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ABSTRACT

We give an algorithm for finding an e-fixed point of a contraction
map f : [0, 11% - [0, 11% under the foo-norm with query complex-
ity O(k? log(1/¢)).
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1 INTRODUCTION

Amap f : M — M on ametric space (M, d) is called a contraction
map (or a (1 — y)-contraction map) if there exists y € (0, 1] such
that d(f(x), f(y)) < (1—y)-d(x,y) for all points x,y € M.In 1922,
Banach [2] proved a seminal fixed point theorem which states that
every contraction map must have a unique fixed point, i.e., there
is a unique x € M that satisfies f(x) = x. Distinct from another
renowned fixed point theorem by Brouwer, Banach’s theorem not
only guarantees the uniqueness of the fixed point but also provides
amethod for finding it: iteratively applying the map f starting from
any initial point will always converge to the unique fixed point.
Over the past century, Banach’s fixed point theorem has found
extensive applications in many fields. For example, in mathemat-
ics it can be used to prove theorems such as the Picard-Lindelof
(or Cauchy-Lipschitz) theorem on the existence and uniqueness
of solutions to differential equations (see e.g. [7]), and the Nash
embedding theorem [17, 24]. In optimization and machine learning,
it is used in the convergence and uniqueness analysis of value and
policy iteration in Markov decision processes and reinforcement
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learning [3, 20]. Indeed, as pointed out by Denardo [11], contrac-
tion mappings underlie many classical dynamic programming (DP)
problems and sequential decision processes, including DP models
of Bellman, Howard, Blackwell, Karlin and others.

A particularly important metric space to study the problem
of finding a Banach’s fixed point is the k-cube [0, 1] k with re-
spect to the fw-norm, since many important problems can be re-
duced to that of finding an ¢-fixed point (i.e., x € [0, 11* satisfying
[lf(x) —x|lc <¢)ina (1 — y)-contraction map under the fo-norm.
Such problems arise from a variety of fields including stochastic
analysis, optimization, verification, semantics, and game theory. For
example, the classical dynamic programming models mentioned
above (Markov decision processes etc.) involve contraction maps
under the f-norm. Furthermore, the same holds for several well-
known open problems that have been studied extensively and are
currently not known to be in P. For instance, Condon’s simple sto-
chastic games (SSGs) [8] can be reduced to the problem of finding
an ¢e-fixed point in a (1 — y)-contraction map over [0, 1]% under the
foo-norm. A similar reduction from [14] extends to an even broader
class of games, namely, Shapley’s stochastic games [26], which
lay the foundation of multi-agent reinforcement learning [23]. The
same holds also of course for other problems known to be subsumed
by SSGs, like parity games, which are important in verification (see
e.g. [4, 13]), and mean payoff games [30]. Crucially, in all these re-
ductions, both the approximation parameter ¢ and the contraction
parameter y are inversely exponential in the input size. Therefore,
efficient algorithms in this context are those with a complexity
upper bound that is polynomial in k, log(1/¢) and log(1/y).

In this paper we consider general algorithms that access the
contraction map in a black-box manner (as an oracle), and study the
query complexity of finding an e-fixed point of a (1 — y)-contraction
map over the k-cube [0, 1] k under the £5-norm (which we denote by
CONTRACTIONw (&, ¥, k)). An algorithm under this model is given k,
&, Y, and oracle access to an unknown (1—y)-contraction map f over
[0,1]*. In each round the algorithm can send a point x € [0, 11¥ to
the oracle to reveal its value f(x). The goal of the algorithm is to
find an e-fixed point with as few queries as possible.

Prior work. Despite much ongoing interest on this problem (e.g.,
[9, 10, 14-16, 19]), progress in understanding the query complex-
ity of CONTRACTION (¢, ¥, k) has been slow. Banach’s value it-
eration method needs Q((1/y) log(1/¢)) iterations to converge
to an e-fixed point. For the special case of k = 2, [28] obtained
an O(log(1/¢))-query algorithm. Subsequently, [27] obtained an
O(logk(l /€))-query algorithm for general k by applying a non-
trivial recursive binary search procedure across all k dimensions.
(Recently [16] obtained similar upper bounds for all £,-norms with
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2 < p < oo, though the complexity grows to infinity as p — o0.)
Note, however, that all known upper bounds so far are exponen-
tial in either k or log(1/y), and this is in sharp contrast with the
fr-norm case, for which [21, 29] gave an algorithm with both query
and time complexity polynomial in k, log(1/¢) and log(1/y).

Our contribution. We obtain the first algorithm with polynomial
query complexity for CONTRACTION (¢, ¥, k):

THEOREM 1. There is an O(k?log(1/¢))-query algorithm for
CONTRACTIONs (&, Y, k).

The observation below explains why our upper bound does not
depend on y:

Observation 1. Let f : [0, 11 [0,1]F bea (1 - Y)-contraction
map under the fo-norm. Consider the map g : |0, 11%¥ — [0, 1]%
defined as g(x) := (1—¢/2) f(x). Clearly g is a (1 — £/2)-contraction.
Let x be any point with ||g(x) — x|l < £/2. We have

€/2 2 [lg(x) = xlleo = |(1 = £/2) f (x) = Xlloo 2 [If (%) = x[lo — £/2
This gives a black-box reduction from CONTRACTION«(¢,y, k) to
CONTRACTIONs (€/2, €/2, k), which is both query-efficient and time-
efficient.

In Section 4, we give an O(k?log(1/¢))-query algorithm for
CONTRACTION (£/2, /2, k), from which Theorem 1 follows. In-
deed, note that Observation 1 holds even if f is a non-expansive
map (i.e., f has Lipschitz constant 1: || f(x) — f(y)|le < [l — ylleo
for all x,y € [0,1]%). As a result, the same query upper bound
applies to NONExXP (¢, k), the problem of finding an e-fixed point
in a non-expansive map over [0, 1]% under the foo-norm:

Corollary 1. There is an O(k?log(1/¢))-query algorithm for
NONExP (&, k).

Another corollary of Theorem 1 is about finding a strong e-
fixed point in a contraction map f. We say x is a strong ¢e-fixed
point of f if ||[x — x|l < & where x* is the unique fixed
point of f. The following observation leads to Corollary 2, where
STRCONTRACTION (&, ¥, k) denotes the problem of finding a strong
e-fixed point:

Observation 2. Let f be a (1 — y)-contraction map and x* be its
unique fixed point. Let x be any (ey)-fixed point of f, i.e., x satisfies
Ilf(x) — x|l < ey. Then we have

[l =x"[loo < llx = f () lloo + 1 () =x"[loo < ey + (1 =)l = x"||oo,
which implies ||x — x*||o < e&. This gives a black-box reduction

from STRCONTRACTIONs (&, ¥, k) to CONTRACTION (€Y, ¥, k), which
is both query-efficient and time-efficient.

Corollary 2. There is an O(k?log(1/(ey)))-query algorithm for
STRCONTRACTION (€, ¥, k).

In sharp contrast with Corollary 2, however, we show that it
is impossible to strongly approximate an exact fixed point in a
non-expansive map over [0, 1]? under the £ norm.

THEOREM 2. There is no deterministic or randomized algorithm
which, when given oracle access to any non-expansive map f :
[0,1]?> + [0,1]? under the fx-norm, computes in an expected
bounded number of queries a point that is within distance 1/4 of
an exact fixed point of f.
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The problem CONTRACTION (¢, ¥, k) is a promise problem, i.e.,
it is promised that the function f in the black-box (the oracle) is a
(1 — y)-contraction. In the various relevant applications (stochas-
tic games etc.), the corresponding function that is induced is by
construction a contraction, thus it is appropriate in these cases to
restrict attention to functions that satisfy the contraction promise.

For any promise problem, one can define a corresponding total
search problem, where the black-box can be any function f on
the domain and the problem is to compute either a solution or
a violation of the promise. In our case, the corresponding total
search problem, denoted T-CONTRACTION (¢, ¥, k), is the problem
of computing for a given function f : [0,1]¥ ~ [0, 1]* either an
e-fixed point or a violation of the contraction property, i.e. a pair of
points x,y € [0, 1]* such that ||f(x) = f(®)lleo > (1 = P)lIx = Yllco-
For any promise problem, the corresponding total search problem is
clearly at least as hard as the promise problem. For some problems
it can be strictly harder (and it may depend on the type of violation
that is desired). However, we show that in our case the two versions
have the same query complexity.

THEOREM 3. There is an O(k?log(1/¢))-query algorithm for
T-CONTRACTIONs (€, ¥, k).

Similar results hold for STRCONTRACTIONw (e y,k) and
NoONEXPw (¢, k): the total search versions have the same query
complexity as the corresponding promise problems.

Remark. It is also important to note that while our algorithm in
Theorem 1 is query efficient, it is not time efficient for the current
version. The algorithm guarantees that within polynomial queries
we can find a weak ¢-fixed point, but each iteration requires a brute
force procedure to determine the next query point. We will explain
more details of techniques in Section 1.1.

Other Related Work. We have already mentioned the most
relevant works addressing the query complexity of computing
the fixed point of a contraction map. For continuous functions
{10, 1]% - [0, 1]* that have Lipschitz constant greater than 1 (i.e.
are expansive), there are exponential lower bounds on the query
complexity of computing a (weak) approximate fixed point [5, 18].

CONTRACTION (&, ¥, k) when considered in the white-box
model! can be formulated as a total search problem so that
it lies in the class TFNP. In fact, it is one of the motivating
problems in [9] to define the class CLS for capturing problems
that lie in both PLS [22] and PPAD [25]. Later, it is placed in
UEOPL [16]?, a subclass of CLS to capture problems with a unique
solution. It is not known that CONTRACTIONw (¢, y, k) is complete
for any TFNP class. Notably, to the best of our knowledge, for the
known fixed point problems that are complete for some TFNP

The white-box model refers to the model where the function is explicitly given by
a polynomial-size circuit, in contrast to the black-box model where the function can
only be accessed via an oracle as we studied in this paper. When we talk about a
computational problem under the white-box model, we measure the efficiency by the
time complexity.

Technically speaking, they show that UEOPL contains the problem of computing
an exact fixed point of contraction maps specified by LinearFIXP arithmetic circuits,
where the unique fixed point is guaranteed to be rational. For our more general
version CONTRACTION (&, ¥, k), the unique fixed point of the underlying map may
be irrational.
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class, their query complexity in the black-box model is expo-
nential. Examples of such well-known problems include PPAD-
complete problems BROUWER and SPERNER [6, 25], PPA-complete
problems Borsuk-ULam, TUCKER [1, 25] and MOBIUSSPERNER [12],
CLS-complete problems KKT [15] and METRICBANACH® [10], and
UEOPL-complete problem OPDC [16].

However, our results indicate that CONTRACTION (&, ¥, k) is dra-
matically different from all these fixed point problems above in
terms of query complexity. Thus, we would like to interpret our
results as evidence supporting that CONTRACTION (&, ¥, k) under
white-box model might be computationally tractable. Ideally, if it is
in FP, it would imply many breakthroughs in the fields of verifica-
tion, semantics, learning theory, and game theory as we discussed
before.

1.1 Sketch of the Main Algorithm

We give a high-level sketch of the main query algorithm for Theo-

ks

rem 1. We start by discretizing the search space. Let g : [0, n]
[0, n]* with g(x) :==n-f(x/n)and n := [16/(ye)]. It is easy to show
that g remains a (1—y)-contraction over [0, ] k and it suffices to find
a (16/y)-fixed point of g. Moreover, by rounding the unique fixed
point x* of g to an integer point, we know trivially that at least one
integer point x in the grid [0 : n]*, where [0 : n] := {0,1,...,n}, sat-
isfies || x—x*||co < 1anditis easy to show that any such point x must
be a (16/y)-fixed point. So our goal is to find a point x € [0 : n]k
that satisfies ||x — x*||0 < 1 query-efficiently.

To this end, we use Cand’ to denote the set of [0 : n]¥ that
remains possible to be close to the unknown exact fixed point
x* of g. Starting with Cand® set to be the full grid [0 : n]¥, the
success of the algorithm relies on whether we can cut down the
size of Cand’ efficiently. For this purpose we prove a number of
geometric lemmas in Section 3 to give a characterization of the
exact fixed point x*, which lead to the following primitive used by
the algorithm repeatedly:

Given x € [0,n]¥, i € [k] and ¢ € {1}, we write
Pi(x, $) to denote the set of points y € [0, n]* such
that ¢ - (y; — x;i) = ||y — x||c0, Where P is a shorthand
for pyramid. Then after querying a point a € [0, n],
either a was found to be a (16/y)-fixed point (in
which case the algorithm is trivially done), or one
can find ¢; € {+1} for each i € [k] such that no
point in P;(a, ;) can be close (within £s-distance 1)
to x* (in which case we can update Cand’ by
removing all points in U;¢ ] Pi(a, ¢:)).

Given this, it suffices to show that for any set of points T C [0 :
n]¥ (as Cand?), there exists a point a to be queried such that for any

i € {1}:
Tl [ Pitag)

i€[k]
is large relative to |T|, which is equivalent (up to a factor of k) to
showing that there exists a point a and i € [k] such that

min ([T N P;(a,+1)|,|T N Pi(a,-1)|)

1)

3METRICBANACH refers to the problem of computing an approximate fixed point of a
contraction map where the distance function d is also part of the input.
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is large relative to |T|. This unfortunately turns out to be not true
(see Example 1). However, it turns out that such a point (which
we will refer to as a balanced point) always exists if we replace
the integer grid [0 : n]* by the grid of odd-even points: OE(n, k),
where y € OE(n, k) iff y € [0 : n]¥ and its coordinates are either
all odd or all even. To prove the existence of a balanced point, we
construct an infinite sequence of continuous maps {f*} that can be
viewed as relaxed versions of the search for a balanced point. Using
Brouwer’s fixed point theorem, every map f* has a fixed point p*
and thus, by the Bolzano-Weierstrass theorem, there must be an
infinite subsequence of {p’} that converges. Letting p* be the point
it converges to, we further round p* to ¢* € OE(n, k) and show that
the latter is a balanced point in the grid. While we show such a
point always exists, the brute-force search to find ¢* € 0E(n, k) is
the reason why our algorithm is not time-efficient.

2 PRELIMINARIES

Definition 1 (Contraction). Let0 <y < 1 and (M, d) be a metric
space. Amap f : M +— M isa (1-y)-contraction map with respect
to(M,d) ifd(f(x). f(y) < (1 -y) -d(x,y) forallx,y € M.

A map f M = M is said to be non-expansive if

d(f(x), f(y)) <d(x,y) forallx,y € M.

Every non-expansive map has a fixed point, i.e., x* with f(x*) =
x*, and it is unique when f is a (1 — y)-contraction map for any
y > 0.In this paper, we study the query complexity of finding an
¢-fixed point of a (1 — y)-contraction map f over the k-cube [0, 1]
with respect to the infinity norm:

Definition 2 (CONTRACTIONw (¢, ¥, k)). We are given oracle access
to a (1— y)-contraction map f over [0,1]% with respect to the infinity
norm, i.e., f satisfies

I£ () = fF@lleo < (1 =) - lIx = ylleo,  forallx,y € [0,1]*
and the goal is to find an e-fixed point of f, i.e., a point x € [0,1]%
such that || f(x) — x|l < €.

We also write STRCONTRACTIONs (&, ¥, k) to denote the problem
with the same input but the goal is to find a strong e-fixed point of
f,ie,x € [0, 11 such that ||x — x*||co < &, where x* is the unique
fixed point of f.

We define similar problems for non-expansive maps over [0, 1]¥:

Definition 3 (NONEXP (¢, k)). In problem NONExPw (&, k), we are
given oracle access to a non-expansive map f : [0, 115 5 [0, 11% with
respect to the infinity norm, i.e., f satisfies

£ () = FW)lleo < lIx —ylloos  forallx,y € [0, 1]

and the goal is to find an e-fixed point of f.
We write STRNONEXP (¢, k) to denote the problem with the same
input but the goal is to find a strong e-fixed point of f.

Letf: [0, 11%¥ > [0,1]* bea (1- y)-contraction map. For conve-
nience, our main algorithm for CONTRACTIONw (¢, y, k) will work
ong: [0, n]* — [0, n] with

n:= {;} and ¢g(x) =n-f(x/n), forallx € [0, n]k.

We record the following simple property about g:
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Lemma 1. The map g constructed above is still a (1 —y)-contraction
and finding an e-fixed point of f reduces to finding a (16/y)-fixed
point of g.

Proor. For any two points x,y € [0, n]k , we have

lg(x) = g(@)lleo = lIn- f(x/n) = n- f(y/n)lle
<sn(1-y)-llx/n=y/nllo = (1=p)lIx - Ylleo-
Suppose we found a (16/y)-fixed point a of g. We show that x :=
a/n is an e-fixed point of f:
1 1 16
1f () = xlleo = llg(a)/n = a/nlleo = — - llg(a) — allo < — - 7 <e
This finishes the proof of the lemma. O

Notation. Given a positive integer m, we use [m] to denote
{1,...,m}. For a real number t € R, we let sgn(t) = 1if ¢t > 0,
sgn(t) = —1if t < 0, and sgn(t) = 0 if t = 0. Given positive inte-
gers n and k, we use OE(n, k) to denote the set of all integer points
x € [0, n]* such that either x; is odd for all i € [k] or x; is even for
all i € [k]. (OE is a shorthand for odd and even points.)

For a point x € RF (not necessarily in [0, n]%), a coordinate
i € [k], and a sign ¢ € {+1}, we use P;(x, P) to denote

Pilx.g) = {y e (0" : ¢ (9= x0) = lly — xllo}

where P is a shorthand for pyramid.

Given a (1 — y)-contraction map g over [0, n]*, we use Fix(g)
to denote the unique fixed point of g. For any point x € [0, n]¥, we
use Around(x) to denote the set

Around(x) := {y € OE(n, k) : [|x — ylloo < 1}.

We note that ||g(y) — y|le < 2 for all y € Around(Fix(g)) and thus,
any point in Around(Fix(g)) is a desired (16/y)-fixed point (given
that y < 1). To see this, letting x = Fix(g), we have

9w =ylleo < l9(y) =g lleotHlIx=ylleo < 2,

3 CHARACTERIZING THE UNIQUE FIXED
POINT

Lemma 2. Letg: [0, n]* — [0,n]* bea (1 - Y)-contraction map

and let a € [0,n]* be a point such that ||g(a) — al|lc > 16/y and

s € {1, O}k be the sign vector such that s; = sgn(g(a); — a;). Then

Fix(g) € U Pi(a+4s,s;i).
i:s;#0

PROOF. Let ¢ = a+4s and x* = Fix(g) be the unique fixed point.
First, we show that ||x* — al|co > 8/y. Otherwise, we have

16

lg(@)=alleo < llg(a)=g(x")llot[lx"~alle < (1=y+1)-[lx"~alle0 < 7

which contradicts the assumption that ||g(a) — all > 16/y. Now
it suffices to show that g(x) # x for any point x € [0, n]* that
satisfies both

8
x ¢ U Pi(c,si) and ||x —alleo > —.
i,5;#0 Y
Let j be a dominating coordinate between x and ¢, i.e., a j € [k]
such that |x;j — ¢j| = [|x — c[|co. We divide the proof into two parts.
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Part 1: s; = 0. Thus g(a); = a; and ¢; = a;. Assume without loss

of generality that x; > c;; the case when x; < c; is symmetric. On

the one hand, we have x; — ¢j = [|x — ¢||co, Which gives
xj=cj+[x = cllco- (%)

On the other hand, using that g is a (1 - y)-contraction and g(a); =
aj, we have

9(x)j—aj=g(x);—g(a); < (1-y)-[lx - all.

Equivalently, g(x); < aj + [|x — allco = y|lx = al|co. Combining with
[|x — al|o > 8/y, this implies

g(x)j < aj+|x —alle — 8. ()
Putting (%) and (¢) together and the facts that ||c — al|co = 4 and
cj = aj, we have

xj—g(x)j > |lx —cllo = lIx — allcoc +8 = —[lc — al|co + 8 >0,

which implies that g(x); # x; and g(x) # x.
Part 2: s; # 0. Assume without loss of generality that s; = +1; the
case sj = —1 is symmetric.

Since we are considering points not in ;5,20 Pi(c, si), it must
be the case that x € %j(c,—s;) and thus, x; < cj. Since

[lx — allco > 8/y, we have x; < aj; otherwise a; < x; < ¢j and
thus,
llx = alloo < llx = ¢lleo + lla — clleo < 8.

Given the (1 — y)-contraction of g, we have g(a); — g(x); <

(1-y) - |lx — allco, which implies
9(x)j 2 g(a)j —llx—alleo +yllx —allo > g(a)j - llx —allo +8. (2)

Next, we show an upper bound on ||x — al|c. Recall that x €
Pj(c,—sj). Consider y = x — 4s. We have y € Pj(a, —s;). So

llx = alleo < llx = ylleo + lly — alleo

=4+ (aj—yj) =4+ (aj —xj+4) =8+ (aj — xj).

Given this and plugging the upper bound in Equation (2), we

will get
g(x)j > g(a)j +xj — aj.

Recall that s; = +1 implies that g(a); > a;. So we have g(x); > x;

and g(x) # x.
This finishes the proof of Lemma 2. O

Lemma3. Letb € R¥ ands € {il,O}k such that s # 0% Then every
x € Ui 20 Pi(b + 2s,5;) must have Around(x) € U5, 20 Pi(b, 51).

ProOF. Leti* besuchthats; # 0and x € Py (b+2s, sj+). Assume
without loss of generality that s;+ = +1. We have xj+ — (bjx + 2) >
|xi — (bi + 2s;)| for every i € [k].

Fix an arbitrary y € Around(x). We must have y;+ — bj= > 0,
which follows from

0<xp+—(bpr+2) Syp+1— (b +2)
and thus, y;+ > bj+ + 1. Let

J € arg max {si(yi —b;) |si# 0}.

ie[k]
Since sj* = +1, we have

sj(yj —bj) =y — b= 2 0.
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Our goal is to show y € P;(b,s;j) and it suffices for us to show
ly; —bjl = |y; — bi| forall i € [k].

Let’s consider first an arbitrary i € [k] with s; = 0. Recall that
xi+ — (b +2) > |x; — bi|. In particular, this implies |x;« — bj+| —2 >
|x; — bi|. Putting everything together, we have

lyj —bjl = |yix — bi=| 2 |x= = by=| =1 2> [x; — bi| +1 2 |y; — by].
Finally let’s consider an i € [k] such thats; # 0.1If s; (y; —b;) > 0,

by the definition of how we picked j, we have |y; — bj| > |y; — b;].

If si(y; — b;) < 0, then we have
lyi = bil = lyi — (bi +25i)| =2 < |x; = (bi + 25i)| = 1
<xp—bp —3<yp—bpr—2< |yj—bj|.

This finishes the proof of the lemma. O

Lemmad4. Leta € [0,n]* ands € {£1, O}k such that s # 0F. Then
for every j € [k], there exists ¢ € {+1} such that

))=®-
):@.

) ) 0
for all j with s; # 0 by setting ¢ = —s;.
Now consider a j with s; = 0. Under this case, we show in fact
U Pi(a+2s,si)

that
) ) 0
i:s;#0

for both ¢ € {+1}. Consider any point x € ;5,20 Pi(a + 2s,5;)
and we show that x ¢ P;(a,-1) and x ¢ Pj(a,+1). Let b = a+ 2s.
As x € Uy 20 Pi(b, 1), there exists i* with s+ # 0 such that

U Pi(a+ 2s,s;

i:5;#0

Pjla,¢) N (

Proor. First we note that

U Pi(a, —Si)) N (

i:s;#0
U Pi(a+ 2s,s;)
its;#0

U Pi(a+2s,s;)

i:5;#0

This implies that

Pj(a, ¢) N (

Pj(a,$) N (

si< (xi+ = bir) = [lx = blleo > |xj = bjl.
Note also that |xj+ — aj*| = sj (x50 — by + 2s3¢) = sp= (x3+ — bj=) + 2
and b; = aj, so we have
lxi — aj<| = ||x = blleo +2 > |xj = bj| = |xj — aj].

Thus x ¢ Pj(a,—1) and x ¢ P;j(a,+1) . This finishes the proof of
the lemma. o

4 THE ALGORITHM

We prove Theorem 1 in this section. Our algorithm for
CONTRACTION (&, ¥, k) is described in Algorithm 1. Given oracle
access to a (1 — y)-contraction map g : [0, n]*¥ = [0, n]¥, we show
that it can find a (16/y)-fixed point of g within

ofere()

many queries. This is sufficient given Lemma 1.

The analysis of Algorithm 1 uses the following theorem which we
prove in the next section. In particular, it guarantees the existence
of the point a’ to be queried in round  that satisfies (3). We will call
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Algorithm 1 Query Algorithm for CONTRACTION (¢, ¥, k)

1: Let Cand® « OE(n, k)

2: fort=1,2,...do

3: Find and query an a’ € OE(n, k) such that a’ is a balanced
point of Cand*~! on some j € [k]:

|7)j(at,+1)ﬂCandt_1

. |Pj(a',-1)nCand’~!| > %"Candt_ll 3)

4 if ||g(a’) — a’||c < 16/y then return a’ as a (16/y)-fixed
point of g
Let s € {+1,0}* be such that s; = sgn(g(al); - af) for all

i€ [k], b < a* +2s,and

a point ¢* with the property stated in Theorem 4 below a balanced
point for T.

5:

U Piv,s)

i:5;#0

cand’ « cand’~!n ( (4)

THEOREM 4. For any T C OE(n, k), there exist a point q¢* €
OE(n, k) and an i* € [k] such that

|Pi (g%, ¢) N T| > i |T|, forboth ¢ € {%1}.

At a high level, Algorithm 1 maintains a subset of grid points
OE(n, k) as candidate solutions, which is denoted by Cand’ after
round t. We show the following invariants:

Lemma 5. For every round t > 1, either the point a’ queried is a
(16/y)-fixed point of g (and the algorithm terminates), or we have
both Around(Fix(g)) C Cand’ and

1

2k ©)

|cand?| < (1 - ) -|cand’ 1.
ProoOF oF LEMMA 5. We start with the proof of (5). Suppose that
a’ satisfies (3) with j € [k]. Then by Lemma 4, there must exist a

sign ¢ € {+1} such that
) o
The inequality (5) follows directly from (3).

Next we prove by induction that Around(Fix(g)) < Cand’ for
every t before the round that the algorithm terminates. The basis
is trivial given that Cand® is set to be OE(n, k). For round t > 1, we
assume that ||g(a’) — a’||lc > 16/y; otherwise a solution is found
and the algorithm terminates.

Let bt = af + 2s and ¢! = b? + 2s. By Lemma 2, we know that

U Pi(ct, Si)) .
i:s;#0
Since b is defined as ¢f — 2s, by Lemma 3, we know that

Around(Fix(g)) C U Pi (b, s1).
i:5;#0

U puv's0)

i:5;#0

Pj(at,(]f) N (

Fix(g) € (

We finish the proof by using the inductive hypothesis
Around(Fix(g)) € Cand’*~! and (4). m|
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Given Lemma 5 and that |Cand0| <nk , within at most

k) _ 2 1
0] (klog(n )) =0 (k log (ey))
many rounds, one of the points a’ queried by the algorithm must
be a (16/y)-fixed point of g. This finishes the proof of Theorem 1.

5 EXISTENCE OF BALANCED POINT

We prove Theorem 4 in this section. Before that, we first illustrate
why the structure of OE (n, k) is necessary to guarantee the existence
] k

k can

of a balanced point. In particular, for the standard grid [n]*, we
give an example of a set T C [n]k such that no point in [n]

be a balanced point.

Example 1. Let p (n/2,...,n/2) if n is odd and let p
"T“, e "T“) if n is even. Note that p ¢ [n]*. We construct the
following T C [n]* such that p is the only choice of a balanced point:

T= {xe [n]k s |xi — pil = |lx — pllo foralli € [k]}.

Precisely, it is easy to verify that for any point p’ # p and any
coordinate i € | k], we have that

[P (0. ¢) N T| < O (|T|/2k), for some ¢ € {1},

However, since p ¢ [n]¥, we conclude that there is no balanced point
forT in [n]k.

We restate Theorem 4:

THEOREM 4. For any T C OE(n k), there exist a point q¢* €

0E(n, k) and ani* € k] such that
1
|Pi(q",¢) N T| > o L forboth ¢ € {x1}.
Proor. For each positive integer ¢t > 4 we let
S' = UyerB(x, 1/t) € [~1/4,n + 1/4]%,

where B(x, 1/t) denotes the £-ball of radius 1/¢ centered at x. We
write vol(S?) to denote the volume of S? and vol(S? NP) to denote
the volume of the intersection of S and some pyramid .

We apply Brouwer’s fixed point to prove the existence of a bal-
anced (real) point for the balls:

Lemma 6. For every integer t > 4, there exist p* € [-1/4,n +
1/41% and a coordinate i* € [k] such that vol(P;: (p*,+1) N §%) =

vol(P;- (p*,—1) N ST) > vol(S?)/2k.

Proor. We define a continuous map f : [-1/4,n+1 /4]k —
[-1/4n+1/ 4]k and apply Brouwer’s fixed point theorem on f to
find a fixed point p* of f, and show that p* satisfies the property
above.

We define f as follows: For every p € [-1/4,n+ 1/4]k andi €
[k], let
vol(Pi(p, +1) N S) = vol(Pi(p,—1) N S7)

(n+0.5)k-1
It is clear that f is continuous. To see that it is from [-1/4,n + 1/4]k
to itself, we note that
- vol(P;(p,+1) N S*)
T (n+0.5)k-1

fi(p) =pi +

< +1
<n+--p;
P
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and ,
1(Pi(p,—-1) NS 1
Osvo(l(p ) )Spi+—.
(n+0.5)k-1 4
As aresult, one can apply Brouwer’s fixed point theorem on f to
conclude that there exists a point p* € [-1/4,n+ 1/ 4]k such that
f(p*) = p*, which implies that
vol(P;(p*,+1) N S*) = vol(P;(p*, 1) N S*)

for all i € [k]. On the other hand, we have

Z (vol(Pi(p*,H) N S*) +vol(Pi(p*,-1) N St)) = vol(S?).
ielk]

Therefore there must be an i* € [k] such that

vol(S?)

vol(Ps(p*,+1) N §*) = vol (P (p*,-1) N §*) > o

This finishes the proof of the lemma. O

By Lemma 6, we have that for every ¢, there exist p! €
[-1/4,n+1/4]% and i; € [k] such that
vol(S?)
2k
Given that there are only k choices for iz, there exists an i* € [k]

such that {p’} has an infinite subsequence {p’*},>1 with t; <tz <
- such that

vol(P;, (p',+1) N §*) = vol(P;, (p’. 1) N §*) >

vol(5%)

2k
forall# > 1. Given that [-1/4,n + 1/4]k is compact, {p’¢} has an in-
finite subsequence that converges to a point p* € [—1/4,n+ 1/4]%.
For convenience, we still refer to the subsequence as {p’*},>1.

In Lemma 7, we show that both P;: (p*, +1) N T and Pj= (p*, —1)N
T are at least |T|/2k. After this, in Lemma 8, we show how to round
p* to ¢* € OE(n, k) while making sure that

P (p*,+1) N T C Pp(q*,+1) N T

VOl(Pl‘* (pt(’+1) N Sti) — VOl(Pl‘* (pt[’ _1) n Stl) >

and

Our goal then follows by combining these two lemmas.
Lemma 7. We have
. { [P (", +1) N T| [P (p*, -1) N T| }
min ,

IT| IT|
ProoF. We write A to denote the following (potentially empty)
set of positive real numbers defined using p*: a € (0,1) is in A if
there are i # j € [k] such that either

(1) p; +p; is an integer plus a; or

1
> —.
2k

() p; + pj*. is an integer minus a; or

(3) pj — pj is an integer plus a; or

(4) pj — pj is an integer minus a.

Consider the easier case when A is empty, i.e. p} + p;. and p; — p}f
are integers for all i # j € [k]. Let £ be a sufficiently large integer
such that 1/t; < 0.1 and ||p* — p*|lco < 0.1. We show that

[Pie (p",+D) NT| _ vol(Py (pe, +1) N S')
|T| - vol(Sir)

1
> —
2k
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and the same inequality holds for the —1 side. For this purpose it
suffices to show that every point x € T satisfies that

P (p',+1) NB(x,1/t;) 20 = x € P (p*, +1).

Let’s prove the contrapositive so take any x ¢ ;< (p*, +1). There
exists a j # i* such that either

* * * *
Xix = Py <xj—pj or  Xjx — Py <pj—xj

For the first case we have x;+ — x; < p}. - pj.. Since both sides are
integers we have

(6)

so intuitively x is far from P« (p*, +1). From this we can conclude
that B(x, 1/t;) N Pi=(p*¢,+1) is empty. To see this is the case, for
any y € B(x, 1/tr), it follows from ||x — y|/co < [[x —y||2 < 0.1 and
lp* = p¥]lco < 0.1 and (6) that

t t t t
Yyir —yj S pir —pf —(1-04) <pii—pf

and thus, y ¢ P;+ (ptf’ ,+1). The other case follows from a similar
argument.

Now we consider the general case when A is not empty and let
a > 0 be the smallest value in A; note that @ < 1/2. In this case
we let ¢ be a sufficiently large integer such that 1/t, < 0.1a and
lp% — p*|lco < 0.1c. Similarly it suffices to show that every point
x € T satisfies that

* *
Xpe —xj < pl-pj -1

P (p',+1) N B(x,1/t;) 20 = x € Py (p*, +1).

Let’s prove the contrapositive so take any x ¢ P;: (p*, +1). There
exists a j # i* such that either

k3 * L %
Xpt = pp <Xj—p; OF Xit —pp <pj—Xj
For the first case we have x;» —x; < pJ. -pj Since p, —pjis either
an integer or an integer + something that is between a and 1 — a,
we have
5 %
Xix = Xj < P —pj—a

The rest of the proof is similar. O

Given p*, we round it to an integer point ¢* € OE(n, k) as follows.

First let . € [0, n] be an integer such that [p}, - g}.| < 1/2 (note
that g}. may not be unique but we can break ties arbitrarily). It is
clear that q;‘* € {0,...,n}. Assume without loss of generality that
q;. is even (so we need to set g to be even for every other j, in
order to have ¢* € OE(n, k)). Then for each j # i*:

(1) g; =0ifp} € [-1/4,0);

(2) q;‘. is set to be the even number in {n — 1,n} if
p}f € (n,n+1/4]; and

(3) Otherwise, set g% to be an even number in {0, ..., n} such
that | p;f - q;| < 1 (again breaking ties arbitrarily).

Note that we have ¢* € OE(n, k) and it satisfies |p;‘ - qj| < 5/4 for

all j #i*.

Lemma 8. The point ¢* satisfies ¢* € OE(n, k) and
Pr(p*,+1)NT C P (g",+1) N T

and
P (p*, -1)NT C P (q*, -1)NT.
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PROOF. Let’s prove the first part since the other part is symmet-
ric.
Let x € OE(n, k) be a point in P+ (p*,+1) N T. So for every j # i*
we have
Xp = pj 2 xj—p; and xp —pL > p;—x;j,
or equivalently
Xj* = Xj 2 pp. = p;

It suffices to show that

and xj +xj > pi.+p.

xi*—xJ-Zq;l—q;f and xi*+xj~2q;+q;l

To see the first part, we have
Xie =Xj 2 pi = p; 2 (g5 = 1/2) = (q; +5/4) = (q;- —q}) = 7/4.

But given that x € OE(n, k) and ¢* € OE(n, k), both x;+ — xj and
g5 — q’; are even numbers and thus, the inequality above implies

Xir = Xj 2 qf — q}‘.. The other part can be proved similarly. O

This finishes the proof of Theorem 4. O

Remark on Theorem 4. We note that the (possibly off-grid point) p*
in the proof already satisfies the desired property and our algorithm
can proceed by querying p*. However, p* as defined here is the limit
of fixed points found in an infinite sequence of maps. In contrast,
Lemma 8 shows that, after rounding, a grid balanced point always
exists, which can be found by brute-force enumeration.

6 IMPOSSIBILITY OF STRONG
APPROXIMATION UNDER NON-EXPANSION

We consider functions f on the plane with bounded domain and
range, e.g. the unit square, that are non-expansive under the 4
metric. We will show the following impossibility result.

THEOREM 2. There is no deterministic or randomized algorithm
which, when given oracle access to any non-expansive map f :
[0,1]? + [0,1]? under the £x-norm, computes in an expected
bounded number of queries a point that is within distance 1/4 of
an exact fixed point of f.

In the proof it will be more convenient to use as the domain a
square that is tilted by 45°. We call a rectangle whose sides are
at 45° and —45°, a diamond. Let D be the diamond whose vertices
are the midpoints of the sides of the unit square. Any function g
over D can be extended to a function g’ over the unit square, by
defining for every point p € [0,1]? the value of the function as
g’ (p) = g(x(p)), where 7(p) is the projection of p onto D. Clearly,
for any two points p, g € [0,1]2, ||7(p)—7(q)||co < ||[p—qllco, hence
if the function g over D is non-expansive, then so is the function
g’ over [0, 1]%. Furthermore, the fixed points of ¢’ are exactly the
fixed points of g.

We will prove the statement of the theorem for the domain D.
The claim then follows for the unit square. To see this, restrict
attention to the non-expansive functions g’ on the unit square that
are extensions of functions g on the diamond D. If we have an
algorithm for the unit square, then we can use the algorithm also
for the diamond D: when the algorithm queries a point p € [0, 1]?
then we query instead its projection 7z (gq) € D. If the algorithm
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outputs at the end a point that is close to a fixed point of ¢’, then
its projection on D is a valid output for g.

For any 6 € (0,1/2) and any point s on the SW or NE side of
the diamond D that is at least at Euclidean distance § from the
vertices of D, we will define a non-expansive function f5 ¢ with
unique fixed point s. The function is defined as follows. Draw the
line Iy through s at 45° and let ¢ be the point of intersection with
the opposite side of D. Let [; and I, be the two lines parallel to Iy
that are left and right of [y respectively at Euclidean distance 8, and
let Dy be the strip of D that is strictly between the lines [; and I,.
Let D’ = D\ Dy. Every point p € D’ is mapped by f;  to the point
that is at Euclidean distance § towards the line ly; i.e., if p = (p1, p2)
is left and above [ then f5(p) = (p1 +8/V2,p2 — 5/V2), and if p
is right and below Iy then f5;(p) = (p1 — §/V2, p2 + 5/V2).

For a point p in Dy we define f5(p) as follows. Let p” be the
projection of p onto the line ly. Then f5 ;(p) is the point on Iy that
is at Euclidean distance (6 — |pp’|) - [p”s| from p’ in the direction of
s, where |pp’|, |p’s| are the (Euclidean) lengths of the segments pp’
and p’s. Thus for example, if p = s then p’ = s and f5,(s) = s. If
p =tthenp’ =tand (8- |pp’]) - |p’s| = 6/V2, so t moves along Iy
distance §/V2 towards s. Note that if p is on line [ or I, (i.e. on the
boundary sides between Dy and D’), then (6—|pp’])-|p’s| = 0, since
|pp’| = 8, thus p is mapped to p’ whether we treat p as a member
of D" or as a member of Dy. It follows that f5 ;(p) is continuous
over D.

As we noted above, s is a fixed point of f5;(p). We claim that
it is the only fixed point. Clearly, any fixed point p must be in
Dy and must lie on the line Iy, thus p = p’. It must satisfy also
(8= 1pp’l) - |p’s| = 0, hence |p’s| = 0, and thus, p ='s.

We will show now that f; ; is a non-expansive function, i.e. that
1fss () ~ fos(@lleo < [Ip — glloo for all p.g € D. We show first
that it suffices to check pairs p, g that are diagonal to each other,
i.e. such that the line connecting them is at 45° or —45°. Note that
such points have the property that the Ly, distance is tight in both
coordinates, ||p — glleo = |p1 — q1| = |p2 — q2|-

Lemma 9. If a function f on the diamond D satisfies ||f(p) —
f(@llo < lp — qlleo for all diagonal pairs of points p,q, then f

is non-expansive.

ProoF. Let x, y be any two points that are not diagonal. Consider
the diamond with opposite vertices x, y, i.e. draw the lines through
x,y at 45° and —45° and considered the rectangle enclosed by them.
Let z, w be the other two vertices of this diamond. Suppose without
loss of generality that || x—y||co = x1—y1 > |x2—y2|. Thenx; > z1 >
y1, and similarly for w. We have ||x — y||lco = X1 —y1 = (x1 — 21) +
(z1-y1) = [Ix—2||o+||z2—y||c0- Since f is non-expansive on diagonal
pairs, [|f(x) = f(2)lleo < [lx=2zllco and || (2) = f (1)l < [|2=Ylloo-
Therefore, [ £(x) - f(y)lleo < If(X) = f@lleo + (@) = f(B)lloo

< lx = zlleo + 112 = ylloo =[x = Ylleo- o

Remark. The lemma can be shown to hold more generally in any
dimension. That is, if f : [0,1]¥ — [0, 1]¥ has the property that
If(p) — f(@llo < |lp — qlleo for all diagonal pairs of points p, g
(i-e. such that |p; — gi| = ||p — qll for all i € [k]), then f is non-
expansive.

Lemma 10. The function fs ¢ is non-expansive.
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Proor. The function f5 ; was defined according to which region
of the domain D a point lies in. There are three regions: the part
of D’ left of 11, the middle region Dy, and the part of D’ right of
Io. It suffices to check the non-expansiveness for diagonal pairs of
points p, g that lie in the same region. If p, q are both in the region
left of I3, or if they are both right of I3, then from the definition we
have f(p) = £(@)llos = lIp = qlle.

So suppose p, q are both in Dy. Assume first that the line pq has
angle 45°, i.e. pq is parallel to the line ly. Then [|p — gl = |pgl/ V2.
Let p’, ¢’ be the projections of p, q on lp, and let p” = f5,(p), ¢” =
Fs.0(@). Then p'p"| = (5 = |pp 1) - 1p'sl, 1g'a”] = (6 - 1gg']) - 1¢'s]
Since pq is parallel to Iy, (§ — |pp’]) = (6 — |qq’|) and |pq| =
|p’q’|. Assume without loss of generality that |p’s| > |¢’s|. Then
Ip°q"| = 1p'q'l = (8 = lpp"D(Ip’sl = 1g’s]) < |p’q’| = |pql- Since
P = qlleo = Ipgl/V2 and || £(p) - f(@lleo = [p"q"|/ V2, it follows
that [[£(p) = (@)oo < llp - qllec

Assume now that the line pq has angle —45°, i.e., pq is perpendic-
ular to ly. Again ||p — glle = |pgl/ V2. Now p and g have the same
projection p” = ¢’ on ly. Let p” = f5,(p), ¢ = f5.5(q). We have
lp'p”l = (6= 1pp’l) - Ip’sl. and |¢'q” = [p"q”| = (6 — gp’]) - Ip's].
Therefore, [p°q”| = |(Ipp’| — Igp’|)| - |p’s|. If p, q are on the same
side of Iy then |(|pp’| — Igp’D)| = Ipql. If p,q are on opposite
sides of Iy then |(|pp’| — lqp’])| < |pql- In either case, we have
1p°q”] < |pql - 1p’s] < |pql, since [p’s| < |st| = 1/V2. Again, since
1p — glleo = Ipgl/¥2 and Il (p) - f(@)lleo = [p"|/V, it follows
that [[£(p) = (@)oo < lIp - qllec .

We are ready now to prove the theorem. Intuitively, if the given
function is f5; for some s on the NE or SW side of D and some
small 8, then for an algorithm (deterministic or randomized) to
find a point that is within L., distance 1/4 of s, it must ask a query
within the central region Dy around s, because otherwise it cannot
know whether the fixed point s is on the NE or the SW side of D.
Proof of Theorem 2. Recall that binary search is an optimal algo-
rithm for searching for an unknown item in a sorted array A, both
among deterministic and randomized algorithms. If the array has
size N, then any randomized comparison-based algorithm requires
expected time at least log N — 1 to look up an item in the array
whose location is not known.

Suppose there is a (randomized) algorithm B that computes a
point that is within 1/4 of a fixed point of a non-expansive function
f over the domain D within a finite expected number n of queries
(the expectation is over the random choices of the algorithm). We
will show how to solve faster the array search problem. Partition
the diamond D into N = 227 strips by drawing N — 1 parallel
lines at 45°, spaced at distance 1/(N V2) from each other, between
the NW and SE side of D. Let Sy,...,Sy be the N strips. Fix a
5 < 1/(N2V2). For each x € [N], let s, be the point on the SW
side of Sy at Euclidean distance 8 from the S vertex of Sy, and t, the
point on the NE side of Sy at Euclidean distance J from the N vertex.
Note that ||sx — tx|loo > 1/2. Let F be the family of non-expansive
functions {fs_ . f5,. |x € [N]}.

Consider the execution of algorithm B for a function f € ¥.
Note that the central region Dy for the functions fs5;_and f5, is
contained in the strip Sx. If B queries a point p in another strip S;,
the answer f(p) only conveys the information whether j < x or
J > x.If some execution of B returns a point g without ever having
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queried any point in Sy, then all the answers in the execution are
consistent with both f5 and fs, . Since |[sx — tx|lco > 1/2, either
llg—sxllo > 1/4 0r ||g—tx||co > 1/4. Therefore, a correct algorithm
B cannot terminate before querying a point in the strip Sy that
contains the fixed point of the function.

We can map now the algorithm B to an algorithm B’ for the
problem of searching for an item in a sorted array A of size N. A
choice of an index x in the array A corresponds to a choice of the
strip Sy that contains the fixed point of the function f € ¥, ie.
choosing one of f5_, 5, . Since B terminates in expected number
n of queries, it asks within n steps a query within the strip Sy of
the fixed point, hence the expected time of the algorithm B’ is at
most n = log N/2, a contradiction. O

7 PROMISE PROBLEM VERSUS TOTAL
SEARCH VERSION

The problem CONTRACTION (¢, ¥, k) is a promise problem, where
we want to compute an e-fixed point of a given function f with
promise that f is a (1 — y)-contraction. For a promise problem,
one can define its total search version by asking to find a de-
sired solution as in the promise problem, or a short violation
certificate indicating that the given function doesn’t satisfy the
promise. The total search version of CONTRACTION (¢, ¥, k), de-
noted T-CONTRACTIONw (¢, ¥, k) is naturally defined as the follow-
ing search problem.

Definition 4 (Total search version T-CONTRACTIONw (¢, Y, k)).
Given a function f : [0,1]% + [0, 1]%, find one of the following:
e a point x € [0, 11% such that IIf(x) — x|l < €5
e two points x,y € [0, 11% such that If(x) = fWlleo > (1 -
X = Ylleo-
In the black-box setting, the function f is given by an oracle access.

Our theorem in this section shows T-CONTRACTIONw (¢, ¥, k)
admits the same query bounds as CONTRACTIONw (&, ¥, k).

THEOREM 3. There is an O(k?log(1/¢))-query algorithm for
T-CONTRACTIONw (&, ¥, k).

Theorem 3 follows from Lemma 11 below.

Lemma 11. Let {ql,'-- ,qm} be a set of points in [0,1]% and
{al, e, am} be the corresponding answers from the black-box or-
acle. There is a (1 — y)-contraction f that is consistent with all the
answers if and only if there is no pair t1, ty such that ||a" — a%||c >

(1-P)llg" = ¢"lco-

Proor. If there is some pair t1, t2 such that ||a’t — a®?|le > (1 -
Mgt = ¢*2|co, then obviously there is no (1 — y) contraction that
is consistent with the answers.

Now suppose that no such pair exists. We define a function
f:lo, 1]% + [0, 1] as follows: For every point x € [0, 11¥ and co-
ordinate i € [k], welet f(x); = min; e, {(1 -Mlx = ¢l + af};
if the minimal value of this set is larger than 1, then we set f(x); = 1.

We show first that f is consistent with all the query answers,
ie. f(¢/) = a/ for all j € [m]. Since the query points satisfy the
contraction property, we have ||a/ — a?|jo < (1-y)|l¢’ — ¢*]|o for
all t # j. Therefore, for every coordinate i € [k], a{ <(1-pl¢ -
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q'lloo + af. Hence, f(¢/); = minse[m) {(1 = Y)l¢/ = ¢'llo +aj} =
a{. Thus, f(¢/) = a/.

We show now that the function f constructed above is a (1 — y)-
contraction. Consider any two points x, y € [0, 1% and a coordinate
i € [k]. Suppose without loss of generality that f(y); < f(x);. If
f(y)i =1, thenalso f(x); = Land |f(x)i = f(y)i| =0 < (1—-y)[lx~
Yllco- So suppose f(y); = (1—y)||y—qt||oo+af for some t € [m]. By
the triangle inequality, ||x — ¢*|loo < |lx = yllco + ||y = ¢*||co. Hence
f@)i < (1=p)lx = g'lleo +af < (1=y)(llx = ylloo + lly = ¢ [lo) +
aj = (1 = p)llx = yllw + f()i. Therefore, 0 < f(x); = f(y);i <
(1 =Pix = ylloo Thus, [[f(x) = f(H)llo < (1 =P)lIx —yllo. O

It follows from Lemma 11 that we can use any algorithm that can
solve the promise problem CONTRACTION (¢, ¥, k) to solve the total
search version T-CONTRACTION (¢, ¥, k) within the same number
of queries: If all pairs among the queries generated satisfy the
contraction property, then there is a contraction that is consistent
with all the queries, hence the algorithm will find an approximate
fixed point within the same number of queries as in the promise
version. If on the other hand there is a pair of queries that violate
the contraction property, then the algorithm can return the pair
and terminate. Theorem 3 follows.

8 CONCLUSIONS

We gave an algorithm for finding an e-fixed point of a contraction
(or non-expansive) map f : [0, 1]% - [0,1]% under the £, norm
in polynomial query complexity. Contraction maps under the 4w
norm are especially important because several longstanding open
problems from various fields can be cast in this framework. The
main open question is whether our algorithm can be implemented
to run also with polynomial time complexity, or alternatively if
there is another general-purpose (black-box) algorithm for con-
traction maps that finds an approximate fixed point in polynomial
time. Resolving positively this question would have tremendous
implications.

Another natural open question is whether similar polynomial
query bounds can be obtained for contraction maps under the #;-
norm or norms £, with p > 2. Although £ seems to arise more in
applications, understanding better contractions under other norms
would also be useful.
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