

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

Theorem 1.1. There is a two-sided, adaptive, distribution-free

testing algorithm for decision lists that makes $̃ (=11/12/Y3) queries
and has the same running time.5

Theorem 1.1 is obtained by �rst giving an $̃ (=11/12/Y2)-query
algorithm formonotone decision lists in Section 4 (where a decision

list is said to be monotone [8] if all literals U8 in the list are positive)

and then proving a reduction to testing general decision lists.

On the lower bound side, we show that any distribution-free

testing algorithm for decision lists must make Ω̃(
√
=) queries, and

must draw Ω̃(=) samples when the algorithm is sample-based.

Theorem 1.2. Any two-sided, adaptive distribution-free testing

algorithm for decision lists must make Ω̃(
√
=) queries when Y is a

su�ciently small constant. The same lower bound also applies to

testing monotone decision lists.

Theorem 1.3. Any two-sided, sample-based distribution-free test-

ing algorithm for decision lists must draw Ω̃(=) samples when Y is

a su�ciently small constant. The same lower bound also applies to

testing monotone conjunctions, conjunctions, and monotone decision

lists.

As a warm-up for our main algorithm behind Theorem 1.1, we

give an optimal distribution-free testing algorithm for total order-

ings, which highlights, in a simpli�ed setting, some of the most

crucial ideas behind the main algorithm for monotone decision lists.

To our knowledge, this is also the �rst tester for total orderings in

the distribution-free setting. The input consists of 1) oracle access

to a comparison function <f over [=] (i.e., one can pick 8 ≠ 9 ∈ [=]
to reveal whether 8 <f 9 or 9 <f 8); and 2) sampling access to a

distribution D over the set of
(=
2

)
many 2-subsets of [=]. The goal

is to determine whether <f is a total ordering or Y-far from total

orderings with respect toD. Equivalently, <f can be considered as

a tournament graph �f over [=] and the algorithm is given oracle

access to it (i.e., one can pick D ≠ E ∈ [=] and query whether (D, E)
or (E,D) is in �f . The goal is to decide whether �f is acyclic or

Y-far from acyclic with respect to D (i.e., any feedback edge set of

�f has probability mass at least Y in D, where a feedback edge set

is a set of edges such that the graph �f becomes acyclic after its

removal).

Theorem 1.4. There is a two-sided, adaptive distribution-free test-

ing algorithm for total orderings that makes $̃ (
√
=/Y) queries. On the

other hand, any such algorithm for total orderings must make Ω(
√
=)

queries when Y is a su�ciently small constant.

The paper is organized as follows. In Section 2, we introduce

the preliminaries, including two birthday-paradox-type lemmas. In

Section 3, we prove the upper bound part of Theorem 1.4, which

serves as a warm-up for the proof of Theorem 1.1. For space rea-

sons, we omit the proofs of the reduction to general decision lists,

Theorem 1.2, and Theorem 1.3. We refer the interested reader to

the Arxiv version of the paper.

Techincal Overview.We start by describing an easy Ω(
√
=) one-

sided6 lower bound for total orderings. We construct a distribution

5For the running time we assume that standard bitwise operations such as bitwise
AND, OR and XOR over =-bit strings each cost one step.
6Recall that a testing algorithm is one-sided if it never rejects (<f ,D) when <f is a
total ordering.

c (5: − 4)

c (5: − 3)

c (5: − 2) c (5: − 1)

c (5:)

Figure 1: One-side Lower Bound Construction for Total

Orderings. An edge from G to ~ indicates that G <f ~. The

solid edges in the �gure denote those in the support ofD#$.

DNO over pairs (<f ,D) such that <f is far from total orderings

under D. It su�ces to show that no deterministic algorithm with

> (
√
=) queries can �nd a violation in (<f ,D) ∼ DNO (or equiva-

lently, a (directed) cycle in the tournament graph�f) with proba-

bility at least 2/3.
To draw (<f ,D) ∼ D#$

7 we �rst draw a random permutation

c over [=] and use it partition [=] into =/5 groups, where the

:-th group +: consists of vertices c (5: − 4), . . . , c (5:), for each
: ∈ [=/5]. The comparison function <f over each group +: is set

according to Figure 1. Across two di�erent groups, <f is made

to be consistent with a total ordering, namely, c (G) <f c (~) if
⌈G/5⌉ < ⌈~/5⌉. Finally the distribution D is uniform over edges

{c (5: − 4), c (5: − 3)}, {c (5: − 3), c (5: − 2)}, {c (5: − 2), c (5: −
1)}, {c (5: − 1), c (5:)}, {c (5:), c (5: − 4)} of each group : ∈ [=/5].
We write �: to denote the set of these �ve edges in the :-th group

+: .

Clearly, to make <f into a total ordering, one must change at

least one edge in each �: , so <f is (1/5)-far from total orderings.

On the other hand, in order for a one-sided algorithm to reject,

it must �nd a cycle in +: for some : . Using a birthday paradox

argument, with only > (
√
=) samples, edges sampled from D most

likely lie in distinct groups. When this happens, it is unlikely for the

algorithm to �nd a cycle using > (
√
=) queries to the black-box

oracle. Our lower bound for decision lists follows a similar high-

level scheme, but with extra care to handle the case where the tester

queries a string G with large support (ignoring some details, testing

total orderings can be thought of as testing decision lists with the

restriction that the algorithm can only query the function 5 on

strings G with support size 2).

We now use instances in DNO to discuss ideas behind our

$̃ (
√
=/Y)-query tester for total orderings. In particular, consider

a one-sided tester that aims to �nd a violation (i.e., a cycle in �f)

in (<f ,D) from DNO. It must draw Ω(
√
=) samples from D. After

doing so, it is likely to have drawn two edges from the same �: ,

say {c (5: − 4, 5: − 3)} and {c (5: − 2, 5: − 1)} for some : ∈ [=/5].
If the algorithm continues to query the rest of four edges between

these four vertices, then a cycle will be found as desired. That said,

the algorithm does not know which pair of edges sampled from

7As it will become clear soon, partitioning [=] into triangles would already yield the

Ω (
√
=) one-sided lower bound. The more involved construction of DNO here poses

extra challenges to motivate discussion on some of the most crucial ideas behind our
testing algorithm for total orderings.

1052

Distribution-Free Testing of Decision Lists with a Sublinear Number of �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

D lies in the same group, and working on all pairs would require

Ω(=) queries.8
To circumvent this issue, we create a “sketch” to attack (<f ,D)

from DNO as follows:

(1) Sample
√
= vertices from [=] uniformly at random; sort

them into ℓ1 <f ℓ2 <f · · · <f ℓ√= using $ (
√
= log=)

queries on <f ;

(2) Partition [=] into blocks �0, . . . , �√= where �8 consists of all

: ∈ [=] such that running binary search of : on ℓ1, . . . , ℓ√=
sandwiches it in ℓ8 <f : <f ℓ8+1.

We note the following properties of the sketch:

(1) We cannot a�ord to compute the blocks but given any

: ∈ [=], it is easy to �nd the block �8 that contains : with

$ (log=) queries (by just running binary search);

(2) With high probability (over samples used to build the

sketch), every �8 is of size $̃ (
√
=).

With this sketch in hand, we can use it to �nd a violation in (<f ,D)
from DNO e�ciently by (1) sampling $ (

√
=) edges from D so that

with high probability two edges {D, E} and {D ′, E ′} from the same

group are sampled; (2) �nd the block of every vertex in the $ (
√
=)

edges sampled in (1); let * denote this set of $ (
√
=) vertices; (3)

for every block �8 and every two vertices in* ∩ �8 , query <f on

them and reject if a cycle is found within * ∩ �8 for some 8 . Given

that most likely D, E,D ′, E ′ lie in the same block, the algorithm �nds

a violation with high probability; its query complexity is at most

$̃ (
√
=) because |* ∩ �8 | can be bounded from above by $ (log=)

with high probability. So the savings come from the fact that we

only query edges between vertices in the same block.

The algorithm for the general case (rather than just dealing with

instances from DNO) follows the same high level idea. It starts

by building a sketch but the vertices ℓ1, . . . , ℓ√= used to build it

are no longer sampled uniformly but from a natural distribution

D∗ over [=] de�ned from D: to draw ℓ ∼ D∗, one �rst draws an
edge from D and then set ℓ to be one of its two vertices uniformly.

Accordingly, the second property of the sketch becomes that every

�8 has probability mass at most$ (1/
√
=) inD∗. With such a sketch

in hand, we consider cycles in <f . Since <f is Y-far from total

orderings under D, we can divide cycles in �f into two types:

those with vertices lying in multiple blocks (called long cycles) and

those that are completely contained within a single block (called

local cycles), and consider two cases: the distance to total orderings

mainly comes from long cycles or local cycles. To deal with the

case where there are many violating long cycles, we show that

{D, E} ∼ D satis�esD <f E ,D ∈ �8 , E ∈ � 9 but 8 > 9 with probability

Ω(Y). As a result, drawing $ (1/Y) samples from D and �nding

buckets of their vertices leads to a violation with high probability.

The case of local cycles, on the other hand, is the case with instances

of DNO. To this end we use a birthday paradox lemma in Section 2

to show that with $̃ (
√
=) samples* fromD∗, some* ∩�8 contains

a cycle with high probability, which can be found by brute-force

search of each* ∩ �8 .
Unfortunately, several aspects of this approach break when at-

tempting to adapt the algorithm to monotone decision lists. Note

8Note that if the algorithm receives two samples that are consecutive in the same
group, then it certainly knows this because they share a vertex; the construction,
however, makes sure that the triangle they form is never a cycle.

that a monotone decision list 5 : {0, 1}= → {0, 1} naturally induces

an ordering over strings G ∈ {0, 1}= based the rule in G that �res

in 5 . That said, in this setting, one can only compare two strings

G,~ with 5 (G) ≠ 5 (~): If 5 (G ∨~) = 5 (G), then the rule that �res in

G is ranked higher. To accommodate this in the sketch, we bucket

elements of [=] into blocks �0, . . . , �√= that now have alternating

values, i.e. all indices : ∈ �8 have that 5 (4:) = 8 mod 2, where

4: ∈ {0, 1}= denotes the string in which the only 1-entry is : . How-

ever, even for a monotone decision list 5 , blocks �0, . . . , �√= of a

sketch no longer guarantee that all elements in �8 are ranked higher

than those in �8+1; only a weaker guarantee holds that all elements

in �8 are ranked higher than those in � 9 for all 9 > 8 + 1.
The primary challenge when testing monotone decision lists

is determining what constitutes a violation. In the case of total

orderings, each comparison provides a concrete bit, indicating that

one element is larger than the other under <f , and a violation

is clearly de�ned as a cycle. However, in the case of a monotone

decision list, querying a string G with, say, 5 (G) = 0, only tells the

algorithm that some zero rule �red in G is ranked higher than all

the one rules �red in G . To address this, we design a procedure

that determines the value of the maximum element : ∈ supp(G).
However, this procedure is e�ective only for blocks �8 that contain

a small number of indices, say =X for some small constant X > 0

(the number of queries made by the algorithm is linear in =X so

is e�cient only when X is small). Once we identify the maximum

elements, cycles in an associated hypergraph naturally leads to

violations. As a simple example, let G and ~ be two strings with

5 (G) = 0 and 5 (~) = 1. Let :, ℓ be maximum elements in G and ~,

respectively. If in addition we have ℓ ∈ supp(G) and : ∈ supp(~),
then we get a violation because being the maximum element in G ,

: should be ranked higher than ℓ but on the other hand, ~ tells us

that ℓ is ranked higher.

Nevertheless, this procedure is insu�cient for testing since many

blocks in the sketch may have more than =X indices. For instance,

if 5 is a conjunction, there are only 2 blocks and at least one must

be large. To handle such large blocks, we prove that if 5 is a de-

cision list and �8 is a large block, then most elements of �8 are

smaller than those in �8+1. If we could check that this property

holds for a general 5 , which may not be a decision list, then we

are in a similar setting to that of the total ordering case and can

easily control violations involving elements from any large block.

Veri�cation of this property turns out to be somewhat tricky, but

we demonstrate that it can be achieved with an argument similar in

spirit to Dolev and Ron’s conjunction tester, but crucially modi�ed

to use an asymmetric version of the birthday paradox.

Finally to extend our algorithm to test general decision lists, we

note that given an arbitrary decision list 5 , if we know the default

string A , then 5 (G ⊕ A) is now a monotone decision list. While it is

not clear how to �nd A exactly, we show that it su�ces to �nd a

string whose �ring rule has su�ciently low priority in the decision

list. We can then draw many sample strings and try each of them

out as the candidate default string A .

2 PRELIMINARIES

Notation. Given a positive integer =, we write [=] to denote

{1, . . . , =}. Given two integers 0 ≤ 1, we write [0 : 1] to denote

1053

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

the set of integers {0, . . . , 1} between 0 and 1. Given a probabil-

ity distribution D over a �nite set (, we write D(?) to denote the

probability mass of ? ∈ (in D, and write D(%) for a given subset

% ⊆ (to denote
∑
?∈% D(?). We will denote by supp(D) the set

{? ∈ (: D(?) > 0}. Throughout the paper, drawing a set) of<

samples from D always means to draw < independent samples

from D (with replacements) and take) to be the set they form (so

in general |) | could be smaller than<).

For any string G ∈ {0, 1}= , let supp(G) denote the set {8 ∈ [=] :
G8 = 1}. Given two strings G and ~ ∈ {0, 1}= , we write G ∨ ~
to denote the bitwise OR of G and ~, i.e., G ∨ ~ ∈ {0, 1}= with

(G ∨ ~)8 = G8 ∨ ~8 for all 8 ∈ [=], and G ⊕ ~ to denote their bitwise

XOR, with (G ⊕ ~)8 = G8 ⊕ ~8 for all 8 ∈ [=]. Given 8 ∈ [=] we write
48 to denote the string in {0, 1}= such that (48)8 = 1 and (48) 9 = 0

for all 9 ≠ 8 . Given a probability distribution D over {0, 1}= and

A ∈ {0, 1}= , we write D ⊕ A to denote the distribution over {0, 1}=
with D ⊕ A (G) = D(G ⊕ A).

Given 5 : {0, 1}= → {0, 1}, G ∈ {0, 1}= is a 1-string of 5 if

5 (G) = 1 and a 0-string if 5 (G) = 0.

Monotone Decision Lists. A function 5 : {0, 1}= → {0, 1} is said
to be a monotone decision list if it can be represented by a pair

(c, a)9, where c is a permutation over [=] and a ∈ {0, 1}=+1, such
that 5 (G) = a 9 if 9 is the smallest integer in [=] such that Gc (9) = 1,

and 5 (G) = a=+1 when G = 0= . Variable 8 ∈ [=] is said to be a

1-rule variable if a 9 = 1 for 9 = c−1 (8), where 1 ∈ {0, 1}. We write

MonoDL to denote the class of monotone decision lists.

Given c and G ∈ {0, 1}= , wewriteminc (G) to denote the smallest

9 ∈ [=] such that Gc (9) = 1 and it is set to = + 1 when G = 0= . Let

5 be an arbitrary Boolean function and G,~ be two strings with

5 (G) ≠ 5 (~). We write G ≻5 ~ (or ~ ≺5 G) if 5 (G ∨~) = 5 (G). Note
that when 5 is a monotone decision list, we have G ≻5 ~ if and only

if minc (G) < minc (~). As such, for a decision list ≻5 naturally

corresponds to the ordering of the rules in the decision list.

Decision Lists. A function 5 : {0, 1}= → {0, 1} is said to be a

decision list if 6 := 5 (G ⊕ A) is a monotone decision list for some

A ∈ {0, 1}= . Equivalently, 5 is a decision list if it can be represented

by a triple (c, `, a), where c : [=] → [=] is a permutation over

[=], ` ∈ {0, 1}= , and a ∈ {0, 1}=+1, such that 5 (G) = a 9 if 9 is the
smallest integer in [=] such that Gc (9) = `c (9) , and 5 (G) = a=+1
if no such 9 exists. Similarly, we say variable 8 ∈ [=] is a 1-rule
variable if a 9 = 1 for 9 = c−1 (8). Given c, ` and G ∈ {0, 1}= , we let
minc,` (G) denote the smallest 9 with Gc (9) = `c (9) , and it is set to

= + 1 if no such 9 exists.

Distribution-Free Testing. We review the model of distribution-

free property testing. Let 5 , 6 : {0, 1}= → {0, 1} denote two Boolean
functions and D denote a distribution over {0, 1}= .

We de�ne the distance between 5 and 6 with respect to D as

distD (5 , 6) = Pr
G ∈D

[
5 (G) ≠ 6(G)

]
.

Given a classℭ of Boolean functions (such as the class of (monotone)

decision lists), we de�ne

distD (5 ,ℭ) = min
6∈ℭ

(
distD (5 , 6)

)

9Note though that the representation is not unique in general.

as the distance between 5 and ℭ with respect toD. We also say that

5 is n-far from ℭ with respect toD for some n ≥ 0 if distD (5 ,ℭ) ≥
n . Now we de�ne distribution-free testing algorithms.

Let ℭ be a class of Boolean functions over {0, 1}= . A distribution-

free testing algorithm ALG for ℭ has access to a pair (5 ,D), where
5 is an unknown Boolean function 5 : {0, 1}= → {0, 1} and D is

an unknown probability distribution over {0, 1}= , via
(1) a black-box oracle that returns the value 5 (G) when G ∈
{0, 1}= is queried; and

(2) a sampling oracle that returns a sample G ∼ D drawn inde-

pendently each time.

The algorithm ALG takes (5 ,D, Y) as input, where Y > 0 is a dis-

tance parameter, and satis�es:

(1) If 5 ∈ ℭ, then ALG accepts with probability at least 2/3; and
(2) If 5 is Y-far from ℭ with respect toD, then ALG rejects with

probability at least 2/3.
We say an algorithm is sample-based if it can only receive a

sequence of samples I1, . . . , I@ ∼ D together with 5 (I1), . . . , 5 (I@).
Birthday Paradox Lemmas. As highlighted earlier in the sketch

of our algorithms, birthday paradox arguments play an important

role in the analysis. In particular, we will need two birthday paradox

lemmas, one for bipartite graphs and one for hypergraphs. The

bipartite graph lemma (Lemma 2.1 below) has been previously

incorporated as a crucial component of the analysis in [5] for the

distribution-free testing of monomials, though without an explicit

statement. We omit the proofs and include them in the full version

of the paper.

Lemma 2.1. Let� = (* ,+ , �) be a bipartite graph, with probability
distributions ` on* ∪ {#} and a on+ ∪ {#}. Assume that any vertex

cover � = �1 ⊔ �2 of � , where �1 ⊂ * and �2 ⊂ + , has ` (�1) +
a (�2) ≥ Y. Let (be a set of< independent samples from ` and (′ be
a set of<′ independent samples from a , with< and<′ satisfying
< ·<′ ≥ 100|* |/Y2 and <,<′ ≥ 100/Y. With probability at least

0.99, there exist G ∈ (and ~ ∈ (′ such that (G,~) is an edge in � .

Lemma 2.2. Let � = (+ , �) be a :-uniform hypergraph and let `

be a probability distribution over + ∪ {#} such that any vertex cover

� of � has ` (�) ≥ Y. Let (be a set of< samples from ` with

< ≥ 10:2 |+ | (:−1)/:
Y

.

Then (contains an edge in � with probability at least 0.99.

3 WARM-UP: TESTING TOTAL ORDERINGS

In this section, we present a distribution-free testing algorithm for

total orderings as a warm-up to demonstrate some of the ideas (such

as the use of sketches and the classi�cation of cycles into long cycles

and local cycles) that will play important roles in our algorithm for

monotone decision lists.

In the problem of testing total orderings, we are given query

access to a comparison function <f over [=] and sampling access

to a distribution D over
([=]
2

)
. For any D ≠ E ∈ [=], the tester can

query <f on {D, E} to reveal if D <f E or E <f D. Given <f ,D and

Y, the goal of the tester is to

(1) accept with probability at least 2/3 if the comparison

function <f is a total ordering; and

1054

Distribution-Free Testing of Decision Lists with a Sublinear Number of �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 1 Sketch(<f ,D, Y)
Input: Oracle access to <f , sampling access to D and Y > 0

1: Draw $ (
√
=/Y) samples D∗ and let (be the set of elements

sampled

2: Sort elements in (into B (1) , . . . , B (:) by running MergeSort

with <f , where : = |(| ≥ 1

3: Query {B (8) , B (8+1) } and reject if B (8) >f B
(8+1) for any

8 ∈ [: − 1]
4: return S := (B (1) , . . . , B (:))

(2) reject with probability at least 2/3 if <f is Y-far from total

orderings with respect to D, i.e. for any total ordering <g

Pr
{D,E }∼D

[[
D <f E and D >g E

]
or

[
D >f E and D <g E

]]
≥ Y.

We will prove the following theorem for the distribution-free

testing of total orderings:

Theorem 3.1. There is a distribution-free tester for total orderings

with $̃ (
√
=/Y) queries.

We remark that our tester is optimal up to logarithmic factors.

Indeed one can easily modify the lower bound proof for decision

lists presented in the Arxiv version to show that any tester must

make Ω(
√
=) many queries when Y is a su�ciently small constant.

3.1 Sketches

The backbone of our tester for total orderings (as well as monotone

decision lists in Section 4) are sketches, which, roughly speaking,

can help us compare elements that are far in the ordering.

De�nition 3.2 (Sketch). A sketch S = (B (1) , . . . , B (:)) is a tuple of
distinct elements from [=] for some : ≥ 1. We say S is consistent

with a comparison function <f if B (8) <f B
(8+1) for all 8 ∈ [: − 1].

Note that when <f is a total ordering, one can infer from a

consistent sketch S that B (8) <f B
(9) for all 8 < 9 . This, however,

does not hold for general comparison functions.

The procedure Sketch described in Algorithm 1 e�ciently builds

a sketch by simply sampling and sorting elements drawn from D∗,
where D∗ is a distribution over [=] de�ned using D as follows

D∗ (8) := 1

2
·
∑
9≠8

D({8, 9}), for each 8 ∈ [=].

Note that sampling access to D∗ can be simulated using sampling

access toD, query by query, by �rst sampling fromD and returning

one of the two elements uniformly at random.

We summarize performance guarantees of Sketch in the follow-

ing lemma:

Lemma 3.3. Sketch makes $̃ (
√
=/Y) queries. It rejects or returns a

sketch consistent with <f .

Suppose that <f is a total ordering. Then Sketch always returns a

sketch S = (B (1) , . . . , B (:)) that is consistent with <f . Moreover, with

probability at least 1 − >= (1), S satis�es for all 8 ∈ [0 : :],

Pr
D∼D∗

[
B (8) <f D <f B

(8+1)
]
<

100Y log=
√
=

, (3.1)

Algorithm 2 FindBlock(<f ,S, D)

Input: Oracle access to <f , a sketchS = (B (1) , . . . , B (:)) consistent
with <f and D ∈ [=]

1: return 8 if D = B (8) for some 8 ∈ [:]
2: return 0 if D <f B

(1) ; return : if B (:) <f D

3: Set upper← : and lower← 1

4: while upper − lower > 1 do

5: Set mid← ⌊(upper + lower)/2⌋
6: If B (mid)

>f D, set upper← mid; otherwise, lower← mid

7: end while

8: return mid

where the event above is D <f B
(1) when 8 = 0 and is B (:) <f D when

8 = : .

We omit the proof for brevity and refer the interested reader to

the Arxiv version.

Given a sketch S that is consistent with a total ordering <f ,

FindBlock(<f ,S, D) (described in Algorithm 2) returns the unique

8 ∈ [0 : :] such that

(1) 8 = 0 if D <f B
(1) ;

(2) 8 ∈ [: − 1] if either D = B (8) or B (8) <f D <f B
(8+1) ; and

(3) 8 = : if either D = B (:) or B (:) <f D.

Indeed, FindBlock returns such an 8 for D even when <f is an

arbitrary comparison function.

We summarize its performance guarantees below:

Lemma 3.4. FindBlock(<f ,S, D) is deterministic and makes

$ (log=) queries. It always returns an 8 ∈ [0 : :] that satis�es the
conditions above for D.

Given any <f and a sketch S consistent with <f , FindBlock

(which is deterministic) uses S to induce a partition of [=] into
blocks. We say D ∈ [=] lies in the ℓ-th block (with respect to S) for
some ℓ ∈ [0 : :] if ℓ = FindBlock(<f ,S, D).

3.2 The Order Graph and Classi�cation of

Cycles

We now move to discuss how we will reject comparison functions

that are far from total orderings. Towards this goal, we de�ne the

order graph and introduce some notation:

De�nition 3.5 (Order graph). Given a comparison function <f ,

the order graph �f is an orientation of the complete graph = ,

where edge (D, E) is oriented towards E if D <f E . The distribution

D naturally induces a distribution over edges of�f : the probability

mass of an edge (D, E) in�f is given byD({D, E}). For convenience
we will still use D to denote the distribution over edges of �f and

writeD(') to denote the total probability of a set of edges ' in�f .

It’s easy to see that if the order graph is acyclic if and only if <f

is a total ordering. Moreover, we can connect distance between <f

and total orderings with feedback edge sets of �f :

Lemma 3.6. If <f is Y-far from total orderings with respect to D,

then any set ' of edges of �f such that�f is acyclic after removing

' (i.e., ' is a feedback edge set) must satisfy D(') ≥ Y.

1055

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 3 TestLongCycles(<f ,D, Y,S)
Input: Oracle access to <f , sampling access to D, Y > 0 and a

sketch S consistent with <f

1: Draw 100/Y samples from D
2: For each {D, E} sampled with D <f E , reject if FindBlock(<f

,S, D) > FindBlock(<f ,S, E)
3: accept

For brevity, we omit the proof.

Consider (<f ,D) such that <f is Y-far from total orderings with

respect to D. We use a sketch S to classify cycles of D into two

types: long cycles and local cycles.

De�nition 3.7 (Long and local cycles). Given a sketch S =

(B (1) , . . . , B (:)), we say a directed edge (D, E) in �f (which means

that D <f E) is a long edge (with respect to S) if
FindBlock(<f ,S, D) > FindBlock(<f ,S, E).

A cycle in �f is said to be a long cycle if it contains at least one

long edge. A cycle in �f is said to be a local cycle if it does not

contain any long edges.

Given that every cycle is either long or local, we have the fol-

lowing corollary of Lemma 3.6:

Corollary 3.8. Suppose <f is Y-far from total orderings with respect

to D, and S is a sketch that is consistent with <f . Then either any

feedback edge set ' for long cycles of �f has D(') ≥ Y/2, or any
feedback edge set ' for local cycles of �f has D(') ≥ Y/2.

TestLongCycles (see Algorithm 3) is the procedure that helps

reject (<f ,D) when D(') ≥ Y/2 for any feedback edge set ' of

long cycles of �f . It simply draws edges from D and rejects when

a long edge is found. Given that a total ordering has no long edges,

TestLongCycles is trivially one-sided. Its performance guarantees

are stated in the following lemma:

Lemma 3.9. TestLongCycles(<f ,D, Y,S) makes $ (log=/Y)
queries.

When <f is a total ordering, TestLongCycles always accepts.

Suppose that any feedback edge set ' for long cycles in�f satis�es

D(') ≥ Y/2. Then TestLongCycles rejects with probability at least

0.99.

Proof. Note that the set of long edges forms a feedback edge

set for long cycles. It follows that we sample a long edge on line 1

with probability at least 1 − (1 − Y/2)100/Y ≥ 0.99. □

Next we consider the case when any feedback edge set for local

cycles of�f has mass at least Y/2. It follows from the de�nition that

a cycle� is local if and only if all of its vertices lie in the same block,

i.e., FindBlock(<f ,S, D) is the same for all D ∈ � . The following
lemma motivates the procedure TestLocalCycles for this case. To

state the lemma, we let � denote the following undirected bipartite

graph: the left side of � consists of edges of �f ; the right side

of � consists of vertices [=] of �f ; (D, E) and F has an edge i�

E <f F <f D and

FindBlock(<f ,S, D) = FindBlock(<f ,S, E)
= FindBlock(<f ,S,F).

Algorithm 4 TestLocalCycles(<f ,D, Y,S)
Input: Oracle access to <f , sampling access to D, Y > 0 and a

sketch S consistent with <f

1: Draw$ (
√
=/Y) edges (fromD and draw$ (

√
=/Y) elements)

from D∗
2: For every element D in) or an edge of (, run FindBlock(<f

,S, D).
3: reject if any block has more than 1000 log= elements from)

4: for every (D, E) ∈ (andF ∈) such that FindBlock puts them

in the same block do

5: Query {D,F} and {E,F} and reject ifD, E,F form a directed

triangle in �f

6: end for

7: accept

Combining with D <f E as (D, E) is an edge in�f , an edge between

(D, E) and F in � implies that D, E,F form a directed triangle, a

violation to <f being a total ordering.

We are now ready to state the lemma:

Lemma 3.10. Suppose that any feedback edge set ' for local cycles

in�f hasD(') ≥ Y/2. Then any vertex cover� = �1⊔�2 of� must

have D(�1) + D∗ (�2) ≥ Y/2.

We omit the proof and refer the interested reader to the Arxiv

version.

Based on Lemma 3.10, TestLocalCycles (Algorithm 4) mimics

the bipartite birthday paradox Lemma 2.1 by drawing
√
=/Y samples

(from D and
√
=/Y samples) from D∗. Then for any edge (D, E)

in (and any vertexF in) with all D, E,F lying in the same block,

we query {D,F} and {E,F} to see if they form a directed triangle.

Naively, however, this could lead to Ω(=) queries (e.g., consider
the worst case when all elements lie in the same block). However,

by Lemma 3.3, this is unlikely to occur when <f is truly a total

ordering so TestLocalCycles rejects when too many samples lie

in the same block. This is where the algorithm makes two-sided

errors though.

We state performance guarantees of TestLocalCycles in the

following lemma:

Lemma 3.11. TestLocalCycles makes $̃ (
√
=/Y) queries.

Suppose that <f is a total ordering and S is a sketch that is consis-

tent with <f and satis�es (3.1). Then TestLocalCycles accepts with

probability at least 1 − >= (1).
Suppose that any feedback edge set ' of local cycles in �f has

D(') ≥ Y/2. Then it rejects with probability at least 1 − >= (1).

Proof. The query complexity follows from the fact that for any

edge (D, E) ∈ (, there are at most $ (log=) manyF ∈) that lie in

the same block; otherwise the procedure rejects on line 3. So the

number of potential triangles that we need to check is no more

than $ (|(| log=) = $̃ (
√
=/Y).

The no case follows directly from Lemma 3.10 and Lemma 2.1.

For the yes case, we assume that the sketch S satis�es

Pr
D∼D∗

[
B (ℓ) <f D <f B

(ℓ+1)
]
≤ 100Y log=

√
=

1056

Distribution-Free Testing of Decision Lists with a Sublinear Number of �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 5 TestTotalOrdering(<f ,D, Y)
Input: Oracle access <f , sampling access to D and Y > 0

1: Run Sketch(<f ,D, Y) and reject if it rejects; otherwise let S
be its output

2: Run TestLongEdges(<f ,D, Y,S) and reject if it rejects

3: Run TestLocalCycles(<f ,D, Y,S) and reject if it rejects

4: accept

for all ℓ . Note that we only reject when) contains more than

1000 log= points from some block. For the ℓ-th block, by a Cherno�

bound, the probability of having more than 900 log= points D ∈)
with B (ℓ) <f D <f B

(ℓ+1) is at most =−9. So by a union bound, this

does not happen with probability 1 − >= (1) for all blocks, in which

case the number of points sampled in each block is no more than

900 log= + 1 < 1000 log= even after counting the left end point of

the block. □

3.3 Putting It All Together: An $̃ (
√
=/Y) Tester

for Total Orderings

We now have everything we need to analyze our testing algorithm

TestTotalOrdering.

Proof of Theorem 3.1. The query complexity is trivial.

When <f is a total ordering, Sketch always returns a sketch S
consistent with <f and S in addition satis�es (3.1) with probability

at least 1 − >= (1). TestLongEdges never rejects as it is one-sided.
On the other hand, when S satis�es (3.1), by Lemma 3.11, Test-

LocalCycles accepts with probability at least 1 − >= (1). So the

algorithm accepts with probability 1 − >= (1) overall.
Suppose now that <f is Y-far from total orderings with respect

to D. Assume without loss of generality that Sketch returns a

sketch S consistent with <f ; otherwise we are trivially done. By

Corollary 3.8, either any feedback edge set of long cycles in �f

has mass at least Y/2, in which case TestLongCycles rejects with

probability at least 0.99 by Lemma 3.9, or any feedback edge set of

local cycles has mass at least Y/2, in which case TestLocalCycles

rejects with probability at least 1 − >= (1) by Lemma 3.11. So the

algorithm rejects with probability at least 2/3 overall. □

4 TESTING ALGORITHM FOR MONOTONE

DECISION LISTS

In this section, we present a distribution-free testing algorithm

for testing monotone decision lists with $̃ (=11/12/Y2) queries and
running time.

Theorem 4.1. There is a two-sided, adaptive distribution-free test-

ing algorithm for monotone decision lists that makes $̃ (=11/12/Y2)
queries and has the same running time.

A testing algorithm for general decision lists will follow via a

direct reduction, while losing an extra factor of 1/Y. We will focus

on the query complexity of the algorithm in this section; its time

complexity upper bound follows from a standard implementation.

Similar to some of the procedures from the last section, many

of the procedures in this section (especially those in Sections 4.1

and 4.2) are developed to extract structural information about an

Algorithm 6 Preprocess(5 ,D, Y)
Input: Oracle access to 5 : {0, 1}= → {0, 1}, sampling access toD

and Y > 0

1: Draw a set) ∗ of =1−X/2/Y points fromD and let) ←) ∗ \ {0=}
2: accept if) is either empty, contains 0-strings only, or contains

1-strings of 5 only

3: if Sketch(5 ,)) = nil then

4: reject

5: else (letting S = (B (1) , . . . , B (:)) be the sketch returned)

6: Run FindBigBlocks(5 ,D, Y,S) to obtain L ⊆ [0 : : + 1]
7: return (S,L)
8: end if

unknown input in the yes case, here a monotone decision list

5 : {0, 1}= → {0, 1}. So we encourage the reader to think about

this case when going through them. Of course, these procedures

will be executed on functions that are not monotone decision lists.

This is why many of the lemmas about performance guarantees of

these procedures consist of three parts: 1) the query complexity; 2)

the performance guarantees when the function 5 is a monotone

decision list; and 3) the performance guarantees when 5 is just an

arbitrary function.

4.1 Preprocessing

Fix X > 0 to be a positive constant, which will be set to be 1/6 at
the end to optimize the query complexity of the overall algorithm.

The preprocessing stage, Preprocess(5 ,D, Y), is described in

Algorithm 6. At a high level, it either outputs a pair (S,L), or tells
the main algorithm that there is already enough evidence to either

accept or reject the input. Here S is a sketch consistent with 5 to be

de�ned next, which can be used to partition the set of variables [=]
into blocks (using a procedure with the same name FindBlock),

and L contains some useful information about sizes of these blocks.

Preprocess starts by drawing a set) ∗ of =1−X/2/Y many inde-

pendent samples from D, and uses) :=) ∗ \ {0=} to build a sketch

S of the underlying function 5 (except when) is either empty,

consists only of 0-strings of 5 or only 1-strings of 5 , in which case

the main algorithm accepts since either D has most of its mass on

0= , or 5 is very close to the all-0 or all-1 function).

We de�ne sketches as follows:

De�nition 4.2. A sketch S is a tuple S = (B (1) , . . . , B (:)) of strings
in {0, 1}= for some : ≥ 2, such that B (ℓ) ≠ 0= for all ℓ ∈ [:]. We

say a sketch S is consistent with a function 5 : {0, 1}= → {0, 1} if
5 (B (ℓ)) ≠ 5 (B (ℓ+1)) and B (ℓ) ≻5 B (ℓ+1) , for all ℓ ∈ [: − 1].

To describe Sketch(5 ,)) we start with the following sim-

ple deterministic procedure based on binary search, called

FindRep(5 , -,.) (Algorithm 7), where -,. ⊆ {0, 1}= are two sets

and - is nonempty. The goal of FindRep is to �nd a string G∗ ∈ -
that satis�es

5
©­«
G∗ ∨ ©­«

∨
~∈.

~
ª®¬
ª®¬
= 5

(∨
I∈-∪.

I

)
. (4.1)

Note that such a string always exists when 5 is a monotone decision

list.

1057

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 7 FindRep(5 , -,.)
Input: Oracle access to 5 , two sets -,. ⊆ {0, 1}= and - is

nonempty

1: Let 1 ← 5 (∨I∈-∪. I) and ' ← -

2: while |' | > 1 do

3: Partition ' into '1 ⊔ '2 such that |'1 | = ⌊|' |/2⌋ and |'2 | =
⌈|' |/2⌉

4: if 5 (∨I∈'1∪. I) = 1 then

5: Set ' ← '1
6: else

7: Set ' ← '2
8: end if

9: end while

10: return the string in the singleton set '

Algorithm 8 Sketch(5 ,))
Input: Oracle access to 5 and) ⊆ {0, 1}= \ {0=} has at least one

0-string and one 1-string of 5

1: Let < = |) |,)0 ← {G ∈) : 5 (G) = 0} and)1 ←
{G ∈) : 5 (G) = 1}

2: for 8 from 1 to< do

3: if both)0 and)1 are nonempty then

4: Let 1 = 5 (∨G ∈)0∪)1G); Set G (8) ← FindRep(5 ,)1 ,)1)
and)1 ←)1 \ {G (8) }

5: else

6: Let 1 be such that)1 ≠ ∅; Set G (8) ← an arbitrary string

in)1 and)1 ←)1 \ {G (8) }
7: end if

8: end for

9: Divide [<] into a disjoint union of nonempty intervals [<] =
�1 ⊔ · · · ⊔ �: such that

i) 5 (G (8)) = 5 (G (9)) for all ℓ ∈ [:] and all 8, 9 ∈ �ℓ
ii) 5 (G (8)) ≠ 5 (G (9)) for all ℓ ∈ [: − 1], 8 ∈ �ℓ and 9 ∈ �ℓ+1

10: Check if : ≥ 2 and S = (B (1) , . . . , B (:)) is consistent with 5 ,
where B (ℓ) ← ∨8∈�ℓ G (8)

11: return S if so and return nil otherwise

We summarize properties of FindRep in the following lemma:

Lemma 4.3. FindRep(5 , -,.) is deterministic and makes

$ (log |- |) queries on 5 .
When 5 is a monotone decision list, FindRep always returns an

G∗ ∈ - that satis�es (4.1).

On the other hand, when 5 is an arbitrary function, FindRep always

returns an G∗ ∈ - but G∗ does not necessarily satisfy (4.1).

We now describe the procedure Sketch(5 ,)) (Algorithm 8),

where) ⊆ {0, 1}= \ {0=} contains at least one 0-string and at least

one 1-string of 5 . We summarize its properties below:

Lemma4.4. Sketch(5 ,)) is deterministic andmakes$ (|) | log |) |)
queries on 5 .

When 5 is a monotone decision list, it always returns a sketch S
that is consistent with 5 .

When 5 is an arbitrary function, it returns either nil or a sketch S
and in the latter case, S is always a sketch consistent with 5 .

We omit the proof. It is clear from Lemma 4.4 that if Sketch

returns nil in Preprocess, we know for sure that 5 is not a mono-

tone decision list and thus, should be rejected. When Sketch re-

turns a sketch S in Preprocess(5 ,D), we know it must be con-

sistent with 5 and Preprocess continues by running a procedure

called FindBigBlocks(5 ,D, Y,S), which uses a procedure called

FindBlock(5 ,S, G) that plays a similar role as the FindBlock in

the last section.

To motivate FindBlock, we make the following observation. Let

5 be any function and S be a sketch that is consistent with 5 . Given

G ∈ {0, 1}= , there must exist an index ℓ ∈ [0 : : + 1] such that one

of the following three conditions holds:

(1) either ℓ ∈ [2 : : − 1] such that 5 (G) ≠ 5 (B (ℓ−1)) = 5 (B (ℓ+1))
and B (ℓ−1) ≻5 G ≻5 B (ℓ+1) ;

(2) or ℓ ∈ {0, 1} such that 5 (G) ≠ 5 (B (ℓ+1)) and G ≻5 B (ℓ+1) ;
(3) or ℓ ∈ {:, : + 1} such that 5 (G) ≠ 5 (B (ℓ−1)) and B (ℓ−1) ≻5 G .

Furthermore, ℓ is unique when 5 is a monotone decision list.

The deterministic procedure FindBlock(5 ,S, G) (Algorithm 9)

�nds such an ℓ e�ciently for any given string G ∈ {0, 1}= :

Lemma 4.5. FindBlock(5 ,S, G) is deterministic and makes

$ (log:) queries. It always returns an ℓ ∈ [0 : :+1] for G as described
above, which is unique when 5 is a monotone decision list.

Using FindBlock we partition variables [=] into blocks (note

that we cannot a�ord to compute these blocks but they are well

de�ned given that FindBlock is deterministic):

De�nition 4.6 (Blocks). For �xed 5 andS, we de�ne the ℓ-th block
�5 ,S,ℓ with respect to S as

�5 ,S,ℓ =
{
8 ∈ [=] : FindBlock(5 ,S, 48) = ℓ

}
,

for each ℓ ∈ [0 : : + 1]. We usually write �ℓ to denote �5 ,S,ℓ when
5 and S are clear from the context.

Before moving to FindBigBlocks, we record a lemma about

S when 5 is a monotone decision list. The de�nition below and

Lemma 4.8 will only be used in the analysis of the yes case.

De�nition 4.7. Let 5 be amonotone decision list andS be a sketch

consistent with 5 . We say S is scattered if we have

Pr
G∼D

[
FindBlock(5 ,S, G) = : + 1

]
≤ 10Y log=

=1−X/2

and for every ℓ ∈ [:], we have (noting that 5 (G) = 5 (B (ℓ)) if
FindBlock(5 ,S, G) = ℓ)

Pr
G∼D

[
FindBlock(5 ,S, G) = ℓ and ∃ 8 ∈ [=] : 5 (48) ≠ 5 (G)

and G ≻5 48 ≻5 B (ℓ)
]
≤ 10Y log=

=1−X/2
.

Lemma 4.8. Let 5 be a monotone decision list, and) ∗ be a set of

=1−X/2/Y strings drawn fromD (as on line 1 of Preprocess(5 ,D, Y)).
The probability that Preprocess(5 ,D, Y) returns a sketch S that is

not scattered is >= (1) over the randomness of) ∗.

1058

Distribution-Free Testing of Decision Lists with a Sublinear Number of �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Due to space constraints, we omit the proof here. The preprocess-

ing stage ends by running FindBigBlocks(5 ,D, Y,S) (Algorithm
10):

Lemma 4.9. FindBigBlocks(5 ,D, Y,S) makes $̃ (=1−X/Y2) queries
and it always returns a subset L ⊆ [0 : : + 1]. With probability at

least 1 − >= (1), L satis�es the following properties10:

(1) |L| ≤ =1−X ;
(2) Let # (L) denote the set of neighboring blocks of L:

(L) :=
{
ℓ ′ ∈ [0 : : + 1] \ L : |ℓ ′ − ℓ | = 1 for some ℓ ∈ L

}
.

Then we have

Pr
G∼D

[
FindBlock(5 ,S, G) ∈ # (L)

]
≤ 0.1Y.

(3) For every ℓ ∈ [0 : : + 1] \ L, we have

|�ℓ | ≤
16=X log=

Y
.

Due to space constraints, we again omit the proof. We say L
returned by FindBigBlocks is good with respect to S if it satis�es

all conditions stated in Lemma 4.9. We will refer to ℓ ∈ L as big

blocks and ℓ ∉ L as small blocks.

4.2 MaxIndex

Let 5 : {0, 1}= → {0, 1}, S = (B (1) , . . . , B (:)) be a sketch that is

consistent with 5 , and L ⊆ [0 : : + 1] be a good set of big blocks

with respect toS. We describe a deterministic procedureMaxIndex

that will play an important role in the main testing algorithm.

To motivate MaxIndex, consider the case when 5 is a mono-

tone decision list (even though it will be ran on general functions).

Given G ∈ {0, 1}= \ {0=}, we would like to �nd an 8 such that

5 (48) = 5 (G) and 5 (48 ∨ 4 9) = 5 (48) for all 9 ∈ supp(G) such that

5 (4 9) ≠ 5 (G), i.e., 8 is one of the 5 (G)-rule variables that has pri-
ority higher than any of the 5 (G)-rule variables in the support of

G . MaxIndex(5 ,S, G) (Algorithm 11) achieves this with $̃ (=X/Y)
queries, with a caveat though that it only promises to work when

G lies in a block not in L: FindBlock(5 ,S, G) ∉ L.

Lemma 4.10. MaxIndex(5 ,S,L, G) is a deterministic procedure. It

makes $ (log=) many queries on 5 when FindBlock(5 ,S, G) ∈ L
and $̃ (=X/Y) many queries when FindBlock(5 ,S, G) ∉ L. It returns
either an 8 ∈ supp(G) or nil; whenever it returns an 8 ∈ supp(G), we
always have

FindBlock(5 ,S, 48) = FindBlock(5 ,S, G) and 5 (G) = 5 (48).
(4.2)

Suppose that 5 is a monotone decision list. ThenMaxIndex always re-

turns an 8 . Moreover, when FindBlock(5 ,S, G) ∉ L, the 8 ∈ supp(G)
returned additionally satis�es

5 (48 ∨ 4 9) = 5 (48), for all 9 ∈ supp(G) .

We omit the proof.

10Note that this holds no matter whether 5 is a monotone decision list or not.

Algorithm 9 FindBlock(5 ,S, G)

Input: Oracle access to 5 , a sketch S = (B (1) , . . . , B (:)) that is
consistent with 5 and G ∈ {0, 1}=

1: if 5 (B (1)) = 5 (G) then
2: if 5 (B (2) ∨ G) = 5 (G) then
3: return 1

4: else if 5 (B (2 ⌊:/2⌋) ∨ G) ≠ 5 (G) then
5: return 2⌊:/2⌋ + 1
6: else

7: Binary search to return an odd ℓ with 5 (B (ℓ−1) ∨ G) ≠
5 (G) = 5 (B (ℓ+1) ∨ G)

8: end if

9: end if

10: The case when 5 (B (1)) ≠ 5 (G) (or equivalently, 5 (B (2)) = 5 (G))
is symmetric

Algorithm 10 FindBigBlocks(5 ,D, Y,S)
Input: Oracle access to 5 , sampling access toD, Y > 0 and a sketch

S consistent with 5

1: Create and initialize a counter 2ℓ ← 0 for each ℓ ∈ [0 : : + 1].
2: for =1−X times do

3: Sample an 8 ∼ [=] uniformly at random

4: Let ℓ ← FindBlock(5 ,S, 48) and update counter 2ℓ ←
2ℓ + 1

5: end for

6: Set L to be

L ←
{
ℓ ∈ [0 : : + 1] : 2ℓ ≥

4 log=

Y

}

7: for 200/Y times do

8: Set counter 2 ← 0 and let

(L) ←
{
ℓ ′ ∈ [0 : : +1] : ℓ ′ ∉ L and |ℓ ′− ℓ | = 1 for some ℓ ∈ L

}
9: for (100/Y) log(=/Y) times do

10: Sample a string G ∼ D
11: Let ℓ ← FindBlock(5 ,S, G) and update counter 2 ←

2 + 1 if ℓ ∈ # (L)
12: end for

13: if 2 < 5 log(=/Y) then
14: return L
15: else

16: Set L ← L ∪ # (L)
17: end if

18: end for

19: return L ⊲ This line is reached with low probability

4.3 The Auxiliary Graph and Classi�cation of

its Cycles

After the preprocessing stage, let S = (B (1) , . . . , B (:)) be a sketch
that is consistent with 5 , and L ⊆ [0 : : + 1] be a good set of big

blocks with respect to S. (When analyzing the yes case later, we

1059

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 11MaxIndex(5 ,S,L, G)

Input: Oracle access to 5 , a sketch S = (B (1) , . . . , B (:)) consistent
with 5 , L ⊆ [0 : : + 1] that is
good with respect to S, and a string G ∈ {0, 1}= \ {0=}

1: Let ℓ ← FindBlock(5 ,S, G) and B (ℓ+1) ← 0= if ℓ ∈ {:, : + 1}
2: if ℓ ∈ L then ⊲ Case when ℓ ∈ L
3: Let � ← {4 9 : 9 ∈ supp(G)} and 48 ←

FindRep(5 , �, {B (ℓ+1) })
4: return 8 if FindBlock(5 ,S, 48) = ℓ and 5 (48) = 5 (G); re-

turn nil otherwise

5: end if

6: if ℓ ∉ L then

7: Let � ← {4 9 : 9 ∈ supp(G)} and* ← ∅ ⊲ Case when ℓ ∉ L
8: while |* | < (16=X log=)/Y and 5 (B (ℓ+1) ∨ (∨4∈� 4)) =

5 (G) do
9: Set I ← FindRep(5 , �, {B (ℓ+1) })
10: Update* ← * ∪ {I} and � ← � \ {I}
11: end while

12: for each 48 ∈ * do

13: return 8 if FindBlock(5 ,S, 48) = ℓ , 5 (48) = 5 (G) and
5 (48 ∨ (∨4∈� 4)) = 5 (G)

14: end for

15: return nil

16: end if

will add the condition that S is scattered as well.) Given S and L,

FindBlock(5 ,S, ·) : {0, 1}= → [0 : : + 1] and

MaxIndex(5 ,S,L, ·) : {0, 1}= \ {0=} → [=] ∪ {nil}

are two well-de�ned deterministic maps. We use these two maps

to classify cycles in the following auxiliary directed graph � :

De�nition 4.11. We write � to denote the directed (bipartite)

graph with vertex set

+ (�) =
{
(D,,) : D ∈ [=] and, ⊆ [=]

}
,

and there is a directed edge from (D,,1) to (E,,2) in � if and only

if E ∈,1 and 5 (4D) ≠ 5 (4E).

We will refer to � as the auxiliary graph. The following de�ni-

tion shows how S and L together can be used to de�ne a map i

from {0, 1}= to+ (�) ∪ {★, nil}, which in turn induces a probability

distribution over + (�) ∩ {★, nil} from D:

De�nition 4.12. The map i5 ,S,L : {0, 1}= → + (�) ∪ {★, nil} is
de�ned as follows: i5 ,S,L (0=) = ★;

i5 ,S,L (G) :=
(
MaxIndex(5 ,S,L, G),

{
8 ∈ supp(G) : 5 (48) ≠ 5 (G)

})
if G ≠ 0= and MaxIndex(5 ,S,L, G) ≠ nil; and i5 ,S,L (G) = nil

otherwise.

For convenience, we will just write i for i5 ,S,L when its sub-

scripts are clear from the context. Given i andD, we writeD◦i−1
to denote the push-forward of the probability distribution D by i ,

i.e., for each (D,,) ∈ + (�),
D ◦ i−1 (D,,) =

∑
G ∈{0,1}=\{0= }

D(G) · 1
[
i (G) = (D,,)

]
,

D ◦ i−1 (nil) =
∑

G ∈{0,1}=\{0= }
D(G) · 1

[
i (G) = nil

]

and D ◦ i−1 (★) = D(0=).

The following lemma shows that, when 5 is n-far frommonotone

decision lists with respect to D, any feedback vertex set of � must

have mass at least Ω(n) in D ◦ i−1.

Lemma 4.13. Suppose that 5 is Y-far from monotone decision lists

with respect toD, S is a sketch consistent with 5 , and L is a good set

of big blocks with respect to S. Then eitherD ◦i−1 (nil) ≥ n/2, or we
have D ◦ i−1 (*) ≥ Y/2 for any feedback vertex set* ⊆ + (�) of � .

We omit the proof. We further classify cycles of � into six types

using S,L and the map FindBlock(5 ,S, ·). It follows from Lemma

4.13 that, for some 2 ∈ [5], any vertex feedback set of type-2 cycles

in � must have mass Ω(n) inD ◦i−1 (it will become clear that we

don’t need to deal with type-0 cycles). Our main testing algorithm

then consists of �ve procedures, each handling one type of cycles.

De�nition 4.14 (Types of cycles in �). Let � be a directed cycle

in � . We say

0. � is of type 0 if it contains a vertex (D,,) with

FindBlock(5 ,S, 4D) ∈ # (L);
1. � is of type 1 if it contains a directed edge (D,,1) → (E,,2)

that satis�es

FindBlock(5 ,S, 4E) ≤ FindBlock(5 ,S, 4D) − 2;
2. � is of type 2 if it contains a directed edge (D,,1) → (E,,2)

that satis�es

FindBlock(5 ,S, 4E) = FindBlock(5 ,S, 4D) − 1
and both FindBlock(5 ,S, 4D), FindBlock(5 ,S, 4E) ∈ L;

3. � is of type 3 if it contains a directed edge (D,,1) → (E,,2)
that satis�es��FindBlock(5 ,S, 4D) − FindBlock(5 ,S, 4E)�� = 1

and FindBlock(5 ,S, 4D), FindBlock(5 ,S, 4E) ∉ L ∪# (L)
and 5 (4D ∨ 4E) ≠ 5 (4D);

4. � is of type 4 if it contains two consecutive edges (D,,1) →
(E,,2) → (F,,3) such that

FindBlock(5 ,S, 4F) + 2 = FindBlock(5 ,S, 4E) + 1
= FindBlock(5 ,S, 4D) (4.3)

and FindBlock(5 ,S, 4D), FindBlock(5 ,S, 4E),
FindBlock(5 ,S, 4F) ∉ L ∪ # (L) and
5 (4D ∨ 4E) = 5 (4D) and 5 (4E ∨ 4F) = 5 (4E);

5. � is of type 5 if it (1) has length at least 4, (2) satis�es

FindBlock(5 ,S, 4D) ∉ L ∪ # (L) for
all (D,,) in � , (3) satis�es 5 (4D ∨ 4E) = 5 (4D) for all edges
(D,,1) → (E,,2) in � , and (4)

max
(D,,) ∈�

FindBlock(5 ,S, 4D)

= min
(D,,) ∈�

FindBlock(5 ,S, 4D) + 1.
(4.4)

1060

Distribution-Free Testing of Decision Lists with a Sublinear Number of �eries STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 12MonotoneDL(5 ,D, n)
Input: Oracle access to 5 : {0, 1}= → {0, 1}, sampling access toD

and n > 0

1: Run Preprocess(5 ,D, n)
2: if it accepts or rejects then

3: return the same answer

4: else

5: Let (S,L) be the pair it returns
6: end if

7: for $ (1/n) times do

8: Draw G ∼ D and run MaxIndex(5 ,S, G); reject if it re-
turns nil

9: end for

10: TestType-1(5 ,D, n,S,L) and reject if it rejects

11: TestType-2(5 ,D, n,S,L) and reject if it rejects

12: TestType-3(5 ,D, n,S,L) and reject if it rejects

13: TestType-4(5 ,D, n,S,L) and reject if it rejects

14: TestType-5(5 ,D, n,S,L) and reject if it rejects

15: accept

Every cycle in � falls into at least one of the �ve types:

Lemma 4.15. Any cycle in � must be of type 2 for at least one

2 ∈ {0, 1, . . . , 5}.

Corollary 4.16. Suppose 5 is n-far from monotone decision lists

with respect to D, S is a sketch consistent with 5 , and L is a good

set of blocks with respect to S. Then either D ◦ i−1 (nil) ≥ n/2, or
for some 2 ∈ [5], any feedback vertex set * of type-2 cycles in � has

D ◦ i−1 (*) ≥ Ω(Y).

For brevity, we omit the proofs.

4.4 The Main Testing Algorithm and Proof of

Theorem 4.1

The testing algorithm MonotoneDL(5 ,D, n) for monotone deci-

sion lists is given in Algorithm 12. After running the preprocessing

stage to obtain a sketch S and a set L of big blocks, the algorithm

quickly checks whether D ◦ i−1 (nil) ≥ n/2 or not in line 8. The

rest of the algorithm then consists of one procedure for each of the

�ve types of cycles.

We list performance guarantees of these procedures in lemmas

below. In all lemmas we assume

(1) 5 : {0, 1}= → {0, 1} and D is a probability distribution over

{0, 1}= ;
(2) S = (B (1) , . . . , B (:)) is a sketch that is consistent with 5 ; and

(3) L is a good set of big blocks with respect to S.
In each lemma we describe performance guarantees of the proce-

dure when 5 is a monotone decision list and when any feedback

vertex set for type-2 cycles in � , for some 2 ∈ [5], is at least Ω(n).

Lemma 4.17. TestType-1 makes $̃ (=0.5+X/n2) queries and always
accepts when 5 is a monotone decision list. If any feedback vertex

set of type-1 cycles in � has probability mass Ω(n) in D ◦ i−1, then
TestType-1 rejects with probability at least 0.9.

Lemma 4.18. TestType-2 makes $̃ (=1−X/2/n) queries.

When 5 is a monotone decision list and S is scattered, it rejects

with probability at most >= (1).
If any feedback vertex set of type-2 cycles in� has probability mass

at least Ω(n) in D ◦i−1, then TestType-2 rejects with probability at

least 0.9.

Lemma 4.19. TestType-3 makes $̃ (=0.5+X/n2) queries and always
accepts when 5 is a monotone decision list. If any feedback vertex

set of type-3 cycles in � has probability mass Ω(n) in D ◦ i−1, then
TestType-3 rejects with probability at least 0.9.

Lemma 4.20. TestType-4 makes $̃ (=2/3+X/n2) queries and always
accepts when 5 is a monotone decision list. If any feedback vertex

set of type-4 cycles in � has probability mass Ω(n) in D ◦ i−1, then
TestType-4 rejects with probability at least 0.9.

Lemma 4.21. TestType-5 makes $̃ (=3/4+X/n2) queries and always
accepts when 5 is a monotone decision list. If any feedback vertex

set of type-5 cycles in � has probability mass Ω(n) in D ◦ i−1, then
TestType-5 rejects with probability at least 0.9.

Due to space constraints, we defer the proofs to the full version.

Theorem 4.1 now follows directly:

Proof of Theorem 4.1. The overall query complexity of

MonotoneDL is

$̃

(
=1−X/2

n

)
+ $̃

(
=1−X

n2

)
+ $̃

(
=3/4+X

n2

)
= $̃

(
=11/12

n2

)
,

when X is set to be 1/6.
When 5 is a monotone decision list, the only possibility for it to

be rejected is by TestType-2. But by Lemma 4.8, S is not scattered

with probability >= (1) and when it is scattered, by Lemma 4.18,

TestType-2 rejects with probability >= (1).
When 5 is n-far from monotone decision lists with respect to

D, it is accepted by Preprocess with probability >= (1), given that

D cannot have more than 1 − n mass on 0= and that 5 cannot be

n-close to the all-0 or all-1 function with respect to D. Therefore,

with probability at least 1 − >= (1) either MonotoneDL already

rejected (5 ,D) or it reaches line 7 with a sketch S consistent with

5 and an L that is good with respect to S by Lemma 4.9. When

this happens, either the probability ofMaxIndex(5 ,S, G) = nil as

G ∼ D is at least 0.5n , in which case line 8 rejects with probability

at least 0.9, or the rest of MonotoneDL rejects with probability at

least 0.9 by Lemma 4.17, 4.18, 4.19, 4.20 and 4.21. This �nishes the

proof of the theorem. □

Algorithm 13 TestType-1(5 ,D, n,S,L)
1: Draw two sets %∗, &∗ of $ (

√
=/Y) samples from D; let % ←

%∗ \ {0=} and & ← &∗ \ {0=}
2: For each G ∈ % ∪ & , compute FindBlock(5 ,S, G) and

MaxIndex(5 ,S,L, G)
3: reject if there exist G ∈ % and ~ ∈ & such that 5 (G) ≠ 5 (~),

FindBlock(5 ,S, ~) ≤ FindBlock(5 ,S, G) − 2
and MaxIndex(5 ,S,L, ~) ∈ supp(G)

4: accept otherwise

1061

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Xi Chen, Yumou Fei, and Shyamal Patel

Algorithm 14 TestType-2(5 ,D, n,S,L)
1: Draw a set %∗ of samples and a set &∗ of samples from D of

size given as follows:

=X/2

Y log2 =
and

=1−X/2 log3 =
n

, respectively

2: Let % ← %∗ \ {0=} and & ← &∗ \ {0=}
3: For each G ∈ % ∪& , compute FindBlock(5 ,S, G)
4: For each G ∈ % ∪ & with FindBlock(5 ,S, G) ∈ L, compute

MaxIndex(5 ,S,L, G)
5: reject if there exist G ∈ % and ~ ∈ & such that

i) FindBlock(5 ,S, ~) = FindBlock(5 ,S, G) − 1;
ii) FindBlock(5 ,S, G), FindBlock(5 ,S, ~) ∈ L; and
iii) MaxIndex(5 ,S,L, ~) ∈ supp(G)
6: accept otherwise

Algorithm 15 TestType-3(5 ,D, n,S,L)
1: Draw two sets %∗, &∗ of $ (

√
=/n) samples from D; let % ←

%∗ \ {0=} and & ← &∗ \ {0=}
2: Compute FindBlock(5 ,S, G) and MaxIndex(5 ,S,L, G) for

each G ∈ % ∪&
3: reject if there exist G ∈ % and ~ ∈ & such that

i)
��FindBlock(5 ,S, G) − FindBlock(5 ,S, ~)�� = 1;

ii) FindBlock(5 ,S, G), FindBlock(5 ,S, ~) ∉ L ∪ # (L);
iii) MaxIndex(5 ,S,L, ~) ∈ supp(G); and
iv) 5 (4D ∨ 4E) ≠ 5 (4D), where D = MaxIndex(5 ,S,L, G) and

E = MaxIndex(5 ,S,L, ~)
4: accept otherwise

Algorithm 16 TestType-4(5 ,D, n,S,L)

1: Draw a set %∗ of$ (=2/3/n) samples fromD; let % ← %∗ \ {0=}
2: Compute FindBlock(5 ,S, G) and MaxIndex(5 ,S,L, G) for

each G ∈ %
3: reject if there exist G,~, I ∈ % such that

i) FindBlock(5 ,S, I) + 2 = FindBlock(5 ,S, ~) + 1 =

FindBlock(5 ,S, G);
ii) FindBlock(5 ,S, G), FindBlock(5 ,S, ~),

FindBlock(5 ,S, I) ∉ L ∪ # (L); and
iii) 5 (4D ∨ 4E) = 5 (4D) and 5 (4E ∨ 4F) = 5 (4E): D, E and F are

MaxIndex of G,~ and I

4: accept otherwise

Algorithm 17 TestType-5(5 ,D, n,S,L)

1: Draw a set %∗ of$ (=3/4/n) samples fromD; let % ← %∗ \ {0=}
2: Compute FindBlock5 ,S (G) andMaxIndex5 ,S (G) for each G ∈
%

3: reject if there exist G1, G2, G3, G4 ∈ % such that

i) Let ℓ1, ℓ2, ℓ3 and ℓ4 be the FindBlock of G1, G2, G3 and G4,

respectively

ii) ℓ1 = ℓ3 = ℓ2 + 1 = ℓ4 + 1 and ℓ1, ℓ2, ℓ3, ℓ4 ∉ L ∪ # (L)
iii) Let D1, D2, D3 and D4 be the MaxIndex of G1, G2, G3 and G4,

respectively

iv) 5 (4D1 ∨ 4D2) = 5 (4D3 ∨ 4D4) = 0 and 5 (4D2 ∨ 4D3) = 5 (4D4 ∨
4D1) = 1.

4: accept otherwise

ACKNOWLEDGEMENTS

Xi Chen is supported in part by NSF grants IIS-1838154, CCF-

2106429, and CCF-2107187. Shyamal Patel is supported in part by

NSF grants IIS-1838154, CCF-2106429, CCF-2107187, CCF-2218677,

ONR grant ONR-13533312, and an NSF Graduate Student Fellow-

ship.

REFERENCES
[1] N. Ailon and B. Chazelle. 2006. Information theory in property testing and

monotonicity testing in higher dimension. Information and Computation 204, 11
(2006), 1704–1717.

[2] Eric Blais, Renato Ferreira Pinto Jr, and Nathaniel Harms. 2021. VC dimension
and distribution-free sample-based testing. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing. 504–517.

[3] Xi Chen and Shyamal Patel. 2022. Distribution-free Testing for Halfspaces
(Almost) Requires PAC Learning. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1715–1743.

[4] Xi Chen and Jinyu Xie. 2016. Tight bounds for the distribution-free testing of
monotone conjunctions. In Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 54–71.

[5] E. Dolev and D. Ron. 2011. Distribution-Free Testing for Monomials with a
Sublinear Number of Queries. Theory of Computing 7, 1 (2011), 155–176.

[6] D. Glasner and R. Servedio. 2009. Distribution-Free Testing Lower Bound for
Basic Boolean Functions. Theory of Computing 5, 10 (2009), 191–216.

[7] Oded Goldreich, Shari Goldwasser, and Dana Ron. 1998. Property testing and
its connection to learning and approximation. Journal of the ACM (JACM) 45, 4
(1998), 653–750.

[8] David Guijarro, Victor Lavin, and Vijay Raghavan. 2001. Monotone term decision
lists. Theoretical Computer Science 259, 1-2 (2001), 549–575.

[9] S. Halevy and E. Kushilevitz. 2007. Distribution-Free Property-Testing. SIAM J.
Comput. 37, 4 (2007), 1107–1138.

[10] S. Halevy and E. Kushilevitz. 2008. Distribution-Free Connectivity Testing for
Sparse Graphs. Algorithmica 51, 1 (2008), 24–48.

[11] S. Halevy and E. Kushilevitz. 2008. Testing monotonicity over graph products.
Random Structures & Algorithms 33, 1 (2008), 44–67.

[12] Ronald L. Rivest. 1987. Learning decision lists. Machine Learning 2, 3 (1987),
229––246.

[13] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[14] György Turán. 1993. Lower bounds for PAC learning with queries. In Proceedings
of the sixth annual conference on Computational learning theory. 384–391.

[15] L.G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984),
1134–1142.

Received 13-NOV-2023; accepted 2024-02-11

1062

	Abstract
	1 Introduction
	2 Preliminaries
	3 Warm-up: Testing Total Orderings
	3.1 Sketches
	3.2 The Order Graph and Classification of Cycles
	3.3 Putting It All Together: An (n/) Tester for Total Orderings

	4 Testing Algorithm for Monotone Decision Lists
	4.1 Preprocessing
	4.2 MaxIndex
	4.3 The Auxiliary Graph and Classification of its Cycles
	4.4 The Main Testing Algorithm and Proof of Theorem 4.1

	References

