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It is worth pointing out that the hardness above holds even when

(1) the bid spaceB has size 3; and (2) the density function of eachDi

is a piecewise-constant function with no more than four nonzero

pieces.

On the positive side, we obtain a PTAS for �nding a Bayesian

Nash equilibrium in a �rst-price auction under the uniform tie-

breaking rule:

Theorem 1.2 (PTAS under uniform tie-breaking). For any

ϵ > 0, n,m ≥ 2, there is an algorithm that �nds an ϵ-approximate

Bayesian Nash equilibrium using O (n4 · д(1/ϵ )) time under the uni-

form tie-breaking rule.

Our algorithm works as long as it has oracle access to the CDF

of each value distribution Di .

1.2 Related Work

First-price auction. The study of �rst-price auction dates back

to the seminal work of Vickrey [54] in 1960s. Despite its extremely

simple form and a wide range of applications, the incentive has

been a central issue and it is perhaps the most well known mecha-

nism that does not admit a truthful strategy. A long line of works

in the economic literature [2, 3, 6, 32–38, 43–45] devote to charac-

terizing the existence, uniqueness and closed-form expression of

a pure Bayesian Nash equilibrium (or BNE). However, the BNE of

�rst-price auction is only well-understood in a few special cases,

including when the players have symmetric valuation distributions

[6], when all players have probability density function bounded

above 0 and atomic probability mass at the lowest points [34], when

there are only two bidders with uniform valuation distributions

[31] or when the players have discrete value and continuous bid-

ding space and the tie-breaking is performed with an extra round

of Vickrey (second-price) auction [55].

A formal study on the computational complexity of equilibria in a

�rst-price auction has been raised by the recent work of [24], which

is most closest to us. [24] examines the computation complexity

under a subjective prior, that is, each bidder has a di�erent belief of

other’s valuation distribution. They prove the PPAD-completeness

and the FIXP-completeness of �nding an ϵ-BNE (for some constant

ϵ > 0) and an exact BNE, under the uniform tie-breaking rule. As

we shall explain soon, the techniques to obtain their results are

quite di�erent from us. It is worth noting that most aforementioned

literature are on the common prior setup, and [24] also leaves an

open question of characterizing the computational complexity of

ϵ-BNE under the standard setting of independent common prior.

[24] also provides a polynomial time algorithm for �nding a high

precision BNE for constant number of players and bids, when the

input distribution are piecewise polynomial. Their approach is

based on polynomial system solvers and thus di�erent from us. The

work of [4] studies the Bayesian combinatorial auctions, where

there are multi-items to sell for multiple bidders. They prove the

complexity of Bayesian Nash equilibrium is at least PP-hard (a

complexity class between the polynomial hierarchy and PSPACE),

the model is quite di�erent, because the agents’ valuation could be

much more complex, de�ning over subsets of items.

Other aspects of �rst-price auction have also been studied in the

literature, including the price of anarchy/stability [23, 27–29, 51, 52]

and parameter estimation [14, 25].

Equilibrium computation. The complexity class of PPAD (Poly-

nomial Parity Arguments on Directed graphs) was �rst introduced

by Papadimitriou [42] to capture one particular genre of total search

functions. The seminal work [9, 16] established the PPAD-hardness

of normal-form games. The hardness of approximation was settled

by subsequent work [21, 48, 49] in the past few years. A broad range

of problems have been proved to be PPAD-hard, and notable exam-

ples including equilibrium computation in special but important

class of games (win-or-lose game [1, 13], anonymous game [10],

constant rank game [39], graphical game [41]), market equilibrium

(Arrow-Debreu market [8, 12, 53], non-monotone market [11, 50],

Hylland-Zeckhauser scheme [7]), fair division [5, 40], min-max

optimization [19] and reinforcement learning [17, 30].

The PTAS is known for anonymous game [18], which is closely

related to our work. The [18] presented a nд (m,1/ϵ ) ·U algorithm for

m-actionn-player anonymous games for some exponential function

д. Here U denotes the number of bits to represent a payo� value

in the game. Instead, our algorithm �nds an ϵ-BNE of �rst-price

auction with running time n4 · д(1/ϵ ), which does not depend on

the size of bidding space and the bit-size of the representation of

the distributions. It crucially utilizes the structure of �rst-price auc-

tion in the rounding and searching step, and could have a broader

application in auction theory.

1.3 Technical Overview

The challenge of obtaining the PPAD-hardness arises from two folds.

First, the utility function does not admit a closed-form expression,

in terms of other player’s strategy. It depends on an exponential

number of possible bidding pro�les and is computed only via a

dynamic programming approach. Second, the game structure is

highly symmetric under the (independent) common prior. In a �rst-

price auction, the allocation is determined by the entire bidding

pro�le, and each player faces “almost” the same set of pro�le. From

this perspective, it is more like an anonymous game. Perhaps even

worse, in an anonymous game, the utility function of each player

is di�erent and could be designed for the sake of reduction. While

in a �rst-price auction, the utility function of each player is the

same, and depends only on the allocation probability. Of course,

the general (non-uniform) tie-breaking rule as well as the di�erent

valuation distributions could be used for breaking the symmetry.

We note the above challenges are unique to the common prior

setting. In a sharp contrast, in the subjective prior setting [24], the

players’ subjective belief could be di�erent. A player could presume

most other players have zero value and submit zero bid, hence, the

game is local and non-symmetric.

To resolve the above challenges, our key ideas are (1) linearizing

the allocation probability and expanding a �rst order approximation

of the utility function; and (2) carefully incorporating a (simple)

general tie-breaking rule to break the symmetry.

Technical highlight: Linearizing “everything”. Given a strat-

egy pro�le s , the distribution over the entire bidding pro�le (and

therefore the allocation probability, the utility, the best response)

could be complicated to compute, especially when multiple play-

ers submit the highest bid. To circumvent this issue, we assign a

large probability (1 − δ ) around value 0 for all players, for some
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polynomially small δ > 0.1 By doing this, the probability that a

player bids nonzero is small, so one can ignore higher order term.

Concretely, let pi, j be the probability that player i gets the item

when bidding bj given that the other players have strategy s−i ,
and let Γi (bj , s−i ) be the allocation for player i of bidding bj given

other player’s strategy s−i . The immediate advantage is that the

allocation probability can be approximated as

Γi (bj , s−i ) ≈ (1 −
∑

i′∈[n]\{i }

∑

j′>j

pi′, j′ ) +
∑

i′∈[n]\{i }
Σi,i′ · pi′, j (1)

under a bilateral tie-breaking rule. Here Σ ∈ [0, 1]n×n speci�es the

allocation when there is a tie between a pair of players (i1, i2) and

satis�es Σ + Σ⊤ = (J − I ). At this stage, it is tempting to use pi, j to

encode variables of a generalized circuit problem and the choice

of best response to encode constraints. In our �nal construction,

we only need three bids 0 = b0 < b1 < b2 and the variables are

encoded by the jump point τi between b1,b2 (i.e., when player i

bids b2 instead of b1), which has the closed-form expression of

τi = b2 +
Γi (b1, s−i ) · (b2 − b1)
Γi (b2, s−i ) − Γi (b1, s−i )

. (2)

Even after the linearization step of Eq. (1), the above expression

is still quite formidable to handle. Our next idea is to restrict the

jumping point in a small interval between (b2, 1), and assign only

a small total probability mass of βδ over the interval, here β is

another polynomially small value. There is a (�xed) probability

mass of δ around b2 and 1. One can further perform a �rst order

approximation to Eq. (2), and again linearize the jumping point

expression.

Incorporating the tie-breaking rule. Abstracting away some

construction details, the above construction reduces the �rst-price

auction from a �x point problem, obeys the following form

p⃗ = f (Gp⃗) where G = 2ΣA − J + I , (3)

where p⃗ is the probability of bidding b1 (inside the small interval),

f = ( f1, . . . , fn ) is operated coordinate-wise overGp⃗, fi is a mono-

tone function maps from [ai ,bi ] (some �xed interval) to [0, 1], J is

the all 1 matrix and I is the identity matrix. The �xed point problem

is fairly general and subsumes the generalized circuit problem, if

Σ
A is an arbitrary matrix in [0, 1]n×n . Unfortunately, it is not true

due to the constraint of ΣA + (ΣA )⊤ = (J − I ). We resolve the issue

by adding an extra pivot player. The pivot player is guaranteed

to bid b0 = 0 and b2 with equal probability of 1/2. From a high

level, the pivot player splits the equilibrium computation into two

cases, the case when it bids b0 is similar, while the case of bidding

b2 introduces another tie-breaking matrix Σ
B ∈ [0, 1]n×n among

the original players in [n] (hence it becomes a trilateral rule). It

transforms the �x point problem (i.e., Eq. (3)) to a more convenient

form

p⃗ = f (G ′p⃗) where G ′ = 2ΣA + Σ
B − J + I , (4)

and one can construct gadgets to reduce from the generalized circuit

problem. The last step is fairly common and details can be found in

Section 3.

1This is the reason that our hardness result only applies for (inverse) polynomially
small ϵ .

2 PRELIMINARY

Notation. We write [n] to denote {1, 2, . . . ,n} and [n1 : n2] to

denote {n1,n1 + 1, . . . ,n2}. Let 1i be an indicator vector – it equals

the all 0 vector, except the i-th coordinate which equals 1. Let

∆n contains all probability distribution over [n]. Given a vector

v ∈ Rn , and an index i ∈ [n], vi denotes the i-th entry of v while

v−i denotes (v1,v2, . . . ,vi−1,vi+1, . . . ,vn ), i.e., all entries except
the i-th coordinate. We write x = y ± ϵ if x ∈ [y − ϵ,y + ϵ]. Let
Jn ∈ Rn×n be the n × n all-1 matrix and In be the n × n identity

matrix.

2.1 Model

In a Bayesian �rst-price auction (FPA), there is one single item to

sell and it is speci�ed by a tuple (N ,B,D, Γ), whereN = [n] is the

set of players, B is the bid space, D is the value distribution and Γ

is the tie-breaking rule. For each play i ∈ N , it has a private value

vi of the item that is drawn from a (continuous) distribution Di

supported over [0, 1] (written asvi ∼ Di ). We consider the standard

independent common prior setting — the joint value distribution

D = D1 × · · · × Dn is the product distribution of {Di }i ∈[n] and
we assume the value pro�le v = (v1, . . . ,vn ) ∈ [0, 1]n is drawn

from D. Let B = {b0,b1, . . . ,bm } ⊂ [0, 1] be the bid space, where

0 = b0 < b1 < · · · < bm ≤ 1.

In a �rst-price (sealed-bid) auction, each bidder i submits a bid

βi ∈ B simultaneously to the seller. The seller assigns the item to

the winning player i∗ which submits the highest bid, and charges

i∗ a payment equals to its bid βi∗ .

Allocation and tie-breaking rule.When there are multiple play-

ers submitting the same highest bid, the seller assigns and charges

the item to one of those winning players, following a pre-described

tie-breaking rule Γ. A tie breaking rule Γ : {0, 1}n → ∆n maps a set

of winning playersW ⊆ [n] to an allocation pro�le Γ(W ) ∈ ∆n sup-

ported onW that speci�es the winning probability of each player

i ∈W as Γi (W ). Formally, given a bidding pro�le β ∈ Bn , the set
of winning playersW (β ) are those who submit the highest bids

W (β ) =

{

i ∈ [n] : βi = max
j ∈[n]

βj

}

.

The tie breaking rule Γ(W (β )) ∈ ∆n speci�es the winning proba-

bility of each player inW (β ) and Γi (W (β )) is the probability that

the bidder i obtains the item under the bidding pro�le β . The tie-

breaking rule needs to satisfy (1) Γi (W (b)) > 0 only if i ∈ W (β ),

i.e., the item is assigned only to players with the highest bid; and

(2)
∑

i ∈[n] Γi (W (β )) = 1, i.e., the total allocation is 1. When there is

no confusion, we also abbreviate Γ(β ) = Γ(W (β )).

It is known that the tie-breaking rule plays a subtle yet critical

rule on the equilibrium of Bayesian FPA. Our hardness result is

built upon the trilateral tie-breaking rule, a simple generalization

of the commonly used uniform tie-breaking method.

De�nition 2.1 (Trilateral tie-breaking). A trilateral tie-breaking

rule Γ is speci�ed by the following tuples of nonnegative numbers

(

wi, j : 1 ≤ i < j ≤ n
)

and
(

σ
(1)
i, j,k
,σ

(2)
i, j,k

: 1 ≤ i < j < k ≤ n

)
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such that wi, j ≤ 1 and σ
(1)
i, j,k
+ σ

(2)
i, j,k

≤ 1. Given a bidding pro�le

β ∈ Bn and the winning setW (β ), the item is distributed according

to Γ as follows

(1) IfW (β ) = {i} for some i ∈ [n], then Γi (β ) = 1;

(2) IfW (β ) = {i, j} for some 1 ≤ i < j ≤ n, then Γi (β ) = wi, j

and Γj (β ) = 1 −wi, j ;

(3) IfW (β ) = {i, j,k } for some 1 ≤ i < j < k ≤ n, then

Γi (β ) = σ
(1)
i, j,k

, Γj (β ) = σ
(2)
i, j,k

and Γk (β ) = 1 − σ (1)
i, j,k
− σ (2)

i, j,k
;

and

(4) When |W (β ) | ≥ 4, the item is evenly distributed among

players inW (β ). 2

Equilibrium and strategy. Given a tie-breaking rule Γ and a bid-

ding pro�le β = (β1, . . . , βn ), the ex-post utility of a bidder i is

given by

ui (vi ; βi , β−i ) = (vi − βi ) · Γi (β ).

A strategy si : [0, 1] → B of player i is a map from her (private)

value vi to a bid s (vi ) ∈ B, with the following two properties:

• No overbidding. A player never submits a bid larger than

her private value, i.e., si (vi ) ≤ vi for all vi ∈ [0, 1].
• Monotonicity. si is a non-decreasing function.

These are common assumptions in the literature of �rst-price auc-

tion [24, 34, 38] and they rule out spurious equilibria in Bayesian

auctions [4]. Due to the monotonicity assumption, one can write

a strategy si asm thresholds 0 ≤ τi,1 ≤ · · · ≤ τi,m ≤ 1, where the

player i bids bj in the interval (τi, j ,τi, j+1]
3. Here we set by default

τi,0 = 0 and τi,m+1 = 1.

The ϵ-approximate Bayesian Nash equilibrium (ϵ-approximate

BNE) of FPA is de�ned as follow.

De�nition 2.2 (ϵ-approximate Bayesian Nash equilibrium). Let

n,m ≥ 2. Given a �rst-price auction (N ,B,D, Γ), a strategy pro�le

s = (s1, . . . , sn ) is an ϵ-approximate Bayesian Nash equilibrium

(ϵ-approximate BNE) if for any player i ∈ [n], we have

E
v∼D

[
ui (vi ; si (vi ), s−i (v−i ))

]
≥ E

v∼D

[
ui (vi ; bs(vi , s−i ), s−i (v−i ))

]
− ϵ,

where bs(vi , s−i ) ∈ B is the best response of player i given other

players’ strategy s−i , i.e.

bs(vi , s−i ) ∈ argmax
b ∈B

E
v−i∼D−i

[
ui (vi ;b, s−i (v−i ))

]
.

The existence and the PPAD membership of �nding a 1/ poly(n)-

approximate BNE can be established via a similar approach of [24]

(In particular, Theorem 4.1 and Theorem 4.4 of [24]), and we omit

the standard proof here.

We shall also use another notion of equilibrium which is more

convenient in our hardness reduction. The ϵ-approximately well-

supported Bayesian Nash equilibrium (ϵ-BNE) is de�ned as

De�nition 2.3 (ϵ-approximately well-supported Bayesian Nash

equilibrium). Letn,m ≥ 2. Given a �rst-price auction (N ,B,D, Γ), a
strategy pro�le s = (s1, . . . , sn ) is an ϵ-approximately well-supported

2We note our hardness result actually holds regardless of the tie-breaking rule among
more than 3 players (i.e., not necessarily uniform).
3If the valuation distribution contains a point mass, then the strategy might be ran-
domized at the point mass.

Bayesian Nash equilibrium (ϵ-BNE) if for any player i ∈ [n] and

vi ∈ [0, 1], we have

E
v−i∼D−i

[
ui (vi ; si (vi ), s−i (v−i ))

]
≥ E

v−i∼D−i

[
ui (vi ; bs(vi , s−i ), s−i (v−i ))

]
− ϵ .

Remark 2.4. We note the ϵ-approximate BNE is known also ex-ante

approximate BNE, and the ϵ-BNE is known as ex-interim approximate

BNE in some of the literature.

The notion of ϵ-BNE and ϵ-approximate BNE can be reduced to

each other in polynomial time, losing at most a polynomial factor

of precision. It is clear that an ϵ-BNE is also an ϵ-approximate BNE.

Lemma 2.5 states the other direction and the proof can be found at

the full version of this paper.

Lemma 2.5. Given a �rst-price auction (N ,B,D, Γ) and an ϵ-

approximate BNE s , there is a polynomial time algorithm that maps

s to an ϵ ′-BNE, where ϵ ′ = (2n + 10)
√
ϵ .

3 PPAD-HARDNESS

Recall our main hardness result

Theorem 1.1 (Computational hardness). It is PPAD-complete

to �nd an ϵ-approximate Bayesian Nash equilibrium in a �rst-price

auction under a trilateral tie-breaking rule for ϵ = 1/ poly(n).

In the rest of section, we construct the hard instances of FPA in

Section 3.1 and provide some basic properties in Section 3.2. We

reduce from the ϵ-generalized-circuit problem in Section 3.3.

3.1 Construction of First-Price Auctions

It su�ces to prove �nding ϵ-BNE is hard for some ϵ = 1/ poly(n)

due to Lemma 2.5. We will use the following three parameters in

the construction:

ϵ =
1

n40
, δ =

1

n10
and β =

1

n4
.

We describe the bidding space B, the valuation distribution D
and the tie-breaking rule Γ.

Bidding space. The bidding space B = {b0,b1,b2} contains 3 bids
in total, where b0 = 0,

b1 =
δ2

n4
and b2 =

δ

n2
.

Valuation distribution. There are n+ 1 players — n standard play-

ers indexed by [n] and one pivot player n + 1. We will describe the

value distribution Di of player i by specifying its density function

pi : [0, 1] → R+. The density function pn+1 of the pivot player is

set as follows:

pn+1 (v ) =

1/(2ϵ ) v ∈ [0, ϵ]
1/(2ϵ ) v ∈ [1 − ϵ, 1]

.

In another word, Dn+1 has 0.5 probability mass around 0 and 0.5

probability mass around 1.
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The density function pi of each standard player i ∈ [n] is set as
follows:

pi (v ) =



(1 − (2 + β )δ )/ϵ v ∈ [0, ϵ]
δ/ϵ v ∈ [b2 − ϵ,b2]
p̃i (v ) v ∈ (b2, 1 − ϵ )
δ/ϵ v ∈ [1 − ϵ, 1]

where p̃i (v ) is de�ned over (b2, 1− ϵ ), satis�es
∫ 1−ϵ
b2

p̃i (v )dv = βδ ,

but will be speci�ed later in the reduction in Section 3.3. In short, a

standard player i has most its probability mass around 0, δ mass

around b2, δ mass around 1 and βδ mass in (b2, 1−ϵ ) to be speci�ed
later.

Tie-breaking rule. We describe the trilateral tie-breaking rule Γ

as follows. For any bidding pro�le β with 2 ≤ |W (β ) | ≤ 3, the

tie-breaking rule depends on the presence of n + 1 inW (β ):

• Suppose n + 1 <W (β ). Then

– If |W (β ) | = 2, i.e.,W (b) = {i, j}, the tie-breaking rule is

given by a matrix Σ
A ∈ [0, 1]n×n such that player i

obtains ΣAi, j unit of the item and player j obtains ΣAj,i unit.

So the matrix ΣA needs to satisfy Σ
A
+ (ΣA )⊤ = (Jn − In ).

We will specify Σ
A in the reduction later but will

guarantee that all of its o�-diagonal entries lie in

[1/4, 3/4].

– If |W (β ) | = 3, then we use the uniform allocation.

• Suppose n + 1 ∈W (β ). Then

– If |W (β ) | = 2, then the item is fully allocated to the pivot

player n + 1.

– If |W (β ) | = 3, i.e.,W (b) = {i, j,n + 1}, then the tie

breaking is given by a matrix ΣB ∈ [0, 1]n×n such that

player i obtains ΣBi, j unit of the item, player j obtains ΣBj,i
unit and player n + 1 obtains 1 − Σ

B
i, j − Σ

B
j,i unit. So the

matrix Σ
B needs to satisfy Σ

B
+ (ΣB )⊤ ≤ Jn − In , i.e.,

Σ
B
+ (ΣB )⊤ is entrywise dominated by Jn − In .

3.2 Basic Properties

Let s = (s1, . . . , sn+1) be an ϵ-BNE of the instance. We prove a few

properties of s in this subsection. Given s , for each player i we

de�ne fi : B → [0, 1] and Fi : B → [0, 1] as follows:

fi (b) = Pr
vi∼Di

[si (vi ) = b] and Fi (b) = Pr
vi∼Di

[si (vi ) ≤ b].

In the rest part of section, we abbreviate

Γi (b, s−i ) := E
v−i∼D−i

[Γi (b, s−i (v−i ))]

and

ui (vi ;b, s−i ) := E
v−i∼D−i

[ui (vi ;b; s−i (v−i ))]

when there is no confusion.

We start with the following lemma.

Lemma 3.1 (Separable bid). In any ϵ-BNE, the equilibrium strategy

s satis�es

• For a standard player i ∈ [n], its equilibrium strategy satis�es

– when vi ∈ [0, ϵ], si (vi ) = b0;
– when vi ∈ [b2 − ϵ,b2], si (vi ) = b1; and

– when vi ∈ [1 − ϵ, 1], si (vi ) = b2.
• For the pivot player, its equilibrium strategy satis�es

– when vn+1 ∈ [0, ϵ], sn+1 (vn+1) = b0; and
– when vn+1 ∈ [1 − ϵ, 1], sn+1 (vn+1) = b2.

Proof. The claim of si (ϵ ) = 0 holds trivially for all i ∈ [n + 1]
due to the no-overbidding assumption. A standard player i chooses

between b0 and b1 for vi ∈ [b2 − ϵ,b2]. The allocation probability

Γi (b0, s−i ) of bidding b0 satis�es Γi (b0, s−i ) ≤ 1
n+1 , hence the utility

of bidding b0 = 0 is at most

ui (vi ;b0, s−i ) = (vi − b0) · Γi (b0, s−i ) ≤
1

n
b2.

The allocation probability of bidding b1 is at least

Γi (b1, s−i ) ≥
∏

i ∈[n+1]
fi (b0) ≥ (1 − (2 + β )δ )n · 1

2
≥ 1

3

hence the utility of bidding b1 is at least

ui (vi ;b1, s−i ) = (vi − b1) · Γi (b1, s−i )

≥ (b2 − ϵ − b1) ·
1

3
> ui (v ;b0, s−i ) + ϵ .

Finally, we analyse the equilibrium strategy aroundv ∈ [1−ϵ, 1]
for all n+1 players. Via an analysis similar to the above argument, it

is clear that both standard players and the pivot playerwould choose

between b1 and b2. For a standard player i ∈ [n], the allocation

probability of bidding b2 satis�es

Γi (b2, s−i )

≥ Fn+1 (b1) ·
∏

j ∈[n]\[i]
Fj (b1)

≥ Fn+1 (b1) · *.,
∏

j ∈[n]\[i]
fj (b0) +

∑

j ∈[n]\[i]
fj (b1)

∏

r ∈[n]\{i, j }
fr (b0)

+/-
≥ 1

2
*.,

∏

j ∈[n]\[i]
fj (b0) +

∑

j ∈[n]\[i]
fj (b1)

∏

r ∈[n]\{i, j }
fr (b0)

+/-
+

1

2
fn+1 (b1), (5)

where the last step holds as fn+1 (b0) =
1
2 and

∏

j ∈[n]\[i]
fj (b0) ≥ (1 − (2 + β )δ )n−1 ≥ 1

2
. (6)

The allocation probability of bidding b1 satis�es

Γi (b1, s−i )

≤ fn+1 (b0) · *.,
∏

j ∈[n]\[i]
fj (b0) + Φ + 9n

2δ2
+/-

+ fn+1 (b1) ·
∑

j ∈[n]\{i }
fj (b1)

≤ 1

2
*.,

∏

j ∈[n]\[i]
fj (b0) +

∑

j ∈[n]\[i]
fj (b1) · ΣAi, j

∏

r ∈[n]\{i, j }
fr (b0)

+/-
+ fn+1 (b1) · 3nδ + 9n2δ2. (7)
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where

Φ :=
∑

j ∈[n]\[i]
fj (b1) · ΣAi, j

∏

r ∈[n]\{i, j }
fr (b0)

Here the �rst step holds since (1) when the pivot player bids b0,

player i obtains ΣAi, j unit of item when (only) player j bids b1, and

the probability of at least two players bidding b1 is bounded as
∑

j,r ∈[n]\{i }
Pr[sr (vr ) = b1 ∧ sj (vj ) = b1] ≤ n2 · 9δ2,

(2) when the pivot player bids b1, the player i obtains the item only

if there exists at least one other standard player j bids b1 as the tie

breaking rule assigns the item fully to player n + 1 when there are

only two winners. The second step follows from fj (b1) ≤ 3δ and

that the pivot player does not bid b0 in [1 − ϵ, 1] so fn+1 (b0) = 1/2.

Subtracting Eq. (7) and Eq. (5), one obtains

Γi (b2, s−i ) − Γi (b1, s−i )

≥ 1

2

∑

j ∈[n]\[i]
fj (b1) · (1 − Σ

A
i, j )

∏

r ∈[n]\{i, j }
fr (b0)]

+

1

2
fn+1 (b1) − 3nδ fn+1 (b1) − 9n2δ2

≥ 1

2
· (n − 1) · δ · 1

4
· 1
2
+

1

2
fn+1 (b1) − 3nδ fn+1 (b1) − 9n2δ2

≥ nδ

32
. (8)

The second step holds due to fj (b1) ≥ δ , ΣAi, j ∈ [1/4, 3/4] and Eq (6).
Hence we claim player i prefers b2 than b1 at value vi ∈ [1 − ϵ, 1],
since

ui (vi ;b2, s−i ) − ui (vi ;b1, s−i )
= (vi − b2) · Γi (b2, s−i ) − (vi − b1) · Γi (b1, s−i )
≥ vi · (Γi (b2, s−i ) − Γi (b1, s−i )) − b2

≥ (1 − ϵ ) · nδ
32
− b2 > ϵ .

Finally, for the pivot player n + 1, the allocation probability of

bidding b1 satis�es

Γn+1 (b1, s−i ) ≤
∏

i ∈[n]
Fi (b1) (9)

and the allocation probability of b2 satis�es

Γn+1 (b2, s−i ) ≥
∏

i ∈[n]
Fi (b1) +

∑

i ∈[n]
fi (b2)

∏

j ∈[n]\{i }
Fi (b1)

≥
∏

i ∈[n]
Fi (b1) +

nδ

2
. (10)

The �rst step holds since the tie-breaking rule favors player n + 1

when at most one player in [n] bids b2, the second step holds due

to fi (b2) ≥ δ and Eq. (6). Hence, at any vn+1 ∈ [1 − ϵ, 1] we have

un+1 (vn+1;b2, s−i ) − un+1 (v ;b1, s−i )
= (vn+1 − b2) · Γn+1 (b2, s−i ) − (vn+1 − b1) · Γn+1 (b1, s−i )
≥ vn+1 · (Γn+1 (b2, s−i ) − Γn+1 (b1, s−i )) − b2

≥ (1 − ϵ ) · nδ
2
− b2 > ϵ .

We conclude the proof of the lemma here. □

Lemma 3.1 con�rms that b0,b1,b2 would appear in an ϵ-BNE

pro�le for every player i ∈ [n]. It still remains to determine at

which value point a standard player i ∈ [n] jumps from b1 to b2
in si . Let τi ∈ (b2, 1 − ϵ ) be the jumping point from b1 to b2 of a

standard player i . The following formula is convenient to use.

Lemma 3.2 (Jumping point formula). The jumping point τi of a

standard player i ∈ [n] satis�es

τi = b2 +
Γi (b1, s−i ) · (b2 − b1)
Γi (b2, s−i ) − Γi (b1, s−i )

±O
(

ϵ

δ

)

.

Proof. At any value pointv ∈ [0, 1], recall the utility of bidding
b1 equals

ui (vi ;b1, s−i ) = (vi − b1)Γi (b1, s−i )
and the utility of bidding b2 equals

ui (vi ;b2, s−i ) = (vi − b2)Γi (b2, s−i ).
Solving for ui (τi ,b1, s−i ) = ui (τi ,b2, s−i ) ± ϵ , one obtains

τi =
Γi (b2, s−i )b2 − Γi (b1, s−i )b1 ± ϵ

Γi (b2, s−i ) − Γi (b1, s−i )

= b2 +
Γi (b1, s−i ) · (b2 − b1) ± ϵ
Γi (b2, s−i ) − Γi (b1, s−i )

= b2 +
Γi (b1, s−i ) · (b2 − b1)
Γi (b2, s−i ) − Γi (b1, s−i )

±O
(

ϵ

δ

)

.

The last step follows from Eq. (8), and this �nishes the proof of the

lemma. □

Let xi ∈ [0, βδ ] be the probability mass over the interval (b2,τi ),

i.e.,xi =
∫ τi
b2

pi (v )dv , whichwewill refer to the jumping probability

of si . We state a few facts that will be used repeatedly.

Lemma 3.3 (Basic facts).

• For any standard player i ∈ [n], we have
∏

j ∈[n]\{i }
fj (b0) = 1 − (n − 1) (2 + β )δ ±O (n2δ2)

and
∏

j ∈[n]\{i }
Fj (b1) = 1 − (n − 1) (β + 1)δ +

∑

j ∈[n]\{i }
x j ±O (n2δ2).

• For any e ∈ {1, 2}, we have
∑

i,j ∈[n]
Pr

[
si (vi ) = be ∧ sj (vj ) = be

]
= O (n2δ2).

Proof. For the �rst claim, we have
∏

j ∈[n]\{i }
fj (b0) = (1 − (2 + β )δ )n−1

= 1 − (n − 1) (2 + β )δ ±O (n2δ2)

due to the choice of δ . Similarly we have (using xi ∈ [0, βδ ]
∏

j ∈[n]\{i }
Fj (b1)

=

∏

j ∈[n]\{i }
(1 − (1 + β )δ + xi )

= 1 − (n − 1) (1 + β )δ +
∑

j ∈[n]\{i }
x j ±O (n2δ2).
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For the second claim, for any e ∈ {1, 2}, we have
∑

i,j ∈[n]
Pr

[
si (vi ) = be ∧ sj (vj ) = be

]
≤

∑

i,j ∈[n]
(1 + β )δ2

= O (n2δ2).

We conclude the proof here. □

The key step is to determine the jumping point, where we use

approximation.

Lemma 3.4 (Jumping point). The jumping point τi of a standard

player i ∈ [n] satis�es

τi = *,
∆i,1 − ∆i,2

∆
2
i,1

±O
(

β2

∆i,1

)+- · b2
where

∆i,1 := (n − 1)δ +
∑

j ∈[n]\{i }

(

βδ · ΣAi, j + (1 + β )δ · ΣBi, j
)

∈
[
(n − 1)δ , 2nδ

]
and

∆i,2 :=
∑

j ∈[n]\{i }

(

1 − 2ΣAi, j − Σ
B
i, j

)

x j ∈
[
− 2nβδ ,nβδ

]
.

Proof. For any standard player i ∈ [n], we compute when it

jumps from b1 to b2 using the formula in Lemma 3.2. To do so, we

�rst compute Γi (b1, s−i ) and Γi (b2, s−i ).

Γi (b1, s−i )

= fn+1 (b0) · *.,
∏

j ∈[n]\{i }
fj (b0) + Ψ ±O (n2δ2)

+/-
=

1

2
*.,1 − (n − 1) (2 + β )δ +

∑

j ∈[n]\{i }
(δ + x j )Σ

A
i, j
+/- ±O (n2δ2).

(11)

where

Ψ1 :=
∑

j ∈[n]\{i }
fj (b1)

∏

j ∈[n]\{i, j }
fj (b0) · ΣAi, j

Here the �rst step follows from the tie-breaking rule and the second

claim of Lemma 3.3, the second step follows from fj (b1) = δ + x j
and the �rst claim of Lemma 3.3.

The allocation probability of bidding b2 obeys

Γi (b2, s−i )

= fn+1 (b0) · *.,
∏

j ∈[n]\{i }
Fj (b1) + Ψ2 ±O (n2δ2)

+/-
+ fn+1 (b2) · *.,

∑

j ∈[n]\{i }
fj (b2)

∏

k ∈[n]\{i, j }
Fk (b1) · ΣBi, j ±O (n2δ2)

+/-
=

1

2
*.,1 − (n − 1) (1 + β )δ +

∑

j ∈[n]\{i }
x j +

∑

j ∈[n]\{i }
(δ + βδ − x j )ΣAi, j

+/-
+

1

2

∑

j ∈[n]\{i }
(δ + βδ − x j )ΣBi, j ±O (n2δ2).

where

Ψ2 :=
∑

j ∈[n]\{i }
fj (b2)

∏

j ∈[n]\{i, j }
Fj (b1) · ΣAi, j .

The �rst step uses the tie breaking rule and requires some expla-

nations. In particular, (1) when the pivot player n + 1 bids b0, the

player i obtains 1 unit of item when other players bid less than b2,

ΣA,i, j unit of item when only player j bids b2; we also make use

of the second claim of Lemma 3.3 to omit the other case; (2) when

the player n + 1 bids b2, the player i obtains 0 unit of good when

no other players bid b0 and obtains ΣB,i, j unit of goods when one

other player j bids b2, and we omit other cases using Lemma 3.3.

The second step follows from Lemma 3.3 and fj (b2) = δ + βδ − x j .
Combining the above expression, we have

Γi (b2, s−i ) − Γi (b1, s−i )

=

1

2
(n − 1)δ + 1

2

∑

j ∈[n]\{i }

(

βδ · ΣAi, j + (1 + β )δ · ΣBi, j
)

+

1

2

∑

j ∈[n]\{i }

(

1 − 2ΣAi, j − Σ
B
i, j

)

x j ±O (n2δ2). (12)

Let ∆i,1 and ∆i,2 be de�ned as in the statement of the lemma. Note

that ∆i,1 does not depend on {x j }j,i while ∆i,2 depends on {x j }j,i .
It is easy to see that

∆i,1 ∈
[
(n − 1)δ , 2nδ

]
and ∆i,2 =

[
− 2(n − 1)βδ , (n − 1)βδ

]
.

(13)

Finally we can compute the jumping point τi using Lemma 3.2

as follows:

τi = b2 +
Γi (b1, s−i ) · (b2 − b1)
Γi (b2, s−i ) − Γi (b1, s−i )

±O
(

ϵ

δ

)

= b2 +
1 ±O (nδ )

∆i,1 + ∆i,2
· b2 ±O

(

ϵ

δ

)

=
*,
∆i,1 − ∆i,2

∆
2
i,1

±O
(

β2

∆i,1

)+- · b2
The second step follows from Eq. (12), Γi (b1, βi ) = (1/2) ±O (nδ )

(see Eq. (11)) and the choice of b1,b2. The last step follows from

Eq. (13). □

3.3 Reduction from Generalized Circuit

Given α < β , we write T[α,β ] : R→ [α , β] to denote the truncation

function with

T[α,β ] (x ) = min
{
max{x ,α }, β

}
.

We recall the generalized circuit problem [9] and present a simpli-

�ed version from [24].

De�nition 3.5 ((Simpli�ed) generalized circuit). A generalized

circuit is a tuple (V ,G ), whereV is a set of nodes andG is a collection

of gates. Each node v ∈ V is associated with a gate Gv that falls into

one of two types {G1−,G+}: If Gv is a G+ gate, then it has two input

nodes v1,v2 ∈ V \ {v}; if it is aG1− gate then it takes one input node

v1 ∈ V \ {v}. Given κ > 0, a κ-approximation solution to (V ,G ) is

an assignment x ∈ [0, 1]V such that for every node v :

• If Gv is a G+ gate and takes input nodes v1,v2 ∈ V \{v}, then
xv = T[0,1] (xv1 + xv2 ± κ)
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• If Gv is a G1− gate and takes an input node v1 ∈ V \{v}, then
xv = T[0,1] (1 − xv1 ± κ).

The generalized circuit problem is known to be PPAD-hard for

constant κ.

Theorem 3.6 ([20, 47]). There is a constant κ > 0 such that it is

PPAD-hard to �nd an κ-approximate solution of a generalized circuit.

We prove Theorem 1.1 via a reduction from the generalized

circuit problem.

Given an instance of generalized circuit de�ned over nodes set

V (|V | =m), we let V1 = [m1] be the set of nodes with gateG+ and

V2 = [m1+1 :m] be the set of nodes with gateG1−. We construct an

instance of �rst price auction with n =m1 + 2(m −m1) = 2m −m1

standard players and one pivot player.

Let N = N1 ∪ N2 ∪ N3 be the set of standard players, where

N1 = [m1], N2 = [m1 + 1 :m] and N3 = [m + 1 : 2m −m1]. From

a high level, we use players in N1 to represent the set of nodes

with G+ gates, players in N2 to represent the set of nodes with

G1− gates. Players in N3 are used in constructing G1−. We �rst

specify the probability density p̃ over interval (b2, 1 − ϵ ) and the

tie-breaking matrices ΣA and Σ
B to complete the description of the

FPA instance.

• For player i in N1 (i.e., i ∈ [m1]), its valuation distribution

p̃i is uniform over the interval
1

∆i,1
· b2, *,

1

∆i,1
+

1

10
·
βδ

∆
2
i,1

+- · b2


with a total probability mass of βδ . Let i (1), i (2) ∈ [m] =

N1 ∪N2 be the input nodes of theG+ gates, we set Σ
B
i,i (1)

=

Σ
B
i,i (2)

= 1/10.

• For player m1 + j ∈ N2 (i.e., j ∈ [m −m1]), its valuation

distribution p̃m1+j is uniform over
*.,

1

∆m1+j,1
− 1

10
·

βδ

∆
2
m1+j,1

+/- · b2,
1

∆m1+j,1
· b2


with a total probability mass of βδ . We set ΣAm1+j,m+j

=

9/20.

• For player m + j ∈ N3 (i.e., j ∈ [m − m1]), its valuation

distribution p̃m+j is uniform over
*.,

1

∆m+j,1
+

1

10
·

βδ

∆
2
m+j,1

+/- · b2,
*.,

1

∆m+j,1
+

1

5
·

βδ

∆
2
m+j,1

+/- · b2


with a total probability mass of βδ . We set ΣAm+j,m1+j
=

11/20. Let j (1) ∈ [m] be the input node of G1−, then set

Σ
B
m+j, j (1)

= 1/5.

• For any entry of ΣA that has not been determined above, we

set it to be 1/2, and for any entry of ΣB that has not been

determined, we set it to be 0.

It is easy to verify that ΣA and Σ
B satisfy the following prop-

erties as promised earlier: (1) the o�-diagonal entries of ΣA lie in

[1/4, 3/4]; (2) ΣA + (ΣA )⊤ = Jn − In ; and (3) the o�-diagonal entries
of ΣB belong to [0, 1/2].

Letting κ := nβ = 1/n3, we prove that any ϵ-BNE of the �rst

price auction gives anO (κ)-approximate solution to the generalized

circuit. Indeed the following lemma shows that by taking x ′i =
xi/(βδ ), where xi is the jumping probability of si , we obtain an

O (κ)-approximate solution (x ′1, . . . ,x
′
m ) to the input generalized

circuit. This �nishes the proof of Theorem 1.1.

Lemma 3.7. Given an ϵ-BNE of the �rst price auction, suppose

(x1, . . . ,xn ) ∈ [0, βδ ]n be the tuple of jumping probabilities, then we

have

• For any i ∈ [m1], xi = T[0,βδ ] (xi (1) + xi (2) ±O (κβδ ))

• For any j ∈ [m −m1], xm1+j = T[0,βδ ] (βδ − x j (1) ±O (κβδ ))

Proof. For the �rst claim, for any i ∈ [m1], one has

∆i,2 =

∑

r ∈[n]\{i }

(

1 − 2ΣAi,r − Σ
B
i,r

)

xr = −
1

10
xi (1) −

1

10
xi (2) ,

where the second step follows from Σ
A
i,r = 1/2 for all r ∈ [n]\{i},

Σ
B
i,i (1)

= Σ
B
i,i (2)

= 1/10 and Σ
B
i,r = 0 for all other r ∈ [n]\{i, i1, i2}.

By Lemma 3.4, one has

τi = *,
∆i,1 − ∆i,2

∆
2
i,1

±O
(

β2

∆i,1

)+- · b2
=

*,
1

∆i,1
+

1

10
·
xi (1) + xi (2)

∆
2
i,1

±O
(

β2

∆i,1

)+- · b2.
Since Di is uniform over [ 1

∆i,1
· b2, ( 1

∆i,1
+

1
10 ·

βδ

∆
2
i,1

) · b2] with
probability mass βδ , we have

xi = T[0,βδ ] (xi (1) + xi (2) ±O (κβδ )).

For the second claim, we �rst analyse the jumping probability

of playerm1 + j. We have

∆m1+j,2 =

∑

r ∈[n]\{m1+j }

(

1 − 2ΣAm1+j,r
− Σ

B
m1+j,r

)

xr =
1

10
xm+j ,

where the second follows from Σ
A
m1+j,m+j

= 9/20, ΣAm1+j,r
= 1/2

for all r ∈ [n]\{m1+j,m+j}, and ΣBm1+j,r
= 0 for all r ∈ [n]\{m1+j}.

Hence, by Lemma 3.4, we have

τm1+j =
*.,
∆m1+j,1 − ∆m1+j,2

∆
2
m1+j,1

±O
(

β2

∆m1+j,1

)+/- · b2
=

*.,
1

∆m1+j,1
− 1

10
·

xm+j

∆
2
m1+j,1

±O
(

β2

∆m1+j,1

)+/- · b2
Given that Dm1+j is uniform over


*.,

1

∆m1+j,1
− 1

10
·

βδ

∆
2
m1+j,1

+/- · b2,
1

∆m1+j,1
· b2


with mass βδ , we have

xm1+j = T[0,βδ ] (βδ − xm+j ±O (κβδ )). (14)
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It remains to analyse the jumping probability of playerm + j, and

we have

∆m+j,2 =

∑

r ∈[n]\{m+j }

(

1 − 2ΣAm+j,r − Σ
B
m+j,r

)

xr

= − 1

10
xm1+j −

1

5
x j (1)

= − 1

10

(

βδ − xm+j + 2x j (1)
)

±O (κβδ ).

Here the second step follows from Σ
A
m+j,m1+j

= 11/20, ΣAm+j,r =

1/2 for r ∈ [n]\{m1 + j,m + j}, ΣBm+j, j (1) = 1/5 and Σ
B
m+j,r = 0 for

any r ∈ [n]\{m + j, j (1)}. The last step follows from Eq. (14).

Now, by Lemma 3.4, one has

τm+j

=
*.,
∆m+j,1 − ∆m+j,2

∆
2
m+j,1

±O
(

β2

∆m+j,1

)+/- · b2
=

*.,
1

∆m+j,1
+

1

10
·
βδ − xm+j + 2x j (1) ±O (κβδ )

∆
2
m+j,1

±O
(

β2

∆m+j,1

)+/- · b2
Given that Dm+j is uniform over


*.,

1

∆m+j,1
+

1

10
·

βδ

∆
2
m+j,1

+/- · b2,
*.,

1

∆m+j,1
+

1

5
·

βδ

∆
2
m+j,1

+/- · b2


with mass βδ , we conclude that

xm+j = T[0,βδ ] (x j (1) ±O (κβδ )).

Plugging into Eq. (14), we obtain

xm1+j = T[0,βδ ] (βδ − x j (1) ±O (κβδ )).

This completes the proof of the second claim. □

4 PTAS

We present a PTAS for computing an ϵ-approximate BNE in an FPA

under the uniform tie-breaking rule.

Theorem 1.2 (PTAS under uniform tie-breaking). For any

ϵ > 0, n,m ≥ 2, there is an algorithm that �nds an ϵ-approximate

Bayesian Nash equilibrium using O (n4 · д(1/ϵ )) time under the uni-

form tie-breaking rule.

Our approach proceeds in the following four steps. Given an

FPA (N ,B,D, Γ) where Γ is the uniform tie-breaking rule, we

�rst round the bidding space B and reduce its size to O (1/ϵ ). We

then prune the valuation distribution D and work on a weak no-

tion of (ϵ,δ )-approximate BNE that relaxes the no-overbidding

requirement. In the third step, we argue the existence of an (ϵ,δ )-

approximate BNE pro�le over a discretized space and in the �nal

step, we develop a suitable searching algorithm for (ϵ,δ )-approximate

BNE in the discretized space. Missing proof can be found at the full

version of this paper.

Step 1: Rounding bids. Given a �rst-price auction with bidding

space B = {b0,b1, . . . ,bm } with 0 = b0 < b1 < · · · < bm ≤ 1,

we de�ne Bϵ = {b0,max,b1,max, . . . ,b10ϵ−1,max} as follows. First we

take b0,max = b0 = 0. Then for each t ∈ [10ϵ−1], let bt,max be the

maximum bid in

Bt := B ∩
(

(t − 1)ϵ
10

,
tϵ

10

]

if Bt is not empty; and set bt,max = nil (meaning that we don’t add

an element to Bϵ ) if Bt is empty. We prove that it su�ces to �nd

an (ϵ/2)-approximate BNE over bidding space Bϵ .

Lemma 4.1. Given any �rst-price auction (N ,B,D, Γ), let Bϵ be

the rounded bidding space de�ned above. Then any (ϵ/2)-approximate

BNE of (N ,Bϵ ,D, Γ) is also an ϵ-approximate BNE of (N ,B,D, Γ).

Step 2: Rounding distribution. Given a �rst-price auction

(N ,Bϵ ,D, Γ), we would like to round the value distribution Di

such that it is supported over discrete values, and we truncate o�

the probability mass if it is too small. Formally, letting δ ∈ (0, ϵ20 ) be

a parameter to be speci�ed later4, we de�ne Dϵ,δ
i for each i ∈ [n]

as follows:

p
ϵ,δ
i (t ) = Pr

vi∼Dϵ,δ

i

[
vi =

tϵ

10

]

= max
0,

∫
(t+1)ϵ

10

tϵ

10

Pr
vi∼Di

[vi = v] dv − δ


for each t ∈ [10ϵ−1 − 1], and de�ne

p
ϵ,δ
i (0) = Pr

vi∼Dϵ,δ

i

[
vi = 0

]
= 1 −

10ϵ−1−1
∑

t=1

Pr
vi∼Dϵ,δ

i

[
vi =

tϵ

10

]
.

That is, the valuation distribution is rounded (down) to discrete

values Vϵ := {0, ϵ/10, . . . , 1 − ϵ/10} and truncated at δ ; the extra

probability mass is put on 0. From now on, we would consider both

continuous and discrete valuation distribution of bidders.

Let Dϵ,δ
= Dϵ,δ

1 × · · · × Dϵ,δ
n . Next we de�ne the notion of

(ϵ,δ )-approximate BNE — a weaker notation of equilibrium with

relaxed constraint on overbidding, and show that it su�ces to �nd

an (ϵ,δ )-approximate BNE of the rounded FPA (N ,Bϵ ,Dϵ,δ , Γ).

De�nition 4.2 ((ϵ,δ )-approximate Bayesian Nash equilibrium).

Let n,m ≥ 2. Given a Bayesian FPA (N ,Bϵ ,Dϵ,δ , Γ), a strategy

pro�le s = (s1, . . . , sn ) is said to be an (ϵ,δ )-approximate Bayesian

Nash equilibrium ((ϵ,δ )-approximate BNE), if for any player i ∈ [n],
its strategy si is monotone and at most ϵ-worse than the best response:

E
v∼D

[
ui (vi ; si (vi ), s−i (v−i ))

]
≥ E

v∼D

[
ui (vi ; bs(vi , s−i ), s−i (v−i ))

]
− ϵ,

Moreover, letting vi,max = maxvi ∈Vϵ ,pi (vi,max )>0vi , the player i

never bids higher than vi,max and its total overbidding probability is

at most δ , i.e.,

Pr
vi∼Dϵ,δ

i

[
si (vi ) > vi,max

]
= 0 and Pr

vi∼Dϵ,δ

i

[
si (vi ) > vi

]
< δ .

We prove that it su�ces to �nd an (ϵ,δ )-approximate BNE in the

rounded FPA (N ,Bϵ ,Dϵ,δ , Γ). In the proof we will perform the

operation of converting a bidding strategy si over bidding space Bϵ
and value distribution Di to a (unique) monotone bidding strategy

4Looking head, the parameter δ shall be much smaller than ϵ
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s ′i over the same bidding space Bϵ but a di�erent value distribution

D ′i such that their induced distributions over Bϵ are the same:

De�nition 4.3 (Monotone analogue). Let s = (s1, . . . , sn ) be a

strategy pro�le over bidding space Bϵ and value distribution D =
D1×· · ·×Dn , and letD ′ = D ′1×· · ·×D

′
n be another value distribu-

tion. The monotone analogue of s with respect to D ′ (denoted as sm)
is de�ned as the unique monotone strategy pro�le sm = (sm1 , . . . , s

m
n )

such that

Pr
vi∼D′i

[
smi (vi ) = b

]
= Pr
vi∼Di

[
si (vi ) = b

]
, for all i ∈ [n] and b ∈ Bϵ .

Lemma 4.4. Given any FPA (N ,Bϵ ,D, Γ), letDϵ,δ be the rounded

distribution de�ned above. Then the monotone analogue of any (ϵ,δ )-

approximate BNE in (N ,Bϵ ,Dϵ,δ , Γ) is an (2ϵ+22δ/ϵ )-approximate

BNE in (N ,Bϵ ,D, Γ).

Step 3: Existence of discretized (ϵ,δ )-approximateBNE. Given

a �rst-price auction (N ,B,D, Γ), we prove the existence of a (suit-
ably) discretized (ϵ,δ )-approximate BNE. We describe this step

using a generic FPA (N ,B,D, Γ) but will apply it on the rounded

FPA (N ,Bϵ ,Dϵ,δ , Γ) later. For any j ∈ [0 : m], i ∈ [n], let

pi, j = Pr[si (vi ) = bj ] be the probability of player i bidding bj
in a strategy pro�le s .

Lemma 4.5 (Discretization). Let m,n ≥ 2, given any �rst-price

auction (N ,B,D, Γ) and B = {b0,b1, . . . ,bm } with 0 = b0 < b1 <

· · · < bm ≤ 1, there exists an (ϵ,δ )-approximate BNE strategy pro�le

s such that pi, j is a integer multiple of

ℓ(m) · 1

ϵ6δ

for any i ∈ [n] and j ∈ [0 : m], where ℓ(m) is some exponential

function ofm.

We make use of the following result from [18]. We note this the

major part that we need a uniform tie-breaking rule.

Theorem 4.6 (Theorem 3 of [18]). Let pi ∈ ∆m+1 for i ∈ [n],

and let {Xi ∈ Rm+1}i ∈[n] be a set of independent (m+1)-dimensional

random unit vectors such that, for all i ∈ [n], j ∈ [0 : m], Pr[Xi =

1j ] = pi, j . Let z > 0 be an integer. Then there exists another set of

probability vectors {p̂i ∈ ∆m+1}i ∈[n] such that the following condi-

tions hold:

• |p̂i, j − pi, j | = O (1/z), for all i ∈ [n] and j ∈ [0 :m];

• p̂i, j is an integer multiple of 1
2m ·

1
z for all i ∈ [n] and j ∈ [0 :

m];

• If pi, j = 0 then p̂i, j = 0;

• Let {X̂i ∈ Rm+1}i ∈[n] be a set of independent (m+1)-dimensional

random unit vectors

such that Pr[Xi = 1j ] = p̂i, j for all i ∈ [n], j ∈ [0 :m].Then







∑

i ∈[n]
Xi −

∑

i ∈[n]
X̂i








TV
= O

(

h(m) ·
log z

z1/5

)

. (15)

Moreover, for all i ′ ∈ [n], we have







∑

i ∈[n]\{i′ }
Xi −

∑

i ∈[n]\{i′ }
X̂i








TV
= O

(

h(m) ·
log z

z1/5

)

. (16)

where h(m) is some exponential function

Proof of Lemma 4.5. Given a BNE strategy pro�le s of FPA

(N ,B,D, Γ), we take

z = Ω

(

max
{
2h(m)6ϵ−6, 2m2δ−1

})
and γ = h(m) ·

log z

z1/5
.

Let {pi ∈ ∆m+1}i ∈[n] be the probability vectors that correspond to s ,
i.e., pi, j = Pr[si (vi ) = bj ]. Using Theorem 4.6, let {p̂i ∈ ∆m+1}i ∈[n]
be the set of discretized probability vectors, and let ŝ be the unique

monotone strategy determined by p̂ (with respect to the same value

distribution D). We prove that ŝ forms an (ϵ,δ )-approximate BNE

of the auction. We need to verify that for every player i ∈ [n], (1) ŝi
is at most ϵ-worse than the best response; and (2) the overbidding

probability is small.

By Eq. (16), for any j ∈ [0 :m], one has

E
v−i∼D−i

[
Γi (bj , s−i (v−i ))

]
= E
v−i∼D−i

[
Γi (bj , ŝ−i (v−i ))

]
± γ . (17)

since the allocation probability (under the uniform tie-breaking) is

determined by the histogram of other players’ bidding histogram,

which shifts by at most γ between s−i and ŝ−i in total variance

distance.

For the utility, we have

E
v∼D

[
ui (vi ; ŝi (vi ), ŝ−i (v−i ))

]
= E

v∼D

[
(vi − ŝi (vi )) · Γi (̂s (vi ), ŝ−i (v−i ))

]
= E

v∼D

[
(vi − ŝi (vi )) · Γi (̂si (vi ), s−i (vi ))

]
± γ

= E
v∼D

[
(vi − si (vi )) · Γi (si (vi ), s−i (vi ))

]
±O

(

m2 · 1
z
+ γ

)

= E
v∼D

[
ui (vi ; s (vi ), s−i (v−i ))

]
± ϵ

2
. (18)

The second step follows from Eq. (17), the third step holds since the

TV distance between (vi , si (vi )) and (vi , ŝi (vi )) is at mostO (m2 · 1z ).
The last step follows from the choice of z.

At the same time, we have

E
v∼D

[
ui (vi ; bs(vi , ŝ−i ), ŝ−i (v−i ))

]
≤ E

v∼D

[
ui (vi , bs(vi , ŝ−i ), s−i (v−i ))

]
+ γ

≤ E
v∼D

[
ui (vi , bs(vi , s−i ), s−i (v−i ))

]
+ γ

≤ E
v∼D

[
ui (vi ; bs(vi , s−i ), s−i (v−i ))

]
+

ϵ

2
. (19)

Here the �rst step follows from the bidding histogram shifts by at

most γ between s−i and ŝ−i in total variance distance. The last step

follows from the choice of parameters.

Combining Eq. (18) and Eq. (19), we have that ŝi is at most ϵ-

worse than the best response.

To bound the probability of overbidding, let j (i ) ∈ [0 :m] be the

maximum bid that receives non-zero probability under ŝi , then it

is easy to verify that bj (i ) ≤ vi,max: otherwise bj (i ) > vi,max and

pi, j (i ) > 0 would contradict with the no overbidding assumption

of BNE on s .
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Finally we have

Pr
vi∼Di

[̂
si (vi ) > vi

]
≤ Pr

vi∼Di

[
si (vi ) > vi

]
+O

(

m2 · 1
z

)

= 0 +O
(

m2 · 1
z

)

≤ δ

since the total variation distance between (vi , si (vi )) and (vi , ŝi (vi ))

is at most O (m2 · 1z ). □

Step 4: Searching for an (ϵ,δ )-approximate BNE. Finally we

provide a simple searching algorithm for (ϵ,δ )-approximate BNE

over the discretized space. The key observation comes from the

allocation rule of a �rst-price auction, i.e., only players with the

highest bid could win the item. We say a strategy pro�le s lies in

the grid Sω for some ω ∈ (0, 1) if pi, j = Prvi∼Di
[si (vi ) = bj ] is a

multiple of ω for every i ∈ [n] and j ∈ [0 :m].

Lemma 4.7. Given a �rst-price auction (N ,B,D, Γ), and suppose
there exists at least one (ϵ,δ )-approximate BNE over the grid Sω , then

there is an algorithm that runs in n4m · 2Õ (m/ϵω ) time and returns

an (2ϵ,δ )-approximate BNE under the uniform tie-breaking rule.

Proof. Let R = 100(m + 1)/ϵω. The discretized strategy pro-

�les Eω ⊆ [∆m+1]
R are de�ned as follows. A strategy pro�le

(p1, . . . ,pR ) ∈ Eω is parameterized by a bid level j∗ ∈ [0 : m − 1]
and k0,k1, . . . ,kj∗ ∈ [0 : 10ϵ−1] such that pi, j is a multiple of ω for

all i ∈ [n], j ∈ [0 :m], and

R
∑

r=1

pr,m−j = kj , ∀j ∈ [0 : j∗]

pr,m−j = 0, ∀r ∈ [R], j ∈ [j∗ + 1 :m − 1].

The size of Eω satis�es

|Eω | ≤ (m + 1) · (10/ϵω + 1/ω)m+1 ·
(

R

10/ϵω + 1/ω

)

≤ 2Õ (m/ϵω ) .

For any strategy pro�le (p1, . . . ,pR ) ∈ Eω , one can augmentwith

(n − R) default strategies (1, 0, . . . , 0) (that is, bidding b0 = 0 with

probability 1). Slightly abuse of notation, we also use Eω ⊆ [∆m+1]
n

to denote the augmented strategy pro�les. We shall prove

• There is an (2ϵ,δ )-approximate BNE in Eω (up to a matching

with players), and

• One can identify the matching e�ciently.

Existence of (2ϵ,δ )-approximate BNE. Recall that there exists

an (ϵ,δ )-approximate BNE strategy s over the grid Sω . Let j
∗ be

the �rst index over [0 :m] such that
∑

i ∈[n] pi,m−j ≤ 10/ϵ (∀j < j∗)
and

∑

i ∈[n] pi,m−j∗ ≥ 10/ϵ . If j∗ =m, then we have s ∈ Eω (up to

a matching between players). If j∗ ≤ m − 1, then let n∗ ∈ [n] be

the smallest player such that
∑

i ∈[n∗] pn,m−j∗ ≥ 10/ϵ (w.l.o.g. we

assume it takes the equality). Truncate the strategy pro�le to s ′

such that

p′i, j = Pr
vi∼Di

[s ′i (vi ) = bj ]

=


pi, j j > m − j∗ ∨ (j =m − j∗ ∧ i ≤ n∗)
0 j ∈ [1 :m − j∗ − 1] ∨ (j =m − j∗ ∧ i > n∗)

1 −∑m
j′=1 p

′
i, j′ j = 0.

It is clear the new strategy s ′ ∈ Eω (up to a matching between

players), and for each player i ∈ [n], the new strategy s ′i is monotone

and the probability of overbidding is no more than δ (because we

only move bidding probability to b0 = 0). It su�ces to prove it is at

most 2ϵ-worse than the best response. The key observation is that

the allocation probability of bidding bj with j > m − j∗ remains the

same, i.e., for any j ∈ [m − j∗ + 1 :m]

E
v−i∼D−i

[Γi (bj , s
′
−i (v−i ))] = E

v−i∼D−i
[Γi (bj , s−i (v−i ))]

and moreover, the allocation probability of bidding no more than

bm−j∗ is small

E
v−i∼D−i

[Γi (bj ; s
′
−i (v−i ))] ≤ ϵ/4 ∀j ∈ [0 :m − j∗].

This holds since with probability at least 1 − exp(−5/3ϵ ), there are
at least 5/ϵ players bid no less than bm−j∗ by Cherno� bound.

Therefore, at any value point vi , if s
′
i (vi ) > bm−j∗ , then si (vi ) =

s ′i (vi ) and

E
v−i∼D−i

[ui (vi ; s
′
i (vi ); s

′
−i (v−i ))] = E

v−i∼D−i
[ui (vi ; si (vi ); s−i (v−i ))]

(20)

If s ′i (vi ) ≤ bm−j∗ , then si (vi ) ≤ bm−j∗ , and

E
v−i∼D−i

[ui (vi ; s
′
i (vi ); s

′
−i (v−i ))] ≥ −ϵ/4

and E
v−i∼D−i

[ui (vi ; si (vi ); s−i (v−i ))] ≤ ϵ/4. (21)

Combining Eq. (20) and Eq. (21), for any vi ∈ [0, 1], one has

E
v−i∼D−i

[ui (vi ; s
′
i (vi ); s

′
−i (v−i )) − ui (vi ; si (vi ); s−i (v−i ))] ≥ −ϵ/2.

Similarly, one can prove

E
v−i∼D−i

[ui (vi ; bs(vi , s
′
−i ), s

′
−i (v−i ))]

≤ E
v−i∼D−i

[ui (vi ; bs(vi , s−i ), s−i (v−i ))] + ϵ/2.

Combining the above two inequalities, we have proved s ′i is at most

2ϵ-worse than the best response.

Find a matching. Given a strategy pro�le (p1, . . . ,pn ) ∈ Eω , we
show how to de�ne a bipartite matching problem, such that the

(2ϵ,δ )-approximate BNE are one-to-one correspondence to the

perfect bipartite matching of the graph. The bipartite matching

problem is de�ned between players [n] and the strategy {pi }i ∈[n].
We draw an edge between player i1 and the strategy pi2 , if pi2 is

at most 2ϵ-worse than the best response (note the histogram of

other players’ bidding pro�le is determined) and the overbidding

probability is small at most δ . We note the best response can be

computed in O (mn2) time and one can estimate the utility of a bid

inO (n2) time using dynamic programming (similar as [24]). Hence,

it takes n2 · O (mn2) time to construct the bipartite graph, and a

perfect matching can be found in time O (n3). □
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