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ABSTRACT

We study the complexity of finding an approximate (pure) Bayesian
Nash equilibrium in a first-price auction with common priors when
the tie-breaking rule is part of the input. We show that the problem
is PPAD-complete even when the tie-breaking rule is trilateral (i.e.,
it specifies item allocations when no more than three bidders are
in tie, and adopts the uniform tie-breaking rule otherwise). This is
the first hardness result for equilibrium computation in first-price
auctions with common priors. On the positive side, we give a PTAS
for the problem under the uniform tie-breaking rule.

CCS CONCEPTS

« Theory of computation — Exact and approximate compu-
tation of equilibria.
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1 INTRODUCTION

First-price auction is arguably the most commonly used auction
format in practice [15, 46, 54], in which the highest bidder wins the
item and pays her bid. First-price auction and its variants have been
widely used in online ad auctions: when a user visits a platform,
an auction is run among interested advertisers to determine the
ad to be displayed to the user. Despite of its simplicity, first-price
auctions are not incentive compatible — it is the most well-known
example in auction theory that does not admit a truthful strategy.
This has led to significant effort in economics [2, 3, 32-35, 37, 38, 44]
and more recently, in computer science [6, 24, 55], to understand
equilibria of first-price auctions.

In this paper we study the computational complexity of finding
a Bayesian Nash equilibrium in a first-price auction. We consider
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the following independent common prior setting. There is one single
item to sell, and n bidders are interested in it. Each bidder has a con-
tinuous value distribution 9; supported over [0, 1]. The joint value
distribution D is the product of D;’s. While D;’s are public, each
bidder i has a private value v; for the item drawn from ;. Each
bidder chooses a bidding strategy, which maps her private value
to a bid from a discrete bid space B = {by, b; ..., bp}. A Bayesian
Nash equilibrium is a tuple of bidding strategies, one for each bid-
der, such that every bidder gets a best response to other bidders’
strategies (see formal definition in Section 2, including the two
conditions that bidding strategies need to satisfy: no overbidding
and monotonicity).

This game between bidders, however, is not fully specified with-
out a tie-breaking rule: how the item is allocated when more than
one bidder have the highest bid. A variety of tie-breaking rules
have been considered in the literature. The uniform tie-breaking
rule, where the item is allocated to one of the winners uniformly at
random, has been the most common offset. The other commonly
used tie-breaking rule is to perform an additional round of Vickrey
auction to ensure the existence of equilibria when the bidding space
is continuous [22, 32]. A recent line of works [26, 28, 29, 51] used
monopoly tie-breaking rules that always give the item to one player
when establishing worst-case price-of-anarchy (POA) bounds.

To accommodate tie-breaking rules in the problem, we consider
the setting where the auctioneer specifies a tie-breaking rule T to be
used in the auction (as part of the input). I' maps each W C [n] as
the set of winners to a distribution I'(W) over W as the allocation
of the item to bidders in W. While a general tie-breaking rule takes
exponentially many entries to describe, our PPAD-hardness result
is built upon the succinct family of so-called trilateral tie-breaking
rules: such a tie-breaking rule T specifies item allocations when
no more than three bidders are in tie, and follows the uniform tie-
breaking rule otherwise (when more than three bidders are in tie).
The hardness result rules out the possibility of an efficient algorithm
for finding a Bayesian Nash equilibrium in a first-price auction
when the tie-breaking rule is given as part of the input (unless PPAD
is in P). We compliment our hardness result with a polynomial time
approximation scheme (PTAS) for finding a constant-approximate
Bayesian Nash equilibrium under the uniform tie-breaking rule.

1.1 Our Results

Our main hardness result shows that the problem of finding an
e-approximate Bayesian Nash equilibrium in a first-price auction
is PPAD-complete with trilateral tie-breaking.

THEOREM 1.1 (COMPUTATIONAL HARDNESS). It is PPAD-complete
to find an e-approximate Bayesian Nash equilibrium in a first-price
auction under a trilateral tie-breaking rule for e = 1/ poly(n).
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It is worth pointing out that the hardness above holds even when
(1) the bid space B has size 3; and (2) the density function of each D;
is a piecewise-constant function with no more than four nonzero
pieces.

On the positive side, we obtain a PTAS for finding a Bayesian
Nash equilibrium in a first-price auction under the uniform tie-
breaking rule:

THEOREM 1.2 (PTAS UNDER UNIFORM TIE-BREAKING). For any
€ > 0,n,m > 2, there is an algorithm that finds an e-approximate
Bayesian Nash equilibrium using O(n* - g(1/€)) time under the uni-
form tie-breaking rule.

Our algorithm works as long as it has oracle access to the CDF
of each value distribution D;.

1.2 Related Work

First-price auction. The study of first-price auction dates back
to the seminal work of Vickrey [54] in 1960s. Despite its extremely
simple form and a wide range of applications, the incentive has
been a central issue and it is perhaps the most well known mecha-
nism that does not admit a truthful strategy. A long line of works
in the economic literature [2, 3, 6, 32-38, 43-45] devote to charac-
terizing the existence, uniqueness and closed-form expression of
a pure Bayesian Nash equilibrium (or BNE). However, the BNE of
first-price auction is only well-understood in a few special cases,
including when the players have symmetric valuation distributions
[6], when all players have probability density function bounded
above 0 and atomic probability mass at the lowest points [34], when
there are only two bidders with uniform valuation distributions
[31] or when the players have discrete value and continuous bid-
ding space and the tie-breaking is performed with an extra round
of Vickrey (second-price) auction [55].

A formal study on the computational complexity of equilibria in a
first-price auction has been raised by the recent work of [24], which
is most closest to us. [24] examines the computation complexity
under a subjective prior, that is, each bidder has a different belief of
other’s valuation distribution. They prove the PPAD-completeness
and the FIXP-completeness of finding an e-BNE (for some constant
€ > 0) and an exact BNE, under the uniform tie-breaking rule. As
we shall explain soon, the techniques to obtain their results are
quite different from us. It is worth noting that most aforementioned
literature are on the common prior setup, and [24] also leaves an
open question of characterizing the computational complexity of
€-BNE under the standard setting of independent common prior.
[24] also provides a polynomial time algorithm for finding a high
precision BNE for constant number of players and bids, when the
input distribution are piecewise polynomial. Their approach is
based on polynomial system solvers and thus different from us. The
work of [4] studies the Bayesian combinatorial auctions, where
there are multi-items to sell for multiple bidders. They prove the
complexity of Bayesian Nash equilibrium is at least PP-hard (a
complexity class between the polynomial hierarchy and PSPACE),
the model is quite different, because the agents’ valuation could be
much more complex, defining over subsets of items.

Other aspects of first-price auction have also been studied in the
literature, including the price of anarchy/stability [23, 27-29, 51, 52]
and parameter estimation [14, 25].
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Equilibrium computation. The complexity class of PPAD (Poly-
nomial Parity Arguments on Directed graphs) was first introduced
by Papadimitriou [42] to capture one particular genre of total search
functions. The seminal work [9, 16] established the PPAD-hardness
of normal-form games. The hardness of approximation was settled
by subsequent work [21, 48, 49] in the past few years. A broad range
of problems have been proved to be PPAD-hard, and notable exam-
ples including equilibrium computation in special but important
class of games (win-or-lose game [1, 13], anonymous game [10],
constant rank game [39], graphical game [41]), market equilibrium
(Arrow-Debreu market [8, 12, 53], non-monotone market [11, 50],
Hylland-Zeckhauser scheme [7]), fair division [5, 40], min-max
optimization [19] and reinforcement learning [17, 30].

The PTAS is known for anonymous game [18], which is closely
related to our work. The [18] presented a n9("1/€) .1J algorithm for
m-action n-player anonymous games for some exponential function
g. Here U denotes the number of bits to represent a payoff value
in the game. Instead, our algorithm finds an e-BNE of first-price
auction with running time n* - g(1/€), which does not depend on
the size of bidding space and the bit-size of the representation of
the distributions. It crucially utilizes the structure of first-price auc-
tion in the rounding and searching step, and could have a broader
application in auction theory.

1.3 Technical Overview

The challenge of obtaining the PPAD-hardness arises from two folds.
First, the utility function does not admit a closed-form expression,
in terms of other player’s strategy. It depends on an exponential
number of possible bidding profiles and is computed only via a
dynamic programming approach. Second, the game structure is
highly symmetric under the (independent) common prior. In a first-
price auction, the allocation is determined by the entire bidding
profile, and each player faces “almost” the same set of profile. From
this perspective, it is more like an anonymous game. Perhaps even
worse, in an anonymous game, the utility function of each player
is different and could be designed for the sake of reduction. While
in a first-price auction, the utility function of each player is the
same, and depends only on the allocation probability. Of course,
the general (non-uniform) tie-breaking rule as well as the different
valuation distributions could be used for breaking the symmetry.
We note the above challenges are unique to the common prior
setting. In a sharp contrast, in the subjective prior setting [24], the
players’ subjective belief could be different. A player could presume
most other players have zero value and submit zero bid, hence, the
game is local and non-symmetric.

To resolve the above challenges, our key ideas are (1) linearizing
the allocation probability and expanding a first order approximation
of the utility function; and (2) carefully incorporating a (simple)
general tie-breaking rule to break the symmetry.

Technical highlight: Linearizing “everything”. Given a strat-
egy profile s, the distribution over the entire bidding profile (and
therefore the allocation probability, the utility, the best response)
could be complicated to compute, especially when multiple play-
ers submit the highest bid. To circumvent this issue, we assign a
large probability (1 — §) around value 0 for all players, for some
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polynomially small § > 0.! By doing this, the probability that a
player bids nonzero is small, so one can ignore higher order term.
Concretely, let p; ;j be the probability that player i gets the item
when bidding b; given that the other players have strategy s—;,
and let T (b, s—;) be the allocation for player i of bidding b; given
other player’s strategy s_;. The immediate advantage is that the
allocation probability can be approximated as

Li(bj,s—i) = (1 - Z ZPi',j')+ Z i pr (1)

i'e[n]\{i}j'>j i’e[n]\{i}

under a bilateral tie-breaking rule. Here 3 € [0, 1]"*" specifies the
allocation when there is a tie between a pair of players (i1, i2) and
satisfies = + =7 = (J — I). At this stage, it is tempting to use p; j to
encode variables of a generalized circuit problem and the choice
of best response to encode constraints. In our final construction,
we only need three bids 0 = by < by < by and the variables are
encoded by the jump point 7; between by, by (i.e., when player i
bids by instead of b1), which has the closed-form expression of

Ti(b1,5-1) - (b2 — b1)
Li(b2,s-i) = Ti(b1,5-5)

Even after the linearization step of Eq. (1), the above expression
is still quite formidable to handle. Our next idea is to restrict the
jumping point in a small interval between (by, 1), and assign only
a small total probability mass of f§ over the interval, here f is
another polynomially small value. There is a (fixed) probability
mass of § around by and 1. One can further perform a first order
approximation to Eq. (2), and again linearize the jumping point
expression.

Ti=b2+

@)

Incorporating the tie-breaking rule. Abstracting away some
construction details, the above construction reduces the first-price
auction from a fix point problem, obeys the following form

®)

where p is the probability of bidding b; (inside the small interval),
f = (fi,-- -, fn) is operated coordinate-wise over Gp, f; is a mono-
tone function maps from [a;, b;] (some fixed interval) to [0, 1], J is
the all 1 matrix and I is the identity matrix. The fixed point problem
is fairly general and subsumes the generalized circuit problem, if
»4 is an arbitrary matrix in [0, 1]"*". Unfortunately, it is not true
due to the constraint of 34 + (34)T = (J — I). We resolve the issue
by adding an extra pivot player. The pivot player is guaranteed
to bid by = 0 and by with equal probability of 1/2. From a high
level, the pivot player splits the equilibrium computation into two
cases, the case when it bids by is similar, while the case of bidding
by introduces another tie-breaking matrix %5 € [0, 1]™" among
the original players in [n] (hence it becomes a trilateral rule). It
transforms the fix point problem (i.e., Eq. (3)) to a more convenient
form

p=f(Gp) where G=254—-J+1,

p=f(G'p) where G’ = PHNGINE Ly Sy § (@)

and one can construct gadgets to reduce from the generalized circuit
problem. The last step is fairly common and details can be found in
Section 3.

!This is the reason that our hardness result only applies for (inverse) polynomially
small €.
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2 PRELIMINARY

Notation. We write [n] to denote {1,2,...,n} and [n1 : n2] to
denote {ny1,n1 +1,...,n2}. Let 1; be an indicator vector — it equals
the all 0 vector, except the i-th coordinate which equals 1. Let
Ap contains all probability distribution over [n]. Given a vector
v € R", and an index i € [n], v; denotes the i-th entry of v while
v_; denotes (v1,v2,...,Vi-1,Vi+1,- - -, Upn), L.e., all entries except
the i-th coordinate. We write x = y t e if x € [y — €,y + €]. Let
Jn € R™" be the n X n all-1 matrix and I, be the n X n identity
matrix.

2.1 Model

In a Bayesian first-price auction (FPA), there is one single item to
sell and it is specified by a tuple (N, B, D,T), where N' = [n] is the
set of players, 8 is the bid space, D is the value distribution and T’
is the tie-breaking rule. For each play i € N, it has a private value
v; of the item that is drawn from a (continuous) distribution D;
supported over [0, 1] (written as v; ~ D;). We consider the standard
independent common prior setting — the joint value distribution
D = D1 X -+ X Dy is the product distribution of {D;};¢[,) and
we assume the value profile v = (vy,...,v,) € [0,1]" is drawn
from D. Let B = {by, b1, ...,bm} C [0, 1] be the bid space, where
0=by<by<---<byp<1

In a first-price (sealed-bid) auction, each bidder i submits a bid
Bi € B simultaneously to the seller. The seller assigns the item to
the winning player i* which submits the highest bid, and charges
i* a payment equals to its bid f;=.

Allocation and tie-breaking rule. When there are multiple play-
ers submitting the same highest bid, the seller assigns and charges
the item to one of those winning players, following a pre-described
tie-breaking rule T. A tie breaking rule I : {0,1}" — A, maps a set
of winning players W C [n] to an allocation profile (W) € A, sup-
ported on W that specifies the winning probability of each player
i € W as I;(W). Formally, given a bidding profile f € 8", the set
of winning players W () are those who submit the highest bids

wW(p) = {i € [n] : fi = max ,BJ}

Jjeln]

The tie breaking rule I'(W(f)) € A, specifies the winning proba-
bility of each player in W(f) and I; (W (f)) is the probability that
the bidder i obtains the item under the bidding profile . The tie-
breaking rule needs to satisfy (1) I;(W (b)) > 0 only if i € W(f),
i.e., the item is assigned only to players with the highest bid; and
(2) Zien Li(W(B)) = 1, i.e., the total allocation is 1. When there is
no confusion, we also abbreviate T'(f) = T'(W(f)).

It is known that the tie-breaking rule plays a subtle yet critical
rule on the equilibrium of Bayesian FPA. Our hardness result is
built upon the trilateral tie-breaking rule, a simple generalization
of the commonly used uniform tie-breaking method.

Definition 2.1 (Trilateral tie-breaking). A trilateral tie-breaking
rule T is specified by the following tuples of nonnegative numbers

n 2

(wi’j:1£i<an) and (crl.jk,al.jk:lsi<j<k$n)
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l(lj)k + ol.(’zj)’k < 1. Given a bidding profile
B € B™ and the winning set W (), the item is distributed according
toT as follows
(1) If W(B) = {i} for somei € [n], thenT;(B) = 1;
(2) IfW(P) = {i, ]} forsome1 < i <j < n, thenT;(f) = wi;
andTj(B) = 1—wjj;
(3) IfW(B) = {i,j, k} for some1 <i < j <k <n,then
LB =0 TP =01 andTe(B) = 1= — o)
and
(4) When |W(B)| > 4, the item is evenly distributed among
players in W(p). ?

such that w; j < 1 and o

Equilibrium and strategy. Given a tie-breaking rule I and a bid-
ding profile § = (f1,...,fn), the ex-post utility of a bidder i is
given by

u;(vi; Bi, B-i) = (vi = Bi) - Ti(B).

A strategy s; : [0,1] — B of player i is a map from her (private)
value v; to a bid s(v;) € B, with the following two properties:

e No overbidding. A player never submits a bid larger than
her private value, i.e., s;(v;) < v; for all v; € [0,1].
e Monotonicity. s; is a non-decreasing function.

These are common assumptions in the literature of first-price auc-
tion [24, 34, 38] and they rule out spurious equilibria in Bayesian
auctions [4]. Due to the monotonicity assumption, one can write
a strategy s; as m thresholds 0 < 7;1 < -+ < 7, < 1, where the
player i bids b; in the interval (z; j, ;, j+1]3. Here we set by default
Ti0 = 0and 7; 41 = 1.

The e-approximate Bayesian Nash equilibrium (e-approximate
BNE) of FPA is defined as follow.

Definition 2.2 (e-approximate Bayesian Nash equilibrium). Let
n,m > 2. Given a first-price auction (N, B, D,T), a strategy profile
s = (s1,...,5n) is an e-approximate Bayesian Nash equilibrium
(e-approximate BNE) if for any playeri € [n], we have

B [wi@ssi@i),s-i-)] 2 B [ui(is bs(i,s-1), s-i(0-1)]

where bs(vj,s—;) € B is the best response of player i given other
players’ strategy s_;, i.e.

[ui(vi; b, S—i(v—i))] .

bs(vi,s-;) € arg Ibneaz);( v,,-I~EZ),l-
The existence and the PPAD membership of finding a 1/ poly(n)-
approximate BNE can be established via a similar approach of [24]
(In particular, Theorem 4.1 and Theorem 4.4 of [24]), and we omit
the standard proof here.
We shall also use another notion of equilibrium which is more
convenient in our hardness reduction. The e-approximately well-
supported Bayesian Nash equilibrium (e-BNE) is defined as

Definition 2.3 (e-approximately well-supported Bayesian Nash
equilibrium). Letn, m > 2. Given a first-price auction (N, B, D,T), a
strategy profiles = (s1, . ..,Sn) is an e-approximately well-supported

2We note our hardness result actually holds regardless of the tie-breaking rule among
more than 3 players (i.e., not necessarily uniform).

31f the valuation distribution contains a point mass, then the strategy might be ran-
domized at the point mass.
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Bayesian Nash equilibrium (e-BNE) if for any player i € [n] and
v; € [0, 1], we have

v,iiEz)ﬂ. [ui(vi;si(vj),s_i(v_i))]
> v,,-INE@,,. [ui(vi;bs(vi,s_,-),s_i(y_i))] —e.

Remark 2.4. We note the e-approximate BNE is known also ex-ante
approximate BNE, and the e-BNE is known as ex-interim approximate
BNE in some of the literature.

The notion of e-BNE and e-approximate BNE can be reduced to
each other in polynomial time, losing at most a polynomial factor
of precision. It is clear that an e-BNE is also an e-approximate BNE.
Lemma 2.5 states the other direction and the proof can be found at
the full version of this paper.

Lemma 2.5. Given a first-price auction (N,B,D,T) and an e-
approximate BNE s, there is a polynomial time algorithm that maps
s to an €’-BNE, where €’ = (2n + 10)+/e.

3 PPAD-HARDNESS

Recall our main hardness result

THEOREM 1.1 (COMPUTATIONAL HARDNESS). It is PPAD-complete
to find an e-approximate Bayesian Nash equilibrium in a first-price
auction under a trilateral tie-breaking rule for e = 1/ poly(n).

In the rest of section, we construct the hard instances of FPA in
Section 3.1 and provide some basic properties in Section 3.2. We
reduce from the e-generalized-circuit problem in Section 3.3.

3.1 Construction of First-Price Auctions

It suffices to prove finding e-BNE is hard for some € = 1/ poly(n)
due to Lemma 2.5. We will use the following three parameters in
the construction:

1 1 1
5=W and ﬂ:

F .
We describe the bidding space B, the valuation distribution D
and the tie-breaking rule I'.

Bidding space. The bidding space 8 = {bo, b1, b2} contains 3 bids
in total, where by = 0,

2

1) 1
b1:—4 and by = —.
n

n2

Valuation distribution. There are n + 1 players — n standard play-
ers indexed by [n] and one pivot player n + 1. We will describe the
value distribution D; of player i by specifying its density function
pi : [0,1] = R*. The density function p1 of the pivot player is
set as follows:

1/(2¢) v €[0,¢€]
1/(2¢) vell-e1]’

Pn+1 (’U) = {

In another word, Dy 41 has 0.5 probability mass around 0 and 0.5
probability mass around 1.
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The density function p; of each standard player i € [n] is set as
follows:

(1-(2+p)d)/e velo,€]

(S/(:‘ ’UE[bg—(:‘,bz]
piv) = pi(v) v € (bg,1—¢€)

d/e veE[l—g1]

where p;(v) is defined over (bs, 1 — €), satisfies fb pi(v)dv = 6,
but will be specified later in the reduction in Sectlon 3.3.In short, a
standard player i has most its probability mass around 0, § mass
around by, § mass around 1 and 6 mass in (bs, 1 —€) to be specified
later.

Tie-breaking rule. We describe the trilateral tie-breaking rule T
as follows. For any bidding profile f with 2 < [W(f)| < 3, the
tie-breaking rule depends on the presence of n + 1 in W(f):

e Suppose n + 1 ¢ W(f). Then

- If [W(p)| = 2,ie, W(b) = {i, ]}, the tie-breaking rule is
given by a matrix 4 € [0, 1]™" such that player i
obtains 2 ; unit of the item and player j obtains Z
So the matr1x >4 needs to satisfy A4 (=T
We will specify 4 in the reduction later but will
guarantee that all of its off-diagonal entries lie in
[1/4,3/4].

— If [W(B)| = 3, then we use the uniform allocation.

e Suppose n + 1 € W(f). Then

— If [W(B)| = 2, then the item is fully allocated to the pivot
player n + 1.

- If [W(B)| = 3,1ie, W(b) = {i,j,n+ 1}, then the tie
breaking is given by a matrix Xg € [0, 1]™*" such that
player i obtains 2?’ ; unit of the item, player j obtains Zﬁ ;
unit and player n + 1 obtains 1 — Zf i Zf ; unit. So the
matrix 3B needs to satisfy 38 + (2B)T < J,, - I,, i.e,,
2B + (2B)T is entrywise dominated by J, — I

3.2 Basic Properties

Lets = (s1,...,Sn+1) be an e-BNE of the instance. We prove a few
properties of s in this subsection. Given s, for each player i we

define f; : 8 — [0,1] and F; : 8 — [0, 1] as follows:
filb)y = Pr [si(vi) =b] and F;(b)= Pr_ [si(vi) <Db].
vi~D; vi~D;
In the rest part of section, we abbreviate

Ti(b,s-i) : [Ti(b, s-i(v-i))]

—i

V_i~

and

E
‘U_iN.D_i

when there is no confusion.
We start with the following lemma.

[ui (vis by s—i (v-;))]

ui(vish, s-i) :

Lemma 3.1 (Separable bid). In any e-BNE, the equilibrium strategy
s satisfies
o For a standard player i € [n], its equilibrium strategy satisfies
— whenv; € [0,€], si(vi) = by;
- whenv; € [by — €,b2], si(vi) = b1; and

unit.

(]n _In)-
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— whenv; € [1-¢,1],si(v;) = ba.

o For the pivot player, its equilibrium strategy satisfies
~ when vy11 € [0, €], sp+1(vn+1) = bo; and
— whenvpy1 € [1-¢€,1], sp+1(vn+1) = ba.

Proor. The claim of s;(€) = 0 holds trivially for all i € [n + 1]
due to the no-overbidding assumption. A standard player i chooses
between by and by for v; € [by — €, by]. The allocation probability
T; (o, s—;) of bidding by satisfies I'; (bg, s—;) < hence the utility
of bidding by = 0 is at most

- n+1’

1
u;i(vis bo, s—i) = (vi — bo) - Ti(bo, s-;) < ;bz-

The allocation probability of bidding b; is at least

Lbns-) = || fik) = (1-@+po)"-

i€[n+1]

N =
w|>—~

hence the utility of bidding b; is at least
ui(visby,s-i) = (vi = br) - Ti(b1,5-i)

> (by—€e—by) -

W | =

> u;(v; by, s—j) + €.

Finally, we analyse the equilibrium strategy around v € [1—¢, 1]
for all n+1 players. Via an analysis similar to the above argument, it
is clear that both standard players and the pivot player would choose
between by and b;. For a standard player i € [n], the allocation
probability of bidding by satisfies

T (b2,5-1)
> Fas(b)- [ Fiton)
jeln\[i]
> Fui1(b1) ( [T feo+ > fj<b1> fr (bo))
je[n]\[i] jeln\[i] eln)\{i.j)
1
> 5(_ [T s+ >, fit fr(bo )
en\[1] jelnI\[i] re[n
1
+ Efn-l-l(bl)v )
where the last step holds as fn+1(bo) = % and
_ 1
[ fit)za-@+ps = ©)
jeln\[i]
The allocation probability of bidding b; satisfies
Li(b1,s-1)
< fa+1(bo) - (/ H fibo) + @ + 9n2§2)
je[n]\[i]
+ fari(b) - Y filb)
je[n\{i}
1
SE(} [T s+ >, feo-3 [ fr(bo))
e[n]\[1] Jeln]\[i] re[n]\i.j)
+ fue1(b1) - 3n6 + 9n?52. ()
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where
O

= > 003 ] £k
Jjeln\[i] re[n]\(i.j}

Here the first step holds since (1) when the pivot player bids by,

player i obtains ZA Y, unit of item when (only) player j bids by, and

the probability of at least two players bidding b; is bounded as

Pr[sy(vr) = by Asj(v)) = bi] < n? - 982,
J-re[n]\{i}
(2) when the pivot player bids by, the player i obtains the item only
if there exists at least one other standard player j bids b; as the tie
breaking rule assigns the item fully to player n + 1 when there are
only two winners. The second step follows from fj(b;) < 36 and
that the pivot player does not bid by in [1 — €, 1] so fr+1(bo) = 1/2.
Subtracting Eq. (7) and Eq. (5), one obtains

ri(bz, s—i) = Ti(b1,s-1)

z Z fiky-a=32) [ £@o)]
n]\[i] re[n\{i.j}
+ —fn+1(b1) —3n8 fry1(b1) — N2
2
1 1 1 1
2 (n=1) 8- e o fuea(br) = 30 fpia (br) - 9ns?
nd
> 32 3)
The second step holds due to fj(b1) > 6, ij € [1/4,3/4] and Eq (6).
Hence we claim player i prefers by than b; at value v; € [1 — ¢, 1],

since
u;(vi; b2, s—i) — ui(vi; by, s-;)
= (vi = b2) - Tj(b2,s-i) — (vi — b1) - Tj(b1,5-;)
(Ti(b2,5-i) = Ti(b1,5-1)) —

> v -
nd

>(1—-€)-— —by > e.

> ( €) 32 2 > €

Finally, for the pivot player n + 1, the allocation probability of
bidding b; satisfies

Tusa(b,s=i) < [ | Fitby) ©)
i€[n]
and the allocation probability of b satisfies
Tna(b2, s-i) 2 1_[ Fi(b1) + Z fi(b2) 1—[ Fi(b1)
i€[n] i€[n] jeln]\{i}
6
> ]_[ Fib) + . (10)
i€[n]

The first step holds since the tie-breaking rule favors player n + 1
when at most one player in [n] bids by, the second step holds due
to fi(b2) > 8 and Eq. (6). Hence, at any vp+1 € [1 — €, 1] we have

Un+1(Vn+13b2,5-1) = uns1(v; b1, 5-;)
= (Un+1 — b2) - Tut1(b2,5-i) = (Vn+1 = b1) - Tnv1(b1, 5-4)
* (T+1(b2,5-i) = Tnt1(b1,5-1)) — b2
2(1-e)-

We conclude the proof of the lemma here.

2 Un+1

—5—b2>€
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Lemma 3.1 confirms that b, b1, b, would appear in an e-BNE
profile for every player i € [n]. It still remains to determine at
which value point a standard player i € [n] jumps from b; to by
in s;. Let 7; € (b2, 1 — €) be the jumping point from b; to by of a
standard player i. The following formula is convenient to use.

Lemma 3.2 (Jumping point formula).

The jumping point 7; of a
standard player i € [n] satisfies
Ti(by, s-i) - (b2 — b1)

€
+0(5).
Ti (b2, s-i) — Ti (b1, s-i) g
ProorF. At any value point v € [0, 1], recall the utility of bidding
b1 equals

Ti:b2+

u;i(vis by, s—i) = (v; — b1)Li(b1, 5-4)

and the utility of bidding bz equals
(vi = b2)Ti (b2, 5-1).
Solving for u;(z;, b1,s-i) = u;(zi, ba, s—;) * €, one obtains

_ TLi(bz,s—i)bz —Ti(b1,5-i)by £ €

"7 Tibz.s—i) — Ti(b1,s—i)
Li(bi,s-i) - (b2 —b1) £ ¢
T (b2, s-i) — Ti(b1,5-;)

€
+0 (5)

Li(by,s-i) - (b2 — b1)
Li(b2,s-i) — Ti(b1,5-i)
The last step follows from Eq. (8), and this finishes the proof of the
lemma. O

u;i(visb2,5-;) =

=b2+

=b2+

Let x; €
ie,x; =

[0, 5] be the probability mass over the interval (by, 7;),

fb pi(v

of s;. We state a few facts that will be used repeatedly.

v)dv, which we will refer to the jumping probability

Lemma 3.3 (Basic facts).

o For any standard playeri € [n], we have

[T f£itko)=1-(n-1)@+p)s+0(n*s?)

jelnl\(i)
and
]_[ Fi(b1) =1-(n-1)(f+1)5 + Z xj + O(n?8%).
jelnl\(i) jeln\(i)

e Foranye € {1,2}, we have
Z Pr[si(vi) = be A 5j(0)) = be| = O(n*5%).
i#je[n]
Proor. For the first claim, we have
ﬂ fibo) = (1= 2+ B)3)™"
(i)
=1-(n—1)(2+ )5 £ 0(n?8?)
[0, p]

due to the choice of §. Similarly we have (using x; €

[T m@y

jeln]\ (i)
= [] a-a+ps+x)

jeln\ i)

=1-(n-1)(1+p)5 + Z xj + O(n?8%).

Jjeln]\{i}
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For the second claim, for any e € {1, 2}, we have
DT Prsii) =be Asi() =be] < D (14 )8
i#je[n] i#j€[n]
= 0(n®8%).

We conclude the proof here. O

The key step is to determine the jumping point, where we use
approximation.

Lemma 3.4 (Jumping point). The jumping point t; of a standard
playeri € [n] satisfies
+0 ( )) - by

|
where

Ajq = (n-1)56 + Z (ﬁé'zéj"'(l"'ﬁ)a'zi'ij)
jeln]\{i}

€ [(n=1)8,2n0]

Aj1— A
2
A7 4

‘BZ

Aj1

and

Aig: (1—2z§}j—zfj)xj e [ - 2nps.nps).

jeln\i}

Proor. For any standard player i € [n], we compute when it
jumps from by to by using the formula in Lemma 3.2. To do so, we
first compute T (b1, s—;) and I (b2, s—;).

T; (b1, s-1)

:fn+1(b0)'(/ fi(bo) +\yio(n252))
je[n]\{i}

% (1 Sm-DEEPSE D G+ xj)z;}j) + O(n26?).

Jeln\i}
(11)

where

v= > fiy [ fio) =
jeln\i} jeln\{i,j}
Here the first step follows from the tie-breaking rule and the second
claim of Lemma 3.3, the second step follows from fj(b1) = § + x;
and the first claim of Lemma 3.3.

The allocation probability of bidding by obeys
Ti (b2, s-i)

= fn+1(bo) - (/ 1_[ Fj(b1) + Y2 + O(nzéz))
je[n]\{i}

+fn+1(b2)'(/ Z fi(b2) l_[ Fk(b1)'25ji0(n252))
je(n]\ (i) ken)\li.j}
1
:5(1—(n—1)(1+ﬂ)5+ Y (5+55_xj)z;}j)
jelnl\iy - jelm\ti)
1
+s Z (6 + B8 - x))=E; = 0(n*6?).

jeln\i}
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where

¥y .

= > fiy [] F@)-z

Jjeln]\i} Jjeln\{i.j}

The first step uses the tie breaking rule and requires some expla-
nations. In particular, (1) when the pivot player n + 1 bids by, the
player i obtains 1 unit of item when other players bid less than b,
% a,1,j unit of item when only player j bids bs; we also make use
of the second claim of Lemma 3.3 to omit the other case; (2) when
the player n + 1 bids by, the player i obtains 0 unit of good when
no other players bid by and obtains Xp ; ; unit of goods when one
other player j bids by, and we omit other cases using Lemma 3.3.
The second step follows from Lemma 3.3 and f;(b2) = 6 + 6 — x;.

Combining the above expression, we have

Ti(ba,s-i) — i (b1, 5-i)

1 1
=S(-ns+s Y (/35-2{‘]-+(1+ﬁ)5~25j)
jenl\ti)

1
+s 1- 23, —zf’jj)xj + 0(n25%). (12)
jeln)\(i}
Let A; 1 and A; 3 be defined as in the statement of the lemma. Note
that A; 1 does not depend on {x;};x; while A; > depends on {x;};zi.

It is easy to see that
Aig € [(n-1)8,2n8] and Aiz=[-2(n-1)p5, (n-1)po].
(13)

Finally we can compute the jumping point 7; using Lemma 3.2
as follows:

L (by,s-;) - (b2 — b1)

€
T =by+ _O(—)
LT by s-i) — Ti(b1,5-1) 5
1+ 0(nd) €
= by 4 20 _o(-)
2+Ai,1+Ai,z 22215
_ [Bi1=Ai2 +O(ﬁ—2) b
Ail T\ 2

The second step follows from Eq. (12), I3 (b1, fi) = (1/2) £ O(nd)
(see Eq. (11)) and the choice of by, by. The last step follows from
Eq. (13). O

3.3 Reduction from Generalized Circuit

Given a < f8, we write T[4 5] : R — [, ff] to denote the truncation
function with

Tle, p) (%) = min { max{x, a}, f}.

We recall the generalized circuit problem [9] and present a simpli-
fied version from [24].

Definition 3.5 ((Simplified) generalized circuit). A generalized
circuit is a tuple (V, G), where V is a set of nodes and G is a collection
of gates. Each node v € V is associated with a gate G, that falls into
one of two types {G1—, G+ }: If Gy, is a G4 gate, then it has two input
nodes v1,vy € V \ {v}; if it is a G1— gate then it takes one input node
v1 € V\ {v}. Given k > 0, a k-approximation solution to (V,G) is
an assignment x € [0, 1]" such that for every node v:

o IfGy is a G4 gate and takes input nodes v1, vy € V\{v}, then

xp = T[o,1](*0; + Xo, k)
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o IfGy is a Gi— gate and takes an input node v1 € V\{v}, then
Xy = T[o,l](l — Xy, £K).

The generalized circuit problem is known to be PPAD-hard for
constant k.

THEOREM 3.6 ([20, 47]). There is a constant k > 0 such that it is
PPAD-hard to find an k-approximate solution of a generalized circuit.

We prove Theorem 1.1 via a reduction from the generalized
circuit problem.

Given an instance of generalized circuit defined over nodes set
V (IV] = m), we let V; = [mq] be the set of nodes with gate G, and
Vo = [m1+1 : m] be the set of nodes with gate G;—. We construct an
instance of first price auction with n = mq + 2(m —my) = 2m —my
standard players and one pivot player.

Let N = N1 U N2 U N3 be the set of standard players, where
Ni=[m], No=[mi+1:m]and N3 = [m+1:2m — m;]. From
a high level, we use players in N to represent the set of nodes
with G4 gates, players in N> to represent the set of nodes with
Gi- gates. Players in N3 are used in constructing Gi—. We first
specify the probability density p over interval (b2, 1 — €) and the
tie-breaking matrices 54 and 38 to complete the description of the
FPA instance.

e For player i in N; (i.e., i € [m1]), its valuation distribution
pi is uniform over the interval

1 1 1 )

_'sz _+_.ﬁ_ 'bZ

A Aip 10 A%,
with a total probability mass of 5. Let i(1),i(2) € [m] =
N1 U N, be the input nodes of the G gates, we set Z?i(l) =

B —

Zi,i(z) =1/10.

e For player m; +j € N (ie, j € [m — my]), its valuation
distribution pp, + j is uniform over

1 15 ), 1
Amy+j1 10 A2 “ Dy

my+j,1
with a total probability mass of 5. We set anl rimej =
9/20.
e For player m + j € N3 (i.e, j € [m — my]), its valuation
distribution pp+; is uniform over
m+j,1 )

1 1 1) 1
A + — - 2:3 - by, A +
m+j,1 10 Am+j,1 m+j,1
with a total probability mass of 5. We set 22 Hmt) =
11/20. Let j(1) € [m] be the input node of G;—, then set

B _
L g1y = M-

e For any entry of 34 that has not been determined above, we
set it to be 1/2, and for any entry of =B that has not been
determined, we set it to be 0.

by

It is easy to verify that 34 and =B satisfy the following prop-
erties as promised earlier: (1) the off-diagonal entries of =4 lie in
[1/4,3/4]; (2) 4 + (AT = J, —I; and (3) the off-diagonal entries
of =B belong to [0, 1/2].

Letting k := nf = 1/n®, we prove that any e-BNE of the first
price auction gives an O(k)-approximate solution to the generalized
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circuit. Indeed the following lemma shows that by taking x| =
xi/(Bd), where x; is the jumping probability of s;, we obtain an
O(x)-approximate solution (x7,...,xp,) to the input generalized
circuit. This finishes the proof of Theorem 1.1.

Lemma 3.7. Given an €-BNE of the first price auction, suppose
(x1,...,xn) €[0,55]" be the tuple of jumping probabilities, then we
have

e Foranyie [m1], x; = Tio, p51(xi(1) + Xi(2) £ O(x5))

e Foranyj € [m—mq], xm,+j = T[O,ﬂ§] (BS - Xj1) = O(xpd))

Proor. For the first claim, for any i € [m1], one has

1

1
_ A B _
Ajg = 1-2%7, - Zi,,)xr = 0% T p%i@:

re[n]\{i}
where the second step follows from Z‘i“r = 1/2 for all r € [n]\{i},
zfi(l) = zfi(z) =1/10and 3P, = 0 for all other r € [n]\{i, i1, iz}.
By Lemma 3.4, one has

Ai1— A 2
= (SRR o 22 )
l ( A%, Aia ’

1 1 Xj1) +X; 2
= — + — . M +0 ﬁ . bZ'
Aip 10 A%, A
Since D; is uniform over [+ - by, (71— + & - ﬁ) - by] with
! Aix U2 \B, 10 A%, 2

probability mass 8, we have

xi = T[o, ps](Xi(1) + Xi(2) = O(kf5)).

For the second claim, we first analyse the jumping probability
of player m; + j. We have

2

re[n]\{m+j}

_yB

A _ 1
1-23 my+j,r |Xr = Exmﬂ,

Amy+j2 = my+j,r

A _ A _
where the second follows from Zm1+j,m+j =9/20, Zmlﬂ.’r =1/2

B = 0forallr € [n]\{m1+j}.

forallr € [n]\{m1+j,m+j},and2ml+j -

Hence, by Lemma 3.4, we have

o 4= Ami+j1 = Dmy+j,2 + O( i ) by
b= + .
m Afnlﬂ.l Amy+j1
= 1 1 my +O( . ) by
Ami+j1 10 A§n1+j,1 Amy+j1

Given that Dp,, +; is uniform over

1 1 ps
Am1+j,1 10 A§n1+j,1

1
. b2, .
Am1+j,1

Xmy+j = T(o,p81(BS = Xm+j £ O(kf6)).

with mass 8, we have

(14)
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It remains to analyse the jumping probability of player m + j, and
we have

Am+j,2 = (1 - sz;ﬁj,r - z:ﬁ+j,r)xr
re[n]\{m+j}
1 1
= T ot T 5X()
1
= -0 (B5 = xmaj + 2x(1)) + O(kp9).
Here the second step follows from Z‘;“;l+j,m1+j =11/20, Zzﬂ,r =
: : B _ B —
1/2 forr € [n]\{m1 + j,m + j}, 2m+j,j(1) =1/5and 2m+j,r =0 for

any r € [n]\{m + j, j(1)}. The last step follows from Eq. (14).
Now, by Lemma 3.4, one has

Tm+j

:(A’"”’I_A’"”’Zio( P’ )).bz
1

2 .
Am+j, 1 m+J,

+ — +0

1
(Am+j,1 10 A?n+j,1

1Py + 2xj01) £ OPD) ( iz ))'bz

Am+j1

Given that Dy, ; is uniform over

1 1 1) 1 1 19
+ — - Zﬂ ~b2, + = 2'3 'bz
Am+j,1 10 A 1 Am+j1 5 A .

m+j, m+j,
with mass 3, we conclude that
Xm+j = T[o, 8] (xj(1) £ O(kfB9)).
Plugging into Eq. (14), we obtain

Xmy+j = T[o,51(B8 = xj(1) + O(kf5)).

This completes the proof of the second claim. O

4 PTAS

We present a PTAS for computing an e-approximate BNE in an FPA
under the uniform tie-breaking rule.

THEOREM 1.2 (PTAS UNDER UNIFORM TIE-BREAKING). For any
€ > 0,n,m > 2, there is an algorithm that finds an e-approximate
Bayesian Nash equilibrium using O(n* - g(1/€)) time under the uni-
form tie-breaking rule.

Our approach proceeds in the following four steps. Given an
FPA (N, 8B,D,T) where T is the uniform tie-breaking rule, we
first round the bidding space 8B and reduce its size to O(1/€). We
then prune the valuation distribution 9 and work on a weak no-
tion of (e, §)-approximate BNE that relaxes the no-overbidding
requirement. In the third step, we argue the existence of an (¢, §)-
approximate BNE profile over a discretized space and in the final
step, we develop a suitable searching algorithm for (¢, §)-approximate
BNE in the discretized space. Missing proof can be found at the full
version of this paper.

Step 1: Rounding bids. Given a first-price auction with bidding
space B = {bo,b1,....,byp} with 0 = by < by < -+ < by <1,
we define Be = {bo,max, b1, max; - - - » D10e-1, max | 2 follows. First we
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take bo,max = bp = 0. Then for each t € [10e71], let bt max be the
maximum bid in

(t—=1e te
10 10

g =50 (457

if B; is not empty; and set b, max = nil (meaning that we don’t add
an element to B,) if B; is empty. We prove that it suffices to find
an (€/2)-approximate BNE over bidding space Be.

Lemma 4.1. Given any first-price auction (N, 8, D,T), let B¢ be
the rounded bidding space defined above. Then any (e/2)-approximate
BNE of (N, Be, D, T) is also an e-approximate BNE of (N, B, D,T).

Step 2: Rounding distribution.  Given a first-price auction
N, B¢, D,T), we would like to round the value distribution D;
such that it is supported over discrete values, and we truncate off
the probability mass if it is too small. Formally, letting § € (0, 35) be

a parameter to be specified later?, we define Df"s for each i € [n]

as follows:
€8 te
() = Pr [v- = —
P () A T
(t+1)e
10
= max 0,f Pr [vi=v]dv-§
% vi~D;

foreacht € [106_1 — 1], and define

10e~'-1
©= Pr [oi=o0]=1-
v~ D’ =1

€,0 o t_e

Pi Ui}gis,é [Ul a 10] '
That is, the valuation distribution is rounded (down) to discrete
values V¢ := {0,€/10,...,1 — €/10} and truncated at §; the extra
probability mass is put on 0. From now on, we would consider both
continuous and discrete valuation distribution of bidders.

Let D&% = Df’(S X oo X Z);’a. Next we define the notion of
(e, 8)-approximate BNE — a weaker notation of equilibrium with
relaxed constraint on overbidding, and show that it suffices to find
an (€, §)-approximate BNE of the rounded FPA (N, B, D9 T).

Definition 4.2 ((¢, §)-approximate Bayesian Nash equilibrium).
Let n,m > 2. Given a Bayesian FPA (N,BG,DG"S,T), a strategy
profiles = (s1,...,Sn) is said to be an (€, §)-approximate Bayesian
Nash equilibrium ((e, §)-approximate BNE), if for any playeri € [n],
its strategy s; is monotone and at most e-worse than the best response:

UINED [ui(vi;Si(vi)’S—i(U—i))]
> UINED [ui(vi;bs(vi,s—i),s—i(v—i))] -6

Moreover, letting vimax = MaXy,eV,,p;(v;may)>0 Vis the player i
never bids higher than v; max and its total overbidding probability is
at most 6, i.e.,

Pr [si(v,-) > vi,max] =0 and Pr
‘Ui"Die'a Z)iN.Z)ie'

s [si(vi) > Ui] < 4.

We prove that it suffices to find an (e, §)-approximate BNE in the
rounded FPA (N, Be, Ded, T'). In the proof we will perform the
operation of converting a bidding strategy s; over bidding space B¢
and value distribution D; to a (unique) monotone bidding strategy

*Looking head, the parameter § shall be much smaller than e
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s; over the same bidding space Be but a different value distribution
Z)lf such that their induced distributions over 8¢ are the same:

Definition 4.3 (Monotone analogue). Lets = (s1,...,Sn) be a
strategy profile over bidding space B¢ and value distribution D =
Dy X+ XDy, andlet D" = DX --X Dy, be another value distribu-
tion. The monotone analogue of s with respect to D’ (denoted as s™)

is defined as the unique monotone strategy profile s™ = (s{",...,sp")
such that
v,-lzrD;. [s;“(vi) = b] = v,-ErZ),» [si(v,—) = b], foralli € [n] andb € Be.

Lemma 4.4. Given any FPA (N, B¢, D,T), let DE9 be the rounded
distribution defined above. Then the monotone analogue of any (e, §)-
approximate BNE in (N, B¢, D€ S T)isan (2e+225/€) -approximate
BNE in (N, B¢, D,T).

Step 3: Existence of discretized (¢, §)-approximate BNE. Given
a first-price auction (N, 8, D,T), we prove the existence of a (suit-
ably) discretized (e, §)-approximate BNE. We describe this step
using a generic FPA (N, 8, D, T) but will apply it on the rounded
FPA (N, Be, DO T) later. For any j € [0 : m], i € [n], let
pi,j = Pr[si(vi) = bj] be the probability of player i bidding b;
in a strategy profile s.

Lemma 4.5 (Discretization). Let m,n > 2, given any first-price
auction (N, B,D,T) and B = {by,b1,...,bm} with0 =by < by <
-+ < b < 1, there exists an (e, §)-approximate BNE strategy profile
s such that p; j is a integer multiple of
1
£(m) =5
foranyi € [n] and j € [0 : m], where {(m) is some exponential
function of m.

We make use of the following result from [18]. We note this the
major part that we need a uniform tie-breaking rule.

THEOREM 4.6 (THEOREM 3 OF [18]). Let p; € Ap+1 fori € [n],
and let{X; € R™*1}; ¢ 1, be a set of independent (m+1)-dimensional
random unit vectors such that, for alli € [n], j € [0 : m], Pr[X; =
1;] = pi,j. Let z > 0 be an integer. Then there exists another set of
probability vectors {p; € Am+1)ie[n] Such that the following condi-
tions hold:

. |P1] pi,jl = 0(1/z2), foralli € [n] andj € [0: m];
e p; j is an integer multiple of 7 %for allie[n]andje [0:
m];

o Ifpij=0 thenﬁi,j =0;

° Let{)?,- € Rm“}ie[n] be a set of independent (m+1)-dimensional
random unit vectors
such that Pr[X; = 1;]1 = pi j foralli € [n], j € [0 : m].Then

= logz
-3 % =O(h(m)- 55). (15)

. : z

i€[n] i€[n] TV
Moreover, for all i’ € [n], we have

> logz
X; - Xl = skl 1

_ Z i Z i O(h(m) 21/5) (16)
ie[n]\{i"} ie[n]\i'} Ity

where h(m) is some exponential function
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ProoOF oF LEMMA 4.5. Given a BNE strategy profile s of FPA
(N,8B,D,T), we take

z= Q(max {Zh(m)(’e_(’, 2m25_1}) and y =h(m)- 101%.
z
Let {p; € A™1} ie[n] be the probability vectors that correspond to s,
ie, pij = Pr[si(v;) = bj]. Using Theorem 4.6, let {p; € A’"“}ie[n]
be the set of discretized probability vectors, and let 5 be the unique
monotone strategy determined by p (with respect to the same value
distribution D). We prove that s forms an (e, §)-approximate BNE
of the auction. We need to verify that for every player i € [n], (1)s;
is at most e-worse than the best response; and (2) the overbidding
probability is small.
By Eq. (16), for any j € [0 : m], one has

E [ri(ijs—i(v—i))]: ED

‘U_iND_i

[nsi@-)] £y, (17)

U-i~D-j

since the allocation probability (under the uniform tie-breaking) is
determined by the histogram of other players’ bidding histogram,
which shifts by at most y between s_; and 5_; in total variance
distance.

For the utility, we have

[ul(vl)sl v;), 5 (v- t))]

v~ Z)
= E_[@-Si@)) TG, 5 (0-0)]
= B [@ =5i@) TiGi),s-i@)] =y
= B[ - i) Tilsi(on)s-i(@)] 0 (m* -~ +y)
= E_[uis) ss-i(v-1))] ig (18)

The second step follows from Eq. (17), the third step holds since the
TV distance between (v;, s; (v;)) and (v;,5; (v;)) is at most O (m?- %)
The last step follows from the choice of z.

At the same time, we have

;bs(vi,524), 52 (v—;
e D[uz(vz s(vi,5-1),5-i(v-1))

]
< B [ui(oibs(i.5). s-i0-))] + v
5 [ (vi, bs(vi,5-),5-i (U—l))] Y
< B [wiisbs@is-i),s-iw-0)] (19)
Here the first step follows from the bidding histogram shifts by at
most y between s_; and s_; in total variance distance. The last step
follows from the choice of parameters.

Combining Eq. (18) and Eq. (19), we have that s; is at most e-
worse than the best response.

To bound the probability of overbidding, let j(i) € [0 : m] be the
maximum bid that receives non-zero probability under 5;, then it
is easy to verify that bj(;) < vi max: otherwise b;(;) > vi max and
i, j(i) > 0 would contradict with the no overbidding assumption
of BNE on s.



Complexity of Equilibria in First-Price Auctions

Finally we have

v,ErZ)i [?i(vi) > vi] < UierDi [si(vi) > vi] +0 (mz . %)
1

:0+O(m2
z

)<s
since the total variation distance between (vj, s; (v;)) and (v, 5; (v;))
is at most O(m? - %). O

Step 4: Searching for an (¢, §)-approximate BNE. Finally we
provide a simple searching algorithm for (e, §)-approximate BNE
over the discretized space. The key observation comes from the
allocation rule of a first-price auction, i.e., only players with the
highest bid could win the item. We say a strategy profile s lies in
the grid S, for some w € (0,1) if p; j = Pry,~p,[si(vi) = bj]l isa
multiple of w for every i € [n] and j € [0 : m].

Lemma 4.7. Given a first-price auction (N, 8, D, T'), and suppose
there exists at least one (€, §)-approximate BNE over the grid S,,, then

there is an algorithm that runs in n*m - 200/ €®) time and returns
an (2¢, 8)-approximate BNE under the uniform tie-breaking rule.

PRrROOF. Let R = 100(m + 1)/ew. The discretized strategy pro-
files E, € [Am+1]X are defined as follows. A strategy profile

(p1, - --,pR) € E is parameterized by a bid level j* € [0 : m — 1]
and ko, k1, ..., kj € [0: 106_1] such that p; ; is a multiple of w for
alli € [n],j € [0:m],and
R
Pr,m-j = kj9 Vje[o:)"]
r=1

Prom-j =0,Vr € [Rl.jel +1:m~1].
The size of E,, satisfies

R

m+1
[Ewl < (m+1)-(10/ew + 1/w) '(1o/ew+1/w)

< 26(m/5w).

For any strategy profile (p1, . .., pr) € Ey, one can augment with
(n — R) default strategies (1,0, . ..,0) (that is, bidding by = 0 with
probability 1). Slightly abuse of notation, we alsouse E,y C [Ap4+1]"
to denote the augmented strategy profiles. We shall prove

e There is an (2¢, §)-approximate BNE in E, (up to a matching
with players), and
e One can identify the matching efficiently.

Existence of (2¢, §)-approximate BNE. Recall that there exists
an (€, )-approximate BNE strategy s over the grid S,,. Let j* be
the first index over [0 : m] such that ;¢ pi,m—j < 10/€ (¥j < j*)
and ¥ ;e[n] pi,m—j+ = 10/e. If j* = m, then we have s € E,, (up to
a matching between players). If j* < m — 1, then let n* € [n] be
the smallest player such that 3 ;¢[,] pn,m—-j* = 10/€ (w.lo.g. we
assume it takes the equality). Truncate the strategy profile to s’
such that

pij = v,ErZ),»[s{(vi) =bj]
Pi,j j>m—-j*Vv({i=m-j*Ai<n")
= 0 jelltm—-j*-1]v(i=m—-j"Ai>n")
1- ;'7/1:1p£,j' Jj=0.
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It is clear the new strategy s’ € E,, (up to a matching between
players), and for each player i € [n], the new strategy s; is monotone
and the probability of overbidding is no more than § (because we
only move bidding probability to by = 0). It suffices to prove it is at
most 2e-worse than the best response. The key observation is that
the allocation probability of bidding bj with j > m — j* remains the
same, i.e., forany j € [m—j* +1:m]

E  [Li(bj.sZ;(v-i)] =

U_i~D—;

[Ti(bj, s—i(v-1))]

—i

E
v,,wZ)
and moreover, the allocation probability of bidding no more than
bm-j+ is small

E _[r,-(bj;sii(v_i))] <e€/4 Vje[0:m~-j*].

U-i~LD-j

This holds since with probability at least 1 — exp(—5/3¢), there are
at least 5/€ players bid no less than by, j« by Chernoff bound.

Therefore, at any value point v;, if slf(vi) > bp—j+, then s (v;)
s;(v;) and

o _i[ui(vi;3§(vi);sli(v,,-))] - E _i[“i(vi;Si(vi);s,i(v,i))]
(20)
If s/ (0i) < b+, then 5;(0;) < b+, and
B lwioissi(ossl;(v-i)] 2 —e/4
and INE' l,[ui(vi;Si(w);S—i(v_i))] < /4 (21)

Combining Eq. (20) and Eq. (21), for any v; € [0, 1], one has

E - [ui(viss;(vi);sl;(0-1)) = uivis si(vi); s-i(v-))] = —€/2.

U-j~LD-j
Similarly, one can prove
E  [ui(visbs(vi,s’;),s";(v-i))]

_ E __[ui(vi;bS(Ui,S—i),S—i(v—i))] +€/2.

U—_j~

Combining the above two inequalities, we have proved s; is at most
2e-worse than the best response.

Find a matching. Given a strategy profile (p1,...,pn) € Ep, we
show how to define a bipartite matching problem, such that the
(2¢, 6)-approximate BNE are one-to-one correspondence to the
perfect bipartite matching of the graph. The bipartite matching
problem is defined between players [n] and the strategy {pi};c[n]-
We draw an edge between player i; and the strategy p;,, if p;, is
at most 2e-worse than the best response (note the histogram of
other players’ bidding profile is determined) and the overbidding
probability is small at most §. We note the best response can be
computed in O(mn?) time and one can estimate the utility of a bid
in O(n?) time using dynamic programming (similar as [24]). Hence,
it takes n? - O(mn?) time to construct the bipartite graph, and a
perfect matching can be found in time O(n®). O
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