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Abstract—Security is increasingly a primary concern in the design
of safety-critical embedded systems, yet balancing it with timing
constraints is challenging due to limited computing resources.
The Multi-Phase Secure (MPS) Sporadic Task Model, proposed
in an ISORC-2023 paper, addressed this by balancing overhead
from security mechanisms (e.g., trusted-execution environments)
with real-time scheduling constraints. However, this model as-
sumed a somewhat pessimistic view of the overhead involved in
switching between security mechanisms, often overestimating the
necessity of these switches. This paper refines the MPS Sporadic
Task Model to more accurately assess when switching security
mechanisms is unnecessary, thereby avoiding undue overhead.
Our refined model demonstrates a substantial improvement in the
schedulability ratio when the utilization of the system approaches
one (approximately 15% improvement) for randomly-generated
security-aware task systems.

Index Terms—Embedded System Security; Graph Transforma-
tion; Limited-Preemption Scheduling; Earliest-Deadline First.

I. INTRODUCTION

A paper that was presented at ISORC last year [1] had pro-
posed a new task model called the Multi-Phase Secure or MPS
task model, for modeling recurrent real-time workloads in a
manner that is cognizant of security considerations. The need
for such security-cognizant models is evident: security is now
a primary concern in many real-time systems, e.g., [2], [3], [4],
[5], [6], [7], [8], as electronic devices now permeate our daily
lives and become more and more interconnected. However,
implementing a given security measure usually comes with
additional resource requirements (e.g., computation) or may
restrict application behaviors (e.g., requiring non-preemptable
computation or isolation). For example, control flow integrity
(CFI) checks may be needed to ensure correct program
execution. However, such checks, which require CPU time
in addition to normal code execution, must be carried out
at specific time points (e.g., after branching) and allowing
for preemption may result in an arbitrary computation being
performed but not detected. As another example, a task that
is responsible for taking sensor readings may need to execute
in isolation in order to ensure that another task cannot deduce
when an event of interest occurs [8].

Since implementing security measures requires some of the
same resources that the real-time tasks need to advance
their execution, a co-design approach that explicitly considers
security cost/requirements along with real-time requirements is
potentially more effective at managing limited computational
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resources. For instance, trusted execution environments (TEEs)
provide isolation of code and data in hardware at the expense
of setup and teardown costs (in the order of microseconds for
Arm Cortex-M [9] and hundreds of microseconds or even tens
of millseconds for Arm Cortex-A [10]). A scheduling approach
that does not consider this specific security-driven overhead
may elect to switch between the secure world (i.e., executing
in TEE) and the normal world (no TEE) indiscriminately. This
may result in an excessive amount of overhead and cause
deadline misses. A security-cognizant scheduler, on the other
hand, would make judicious decisions based on both security
and real-time requirements, e.g., by bundling up multiple
TEE executions and executing them one immediately after
the other so as to have to pay for setup and teardown cost
only once [10]. A prior ISORC paper [11] had proposed
and developed algorithms that are able to provide provable
correctness of both the timing and some security properties.
The design philosophy underpinning these algorithms was
articulated in [11] as follows: security for safety-critical real-
time embedded systems can be achieved by (i) explicitly
representing specific security considerations within the same
formal frameworks that are currently used for specifying real-
time workloads (thereby extending notions of correctness to
incorporate both the timing and the security aspects); and
(i1) extending previously-developed techniques for achieving
provable timing correctness to these models (thus assuring that
both timing and security properties are proved correct).

This work. As mentioned earlier, an ISORC-2023 paper [1]
had applied the methodology of [11] to the following problem
in system design for real-time plus security. Consider computer
platforms upon which multiple different security mechanisms
(such as TEEs, encryption/ decryption co-processors, FPGA-
implemented secure computations, etc.) co-exist. Different
code sections may require varied security mechanisms based
on their specific security needs. It is therefore assumed that
the code is broken up into phases, with different successive
phases needing to use different security mechanisms — the
security mechanism used by each phase is specified for the
phase. There is a setup/ tear-down overhead cost (for data
communication, initialization, etc.), expressed as an execution
duration, associated with switching between different security
mechanisms. l.e., there is a time overhead associated with
switching between the execution of different phases.

The workload model discussed in the above paragraph was
formalized in [1] as the Multi-Phase Secure (MPS) task model,
in which multiple independent recurrent processes of this kind



are assumed to execute upon a single shared preemptive pro-
cessor. Specifically, a model in which each recurrent process
is represented using the widely-used 3-parameter sporadic
task model [12] was studied in great depth in [I], and an
additional generalization was briefly considered that models
conditional execution within each recurrent process. However,
this generalization in [1] to conditional code made some fairly
significant conservative approximations (which we discuss in
detail in Section II below). The major contribution of the
current work is to remove these approximations and provide an
optimal algorithm (and corresponding analysis and evaluation,
both theoretical and empirical) for schedulability-analysis and
run-time scheduling of systems of conditional MPS tasks upon
preemptive uniprocessor platforms.

Organization. The remainder of this manuscript is organized
as follows. Section II provides a concise description and sum-
mary of the MPS sporadic task model and associated analysis
that was presented in [1]. Section III describes the refinements
to the MPS Sporadic task model that permit a reduction in
the over-approximation of the security overhead. Section IV
provides the steps required to use the model refinements of
the previous section to improve the schedulability analysis
for the system. Section V discusses an empirical evalua-
tion of the improvements of updated schedulability analysis
over randomly-generated task systems (including randomly-
generated conditional graphs). Section VII provides some
concluding remarks and thoughts on future directions.

II. THE CONDITIONAL MPS SPORADIC TASK MODEL

In this section we briefly summarize the current state of the
art concerning the conditional MPS sporadic task model. We
will start out in Section II-A discussing a simpler model
(referred to in [1] as the “linear” MPS sporadic task model, to
distinguish it from the conditional model), and then proceed
to the conditional MPS sporadic task model in Section II-B.

A. LINEAR MPS SPORADIC TASKS

As defined in [1], a (linear) MPS sporadic task system I’
comprises multiple independent tasks that are to be scheduled
together upon a single shared preemptive processor. Each
task is characterized by a relative deadline, a period, and n
phases denoted v1,vs, ..., v,. Successive phases are assumed
to execute using different security mechanisms (i.e., phase v;
and phase v;41 execute using different security mechanisms
for each 7,1 < ¢ < n). The worst-case execution time (WCET)
of phase v; is denoted by ¢(v;), and the sum of the setup and
the teardown cost associated with the security mechanism used
by phase v; is denoted by ¢(v;). The actual WCET experienced
by an individual job of the task during any particular execution
depends upon the number of times it gets preempted within
each of its phases. That is, let us suppose that during some
execution the ¢’th phase of a particular job of the task gets

preempted a total of k; times for each i,1 < ¢ < n. Then the
total WCET of this job during this execution is

i(cm) + (ki +1) X g(v3))

i=1

The approach presented in [1] for scheduling a given a linear
MPS sporadic task system I' comprising multiple independent
tasks upon a single preemptive processor is as follows.

1) Each task in I is first mapped onto a limited-preemption
task [13]. As discussed in [13], a limited-preemption task
is characterized, alongside the WCET, deadline, and period
parameters, by a chunk size — the maximum duration for
which each job of the task may execute non-preemptively
without causing deadline misses. The mapping defined
in [1] computes these chunk sizes for each task in I'.

2) Next, a limited-preemption EDF schedulability analysis
algorithm [13], [14] is executed to determine whether the
resulting limited-preemption system is schedulable.

3) If so, then during run-time the original linear MPS sporadic
task system is scheduled using the limited-preemption EDF
scheduling algorithm [13], with chunk-sizes as determined
by the mapping in Step 1 above.

This approach was proved [l, Theorems 1 and 2] to be
optimal': if a given linear MPS sporadic task system I can be
scheduled to consistently meet all deadlines, then the approach
in [1] will ensure that it always meets those deadlines.

B. CONDITIONAL MPS SPORADIC TASKS

In many event-driven real-time application systems, the code
modeled by a task may include conditional constructs (‘if-
then-else’ statements) in which the outcome of evaluating
a condition depends upon factors (such as the current state
of the system, the values of certain external variables, etc.),
which only become known at run-time, and indeed may
differ upon different invocations of the task. Tasks exhibiting
such conditional execution are frequently modeled [15] as
directed acyclic graphs (DAGs) in which the vertices represent
execution of straight-line code, with a piece of straight-line
code ending in a conditional expression represented by a vertex
that has out-degree > 1, as in the example below:

Fig. 1. A task modelled as a directed acyclic graph (DAG)

'Under some not-very-restrictive assumptions that require potential preemp-
tion points to be statically assigned — please see [1] for a detailed discussion.



In Figure 1, the vertex a denotes a piece of straight-line
code that ends with the execution of a conditional expression.
Depending upon the outcome of this execution, the straight-
line code represented by either the vertex b or the vertex c
executes, after which the straight-line code represented by the
vertex d executes.

The conditional MPS sporadic task model that was introduced
in [1] is capable of modeling such conditional execution. A
system I' of conditional MPS sporadic tasks is modeled as
comprising multiple independent tasks, in which each task is
characterized by a 3-tuple (G, D,T). As in the linear MPS
task model, D and T' are non-negative integers denoting the
relative deadline and period of the task. GG is a directed acyclic
graph (DAG): G = (V,E) where E C V x V. Each node
v; € V signifies a computational phase that needs a specific
security mechanism for execution. A wcet function is defined,
denoted as ¢: V' — N, where ¢(v;) represents the Worst Case
Execution Time (WCET) of node v;. Additionally, an overhead
function, represented as ¢ : V — N, specifies the setup or tear-
down costs related to the security mechanism used by vertex
v; during execution.

Let us return to our example DAG. Suppose that vertices a
and b use the same (red) security mechanism, and vertices c
and d also use the same security mechanism (that is blue, and
so different from the red one used by a and b). If during some
execution of this task vertex b were to execute after vertex a,
then there is no teardown or setup cost associated with the
transition from a to b but such a cost is incurred in transiting
from b to d; if instead vertex ¢ were to execute after vertex a,
then a teardown and setup cost is incurred on this transition but
none is incurred in transiting from c to d. The analysis in [1],
however, makes the conservative assumption that overhead
costs are incurred in every transition, even when both vertices
use the same security mechanism: “...we assume that [...]
the tear-down cost associated with the security mechanism of
v;, and the setup cost associated with the security mechanism
of vy, is always paid upon traversing an edge (v, vg)” [1].

Example 1. Suppose (i) Figure 1 is the entire task; (ii) the
chunk size® for this task is 5, and (iii) WCETs are as follows:

vertex‘a b ¢ d
WCET |3 2 2 3

Suppose, too, that the tear-down + startup overhead asso-
ciated with going from the red security mechanism to the
blue one (or vice versa) are equal. In reality, the maximum
execution duration of any individual job of this task is 8 plus
one (tear-down + startup) overhead, but the analysis of [1]
would model it as being equal to 8 + two (tear-down +
startup) overheads. []

The conservative assumption allows the model of [1] to

ZRecall from Section II-A that a task’s chunk size is the maximum duration
for which each job of the task may execute non-preemptively under limited-
preemption EDF without causing deadline misses.

associate a tear-down plus setup overhead cost of ¢(v;) with
each vertex v;, just as in the linear model of Section II-A. In
this paper, we eliminate this conservative over-approximation:
transitioning from one vertex in the DAG to another that uses
the same security mechanism no longer incurs an overhead
cost. While this refinement more accurately reflects reality
(and as we will see, enables superior analysis), it requires
modification to the model specification: the tear-down/ setup
overhead associated with a vertex is now context-dependent
and cannot be directly specified as a parameter that is only
associated with the vertex. In Section III below we describe
how we have modified the conditional MPS task model of [1]
to enable such refined analysis.

III. A MORE ACCURATE MODEL

As we had discussed in Section II above, the algorithms
presented in [1] for the schedulability analysis of systems of
conditional MPS tasks make the assumption that tear-down
and setup costs are always paid upon transitioning between
any pair of jobs, regardless of whether both jobs use the
same or different security mechanisms. But of course this is
needlessly conservative: no tear-down and subsequent setup
are performed if both jobs use the same security mechanism. In
this section we propose some enhancements to the conditional
MPS sporadic task model of [1], in order to be able to not have
to be conservative in this manner.

As described in Section II above, a system I' of conditional
MPS sporadic tasks comprises multiple independent tasks,
with each task characterized by a 3-tuple (G, D,T) where
D and T are the relative deadline and period respectively,
while G = (V, E) represents a Directed Acyclic Graph (DAG).
Each node v; € V signifies a computational phase that uses a
specific security mechanism. The WCET function ¢: V — N
specifies the worst-case execution times of the individual
vertices.

Previously (i.e., in [1]), tear-down and setup overheads were
specified by specifying a parameter ¢(v;) for each v; € V. But
as we had pointed out in Section II-B, this implicitly implies
that the overhead is always paid in transitioning from one
vertex to another, even when the vertices use of the same
security mechanism. In this paper, we wish to provide more
accurate (i.e., less conservative) analysis that only counts the
overhead when it is actually incurred; in order to be able to
do so, it is necessary that we explicitly specify which security
mechanism is used by each vertex. Accordingly, let

D= {61,082, ...,0p|}

denote the distinct security mechanisms that are available on
the platform, and let

cost : D — N

denote the sum of the overhead costs that are associated with
the tearing down and setting up operations for each security
mechanism: cost(d;) is the sum of the tear-down and setup



costs associated with security mechanism §;. We additionally
specify a function
oc:V =D

such that o(v;) denotes the security mechanism used by vertex
v;. (Hence the function ¢(v;) from [1] satisfies the equivalence
q(v;) = cost(o(v;)): the tear-down and setup overhead cost
associated with a vertex v; is the overhead cost for the security
domain o (v;).)

Summarizing the new model. A conditional MPS sporadic
task is now specified by

e a 3-tuple (G,D,T) as in [1], with G = (V, E) a DAG
and D and T' non-negative integers;

« the wcet function ¢ : V — N (again as in [1]);

« the set of security mechanisms D that are used by the
task;

o the function cost : D — N denoting the tear-down
plus setup overhead cost associated with each security
mechanism; and

o the function o V' — D denoting which security
mechanism is used by each vertex.

IV. IMPROVED ANALYSIS FOR CONDITIONAL MPS
SPORADIC TASK SYSTEMS

In Secton III above, we had proposed some enhancements
to the conditional MPS sporadic task model of [1] that
enables more accurate accounting of the overhead costs arising
from switching between security mechanisms. In this section,
we obtain an algorithm that converts any conditional MPS
sporadic task 7 = (G, D, T) specified in this enhanced model
to a different conditional MPS sporadic task 7/ = (G’, D, T),
satisfying the two properties that

P1. Each edge in G’ connects jobs that use different security
mechanisms; and

P2. For any conditional MPS sporadic task system I' that is
limited-preemption EDF-schedulable upon a preemptive
processor, the MPS sporadic task system

= {J{} (1)
Tell
is limited-preemption EDF-schedulable upon the same pre-
emptive processor.

Suppose we were to perform schedulability-analysis of I
using the schedulability-analysis algorithm of [1]. Since each
task in I" satisfies Property P1, it is not a conservative over-
approximation to charge a tear-down plus setup overhead when
transitioning across each edge of the DAG, as the analysis
of [1] does — such an overhead cost is indeed actually incurred.
And it follows by Property P2 that I is schedulable if and
only if I' is. Hence, the two-step process

1) convert each task 7 € T' to a task 7' that satisfies the
properties P1 and P2 above to obtain the task system I";
and

By

Fig. 2. An example task (discussed in Section IV-A)

2) use the schedulability-analysis algorithm of [1] to deter-
mine whether T is schedulable or not

constitutes an optimal schedulability-analysis algorithm for
systems with conditional MPS sporadic tasks.

A. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate, via a simple example (Figure 2),
the intended outcome of the process of converting a condi-
tional MPS sporadic task to another such that the properties
P1 and P2 listed above are satisfied, and try to provide
some intuition behind our algorithm for doing so. The actual
algorithm is presented in Section I'V-B.

Our example task in Figure 2 is defined for an execution envi-
ronment that uses (at least) two different security mechanisms
(i.e., |D| > 2) that are denoted in Figure 2 by different colors:
blue and red. The vertices labeled R1—R, are assumed to use
the red security mechanism, and the vertices labeled B1—Bj
the blue security mechanism.

For any given security mechanism 6 € D, We refer to the
set of all vertices using the same security mechanism Vs as
the security domain for security mechanism §. For instance,
consider in Figure 2 that its security mechanisms are given
by D = {dr,dp} where R and B are the mechanisms for the
red and blue nodes respectively. Thus Vs, = { Ry, Ra, R3, R4}
comprises the red security domain for our example task, whilst
Vs, = {Bi1, B2, B3} comprises the blue security domain.

We identify the set of all entry and exit vertices for each
security domain. The entry vertices for a security domain are
the source nodes and/or all those vertices that have an incom-
ing edge from a vertex that belongs to a different security
domain; analogously, exit vertices are the sink nodes and/or
have an outgoing edge to a vertex belonging to a different
security domain. For our example task, vertices Ry, R3 and
R, are entry vertices, and R4 is the sole exit vertex, for the
red security domain; for the blue security domain, vertices By
and Bs are entry vertices, and all three of B, Bs and Bs are
exit vertices.

We will first describe how the set of vertices of the converted
graph is obtained. The converted graph will have, for each
security domain, a single vertex to represent each combination
of entry vertex and exit vertex of that security domain. The
WCET parameter assigned to a vertex representing a particular



Fig. 3. The example task of Figure 2 after conversion

(entry vertex, exit vertex) ordered pair is set equal to the largest
cumulative WCET of any path from the entry vertex to the exit
vertex, that lies entirely within the security domain. Figure 3
depicts the converted task for the initial task of Figure 2, with
the vertices R) and B; representing (entry vertex, exit vertex)
ordered pairs as follows:

Node | Entry  Exit WCET
4 R Ry | ¢(R1) + max(c(R2),c(Rs)) + ¢(Ra)
Rlz Rs3 Ra C(R3) + C(R4)
ng Ry Ry C(R4)
Bi Bl Bl C(Bl)
Bé B1 B C(Bl) + C(BQ)
Bé B1 B3 C(Bl) + C(BQ) =+ C(Bg)
B:l B3 Bg C(Bg)
Bi Bs Bi | infeasible
B Bs B> | infeasible

Notice that vertices B and Bj are infeasible in the sense that
in the original task (Figure 2) it is not possible to traverse
the blue security domain from Bjs, the entry vertex associated
with both Bf and By, to either By or Bs, the exit vertices
associated with B} and By respectively. Hence, Bf and B
are not depicted in Figure 3.

Now, we will describe how the set of edges of the converted
graph is obtained: for each edge (u,v) in the original task
that has its two end-points lie in different security domains,
we add an edge from each vertex representing an ordered pair
in which vertex u is the second (i.e., exit) vertex, to each
vertex representing an ordered pair in which vertex v is the first
(i.e., entry) vertex. Consider, for instance, the edge (Bs, R3)
in Figure 2. Since Bs is the exit vertex for B (it is also the
exit vertex for the infeasible vertex By that is not depicted
in Figure 3) whereas Rj3 is the entry vertex for R}, the edge
(B4, RS) is added to the task in Figure 3.

As another example, consider the edge (R4, Bs) of Figure 2.
Vertex R, is the exit vertex for all three vertices R}, R),
and R}, while Bs is the entry vertex for the vertex Bj.
Consequently, in Figure 3 there are edges from each of R}, R},
and R} to Bj.

It is evident from the description of how the edges of the
transformed task are obtained that the transformed task sat-
isfies Property P1: each edge connects vertices belonging to
different security domains. To see how it also satisfies Property
P2, observe that

« Any execution path through the original DAG can be broken
up into segments, each comprising a maximal sequence
of consecutively-executed vertices that belong to the same
security domain.

« But each such maximal sequence of consecutively-executed
vertices is represented by a single vertex in the transformed
graph.

« Hence, the execution path through the original DAG is
modeled by a path in the transformed DAG in which
each maximal sequence of consecutively-executed vertices
in the path is represented by the corresponding vertex in
the transformed DAG that is associated with the first and
last vertices of the maximal sequence as the entry and exit
vertices, and each edge in the original path that transitions
from one security domain to another is represented by the
corresponding edge in the transformed DAG.

Consider, for instance, the path

(By = Ry — (Ry or R3) — R4)
in I'; this maps to the path

(Bl — Ry)

in IV, Similarly, the path

(By = By — R3 — Ry — B3)
in I maps to the path

(By = Ry — BY)

in I'.

B. A FORMAL DESCRIPTION OF THE ALGORITHM

In this subsection, we now formalize the process outlined in
the example of the previous section for creating transformed
DAGs that satisfy Properties P1 and P2. The process comprises
follow two steps:

1) Define a set of vertices V' for the converted graph.
2) Create edges E’ between the vertices in V',

Identifying the security mechanism ¢ associated with each
vertex in the graph G is crucial since we construct sub-
graphs induced by a particular domain Vj. Let Gs represent
the subgraph induced by the security domain Vj; that is,
Gs = (Vs,Es5) where Vs is the security domain for ¢
and Ej are the edges that exist between nodes of Vs (i.e.,
Es = {(vi,v;) € E | v; € VsAv; € Vs}). These subgraphs are
defined as described in the pseudocode provided in Figures 4
and 5.

Description of Algorithm on Example: We first identify the
set of entry and exit nodes for each domain. Notice that the
graph G in Figure 2 contains two domains — red and blue. For
the red domain, the entry nodes are: T1 = { Ry, R3, R4} and
the exit nodes are: T2 = { R4}. Similarly, for the blue domain,
the entry nodes are: T'1 = {Bj, B3} and the exit nodes are:



Input: Graph G = (V, E)
1 V'« 0 // Initialize V'
for each security mechanism 6 € D do
3 Identify the corresponding security domain Vs and
induced subgraph Gj.
4 T1 + {vg,vp,...};
nodes of domain Vjy
5 | T2« {vy,vy,...}; // Set of exit nodes
of domain Vj
6 for each pair (v;,v;) such that v; € T1 and

(5]

// Set of entry

v; € T2 do
7 create a new node Xj;
8 V'« V' U{X};
9 X, WCET «+

ComputeLongestPath(v;, v;, Gs);
// Longest Path in the subgraph
induced by domain Vj

10 Xp.entry < v;;
11 Xy exit < vj;
12 end

13 end

14 return SET OF VERTICES V'

Fig. 4. Pseudocode for processing domains to create new nodes V'’
for the transformed graph.

Input: Graph G = (V, E), set of vertices V'
1 B+ 0; // Initialize set of edges
2 for each pair of vertices (vj,v}) in V' do
if ((v].exit,v}.entry) edge exists in

G A (vj.domain # v’;.domain)) then

‘ Add edge (v;,v}) to E';
end

end
return SET OF EDGES E’

w

R T ST

Fig. 5. Pseudocode for creating edges E’ for the transformed graph.

T2 = {By, By, B3}. For every pair within the sets of entry
and exit nodes:

o Generate a new node and assign a label.

o Determine its Worst Case Execution Time (WCET) by
finding the longest path in the subgraph formed by domain
V5. Note that the subgraph is also DAG, so the longest path
problem can be solved in linear time in |Vj| and |Es]|.

o Record the entry and exit nodes of the newly created node
for reference.

These processes result in the creation of nodes (V') within the
graph G’, as outlined in the tables provided in Section IV-A.
Subsequently, to establish connectivity, an examination is
conducted for each pair of nodes in V' to determine whether
any edges were present in the original graph G, as specified

in Line 3 of Figure 5. For instance, consider the pair of nodes
within V':

. (R, B)):

(R} .exit, By.entry) = (R4, B1)

(R4,B1) ¢ E

Thus, there exists no edge in E’ for (R}, B}).
. (R B))

(Rh.exit, Bj.entry) = (R4, B3)

(R4,B3) € E

Thus, (R, B)) € E'.

The remaining pairs of vertices in V' are checked similarly to
form the edges in F’.

C. RUN-TIME COMPLEXITY

The time complexity of the algorithm in Figure 4 is dominated
by the inner for-loop, which iterates up to n? times where
n is the (maximum) number of phases. Inside the inner for-
loop, the most time consuming operation involves computing
the longest path, which takes O(|V| + |E|). Hence, the time
complexity of this algorithm (Figure 4) is O(|D| - n? - (|E| +
VD). ie. O(D|-[VI*- (V] +]|E])).

Similarly, the time complexity of the algorithm presented in
Figure 5, is O(|V|?>+|V|-|E|). However, this time complexity
can be reduced to O(|V|?) if an adjacency matrix is used to
represent the graph instead of an adjacency list.

V. EMPIRICAL EVALUATION

Having introduced an updated conditional MPS sporadic task
model (Section IIl) and updated analysis (Section IV), we
now focus our attention upon empirically quantifying the
improvement compared with the original conditional MPS
sporadic model/analysis of [1]. Since our proposed approach
removes unnecessary startup/ teardown costs between nodes
in the same security domain, the total security overhead for
each DAG will never increase (and will likely decrease) when
compared to the approach that requires a startup/teardown
for each node. So, the updated model/analysis will dominate
the original MPS model; however, it remains to be seen if
these updates represent a significant change with respect to
the schedulability of a security-cognizant system comprising
conditional MPS sporadic tasks.

A. EXPERIMENTAL SETUP

We implemented both the uniprocessor limited-preemption
EDF schedulability test for the original conditional MPS
sporadic model [1] and the graph transformation algorithm
described in Section IV. All algorithms and the EDF-
schedulability test were implemented in python.

We evaluated our proposed approach against the original
approach [1] over randomly-generated task systems. The con-
ditional MPS sporadic model requires the generation of both
the DAG structure as well as the generation of each task’s



timing parameters. We now describe the methodology for our
task generation of these two aspects separately.

Graph Generation Methodology. For each task, we generate
a DAG using the Erdos-Renyi method [16], [17]. The method,
denoted G(n, p) and provided by the networkx library [18],
takes as input the number of nodes in the graph n and the
probability that an edge appears between two nodes p. The
method returns an undirected graph. We create a directed
acyclic graph from the returned undirected graph by randomly
permuting the vertices of the graph in an ordered list; we
then add direction to ensure that an edge only points from an
earlier node in the list to a later node. This approach provides
direction and ensures that no cycles are introduced into the
graph. Finally, to ensure that the graph is connected and has
a single starting point (source) and a single termination point
(sink), we create a dummy source/sink that we link to the
source/sink nodes of the original graph.

In the presented experiments, the number of nodes n for a task
is uniformly selected from the range [2, 10]. The probability of
an edge p is determined by a predefined value, in this case, set
to 0.5. Furthermore, each node in the graph (except the dummy
sink/source) is uniformly assigned a security domain from the
set of security domains. The number of security domains for
a task is uniformly drawn from the range [1, 3].

Timing-Parameter Generation Methodology. Once the
graph structure G = (V, E) for a task has been generated, we
can generate its timing parameters. For each node v € V, we
randomly generate a worst-case execution time ¢(v) uniformly
as an integer from the range [1,10] (except the dummy
source/sink are assigned zero execution time). Additionally,
for each security mechanism ¢ (and domain Vj), we randomly
assign an integer cost cost(d). Using the above parameters,
the initial “weight” of a node v € V is determined by
¢(v) + cost(o(v)). Using this initial weight, we can find the
longest path from dummy source to dummy sink; we represent
the length of this path as L(G). Intuitively, this represents the
maximum execution time of the conditional MPS sporadic task
if each node were executed non-preemptively and all nodes
performed the security mechanism start-up/ teardown at the
beginning/ end of their execution. (The approach of [1] and our
paper modify this cost, but this longest path gives a common
reference to determine the utilization of the task).

The utilization u of a task is defined by the weight of its initial
longest path L(G) over the period T. (We assume implicit-
deadline tasks for the experiments; that is, D = T for all
tasks). The utilization of the system U is the sum of the
individual task utilization. To obtain the utilizations of the
system and its tasks, we use the UUniFast algorithm [19]
which takes as input the target system utilization U and
number of tasks |I'| and returns a |T'|-length vector of non-
negative real numbers (uq,us, ... ,um) that sum to exactly
U. These u, values represent the target assigned utilization
for each task. For each task, we take L(G/)/u, (rounded to
the nearest integer) to obtain the corresponding task period 7.

Since the rounding of period may cause some small deviation
from the task’s target utilization, we check that the generated
system utilization is within a threshold of 0.05; if not, then
we discard this task system and regenerate another system.

B. SCHEDULABILITY RESULTS

As an assessment criterion, we analyze the schedulability ratio
across various utilization values, varying from 0.1 to 1.0. Fig-
ure 6 shows the schedulability ratios obtained for the different
utilizations obtained for the Preprocessing Algorithm [1] of
the original Conditional MPS model (previous approach) and
our improved Conditional MPS model (new approach).

Comparison of the previous previous and proposed algorithm
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Fig. 6. Schedulability ratio for different utilizations. The ratio is calculated
for 1000 tasksets, each containing 5 tasks with at most 3 distinct security
domains

The graph illustrates the comparison of the Schedulability Ra-
tio between the two algorithms, considering various levels of
system utilization. At lower utilization values, both algorithms
demonstrate near-unity schedulability ratios, indicating high
reliability in meeting task deadlines. At U = 0.5, the schedula-
bility ratio drops marginally to 0.998 for both the previous and
the proposed algorithms. At U = 0.6, U = 0.7, and U = 0.8,
the schedulability ratios of the two algorithms remain constant
at 0.993, 0.988, and 0.944, respectively. As system utilization
increases, a noticeable divergence emerges between the two
algorithms. Specifically, at U = 0.9, the previous algorithm
shows a decline, reaching a schedulability ratio of 0.920, while
the proposed algorithm maintains a higher schedulability ratio
of 0.925. This trend persists as the utilization further increases,
with the previous algorithm experiencing a sharper decline
compared to the proposed algorithm. Notably, at U = 1.0,
the schedulability ratio of the previous algorithm drops to
0.751, indicating a significant impact on its schedulability.
In contrast, the proposed algorithm demonstrates consistently
high performance, with a schedulability ratio of 0.863 at
the same utilization. This represents approximately a 15%
improvement for high-utilization task systems.



We observe that the schedulability of the previous algorithm
declines more rapidly as the additional overhead between each
node, which, as the system utilization surpasses 100%, is
likely to exert a greater impact on the non-transformed graph.
In contrast, the transformed graph in the proposed algorithm
employs the algorithm in Section IV-B to minimize overheads,
ensuring a more gradual decrease in schedulability even under
higher workloads. As the schedulability ratio of the proposed
algorithm remains comparatively higher than that of the previ-
ous algorithm, this suggests that the proposed algorithm offers
improved schedulability under higher workload conditions.

We also tested edge probabilities p of 0.25 and 0.75, alongside
the original case. The results revealed notable similarities
across all scenarios, suggesting that variations in edge prob-
abilities do not significantly affect schedulability. It can be
inferred that the connectivity of the graph does not seem to
exert a substantial influence on the ability to mitigate inter-
node pessimism, as the schedulability remained consistent
across different edge probabilities

VI. CONCLUSIONS

In this work, we have presented a refinement to the Multi-
Phase Secure (MPS) Sporadic Task Model, addressing a poten-
tial source of pessimism in the security-cognizant scheduling
of real-time systems. Our approach significantly reduces the
over-approximation in the overhead assumptions inherent in
previous models by accurately identifying instances where
switching between security mechanisms is unnecessary.

The proposed approach can only decrease the overhead when
compared to the previous mechanism, and therefore dominates
it in terms of schedulability. The results from our empiri-
cal evaluation demonstrate the improvement in schedulability
ratios for security-aware task systems. Thus our proposed
refinement furthers the balancing of security needs and timing
constraints in systems with limited computing resources.

Furthermore, our refined model contributes to the broader
discourse on the integration of security considerations into
real-time system design. By offering a more precise and effec-
tive scheduling methodology, we facilitate the development of
systems that are both secure and time-predictable, addressing
the increasing complexity and security demands of modern
embedded applications.

Future work will focus on extending this model to multi-
processor and distributed systems and exploring its application
in various real-world scenarios. The potential for further
optimization and adaptation to different types of embedded
systems presents an exciting avenue for research, promising
even greater contributions to the field of secure and real-time
system design.
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