The simplest neighborhood is the SWAP neighborhood, where two balanced partitions
are neighbors if one can be obtained from the other by swapping two nodes, one from each part. A locally
optimal solution under the SWAP neighborhood can be found naturally by the SWAP algorithm, which keeps
swapping two nodes as long as the swap improves the cut. A more sophisticated neighborhood structure,
which yields much better locally optimal solutions in practice, is that of the Kernighan-Lin (KL) algorithm
which performs in each move a sequence of swaps [21].

These local search algorithms for Graph Partitioning typically converge fast in practice. (For a thorough
experimental analysis of their performance, and comparison with simulated annealing, regarding both the
quality of solutions and running time, see [19].) In contrast, it is known that their worst-case complexity
is exponential. (Finding a locally optimal solution under the sophisticated Kernighan-Lin neighborhood, and
even under the simpler SWAP neighborhood is complete in PLS [20, 24]. The hardness reductions give instances
on which these algorithms take exponential time to converge.) This significant gap in our understanding motivates
us to work on the smoothed complexity of the SWAP algorithm for Graph Partitioning in this paper.

We work on the full perturbation model, under which edge weights are drawn independently from a
collection of distributions X = (X, : ¢ € Ep,), where each X, is supported on [—1,1] and has its density
function bounded from above by a parameter ¢ > 0. Our goal is to understand the expected number of steps
the SWAP algorithm takes, as a function of n and ¢, against any edge weight distributions X. ! Note that the
SWAP algorithm, similar to the Simplex algorithm, is a family of algorithms since one can implement it using
different pivoting rules, deterministic or randomized, to pick the next pair of nodes to swap when more than
one pairs can improve the cut. We would like to establish upper bounds that hold for every implementation of
the SWAP algorithm.

1.1 Related work: Smoothed analysis of 1-FLIP for Max-Cut There has not been any previous analysis on
SWAP under the smoothed setting, as far as we are aware. In contrast, much progress has been made on the
smoothed analysis of the I-FLIP algorithm for Max-Cut [13, 15, 1, 7, 11]. The major challenge for the analysis of
SWAP, as we discuss in more details in Section 1.3, is to overcome substantial new obstacles posed by the richer
neighborhood structure of SWAP, which are not present in the simpler 1-change neighborhood behind 1-FLIP.
Recall in Max-Cut, we are given edge weights X = (X, : e € E;) of a complete graph K,, = (Vy, Ey)
with X, € [—1,1], and the goal is to find a (not necessarily balanced) partition of V;, to maximize the cut.” The
simplest neighborhood structure for local search on Max-Cut is the so-called 1-change neighborhood, where two
partitions are neighbors if one can be obtained from the other by moving a single node to the other side. The
1-FLIP algorithm finds such a locally optimal solution by repeatedly moving nodes, one in each round, as long
as each move strictly improves the cut. Similar to SWAP, the worst-case complexity of 1-FLIP is exponential,
and the problem of finding a locally optimal solution of Max-Cut under the 1-change neighborhood is PLS-
complete [24]. For the structured perturbation model, where a graph G (not necessarily a complete graph) is
given and only weights of edges in G are perturbed, [15] showed that the expected number of steps 1-FLIP

TNote that any upper bound under the full perturbation model applies to the alternative, simpler model where an adversary commits

to a weight w, for each edge and then all edge weights are perturbed independently by a random noise Z, (for example, drawn uniformly
from a small interval), i.e. the weights are X, = w, + Z,. The parameter ¢ in the full perturbation model is a bound on the pdf of the
perturbations Z,.

2Since we allow weights in [—1, 1], maximizing the cut is the same as minimizing the cut after negating all edge weights. Hence the
only difference of Max-Cut, from Graph Partitioning, is that the partition does not have to be balanced.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5058

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

takes to terminate is at most ¢n'°8". Subsequently, the bound was improved by [1] to ¢ - poly(n) for the full
perturbation model, with further improvements in [7] on the polynomial function of n. The upper bound of
[15] for the structured model was recently improved to ¢n 1087 in [11].

1.2 Our Contributions We present the first smoothed analysis of the SWAP algorithm for Graph Partitioning.
Our main result for SWAP is a quasipolynomial upper bound on its running time:

THEOREM 1.1. Let X = (X, : e € Ey,) be distributions of edge weights such that each X, is supported on [—1,1] and
has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1) over the draw

of edge weights X ~ X, every implementation of SWAP terminates within ¢>no(1°510 ") steps.

The proof of Theorem 1.1 uses techniques we develop for a more challenging problem: the smoothed
analysis of the 2-FLIP algorithm for Max-Cut. Starting with any initial partition, 2-FLIP in each round can move
either one node (like 1-FLIP) or two nodes (not necessarily in different parts) as long as the cut is improved.
Given that 2-FLIP generalizes 1-FLIP, its worst-case complexity is also exponential (every improving sequence
of moves for 1-FLIP is also an improving sequence for 2-FLIP), and the problem of finding a locally optimal
solution of Max-Cut under the 2-change neighborhood is also PLS-complete (every locally optimal partition for
2-FLIP is also locally optimal for 1-FLIP). If we restrict the algorithm to only use double flips (i.e., move exactly
two nodes) in every move, then we call this variant pure 2-FLIP. Feasible moves in SWAP are clearly feasible
in pure 2-FLIP as well but not vice versa. Thus, an improving sequence of SWAP in the Graph Partitioning
problem is also an improving sequence of pure 2-FLIP in the Max-Cut problem on the same instance but not
vice versa, which makes the smoothed analysis of 2-FLIP even more challenging.

Similar to our result for SWAP, we do not make any assumption on the pivoting rule used by 2-FLIP,
except that the algorithm never moves a pair of nodes u and v when moving just one of them alone (i.e.
either just moving u or just moving v) would yield an even better cut. Our main result on 2-FLIP is a similar
quasipolynomial upper bound. The same result holds also for any implementation of the pure 2-FLIP algorithm
that performs only 2-flips. This is the first smoothed analysis of 2-FLIP:

THEOREM 1.2. Let X = (X, : e € E;) be distributions of edge weights such that each X, is supported on [—1,1] and has
its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,,(1) over the draw of

X ~ X, every implementation of the 2-FLIP algorithm terminates within cpno(l"gm " steps.

A more general class of problems that is related to Max-Cut is the class of Maximum Binary Constraint
Satisfaction Problems (MAX 2-CSP). In a general Max-2CSP, the input consists of a set of Boolean variables and
a set of weighted binary constraints over the variables; the problem is to find an assignment to the variables
that maximizes the total weight of satisfied constraints. Max-Cut is the special case when every constraint is
a # (XOR) constraint. Other examples are Max 25AT and Max Directed Cut (i.e., the Max Cut problem on
weighted directed graphs). More generally, in a Binary Function Optimization Problem (BFOP), instead of binary
constraints the input has a set of weighted binary functions on the variables, and the objective is to find an
assignment that maximizes the sum of the weights of the functions (see Section 7 for the formal definitions). It
was shown in [11] that the results for 1-FLIP for Max-Cut generalize to all Max 2-CSP and BFOP problems. We
prove that this is the case also with 2-FLIP.

We say an instance of Max 2-CSP or BFOP is complete if it includes a constraint or function for every pair
of variables.

THEOREM 1.3. Let I be an arbitrary complete instance of MAX 2-CSP (or BEOP) with n variables and m constraints
(functions) with independent random weights in [—1, 1] with density at most ¢ > 0. lI{)\/il‘h probability at least 1 — 0,(1)
over the draw of weights, every implementation of 2-FLIP terminates within m¢n©U1°8" ") steps.

For all the aforementioned problems, by controlling the tail-bound of the failure probability, we can
strengthen our analysis to derive the same bound for the expected number of steps needed to terminate as
in the standard smoothed analysis prototype (See Corollary 3.2).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5059

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.3 Our Approach We give an overview of our approach, focusing on 2-FLIP for Max-Cut (Theorem 1.2).
Many details are omitted to help the reader get an overview of some of the key ideas and the structure of the
proof.

1.3.1 Analysis of 1-FLIP: Rank of Arcs First let’s briefly review the approach of [15] on the simpler 1-FLIP. As
the weight of any cut lies in [—n2, n?], for an execution of 1-FLIP to be long, most of its moves must induce small
improvements in the cut weight, say in (0, €] for some small € > 0. Now the improvement in cut weight of any
single move is a linear combination of edge weights X, with coefficients in {—1,0,1}, which indicate whether
each edge is removed, unchanged or added in the cut as a result of the move. As a result, the probability of
a single move having its improvement lie in (0, €] is small (< ¢e) over X, ~ X,. If improvements of different
moves were uncorrelated, the probability that a sequence improves the cut by no more than € would go down
exponentially with the length of the sequence (< (¢e¢) for any sequence of length ¢).

Of course, improvements of different moves are correlated. But the same effect holds if they are linearly
independent in the following sense. Given a sequence S of moves, the improvement vector of each move is defined
as the {—1,0,1}-vector indexed by edges of the graph as coefficients of each X, in the improvement. Most
work along this line of research is based on the following fact (Corollary 2.1): Let rank(S) be the rank of
improvement vectors of moves in S. Then the sequence has overall improvement at most € with probability at
most (¢e)@KE), If rank(S) = Q(n) for all sequences S of length @(n), then by a union bound, with probability
1 — 29 ()M, every sequence of length (1) improves the cut by at least e. (We pay 2" in the union bound
to fix the initial configuration of nodes at the beginning of S.) On the one hand, when € := (¢ - poly(n))~},
the probability above is 1 — 0,(1); on the other hand, when the event happens, 1-FLIP must terminate within
O(n) - 2n%/e) = ¢ - poly(n) steps as desired.

However, rank(S) of an @(11)-move sequence can be much smaller than n.*> A key idea of [15] is to work with
arcs instead of individual moves. An arc consists of two adjacent moves of the same node.* The improvement
vector of an arc is defined to be the sum of improvement vectors of its two moves. A simple but crucial
observation is that edges that involve inactive nodes (i.e. nodes that never move in S) are cancelled in the
improvement vector of an arc. [15] proved a combinatorial lemma to show that every sequence S of length ®(n)
must have a substring T such that the rank of improvement vectors of arcs in T, denoted by rankares(T), is at
least Q)(len(T)/ log n), where len(T) denotes the length of T (i.e., the number of moves in it). By a union bound,
with probability at least

1— Z oyt (475) o/ log"),
£<0(n)

all sequences of length ®(n) improve the cut weight by at least €. (Note that the ¢ above is the length of T,
and we only pay 2/ in the union bound because we do not need to know the initial configuration of inactive
nodes since we work with arcs, and the number of active nodes is trivially at most the length of T.) Setting
€ := (¢pn!°8™)~1 finishes the proof of the ¢ - n'°8" upper bound of [15] for 1-FLIP.

1.3.2 Inadequacy of Arcs in 2-FLIP Sequences Now let’s return to our analysis of 2-FLIP and for simplicity,
we focus on the simpler case of pure 2-FLIP, where every round the algorithm makes a so-called 2-move that flips
two nodes {u, v}. To avoid the union bound over inactive nodes, a natural generalization of the notion of arcs
is to work with two adjacent 2-moves where exactly the same pair of nodes {u, v} are flipped. This, however,
fails for the following two reasons: (1) Such arcs may occur very sparsely and may not even exist unless
the sequence has length O(n?); (2) Inactive nodes do not necessarily cancel out in the sum of improvement
vectors of the two moves; indeed this happens only when both u and v get flipped an even number of times
between the two moves of {u,v}, which is in general not the case. For example, consider the sequence
{u,v},{w,x},{v,y},{s, t},{u,v}. Edges that involve inactive nodes do not get cancelled out if we sum up
improvement vectors of the first and the last moves, since v gets flipped once between them.

3For example, any sequence in which only n%! distinct nodes moved has rank(S) < n%2.

4For example, in vy, v3,v3,v4,v1, Us, U2, the first and fifth moves form an arc, and the second and last moves form an arc.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5060

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.3.3 Cancellation of Inactive Nodes with Useful Cycles In general (as the simple example above suggests),
cancelling out edges that involve inactive nodes under the 2-FLIP setting is much more challenging compared
to that of 1-FLIP. To overcome this new obstacle, we associate an auxiliary graph to a sequence of 2-moves, and
introduce a notion of useful cycles. Given a sequence S of 2-moves, we define a (multi)graph H which has the
same set V}; of nodes as the original graph and whose edges correspond to the 2-moves of the sequence: an
undirected edge between u and v is added to H for each 2-move {u,v} in S. A cycle of S is a set of 2-moves in
S such that their corresponding edges form a cycle in H. We identify a subset of cycles as useful: these are the
cycles that have the property that there is a {£1}-linear combination of the improvement vectors of the moves
of the cycle that cancels out all inactive nodes. We associate this linear combination to each useful cycle as its
improvement vector. Given a sequence S of 2-moves we write rankgycies(S) to denote the rank of improvement
vectors of useful cycles in S.

With the notion of useful cycles in place, the goal now is to show that every sequence of length @(1) must
have a substring T that satisfies rankeycies(T) > len(T)/polylog(n). This is the goal of our main technical lemma,
Lemma 3.2. Assuming Lemma 3.2, the rest of proof applies a similar union bound to show that with probability
at least

1— 2 zfnf (4)6) Q(K/P(’lylog(”),
1<0(n)

every sequence of length ®(n) must improve the cut weight by at least €. Setting € := (¢ - nP°Y1°8())~1 finishes
the proof of our quasipolynomial upper bound.
The challenge behind the proof of Lemma 3.2 comes in two aspects:

(1) What is a sufficient condition for T that allows us to argue rankgycies(T) > len(T)/polylog(n)?

(2) Can we show that every S of length @(11) contains a substring T that satisfies the condition in (1)?

1.3.4 Algorithmically Finding Many Linearly Independent Useful Cycles A first attempt for the sufficient
condition on T would be the following: The auxiliary graph H satisfies that every node has degree between
Q(polylog(n)) and O(polylog(n)) (i.e., at least ()(log* n) for some c and at most O(logd n) for some d). Assuming
this is case, one can use the following process to find enough useful cycles that are linearly independent:

1. Find a useful cycle C in the auxiliary graph H and add it to the collection;

2. Pick a nonzero entry of the improvement vector of C and let e be its index (recall the vector is indexed by
edges in the original complete graph); we call e the witness of the cycle C.

3. Delete both nodes of e from the auxiliary graph H, and repeat.

On the one hand, we only delete two nodes from H in each round. Given that every node has degree
between Q)(polylog(n)) and O(polylog(n)), one can argue that the process above can find a collection of at
least len(T)/polylog(n) many cycles. On the other hand, since the witness of the current cycle can never
be a witness of a future cycle (as both nodes of the witness are deleted), the improvement vectors of
cycles in the collection would form a triangular matrix and thus, have full rank. Together we have that
rankeycies(T) > len(T)/polylog (). ~

However, it is not hard to construct sequences of length ©(n) (or any polynomial length), such that the
auxiliary graph of any substring T has nodes with very unbalanced degrees: Most edges in the auxiliary graph
are adjacent to a small number of nodes with very high degrees. As a result, deleting a high-degree node
would have a significant impact on the auxiliary graph and the cycle-finding process described above may have
to terminate within a few rounds (e.g., after all the high-degree nodes are deleted). So the challenge is to run a
similar process, but reuse high-degree nodes carefully.

Skipping many details, we prove Lemma 3.2 in the following two steps. First, we prove in Section 4 that
every sequence S of 2-FLIP of length ©(n) must have a substring T such that its auxiliary graph H contains
a bipartite graph with the following properties: (1) The number of edges in this bipartite graph is Q(len(T));
(2) Every node on the LHS of the bipartite graph, as desired, has degree bounded between ()(polylog(n)) and

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5061

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

O(polylog(n)); and (3) Every node on the RHS has degree at least ()(polylog(n)) but there is no upper bound
on their degrees (so these are the high-degree nodes that can break the cycle-finding process described above).

Next for any sequence T with an auxiliary graph H that satisfies the condition above, we show that
rankeycies(T) > len(T)/polylog(n) by introducing a so-called splitting operation on the auxiliary graph. After a
useful cycle is found in the current auxiliary graph H, we do not just delete the two nodes in its witness from
H since one of them could lie on the RHS and has a high degree. Instead, we apply the splitting operation on
the high-degree node in the witness: we "split" the node into several nodes and partition the edges of the node
among the new nodes. On the one hand, the splitting operation has a much smaller impact on the auxiliary
graph H; the impact is similar to the deletion of a node with O(polylog(n)) degree so the cycle-finding process
can repeat at least len(T)/polylog(n) many rounds as before. On the other hand, the splitting operation and
partition of the edges is done in a way that makes sure that the witness never appears again in future cycles
so the cycles found are still linearly independent. The design of the splitting operation and the analysis of
the cycle-finding process (recall that in the real proof we need to find not just any cycles but useful ones) are
technically the most challenging parts of the paper.

1.4 Organization of the paper. The rest of the paper is organized as follows. Section 2 gives basic definitions
of the problems and the smoothed model, defines the central concepts of arcs, and useful cycles, their
improvement vectors, and proves a set of basic lemmas about them that are used throughout in the subsequent
analysis. Section 3 states the main lemma on the existence of a nice window in the move sequence such that the
arcs and cycles in the window have high rank, and shows how to derive the main theorem from this lemma.
Sections 4 and 5 prove the main lemma in the case that all the moves are 2-moves (this is the more challenging
case). First we show in Section 4 the existence of a nice window (in fact a large number of nice windows, since
this is needed in the general case that includes both 1- and 2-moves) such that many moves in the window
have the property that both nodes of the move appear a substantial number of times in the window (at least
polylog(n) times), and one of them does not appear too many times (at most a higher polylog(n)). In Section 5
we show how to find in such a nice window a large number of useful cycles whose improvement vectors are
linearly independent. Section 6 extends the proof of the main lemma to the general case where the sequence of
moves generated by 2-FLIP contains both 1- and 2-moves. Finally, in Section 7 we extend the results to the class
of Maximum Binary Constraint Satisfaction and Function Optimization problems. For space reasons, several
proofs are deferred to the full version of the paper.

2 Preliminaries

We write [n] to denote {1,...,n}. Given two integers a < b, we write [a : b] to denote {a,...,b}. Given
7,9 € {£1}" we use d(v,7’) to denote the Hamming distance between 7 and v/, i.e., the number of entries
i € [n] such that y; # ..

2.1 Local Max-Cut and the FLIP Algorithm Let K, = (Vj;, E;) with V;, = [n] be the complete undirected
graph over n nodes. Given edge weights X = (X, : e € E;) with X, € [—1,1], the k-local Max-Cut problem
is to find a partition of V, into two sets V; and V;, such that the weight of the corresponding cut (the sum
of weights of edges with one node in V; and the other in V,) cannot be improved by moving no more than
k nodes to the other set. Formally, the objective function of our interest is defined as follows: Given any
configuration v € {£1}" (which corresponds to a partition V3,V, with Vi = {u € V;, : y(u) = —1} and
Vo = {u € V,, : y(u) = 1}), the objective function is

N —

21 objx(7) =}, Xue HrW) #1(0)} =

2 X(u,v) : (1 - ’)’(H)’)’(’())).
(u,v)€E, (u,0)EE,

Our goal is to find a configuration v € {£1}" that is a k-local optimum, i.e., objx(y) > objx(7’) for every
configuration ¢’ € {£1}" with Hamming distance no more than k from 1.
A simple local search algorithm for k-Local Max-Cut is the following k-FLIP algorithm:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5062

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Start with some initial configuration -y = g € {£1}". While there exists a configuration «'
with d(vy',y) < k such that objx(y") > objx(7), select one such configuration " (according
to some pivoting criterion), set -y = <y and repeat, until no such configuration -y exists.

The execution of k-FLIP on K, with edge weights X depends on both the initial configuration 7y and the
pivoting criterion used to select the next configuration in each iteration. The larger the value of k, the larger
the neighborhood structure that is being explored, hence the better the quality of solutions that is expected to
be generated. However, the time complexity of each iteration grows rapidly with k: there are ®(1*) candidate
moves, and with suitable data structures we can determine in O(1*) if there is an improving move and select
one. Thus, the algorithm is feasible only for small values of k. For k = 1, it is the standard FLIP algorithm.
Here we are interested in the case k = 2. We will not make any assumption on the pivoting criterion in our
results, except that we assume that the algorithm does not choose to flip in any step two nodes when flipping
only one of them would produce a strictly better cut. This is a natural property satisfied by any reasonable
implementation of 2-FLIP. For example, one approach (to optimize the time of each iteration) is to first check if
there is an improving 1-flip (n possibilities), and only if there is none (i.e. the partition is locally optimal with
respect to 1-FLIP), proceed to search for an improving 2-flip (O(12) possibilities). Clearly any implementation
that follows this approach satisfies the above property. Also, the greedy approach, that examines all O(n?)
possible 1-flips and 2-flips in each step and chooses one that yields the maximum improvement, obviously
satisfies the above property.

Our results hold also for the variant of 2-FLIP that uses only 2-flips (no 1-flips), under any pivoting rule.
We refer to this variant as Pure 2-FLIP.

2.2 Graph Partitioning and the SWAP Algorithm In the Graph Partitioning (or Bisection Width) problem,
we are given a graph G on 2n nodes with weighted edges; the problem is to find a partition of the set V of
nodes into two equal-sized subsets V;, V, to minimize the weight of the cut.’ As in the Max Cut problem, in
this paper we will assume the graph is complete and the edge weights are in [—1,1]. A simple local search
algorithm is the SWAP algorithm: Starting from some initial partition (V7, V2) with n nodes in each part, while
there is a pair of nodes u € Vj,v € V, whose swap (moving to the other part) decreases the weight of the cut,
swap u and v. We do not make any assumption on the pivoting rule, i.e. which pair is selected to swap in each
iteration if there are multiple pairs whose swap improves the cut. At the end, when the algorithm terminates it
produces a locally optimal balanced partition, i.e. one that cannot be improved by swapping any pair of nodes.
The SWAP algorithm is clearly a restricted version of Pure 2-FLIP (restricted because the initial partition is
balanced, and in each step the 2-flip must involve two nodes from different parts of the partition).

The SWAP algorithm is the simplest local search algorithm for the Graph Partitioning problem, but it is a
rather weak one, in the sense that the quality of the locally optimal solutions produced may not be very good.
For this reason, more sophisticated local search algorithms have been proposed and are typically used, most
notably the Kernighan-Lin algorithm [21], in which a move from a partition to a neighboring partition involves
a sequence of swaps. If a partition has a profitable swap, then Kernighan-Lin (KL) will perform the best swap;
however, if there is no profitable swap then KL explores a sequence of n greedy steps, selecting greedily in
each step the best pair of nodes to swap that have not changed sides before in the current sequence, and if this
sequence of swaps produces eventually a better partition, then KL moves to the best such partition generated
during this sequence. A related variant, to reduce the time cost of each iteration, was proposed by Fiduccia and
Matheyses [17]. This idea of guided deep neighborhood search is a powerful method in local search that was
introduced first in the [21] paper of Kernighan and Lin on Graph Partitioning, and was applied subsequently
successfully to the Traveling Salesman Problem and other problems.

2.3 Smoothed Analysis We focus on the 2-FLIP algorithm from now on. Under the smoothed complexity
model, there is a family X = (&, : e € E;) of probability distributions, one for each edge in K, = (V;, Ey).
The edge weights X = (X, : e € E;) are drawn independently with X, ~ &,. We assume that each &, is a

5Since the weights can be positive or negative, there is no difference between maximization and minimization. The Graph Partitioning

problem is usually stated as a minimization problem.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5063

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

distribution supported on [—1,1] and its density function is bounded from above by a parameter ¢ > 0. (The
assumption that the edge weights are in [—1, 1] is no loss of generality, since they can be always scaled to lie in
that range.) Our goal is to bound the number of steps the 2-FLIP algorithm takes to terminate when running
on K, with edge weights X ~ X, in terms of n and the parameter ¢.

2.4 Move Sequences We introduce some of the key definitions that will be used in the smoothed analysis of
2-FLIP.

A move sequence S = (S, ...,Sy) is an £-tuple for some ¢ > 1 such that S; is a subset of V;, of size either one
or two. We will refer to the i-th move in S as a 1-move if |S;| = 1 and a 2-move if |S;| = 2, and write len(S) := ¢
to denote its length. Additionally, let 1-move(S) and 2-move(S) denote the corresponding subsequence of single
flip or double flips correspondingly. We say a node u € V,, is active in § if u appears in S; for some i, and is
inactive otherwise. We write V(S) C V, to denote the set of active nodes in S.

Given 9 € {£1}" as the initial configuration, a move sequence S = (Sy,...,Sy) naturally induces a
sequence of configurations g, v1,...,7; € {£1}", where ;1 is obtained from v; by flipping the nodes in
Si+1. We say (o, S) is improving with respect to edge weights X if

objx (7i) > objx(vi-1), foralli e [/]
and is e-improving with respect to edge weights X, for some € > 0, if
objx (7i) — objx(7i-1) € (0,€], foralli e [£].

For each i € [/], the change objx(;) — 0bjx(v;_1) from the i-th move S; can be written as follows:

1. When S; = {u},

(22) objx(77) — objx(vi—1) = Y. vic1(@)vim1(0) X w)-
weVyw#u

3 O

Figure 1: Example of a 1-move, showing edges in the cut only.

2. When §; = {u, v},

(2.3) objx (i) — objx(7i-1) = Y. (ric1@) i () Xy + Vi1 (@) Y1 (0) X (wy0))-
weVywg{u,v}

3 0%

Figure 2: Example of a 2-move , showing edges in the cut only.

For each i € [{], we write imprv, (i) to denote the improvement vector in {0, +1}E# such that

(24) objx (i) — 0bjx(vi—1) = imprv,, s(@@) - X.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5064

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Next, let E(S) denote the set of edges (u,v) € E, such that both u and v are active in S. We write
imprv;, s(i) € {0, +1}£6) to denote the projection of imprv,, s(i) on entries that correspond to edges in E(S).
We note that imprvfy o s(i) only depends on the initial configuration of active nodes V(S) in (. Given a (partial)

configuration 19 € {£1}V® of V(S), we let
imprv,, s(i) := imprv’ (i) € {0, £1}59),

where 79 € {£1}" is an arbitrary (full) configuration that is an extension of 15. (To aid the reader we will
always use <y to denote a full configuration and 7 to denote a partial configuration in the paper.)

Note that if S is a sequence of moves generated by an execution of the 2-FLIP algorithm then & must be
improving, because every move must increase the weight of the cut and therefore every 1— or 2— move is
improving. On the other hand, if every move in S increases the cut weight by no more than e then we can not
directly guarantee that after poly(|S|,n,1/€) steps the algorithm would certainly terminate. From probabilistic
perspective, in order to provide a smoothed upper bound on the running time of 2-FLIP method, it suffices
to show that it is exponentially small probability for every move in a long enough sequence to incur only a
o(1/poly(n)) improvement in our objective.

Indeed, in an idealized scenario where the improvements of different moves of a sequence were
disentangled, the event for a linear-length sequence to be at most e —improving would have exponentially small
probability. Unfortunately, going back to the 2-FLIP algorithm, there could be improving steps that are strongly
correlated (as an extreme situation there could be two flips with almost the same improvement vector). Thus, as
one may expect the probability exponential decay holds only for linearly independent imprv,, s(-), introducing

the necessity of analysis of the rank ({imprvro, siieds }), for some neatly chosen subset S’ of moves from the
sequence S.

CoroLLARy 2.1. ([15]) Let Xj, ..., X be independent real random variables and let f; : R — [0, ¢] for some ¢ > 0
denote the density of X; for each i € [m]. Additionally, let C be a collection of k not necessarily linearly independent
integer row vectors, namely C = {Vy,- -, Vi }. Then it holds that for any interval I C R

PI'[FE] =Pr ﬂ {Vz . X e I} < (¢/en(l))rank(6)
iclk]

However, one standard issue, which typically occurs with the direct usage of improvement vectors of
sequence’s moves, is their dependence also on the initial configuration 7 of inactive nodes that do not appear
in the sequence S. Their number may be much larger than the rank of the active nodes, and thus considering
all their possible initial values in a union-bound will overwhelm the probability (¢€)". For these reasons, in
the literature [15, 7, 11] more complex combinatorial structures have been proposed, like pairs of (consecutive)
moves of the same node.

2.5 Arcs

DEFINITION 2.1. An arc « in a move sequence S = (Sy,...,Sy) is an ordered pair (i,) with i < j € [{] such that
S; = Sj = {u} for some node u € V,, and for any i <k < j, S # {u}.

Let 1y € {il}v(s) be a configuration of active nodes in &, and let 19, 7, ..., 7/ € {il}v(s) be the sequence
of configurations induced by S, i.e., 7; is obtained from 7;_; by flipping nodes in S;. We make the following
observation:

LemMA 2.1. For any configuration g € {£1}" that is an extension of Ty, letting vo,v1,-..,7¢ € {£1}" be the
sequence of configurations induced by S and letting wlu, i, j] := -y;(u) - imprv, (i) — v;(u) - imprv.,, <(j), we have that

(Ti(u) - imprvy, s(i) — 7j(u) - imprve, s(j))e for every entry e € E(S),
0 otherwise.

(W[u, i/j]E)EGEn = {

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5065

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

for any arbitrary choice of u € V(S).
Motivated by Lemma 2.1, we define for an arc « = (7,) of a node u,
(2.5) imprv, s(@) := () - imprvy, s() — t(u) - imprvy, () € ZFS).

Let arcs(S) denote the set of all arcs in S. We will be interested in the rank of

(2.6) Qarcs 1= {imprvTo,S(zx) o€ arcs(S)}
It is easy to show that the rank does not depend on the choice of 15 so we will denote it by rankares(S).
LeEMMA 2.2. The rank of the set of vectors in (2.6) does not depend on the choice of 1.

The notion of arcs concerns only 1-moves. The problem becomes much more involves in the presence of
2-moves. To address this, we associate an auxiliary (multi)graph to the 2-moves, use the cycles of this graph,
and introduce the notion of useful cycles.

2.6 Graph of 2-Moves and Useful Cycles Given a move sequence S = (Sy,...,Sy), we associate with it an
auxiliary (multi)graph H over the set of nodes V;, that has one edge (u,v) for every 2-move {u,v} of S. Of
particular interest are the cycles of H, and the corresponding subsets of moves of S.

DErFINITION 2.2. A cycle C in a move sequence S = (Sy, ..., Sy) is an ordered tuple C = (¢, .. ., ct) for some t > 2 such
that cy, - - - c¢ are distinct, and S¢; = {uj,uj1} for all j € [t — 1] and S¢; = {uy, u1} for some nodes uy, ..., uy € Vy.
(Every S; is a 2-move. The same vertex may appear in multiple S¢;’s).

DEFINTTION 2.3. Given a configuration 1y € {+1}V®), we say a cycle C = (cy, ..., ct) in S is useful with respect to Ty
if there exists b € {£1}! such that

For all j € [t — 1] we have that bj - T;(1j+1) + bj1 - Ty (Uj1) = 0 and by - T, (u1) + by - T, (1) =0,

where 1y, 1y, . . ., Ty are configurations induced by S starting from 1.

-

We note that such a vector b, if it exists, it has the form b = b, - (1, e, (—1)k71Hi€[2:k] Te, o (i) e, (uy), - - >
and hence it is unique if we further require by = 1. After elimination of the above equations, we see the
following equivalent criterion:

REMARK 2.1. (UseruLNEss CRITERION) A cycle C is useful < (—1)" = 1, (u1) 1, (u1) - Hf:z Te; o ()T, ().

We will refer to the unique vector b € {+1} as the cancellation vector of C. Notice that whether a cycle C in S
is useful or not actually does not depend on the choice of 1.

LemMa 2.3. If a cycle C of S is useful with respect to some 1y € {£1}VS) using b as its cancellation vector, then it is
useful with respect to every configuration T} € {£1}VS) using the same b as its cancellation vector.

As a result, we can refer to cycles of S as useful cycles without specifying a configuration 7p; the same
holds for cancellation vectors. Next we prove a lemma that is similar to Lemma 2.1 for arcs:

LemMA 2.4. Let C = (cq,...,ct) be a useful cycle of S and let b be its cancellation vector. Then for any configurations
T € {£1}VS) and vy € {£1}" such that -y is an extension of Ty, letting w[C] := Yicrn bj - imprv., s(c;), we have
that

(ng[t] bj . imprvTO,S(c]-))g for every entry e € E(S),

0 otherwise.

(W[Cle)ee E, = {

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5066

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Given 1y € {41}V and a useful cycle C of S with b as its cancellation vector, we define

(2.7) imprv, s(C) :=) b;-imprv, s(cj).
Jelt]

Let cycles(S) denote the set of all useful cycles in S. We will be interested in the rank of

(2.8) Qeycles 1= {Imprvy 5(C) : C € cycles(S)}
Similarly we note that the rank does not depend on the choice of 75 so we denote it by rankcycies(S)-

LemMA 2.5. The rank of the set of vectors in (2.8) does not depend on the choice of .

For the sake of readability we defer the proofs of initial configuration invariance for the rank of
improvement vectors of arcs and cycles to Appendix B in the full version of the paper. Having defined the
sets of arcs(S) and cycles(S), we conclude this section by showing that for a fixed parameter € > 0, a move
sequence S and an initial configuration 7y € {£1}V(®), if either rankarcs(S) or rankgycles(S) is high, then most
likely (over X ~ X)) (79, S) is not e-improving for every vy € {£1}" that is an extension of 1.

LEmMMA 2.6. Let € > 0. With probability at least
1-— (2Ien(8) . (PG) max (rankarCS(S)/ rar"kcycles(s))

over X ~ X, we have that (7, S) is not e-improving for every g € {+1}" that is an extension of .

Proof. Let Epoves be the event of a given (g, S) being e-improving with respect to edge weights X, for some
fixed € > 0:
Emoves : {imprv,,, (i) - X € (0,€], forall i € [(]}

where imprv, (i) correspond to the improvement vector of S; move(See (2.2),(2.3)). Now, notice that the
improvement vector of an arc (See (2.5)) or of a useful cycle (See (2.7)) can be written as the {—1,0,1} sum of
all the improvement vectors of either 1 or 2-moves in §. Thus, we define the corresponding event for cycles
and arcs for a given sequence (o, S) with respect to edge weights X:

Eares eyeles * {IMPIV., s(B) - X € [—len(S)e, len(S)el, for any B € arcs(S)/cycles(S)}

So it is easy to see that Epoves implies £, Jeycless OF equivalently Pr[Epoves] < min{Pr[Eares], Pr [gcycles] }. Thus,
by leveraging Corollary 2.1 for vectors in Qarcs and Qcycles), We get that:

Pr[(70, S) being an e-improving sequence| < (2len(S) - pe)™ (rankares(S), rankeycies(S))

This finishes the proof of the lemma. 0

3 Main Lemma and the Proof of Theorem 1.2 and Theorem 1.1
We start with the definition of valid move sequences:

DerINITION 3.1. We say a move sequence S = (Sy,...,Sy) is valid if it satisfies the following property: For every
i < j € [{], at least one node w ¢ S; appears an odd number of times in S;, ..., S;.

LemMa 3.1. The move sequence generated by 2-FLIP (or by pure 2-FLIP), for any pivoting rule and any instance, is valid

Proof. Let S be a move sequence generated by 2-FLIP (or pure 2-FLIP). If there are two moves S;, Sj, i <j,such
that no node appears an odd number of times in S;, ..., Sj, then the configurations before S; and after S; are

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5067

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

the same, contradicting the fact that all the moves increase the weight of the cut. Therefore, the set O of nodes
that appear an odd number of times in S;, ..., S; is nonempty. Suppose thati < jand O C S;. If O = §;, then
the set of nodes that appear an odd number of times in Sjy,...,S; would be empty, a contradiction to the
above property. Therefore, O # S;.

In the case of pure 2-FLIP, since all moves are 2-flips, O has even size, and hence O # @ and O # S; imply
the claim.

In the case of 2-FLIP, O # @, O # S; and O C S; imply that S; has size 2, say S; = {u,v} and O = {u}
or O = {v}. If O = {u} then the configuration v, differs from 7;_; only in that node u is flipped. Thus,
at configuration 1,1, flipping node u results in configuration ; which has strictly greater cut than the
configuration v; that results by flipping the pair {u, v}, contradicting our assumption about 2-FLIP. A similar
argument holds if O = {v}. In either case we have a contradiction to O C ;. The claim follows. d

Given a move sequence S, a window W of § is a substring of S, ie., W = (S;,... ,S]-) for some i < j € [{]
(so W itself is also a move sequence). Our main technical lemma below shows that every long enough valid
move sequence has a window W such that either rankarcs(W) or rankgyces(W) is large relative to len(W).

LemMA 3.2. Let S be a valid move sequence with len(S) > nlog'® n. Then S has a window W such that

len(W
(3.9) max (rankarcs(w)/ rt'ﬂnkcycles(w)) 20 (log(lo 73))

We prove Lemma 3.2 when S consists of 2-moves only in Section 4 and 5, and then generalize the proof to
work with general move sequences in Section 6. Assuming Lemma 3.2, we use it to establish our main theorem,
restated below:

THEOREM 3.1. Let X = (X, : e € E,) be distributions of edge weights such that each X, is supported on [—1,1] and has
its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,,(1) over the draw of

X ~ X, every implementation of the 2-FLIP algorithm terminates within (/mO(lOglO ") steps.

Proof. Let € > 0 be specified as follows:
1
€= (Pl/lcl loglon

for some large enough constant ¢; > 0 to be specified later. We write F to denote the following event on the
draw of edge weights X ~ A

Event F: For every move sequence W of length at most 11og! 1 such that (letting a > 0 be the
constant hidden in (3.9))

a
log'%n

(3.10) max (rankares(W), rankeycies(W)) > len(w).

and every configuration v € {£1}", (79, W) is not e-improving with respect to X.

We break the proof of the theorem into two steps. First we show that J occurs with probability at least 1 — 0,,(1).

Next we show that when F occurs, any implementation of 2-FLIP must terminate in at most (])nO(I"glO ™ many
steps.

For the first step, we apply Lemma 2.6 on every move sequence W of length at most 11log' n that satisfies
(3.10) and every configuration 79 € {1}VW). 1t then follows from a union bound that F occurs with
probability at least

al

2/ 2/ ali() 21°g10 n loglo n
1— Y w22 (lpe)sn =1) @Qn)~a - Lpe =1—o0,(1),
Len log10 n) Leln log10 n]
5068 Copyright © 2023 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

l 22/@

where the factor 7%/ is an upper bound for the number of W of length ¢ and 22 is an upper bound for the
number of configurations 1 since |V(W)| < 2/. The last equation follows by setting the constant ¢; sufficiently
large.

For the second step, we assume that the event F occurs, and let 7o,...,ynv € {£1}" be a sequence
of N configurations that is the result of the execution of some implementation of 2-FLIP under X. Let
S = (51,...,5N) denote the move sequence induced by 7g,...,Yn- So (70, S) is improving with respect to
edge weights X. By Lemma 3.1, S is a valid sequence.

We use the event F to bound the length of S. Because of F and that S is a valid move sequence, it follows
from Lemma 3.2 that the objective function gets improved by at least € for every nlog'® n consecutive moves in
S. Given that the objective function lies between [—n2, n?], we have

2
(3.11) len(S) < nlog!®n - 2% < pnOUog™)

This finishes the proof of the theorem. d
CoroLLARY 3.1. Under the same setting of Theorem 1.2, the same result holds for Pure 2-FLIP.

Proof. The only property of the sequence of moves used in the proof of Theorem 1.2 is that it is a valid sequence,
and this property holds for Pure 2-FLIP as well. O

Notice that by twining the constant ¢; in the exponent, we can control the tail-bound of the failure
probability. Thus, we can strengthen our proof to get the same bound for the expected number of steps
needed to terminate as in the standard smoothed analysis prototype :

CoroLLARY 3.2. Under the same setting of Theorem 1.2, any implementation of the 2-FLIP algorithm (or Pure 2-FLIP)

10
takes at most 4)no(1°g) many steps to terminate on expectation.

Proof. We let F. denote the event F in the proof of Theorem 1.2 with a specified € > 0. Let ¢ =
1/ (4) - perlog™” ”), where ¢; > 0 is a constant to be fixed shortly. For any € < €y, we have that

Pr[ﬁ}"e] < Z n2£ . 22[. (E(Pe)max (rankarcs(W),fa”kcyc/es(w)) < Z n2£ _228 . (‘ﬂ(Pe . E_O)“Oga%ﬂ
0

l€[n log10 n] ten loglo 7]
al al (al W
< Z 1’12[' .02, (54)60) ﬁogloﬂ . (i)[logmﬂ < Z l i) log10 1 < €
B 10 €0 - 10 n3 \ e = coneg
tefnlog ™ nl le[nlog'’ n]

where ¢y = 2+ 6/a (letting a > 0 be the constant hidden in (3.9)) and ¢; = 108. From the proof of Theorem 1.2,

10
conditionally to the event F¢ for any € < €y, len(S) < L(e) := 2"310#. Notice that for any €(p) := €o/p,

L(e(p)) = pL(ep). Thus, the probability that len(S) is larger than cL(e) for any p > 1 is

Pr(len(S) > pL(e)] < Pr |:_\ €0/p] < clz/-pn'

Note that L is always trivially bounded by the total number of configurations, 2". Therefore, we have

2" [L(eo)] 2" 2"
Ellen(S)] = Y Prllen(S) >s] < Y PrlL>s]+ Y PrlL>s]<L(e)+ Y. Pr[L>s]
s=1 s=1 s=[L(eo)] s=[L(€g)]
& & L(eo)/s
<Le)+ Y, Pr[L> iy Le)| <L)+ Y ——>—
s=[L(eo)] s=[L(eo)]

= O(n) - L(eg) = pnOos’m.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5069

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

This finishes the proof of Corollary 3.2. 0
The same results hold for the Graph Partitioning problem and the SWAP neighborhood.

THEOREM 3.2. Let X = (X, : e € Eyy) be distributions of edge weights such that each X, is supported on [—1,1] and
has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1) over the draw

of edge weights X ~ X, every implementation of SWAP terminates within (pno(k’gw ") steps.

Proof. Every move sequence S generated by SWAP (for any pivoting rule, any weights, and any initial balanced
partition) is also a legal move sequence for Pure 2-FLIP on the same instance, except that the sequence may
be incomplete for Pure 2-FLIP, that is, the final partition may not be locally optimal for Pure 2-FLIP, since
there may be a 2-move (but not a swap) that improves the weight of the cut (the resulting partition would not
be balanced), and Pure 2-FLIP would continue and produce a longer sequence. Hence, the number of steps
of SWAP is upper bounded by the number of steps of Pure 2-FLIP, and thus it is at most (pnO(lOgm ") with
probability 1 — 0,(1), as well as in expectation. 0

4 Windows in a Valid Sequence of 2-Moves

We will start with the proof of Lemma 3.2 for the case when S consists of 2-moves only in Section 4 and 5, and
generalize it to deal with general move sequences in Section 6.

We start with a combinatorial argument about sets and subsequences of [N], where N = poly(n) for any
polynomial at 1. Let I be a subset of [N] with |I| > log'® . Intuitively, later in this section I will be chosen
to be the set I, representing the appearances of some frequently appeared active node u € V(S) in a move
sequence S. We will write order(i) to denote the order of i € I. In other words, the smallest index in I has order
1 and the largest index in I has order |I|. To give an example if I = {2,5,9,11} then order(2) = 1, order(5) = 2
and so on. Let 6 = 0.01. We start by quantifying how much large windows centered around an index i € I
should be to cover the majority of a set I. Afterwards, we present the combinatorial lemmas about subset I.

DEerINITION 4.1. Let I C [N]. We say an index i € I is £-good for some positive integer £ if
[i = [A+20)L"] :i+[(A+28)L']] CIN], where L' = [(1+)]
and I satisfies

(4.12) ‘Iﬁ[i— L':it+ L]

>log®n and ‘m[i—[(wz(s)m:i+((1+25)L’1Hglog7n.

If there exists no such constant £, we call the corresponding index bad.

L L
——~ ——

[(1+26)L] [(1+26)L]

Figure 3: Two examples of windows whose intersection in I is between [log® 1, log” n].

REMARK 4.1. Some motivation behind the definition 4.1: When i € I is {-good (letting L = L' + [(1 + 26)L"] + 1 and
L' = [(1 +0)~1)), it implies that all the [(1 +20)L"] — L' > 261/ = O(L)° windows W of length L, i.e., those start at

®Indeed, by definition L = L' + 1+ [(1 +20)L'] < 2((1 + 8)L’ +1) < 2((1 +)L’ +1) < 22+ d)L/, since L’ > 1

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5070

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

i—[(1+26)L"],...,i— L, satisfy
ieW, |INW|>1log’n and |[INW|<log’ n.

The first and last windows that satisfy the above property are illustrated in Figure 3.

REMARK 4.2. By definition 4.1, £ can get at most log; , s N = O(log n), for any N = poly(n).

LEMMA 4.1. Suppose I is a subset of [N] with |I| > log® n. Then at least a (1 — O(1/ log n))-fraction of i € I is £;-good
for some nonnegative integer ;.

Proof. See proof in the full version. [

Now we return to work on our problem and an arbitrary move sequence S = (Sy,...,Sy). Let W be
a window (move sequence) of S. For each active node u € V(W), we write #y (1) to denote the number of
occurrences of u in W. The main result in this section is the following lemma:

LEmMA 4.2. Let S be a move sequence of length N = nlog'® n that consists of 2-moves only. There exists a positive
integer L such that S has at least Q((N — L + 1)/ log n) many windows W = (W, ..., Wy) of length L such that at
least Q)(L/ log n) moves W; = {u,v} of W satisfy

(4.13) log®n < #y(u) <log’n and #y(v) >log’n
Proof. See proof in the full version. [

5 Finding Cycles

Let S = (S, .. .,SN) be a valid move sequence of length N = nlog'® that consists of 2-moves only. By Lemma
4.2, S has a window W = (Wy, ..., Wy) of length L such that the number of moves in W that satisfy (4.13) is at
least Q)(L/ log n). We show in this section that such a W satisfies

L
(5.14) rankcyc|es(w) - Q <—10> .
log™' n

This will finish the proof of Lemma 3.2 when S consists of 2-moves only.

To this end, let 1y € {:I:l}V(W) be the configuration with 1p(1) = —1 for all u € V(W) so that we can work
on vectors imprv (i) and imprv (C) for useful cycles of W (at the same time, recall from Lemma 2.5 that
rankeycles(W) does not depend on the choice of 7). Let 1, ..., 71 denote the sequence of configurations induced
by W.

Next, let us construct an auxiliary graph H = (V(W), E), where every move W; = {u,v} adds an edge
between u and v in E. Note that we allow parallel edges in H so |E| = L and #p(u) is exactly the degree of u
in H. There is also a natural one-to-one correspondence between cycles of W and cycles of H. The following
lemma shows the existence of a nice looking bipartite graph in H:

LEMMA 5.1. There are two disjoint sets of nodes V1, Vo C V(W) and a subset of edges E' C E such that
1. Every edge in E' has one node in Vy and the other node in Vy;
2. |[ViUV,| = O(L/log® n) and |E'| = Q(L/ log n);
3. #w(u) < log7 n for every node u € V.

Proof. See proof in the full version. [

Recall the definition of useful cycles of W (and their cancellation vectors) from Section 2. Since we only
care about the rank of vectors induced by useful cycles, we give the following definition which classify each
edge of H into two types and then use it to give a sufficient condition for a cycle of W to be useful:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5071

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DErFINITION 5.1. We say the i-th move W; = {u, v} of W is of the same sign if T;,(u) = 7;(v), and is of different signs if
Ti(u) # ().

LemMA 5.2. Let C = (cy,...,ct) be a cycle of W and assume that t is even. If all of W, ..., W,, are of different signs,
then C is a useful cycle; If all of We,, ..., W, are of the same sign, then C is a useful cycle of W.

Proof. Recall the Usefulness Criterion (Remark 2.1)

t
Cis a useful cycle of W & (-1 = T, (u1)Te, (1) 'HTci_l(ui)Tci(ui)
=2

1

If all of W,,..., W, are of different signs, then ch(uj)rcj(uj+1) = T, (u1)1,(ur) = —1, and the above
expression equals to (—1)f = (=1)!. If all of W,...,W,, are of the same sign, then ch(uj)rcj(ujﬂ) =
7., (1) 7, (1t) = 1, the above expression is also 1 = (—1)!, which holds since t is even. a

We assume in the rest of the proof that at least half of edges in E’ are of the same sign; the case when at
least half of E’ are of different signs can be handled similarly. Let E” be the subset of E’ that consists of edges
of the same sign, with |E”| > |E’| /2. In the following discussion, cycles in E always refer to cycles that do
not use the same edge twice (parallel edges are counted as different edges, since they correspond to different
moves in the window W).

The aforementioned discussion leads to the following corollary which reduces the existence of useful cycle
of W to a simple cycle in auxiliary graph H:

COROLLARY 5.1. Since every cycle in a bipartite graph has even length, every cycle in E' corresponds to a useful cycle of
W. For convenience, given any cycle C of E" we will write imprvy /(C) to denote the vector of its corresponding useful
cycle of W.

We first deal with the case when E” contains many parallel edges:
LeEMMA 5.3. Let D be the subset of nodes in Vy that have parallel edges in E". Then rankgyqes(W) > |D|/2.

Proof. We prove the lemma even if the sequence contains both 1-moves and 2-moves so that we can use it also
in the general case in the next section. We note first that if S; = {u,v}, S; = {u,v},i < j are two moves that
involve the same two nodes, then there is at least one node z # u,v that appears an odd number of times
between the two moves. This follows from the definition of a valid move sequence.

We will construct a set Q of at least | D|/2 2-cycles, where each 2-cycle consists of two parallel edges in E”.
We use the following procedure.

1. While there is a 2-cycle (u,v) with u € D, v € V;, such that some node z # u of V; moves an odd number of
times between the two {u, v} moves of the 2-cycle, pick any such 2-cycle (1, v) and add it to our set Q, pick any
such node z # u that moves an odd number of times between the two {u, v} moves, and delete u and z from D
(if z is in D).

2. Suppose now that there are no more 2-cycles as in step 1. While D is not empty, let u be any remaining node
in D, take any two incident parallel edges {u,v} in E”, add the corresponding 2-cycle to Q, and delete u from
D.

Firstly, notice that for every new entry at Q in the procedure, we delete at most 2 nodes from D. Hence,
this procedure will generate clearly a set Q of at least |D|/2 2-cycles. Let (uy,v1), (12,v2), ..., (g, v;) be the
sequence of 2-cycles selected, where the first d were selected in step 1, and the rest in step 2. The nodes u;
are distinct, while the nodes v; may not be distinct. For eachi = 1,...,d, let z; be the node in V; that appears
an odd number of times between the two {u;, v;} moves that was selected by the algorithm. Note that node
z; # u; for all j > i, since z; was deleted from D when u; was selected. For eachi =d +1,...,k, let z; be any
node, other than u;,v;, that appears an odd number of times between the two {u;,v;} moves. Then z; is not
in V; because in step 2 there are no odd nodes in V;. For each i = 1,...,k, we view the edge {u;,z;} of the
complete graph as a witness for the 2-cycle (u;, v;).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5072

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Consider the matrix with columns corresponding to the selected 2-cycles (u;,v;), i = 1,...,k, and rows
corresponding to the witness edges {u;,z;}. The entry for the corresponding witness edge {u;,z;} is nonzero.
Indeed, by definition 2.3, imprv, w(C = (u;, Ui {12} = —by (7, (1) T, (2i)) — ba(Te, (u) T, (21))

Te (2i) = —Tep(2i)
and ¢ by =1 & by = —7¢, ()7, (v;) which yields imprvy w(C = (u;, 01))y, 2,y = 2+ Te, (2) # 0.
Te, (Vi) = Te, (u7), for m € {1,2}

Consider the column for a 2-cycle (u;,v;) selected in step 1. The entry for any other witness edge {u;,z;}
with j < iis 0 because uj,z; # u;,v;. (The entries for witness edges {u;,z;} with j > i could be nonzero.)

Consider the column for a 2-cycle (u;,v;) selected in step 2. The entry for any witness edge {u;,z;} from
step 1 (i.e. with j < d) is 0 because u},z; # u;, v;. The entry for any witness edge {u;,z;} from step 2 (i.e. with
j > d) is also 0 because (1) u; #+ u;,v;, (2) zj ¢ V1 hence zj # u;, and (3), even if zj = v;, all nodes of V; —hence
also u; —occur an even number of times between the two {u;, v;} moves, therefore the entry for {u;,v;} is 0.

imprVe,w (Ci gy y 70 0 0
[step1] : :
M1—>d - * . : M[Step E 0
) _ 1—d
. MV (Co gy £0) = M= M2
+1—

Ml[;:—ell:)jll(= diagtE(d+1)~>k(imprvTo,W(Ct){xir}/t} #0)
Thus, the matrix with columns corresponding to the selected 2-cycles (u;, v;) and rows corresponding to their
witness edges {u;,z;} is a lower triangular matrix with non-zero diagonal entries. It follows that the columns

are linearly independent. O

As a result, it suffices to deal with the case when |D| is o(L/log®n). Let E* denote the subset of edges
obtained from E” after deleting all nodes of D and their incident edges. The remaining bipartite graph has no
parallel edges. Then we have

|E*| > |E"| — |D| -log” n = Q(L/ log n).

We list all properties of the bipartite graph H* = (V; U V;, E*) we need as follows:
1. H* is a bipartite graph with no parallel edges;
2. ViU V5| < O(L/log®n) and |E*| > Q(L/logn); and
3. #pw(u) < log7 n for every node u € Vj.
4. Every edge e = {u,v} € E* corresponds to a move W; = {u, v} which is of the same sign.

Recall that E(W) denotes the set of edges in K,; which have both nodes in V(W). These edges are indices of
imprvy, s(i) and imprv, s(C) for a given useful cycle C of W. Our main lemma is the following:

LemMA 5.4. Fix an arbitrary s € [0 : L/log'(n)]. Assume additionally that there exists a set of edges & =
H{x,nt - {xs,ys}} € E(W) such that x; € Vy for all i € [s]. Then there exists a cycle C in H* and an edge
{u,v} € EW) withu € Vi \ {x1,y1,...,%s,Ys} such that

(5.15) (imprvTo,W(C)){ulv};«éO and (imprvTo,W(C)){Xi, =0, forallic[s].

Yi}
We can use Lemma 5.4 to prove (5.14):
Proof. [Proof of (5.14) Assuming Lemma 5.4]

Start with £ = @, For integer s going from 0 to [L/log'"n|, using Lemma 5.4, find cycle C; ;1 and an
edge {u, v} satisfying (5.15), let Es11 = & U {xs41,¥s+1} = {1, v} and repeat the above process.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5073

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

In the end, we get a set of cycles Cy, - - - ,C where k = | L/log' n]. And for any j € [k], we have

(imprvm,w(c]-)){w};éo and (imprvq, w(C))) 0, foralliel[j—1l.
=177

{xiyi} -

Let M be the k x k square matrix where M;; = (imprvTO,W(C]'))

{xiyi}
PV, 1(C1)) 7 O 0 0 0
* imprvTo'W(Cz){xZ,yz) 75 0 0 0
M = * imprvToyw(Cé){XSrVB} 7& 0 0
: I * 0
" * * * o imprvg, w(Cogx, y 7 0

As we can see, the matrix is lower triangular with non-zero diagonal entries, so it has full rank k. Note
that M is a submatrix of the matrix formed by taking imprv, (C;) as column vectors, therefore we have

rankeygles(W) > k > L/logn. O
5.1 Proof of Lemma 5.4 Given a cycle C in H*, we say {u,v} € E(W) is a witness of C if

(imprv, w(C)) £ 0.

{u, v}
So the goal of Lemma 5.4 is to find a cycle C of H* such that none of (u;,v;) € & are witnesses of C and at
the same time, C has a witness edge {u,v} with u being a new node in V; not seen in & before. The proof
consists of two steps. First we introduce a so-called split auxiliary graph G using H* and &, by deleting certain
nodes and creating extra copies of certain nodes in H*. We show in Lemma 5.5 that certain simple cycles in G
correspond to cycles in H* that don’t have any edge in & as witnesses. Next we show in Lemma 5.7 how to
find such a simple cycle in G that has a new witness (1, v) such that u € V; and does not appear in &;.

Let witq(&;) be the set of u € V; that appear in & and let wity(Es) be the set of v € V; that appear in &. For
each v € wity(&;), we write wit1(v) # @ to denote the set of nodes u € wit1(&;) such that (1,v) € &, and let k,
denote the number of moves in W that involve at least one node in wit; (v). We have k;, < |wit1(v)] - log7 n since
#w(u) <log” n for all u € V;. Below, we give in Fig. 4 an example of such an auxiliary graph:

We now define our split auxiliary (bipartite) graph G. We start with its set of nodes V] U V;:

1. V{ = V1 \ wit1(&5); and
2. V3 = Upev,C(v), where C(v) = {v@} if v ¢ wity(&5) and C(v) = {0©@, v, ..., o)} if v € wita(Es).

So we deleted nodes wit1(&;) from V; and replaced each node v € wity(&) by ky, + 1 new nodes. Next we
define the edge set E(G) of G. Every move W; = {u,v} in W that corresponds to an edge (1,v) in H* with
u € Vp \ wity(&) and v € V, will add an edge in G as follows:

1. If v ¢ wity(&5), then we add (1, v©) to G; and

2. Otherwise (v € wity(&;)), letting p; € [0 : k] be the number of moves before W; that contain at least one
node in wit; (v) (note that W; does not contain wit; (v); actually W; cannot contain wit;(£s)), we add
(u, o)) to G.

Therefore, every edge in G corresponds to a move in W which corresponds to an edge in H* that does not
contain a node in wit;(&s). It is clear that each simple cycle of G corresponds to a cycle of H, which in turn
corresponds to a useful cycle of W (Since we assume w.l.o.g that all edges of auxiliary graph, and its split one,
correspond to moves of the same sign (See Corollary 5.1)). So imprv /(C) is well defined for simple cycles C
of G. Our motivation for constructing and working on G is because of the following lemma:

LemMa 5.5. Let C be a simple cycle of G. Then none of the edges in & is a witness of C.

Proof. See proof in the full version. g

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5074

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Let W= (Wy,---,Wiq,---)
Let E—3 = {{u1,0a}, {u2,va}, {uz,va}}

G(H, £s) e
#y(u) =1 .
#w(up) =3
#w(uz) =4

ko, =(14+3+4) = 8

wit1(Es=3) = {u1, ua, u3}

Figure 4: An exemplifying case of an auxiliary graph H* and splitting graph G(H*, &)

To finish the proof, it suffices now to find a simple cycle C of G that has a witness (1, v) € E(W) with one of
its vertices u € V|. We start by checking that all conditions for H* still hold for G. It is clear that G is a bipartite
graph with no parallel edges. By the definition of wit;(v) for each v € wity(&s), we have Y, c it (&) lwity (0)] < 2s,
also |wit1(&s)| < 2s. The number of nodes |V{ U Vj| in G is at most

OL/log’m)+ Y. ko <O(L/log’n)+ Y. |wit;(v)|-log’ n = O(L/log’ n).

vewity (&) veEWIt)(Es)
where the last equality used that s < L/log'” 7. The number of edges in G is at least
QO(L/ logn) — |wity(E5)] - log” n = Q(L/ log n).

Let’s work on another preprocessing of G to simplify the proof. Note that the average degree of nodes in
G is at least Q) ((L /logn)/(L/ log3 n)) = Q(log2 n). The following simple lemma shows that one can clean up
G to get a bipartite graph G* such that every node has degree at least 100log n and the number of edges in G*
remains to be Q)(L/ logn):

LEMMA 5.6. There is a bipartite graph G* = (V;* U V', E(G*)) with Vi C V|, V5 C V] and E(G*) C E(G) such that
every node in G* has degree at least 100log n and |E(G*)| = Q)(L/log n).

Proof. See proof in the full version. O

Let us list the properties of G* = (V}* U V5, E(G*)) we will use in the rest of the proof:
Vi C V] = Vp \ wity(&) and V' C VJ so each node in V5 is in C(v) for some v € V,.
The degree of any node is at least 100 log #; and

For any u € V" and v € V;, the number of neighbors of u in V3 N C(v) is at most one.

= WM

E(G*) has no parallel edges, |[E(G*)| > Q(L/logn) and w.l.o.g. each edge in E(G*) correspond to a move
of same sign.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5075

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We prove the following lemma to finish the proof:

LEMMA 5.7. Let u € Vi and v # v' € V5 such that (u, o0y, (u, 0’0y € E(G*) for some j and j', and the corresponding
moves W; = {u,v} and Wy = {u,v'} in W are not consecutive’. Then, the graph G* has a simple cycle C such that C
has a witness e = {u,w} € E(W) with w € V{".

Proof. We begin with a simple sufficient condition for a simple cycle of G* to satisfy the above condition.

First, letu € V{" and v # ¢’ € V; such that (u, o), (u, v’ (j/)) € E(G*) for some j and j/, and the corresponding
moves W; = {u,v} and Wy = {u, v’} in W are not consecutive. Assume that i < i’ without loss of generality;
then i +1 < i’. We show:

Cramv 5.1. There is a node w ¢ {u,v,v'} that appears in an odd number of moves in Wi, 1, ..., Wy_1.
Proof. See proof in the full version. g

We remark that Claim 5.1 holds even when W is a mixture of 1-moves and 2-moves. This will be important
when we deal with the general case in Section 6.

We write w*(u, v, v/ (j/)) € V(W) to denote such a node w promised in the above claim (if more than one
exist pick one arbitrarily). The next claim gives us a sufficient condition for a simple cycle C of G* to satisfy
the condition of the lemma:

Cram 5.2. Let ' , ‘
C= ulvgjl)uzvgﬁ . ukvgk)ul

be a simple cycle of G* for some nonnegative integers ji,...,jx. Suppose for some i € [k] we have that w :=
w*(u;, Ul(-]i_ll), U?")) € V(W) does not appear in C (where vl(.]i‘ll) denotes vl(g") ifi=1,ie, wé¢ {uy,..., u,01,...,0},

then (u;, w) € E(W) must be a witness of C.
Proof. See proof in the full version. g

Finally we prove the existence of a simple cycle C of G* that satisfies the condition of the above claim. To
this end, we first review a simple argument which shows that any bipartite graph with 7 nodes and minimum
degree at least 100log # must have a simple cycle. Later we modify it to our needs.

The argument goes by picking an arbitrary node in the graph as the root and growing a binary tree of log n
levels as follows:

1. In the first round we just add two distinct neighbors of the root in the graph as its children.

2. Then for each round, we grow the tree by one level by going through its current leaves one by one to
add two children for each leaf. For each leaf u of the current tree we just pick two of its neighbors in the
graph that do not appear in ancestors of # and add them as children of u. Such neighbors always exist
since the tree will have no more than log n levels and each node has degree at least 1001log 7 in the graph.

Given that there are only 7 nodes in the graph, there must be a node that appears more than once in the tree at
the end. Let’s consider the first moment when we grow a leaf by adding one child (labelled by u) and u already
appeared in the tree. Note that the two nodes labelled by u are not related in the tree since we maintain the
invariant that the label of a node does not appear in its ancestors. Combining paths from these two nodes to
the first node at which the two paths diverge, we get a simple cycle of the graph.

We now adapt the above argument to prove the existence of a simple cycle C of G* that satisfies the
condition of Claim 5.2 by building a binary tree of 2logn levels as follows. We start with an arbitrary node
uroot € V| as the root of the tree and expand the tree level by level, leaf by leaf, as follows:

7Tt is worth mentioning, that V;* always includes at least two vertices which are copies from different initial nodes v, v'. Indeed, if
G* was actually a star graph around V; = {v*}, then O(L/logn) = E(G*) = O(V(G*)) = O(L/log3 n), which leads to a contradiction.
Additionally, notice that o) and o’) correspond to different nodes in the initial graph, otherwise the initial auxiliary graph H* would
have parallel edges.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5076

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1. Case 1: The leaf we would like to grow is labelled a node u € V;". In this case we add two children as

follows. Let ulv(lj Vo uk,w,((jf‘l‘) u be the path from the root (u1) to u in the tree, where

uy, ..., ug_1,u € Vi and vgjl),.) .,U,(ff’ll) € V5. We pick two neighbors oW, ') of u in G* with distinct

v,v" € V;, as its children in the tree. We would like v and v’ to satisfy the following two properties: (1) v
G /G
i 7Y

and v’ do not lie in {v1,v2, -+ ,vx_1}, (2) v and ¢’ are different from w*(u;, v) for every

i=1,...,k—1, where ZJ;(] 2 denotes the other child of v; in the tree and (3) the move corresponding to
{u,} in W and the move corresponding to {u,7'0")} in W are not consecutive moves. The existence of
o) and ©'") that satisfy (1), (2) and (3) follows trivially from the fact that every node (in particular, u
here) has degree at least 1001logn in G*. Indeed, to satisfy (2) and (3), for each time we may reject at
most 2 possible leafs. Given that the tree will only grow for 2log n levels —the half of times with V}" leafs
and the rest half with V' —, we have k < logn and there are at most 2k < 2logn edges of u that need to
be avoided. Moreover, no two edges from u go two the same C(v) for some v € V, (Because we don't
allow parallel edges).

2. Case 2: The leaf we would like to grow is labelled a node v) € V. In this case we just add one neighbor

u € Vi of v\ as its only child. Let u; vgil) - vf{

f}l)ukv(j) be the path from the root to v'). We pick a
iy (!
z(‘]l)/ U(/z))

neighbor u € V* of o) in G* that satisfies (1) u ¢ {uq, -+ ,ux} and (2) u is different from w*(u;, v ;
) denotes the other child of u;

foreveryi=1,...,k—1and u is different from w*(u, o), U/(j/)), where v;(j"
and v;(]") denotes the other child of u; in the tree. The existence of such u follows from the same

argument as Case 1.

Given that the tree has 2logn levels and there are only #n nodes, there must be a node that appears more
than once in the tree at the end, and let’s consider the first moment when we grow a leaf by adding a child
and the same node already appeared in the tree. Similarly we trace the two paths and let u € V" be the node
where the two paths diverge; note that given the construction of the tree, this node must be a node in V", given
that nodes in V3 only have one child in the tree. On the one hand, the way we construct the tree makes sure
that combining the two paths leads to a simple cycle C of G*. On the other hand, let v, v/ ") e V; be the two
children of u (which are next to u on the cycle). Then it is easy to verify that w*(u, o', v’ () does not appear on
the cycle we just found.

This ends the proof of the lemma. 0

U1 = Uroot

A
U3

ug = Us

Figure 5: Example of Finding-Cycle Process.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5077

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

6 General Case
We prove Lemma 3.2 for the general case. Let S = (Sy, . .., Sy) be a valid move sequence of length N = nlog'® n

that consists of both 1-moves and 2-moves. We will consider two cases and deal with them separately: (1) the
number of 1-moves in S is at least N/ log” 1; and (2) the number of 1-moves is at most N/ log” .

6.1 Case 1 We consider the case when there are at least N/ log® # many 1-moves. In this case we show that
there is a window W of S such that rankares(W) is large. The arguments used in this case are similar to those
used in [22, 7, 10]. Given a window W of S, we write V(W) to denote the set of nodes u € V(W) such that at
least two 1-moves in W are {u}.

LemMA 6.1. There is a window W of S such that

VW) = 0 ('e”(w’> .

log® n
Proof. See proof in the full version. g
LEMMA 6.2. We have rankares(W) > Q(|Va(W))).

Proof. See proof in the full version. O

6.2 Case 2 Let S be a valid move sequence of length N with no more than N/ log® # many 1-moves. Let W
be a window of S. We write #p (1) to denote the number of moves (including both 1-moves and 2-moves) that
u appears in W, and write #2, (1) to denote the number of 2-moves that u appears in W.

We start by showing a lemma similar to Lemma 4.2 in Section 4.

LEMMA 6.3. Let S be a valid move sequence of length N = nlog'® n with no more than N /log® n many 1-moves. Then
there exists a window W of S such that at least Q(len(W)/ log n) many moves of W are 2-moves W; = {u, v} that satisfy

(6.16) log3 n < #zw(u) <#y) < 210g7n and #%v(v) > log3 n

Proof. See proof in the full version. g

So we now have a valid move sequence W of length L, as a window of the original valid sequence S, such
that the number of 2-moves in W that satisfy (6.16) is at least ()(L/ log n1). The rest of the proof follows the same
arguments used in Section 5. We give a sketch below.

First we define the same auxiliary graph H = (V(W), E) such that there is a one-to-one correspondence
between E and 2-moves in W. Note that the degree of a node u in H is the same as #%\,(u).

We then show that there are disjoint sets of nodes Vi, Vo, C V(W) and a subset of edges E’ C E that satisfy
conditions similar to those of Lemma 5.1:

LEmMMA 6.4. There are two disjoint sets of nodes Vy, Vo C V(W) and a subset of edges E' C E such that
1. Every edge in E' has one node in Vy and the other node in Vy;
2. [ViUVs| = O(L/ log® n) and |E'| = Q(L/ log n);
3. #w(u) < 2log” n for every node u € V.

The proof is exactly the same as that of Lemma 5.1, except that we define V to be the set of nodex v with
#%,v(v) > log3 n and V), to be the set of nodes v with #p(v) > 2log7 n.

Next we focus on E”, which contains all edges in E’ of the same sign (or edges in E’ of different signs,
whichever contains more edges). Similarly every cycle in E” corresponds to a useful cycle of W. The case when
E” contains many parallel edges can be handled exactly the same way as in Lemma 5.3. So we may delete all
parallel edges from E”, and finish the proof using Lemma 5.4.

The proof of Lemma 5.4 for the general case is very similar, with the following changes:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5078

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1. In the definition of k; for each v € wity(&s), we need it to be the number of moves (including both
1-moves and 2-moves) in W that involve at least one node in wity(v). This can still be bounded from
above by |wit(v)] - 2log7 n since we have #p (1) < log7 n for all u € V; as promised in Lemma 6.4 above.

2. As we commented earlier, Claim 5.1 works even when W consists of both 1-moves and 2-moves.

This finishes the proof of Lemma 3.2 for the general case.

7 Binary Max-CSP and Function Optimization Problems

We recall the definition of binary maximum constraint satisfaction problems, and more generally function
optimization problems.

DEFINITION 7.1. An instance of Binary Max-CSP (Constraint Satisfaction Problem), or MAX 2-CSP, consists of a set
V = {x1,...,x,} of variables that can take values over {0,1} and a set C = {cy,...,cm} of constraints with given
respective weights wy, . .., Wy, where each constraint is a predicate on a pair of variables. The MAX 2-CSP problem is:
given an instance, find an assignment that maximizes the sum of the weights of the satisfied constraints.

Several problems can be viewed as special cases of Binary Max-CSP where the predicates of the constraints
are restricted to belong to a fixed family P of predicates; this restricted version is denoted Max-CSP(P). For
example, the Max Cut problem in graphs is equivalent to Max-CSP(P) where P contains only the “not-equal”
predicate (x # y, where x,y are the two variables). The Max Directed Cut problem, where the input graph is
directed and we seek a partition of the nodes into two parts Nj, N, that maximizes the total weight of the edges
directed from Nj to N, corresponds to the case that P contains only the < predicate (i.e. x < y). MAX 2SAT
corresponds to the case that P consists of all 4 possible clauses on two variables.

A generalization of MAX 2-CSP is the class of Binary function optimization problems (BFOP) where instead of
constraints (predicates) we have functions on two arguments that take values in {0,1,...,d} instead of {0,1},
where d is a fixed constant (or even is polynomially bounded). For convenience and consistency with the
notation of configurations in the Max Cut problem, we will use in the following {—1,1} as the domain of the
variables instead of {0,1}. That is, the problem is: Given a set V = {xq,...,x,} of variables with domain
D = {-1,1}, aset F = {fy,..., fu} of functions, where each f; is a function of a pair (x;,, x;,) of variables,
and given respective weights wy,...,wy, find an assignment T : V — D to the variables that maximizes
I wi - filT(x,), T(x)).

Even though a function in BFOP (or a constraint in Max-2CSP) has two arguments, its value may depend on
only one of them, i.e. it may be essentially a unary function (or constraint). More generally, it may be that the
two arguments of the function can be decoupled and the function can be separated into two unary functions.
We say that a binary function f(x, y) is separable if there are unary functions fi, f, such that f(x,y) = f1(x) + f2(y)
for all values of x,y; otherwise f is nonseparable. For binary domains there is a simple criterion for separability:
a function f(x,y) is separable if and only if f(—1,-1) + f(1,1) = f(—1,1) + f(1,—1) [11]. If in a given BFOP
instance some binary functions are separable, then we can decompose them into the equivalent unary functions.
Thus, we may assume, without loss of generality, that a given BFOP instance has unary and binary functions,
where all the binary functions are nonseparable. We say that an instance is complete, if every pair of variables
appear as the arguments of a (nonseparable) binary function in the instance.

The 2-FLIP local search algorithm can be applied to a MAX 2-CSP or BFOP problem to compute a locally
optimal assignment that cannot be improved by flipping the value of any one or two variables. We will
show that the smoothed complexity of 2-FLIP for any complete MAX 2-CSP or BFOP instance is (at most)
quasipolynomial.

THEOREM 7.1. Let I be an arbitrary complete instance of MAX 2-CSP (or BEFOP) with n variables and m constraints
(functions) with independent random weights in [—1,1] with density at most ¢ > 0. Wzth probability at least 1 — 0,,(1)
over the draw of weights, every implementation of 2-FLIP terminates within m¢n© (log'n) steps.

Proof. Consider a (complete) instance I of a BFOP problem with # variables and m functions, and a sequence S
of moves of 2-FLIP starting from an initial configuration. The proof follows the same structure as the proof for

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5079

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Max Cut. The only thing that changes is the improvement vector in each step, which depends on the specific
functions of the instance: the vector has one coordinate for each function f; in the instance and the entry is
equal to the change in the value of the function resulting from the move. Arcs and cycles of S are defined in
the same way as in Max Cut, and the improvement vectors of arcs and cycles are defined in an analogous way
from the improvement vectors of the moves.

The heart of the proof for Max Cut is Lemma 3.2 which showed that there is a window } and a set of arcs
or a set of cycles of W whose improvement vectors have rank Q(E';—%V;). We will show that the lemma holds
for any BFOP problem.

We associate with the BFOP instance I the graph G where the nodes correspond to the variables of I and
the edges correspond to the binary functions of I; since I is a complete instance, the graph G is the complete
graph, possibly with multiple edges connecting the same pair of nodes (if there are multiple functions with the
same pair of arguments). We will identify the variables of I with the nodes of G and the functions of I with the
edges of G.

In the general case of the Max Cut problem, in Case 1 where there is a large number of 1-moves, we
identified a window W and a large set A’ of arcs in the window whose set of improvement vectors are linearly
independent. The argument relied only on the zero-nonzero structure of the improvement vectors: it showed
that the matrix M formed by these vectors and a set of rows corresponding to a certain set E’ of witness edges
is a lower triangular matrix with nonzero diagonal. Take a set F’ of functions of I that contains for each edge
{u,v} € E’ a function fi(u,v) with this pair as arguments (it exists because the instance I is complete), and
form the matrix M’ with the set F’ as rows and the set A’ of arcs as columns. We will show that the matrix M’
has the same zero-nonzero structure as M, thus it also has full rank.

Consider an arc of the move sequence S corresponding to two moves S; = {u}, §; = {u}, i < j,
and a function f; of I. If u is not one of the arguments of the function, then the corresponding entry
of the improvement vector of the arc is obviously 0. If u is one of the argument, i.e. the k-th function
is fx(u,v) (similarly if it is fi(v, 1)), then the corresponding entry of the improvement vector of the arc is
B, 1i®)) — fil=11(00), V()] — i)ty (), 7j(0)) — fil~7j(w), 7;(@)]. 1f © moves an even number
of times between §; and §j, then 7;(v) = 7;(v) and it follows that the entry is 0, both in the case that
7i(#) = 7j(u) and in the case that ;(#) = —7;(u). On the other hand, if v moves an odd number of times
between S; and §j, then 7;(v) = —7;(v) and it follows that the k-th entry of the improvement vector is
il fr(riu), 7i(©) — fr(=ri(), vi)] — vj@) fe(vj(w), —7i(0)) — fu(—=7jW), —7i(v))]. Letting () = a, v,(v) =
b, the entry is a[f(a, b) + fi(—a, —b) — fr(—a,b) — fi(a, —b)] (both when 7;(u) = ;(u) and when ;(u) = —;(u));
this quantity is nonzero because f; is nonseparable. Thus, the entry for fi(u,v) of the improvement vector of
the arc is nonzero exactly when the entry of the arc in the Max Cut problem for the edge (1, v) is nonzero. It
follows that the matrix M’ has the same zero-nonzero structure as M, thus it also has full rank.

In Case 2 of the Max Cut problem, where the number of 2-moves is very large, there were two subcases. In
the first subcase, where there are many parallel edges in the graph that we associated with the window of the
move sequence, we found a large set of 2-cycles whose improvement vectors were linearly independent. In the
other case, where there are "few" parallel edges, we constructed a large set of cycles (of length O(log n)), again
with linearly independent improvement vectors. In both cases, the proof of linear independence relied again
only on the zero-nonzero structure of the vectors, and not on the precise value of the entries. We will argue
that in both cases, the corresponding vectors of these cycles in the BFOP instance I have the same zero-nonzero
structure.

In the first subcase we found many 2-cycles (uq,vy),...,(ux, vx), and corresponding "witness" edges
(u1,21),..., (g, zx) such that the matrix M with rows corresponding to the witness edges and columns
corresponding to the 2-cycles in the Max Cut problem is lower triangular with nonzero diagonal. The
nodes u; are distinct (the v; and the z; may not be distinct) and z; # u;,v; for all i. For each witness pair
(uj,z;) pick a function f;, of instance I with this pair of variables as arguments, in either order, say wlog the
function is fr,(u;,z;). Consider the matrix M’ with rows corresponding to the functions f;,(u;,z;) and columns
corresponding to the 2-cycles (u;, v;). Note that the entry M(j, i) is nonzero if one of the nodes uj,zjisin {u;,v;}
and the other node appears an odd number of times between the two moves {ui, vi}, and it is 0 otherwise,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5080

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ie. if {ujz;} N{u;,v;} = @, or if one of uj,z; is in {u;,v;} and the other node appears an even number of
times between the two moves {u;,v;}. Importantly it cannot be that {uj,z;} = {u;,v;} because u; # u;,v;.
Examining the value M'(j, i) in the same way as in the case of arcs above, we observe that if M(j,i) = 0 then
also M'(j,i) = 0, and if M(j,i) # O then also M'(j,i) # 0. Thus, M’ has the same zero-nonzero structure as M
and hence it has also full rank.

In the second subcase of Case 2, we found many cycles Cy, ... Cy and corresponding witness edges {u;, v; }
such that for every i, (1) C; does not contain any u; for j < i, nor v;, (2) C; has exactly two edges incident to
u; and node v; appears an odd number of times between the two moves corresponding to these two edges,
(3) if C; contains v; for some j < i (the cycle C; may go more than once through v;), then u; does not appear
between any pair of moves that correspond to consecutive edges of the cycle C; incident to v;. We used these
properties in Max Cut to show that the matrix M whose rows correspond to the witness edges and the columns
correspond to the cycles C; is lower triangular with nonzero diagonal. As before, for each witness pair (u;, v;)
pick a function f;; of instance I with this pair of variables as arguments, and let M’ be the matrix with these
functions as rows and the cycles C; as columns. We can use the above properties to show that the matrix M’ is
also lower triangular with nonzero diagonal. Property (2) and the fact that v; ¢ C; (from property (1)) imply
that M'(i, 1) # 0 for all i. Properties (1) and (3) can be used to show that M'(j,i) = 0 for all j < i. Therefore, M’
has full rank.

Once we have Lemma 3.2 for the BFOP instance I, the rest of the proof is the same as for Max Cut. The
only difference is that, if the maximum value of a function in [is 4 (a constant, or even polynomial in 7), then
the maximum absolute value of the objective function is md instead of n? that it was in Max Cut. a0

8 Conclusions

We analyzed the smoothed complexity of the SWAP algorithm for Graph Partitioning and the 2-FLIP algorithm
for Max Cut and showed that with high probability the algorithms terminate in quasi-polynomial time for any
pivoting rule. The same result holds more generally for the class of maximum binary constraint satisfaction
problems (like Max-2SAT, Max Directed Cut, and others). We have not made any attempt currently to optimize
the exponent of logn in the bound, but we believe that with a more careful analysis the true exponent will be
low. There are several interesting open questions raised by this work. We list some of them below.

1. Can our bounds be improved to polynomial? In the case of the 1-FLIP algorithm in the full perturbation
model (i.e. when all edges of K, are perturbed) a polynomial bound was proved in [1]. Can a similar result be
shown for 2-FLIP and SWAP?

2. Can our results be extended to the structured smoothed model, i.e., when we are given a graph G and
only the edges of G are perturbed? In the case of 1-FLIP we know that this holds [15, 11], but 2-FLIP is much
more challenging. The additional technical difficulty in the structured model arises as there are fewer edges
that can serve as witnesses for useful cycles, making it harder to find many useful cycles that are linearly
independent.

3. We saw in this paper how to analyze local search when one move flips simultaneously two nodes. This is
a qualitative step up from the case of single flips, that creates a number of obstacles which had to be addressed.
This involved the introduction of nontrivial new techniques in the analysis of the sequence of moves, going
from sets in the case of 1-moves to graphs for the case of 2-moves. Dealing with local search that flips 3 or
more nodes will require extending the methods further to deal with hypergraphs. We hope that our techniques
will form the basis for handling local search algorithms that flip multiple nodes in one move, e.g. k-FLIP for
higher k, and even more ambitiously powerful methods like Kernighan-Lin that perform a deep search in each
iteration and flip/swap an unbounded number of nodes.

4. Can our results be extended to Max k-Cut or k-Graph Partitioning where the graph is partitioned into
k > 2 parts? In the case of 1-FLIP for Max k-Cut quasi-polynomial bounds were shown in [7].

5. Can similar results be shown for Max-CSP with constraints of higher arities, for example Max 3SAT? No
bounds are known even for 1-FLIP. In fact, analyzing 1-FLIP for Max 3SAT seems to present challenges that
have similarities with those encountered in the analysis of 2-FLIP for Max 2SAT and Max Cut, so it is possible
that the techniques developed in this paper will be useful also in addressing this problem.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5081

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

References

[1] O. ANGEL, S. BUBECK, Y. PERES, AND E. WEI, Local max-cut in smoothed polynomial time, in Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, ACM, 2017, pp. 429-437.

[2] D. ArRTHUR, B. MANTHEY, AND H. ROGLIN, Smoothed analysis of the k-means method, Journal of the ACM (JACM), 58
(2011), pp. 1-31.

[3] D. ARTHUR AND S. VassiLviTsKil, Worst-case and smoothed analysis of the icp algorithm, with an application to the k-means
method, in 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), IEEE, 2006, pp. 153—
164.

[4] R. BEIEr, H. ROGLIN, C. ROSNER, AND B. VOCKING, The smoothed number of pareto-optimal solutions in bicriteria integer
optimization, Mathematical Programming, (2022), pp. 1-37.

[5] R. BEIER AND B. VOCKING, Random knapsack in expected polynomial time, in Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, 2003, pp. 232-241.

[6] A. BHASKARA, M. CHARIKAR, A. MOITRA, AND A. VIJAYARAGHAVAN, Smoothed analysis of tensor decompositions, in
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 594-603.

[7] A. BiBak, C. CARLSON, AND K. CHANDRASEKARAN, Improving the smoothed complexity of flip for max cut problems, in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 897-916.

[8] A.BruMm AND J. DUNAGAN, Smoothed analysis of the perceptron algorithm for linear programming, (2002).

[9] S. BOODAGHIANS, J. BRAKENSIEK, S. B. HOPKINS, AND A. RUBINSTEIN, Smoothed complexity of 2-player nash equilibria, in
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2020, pp. 271-282.

[10] S. BoobaGHIANS, R. KULKARNI, AND R. MEHTA, Smoothed efficient algorithms and reductions for network coordination games,
in 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, T. Vidick, ed., vol. 151 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020, pp. 73:1-73:15.

[11] X. CHEN, C. Guo, E. V. VLATAKIS-GKARAGKOUNIS, M. YANNAKAKIS, AND X. ZHANG, Smoothed complexity of local max-cut
and binary max-csp, in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, New York, NY, USA, 2020, Association for Computing Machinery, p. 1052-1065.

[12] D. DapusH AND S. HutBERTs, A friendly smoothed analysis of the simplex method, in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, 2018, pp. 390—403.

[13] R. ErsAsserR AND T. TSCHEUSCHNER, Settling the complexity of local max-cut (almost) completely, in International
Colloquium on Automata, Languages, and Programming, Springer, 2011, pp. 171-182.

[14] M. ENGLERT, H. ROGLIN, AND B. VOCKING, Smoothed analysis of the 2-opt algorithm for the general tsp, ACM Transactions
on Algorithms (TALG), 13 (2016), pp. 1-15.

[15] M. EtscHEID AND H. ROGLIN, Smoothed analysis of local search for the maximum-cut problem, ACM Trans. Algorithms, 13
(2017), pp. 25:1-25:12.

[16] B. FARRELL AND R. VERSHYNIN, Smoothed analysis of symmetric random matrices with continuous distributions, Proceedings
of the American Mathematical Society, 144 (2016), pp. 2257-2261.

[17] C. M. Fipuccia AND R. M. MATTHEYSES, A linear-time heuristic for improving network partitions, in Proceedings of the
19th Design Automation Conference, ACM/IEEE, 1982, pp. 175-181.

[18] M. GAREy, D. JoHNSON, AND L. STOCKMEYER, Some simplified np-complete graph problems, Theor. Comput. Sci., (1976),
pp. 237-267.

[19] D.S. Jonnson, C. R. AraGON, L. A. McGEocH, AND C. SCHEVON, Optimization by simulated annealing: An experimental
evaluation; part i, graph partitioning, Oper. Res., 37 (1989), pp. 865-892.

[20] D.S. JounsoN, C. H. PAPADIMITRIOU, AND M. YANNAKAKIS, How easy is local search?, Journal of Computer and System
Sciences, 37 (1988), pp. 79-100.

[21] B. W. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell Syst. Tech. J., 49 (1970), pp. 291-
307.

[22] H. Ro6cGLIN, The complexity of Nash equilibria, local optima, and Pareto optimal solutions, PhD thesis, Aachen, Techn.
Hochsch., Diss., 2008, 2008.

[23] H. ROGLIN AND B. VOCKING, Smoothed analysis of integer programming, Mathematical programming, 110 (2007), pp. 21—
56.

[24] A. A. SCHAFFER AND M. YANNAKAKIS, Simple local search problems that are hard to solve, SIAM journal on Computing, 20
(1991), pp. 56-87.

[25] V. SIVAKUMAR, S. Wu, AND A. BANERJEE, Structured linear contextual bandits: A sharp and geometric smoothed analysis, in
International Conference on Machine Learning, PMLR, 2020, pp. 9026-9035.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5082

Downloaded 06/18/24 to 160.39.60.240 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[26] D. A. SPrIELMAN AND S.-H. TENG, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time,
Journal of the ACM (JACM), 51 (2004), pp. 385-463.

[27] L. XA, The smoothed possibility of social choice, Advances in Neural Information Processing Systems, 33 (2020),
pp- 11044-11055.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

5083

	Introduction
	Related work: Smoothed analysis of 1-FLIP for Max-Cut
	Our Contributions
	Our Approach
	Analysis of 1-FLIP: Rank of Arcs
	Inadequacy of Arcs in 2-FLIP Sequences
	Cancellation of Inactive Nodes with Useful Cycles
	Algorithmically Finding Many Linearly Independent Useful Cycles

	Organization of the paper.

	Preliminaries
	Local Max-Cut and the FLIP Algorithm
	Graph Partitioning and the SWAP Algorithm
	Smoothed Analysis
	Move Sequences
	Arcs
	Graph of 2-Moves and Useful Cycles

	Main Lemma and the Proof of Theorem 1.2 and Theorem 1.1
	Windows in a Valid Sequence of 2-Moves
	Finding Cycles
	Proof of Lemma 5.4

	General Case
	Case 1
	Case 2

	Binary Max-CSP and Function Optimization Problems
	Conclusions

