

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Chen, Li, Yannakakis

2 < ? < ∞, though the complexity grows to in�nity as ? → ∞.)
Note, however, that all known upper bounds so far are exponen-

tial in either : or log(1/W), and this is in sharp contrast with the

ℓ2-norm case, for which [21, 29] gave an algorithm with both query

and time complexity polynomial in :, log(1/Y) and log(1/W).

Our contribution. We obtain the �rst algorithm with polynomial

query complexity for Contraction∞ (Y,W, :):
Theorem 1. There is an $ (:2 log(1/Y))-query algorithm for

Contraction∞ (Y,W, :).
The observation below explains why our upper bound does not

depend on W :

Observation 1. Let 5 : [0, 1]: ↦→ [0, 1]: be a (1 − W)-contraction
map under the ℓ∞-norm. Consider the map 6 : [0, 1]: ↦→ [0, 1]:
de�ned as 6(G) := (1− Y/2) 5 (G). Clearly 6 is a (1− Y/2)-contraction.
Let G be any point with ∥6(G) − G ∥∞ ≤ Y/2. We have

Y/2 ≥ ∥6(G) − G ∥∞ = ∥(1 − Y/2) 5 (G) − G ∥∞ ≥ ∥ 5 (G) − G ∥∞ − Y/2
This gives a black-box reduction from Contraction∞ (Y,W, :) to
Contraction∞ (Y/2, Y/2, :), which is both query-e�cient and time-

e�cient.

In Section 4, we give an $ (:2 log(1/Y))-query algorithm for

Contraction∞ (Y/2, Y/2, :), from which Theorem 1 follows. In-

deed, note that Observation 1 holds even if 5 is a non-expansive

map (i.e., 5 has Lipschitz constant 1: ∥ 5 (G) − 5 (~)∥∞ ≤ ∥G − ~∥∞
for all G,~ ∈ [0, 1]:). As a result, the same query upper bound

applies to NonExp∞ (Y, :), the problem of �nding an Y-�xed point

in a non-expansive map over [0, 1]: under the ℓ∞-norm:

Corollary 1. There is an $ (:2 log(1/Y))-query algorithm for

NonExp∞ (Y, :).
Another corollary of Theorem 1 is about �nding a strong Y-

�xed point in a contraction map 5 . We say G is a strong Y-�xed

point of 5 if ∥G − G∗∥∞ ≤ Y, where G∗ is the unique �xed

point of 5 . The following observation leads to Corollary 2, where

StrContraction∞ (Y,W, :) denotes the problem of �nding a strong

Y-�xed point:

Observation 2. Let 5 be a (1 − W)-contraction map and G∗ be its
unique �xed point. Let G be any (YW)-�xed point of 5 , i.e., G satis�es

∥ 5 (G) − G ∥∞ ≤ YW . Then we have

∥G −G∗∥∞ ≤ ∥G − 5 (G)∥∞ + ∥ 5 (G) −G∗∥∞ ≤ YW + (1−W)∥G −G∗∥∞,
which implies ∥G − G∗∥∞ ≤ Y. This gives a black-box reduction

from StrContraction∞ (Y,W, :) to Contraction∞ (YW,W, :), which
is both query-e�cient and time-e�cient.

Corollary 2. There is an $ (:2 log(1/(YW)))-query algorithm for

StrContraction∞ (Y,W, :).
In sharp contrast with Corollary 2, however, we show that it

is impossible to strongly approximate an exact �xed point in a

non-expansive map over [0, 1]2 under the ℓ∞ norm.

Theorem 2. There is no deterministic or randomized algorithm

which, when given oracle access to any non-expansive map 5 :

[0, 1]2 ↦→ [0, 1]2 under the ℓ∞-norm, computes in an expected

bounded number of queries a point that is within distance 1/4 of

an exact �xed point of 5 .

The problem Contraction∞ (Y,W, :) is a promise problem, i.e.,

it is promised that the function 5 in the black-box (the oracle) is a

(1 − W)-contraction. In the various relevant applications (stochas-

tic games etc.), the corresponding function that is induced is by

construction a contraction, thus it is appropriate in these cases to

restrict attention to functions that satisfy the contraction promise.

For any promise problem, one can de�ne a corresponding total

search problem, where the black-box can be any function 5 on

the domain and the problem is to compute either a solution or

a violation of the promise. In our case, the corresponding total

search problem, denoted T-Contraction∞ (Y,W, :), is the problem
of computing for a given function 5 : [0, 1]: ↦→ [0, 1]: either an

Y-�xed point or a violation of the contraction property, i.e. a pair of

points G,~ ∈ [0, 1]: such that ∥ 5 (G) − 5 (~)∥∞ > (1 − W)∥G − ~∥∞.
For any promise problem, the corresponding total search problem is

clearly at least as hard as the promise problem. For some problems

it can be strictly harder (and it may depend on the type of violation

that is desired). However, we show that in our case the two versions

have the same query complexity.

Theorem 3. There is an $ (:2 log(1/Y))-query algorithm for

T-Contraction∞ (Y,W, :).

Similar results hold for StrContraction∞ (Y,W, :) and

NonExp∞ (Y, :): the total search versions have the same query

complexity as the corresponding promise problems.

Remark. It is also important to note that while our algorithm in

Theorem 1 is query e�cient, it is not time e�cient for the current

version. The algorithm guarantees that within polynomial queries

we can �nd a weak Y-�xed point, but each iteration requires a brute

force procedure to determine the next query point. We will explain

more details of techniques in Section 1.1.

Other Related Work. We have already mentioned the most

relevant works addressing the query complexity of computing

the �xed point of a contraction map. For continuous functions

5 : [0, 1]: ↦→ [0, 1]: that have Lipschitz constant greater than 1 (i.e.

are expansive), there are exponential lower bounds on the query

complexity of computing a (weak) approximate �xed point [5, 18].

Contraction∞ (Y,W, :) when considered in the white-box

model1 can be formulated as a total search problem so that

it lies in the class TFNP. In fact, it is one of the motivating

problems in [9] to de�ne the class CLS for capturing problems

that lie in both PLS [22] and PPAD [25]. Later, it is placed in

UEOPL [16]2, a subclass of CLS to capture problems with a unique

solution. It is not known that Contraction∞ (Y,W, :) is complete

for any TFNP class. Notably, to the best of our knowledge, for the

known �xed point problems that are complete for some TFNP

1The white-box model refers to the model where the function is explicitly given by
a polynomial-size circuit, in contrast to the black-box model where the function can
only be accessed via an oracle as we studied in this paper. When we talk about a
computational problem under the white-box model, we measure the e�ciency by the
time complexity.
2Technically speaking, they show that UEOPL contains the problem of computing
an exact �xed point of contraction maps speci�ed by LinearFIXP arithmetic circuits,
where the unique �xed point is guaranteed to be rational. For our more general
version Contraction∞ (Y,W, :) , the unique �xed point of the underlying map may

be irrational.

1365

Computing a Fixed Point of Contraction Maps in Polynomial �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

class, their query complexity in the black-box model is expo-

nential. Examples of such well-known problems include PPAD-

complete problems Brouwer and Sperner [6, 25], PPA-complete

problems Borsuk–Ulam, Tucker [1, 25] andMöbiusSperner [12],

CLS-complete problems KKT [15] andMetricBanach
3 [10], and

UEOPL-complete problem OPDC [16].

However, our results indicate that Contraction∞ (Y,W, :) is dra-
matically di�erent from all these �xed point problems above in

terms of query complexity. Thus, we would like to interpret our

results as evidence supporting that Contraction∞ (Y,W, :) under
white-box model might be computationally tractable. Ideally, if it is

in FP, it would imply many breakthroughs in the �elds of veri�ca-

tion, semantics, learning theory, and game theory as we discussed

before.

1.1 Sketch of the Main Algorithm

We give a high-level sketch of the main query algorithm for Theo-

rem 1. We start by discretizing the search space. Let 6 : [0, =]: ↦→
[0, =]: with 6(G) := = · 5 (G/=) and = := ⌈16/(WY)⌉. It is easy to show
that6 remains a (1−W)-contraction over [0, =]: and it su�ces to �nd

a (16/W)-�xed point of 6. Moreover, by rounding the unique �xed

point G∗ of 6 to an integer point, we know trivially that at least one

integer point G in the grid [0 : =]: , where [0 : =] := {0, 1, . . . , =}, sat-
is�es ∥G−G∗∥∞ ≤ 1 and it is easy to show that any such pointG must

be a (16/W)-�xed point. So our goal is to �nd a point G ∈ [0 : =]:
that satis�es ∥G − G∗∥∞ ≤ 1 query-e�ciently.

To this end, we use Cand
C to denote the set of [0 : =]: that

remains possible to be close to the unknown exact �xed point

G∗ of 6. Starting with Cand
0 set to be the full grid [0 : =]: , the

success of the algorithm relies on whether we can cut down the

size of CandC e�ciently. For this purpose we prove a number of

geometric lemmas in Section 3 to give a characterization of the

exact �xed point G∗, which lead to the following primitive used by

the algorithm repeatedly:

Given G ∈ [0, =]: , 8 ∈ [:] and q ∈ {±1}, we write
P8 (G, q) to denote the set of points ~ ∈ [0, =]: such

that q · (~8 − G8) = ∥~ − G ∥∞, where P is a shorthand

for pyramid. Then after querying a point 0 ∈ [0, =]: ,
either 0 was found to be a (16/W)-�xed point (in

which case the algorithm is trivially done), or one

can �nd q8 ∈ {±1} for each 8 ∈ [:] such that no

point in P8 (0, q8) can be close (within ℓ∞-distance 1)
to G∗ (in which case we can update CandC by

removing all points in ∪8∈[:]P8 (0, q8)).
Given this, it su�ces to show that for any set of points) ⊆ [0 :

=]: (as CandC), there exists a point 0 to be queried such that for any

q8 ∈ {±1}: ������) ∩
©­«

⋃
8∈[:]

P8 (0, q8)ª®¬
������

is large relative to |) |, which is equivalent (up to a factor of :) to

showing that there exists a point 0 and 8 ∈ [:] such that

min
(��) ∩ P8 (0, +1)��, ��) ∩ P8 (0,−1)��) (1)

3
MetricBanach refers to the problem of computing an approximate �xed point of a
contraction map where the distance function 3 is also part of the input.

is large relative to |) |. This unfortunately turns out to be not true

(see Example 1). However, it turns out that such a point (which

we will refer to as a balanced point) always exists if we replace

the integer grid [0 : =]: by the grid of odd-even points: OE(=, :),
where ~ ∈ OE(=, :) i� ~ ∈ [0 : =]: and its coordinates are either

all odd or all even. To prove the existence of a balanced point, we

construct an in�nite sequence of continuous maps {5 C } that can be

viewed as relaxed versions of the search for a balanced point. Using

Brouwer’s �xed point theorem, every map 5 C has a �xed point ?C

and thus, by the Bolzano–Weierstrass theorem, there must be an

in�nite subsequence of {?C } that converges. Letting ?∗ be the point
it converges to, we further round ?∗ to @∗ ∈ OE(=, :) and show that

the latter is a balanced point in the grid. While we show such a

point always exists, the brute-force search to �nd @∗ ∈ OE(=, :) is
the reason why our algorithm is not time-e�cient.

2 PRELIMINARIES

De�nition 1 (Contraction). Let 0 < W < 1 and (M, 3) be a metric

space. A map 5 :M ↦→M is a (1−W)-contraction map with respect

to (M, 3) if 3 (5 (G), 5 (~)) ≤ (1 − W) · 3 (G,~) for all G,~ ∈ M.

A map 5 : M ↦→ M is said to be non-expansive if

3 (5 (G), 5 (~)) ≤ 3 (G,~) for all G,~ ∈ M.

Every non-expansive map has a �xed point, i.e., G∗ with 5 (G∗) =
G∗, and it is unique when 5 is a (1 − W)-contraction map for any

W > 0. In this paper, we study the query complexity of �nding an

Y-�xed point of a (1−W)-contraction map 5 over the :-cube [0, 1]:
with respect to the in�nity norm:

De�nition 2 (Contraction∞ (Y,W, :)). We are given oracle access

to a (1−W)-contraction map 5 over [0, 1]: with respect to the in�nity

norm, i.e., 5 satis�es

∥ 5 (G) − 5 (~)∥∞ ≤ (1 − W) · ∥G − ~∥∞, for all G,~ ∈ [0, 1]:

and the goal is to �nd an Y-�xed point of 5 , i.e., a point G ∈ [0, 1]:
such that ∥ 5 (G) − G ∥∞ ≤ Y.

We also write StrContraction∞ (Y,W, :) to denote the problem
with the same input but the goal is to �nd a strong Y-�xed point of

5 , i.e., G ∈ [0, 1]: such that ∥G − G∗∥∞ ≤ Y, where G∗ is the unique
�xed point of 5 .

We de�ne similar problems for non-expansive maps over [0, 1]: :

De�nition 3 (NonExp∞ (Y, :)). In problem NonExp∞ (Y, :), we are
given oracle access to a non-expansive map 5 : [0, 1]: → [0, 1]: with

respect to the in�nity norm, i.e., 5 satis�es

∥ 5 (G) − 5 (~)∥∞ ≤ ∥G − ~∥∞, for all G,~ ∈ [0, 1]:

and the goal is to �nd an Y-�xed point of 5 .

We write StrNonExp∞ (Y, :) to denote the problem with the same

input but the goal is to �nd a strong Y-�xed point of 5 .

Let 5 : [0, 1]: → [0, 1]: be a (1−W)-contraction map. For conve-

nience, our main algorithm for Contraction∞ (Y,W, :) will work
on 6 : [0, =]: ↦→ [0, =]: with

= :=

⌈
16

WY

⌉
and 6(G) B = · 5 (G/=), for all G ∈ [0, =]: .

We record the following simple property about 6:

1366

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Chen, Li, Yannakakis

Lemma 1. The map 6 constructed above is still a (1−W)-contraction
and �nding an Y-�xed point of 5 reduces to �nding a (16/W)-�xed
point of 6.

Proof. For any two points G,~ ∈ [0, =]: , we have
∥6(G) − 6(~)∥∞ = ∥= · 5 (G/=) − = · 5 (~/=)∥∞

≤ =(1 − W) · ∥G/= − ~/=∥∞ = (1 − W)∥G − ~∥∞ .
Suppose we found a (16/W)-�xed point 0 of 6. We show that G B

0/= is an Y-�xed point of 5 :

∥ 5 (G) − G ∥∞ = ∥6(0)/= − 0/=∥∞ =
1

=
· ∥6(0) − 0∥∞ ≤

1

=
· 16
W
≤ Y.

This �nishes the proof of the lemma. □

Notation. Given a positive integer <, we use [<] to denote

{1, . . . ,<}. For a real number C ∈ R, we let sgn(C) = 1 if C > 0,

sgn(C) = −1 if C < 0, and sgn(C) = 0 if C = 0. Given positive inte-

gers = and : , we use OE(=, :) to denote the set of all integer points

G ∈ [0, =]: such that either G8 is odd for all 8 ∈ [:] or G8 is even for

all 8 ∈ [:]. (OE is a shorthand for odd and even points.)

For a point G ∈ R: (not necessarily in [0, =]:), a coordinate

8 ∈ [:], and a sign q ∈ {±1}, we use P8 (G, q) to denote

P8 (G, q) :=
{
~ ∈ [0, =]: : q · (~8 − G8) = ∥~ − G ∥∞

}
,

where P is a shorthand for pyramid.

Given a (1 − W)-contraction map 6 over [0, =]: , we use Fix(6)
to denote the unique �xed point of 6. For any point G ∈ [0, =]: , we
use Around(G) to denote the set

Around(G) :=
{
~ ∈ OE(=, :) : ∥G − ~∥∞ ≤ 1

}
.

We note that ∥6(~) −~∥∞ ≤ 2 for all ~ ∈ Around(Fix(6)) and thus,
any point in Around(Fix(6)) is a desired (16/W)-�xed point (given

that W < 1). To see this, letting G = Fix(6), we have
∥6(~)−~∥∞ ≤ ∥6(~)−6(G)∥∞+∥G−~∥∞ ≤ 2, for any ~ ∈ Around(G).

3 CHARACTERIZING THE UNIQUE FIXED

POINT

Lemma 2. Let 6 : [0, =]: ↦→ [0, =]: be a (1 − W)-contraction map

and let 0 ∈ [0, =]: be a point such that ∥6(0) − 0∥∞ > 16/W and

B ∈ {±1, 0}: be the sign vector such that B8 = sgn(6(0)8 − 08). Then

Fix(6) ∈
⋃
8:B8≠0

P8 (0 + 4B, B8).

Proof. Let 2 = 0 + 4B and G∗ = Fix(6) be the unique �xed point.
First, we show that ∥G∗ − 0∥∞ > 8/W . Otherwise, we have

∥6(0)−0∥∞ ≤ ∥6(0)−6(G∗)∥∞+∥G∗−0∥∞ ≤ (1−W+1)·∥G∗−0∥∞ ≤
16

W
,

which contradicts the assumption that ∥6(0) − 0∥∞ > 16/W . Now
it su�ces to show that 6(G) ≠ G for any point G ∈ [0, =]: that

satis�es both

G ∉

⋃
8,B8≠0

P8 (2, B8) and ∥G − 0∥∞ >
8

W
.

Let 9 be a dominating coordinate between G and 2 , i.e., a 9 ∈ [:]
such that |G 9 − 2 9 | = ∥G − 2 ∥∞. We divide the proof into two parts.

Part 1: B 9 = 0. Thus 6(0) 9 = 0 9 and 2 9 = 0 9 . Assume without loss

of generality that G 9 ≥ 2 9 ; the case when G 9 ≤ 2 9 is symmetric. On

the one hand, we have G 9 − 2 9 = ∥G − 2 ∥∞, which gives

G 9 = 2 9 + ∥G − 2 ∥∞ . (★)

On the other hand, using that 6 is a (1−W)-contraction and 6(0) 9 =
0 9 , we have

6(G) 9 − 0 9 = 6(G) 9 − 6(0) 9 ≤ (1 − W) · ∥G − 0∥∞ .
Equivalently, 6(G) 9 ≤ 0 9 + ∥G − 0∥∞ −W ∥G − 0∥∞. Combining with

∥G − 0∥∞ > 8/W , this implies

6(G) 9 < 0 9 + ∥G − 0∥∞ − 8. (⋄)
Putting (★) and (⋄) together and the facts that ∥2 − 0∥∞ = 4 and

2 9 = 0 9 , we have

G 9 − 6(G) 9 > ∥G − 2 ∥∞ − ∥G − 0∥∞ + 8 ≥ −∥2 − 0∥∞ + 8 > 0,

which implies that 6(G) 9 ≠ G 9 and 6(G) ≠ G .

Part 2: B 9 ≠ 0. Assume without loss of generality that B 9 = +1; the
case B 9 = −1 is symmetric.

Since we are considering points not in
⋃

8:B8≠0 P8 (2, B8), it must

be the case that G ∈ P9 (2,−B 9) and thus, G 9 ≤ 2 9 . Since

∥G − 0∥∞ > 8/W , we have G 9 ≤ 0 9 ; otherwise 0 9 ≤ G 9 ≤ 2 9 and

thus,

∥G − 0∥∞ ≤ ∥G − 2 ∥∞ + ∥0 − 2 ∥∞ ≤ 8.

Given the (1 − W)-contraction of 6, we have 6(0) 9 − 6(G) 9 ≤
(1 − W) · ∥G − 0∥∞, which implies

6(G) 9 ≥ 6(0) 9 − ∥G −0∥∞ +W ∥G −0∥∞ > 6(0) 9 − ∥G −0∥∞ + 8. (2)
Next, we show an upper bound on ∥G − 0∥∞. Recall that G ∈
P9 (2,−B 9). Consider ~ = G − 4B . We have ~ ∈ P9 (0,−B 9). So
∥G − 0∥∞ ≤ ∥G − ~∥∞ + ∥~ − 0∥∞

= 4 + (0 9 − ~ 9) = 4 + (0 9 − G 9 + 4) = 8 + (0 9 − G 9) .
Given this and plugging the upper bound in Equation (2), we

will get

6(G) 9 > 6(0) 9 + G 9 − 0 9 .
Recall that B 9 = +1 implies that 6(0) 9 > 0 9 . So we have 6(G) 9 > G 9
and 6(G) ≠ G .

This �nishes the proof of Lemma 2. □

Lemma 3. Let 1 ∈ R: and B ∈ {±1, 0}: such that B ≠ 0: . Then every

G ∈ ⋃
8:B8≠0 P8 (1 + 2B, B8) must have Around(G) ⊆ ⋃

8:B8≠0 P8 (1, B8).

Proof. Let 8∗ be such that B8∗ ≠ 0 andG ∈ P8∗ (1+2B, B8∗). Assume

without loss of generality that B8∗ = +1. We have G8∗ − (18∗ + 2) ≥
|G8 − (18 + 2B8) | for every 8 ∈ [:].

Fix an arbitrary ~ ∈ Around(G). We must have ~8∗ − 18∗ ≥ 0,

which follows from

0 ≤ G8∗ − (18∗ + 2) ≤ ~8∗ + 1 − (18∗ + 2)
and thus, ~8∗ ≥ 18∗ + 1. Let

9 ∈ argmax
8∈[:]

{
B8 (~8 − 18) | B8 ≠ 0

}
.

Since B8∗ = +1, we have
B 9 (~ 9 − 1 9) ≥ ~8∗ − 18∗ ≥ 0.

1367

Computing a Fixed Point of Contraction Maps in Polynomial �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Our goal is to show ~ ∈ P9 (1, B 9) and it su�ces for us to show

|~ 9 − 1 9 | ≥ |~8 − 18 | for all 8 ∈ [:].
Let’s consider �rst an arbitrary 8 ∈ [:] with B8 = 0. Recall that

G8∗ − (18∗ + 2) ≥ |G8 −18 |. In particular, this implies |G8∗ −18∗ | − 2 ≥
|G8 − 18 |. Putting everything together, we have

|~ 9 − 1 9 | ≥ |~8∗ − 18∗ | ≥ |G8∗ − 18∗ | − 1 ≥ |G8 − 18 | + 1 ≥ |~8 − 18 |.
Finally let’s consider an 8 ∈ [:] such that B8 ≠ 0. If B8 (~8 −18) > 0,

by the de�nition of how we picked 9 , we have |~ 9 − 1 9 | ≥ |~8 − 18 |.
If B8 (~8 − 18) < 0, then we have

|~8 − 18 | = |~8 − (18 + 2B8) | − 2 ≤ |G8 − (18 + 2B8) | − 1
≤ G8∗ − 18∗ − 3 ≤ ~8∗ − 18∗ − 2 < |~ 9 − 1 9 |.

This �nishes the proof of the lemma. □

Lemma 4. Let 0 ∈ [0, =]: and B ∈ {±1, 0}: such that B ≠ 0: . Then

for every 9 ∈ [:], there exists q ∈ {±1} such that

P9 (0, q) ∩
(⋃
8:B8≠0

P8 (0 + 2B, B8)
)
= ∅.

Proof. First we note that(⋃
8:B8≠0

P8 (0,−B8)
)
∩

(⋃
8:B8≠0

P8 (0 + 2B, B8)
)
= ∅.

This implies that

P9 (0, q) ∩
(⋃
8:B8≠0

P8 (0 + 2B, B8)
)
= ∅

for all 9 with B 9 ≠ 0 by setting q = −B 9 .
Now consider a 9 with B 9 = 0. Under this case, we show in fact

that

P9 (0, q) ∩
(⋃
8:B8≠0

P8 (0 + 2B, B8)
)
= ∅

for both q ∈ {±1} . Consider any point G ∈ ⋃
8:B8≠0 P8 (0 + 2B, B8)

and we show that G ∉ P9 (0,−1) and G ∉ P9 (0, +1). Let 1 = 0 + 2B .
As G ∈ ⋃

8:B8≠0 P8 (1, B8), there exists 8∗ with B8∗ ≠ 0 such that

B8∗ (G8∗ − 18∗) = ∥G − 1∥∞ ≥ |G 9 − 1 9 |.
Note also that |G8∗ − 08∗ | = B8∗ (G8∗ − 18∗ + 2B8∗) = B8∗ (G8∗ − 18∗) + 2
and 1 9 = 0 9 , so we have

|G8∗ − 08∗ | = ∥G − 1∥∞ + 2 > |G 9 − 1 9 | = |G 9 − 0 9 |.
Thus G ∉ P9 (0,−1) and G ∉ P9 (0, +1) . This �nishes the proof of
the lemma. □

4 THE ALGORITHM

We prove Theorem 1 in this section. Our algorithm for

Contraction∞ (Y,W, :) is described in Algorithm 1. Given oracle

access to a (1 − W)-contraction map 6 : [0, =]: → [0, =]: , we show
that it can �nd a (16/W)-�xed point of 6 within

$

(
:2 log

(
1

YW

))
many queries. This is su�cient given Lemma 1.

The analysis of Algorithm 1 uses the following theoremwhichwe

prove in the next section. In particular, it guarantees the existence

of the point 0C to be queried in round C that satis�es (3). We will call

Algorithm 1 Query Algorithm for Contraction∞ (Y,W, :)
1: Let Cand0 ← OE(=, :)
2: for C = 1, 2, . . . do

3: Find and query an 0C ∈ OE(=, :) such that 0C is a balanced

point of CandC−1 on some 9 ∈ [:]:��P9 (0C , +1)∩CandC−1��, ��P9 (0C ,−1)∩CandC−1�� ≥ 1

2:
·
��CandC−1�� (3)

4: if ∥6(0C) − 0C ∥∞ ≤ 16/W then return 0C as a (16/W)-�xed
point of 6

5: Let B ∈ {±1, 0}: be such that B8 = sgn(6(0C)8 − 0C8) for all
8 ∈ [:], 1C ← 0C + 2B , and

Cand
C ← Cand

C−1 ∩
(⋃
8:B8≠0

P8 (1C , B8)
)
. (4)

a point @∗ with the property stated in Theorem 4 below a balanced

point for) .

Theorem 4. For any) ⊆ OE(=, :), there exist a point @∗ ∈
OE(=, :) and an 8∗ ∈ [:] such that��P8∗ (@∗, q) ∩) �� ≥ 1

2:
· |) |, for both q ∈ {±1}.

At a high level, Algorithm 1 maintains a subset of grid points

OE(=, :) as candidate solutions, which is denoted by Cand
C after

round C . We show the following invariants:

Lemma 5. For every round C ≥ 1, either the point 0C queried is a

(16/W)-�xed point of 6 (and the algorithm terminates), or we have

both Around(Fix(6)) ⊆ Cand
C and

��CandC �� ≤ (
1 − 1

2:

)
·
��CandC−1��. (5)

Proof of Lemma 5. We start with the proof of (5). Suppose that

0C satis�es (3) with 9 ∈ [:]. Then by Lemma 4, there must exist a

sign q ∈ {±1} such that

P9 (0C , q) ∩
(⋃
8:B8≠0

P8 (1C , B8)
)
= ∅.

The inequality (5) follows directly from (3).

Next we prove by induction that Around(Fix(6)) ⊆ Cand
C for

every C before the round that the algorithm terminates. The basis

is trivial given that Cand0 is set to be OE(=, :). For round C ≥ 1, we

assume that ∥6(0C) − 0C ∥∞ > 16/W ; otherwise a solution is found

and the algorithm terminates.

Let 1C = 0C + 2B and 2C = 1C + 2B . By Lemma 2, we know that

Fix(6) ∈
(⋃
8:B8≠0

P8 (2C , B8)
)
.

Since 1C is de�ned as 2C − 2B , by Lemma 3, we know that

Around(Fix(6)) ⊆
⋃
8:B8≠0

P8 (1C , B8).

We �nish the proof by using the inductive hypothesis

Around(Fix(6)) ⊆ Cand
C−1 and (4). □

1368

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Chen, Li, Yannakakis

Given Lemma 5 and that |Cand0 | ≤ =: , within at most

$
(
: log(=:)

)
= $

(
:2 log

(
1

YW

))

many rounds, one of the points 0C queried by the algorithm must

be a (16/W)-�xed point of 6. This �nishes the proof of Theorem 1.

5 EXISTENCE OF BALANCED POINT

We prove Theorem 4 in this section. Before that, we �rst illustrate

why the structure of OE(=, :) is necessary to guarantee the existence
of a balanced point. In particular, for the standard grid [=]: , we
give an example of a set) ⊆ [=]: such that no point in [=]: can

be a balanced point.

Example 1. Let ? = (=/2, . . . , =/2) if = is odd and let ? =

(=+12 , · · · , =+12) if = is even. Note that ? ∉ [=]: . We construct the

following) ⊆ [=]: such that ? is the only choice of a balanced point:

) =

{
G ∈ [=]: : |G8 − ?8 | = ∥G − ? ∥∞ for all 8 ∈ [:]

}
.

Precisely, it is easy to verify that for any point ?′ ≠ ? and any

coordinate 8 ∈ [:], we have that��P8∗ (?′, q) ∩) �� ≤ $
(
|) |/2:

)
, for some q ∈ {±1}.

However, since ? ∉ [=]: , we conclude that there is no balanced point
for) in [=]: .

We restate Theorem 4:

Theorem 4. For any) ⊆ OE(=, :), there exist a point @∗ ∈
OE(=, :) and an 8∗ ∈ [:] such that��P8∗ (@∗, q) ∩) �� ≥ 1

2:
· |) |, for both q ∈ {±1}.

Proof. For each positive integer C ≥ 4 we let

(C := ∪G∈)�(G, 1/C) ⊂ [−1/4, = + 1/4]: ,
where �(G, 1/C) denotes the ℓ2-ball of radius 1/C centered at G . We

write vol((C) to denote the volume of (C and vol((C ∩P) to denote
the volume of the intersection of (C and some pyramid P.

We apply Brouwer’s �xed point to prove the existence of a bal-

anced (real) point for the balls:

Lemma 6. For every integer C ≥ 4, there exist ?∗ ∈ [−1/4, = +
1/4]: and a coordinate 8∗ ∈ [:] such that vol(P8∗ (?∗, +1) ∩ (C) =
vol(P8∗ (?∗,−1) ∩ (C) ≥ vol((C)/2: .

Proof. We de�ne a continuous map 5 : [−1/4, = + 1/4]: ↦→
[−1/4, = + 1/4]: and apply Brouwer’s �xed point theorem on 5 to

�nd a �xed point ?∗ of 5 , and show that ?∗ satis�es the property
above.

We de�ne 5 as follows: For every ? ∈ [−1/4, = + 1/4]: and 8 ∈
[:], let

58 (?) := ?8 +
vol

(
P8 (?, +1) ∩ (C

)
− vol

(
P8 (?,−1) ∩ (C

)
(= + 0.5):−1

.

It is clear that 5 is continuous. To see that it is from [−1/4, = + 1/4]:
to itself, we note that

0 ≤
vol

(
P8 (?, +1) ∩ (C

)
(= + 0.5):−1

≤ = + 1

4
− ?8

and

0 ≤
vol

(
P8 (?,−1) ∩ (C

)
(= + 0.5):−1

≤ ?8 +
1

4
.

As a result, one can apply Brouwer’s �xed point theorem on 5 to

conclude that there exists a point ?∗ ∈ [−1/4, = + 1/4]: such that

5 (?∗) = ?∗, which implies that

vol
(
P8 (?∗, +1) ∩ (C

)
= vol

(
P8 (?∗,−1) ∩ (C

)
for all 8 ∈ [:]. On the other hand, we have∑
8∈[:]

(
vol

(
P8 (?∗, +1) ∩ (C

)
+ vol

(
P8 (?∗,−1) ∩ (C

))
= vol((C).

Therefore there must be an 8∗ ∈ [:] such that

vol
(
P8∗ (?∗, +1) ∩ (C

)
= vol

(
P8∗ (?∗,−1) ∩ (C

)
≥ vol((C)

2:
.

This �nishes the proof of the lemma. □

By Lemma 6, we have that for every C , there exist ?C ∈
[−1/4, = + 1/4]: and 8C ∈ [:] such that

vol
(
P8C (?C , +1) ∩ (C

)
= vol

(
P8C (?C ,−1) ∩ (C

)
≥ vol((C)

2:
.

Given that there are only : choices for 8C , there exists an 8∗ ∈ [:]
such that {?C } has an in�nite subsequence {?Cℓ }ℓ≥1 with C1 < C2 <

· · · such that

vol
(
P8∗ (?Cℓ , +1) ∩ (Cℓ

)
= vol

(
P8∗ (?Cℓ ,−1) ∩ (Cℓ

)
≥ vol((Cℓ)

2:

for all ℓ ≥ 1. Given that [−1/4, = + 1/4]: is compact, {?Cℓ } has an in-
�nite subsequence that converges to a point ?∗ ∈ [−1/4, = + 1/4]: .
For convenience, we still refer to the subsequence as {?Cℓ }ℓ≥1.

In Lemma 7, we show that both P8∗ (?∗, +1)∩) and P8∗ (?∗,−1)∩
) are at least |) |/2: . After this, in Lemma 8, we show how to round

?∗ to @∗ ∈ OE(=, :) while making sure that

P8∗ (?∗, +1) ∩) ⊆ P8∗ (@∗, +1) ∩)
and

P8∗ (?∗,−1) ∩) ⊆ P8∗ (@∗,−1) ∩) .
Our goal then follows by combining these two lemmas.

Lemma 7. We have

min

{
|P8∗ (?∗, +1) ∩) |

|) | ,
|P8∗ (?∗,−1) ∩) |

|) |

}
≥ 1

2:
.

Proof. We write � to denote the following (potentially empty)

set of positive real numbers de�ned using ?∗: 0 ∈ (0, 1) is in � if

there are 8 ≠ 9 ∈ [:] such that either

(1) ?∗8 + ?
∗
9 is an integer plus 0; or

(2) ?∗8 + ?
∗
9 is an integer minus 0; or

(3) ?∗8 − ?
∗
9 is an integer plus 0; or

(4) ?∗8 − ?
∗
9 is an integer minus 0.

Consider the easier case when� is empty, i.e. ?∗8 +?
∗
9 and ?

∗
8 −?

∗
9

are integers for all 8 ≠ 9 ∈ [:]. Let ℓ be a su�ciently large integer

such that 1/Cℓ ≤ 0.1 and ∥?Cℓ − ?∗∥∞ ≤ 0.1. We show that

|P8∗ (?∗, +1) ∩) |
|) | ≥ vol(P8∗ (?Cℓ , +1) ∩ (Cℓ)

vol((Cℓ) ≥ 1

2:

1369

Computing a Fixed Point of Contraction Maps in Polynomial �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

and the same inequality holds for the −1 side. For this purpose it
su�ces to show that every point G ∈) satis�es that

P8∗ (?Cℓ , +1) ∩ �(G, 1/Cℓ) ≠ ∅ =⇒ G ∈ P8∗ (?∗, +1).
Let’s prove the contrapositive so take any G ∉ P8∗ (?∗, +1). There
exists a 9 ≠ 8∗ such that either

G8∗ − ?∗8∗ < G 9 − ?∗9 or G8∗ − ?∗8∗ < ?∗9 − G 9
For the �rst case we have G8∗ − G 9 < ?∗8∗ − ?

∗
9 . Since both sides are

integers we have

G8∗ − G 9 ≤ ?∗8∗ − ?
∗
9 − 1 (6)

so intuitively G is far from P8∗ (?∗, +1). From this we can conclude

that �(G, 1/Cℓ) ∩ P8∗ (?Cℓ , +1) is empty. To see this is the case, for

any ~ ∈ �(G, 1/Cℓ), it follows from ∥G − ~∥∞ ≤ ∥G − ~∥2 ≤ 0.1 and

∥?∗ − ?Cℓ ∥∞ ≤ 0.1 and (6) that

~8∗ − ~ 9 ≤ ?
Cℓ
8∗ − ?

Cℓ
9 − (1 − 0.4) < ?

Cℓ
8∗ − ?

Cℓ
9

and thus, ~ ∉ P8∗ (?Cℓ , +1). The other case follows from a similar

argument.

Now we consider the general case when � is not empty and let

U > 0 be the smallest value in �; note that U ≤ 1/2. In this case

we let ℓ be a su�ciently large integer such that 1/Cℓ ≤ 0.1U and

∥?Cℓ − ?∗∥∞ ≤ 0.1U . Similarly it su�ces to show that every point

G ∈) satis�es that

P8∗ (?Cℓ , +1) ∩ �(G, 1/Cℓ) ≠ ∅ =⇒ G ∈ P8∗ (?∗, +1).
Let’s prove the contrapositive so take any G ∉ P8∗ (?∗, +1). There
exists a 9 ≠ 8∗ such that either

G8∗ − ?∗8∗ < G 9 − ?∗9 or G8∗ − ?∗8∗ < ?∗9 − G 9
For the �rst case we have G8∗ −G 9 < ?∗8∗ −?

∗
9 . Since ?

∗
8∗ −?

∗
9 is either

an integer or an integer ± something that is between U and 1 − U ,
we have

G8∗ − G 9 ≤ ?∗8∗ − ?
∗
9 − U.

The rest of the proof is similar. □

Given ?∗, we round it to an integer point @∗ ∈ OE(=, :) as follows.
First let @∗8∗ ∈ [0, =] be an integer such that |?∗8∗ − @

∗
8∗ | ≤ 1/2 (note

that @∗8∗ may not be unique but we can break ties arbitrarily). It is

clear that @∗8∗ ∈ {0, . . . , =}. Assume without loss of generality that

@∗8∗ is even (so we need to set @∗9 to be even for every other 9 , in

order to have @∗ ∈ OE(=, :)). Then for each 9 ≠ 8∗:

(1) @∗9 = 0 if ?∗9 ∈ [−1/4, 0);
(2) @∗9 is set to be the even number in {= − 1, =} if

?∗9 ∈ (=, = + 1/4]; and
(3) Otherwise, set @∗9 to be an even number in {0, . . . , =} such

that |?∗9 − @
∗
9 | ≤ 1 (again breaking ties arbitrarily).

Note that we have @∗ ∈ OE(=, :) and it satis�es |?∗9 − @
∗
9 | ≤ 5/4 for

all 9 ≠ 8∗.

Lemma 8. The point @∗ satis�es @∗ ∈ OE(=, :) and
P8∗ (?∗, +1) ∩) ⊆ P8∗ (@∗, +1) ∩)

and

P8∗ (?∗,−1) ∩) ⊆ P8∗ (@∗,−1) ∩) .

Proof. Let’s prove the �rst part since the other part is symmet-

ric.

Let G ∈ OE(=, :) be a point in P8∗ (?∗, +1) ∩) . So for every 9 ≠ 8∗

we have

G8∗ − ?∗8∗ ≥ G 9 − ?∗9 and G8∗ − ?∗8∗ ≥ ?∗9 − G 9 ,

or equivalently

G8∗ − G 9 ≥ ?∗8∗ − ?
∗
9 and G8∗ + G 9 ≥ ?∗8∗ + ?

∗
9 .

It su�ces to show that

G8∗ − G 9 ≥ @∗8∗ − @
∗
9 and G8∗ + G 9 ≥ @∗9 + @

∗
8∗

To see the �rst part, we have

G8∗ − G 9 ≥ ?∗8∗ − ?
∗
9 ≥ (@

∗
8∗ − 1/2) − (@

∗
9 + 5/4) = (@

∗
8∗ − @

∗
9) − 7/4.

But given that G ∈ OE(=, :) and @∗ ∈ OE(=, :), both G8∗ − G 9 and
@∗8∗ − @

∗
9 are even numbers and thus, the inequality above implies

G8∗ − G 9 ≥ @∗8∗ − @
∗
9 . The other part can be proved similarly. □

This �nishes the proof of Theorem 4. □

Remark on Theorem 4. We note that the (possibly o�-grid point) ?∗

in the proof already satis�es the desired property and our algorithm

can proceed by querying ?∗. However, ?∗ as de�ned here is the limit

of �xed points found in an in�nite sequence of maps. In contrast,

Lemma 8 shows that, after rounding, a grid balanced point always

exists, which can be found by brute-force enumeration.

6 IMPOSSIBILITY OF STRONG

APPROXIMATION UNDER NON-EXPANSION

We consider functions 5 on the plane with bounded domain and

range, e.g. the unit square, that are non-expansive under the ℓ∞
metric. We will show the following impossibility result.

Theorem 2. There is no deterministic or randomized algorithm

which, when given oracle access to any non-expansive map 5 :

[0, 1]2 ↦→ [0, 1]2 under the ℓ∞-norm, computes in an expected

bounded number of queries a point that is within distance 1/4 of

an exact �xed point of 5 .

In the proof it will be more convenient to use as the domain a

square that is tilted by 45◦. We call a rectangle whose sides are

at 45◦ and −45◦, a diamond. Let � be the diamond whose vertices

are the midpoints of the sides of the unit square. Any function 6

over � can be extended to a function 6′ over the unit square, by
de�ning for every point ? ∈ [0, 1]2 the value of the function as

6′ (?) = 6(c (?)), where c (?) is the projection of ? onto � . Clearly,

for any two points ?, @ ∈ [0, 1]2, ∥c (?)−c (@)∥∞ ≤ ∥?−@∥∞, hence
if the function 6 over � is non-expansive, then so is the function

6′ over [0, 1]2. Furthermore, the �xed points of 6′ are exactly the

�xed points of 6.

We will prove the statement of the theorem for the domain � .

The claim then follows for the unit square. To see this, restrict

attention to the non-expansive functions 6′ on the unit square that

are extensions of functions 6 on the diamond � . If we have an

algorithm for the unit square, then we can use the algorithm also

for the diamond � : when the algorithm queries a point ? ∈ [0, 1]2
then we query instead its projection c (@) ∈ � . If the algorithm

1370

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Chen, Li, Yannakakis

outputs at the end a point that is close to a �xed point of 6′, then
its projection on � is a valid output for 6.

For any X ∈ (0, 1/2) and any point B on the SW or NE side of

the diamond � that is at least at Euclidean distance X from the

vertices of � , we will de�ne a non-expansive function 5X,B with

unique �xed point B . The function is de�ned as follows. Draw the

line ;0 through B at 45◦ and let C be the point of intersection with

the opposite side of � . Let ;1 and ;2 be the two lines parallel to ;0
that are left and right of ;0 respectively at Euclidean distance X , and

let �0 be the strip of � that is strictly between the lines ;1 and ;2.

Let �′ = � \ �0. Every point ? ∈ �′ is mapped by 5X,B to the point

that is at Euclidean distance X towards the line ;0; i.e., if ? = (?1, ?2)
is left and above ;0 then 5X,B (?) = (?1 + X/

√
2, ?2 − X/

√
2), and if ?

is right and below ;0 then 5X,B (?) = (?1 − X/
√
2, ?2 + X/

√
2).

For a point ? in �0 we de�ne 5X,B (?) as follows. Let ?′ be the
projection of ? onto the line ;0. Then 5X,B (?) is the point on ;0 that
is at Euclidean distance (X − |??′ |) · |?′B | from ?′ in the direction of

B , where |??′ |, |?′B | are the (Euclidean) lengths of the segments ??′

and ?′B . Thus for example, if ? = B then ?′ = B and 5X,B (B) = B . If

? = C then ?′ = C and (X − |??′ |) · |?′B | = X/
√
2, so C moves along ;0

distance X/
√
2 towards B . Note that if ? is on line ;1 or ;2 (i.e. on the

boundary sides between�0 and�
′), then (X−|??′ |) · |?′B | = 0, since

|??′ | = X , thus ? is mapped to ?′ whether we treat ? as a member

of �′ or as a member of �0. It follows that 5X,B (?) is continuous
over � .

As we noted above, B is a �xed point of 5X,B (?). We claim that

it is the only �xed point. Clearly, any �xed point ? must be in

�0 and must lie on the line ;0, thus ? = ?′. It must satisfy also

(X − |??′ |) · |?′B | = 0, hence |?′B | = 0, and thus, ? = B .

We will show now that 5X,B is a non-expansive function, i.e. that

∥ 5X,B (?) − 5X,B (@)∥∞ ≤ ∥? − @∥∞ for all ?, @ ∈ � . We show �rst

that it su�ces to check pairs ?, @ that are diagonal to each other,

i.e. such that the line connecting them is at 45◦ or −45◦. Note that
such points have the property that the !∞ distance is tight in both

coordinates, ∥? − @∥∞ = |?1 − @1 | = |?2 − @2 |.

Lemma 9. If a function 5 on the diamond � satis�es ∥ 5 (?) −
5 (@)∥∞ ≤ ∥? − @∥∞ for all diagonal pairs of points ?, @, then 5

is non-expansive.

Proof. Let G,~ be any two points that are not diagonal. Consider

the diamond with opposite vertices G,~, i.e. draw the lines through

G,~ at 45◦ and −45◦ and considered the rectangle enclosed by them.

Let I,F be the other two vertices of this diamond. Suppose without

loss of generality that ∥G−~∥∞ = G1−~1 > |G2−~2 |. Then G1 > I1 >

~1, and similarly forF . We have ∥G − ~∥∞ = G1 − ~1 = (G1 − I1) +
(I1−~1) = ∥G−I∥∞+∥I−~∥∞. Since 5 is non-expansive on diagonal
pairs, ∥ 5 (G) − 5 (I)∥∞ ≤ ∥G −I∥∞ and ∥ 5 (I) − 5 (~)∥∞ ≤ ∥I−~∥∞.
Therefore, ∥ 5 (G) − 5 (~)∥∞ ≤ ∥ 5 (G) − 5 (I)∥∞ + ∥ 5 (I) − 5 (~)∥∞
≤ ∥G − I∥∞ + ∥I − ~∥∞ = ∥G − ~∥∞. □

Remark. The lemma can be shown to hold more generally in any

dimension. That is, if 5 : [0, 1]: ↦→ [0, 1]: has the property that

∥ 5 (?) − 5 (@)∥∞ ≤ ∥? − @∥∞ for all diagonal pairs of points ?, @

(i.e. such that |?8 − @8 | = ∥? − @∥∞ for all 8 ∈ [:]), then 5 is non-

expansive.

Lemma 10. The function 5X,B is non-expansive.

Proof. The function 5X,B was de�ned according to which region

of the domain � a point lies in. There are three regions: the part

of �′ left of ;1, the middle region �0, and the part of �′ right of
;2. It su�ces to check the non-expansiveness for diagonal pairs of

points ?, @ that lie in the same region. If ?, @ are both in the region

left of ;1, or if they are both right of ;2, then from the de�nition we

have ∥ 5 (?) − 5 (@)∥∞ = ∥? − @∥∞.
So suppose ?, @ are both in �0. Assume �rst that the line ?@ has

angle 45◦, i.e. ?@ is parallel to the line ;0. Then ∥? −@∥∞ = |?@ |/
√
2.

Let ?′, @′ be the projections of ?, @ on ;0, and let ?” = 5X,B (?), @” =
5X,B (@). Then |?′?”| = (X − |??′ |) · |?′B |, |@′@”| = (X − |@@′ |) · |@′B |.
Since ?@ is parallel to ;0, (X − |??′ |) = (X − |@@′ |) and |?@ | =
|?′@′ |. Assume without loss of generality that |?′B | > |@′B |. Then
|?”@”| = |?′@′ | − (X − |??′ |) (|?′B | − |@′B |) ≤ |?′@′ | = |?@ |. Since
∥? − @∥∞ = |?@ |/

√
2 and ∥ 5 (?) − 5 (@)∥∞ = |?”@”|/

√
2, it follows

that ∥ 5 (?) − 5 (@)∥∞ ≤ ∥? − @∥∞.
Assume now that the line ?@ has angle −45◦, i.e., ?@ is perpendic-

ular to ;0. Again ∥? − @∥∞ = |?@ |/
√
2. Now ? and @ have the same

projection ?′ = @′ on ;0. Let ?” = 5X,B (?), @” = 5X,B (@). We have

|?′?”| = (X − |??′ |) · |?′B |, and |@′@”| = |?′@”| = (X − |@?′ |) · |?′B |.
Therefore, |?”@”| = | (|??′ | − |@?′ |) | · |?′B |. If ?, @ are on the same

side of ;0 then | (|??′ | − |@?′ |) | = |?@ |. If ?, @ are on opposite

sides of ;0 then | (|??′ | − |@?′ |) | < |?@ |. In either case, we have

|?”@”| ≤ |?@ | · |?′B | < |?@ |, since |?′B | ≤ |BC | = 1/
√
2. Again, since

∥? − @∥∞ = |?@ |/
√
2 and ∥ 5 (?) − 5 (@)∥∞ = |?”@”|/

√
2, it follows

that ∥ 5 (?) − 5 (@)∥∞ ≤ ∥? − @∥∞. □

We are ready now to prove the theorem. Intuitively, if the given

function is 5X,B for some B on the NE or SW side of � and some

small X , then for an algorithm (deterministic or randomized) to

�nd a point that is within !∞ distance 1/4 of B , it must ask a query

within the central region �0 around B , because otherwise it cannot

know whether the �xed point B is on the NE or the SW side of �0.

Proof of Theorem 2. Recall that binary search is an optimal algo-

rithm for searching for an unknown item in a sorted array �, both

among deterministic and randomized algorithms. If the array has

size # , then any randomized comparison-based algorithm requires

expected time at least log# − 1 to look up an item in the array

whose location is not known.

Suppose there is a (randomized) algorithm � that computes a

point that is within 1/4 of a �xed point of a non-expansive function

5 over the domain � within a �nite expected number = of queries

(the expectation is over the random choices of the algorithm). We

will show how to solve faster the array search problem. Partition

the diamond � into # = 22= strips by drawing # − 1 parallel

lines at 45◦, spaced at distance 1/(#
√
2) from each other, between

the NW and SE side of � . Let (1, . . . , (# be the # strips. Fix a

X < 1/(#2
√
2). For each G ∈ [#], let BG be the point on the SW

side of (G at Euclidean distance X from the S vertex of (G , and CG the

point on the NE side of (G at Euclidean distance X from the N vertex.

Note that ∥BG − CG ∥∞ > 1/2. Let F be the family of non-expansive

functions {5X,BG , 5X,CG |G ∈ [#]}.
Consider the execution of algorithm � for a function 5 ∈ F .

Note that the central region �0 for the functions 5X,BG and 5X,CG is

contained in the strip (G . If � queries a point ? in another strip (9 ,

the answer 5 (?) only conveys the information whether 9 < G or

9 > G . If some execution of � returns a point @ without ever having

1371

Computing a Fixed Point of Contraction Maps in Polynomial �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

queried any point in (G , then all the answers in the execution are

consistent with both 5X,BG and 5X,CG . Since ∥BG − CG ∥∞ > 1/2, either
∥@−BG ∥∞ > 1/4 or ∥@−CG ∥∞ > 1/4. Therefore, a correct algorithm
� cannot terminate before querying a point in the strip (G that

contains the �xed point of the function.

We can map now the algorithm � to an algorithm �′ for the
problem of searching for an item in a sorted array � of size # . A

choice of an index G in the array � corresponds to a choice of the

strip (G that contains the �xed point of the function 5 ∈ F , i.e.
choosing one of 5X,BG , 5X,CG . Since � terminates in expected number

= of queries, it asks within = steps a query within the strip (G of

the �xed point, hence the expected time of the algorithm �′ is at
most = = log# /2, a contradiction. □

7 PROMISE PROBLEM VERSUS TOTAL

SEARCH VERSION

The problem Contraction∞ (Y,W, :) is a promise problem, where

we want to compute an Y-�xed point of a given function 5 with

promise that 5 is a (1 − W)-contraction. For a promise problem,

one can de�ne its total search version by asking to �nd a de-

sired solution as in the promise problem, or a short violation

certi�cate indicating that the given function doesn’t satisfy the

promise. The total search version of Contraction∞ (Y,W, :), de-
noted T-Contraction∞ (Y,W, :) is naturally de�ned as the follow-

ing search problem.

De�nition 4 (Total search version T-Contraction∞ (Y,W, :)).
Given a function 5 : [0, 1]: ↦→ [0, 1]: , �nd one of the following:
• a point G ∈ [0, 1]: such that ∥ 5 (G) − G ∥∞ ≤ Y;

• two points G,~ ∈ [0, 1]: such that ∥ 5 (G) − 5 (~)∥∞ > (1 −
W)∥G − ~∥∞.

In the black-box setting, the function 5 is given by an oracle access.

Our theorem in this section shows T-Contraction∞ (Y,W, :)
admits the same query bounds as Contraction∞ (Y,W, :).

Theorem 3. There is an $ (:2 log(1/Y))-query algorithm for

T-Contraction∞ (Y,W, :).

Theorem 3 follows from Lemma 11 below.

Lemma 11. Let
{
@1, · · · , @<

}
be a set of points in [0, 1]: and{

01, · · · , 0<
}
be the corresponding answers from the black-box or-

acle. There is a (1 − W)-contraction 5 that is consistent with all the

answers if and only if there is no pair C1, C2 such that ∥0C1 − 0C2 ∥∞ >

(1 − W)∥@C1 − @C2 ∥∞.

Proof. If there is some pair C1, C2 such that ∥0C1 − 0C2 ∥∞ > (1 −
W)∥@C1 − @C2 ∥∞, then obviously there is no (1 − W) contraction that

is consistent with the answers.

Now suppose that no such pair exists. We de�ne a function

5 : [0, 1]: ↦→ [0, 1]: as follows: For every point G ∈ [0, 1]: and co-

ordinate 8 ∈ [:], we let 5 (G)8 = minC ∈[<]
{
(1 − W)∥G − @C ∥∞ + 0C8

}
;

if the minimal value of this set is larger than 1, then we set 5 (G)8 = 1.

We show �rst that 5 is consistent with all the query answers,

i.e. 5 (@ 9) = 0 9 for all 9 ∈ [<]. Since the query points satisfy the

contraction property, we have ∥0 9 − 0C ∥∞ ≤ (1 −W)∥@ 9 − @C ∥∞ for

all C ≠ 9 . Therefore, for every coordinate 8 ∈ [:], 0 98 ≤ (1−W)∥@
9 −

@C ∥∞ + 0C8 . Hence, 5 (@
9)8 = minC ∈[<]

{
(1 − W)∥@ 9 − @C ∥∞ + 0C8

}
=

0
9
8 . Thus, 5 (@

9) = 0 9 .

We show now that the function 5 constructed above is a (1 −W)-
contraction. Consider any two points G,~ ∈ [0, 1]: and a coordinate

8 ∈ [:]. Suppose without loss of generality that 5 (~)8 ≤ 5 (G)8 . If
5 (~)8 = 1, then also 5 (G)8 = 1 and |5 (G)8 − 5 (~)8 | = 0 ≤ (1−W)∥G −
~∥∞. So suppose 5 (~)8 = (1−W)∥~−@C ∥∞+0C8 for some C ∈ [<]. By
the triangle inequality, ∥G − @C ∥∞ ≤ ∥G −~∥∞ + ∥~ − @C ∥∞. Hence
5 (G)8 ≤ (1 −W)∥G − @C ∥∞ + 0C8 ≤ (1 −W) (∥G −~∥∞ + ∥~ − @

C ∥∞) +
0C8 = (1 − W)∥G − ~∥∞ + 5 (~)8 . Therefore, 0 ≤ 5 (G)8 − 5 (~)8 ≤
(1 − W)∥G − ~∥∞. Thus, ∥ 5 (G) − 5 (~)∥∞ ≤ (1 − W)∥G − ~∥∞. □

It follows from Lemma 11 that we can use any algorithm that can

solve the promise problemContraction∞ (Y,W, :) to solve the total
search version T-Contraction∞ (Y,W, :) within the same number

of queries: If all pairs among the queries generated satisfy the

contraction property, then there is a contraction that is consistent

with all the queries, hence the algorithm will �nd an approximate

�xed point within the same number of queries as in the promise

version. If on the other hand there is a pair of queries that violate

the contraction property, then the algorithm can return the pair

and terminate. Theorem 3 follows.

8 CONCLUSIONS

We gave an algorithm for �nding an Y-�xed point of a contraction

(or non-expansive) map 5 : [0, 1]: ↦→ [0, 1]: under the ℓ∞ norm

in polynomial query complexity. Contraction maps under the ℓ∞
norm are especially important because several longstanding open

problems from various �elds can be cast in this framework. The

main open question is whether our algorithm can be implemented

to run also with polynomial time complexity, or alternatively if

there is another general-purpose (black-box) algorithm for con-

traction maps that �nds an approximate �xed point in polynomial

time. Resolving positively this question would have tremendous

implications.

Another natural open question is whether similar polynomial

query bounds can be obtained for contraction maps under the ℓ1-

norm or norms ℓ? with ? > 2. Although ℓ∞ seems to arise more in

applications, understanding better contractions under other norms

would also be useful.

ACKNOWLEDGEMENTS

We thank STOC anonymous reviewers for their feedbacks on im-

proving the presentation. Xi Chen is supported by NSF grants

IIS-1838154, CCF-2106429 and CCF-2107187. Yuhao Li is supported

by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187. Mi-

halis Yannakakis is supported by NSF grants CCF-2107187 and

CCF-2212233.

REFERENCES
[1] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2020. 2-D Tucker is

PPA-complete. J. Comput. System Sci. 108 (2020), 92–103.
[2] Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur

application aux équations intégrales. Fundamenta mathematicae 3, 1 (1922),
133–181.

[3] Richard Bellman. 1957. A Markovian decision process. Journal of mathematics
and mechanics (1957), 679–684.

1372

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Chen, Li, Yannakakis

[4] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. 2022. Deciding Parity Games in Quasi-polynomial Time. SIAM J.
Comput. 51, 2 (2022), 17–152.

[5] Xi Chen and Xiaotie Deng. 2008. Matching algorithmic bounds for �nding a
Brouwer �xed point. Journal of the ACM (JACM) 55, 3 (2008), 1–26.

[6] Xi Chen and Xiaotie Deng. 2009. On the complexity of 2D discrete �xed point
problem. Theoretical Computer Science 410, 44 (2009), 4448–4456.

[7] E. A. Coddington and N. Levinson. 1955. Theory of Ordinary Di�erential
Equations. McGraw Hill.

[8] Anne Condon. 1992. The complexity of stochastic games. Information and
Computation 96, 2 (1992), 203–224.

[9] Constantinos Daskalakis and Christos H. Papadimitriou. 2011. Continuous Local
Search. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, Dana Randall (Ed.). SIAM, 790–804.
https://doi.org/10.1137/1.9781611973082.62

[10] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. 2018. A
converse to Banach’s �xed point theorem and its CLS-completeness. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, Ilias Diakonikolas, David
Kempe, and Monika Henzinger (Eds.). ACM, 44–50.
https://doi.org/10.1145/3188745.3188968

[11] Eic V. Denardo. 1967. Contraction Mappings Underlying Dynamic Programming.
SIAM Rev. 9, 2 (1967), 165–177.

[12] Xiaotie Deng, Jack R Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu.
2021. Understanding PPA-completeness. J. Comput. System Sci. 115 (2021),
146–168.

[13] E. A. Emerson and C. Jutla. 1991. Tree automata, `-calculus and determinacy. In
Proceedings IEEE Symp. on Foundations of Computer Science. 368–377.

[14] Kousha Etessami and Mihalis Yannakakis. 2010. On the Complexity of Nash
Equilibria and Other Fixed Points. SIAM J. Comput. 39, 6 (2010), 2531–2597.
https://doi.org/10.1137/080720826

[15] John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. 2023.
The Complexity of Gradient Descent: CLS = PPAD ∩ PLS. J. ACM 70, 1 (2023),
7:1–7:74.

[16] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. 2020. Unique
end of potential line. J. Comput. Syst. Sci. 114 (2020), 1–35.
https://doi.org/10.1016/J.JCSS.2020.05.007

[17] Matthias Günther. 1989. Zum Einbettungssatz von J. Nash. Mathematische
Nachrichten 144, 1 (1989), 165–187.

[18] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. 1989.
Exponential lower bounds for �nding Brouwer �xpoints. J. Complex. 5, 4 (1989),
379–416.

[19] Alexandros Hollender. 2021. Structural results for total search complexity classes
with applications to game theory and optimisation. Ph. D. Dissertation. University
of Oxford, UK. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.840256

[20] Ronald A Howard. 1960. Dynamic programming and Markov processes. John
Wiley.

[21] Z. Huang, Leonid G. Khachiyan, and Christopher (Krzysztof) Sikorski. 1999.
Approximating Fixed Points of Weakly Contracting Mappings. J. Complex. 15, 2
(1999), 200–213. https://doi.org/10.1006/JCOM.1999.0504

[22] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988.
How Easy is Local Search? J. Comput. Syst. Sci. 37, 1 (1988), 79–100.
https://doi.org/10.1016/0022-0000(88)90046-3

[23] Michael L Littman. 1994. Markov games as a framework for multi-agent
reinforcement learning. In Machine learning proceedings 1994. Elsevier, 157–163.

[24] John Nash. 1956. The imbedding problem for Riemannian manifolds. Annals of
mathematics 63, 1 (1956), 20–63.

[25] Christos H Papadimitriou. 1994. On the complexity of the parity argument and
other ine�cient proofs of existence. Journal of Computer and system Sciences 48,
3 (1994), 498–532.

[26] L. Shapley. 1953. Stochastic Games. Proc. Nat. Acad. Sci. 39, 10 (1953), 1095–1100.
[27] Spencer D. Shellman and Christopher (Krzysztof) Sikorski. 2003. A recursive

algorithm for the in�nity-norm �xed point problem. J. Complex. 19, 6 (2003),
799–834. https://doi.org/10.1016/J.JCO.2003.06.001

[28] Spencer D. Shellman and Kris Sikorski. 2002. A Two-Dimensional Bisection
Envelope Algorithm for Fixed Points. J. Complex. 18, 2 (2002), 641–659.
https://doi.org/10.1006/JCOM.2001.0625

[29] Christopher (Krzysztof) Sikorski, Chey-Woei Tsay, and Henryk Wozniakowski.
1993. An Ellipsoid Algorithm for the Computation of Fixed Points. J. Complex. 9,
1 (1993), 181–200.

[30] Uri Zwick and Mike Paterson. 1996. The Complexity of Mean Payo� Games on
Graphs. Theor. Comput. Sci. 158, 1&2 (1996), 343–359.

Received 13-NOV-2023; accepted 2024-02-11

1373

	Abstract
	1 Introduction
	1.1 Sketch of the Main Algorithm

	2 Preliminaries
	3 Characterizing the Unique Fixed Point
	4 The Algorithm
	5 Existence of Balanced Point
	6 Impossibility of Strong Approximation under Non-expansion
	7 Promise Problem versus Total Search Version
	8 Conclusions
	References

