Check for
Updates

Distribution-Free Testing of Decision Lists with a Sublinear
Number of Queries

Xi Chen Yumou Fei Shyamal Patel
Columbia University Peking University Columbia University
New York, USA Beijing, China New York, USA
xichen@cs.columbia.edu feiym2002@stu.pku.edu.cn shyamalpatelb@gmail.com

ABSTRACT

We give a distribution-free testing algorithm for decision lists with
O(nl1/12¢3) queries. This is the first sublinear algorithm for this
problem, which shows that, unlike halfspaces, testing is strictly eas-
ier than learning for decision lists. Complementing the algorithm,
we show that any distribution-free tester for decision lists must
make Q(+/n) queries, or draw Q(n) samples when the algorithm is
sample-based.

CCS CONCEPTS

« Theory of computation — Streaming, sublinear and near

linear time algorithms; Sketching and sampling; Lower bounds

and information complexity; Randomness, geometry and dis-
crete structures.

KEYWORDS

Distribution-Free Property Testing, Decision Lists

ACM Reference Format:

Xi Chen, Yumou Fei, and Shyamal Patel. 2024. Distribution-Free Testing
of Decision Lists with a Sublinear Number of Queries. In Proceedings of
the 56th Annual ACM Symposium on Theory of Computing (STOC °24), June
24-28, 2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3618260.3649717

1 INTRODUCTION

A Boolean function f : {0,1}" — {0, 1} is called a decision list
(or 1-decision list) if there exists a list of pairs (a1, f1), - - ., (@, Pi)
where each ¢; is a literal and f; € {0, 1}, such that f(x) is set to be
pj of the smallest index j such that «; is satisfied by x and is set
to be a default value fr,; € {0, 1} if no literal is satisfied. Decision
lists were first introduced by Rivest [12], and have been one of the
most well studied classes of Boolean functions in computational
learning theory. In particular, the fundamental theorem of Statistical
Learning [13] shows that the VC dimension of a class essentially
captures the number of samples needed for its PAC learning [15],
which gives a tight bound of ®(n) samples for learning decision
lists. Moreover, this bound is tight even if we give the learner query
access to the underlying decision list [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649717

1051

In this paper, we study the distribution-free testing of decision
lists, where the goal of a tester is to determine whether an unknown
function f : {0,1}" — {0,1} is a decision list or e-far from deci-
sion lists with respect to an unknown distribution D over {0, 1}"
(i.e., Pry.p[f(x) # g(x)] > ¢ for any decision list g), given oracle
(query) access to f and sampling access to D. Inspired by the PAC
learning model, distribution-free testing was first introduced by
Goldreich, Goldwasser, and Ron [7] and has been studied exten-
sively [1-6, 9-11]. While testing is known to be no harder than
proper learning [7], much of the work is motivated by understand-
ing whether concept classes well studied in learning theory can be
tested more efficiently under the distribution-free testing model.

In [6], Glasner and Servedio obtained a lower bound of f)(nl/ 31
on the query complexity? of distribution-free testing of conjunc-
tions, decision lists and halfspaces.3 In [5], Dolev and Ron obtained
a distribution-free testing algorithm for conjunctions with O(~/n)
queries. Later in [4], Chen and Xie gave a tight bound of @(nl/ 3) for
conjunctions; their Q(n'/3) lower bound applies to decision lists
and halfspaces as well. For sample-based distribution-free testing,*
on the other hand, Blais, Ferreira Pinto Jr. and Harms [2] obtained
strong lower bounds for a number of concept classes based on a
variant of VC dimension they proposed called the “lower VC” dimen-
sion. In particular, they showed that the distribution-free testing of
halfspaces requires Q(n) samples. Indeed even for general testers
with queries, Chen and Patel [3] recently showed that Q(n) queries
are necessary, which implies that testing halfspaces is as hard as
PAC learning.

To summarize, before this work, there remains wide gaps in
our understanding of distribution-free testing of decision lists. In
particular, it is not known whether sample-based distribution-free
testing requires Q(n) samples, and it is not known, when queries are
allowed, whether there exists a distribution-free tester for decision
lists with query complexity sublinear in n.

Our Contribution. We give the first sublinear distribution-free
tester for decision lists:

!For convenience we focus on the case when ¢ is a constant in the discussion of related
work.

2For distribution-free testers, the query complexity refers to the number of queries
made on f plus the number of samples drawn from D. In many cases we simply refer
to it as the number of queries made by the algorithm.

3Recall that conjunctions are a subclass of decision lists, which in turn are a subclass
of halfspaces.

%A tester is sample-based if it can only draw samples x;, . .., xq ~ D and receive

G, fxg).

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

THEOREM 1.1. There is a two-sided, adaptive, distribution-free
testing algorithm for decision lists that makes O(nt1/12¢3) queries
and has the same running time.’

Theorem 1.1 is obtained by first giving an O(nu/lz/sz)—query
algorithm for monotone decision lists in Section 4 (where a decision
list is said to be monotone [8] if all literals «; in the list are positive)
and then proving a reduction to testing general decision lists.

On the lower bound side, we show that any distribution-free
testing algorithm for decision lists must make Q(+/n) queries, and
must draw Q(n) samples when the algorithm is sample-based.

THEOREM 1.2. Any two-sided, adaptive distribution-free testing
algorithm for decision lists must make Q(~\/n) queries when ¢ is a
sufficiently small constant. The same lower bound also applies to
testing monotone decision lists.

THEOREM 1.3. Any two-sided, sample-based distribution-free test-
ing algorithm for decision lists must draw Q(n) samples when ¢ is
a sufficiently small constant. The same lower bound also applies to
testing monotone conjunctions, conjunctions, and monotone decision
lists.

As a warm-up for our main algorithm behind Theorem 1.1, we
give an optimal distribution-free testing algorithm for total order-
ings, which highlights, in a simplified setting, some of the most
crucial ideas behind the main algorithm for monotone decision lists.
To our knowledge, this is also the first tester for total orderings in
the distribution-free setting. The input consists of 1) oracle access
to a comparison function < over [n] (i.e., one can pick i # j € [n]
to reveal whether i <4 j or j <4 i); and 2) sampling access to a
distribution D over the set of ('2’) many 2-subsets of [n]. The goal
is to determine whether < is a total ordering or e-far from total
orderings with respect to 9. Equivalently, <4 can be considered as
a tournament graph G, over [n] and the algorithm is given oracle
access to it (i.e., one can pick u # v € [n] and query whether (u, v)
or (v,u) is in Gg. The goal is to decide whether G4 is acyclic or
e-far from acyclic with respect to D (i.e., any feedback edge set of
G, has probability mass at least ¢ in D, where a feedback edge set
is a set of edges such that the graph G, becomes acyclic after its
removal).

THEOREM 1.4. There is a two-sided, adaptive distribution-free test-
ing algorithm for total orderings that makes O(\/n/¢) queries. On the
other hand, any such algorithm for total orderings must make Q(+/n)
queries when ¢ is a sufficiently small constant.

The paper is organized as follows. In Section 2, we introduce
the preliminaries, including two birthday-paradox-type lemmas. In
Section 3, we prove the upper bound part of Theorem 1.4, which
serves as a warm-up for the proof of Theorem 1.1. For space rea-
sons, we omit the proofs of the reduction to general decision lists,
Theorem 1.2, and Theorem 1.3. We refer the interested reader to
the Arxiv version of the paper.

Techincal Overview. We start by describing an easy Q(+/n) one-
sided® lower bound for total orderings. We construct a distribution

SFor the running time we assume that standard bitwise operations such as bitwise
AND, OR and XOR over n-bit strings each cost one step.

®Recall that a testing algorithm is one-sided if it never rejects (<, D) when < is a
total ordering.

1052

Xi Chen, Yumou Fei, and Shyamal Patel

m(5k —4)

Figure 1: One-side Lower Bound Construction for Total
Orderings. An edge from x to y indicates that x <5 y. The
solid edges in the figure denote those in the support of Dy.

Do over pairs (<4, D) such that < is far from total orderings
under D. It suffices to show that no deterministic algorithm with
o(4/n) queries can find a violation in (<4, D) ~ Dno (or equiva-
lently, a (directed) cycle in the tournament graph G) with proba-
bility at least 2/3.

To draw (<g, D) ~ Dyo | we first draw a random permutation
7 over [n] and use it partition [n] into n/5 groups, where the
k-th group Vi consists of vertices 7(5k — 4), ..., 7(5k), for each
k € [n/5]. The comparison function < over each group Vj is set
according to Figure 1. Across two different groups, <, is made
to be consistent with a total ordering, namely, 7(x) <5 7(y) if
[x/5] < [y/5]. Finally the distribution D is uniform over edges
{n(5k — 4), 7(5k — 3)}, {m(5k — 3), x(5k — 2)}, {n(5k — 2), =(5k —
1)}, {x(5k — 1), m(5k)}, {n(5k), = (5k —4)} of each group k € [n/5].
We write Ej. to denote the set of these five edges in the k-th group
Vi

Clearly, to make <, into a total ordering, one must change at
least one edge in each Eg, so <4 is (1/5)-far from total orderings.
On the other hand, in order for a one-sided algorithm to reject,
it must find a cycle in Vi for some k. Using a birthday paradox
argument, with only o(+/n) samples, edges sampled from D most
likely lie in distinct groups. When this happens, it is unlikely for the
algorithm to find a cycle using o(+/n) queries to the black-box
oracle. Our lower bound for decision lists follows a similar high-
level scheme, but with extra care to handle the case where the tester
queries a string x with large support (ignoring some details, testing
total orderings can be thought of as testing decision lists with the
restriction that the algorithm can only query the function f on
strings x with support size 2).

We now use instances in Dyo to discuss ideas behind our
O(+/n/e)-query tester for total orderings. In particular, consider
a one-sided tester that aims to find a violation (i.e., a cycle in G4)
in (<g, D) from Dyo. It must draw Q(+/n) samples from D. After
doing so, it is likely to have drawn two edges from the same Ej,
say {m(5k — 4,5k — 3)} and {n(5k — 2,5k — 1)} for some k € [n/5].
If the algorithm continues to query the rest of four edges between
these four vertices, then a cycle will be found as desired. That said,
the algorithm does not know which pair of edges sampled from

7 As it will become clear soon, partitioning [n] into triangles would already yield the
Q(+/n) one-sided lower bound. The more involved construction of Do here poses
extra challenges to motivate discussion on some of the most crucial ideas behind our
testing algorithm for total orderings.

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries

D lies in the same group, and working on all pairs would require
Q(n) queries.®

To circumvent this issue, we create a “sketch” to attack (<4, D)

from Do as follows:

(1) Sample /n vertices from [n] uniformly at random; sort
theminto | <45 5 <5 *+* <g tm using O(+/nlogn)
queries on <g;

(2) Partition [n] into blocks By, . .
k € [n] such that running binary search of k on 4, . ..
sandwiches itin f; <4 k <4 fi+1.

., B,/ where B; consists of all

bm

We note the following properties of the sketch:

(1) We cannot afford to compute the blocks but given any
k € [n], it is easy to find the block B; that contains k with
O(log n) queries (by just running binary search);
(2) With high probability (over samples used to build the
sketch), every B; is of size O(y/n).
With this sketch in hand, we can use it to find a violation in (<4, D)
from Dy efficiently by (1) sampling O(~/n) edges from D so that
with high probability two edges {u, v} and {u’, v’} from the same
group are sampled; (2) find the block of every vertex in the O(+/n)
edges sampled in (1); let U denote this set of O(~/n) vertices; (3)
for every block B; and every two vertices in U N B;, query <4 on
them and reject if a cycle is found within U N B; for some i. Given
that most likely u, v, u’, v’ lie in the same block, the algorithm finds
a violation with high probability; its query complexity is at most
O(\/ﬁ) because |U N B;| can be bounded from above by O(logn)
with high probability. So the savings come from the fact that we
only query edges between vertices in the same block.

The algorithm for the general case (rather than just dealing with
instances from Do) follows the same high level idea. It starts
by building a sketch but the vertices ¢, ..., t’\/ﬁ used to build it
are no longer sampled uniformly but from a natural distribution
D* over [n] defined from D: to draw £ ~ D*, one first draws an
edge from D and then set ¢ to be one of its two vertices uniformly.
Accordingly, the second property of the sketch becomes that every
B; has probability mass at most O(1/+/n) in D*. With such a sketch
in hand, we consider cycles in <4. Since <4 is e-far from total
orderings under D, we can divide cycles in G, into two types:
those with vertices lying in multiple blocks (called long cycles) and
those that are completely contained within a single block (called
local cycles), and consider two cases: the distance to total orderings
mainly comes from long cycles or local cycles. To deal with the
case where there are many violating long cycles, we show that
{u,0} ~ D satisfiesu <5 v,u € B;,v € Bjbuti > j with probability
Q(¢). As a result, drawing O(1/¢) samples from D and finding
buckets of their vertices leads to a violation with high probability.
The case of local cycles, on the other hand, is the case with instances
of DNo- To this end we use a birthday paradox lemma in Section 2
to show that with O(y/n) samples U from D*, some U N B; contains
a cycle with high probability, which can be found by brute-force
search of each U N B;.

Unfortunately, several aspects of this approach break when at-
tempting to adapt the algorithm to monotone decision lists. Note

8Note that if the algorithm receives two samples that are consecutive in the same
group, then it certainly knows this because they share a vertex; the construction,
however, makes sure that the triangle they form is never a cycle.

1053

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

that a monotone decision list f : {0,1}" — {0, 1} naturally induces
an ordering over strings x € {0, 1}" based the rule in x that fires
in f. That said, in this setting, one can only compare two strings
x,y with f(x) # f(y):If f(x Vy) = f(x), then the rule that fires in
x is ranked higher. To accommodate this in the sketch, we bucket
elements of [n] into blocks By, ..., B N that now have alternating
values, i.e. all indices k € B; have that f(e;) = i mod 2, where
ex € {0, 1}" denotes the string in which the only 1-entry is k. How-
ever, even for a monotone decision list f, blocks By, ..., B N ofa
sketch no longer guarantee that all elements in B; are ranked higher
than those in Bj41; only a weaker guarantee holds that all elements
in B; are ranked higher than those in B; for all j > i +1.

The primary challenge when testing monotone decision lists
is determining what constitutes a violation. In the case of total
orderings, each comparison provides a concrete bit, indicating that
one element is larger than the other under <4, and a violation
is clearly defined as a cycle. However, in the case of a monotone
decision list, querying a string x with, say, f(x) = 0, only tells the
algorithm that some zero rule fired in x is ranked higher than all
the one rules fired in x. To address this, we design a procedure
that determines the value of the maximum element k € supp(x).
However, this procedure is effective only for blocks B; that contain
a small number of indices, say n% for some small constant § > 0
(the number of queries made by the algorithm is linear in n’ so
is efficient only when § is small). Once we identify the maximum
elements, cycles in an associated hypergraph naturally leads to
violations. As a simple example, let x and y be two strings with
f(x) =0and f(y) = 1. Let k, £ be maximum elements in x and y,
respectively. If in addition we have ¢ € supp(x) and k € supp(y),
then we get a violation because being the maximum element in x,
k should be ranked higher than ¢ but on the other hand, y tells us
that ¢ is ranked higher.

Nevertheless, this procedure is insufficient for testing since many
blocks in the sketch may have more than n® indices. For instance,
if f is a conjunction, there are only 2 blocks and at least one must
be large. To handle such large blocks, we prove that if f is a de-
cision list and B; is a large block, then most elements of B; are
smaller than those in B;;1. If we could check that this property
holds for a general f, which may not be a decision list, then we
are in a similar setting to that of the total ordering case and can
easily control violations involving elements from any large block.
Verification of this property turns out to be somewhat tricky, but
we demonstrate that it can be achieved with an argument similar in
spirit to Dolev and Ron’s conjunction tester, but crucially modified
to use an asymmetric version of the birthday paradox.

Finally to extend our algorithm to test general decision lists, we
note that given an arbitrary decision list f, if we know the default
string r, then f(x @ r) is now a monotone decision list. While it is
not clear how to find r exactly, we show that it suffices to find a
string whose firing rule has sufficiently low priority in the decision
list. We can then draw many sample strings and try each of them
out as the candidate default string r.

2 PRELIMINARIES

Notation. Given a positive integer n, we write [n] to denote
{1,...,n}. Given two integers a < b, we write [a : b] to denote

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

the set of integers {q,...,b} between a and b. Given a probabil-
ity distribution D over a finite set S, we write D(p) to denote the
probability mass of p € S in D, and write D (P) for a given subset
P C Sto denote 3 ,cp D(p). We will denote by supp(D) the set
{p € S : D(p) > 0}. Throughout the paper, drawing a set T of m
samples from D always means to draw m independent samples
from D (with replacements) and take T to be the set they form (so
in general |T| could be smaller than m).

For any string x € {0, 1}", let supp(x) denote the set {i € [n] :
X 1}. Given two strings x and y € {0,1}", we write x V y
to denote the bitwise OR of x and y, i.e, x Vy € {0,1}" with
(xVy)i =x; Vyjforallie [n],and x @ y to denote their bitwise
XOR, with (x ® y); = x; ® y; for all i € [n]. Given i € [n] we write
e; to denote the string in {0, 1}" such that (e;); = 1 and (e;); = 0
for all j # i. Given a probability distribution D over {0,1}" and
r € {0,1}", we write D & r to denote the distribution over {0, 1}"
withD @r(x)=D(x@®r).

Given f : {0,1}" — {0,1}, x € {0,1}" is a 1-string of f if
f(x) =1and a 0-string if f(x) = 0.

Monotone Decision Lists. A function f : {0,1}" — {0, 1} is said
to be a monotone decision list if it can be represented by a pair
(7, V)(), where 7 is a permutation over [n] and v € {0, 1}”+1, such
that f(x) = v; if j is the smallest integer in [n] such that x,(;) =1,
and f(x) = vp+1 when x = 0. Variable i € [n] is said to be a
b-rule variable if v; = b for j = zr_l(i), where b € {0, 1}. We write
MonoDL to denote the class of monotone decision lists.

Given r and x € {0, 1}", we write min,; (x) to denote the smallest
Jj € [n] such that x;(;) = 1 and it is set to n + 1 when x = 0. Let
f be an arbitrary Boolean function and x, y be two strings with
f(x) # f(y). We write x >¢ y (or y <f x) if f(x vV y) = f(x). Note
that when f is a monotone decision list, we have x > y if and only
if ming (x) < ming(y). As such, for a decision list > naturally
corresponds to the ordering of the rules in the decision list.

Decision Lists. A function f : {0,1}" — {0,1} is said to be a
decision list if g := f(x @ r) is a monotone decision list for some
r € {0,1}". Equivalently, f is a decision list if it can be represented
by a triple (x, p1, v), where 7 : [n] — [n] is a permutation over
[n], u € {0,1}", and v € {0,1}"**!, such that f(x) = vj if j is the
smallest integer in [n] such that x;(;) = pr(;), and f(x) = Va1
if no such j exists. Similarly, we say variable i € [n] is a b-rule
variable if vj = b for j = 771(i). Given 7, and x € {0, 1}", we let
min,, (x) denote the smallest j with x; () = p1z(j), and it is set to
n+ 1if no such j exists.

Distribution-Free Testing. We review the model of distribution-
free property testing. Let f, g : {0, 1} — {0, 1} denote two Boolean
functions and P denote a distribution over {0, 1}".

We define the distance between f and g with respect to D as

distp(f.g) = Pr. [f(x) # g(x)].

Given a class € of Boolean functions (such as the class of (monotone)
decision lists), we define

disty (f,€) = ‘g‘?é‘ (distp (f, g))

Note though that the representation is not unique in general.

1054

Xi Chen, Yumou Fei, and Shyamal Patel

as the distance between f and € with respect to . We also say that
f is e-far from € with respect to D for some € > 0 if distp (f, €) >
€. Now we define distribution-free testing algorithms.

Let € be a class of Boolean functions over {0, 1}". A distribution-
free testing algorithm ALG for € has access to a pair (f, D), where
f is an unknown Boolean function f : {0,1}"* — {0,1} and D is
an unknown probability distribution over {0, 1}", via

(1) a black-box oracle that returns the value f(x) when x €

{0, 1}" is queried; and
(2) a sampling oracle that returns a sample x ~ D drawn inde-

pendently each time.
The algorithm ALG takes (f, D, ¢) as input, where ¢ > 0 is a dis-
tance parameter, and satisfies:

glg If f € €, then ALG accepts with probability at least 2/3; and

2) If f is e-far from € with respect to D, then ALG rejects with
probability at least 2/3.

We say an algorithm is sample-based if it can only receive a
sequence of samples z1,...,z4 ~ D together with f(z1),..., f(zq).
Birthday Paradox Lemmas. As highlighted earlier in the sketch
of our algorithms, birthday paradox arguments play an important
role in the analysis. In particular, we will need two birthday paradox
lemmas, one for bipartite graphs and one for hypergraphs. The
bipartite graph lemma (Lemma 2.1 below) has been previously
incorporated as a crucial component of the analysis in [5] for the
distribution-free testing of monomials, though without an explicit

statement. We omit the proofs and include them in the full version
of the paper.

Lemma 2.1. LetG = (U, V, E) be a bipartite graph, with probability
distributions p on U U {#} and v on V U {#}. Assume that any vertex
cover C = C1 U Cy of G, where C; € U and Cy C 'V, has p(C1) +
v(Cz) > €. Let S be a set of m independent samples from y and S’ be
a set of m’ independent samples from v, with m and m’ satisfying
m-m’ > 100|U|/e? and m,m’ > 100/e. With probability at least
0.99, there exist x € S and y € S’ such that (x,y) is an edge in G.

Lemma 2.2. Let G = (V,E) be a k-uniform hypergraph and let p
be a probability distribution over V.U {#} such that any vertex cover
C of G has u(C) > . Let S be a set of m samples from pi with

10k2|v|k-D/k
mz —.
£
Then S contains an edge in G with probability at least 0.99.

3 WARM-UP: TESTING TOTAL ORDERINGS

In this section, we present a distribution-free testing algorithm for
total orderings as a warm-up to demonstrate some of the ideas (such
as the use of sketches and the classification of cycles into long cycles
and local cycles) that will play important roles in our algorithm for
monotone decision lists.

In the problem of testing total orderings, we are given query
access to a comparison function <, over [n] and sampling access
to a distribution D over (['21]). For any u # v € [n], the tester can
query <4 on {u, v} to reveal if u <5 v or v <45 u. Given <4, D and
¢, the goal of the tester is to

(1) accept with probability at least 2/3 if the comparison
function <, is a total ordering; and

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 1 SKETCH(<¢, D, €)

Algorithm 2 FINDBLOCK (<4, S, u)

Input: Oracle access to <4, sampling access to D and ¢ > 0
1: Draw O(4/n/e) samples D* and let S be the set of elements
sampled

. Sort elements in S into s(l), .. .,s(k) by running MergeSort
with <4, where k = |S| > 1

. Query {s s(*D} and reject if sV >, s(™*D for any
ielk-1]

: return S = (s(l),...,s(k))

(2) reject with probability at least 2/3 if < is e-far from total
orderings with respect to D, i.e. for any total ordering <

Pr

s D[[u <gsvandu >T0] or [u >svand u <Tv]] > e,
u,o}~

We will prove the following theorem for the distribution-free
testing of total orderings:

THEOREM 3.1. There is a distribution-free tester for total orderings
with O(\/n/¢) queries.

We remark that our tester is optimal up to logarithmic factors.
Indeed one can easily modify the lower bound proof for decision
lists presented in the Arxiv version to show that any tester must
make Q(+/n) many queries when ¢ is a sufficiently small constant.

3.1 Sketches

The backbone of our tester for total orderings (as well as monotone
decision lists in Section 4) are sketches, which, roughly speaking,
can help us compare elements that are far in the ordering.

Definition 3.2 (Sketch). A sketch S = (sV,...,s(®))isa tuple of
distinct elements from [n] for some k > 1. We say S is consistent
with a comparison function < if s <5 s+ forall i e |k -1].

Note that when <, is a total ordering, one can infer from a
consistent sketch S that s(?) <g s() forall i < j. This, however,
does not hold for general comparison functions.

The procedure SKETCH described in Algorithm 1 efficiently builds
a sketch by simply sampling and sorting elements drawn from D*,
where D* is a distribution over [n] defined using D as follows

L l P .
D) =5 Z D{i,j}), foreachice [n].
J#i

Note that sampling access to D* can be simulated using sampling
access to D, query by query, by first sampling from D and returning
one of the two elements uniformly at random.

We summarize performance guarantees of SKETCH in the follow-
ing lemma:

Lemma 3.3. SKETCH makes O(\/ﬁ/s) queries. It rejects or returns a
sketch consistent with <g.

Suppose that < is a total ordering. Then SKETCH always returns a
sketch S = (s(l), e, s(k)) that is consistent with <. Moreover, with
probability at least 1 — 0,(1), S satisfies for alli € [0 : k],

(i+1)] - 100¢logn

i
Pr s()<gu<gs

: 3.1
B (3.1)

1055

Input: Oracle access to <4, asketchS = (s(l), e, s(k)) consistent
with <, and u € [n]

. return i if u = s() for some i € [k]

: return 0 if u <5 s(U; return k if s <, u

: Set upper « k and lower « 1

: while upper — lower > 1 do

Set mid « | (upper + lower)/2]

If s (mid) >4 U, set upper «— mid; otherwise, lower « mid

: end while

: return mid

® N G W N =

where the event above isu <4 s wheni =0 andiss® <o u when

i=k.

We omit the proof for brevity and refer the interested reader to
the Arxiv version.

Given a sketch S that is consistent with a total ordering <,
FINDBLOCK (<4, S, u) (described in Algorithm 2) returns the unique
i € [0: k] such that

1) i=0ifu<s s

(2) i € [k —1] if either u = s@ or s <4 u <5 s+ and

(3) i =k if either u = s(M) or s <, u.

Indeed, FINDBLOCK returns such an i for u even when <4 is an
arbitrary comparison function.

We summarize its performance guarantees below:

Lemma 3.4. FINDBLOCK(<q,S,u) is deterministic and makes
O(logn) queries. It always returns an i € [0 : k] that satisfies the
conditions above for u.

Given any <, and a sketch S consistent with <, FINDBLOCK
(which is deterministic) uses S to induce a partition of [n] into
blocks. We say u € [n] lies in the ¢-th block (with respect to S) for
some ¢ € [0 : k] if £ = FINDBLOCK (<, S, u).

3.2 The Order Graph and Classification of
Cycles

We now move to discuss how we will reject comparison functions
that are far from total orderings. Towards this goal, we define the
order graph and introduce some notation:

Definition 3.5 (Order graph). Given a comparison function <,
the order graph G, is an orientation of the complete graph K,
where edge (u,v) is oriented towards v if u <, v. The distribution
D naturally induces a distribution over edges of G4: the probability
mass of an edge (u,v) in Gy is given by D ({u,v}). For convenience
we will still use D to denote the distribution over edges of G5 and
write D (R) to denote the total probability of a set of edges R in G-

It’s easy to see that if the order graph is acyclic if and only if <4
is a total ordering. Moreover, we can connect distance between <
and total orderings with feedback edge sets of G-

Lemma 3.6. If <. is e-far from total orderings with respect to D,
then any set R of edges of G, such that G is acyclic after removing
R (ie, R is a feedback edge set) must satisfy D(R) > ¢.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 3 TEsSTLONGCYCLES(<¢, D, ¢, S)

Algorithm 4 TEsTLOCALCYCLES(<4, D, &, S)

Input: Oracle access to <4, sampling access to D, ¢ > 0 and a
sketch S consistent with <
1: Draw 100/¢ samples from D
: For each {u, v} sampled with u < v, reject if FINDBLOCK (<«
,S,u) > FINDBLOCK (<, S, 0)
: accept

For brevity, we omit the proof.

Consider (<, D) such that < is e-far from total orderings with
respect to . We use a sketch S to classify cycles of O into two
types: long cycles and local cycles.

Definition 3.7 (Long and local cycles). Given a sketch S
(sM, ... s, we say a directed edge (u,v) in G5 (which means
that u <4 v) is a long edge (with respect to S) if

FINDBLOCK (<4, S, u) > FINDBLOCK (<, S, v).

A cycle in G is said to be a long cycle if it contains at least one
long edge. A cycle in Gy is said to be a local cycle if it does not
contain any long edges.

Given that every cycle is either long or local, we have the fol-
lowing corollary of Lemma 3.6:

Corollary 3.8. Suppose < is e-far from total orderings with respect
to D, and S is a sketch that is consistent with <. Then either any
feedback edge set R for long cycles of G5 has D(R) > ¢/2, or any
feedback edge set R for local cycles of G5 has D(R) > ¢/2.

TESTLONGCYCLES (see Algorithm 3) is the procedure that helps
reject (<4, D) when D(R) > ¢/2 for any feedback edge set R of
long cycles of G4 It simply draws edges from D and rejects when
a long edge is found. Given that a total ordering has no long edges,
TESTLONGCYCLES is trivially one-sided. Its performance guarantees
are stated in the following lemma:

Lemma 3.9.
queries.
When < is a total ordering, TESTLONGCYCLES always accepts.
Suppose that any feedback edge set R for long cycles in G satisfies
D(R) > ¢/2. Then TESTLONGCYCLES rejects with probability at least
0.99.

TeSTLONGCYCLES(<4, D, e,S) makes O(logn/e)

Proor. Note that the set of long edges forms a feedback edge
set for long cycles. It follows that we sample a long edge on line 1
with probability at least 1 — (1 — £/2)100/¢ > 099, O

Next we consider the case when any feedback edge set for local
cycles of G5 has mass at least /2. It follows from the definition that
acycle Cis local if and only if all of its vertices lie in the same block,
i.e., FINDBLOCK(<, S, u) is the same for all u € C. The following
lemma motivates the procedure TEsTLocALCyCLEs for this case. To
state the lemma, we let H denote the following undirected bipartite
graph: the left side of H consists of edges of G; the right side
of H consists of vertices [n] of G5; (u,0) and w has an edge iff
0 <gWw <s uand

FINDBLOCK (<, S, #) = FINDBLOCK (<, S, 0)

= FINDBLOCK (<4, S, W).

1056

Input: Oracle access to <4, sampling access to D, ¢ > 0 and a
sketch S consistent with <4

: Draw O(+/n/¢) edges S from D and draw O(+/n/¢) elements T
from D*

: For every element v in T or an edge of S, run FINDBLOCK(<
,S,u).

. reject if any block has more than 1000 log n elements from T

: for every (u,v) € Sand w € T such that FINDBLOCK puts them

in the same block do

Query {u, w} and {v, w} and reject if u, v, w form a directed

triangle in G4

. end for

: accept

Combining with u <4 v as (u,v) is an edge in G, an edge between
(u,v) and w in H implies that u, v, w form a directed triangle, a
violation to <4 being a total ordering.

We are now ready to state the lemma:

Lemma 3.10. Suppose that any feedback edge set R for local cycles
in G has D(R) > €/2. Then any vertex cover C = C1 UCy of H must
have D(Cy) + D*(Cy) = ¢/2.

We omit the proof and refer the interested reader to the Arxiv
version.

Based on Lemma 3.10, TEsSTLocALCYCLES (Algorithm 4) mimics
the bipartite birthday paradox Lemma 2.1 by drawing y/n/e samples
S from D and /n/e samples T from D*. Then for any edge (u, v)
in S and any vertex w in T with all u, v, w lying in the same block,
we query {u, w} and {v, w} to see if they form a directed triangle.
Naively, however, this could lead to Q(n) queries (e.g., consider
the worst case when all elements lie in the same block). However,
by Lemma 3.3, this is unlikely to occur when <, is truly a total
ordering so TESTLOCALCYCLES rejects when too many samples lie
in the same block. This is where the algorithm makes two-sided
errors though.

We state performance guarantees of TESTLoCALCYCLES in the
following lemma:

Lemma 3.11. TestLocALCycLES makes O(\/n/¢) queries.

Suppose that < is a total ordering and S is a sketch that is consis-
tent with <, and satisfies (3.1). Then TESTLOCALCYCLES accepts with
probability at least 1 — 0, (1).

Suppose that any feedback edge set R of local cycles in G5 has
D(R) > ¢/2. Then it rejects with probability at least 1 — 0, (1).

ProoF. The query complexity follows from the fact that for any
edge (u,v) € S, there are at most O(log n) many w € T that lie in
the same block; otherwise the procedure rejects on line 3. So the
number of potential triangles that we need to check is no more
than O(|S|logn) = O(+/n/e).

The no case follows directly from Lemma 3.10 and Lemma 2.1.

For the yes case, we assume that the sketch S satisfies

Pr
u~D*

()| < 100¢log n

vn

sO < u<ys

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 5 TESTTOTALORDERING(<¢, D, €)

Algorithm 6 PREPROCESS(f, D, €)

Input: Oracle access <4, sampling access to D and ¢ > 0
1: Run SKETCH(<4, D, ¢) and reject if it rejects; otherwise let S
be its output

: Run TESTLONGEDGES(<4, D, ¢, S) and reject if it rejects

: Run TESTLOCALCYCLES (<, D, €, S) and reject if it rejects

: accept

for all ¢£. Note that we only reject when T contains more than
1000 log n points from some block. For the ¢-th block, by a Chernoff
bound, the probability of having more than 900 logn points u € T
with s(© <gU<g s is at most n™%. So by a union bound, this
does not happen with probability 1 — 0, (1) for all blocks, in which
case the number of points sampled in each block is no more than
900logn + 1 < 1000log n even after counting the left end point of
the block. O

3.3 Putting It All Together: An O(v/n/¢) Tester
for Total Orderings

We now have everything we need to analyze our testing algorithm
TESTTOTALORDERING.

Proor oF THEOREM 3.1. The query complexity is trivial.

When <, is a total ordering, SKETCH always returns a sketch S
consistent with <, and S in addition satisfies (3.1) with probability
at least 1 — 0,(1). TESTLONGEDGES never rejects as it is one-sided.
On the other hand, when S satisfies (3.1), by Lemma 3.11, TEST-
LocAaLCycCLES accepts with probability at least 1 — 0,(1). So the
algorithm accepts with probability 1 — 0, (1) overall.

Suppose now that <4 is e-far from total orderings with respect
to D. Assume without loss of generality that SKETCH returns a
sketch S consistent with <4; otherwise we are trivially done. By
Corollary 3.8, either any feedback edge set of long cycles in G4
has mass at least ¢/2, in which case TESTLONGCYCLES rejects with
probability at least 0.99 by Lemma 3.9, or any feedback edge set of
local cycles has mass at least €/2, in which case TESTLOCALCYCLES
rejects with probability at least 1 — 0,(1) by Lemma 3.11. So the
algorithm rejects with probability at least 2/3 overall. O

4 TESTING ALGORITHM FOR MONOTONE
DECISION LISTS

In this section, we present a distribution-free testing algorithm
for testing monotone decision lists with O(n'1/12/¢2) queries and
running time.

THEOREM 4.1. There is a two-sided, adaptive distribution-free test-
ing algorithm for monotone decision lists that makes O(n'1/12 /¢2)
queries and has the same running time.

A testing algorithm for general decision lists will follow via a
direct reduction, while losing an extra factor of 1/¢. We will focus
on the query complexity of the algorithm in this section; its time
complexity upper bound follows from a standard implementation.

Similar to some of the procedures from the last section, many
of the procedures in this section (especially those in Sections 4.1
and 4.2) are developed to extract structural information about an

1057

Input: Oracle access to f : {0,1}" — {0, 1}, sampling access to D
and e >0

. Draw a set T* of n179/2 /¢ points from D and let T « T*\ {0"}

. accept if T is either empty, contains 0-strings only, or contains
1-strings of f only

. if SKETCH(f, T) = nil then

reject

. else (letting S = (s<1), e s(k)) be the sketch returned)

Run FINDBIGBLOCKS(f, D, ¢, S) to obtain £ C [0 : k + 1]

return (S, £)

: end if

[B S e

unknown input in the yes case, here a monotone decision list
f:{0,1}" — {0,1}. So we encourage the reader to think about
this case when going through them. Of course, these procedures
will be executed on functions that are not monotone decision lists.
This is why many of the lemmas about performance guarantees of
these procedures consist of three parts: 1) the query complexity; 2)
the performance guarantees when the function f is a monotone
decision list; and 3) the performance guarantees when f is just an
arbitrary function.

4.1 Preprocessing

Fix § > 0 to be a positive constant, which will be set to be 1/6 at
the end to optimize the query complexity of the overall algorithm.

The preprocessing stage, PREPROCESS(f, D, ¢), is described in
Algorithm 6. At a high level, it either outputs a pair (S, L), or tells
the main algorithm that there is already enough evidence to either
accept or reject the input. Here S is a sketch consistent with f to be
defined next, which can be used to partition the set of variables [n]
into blocks (using a procedure with the same name FINDBLOCK),
and L contains some useful information about sizes of these blocks.

PREPROCESS starts by drawing a set T* of nl=0/2/¢ many inde-
pendent samples from D, and uses T := T* \ {0"} to build a sketch
S of the underlying function f (except when T is either empty,
consists only of 0-strings of f or only 1-strings of f, in which case
the main algorithm accepts since either O has most of its mass on
0", or f is very close to the all-0 or all-1 function).

We define sketches as follows:

Definition 4.2. A sketchSisatuple S = (s, ..., s®)yof strings
in {0, 1}" for some k > 2, such that s(©) # 0" for all ¢ € [k]. We
say a sketch S is consistent with a function f : {0,1}" — {0, 1} if

£ # D) and s = 5D forall £ € [k - 1].

To describe SKETCH(f,T) we start with the following sim-
ple deterministic procedure based on binary search, called
FINDREP(f, X, Y) (Algorithm 7), where X, Y C {0, 1}" are two sets
and X is nonempty. The goal of FINDREP is to find a string x* € X

that satisfies
zeXUY

Note that such a string always exists when f is a monotone decision
list.

flx*v \/y =

yey

(4.1)

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 7 FINDREP(f, X, Y)

Input: Oracle access to f, two sets X,Y C {0,1}" and X is
nonempty
1: Let b « f(V,exuy 2) and R « X
: while |R| > 1 do
Partition R into Ry U Ry such that |Ry|
[R]/2]
if f(Vzer,uy 2) = b then
Set R «— R;
else
SetR «— Ry
end if
. end while
10: return the string in the singleton set R

= [|R[/2] and |Ry| =

R B A

Algorithm 8 SkeTcH(f, T)

Input: Oracle access to f and T C {0,1}" \ {0"} has at least one
0-string and one 1-string of f
: Let m IT|, i <« A{xeT:f(x)=0} and T
{xeT:f(x)=1}
: for i from 1 to m do
if both Ty and T are nonempty then
Let b = f(Vxeur,x); Set x() — FINDRER(f, Ty, T;)
and Tj, « T \ {x(i)}
else
Let b be such that Ty, # 0; Set x() —an arbitrary string
in Tb and Tb — Tb \ {x(i)}
end if
: end for
: Divide [m] into a disjoint union of nonempty intervals [m]
I U -+ U I such that
i) f(xD)=f(xU))forall¢ e [k]andalli,j eI,
ii) f(xD) # f(xD) forall ¢ € [k—1],i €l and j € Ip1
: Checkif k > 2and S = (s(l), . ..,s(k)) is consistent with f,
where s(0) Viel, %
return S if so and return nil otherwise

—

—_
=)

-

1:

We summarize properties of FINDREP in the following lemma:

Lemma 4.3. FINDREP(f,X,Y) is deterministic and makes
O(log |X|) queries on f.

When f is a monotone decision list, INDREP always returns an
x* € X that satisfies (4.1).

On the other hand, when f is an arbitrary function, FINDREP always

returns an x* € X but x* does not necessarily satisfy (4.1).

We now describe the procedure SKeTcH(f,T) (Algorithm 8),
where T C {0,1}" \ {0"} contains at least one 0-string and at least
one 1-string of f. We summarize its properties below:

Lemma 4.4. SKetcH(f, T) is deterministic and makes O(|T|log |T|)
queries on f.

When f is a monotone decision list, it always returns a sketch S
that is consistent with f.

1058

Xi Chen, Yumou Fei, and Shyamal Patel

When f is an arbitrary function, it returns either nil or a sketch S
and in the latter case, S is always a sketch consistent with f.

We omit the proof. It is clear from Lemma 4.4 that if SKETCH
returns nil in PREPROCESS, we know for sure that f is not a mono-
tone decision list and thus, should be rejected. When SKETCH re-
turns a sketch S in PRePrROCESS(f, D), we know it must be con-
sistent with f and PREPROCESS continues by running a procedure
called FINDB1GBLOCKS(f, D, ¢, S), which uses a procedure called
FINDBLOCK(f, S, x) that plays a similar role as the FINDBLOCK in
the last section.

To motivate FINDBLOCK, we make the following observation. Let
f be any function and S be a sketch that is consistent with f. Given
x € {0,1}", there must exist an index £ € [0 : k + 1] such that one
of the following three conditions holds:

(1) either £ € [2: k — 1] such that f(x) # f(s{"D) = f(s(+D)

and s(¢-1 > x>y s(“’l);

(2) or £ € {0,1} such that f(x) # f(s"*V) and x > s+,

(3) or £ € {k,k+ 1} such that f(x) # f(s(f’l)) and s(¢-1 >r X
Furthermore, ¢ is unique when f is a monotone decision list.

The deterministic procedure FINDBLock(f, S, x) (Algorithm 9)
finds such an ¢ efficiently for any given string x € {0, 1}":

Lemma 4.5. FINDBLock(f,S,x) is deterministic and makes
O(log k) queries. It always returns an € € [0 : k+1] forx as described
above, which is unique when f is a monotone decision list.

Using FINDBLOCK we partition variables [n] into blocks (note
that we cannot afford to compute these blocks but they are well
defined given that FINDBLOCK is deterministic):

Definition 4.6 (Blocks). For fixed f and S, we define the ¢-th block
By s,¢ with respect to S as

Brse= {i € [n] : FINDBLOCK(f, S, ;) = t’},

for each £ € [0 : k + 1]. We usually write B to denote By, g, when
f and § are clear from the context.

Before moving to FINDBIGBLOCKS, we record a lemma about
S when f is a monotone decision list. The definition below and
Lemma 4.8 will only be used in the analysis of the yes case.

Definition 4.7. Let f be a monotone decision list and S be a sketch
consistent with f. We say S is scattered if we have

10¢elogn

xErD [FINDBLOCK(f, S,x)=k+1| < iz

and for every ¢ € [k], we have (noting that f(x) = f(s(f)) if
FIiNDBLock(f, S, x) = ¢)

Plb [FINDBLOCK(f, S,x)=¢tand 3i € [n] : f(e;) # f(x)

10elogn

andx>fei >fs(€)]£ o2
-

Lemma 4.8. Let f be a monotone decision list, and T* be a set of
nl=6/2/¢ strings drawn from D (as on line 1 of PREPROCESS(f, D, €)).
The probability that PREPROCESS(f, D, €) returns a sketch S that is
not scattered is 0, (1) over the randomness of T*.

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries

Due to space constraints, we omit the proof here. The preprocess-
ing stage ends by running FINDBIGBLOCKS(f, D, ¢, S) (Algorithm
10):

Lemma 4.9. FINDBiGBrocks(f, D, ¢, S) makes O(n'=9 /%) queries
and it always returns a subset L C [0 : k + 1]. With probability at

least 1 — 0,(1), L satisfies the following properties'®:

(1) 1£] < nl°;
(2) Let N(L) denote the set of neighboring blocks of L:

N(L)={t'e[0:k+1]\L:|¢'—¢|=1forsomet € L}.
Then we have

Pr [FINDBLOCK(f, S,x) e N(L)| <£0.1e.
x~D

(3) Foreveryt € [0:k+1]\ L, we have

S
IBy| < 16n logn.

Due to space constraints, we again omit the proof. We say £
returned by FINDB1GBLOCKS is good with respect to S if it satisfies
all conditions stated in Lemma 4.9. We will refer to ¢ € L as big
blocks and ¢ ¢ L as small blocks.

4.2 MAXINDEX

Let £ : {0,1}" — {0,1}, S = (sV),...,s(K)) be a sketch that is
consistent with f, and £ C [0 : k + 1] be a good set of big blocks
with respect to S. We describe a deterministic procedure MAXINDEX
that will play an important role in the main testing algorithm.

To motivate MAXINDEX, consider the case when f is a mono-
tone decision list (even though it will be ran on general functions).
Given x € {0,1}" \ {0"}, we would like to find an i such that
f(ei) = f(x) and f(e; V ej) = f(e;) for all j € supp(x) such that
f(ej) # f(x),ie., iis one of the f(x)-rule variables that has pri-
ority higher than any of the f(x)-rule variables in the support of
x. MAXINDEX(f, S, x) (Algorithm 11) achieves this with O(nd/e)
queries, with a caveat though that it only promises to work when
x lies in a block not in £: FINDBLock(f, S, x) ¢ L.

Lemma 4.10. MaxINDEX(f, S, L, x) is a deterministic procedure. It
makes O(log n) many queries on f when FINDBLOCK(f,S,x) € L
and O(n° /¢) many queries when FINDBLOCK(f, S, x) ¢ L. It returns
either an i € supp(x) or nil; whenever it returns an i € supp(x), we
always have

FiNDBLock(f, S, e;) = FINDBLOoCcK(f,S,x) and f(x) = f(e;).
(4.2)

Suppose that f is a monotone decision list. Then MAXINDEX always re-

turns an i. Moreover, when FINDBLOCK(f, S, x) ¢ L, thei € supp(x)

returned additionally satisfies

fleiVvej) = f(e),

We omit the proof.

for all j € supp(x).

1Note that this holds no matter whether f is a monotone decision list or not.

1059

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 9 FINDBLoCk(f, S, x)

Input: Oracle access to f, a sketch § = (s(l), . ..,s(k)) that is

consistent with f and x € {0,1}"
1 if f(s) = f(x) then

if £(s® v x) = f(x) then
return 1

else if f(s(2Lk/2D) v x) # f(x) then
return 2| k/2] +1

else

: Binary search to return an odd ¢ with f(s([_l) Vx) #
f@x) = f(s" vx)

8: end if

9: end if

10: The case whenf(s(l)) # f(x) (or equivalently, f(s(z)) = f(x))
is symmetric

Nk ww

Algorithm 10 FINDB1GBLocks(f, D, ¢, S)

Input: Oracle access to f, sampling access to D, e > 0 and a sketch
S consistent with f

: Create and initialize a counter ¢, < 0 for each £ € [0 : k + 1].
. for n'~% times do

Sample an i ~ [n] uniformly at random

Let ¢ « FINDBLOCK(f,S,e;) and update counter ¢, «
cp+1
: end for
: Set L to be

[T Y

4logn

L<—{£€[0:k+l]:w2 }
7: for 200/¢ times do
8: Set counter ¢ < 0 and let
N(L) « {f’ €[0:k+1]:¢ ¢ Land|¢f’'—¢| = 1for some ¢ € L}
9:

10:
11:

for (100/¢) log(n/¢) times do
Sample a string x ~ D
Let ¢ < FINDBLoCK(f, S, x) and update counter ¢ «
c+1ift e N(L)

12: end for

13: if ¢ < 5log(n/e¢) then
14: return £

15: else

16: Set L — LUN(L)
17: end if

18: end for

19: return £ > This line is reached with low probability

4.3 The Auxiliary Graph and Classification of
its Cycles
After the preprocessing stage, let S = (s, ..., s(K)) be a sketch

that is consistent with f, and £ C [0 : k + 1] be a good set of big
blocks with respect to S. (When analyzing the yes case later, we

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 11 MaxINDEX(f, S, L, x)

Input: Oracle access to f, a sketch S = (s(l), e s(k)) consistent
with f, £ C [0: k+1] that is
good with respect to S, and a string x € {0, 1}" \ {0"}
1: Let £ « FiNDBLOCK(f, S, x) and s — onifp e {kk+1}
2. if ¢ € L then > Case when £ € L
3 Let E < {e; : j € supp(x)} and e «
FiNDRep(f, E, {s(+D)})
4: return i if FINDBLOCK(f, S, ¢;) = ¢ and f(e;) = f(x); re-
turn nil otherwise
. end if
: if £ ¢ L then
LetE < {ej : j € supp(x)} and U « 0> Case when ¢ ¢ L
while [U| < (16n logn)/e and f(s(“l) V (Vecge)) =
f(x) do
9 Set z « FINDRER(f, E, {s({*1})
10: Update U <~ U U {z} and E « E\ {z}
11 end while
12: for eache; € U do
13: return i if FINDBLock(f, S, ;) = ¢, f(e;) = f(x) and
f(ei vV (Veere)) = f(x)
14: end for
15: return nil
16: end if

® N w

will add the condition that § is scattered as well.) Given S and £,

FinpBrock(f,S,-) : {0,1}" — [0: k+1] and
MaxInDex(f, S, £,+) : {0, 1} \ {0"} — [n] U {nil}

are two well-defined deterministic maps. We use these two maps
to classify cycles in the following auxiliary directed graph H:

Definition 4.11. We write H to denote the directed (bipartite)
graph with vertex set

V(H) ={(wW):ue[n]and W C [n]},

and there is a directed edge from (u, W;) to (v, W2) in H if and only
ifo € Wy and f(ey) # f(ep).

We will refer to H as the auxiliary graph. The following defini-
tion shows how S and £ together can be used to define a map ¢
from {0, 1}" to V(H) U {x, nil}, which in turn induces a probability
distribution over V(H) N {*, nil} from D:

Definition 4.12. The map ¢f s r : {0,1}" — V(H) U {x,nil} is
defined as follows: ¢f, 5 £(0") = *;

¢f’3]£(x) = (MAXINDEX(f,S, L, x), {i € supp(x) : f(e;) # f(x)})

if x # 0" and MAXINDEX(f, S, L, x) # nil; and g7 s r(x) = nil
otherwise.

For convenience, we will just write ¢ for ¢ s » when its sub-
scripts are clear from the context. Given ¢ and D, we write D o ¢!
to denote the push-forward of the probability distribution D by ¢,

1060

Xi Chen, Yumou Fei, and Shyamal Patel

i.e., for each (u, W) € V(H),

Dop@ww)= > D) -1[p(x) = @wW)],
xe{0,1}7\{0"}

Doplnih= > D) 1[p(x) = nil]

xe{0,1}7\{0o"}
and Do (%) = D(OM).

The following lemma shows that, when f is e-far from monotone
decision lists with respect to D, any feedback vertex set of H must
have mass at least Q(e) in D o ¢~ 1.

Lemma 4.13. Suppose that f is e-far from monotone decision lists
with respect to D, S is a sketch consistent with f, and L is a good set
of big blocks with respect to S. Then either D o ™1 (nil) > €/2, or we
have D o ¢~ 1(U) = ¢/2 for any feedback vertex set U C V(H) of H.

We omit the proof. We further classify cycles of H into six types
using S, £ and the map FINDBLock(f, S, -). It follows from Lemma
4.13 that, for some ¢ € [5], any vertex feedback set of type-c cycles
in H must have mass Q(¢) in D o ¢! (it will become clear that we
don’t need to deal with type-0 cycles). Our main testing algorithm
then consists of five procedures, each handling one type of cycles.

Definition 4.14 (Types of cycles in H). Let C be a directed cycle
in H. We say
0. C is of type 0 if it contains a vertex (u,W) with
FINDBLOCK(f, S, e,,) € N(L);
1. Cis of type 1 if it contains a directed edge (u, W) — (v, W2)
that satisfies
FINDBLOCK(f, S, €y) < FINDBLOCK(f, S, e,) — 2;

2. Cis of type 2 if it contains a directed edge (u, W;) — (v, Wa)
that satisfies

FINDBLOCK(f, S, ey) = FINDBLOCK(f, S, €,,) — 1

and both FINpBrock(f, S, e,,), FINDBLOCK(f, S, ey) € L;
3. Cisof type 3 if it contains a directed edge (u, W1) — (v, Wa)
that satisfies

|F1NDBLoc1<(f, S, ey) — FINDBLOCK(f, S, ev)| =1

and FINDBLock(f, S, e,,), FINDBLOCK(f, S, e,) ¢ LUN(L)
and f(ey V o) # f(ew):

4. Cis of type 4 if it contains two consecutive edges (u, W;) —
(v, W2) — (w, W3) such that

FINDBLOCK(f, S, e4y) + 2 = FINDBLOCK(f, S, €p) + 1
= FINDBLOCK(f, S, ey) (4.3)

and FINDBLoOCK(f, S, ey), FiNnDBLock (f, S, ey),
FINDBLOCK(f, S, ey) ¢ L UN(L) and
fleuVey)=f(ey) and f(eyVew) = fleo);
5. C is of type 5 if it (1) has length at least 4, (2) satisfies
FiNnDBLock(f, S,ey) ¢ LUN(L) for
all (u, W) in C, (3) satisfies f(e, V ey) = f(ey) for all edges
(u, W1) = (v, Ws) in C, and (4)
max FINDBLock(f, S, ey)
(w,W)eC
(4.4)

= min FiNDBLock(f,S,e,) + 1.
(W) eC (f. S eu)

Distribution-Free Testing of Decision Lists with a Sublinear Number of Queries

Algorithm 12 MoNoTONEDL(f, D, €)

Input: Oracle access to f : {0,1}" — {0, 1}, sampling access to D
and e > 0
: Run PREPROCESS(f, D, €)
. if it accepts or rejects then
return the same answer
else
Let (S, £) be the pair it returns
end if
: for O(1/¢) times do
Draw x ~ D and run MaxINDEX(f, S, x); reject if it re-
turns nil
: end for
10: TESTTYPE-1(f, D, €, S, L) and reject if it rejects
11: TESTTYPE-2(f, D, €, S, L) and reject if it rejects
12: TESTTYPE-3(f, D, €, S, L) and reject if it rejects
13: TESTTYPE-4(f, D, €, S, L) and reject if it rejects
14: TESTTYPE-5(f, D, €, S, L) and reject if it rejects
15: accept

R U o

Every cycle in H falls into at least one of the five types:

Lemma 4.15. Any cycle in H must be of type c for at least one
ce{0,1,...,5}

Corollary 4.16. Suppose f is e-far from monotone decision lists
with respect to D, S is a sketch consistent with f, and L is a good
set of blocks with respect to S. Then either D o ¢~ (nil) > €/2, or
for some ¢ € [5], any feedback vertex set U of type-c cycles in H has
Do L (U) = Qe).

For brevity, we omit the proofs.

4.4 The Main Testing Algorithm and Proof of
Theorem 4.1

The testing algorithm MoNoTONEDL(f, D, €) for monotone deci-
sion lists is given in Algorithm 12. After running the preprocessing
stage to obtain a sketch S and a set £ of big blocks, the algorithm
quickly checks whether D o ¢! (nil) > €/2 or not in line 8. The
rest of the algorithm then consists of one procedure for each of the
five types of cycles.

We list performance guarantees of these procedures in lemmas
below. In all lemmas we assume

(1) f:{0,1}"* — {0,1} and D is a probability distribution over

{0, 13"

2) S=(sW,...,s%) is a sketch that is consistent with f;and

(3) L is agood set of big blocks with respect to S.
In each lemma we describe performance guarantees of the proce-
dure when f is a monotone decision list and when any feedback
vertex set for type-c cycles in H, for some ¢ € [5], is at least Q(e).

Lemma 4.17. TestType-1 makes O(n0'5+5/€2) queries and always

accepts when f is a monotone decision list. If any feedback vertex
set of type-1 cycles in H has probability mass Q(e) in D o ¢, then
TesTTYPE-1 rejects with probability at least 0.9.

Lemma 4.18. TeSTTYPE-2 makes O(n1_5/ 2/€) queries.

1061

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

When f is a monotone decision list and S is scattered, it rejects
with probability at most o (1).

If any feedback vertex set of type-2 cycles in H has probability mass
at least Q(e€) in D o ¢~ !, then TesTTYPE-2 rejects with probability at
least 0.9.

Lemma 4.19. TesTTyPE-3 makes O(n%59 /¢%) queries and always

accepts when f is a monotone decision list. If any feedback vertex
set of type-3 cycles in H has probability mass Q(e) in D o ¢~ L, then
TesTTYPE-3 rejects with probability at least 0.9.

Lemma 4.20. TesTType-4 makes O(n?/3%9 /€2) queries and always

accepts when f is a monotone decision list. If any feedback vertex
set of type-4 cycles in H has probability mass Q(¢) in D o ¢~ L, then
TesTTYPE-4 rejects with probability at least 0.9.

Lemma 4.21. TesTTYPE-5 makes é(n3/4+5/62) queries and always

accepts when f is a monotone decision list. If any feedback vertex
set of type-5 cycles in H has probability mass Q(e) in D o ¢, then
TesTTYPE-5 rejects with probability at least 0.9.

Due to space constraints, we defer the proofs to the full version.
Theorem 4.1 now follows directly:

ProoF oF THEOREM 4.1. The overall query complexity of

MonNoTONEDL is
. 1-6/2 5 .

when § is set to be 1/6.

When f is a monotone decision list, the only possibility for it to
be rejected is by TESTTYPE-2. But by Lemma 4.8, S is not scattered
with probability 0,(1) and when it is scattered, by Lemma 4.18,
TESTTYPE-2 rejects with probability o, (1).

When f is e-far from monotone decision lists with respect to
D, it is accepted by PREPROCESs with probability 0,(1), given that
D cannot have more than 1 — € mass on 0" and that f cannot be
e-close to the all-0 or all-1 function with respect to D. Therefore,
with probability at least 1 — 0,(1) either MoNOTONEDL already
rejected (f, D) or it reaches line 7 with a sketch S consistent with
f and an £ that is good with respect to S by Lemma 4.9. When
this happens, either the probability of MAXINDEX(f, S, x) = nil as
x ~ D is at least 0.5¢, in which case line 8 rejects with probability
at least 0.9, or the rest of MoNOTONEDL rejects with probability at
least 0.9 by Lemma 4.17, 4.18, 4.19, 4.20 and 4.21. This finishes the
proof of the theorem. O

nl-8 p3/4+8 nl1/12

+0

€ € €2 €2

Algorithm 13 TesTTYPE-1(f, D, €, S, L)

Draw two sets P*, Q" of O(+y/n/¢) samples from D; let P «
P*\{0"} and Q < Q" \ {0"}

: For each x € P U Q, compute FINDBLOCK(f,S,x) and
MaXINDEX(f, S, L, x)

reject if there exist x € P and y € Q such that f(x) # f(y),

1:

3:

FINDBLOCK(f, S,y) < FINDBLOCK(f, S, x) — 2
and MaxXINDEX(f, S, L,y) € supp(x)

4: accept otherwise

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 14 TestTyee-2(f, D, ¢, S, L)

Algorithm 17 TestTYPE-5(f, D, €, S, L)

1: Draw a set P* of samples and a set Q* of samples from D of
size given as follows:

3/2 1-8/2 14,43

L and w, respectively

elog’n €
2 Let P« P*\ {0"}and Q « Q*\ {0"}
3: For each x € P U Q, compute FINDBLOCK(f, S, x)
4: For each x € P U Q with FINDBLock(f,S,x) € L, compute

MaxINDEx(f, S, £, x)

5. reject if there exist x € P and y € Q such that

i) FINDBLOCK(f, S,y) = FINDBLOCK(f, S, x) — 1;
ii) FinpBrock(f, S, x), FINDBLock(f, S,y) € £L; and
iii) MaxINDEX(f, S, L, y) € supp(x)

6: accept otherwise

Algorithm 15 TestTYPE-3(f, D, €, S, L)

Draw two sets P*, Q* of O(y/n/e€) samples from D; let P «

P*\{0"} and Q < Q" \ {0"}

: Compute FINDBLOCK(f, S, x) and MAXINDEX(f, S, £, x) for
eachxePUQ

. reject if there exist x € P and y € Q such that

i) \FINDBLOCK(f, S, x) — FINDBLOCK(f, S, y)| =1;
ii) FINDBLOCK(f, S, x), FINDBLOCK(f, S,y) ¢ L U N(L);
iii) MaxINDEX(f, S, L, y) € supp(x); and
iv) f(ey V ey) # f(ey), where u = MAXINDEX(f, S, £, x) and
v = MaxINDEX(f, S, L, y)

4: accept otherwise

1:

Algorithm 16 TestTyre-4(f, D,€, S, L)

. Draw a set P* of O(n2/3/¢) samples from D; let P « P*\ {0"}

: Compute FINDBLOCK(f, S, x) and MaXINDEX(f, S, £, x) for
eachx € P

: reject if there exist x, y, z € P such that

i) FINDBLoCK(f,S,z) + 2 FiNDBLock(f, S,y) + 1
FinDBrock(f, S, x);
ii) FINDBLoCK(f, S, x), FINDBLOCK(f, S,),
FiNDBLOCK(f, S, z) ¢ L UN(L); and
iii) f(ey Vey) = f(ey) and f(ey V eyy) = f(ey): u,v and w are
MaxINDEX of x, y and z

4: accept otherwise

1062

1: Draw a set P* of O(n3/%/e) samples from D; let P «— P*\ {0"}

2. Compute FINDBLOCK 7, 5 () and MAXINDEX s (x) for each x €
P

3: reject if there exist x1,x2 x3, x* € P such that

Let £, £, 63 and & be the FiNpDBrock of x1, x%, x3 and x*,
respectively

h=t=fO+1=8+1and fy,8, 03,84 ¢ LUN(L)

Let uy, u, u3 and uy be the MAaXINDEX of x1, x2, x3 and x*,
respectively

flew, Vey,) = f(ey, Vey)=0and f(ey, Vey) = fley, V
ey) = 1.

i

=

ii

=

iii

=

iv)

4: accept otherwise

ACKNOWLEDGEMENTS

Xi Chen is supported in part by NSF grants IIS-1838154, CCF-
2106429, and CCF-2107187. Shyamal Patel is supported in part by
NSF grants IIS-1838154, CCF-2106429, CCF-2107187, CCF-2218677,
ONR grant ONR-13533312, and an NSF Graduate Student Fellow-
ship.

REFERENCES

[1] N. Ailon and B. Chazelle. 2006. Information theory in property testing and
monotonicity testing in higher dimension. Information and Computation 204, 11
(2006), 1704-1717.

Eric Blais, Renato Ferreira Pinto Jr, and Nathaniel Harms. 2021. VC dimension
and distribution-free sample-based testing. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing. 504-517.

Xi Chen and Shyamal Patel. 2022. Distribution-free Testing for Halfspaces
(Almost) Requires PAC Learning. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1715-1743.

Xi Chen and Jinyu Xie. 2016. Tight bounds for the distribution-free testing of
monotone conjunctions. In Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 54-71.

E. Dolev and D. Ron. 2011. Distribution-Free Testing for Monomials with a
Sublinear Number of Queries. Theory of Computing 7,1 (2011), 155-176.

D. Glasner and R. Servedio. 2009. Distribution-Free Testing Lower Bound for
Basic Boolean Functions. Theory of Computing 5, 10 (2009), 191-216.

Oded Goldreich, Shari Goldwasser, and Dana Ron. 1998. Property testing and
its connection to learning and approximation. Journal of the ACM (JACM) 45, 4
(1998), 653-750.

David Guijarro, Victor Lavin, and Vijay Raghavan. 2001. Monotone term decision
lists. Theoretical Computer Science 259, 1-2 (2001), 549-575.

S. Halevy and E. Kushilevitz. 2007. Distribution-Free Property-Testing. SIAM 7.
Comput. 37, 4 (2007), 1107-1138.

S. Halevy and E. Kushilevitz. 2008. Distribution-Free Connectivity Testing for
Sparse Graphs. Algorithmica 51, 1 (2008), 24-48.

S. Halevy and E. Kushilevitz. 2008. Testing monotonicity over graph products.
Random Structures & Algorithms 33, 1 (2008), 44-67.

Ronald L. Rivest. 1987. Learning decision lists. Machine Learning 2, 3 (1987),
229--246.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

Gyorgy Turan. 1993. Lower bounds for PAC learning with queries. In Proceedings
of the sixth annual conference on Computational learning theory. 384-391.

L.G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984),
1134-1142.

[2]

=
)

=
&

Received 13-NOV-2023; accepted 2024-02-11

	Abstract
	1 Introduction
	2 Preliminaries
	3 Warm-up: Testing Total Orderings
	3.1 Sketches
	3.2 The Order Graph and Classification of Cycles
	3.3 Putting It All Together: An (n/) Tester for Total Orderings

	4 Testing Algorithm for Monotone Decision Lists
	4.1 Preprocessing
	4.2 MaxIndex
	4.3 The Auxiliary Graph and Classification of its Cycles
	4.4 The Main Testing Algorithm and Proof of Theorem 4.1

	References

