InsectACIDE: Debugger-Based Holistic
Asynchronous CFI for Embedded System

Yujie Wang*, Cailani Lemieux Mack', Xi Tan!, Ning Zhang*, Ziming Zhao!, Sanjoy Baruah*, Bryan C. Ward'
* Washington University in St. Louis, T Vanderbilt University, i University at Buffalo

Abstract—Real-time and embedded systems are predominantly
written in C, a language that is notoriously not memory safe. This
has led to widespread memory-corruption vulnerabilities in real-
time embedded cyber-physical systems (CPS). This is concerning,
as such devices are becoming increasingly networked with the
Internet of Things (IoT) and other communication technologies
(e.g., 5G), rendering them vulnerable to remote attacks. Attackers
have demonstrated how memory-corruption vulnerabilities can
be used to hijack program control flow to implement arbitrary
attacker-controlled logic. One class of defenses that has been
developed to prevent such attacks is called control-flow integrity
(CFI), which applies checks at control-flow transitions to ensure
the target is valid. Unfortunately, attackers have shown how to
divert control flow to seemingly valid targets in an invalid and
malicious sequence.

This paper presents InsectACIDE, the first holistic CFI for
embedded and real-time systems that does not require binary
instrumentation and that is context sensitive, i.e., it checks
that the sequence of control-flow transitions taken is valid,
not just individual transitions, thereby detecting such attacks.
InsectACIDE is implemented on an embedded Cortex-M pro-
cessor using the TrustZone trusted execution environment, and
holistic context-sensitive CFI is enforced for both applications
and the kernel. InsectACIDE uses hardware debugging features
on the Cortex-M processor and therefore does not require any
kernel or application binary modification. Experimental results
show that InsectACIDE incurs significantly less runtime overhead
compared to the state-of-the-art holistic CFI solution. Real-time
schedulability analysis is presented, along with a schedulability
evaluation, to demonstrate the tradeoff between stronger protec-
tion and real-time schedulability.

I. INTRODUCTION

Embedded and real-time systems are predominantly devel-
oped in C, which is notorious for being riddled with memory-
corruption vulnerabilities, such as buffer overflows [1]. Mi-
crosoft and Google have both independently reported that
memory-corruption vulnerabilities account for approximately
70% of the vulnerabilities in their software that is based on
memory-unsafe languages like C/C++ [2], [3]. Unless or until
such time as all code can be re-written in a memory-safe
language like Rust!, we are forced to reconcile the security
of such unsafe code by developing defensive techniques to
prevent exploitation based on such vulnerabilities. This is es-
pecially true as embedded and real-time systems are becoming
increasingly internet-connected through technologies like 5G
and the (Industrial) Internet of Things or (I)IoT, making such
vulnerabilities easier to exploit by a remote attacker.

LA lofty goal given the vast amount of established code bases and continued
development in unsafe languages given developer expertise and/or preference.

Memory-corruption vulnerabilities may take many forms,
such as a buffer overflow, underflow, or use-after-free vul-
nerability, among many others. Work on memory-corruption
security therefore considers a strong threat model in which an
attacker is assumed to be able to “write what where,” or write
arbitrary data to an arbitrary point in a writeable data region
(e.g., stack or heap). Over the years, attackers have become
increasingly sophisticated in their use of such vulnerabilities to
execute malicious logic, even if they cannot modify the code
itself due to being marked as not writeable [1]. These attacks
include code-reuse attacks, such as return-oriented program-
ming (ROP) [4], in which an attacker corrupts addresses in
a data space, such as a return address, to divert control flow
to attacker-chosen code. Indeed, attackers have demonstrated
sophisticated techniques that reuse small snippets of existing
code in clever ways. These classes of attacks are broadly called
control-flow hijacking attacks.

Control-flow integrity (CFI) has emerged as one of the
most effective techniques to protect systems against control-
flow hijacking [5]-[8]. In CFI, critical control-flow transitions,
such as invoking function pointers or function returns, are
instrumented with checks to determine whether the target
address is valid based upon a priori static code analysis.
However, attackers have devised increasingly sophisticated
techniques that ‘bend’ the control flow to seemingly valid
targets in an invalid and malicious sequence [7], [9], [10]. To
mitigate this, the runtime context is used in context-sensitive
CFI to further bound the attacker by reducing the equivalence
classes of the branching destination. In other words, instead
of only checking individual control-flow transitions, instead,
sequences of control-flow transitions are checked to be valid or
not. Yet, the added security benefit from context-sensitive CFI
potentially also comes with significant additional overhead due
to the added complexity of checking sequences of control-flow
transitions instead of individual ones.

In this paper, we propose to leverage hardware debugging
features commonly available in Arm systems to decouple the
process of context recording and context verification, reducing
the computational overhead through eliminating the worst-
case execution-time (WCET) expansion from in-line context-
sensitive control-flow verification. Our proposed technique
is called InsectACIDE?, as it uses the hardware-debugging
features to implement an Asynchronous Control-flow Integrity

2InsectACIDE is intentionally misspelled, but stops cyber varmints in their
(malicious control-flow) tracks, nonetheless.

Defense for Embedded and real-time systems.

This hardware-based approach also introduces further op-
portunities to harden embedded systems to control-flow hi-
jacking. The hardware debugger traces all control-flow transi-
tions in the system, including between and among privileged
(kernel) and non-privileged (application) modes. InsectACIDE
therefore is holistic in that it checks both userspace and
kernelspace code for control-flow hijacking. The InsectACIDE
hardware-based approach is also novel in that it does not
require any binary modification to either the kernel or appli-
cations. This is beneficial to real-time and embedded systems
for several reasons. First, the whole memory layout is often
carefully crafted to maximize cache affinity or otherwise be
more amenable to WCET analysis. Second, embedded and
real-time systems often have highly customized and board-
specific toolchains, which could render it difficult to integrate
with security instrumentation.

Recognizing the need for stronger system protection, there
have been several works that explore the use of hardware
debugging feature for CFI protection [6]-[8], [11]-[16]. How-
ever, most prior work focuses on protecting server platforms,
except a closely related technique called SHERLOC [8], a sys-
tem that uses hardware-debugging features on Arm Cortex-M
platforms to enable CFI. However, SHERLOC only provides
basic CFI without considering the execution context or the
real-time implications [8], [17]. InsectACIDE aims to bridge
this gap in making the hardware-assisted asynchronous CFI
protection stronger by incorporating execution context and
while also targeting real-time predictability. From the real-
time-system perspective, the previous work of SHERLOC
conducts security checking exclusively in the execution of
interrupt handling, which is undesirable for real-time appli-
cations and analysis. Building on the observation that safety
problems of cyber-physical systems manifest in the physical
world, InsectACIDE adopts a new design paradigm where
the timing of security-policy enforcement is governed by the
timing of the physical world interactions (actuation more
specifically), decoupling from the cyber state event (debug
interrupt) as adopted by SHERLOC.

On the other hand, with all its advantages, it is important
to note that this new design paradigm comes with a cost.
Even though the new paradigm of decoupling the policy
enforcement from the system behavior measurement generally
applies to various system implementations, using hardware for
control-flow-event recording imposes an implicit constraint,
restricting it to platforms that support hardware-enabled pro-
gram behavior monitoring. Furthermore, while the decoupling
facilitates innovative ways to schedule policy enforcement,
the reliance on triggers based on the physical world’s impact
limits its application to real-time CPS, and it also imposes an
additional overhead on the computational load of the system.
This paper makes the following contributions.

« We propose InsectACIDE?, a novel context-sensitive,

3The artifact and source code are available on the website: https:/
insectacide.github.io/.

Address Code
LR: 0x1234 LR: 0XABCD Valid
0x....ABCD 0x1234 | Credentials;
""" > Overwritten

Buffer "\ Buffer Grant

‘hl) OABCD | Access:
—

Stack (Before) Stack (After) Memory

Fig. 1: Control-flow hijacking example.

holistic asynchronous CFI for embedded and real-time
systems that does not require binary instrumentation.
We tackle several technical challenges to design
InsectACIDE, integrating asynchronous checking into
the scheduling, including minimizing the attack surface
induced by asynchronicity, and minimizing system over-
head.
We implement a prototype on the Armv8-M architecture
and evaluate its performance on FreeRTOS.
« We present a response-time analysis and schedulabil-
ity evaluation to demonstrate the tradeoffs between
hardware- and software-based context-sensitive CFI.

II. BACKGROUND

In this section, we review how memory corruption can be
used by an attacker to hijack control flow, which we aim to
prevent in our defense. We then review relevant background
on the hardware features we leverage in our implementation.

A. Control-flow Hijacking Attacks

Control-flow hijacking attacks are a class of cyber attacks in
which an attacker exploits a memory-corruption vulnerability
to redirect control flow to execute code of their choosing.
Given the extensive use of software and communication net-
works in cyber physical systems, the potential for malicious
actors to tamper with the control flow of software components
presents a tangible threat. The reliability and correct operation
of these systems, especially safety-critical systems, are of the
utmost importance to prevent the possibility of financial loss,
injury, or even loss of life.

Figure 1 shows a simple example of a control-flow hijacking
attack on Arm. In this example, there is a buffer-overflow
vulnerability that is exploited by an attacker to write data
past the intended buffer end and overwrite part of the stack
including the Link Register (LR). Here, the original linked
address in executable memory is 0x1234, which points to a
function to validate some credentials. However, the attacker is
able to overwrite that address with 0xABCD, which points to
a function to grant access to some sensitive data. Thus, when
the thread returns from the currently executing function, the
access-granting function is run instead, and the integrity of
control flow is violated.

There are two main classes of control-flow hijacking at-
tacks [18]. The first is code-injection attacks, in which the at-
tacker injects their own malicious code into the address space,
for example via a buffer overflow, and then redirects control
flow to that code. Thus, the hacker is able to execute arbitrary

https://insectacide.github.io/
https://insectacide.github.io/

code. Many modern systems prevent this type of attack by
enforcing permissions on code and data that writeable memory
is never executed (DEP/WdX) [1].

The success of defenses such as DEP/W&X have forced
attackers to evolve and create attacks in which they cannot
inject malicious payloads, but instead must reuse existing
code. Such attacks are called code-reuse attacks, and our
previous example is an example of such an attack. We note,
however, that our previous example was rather simplistic, and
in practice attackers may not be able to divert control flow to
a single function to achieve their malicious intents. Attackers
have demonstrated how to corrupt multiple stack frames to
“string together” a sequence of gadgets or snippets of existing
code in order to execute arbitrary logic in a specific type of
attack called a return-oriented programming attack [4].

B. Holistic Control-flow Protection and Context Sensitivity

CFI is a promising solution for protecting systems against
control-flow hijacking attacks by enforcing that all control
flows follow the control-flow graph (CFG) constructed from
static analysis. While many CFI implementations can only
protect non-privileged-mode programs [6], [7], [10], [12], [19],
some of them can provide holistic protection for the entire
non-secure-state program, including both non-privileged and
privileged modes [8], [20], [21].

However, CFI checking can be coarse-grained due to the
conservativeness of static analysis, such that the set of legiti-
mate transfer targets, known as the equivalence class (EC), can
be large, leaving potential space for attackers to maliciously
swap targets within the EC undetected. Therefore, context-
sensitive CFI has been proposed to leverage context infor-
mation recorded during runtime, such as callsites and branch
conditions, to provide more fine-grained protection [6], [7],
[10], [12], [19].

C. Armv8-M Architecture

Memory protection. In Armv8-M, all memory, peripherals,
and the processor’s control registers share the same address
space, i.e., there is no virtual memory. For memory protec-
tion, Armv8-M features a Memory Protection Unit (MPU),
which is a hardware component that enables developers to
specify the start address, length, and access permissions for
memory regions. MPU includes MPU_S and MPU_NS to
control access permissions for either secure or non-secure
state. A permissions violation will result in a MemManage
fault. TrustZone is an architectural security extension that en-
forces resource isolation between the untrusted normal world
execution and the trusted secure world execution on Arm
platforms. a memory region can be configured as secure, non-
secure callable (NSC), or non-secure using a combination of
the TrustZone hardware Secure Attribution Unit (SAU) and
Implementation Defined Attribution Unit (IDAU) to specify
the memory attributes.

Debugging features. The Armv8-M architecture features two
hardware features we leverage in this work: a tracing unit

called the Micro Trace Buffer (MTB) and a Data Watchpoint
and Trace unit (DWT). Both the MTB and DWT exception
handlers can be configured to be processed only in the secure
state. The MTB captures all non-sequential program-counter
changes on the microcontroller, including calls, branches, and
exceptions. It stores trace records, i.e., source and destination
address pairs of the non-sequential PC changes, in the trace
buffer, a circular buffer within the SRAM area that can be
configured as secure memory. When a predefined watermark is
reached, the MTB can trigger a Debug Monitor (DebugMon)
exception, which can be handled to process the control-flow
data. The DWT provides special registers called comparators
that can monitor instruction executions and data operations to
specified addresses and trigger a DebugMon exception when
there is a match. Therefore, by configuring these compara-
tors to specific addresses, the DWT can implement program
breakpoints.

III. THREAT MODEL

In this work, we focus on detecting control-flow hijack-
ing attacks within the entire non-secure state program. We
adhere to the common threat model used in prior CFI work
that aim to defend against such powerful attacks [8], [20],
[21]. Similar to other security works that leverages trusted
execution environment [22]-[24], we assume the presence of
vulnerabilities within the non-secure-state program that allow
attackers to arbitrarily read and write data memory, and can
use code-reuse attack to achieve arbitrary code execution.
However, we assume the secure world and hardware are
vulnerability free. Furthermore, code injection in normal world
is prevented using existing memory-protection technologies,
such as the MPU. Different from existing CFI solutions with
kernel protection [25], [26], InsectACIDE does not assume
the application and kernel are running as a single binary in
the privileged mode. Similar to previous CFI works [5], [8],
[20], [21], [25]-[27], we do not consider non-control data
attacks [9], [28], such as Data-Oriented Programming [29],
that corrupt non-control variables, potentially increasing the
tasks’” WCET. Similarly, hardware attacks [30], side-channel
attacks [31], and availability attacks [32]-[34] are out of scope.

IV. INSECTACIDE DESIGN

In this section, we will first summarize the design goals
then explain how the InsectACIDE achieves those goals.

A. Design Goals

G1 Context-sensitive control-flow integrity. In order to miti-
gate advanced control-flow hijacking attacks, such as control
Jujutsu [35], context-sensitive control-flow integrity should be
enforced.

Traditional CFI approaches, including those described in
Sec. II, check that each individual control-flow transition is
valid. However, it is possible to construct a malicious sequence
of control-flow transitions made out of individual transitions
that are in fact valid [9], [35]. A stronger form of control-
flow integrity therefore checks that the sequence of control-
flow transitions is valid, rather than simply individual ones.

This is known as context-sensitive control-flow integrity [7],
[10], [12], [14], and it checks not only whether an individual
control-flow transition is valid, but if it is valid within the given
context. Context-sensitive control-flow integrity is therefore a
stronger form of protection than ordinary CFI.

G2 Holistic protection. Control-flow protection should be
provided for all non-secure-state code, including both non-
privileged (applications) and privileged (kernel) code.

CFI is usually applied at compile time and therefore only pro-
tects an individual application. While there have been several
efforts to include CFI in the kernel [5], [8], [20], [21], [25],
[26], InsectACIDE aims to provide holistic protection that
checks all application code and kernel code while supporting
the application and kernel privilege separation.

G3 No binary modification. For compatibility, there should
be no required binary modification of the protected code.

Much previous work on CFI has applied compile-time
transformations to insert checks in the binary. However, this
requires recompiling the application and may invalidate the
WCET analysis of the application. Furthermore, many em-
bedded systems use highly customized, often vendor-specific
toolchains to build and deploy software. Preserving the binary
allows transparent implementation of CFI agnostic to specific
toolchains.

G4 Real-time adaption. To satisfy real-time requirements, the
system should be designed for real-time predictability.

Using the MTB for tracing events allows for the asynchronous
processing of integrity checks. Our goal is to enable integrity
checks during idle time, where possible, while also supporting
real-time schedulability analysis.

G5 Control-guided protection. Control-flow protection must
be enforced before physical-control outputs are allowed.

Our context-sensitive control-flow protection decouples the
recording and checking of control-flow transitions. This could
in theory create a window of opportunity for an attacker to
achieve malicious effects until the time of check. To mitigate
this threat, we require that checks are completed before any
control outputs for a given task are allowed. We must therefore
intercept such events and enforce that all checks are completed
so as to prevent any malicious control actuation.

B. InsectACIDE Architecture

An overview of InsectACIDE is shown in Fig. 2. The
hardware MTB (recall from Sec. II) is used in order to record
control events without any software instrumentation (G3). The
MTB also records control events in both user and kernel mode,
allowing for holistic control-flow protection (G2). In order
to fully implement holistic control-flow protection, we must
check all control-flow events, which requires periodically pro-
cessing the MTB contents, and we design our implementation
so as to minimize the analytical worst-case interference for
such processing triggers to improve real-time predictability
(G4). Finally, we use TrustZone and the debugging features
(recall from Sec. II) to intercept control and switch to the
secure world at any control-output time (G5), and finish all
necessary checks for context-sensitive control-flow protection

| task 3 | task 3 |
c A~
) | task 1 task 1 _g. \
° r A T Q.l N
g \ : ! 3 o \
S ' Sl gl !
© Vs \ 2. 3 |
= = \ . E | 2 h
5 v g 1| idle A
P4 I < [e -9‘ | !
= / 3 lpause| \
/6\ & « | 4
[f
4/ . \/ Y. /
i @ [;
LLI v
> S -4
d
p MTB buffer 3 N .
Trace 6 b@
¥ flushing E Trace validation @/ Trace recording

Fig. 2: Overview of InsectACIDE.

(G1). In the rest of this section, we elaborate upon the
details of this design, and in Sec. V, we describe salient
implementation details necessary to realize this architecture.

Hardware-assisted control-event recording. The MTB
records all control-flow events on a core for all privilege levels,
including both non-privileged and privileged execution modes.
The traced control-flow events are stored in a secure memory
buffer in the TEE, making them immune to attacks from either
a malicious application or a corrupted kernel. The size of
the MTB is configured through a specific register, referred
to as MTB—>WATERMARK, the maximum buffer size varies on
different platforms (4KB in our evaluation). Once the buffer
is full, an exception is raised that is handled in the TEE. This
serves as an InsectACIDE entry point.

Context-sensitive control-flow protection. When an excep-
tion is raised, the recorded trace data must be copied from
the buffer to device memory before returning to normal mode
for later context-sensitive checks. We note that the MTB
trace data contains all non-sequential control-flow events, and
this may include events from multiple separate processes and
context switches into and out of the kernel to handle system
calls or other interrupts. In comparison to traditional single-
event CFI, in our context-sensitive control-flow protection we
check a sequence of control-flow events. As that sequence is
often process-specific, an incorrect sequence can lead to false
positives. Therefore, when parsing the MTB trace data we
must demultiplex the single stream of control-flow events into
per-process and kernel-related control-flow events so that they
can be checked separately.

A straightforward method, similar to prior work [8], is
using the address ranges of each application for demultiplexing
(recall, our target platform is an Arm Cortex-M microcon-
troller, which has only an MPU with a single linear address
space, rather than an MMU and virtual memory). However,
such demultiplexing can be incorrect because some processes
may share code segments due to shared libraries or kernel
function calls. To demultiplex control-flow events correctly in
order to ensure the soundness of context-sensitive checking,
InsectACIDE adds additional procedures during trace process-

untraced code

t end filtering
entry

intercept with interrupt | MTB MPU | |interrupt
hardware breakpoint || disable enable | | config | | enable

v
! thraced code body traced cod%@

c |
Q. -
21 @ execute without resume tracing
o tracing
\
3 .
\ start filtering @ \ ~~@
interrupt MTB MPU interrupt ; :
region exit
disable disable ™ config enable & o X

Fig. 3: Binary-preserving selective tracing.

ing by identifying context-switching from events of interrupts
and the kernel, and managing trace data with an assigned
process identifier, as detailed in Sec. V.

Asynchronicity-induced attack surface. By deferring checks
until control output (G5), the attacker could theoretically cause
a series of malicious control-flow events that are not checked
until after an attacker has accomplished their malicious intent.
To ensure that attackers cannot exploit this time window,
InsectACIDE enforces that all checks must be completed
before critical operations. Critical operations can include ac-
cessing sensors and actuators. On Cortex-M microprocessors,
accessing peripherals is similar to accessing specific memory
addresses. A straightforward approach is to use software
instrumentation to insert reference monitors to track access to
these addresses and verify the status of trace checking when
encounters occur. However, this approach requires binary
instrumentation, violating G3. InsectACIDE instead leverages
the hardware features of the DWT. Specifically, Insect ACIDE
can set the comparators of the DWT to specific data or code
addresses to trigger an exception. Both exceptions can then
be trapped in the TEE, and the status of trace checking can
be subsequently verified. Similarly, since the MPU_NS can
configure the access rights of memory regions, InsectACIDE
configures memory regions for these peripherals to be read-
only using the MPU_NS. Consequently, every write operation
to them will trigger an MPU fault exception, captured by the
secure state via setting a DWT comparator to the exception
handler entry. As a result, because MPU_NS, DWT, and MTB
configuration can only be made within TrustZone secure mode,
attackers cannot exploit the asynchronicity time window to
bypass checking.

Binary-preserving scheduling integration. In order to mini-
mize the real-time impacts of InsectACIDE (G4), we perform
as much trace processing as possible during otherwise idle
time. While conceptually straightforward — process and check
any MTB contents at idle so that new tasks start with a
fresh MTB — care must be taken to implement this without
modifying the scheduler or other applications in the normal
mode (G3). In FreeRTOS there must be at least one ready task
at any point in time, including the idle task. If there is nothing

left to process, the idle task spins in a busy loop waiting for
an asynchronous event to trigger a new task. However, this
busy-waiting loop rapidly fills the MTB as each invocation
of the busy loop adds events to the MTB. This may leave the
MTB nearly full when a new task arrives, requiring processing.
Therefore, we need to disable the MTB during idle time after
flushing its contents. However, we must also ensure that the
MTB is re-enabled before any other tasks are allowed to
run, otherwise those control events would not be captured or
checked. Ideally, one can simply have the scheduler turn off
MTB recording before switching to the idle task. However, this
requires modification of the existing system either with source
code modification or binary rewriting. Neither would meet the
binary-preservation design goal (G3). Instead, InsectACIDE
leverages the DWT feature to trap execution back to the secure
world upon entry into the idle task. By processing the idle task
inside the secure world, it is possible to ensure that MTB is
turned off and on appropriately within the idle task. It also
ensures that upon context switch MTB is turned back on,
where the timer interrupt that initiates the scheduler is first
processed by the secure world before passing it back to the
normal world.

Binary-preserving selective tracing. While the MTB serves
as a powerful tool for recording all control-flow events, it
does not support selective tracing. In context-sensitive CFI,
the useful control-flow events (or CFl-relevant events) are
either security-related events that should be checked, including
all indirect branches, or context-related events, such as the
events of function calls (when choosing callsite as context).
The recording of other events that are CFl-irrelevant imposes
unnecessary overhead on trace processing. For example, as
evaluated in Section VI, when choosing the callsite as the
context, 52% of the events are neither security-related nor
context-related. These events must be processed and filtered
when flushing the MTB, which can introduce an additional
runtime overhead of 48%.

To reduce the real-time impact, InsectACIDE uses a se-
cure selective tracing approach that enables or disables the
MTB in a binary-preserving manner. Specifically, for code
segments that generate only superfluous events, Insect ACIDE
turns off the MTB during their execution. In practice, such
code segments can be identified during WCET analysis, as
analyzing the worst-case scenario requires a full understanding
of the branching structures. More details on selecting such
code segments can be found in Sec. V. However, even with
the code segments selected, there are additional challenges
due to the limited number of debugging breakpoint registers
for detecting entries and exits. This is often exacerbated by
the fact that many segments may not have well-defined exits.
To tackle this, we propose to use the MPU, particularly the
normal world banked register, MPU_NS to setup a sandbox by
configuring any code outside of the segment as non-executable
(NX), as illustrated in Fig. 3. Upon exiting the sandbox, a
memory access fault will be raised by the hardware, trapping
the execution of the system to the memory fault handler and

Algorithm 1: Region Selection

Input: regions, P, K
Onput: s_regs

1 s_regs + map()

2 for r in regions U {entry} do

// selected untraced regions

/* Select from regions reachable from r x/
3 p,regs < reachable(r, P)
4 scores < [score (p,r’,regs) for r’ in regs]
5 s_regs|r] < topKregs(scores) // top-K regions

6 Function score (p,rregs):

7 Rs + {}

/* if r not dominated by any other region =/
8 if /domed(rregs) then

/+ get regions dominated by r */
9 Ds < domRs(r,regs)
/* select K regions in sub-program p
from regions Ds by recursion */
10 Rs < RegionSelection(Ds,p, K)[r]
/* reduced number of worst-case trace x/

1| return W(p) — W(p\Rs) + € * | Rs|]

the secure world. This empowers the secure world to re-enable
the MTB monitoring even if there are vulnerabilities inside this
code segment that might have given the adversary the power
to run arbitrary code. As a result, this approach reduces the
number of traced events without sacrificing security, thereby
reducing the WCET of trace processing. The detailed security
analysis is shown in Sec. VII.

V. IMPLEMENTATION

InsectACIDE is built on a single-core Arm Cortex-M33
platform, and the implementation contains four parts, control-
flow analysis, runtime configuration, selective tracing, and
trace processing.

Control-flow analysis. To validate control-flow transfers,
InsectACIDE conducts context-sensitive control-flow analysis.
Context can take various forms; in the prototype, function
call sites are selected as the context. Static analysis can be
applied at either the source-code level or the binary level,
with the difference between the two lying in the additional
effort of binary reverse-engineering, which can affect analysis
precision. Then, the analysis results are encoded as a table for
runtime reference.

Runtime configuration. There are several key system se-
curity configurations. During the system boot, InsectACIDE
routes the interrupts of DWT and MTB into the secure state
and configures the MPU_NS to ensure the code integrity of the
entire system. Moreover, InsectACIDE sets DWT comparators
at the entry of the MPU fault handler to enable the secure
state to capture the non-secure state’s MPU fault, as well
as the idle task to detect system idleness. Such MPU_NS
region and DWT watchpoint usage (out of the total 8 MPU_NS
regions and 4 DWT comparators in our evaluation platforms)
are minimally required for system implementation. In addition,
InsectACIDE uses SAU and IDAU to configure the necessary
address ranges relevant to the configurations of the above-
mentioned hardware as secure memory ranges, accessible only

by the secure state. Furthermore, the memory used by the
secure world would be configured as secure memory using
SAU and IDAU to specify the secure world attribute to prevent
malicious tampering from DMA.

Selective tracing. The key idea of selective tracing is to
disable MTB on certain code regions in which no CFI-relevant
events will be generated. However, such mechanism requires
not only limited hardware resources (DWT comparators and
MPU regions) to track the entry points, but also the MPU-
enforced sandbox to detect exits and re-enabling the MTB.
This poses a non-trivial problem of determining “which K
code regions” should be monitored. In this problem, limited
breakpoints should be utilized to detect code regions that have
a higher probability of being executed soon and can yield
enough performance gain by turning off MTB even with the
overhead of MPU sandboxing configuration.

The first step is to identify the candidate regions where
performing selective tracing will be beneficial. The idea is to
identify the code regions in the control-flow graph that only
contain CFl-irrelevant events, including direct and conditional
branches (based on callsite as context). These partitioned
code snippets are labeled as candidate regions if selective
tracing offers performance benefit. To determine if there is
performance benefit, InsectACIDE compares the estimated
time to process the maximum number of traces that can be
generated by the code snippet to the sandbox overhead. The
worst-case traces are obtained from a tool we constructed, WV,
based on aiT [36], an industry-standard WCET analysis tool,
by finding the path that can generate the maximum number of
control-transition instructions. Once the benefits of individual
candidate regions are identified, the next step is to look into
the temporal proximity of the code snippet. The allocation of
limited hardware breakpoints to track candidate regions can be
formulated as an optimization problem, which InsectACIDE
leverages a greedy algorithm based on a computed priority
score, as described in Alg. 1. Specifically, the algorithm
calculates a score for each reachable region at each potential
reallocation point (including region candidates and task entry)
to prioritize the region that offers the most benefits in reducing
the total trace processing time. Intuitively, regions that always
execute earlier (i.e., dominators) than others (i.e., dominance)
are prioritized because their breakpoints can be reallocated
to later ones after exiting. As such, a dominance region is
assigned a O priority (Line 7 to 8), since breakpoints are
re-assigned at its dominators’ exit. The analysis results are
encoded in a map at compile time.

Trace processing. Since selective tracing cannot filter out
all CFl-irrelevant events, these events are filtered on the fly
when reading from the MTB. Only the remaining trace data
is moved to device memory for further processing.
Control-flow events are recorded indiscriminately by the
MTB. To check a sequence of control-flow events, traces
recorded by the MTB require additional processing to differen-
tiate control-flow events between different tasks and interrupts.
InsectACIDE follows the existing work [8] to differentiate

interrupt events from others and handle (possibly nested)
interrupts, ensuring that interrupt entry and exit addresses
always match. InsectACIDE is built on top of this interrupt
handling method to demultiplex events for different processes.
Specifically, since most context switching is also triggered by
interrupts, with the guarantee of consistency between interrupt
entry and exit ensured by the prior approach, InsectACIDE
can determine the entry points of process release and re-
sume by comparing the task addresses. After the detection,
InsectACIDE retains the process identifier and transfers all
subsequent non-interrupt events to the corresponding process
buffer until new interrupt events occur, requiring an update of
the identifier accordingly. A corner case arises when two tasks
may resume at the same address if context-switch interrupts
happen to occur at the same code location, making it difficult
to distinguish which task is currently executing. However, this
issue can be resolved by considering the scheduling policy.
For example, in a fixed-priority scheduler that uses a FIFO
policy for tasks with equal priorities, the later preempted
task always has a higher or equal priority than the one
preempted earlier. Therefore, when the corner case occurs, the
executed task is the one that was preempted later. As a result,
control events, even for shared code, can be distinguished for
different tasks. With the demultiplexed traces, InsectACIDE
validates backward edges to enforce functions to return to
their call sites in a manner similar to [8]. For forward-edge
transfers, InsectACIDE uses trace data (context) stored in
the corresponding buffer to retrieve offline-computed EC for
validation. Once the validation is complete, the checked trace
is removed from the buffer.

VI. EVALUATION

The evaluation is conducted on the Arm Versatile Express
Cortex-M prototyping system (V2M-MPS2+) [37], which is
configured as a single-core Cortex-M33 microcontroller using
the AN505 FPGA image [38]. The device is equipped with
a 4MB code/flash region and 4MB SRAM, including a 4KB
allocation for the MTB trace buffer.

A. Performance Evaluation

To measure the performance impact of InsectACIDE, we
utilize real-time benchmarks to assess the system overhead.

Experiment setup. InsectACIDE is designed to work on
embedded microprocessors running a real-time operating sys-
tem; therefore, we selected programs in the TACLeBench
benchmark [39] and integrated them into FreeRTOS. Since this
section aims to understand the general system overhead, each
benchmark program is evaluated individually as periodically
released tasks. While Sec. VI-C assesses the security benefits
of context sensitivity, the overhead of context-sensitive checks
in this section is simulated at direct function call sites due
to the absence of indirect function calls in the benchmark
programs. Additionally, an operation that writes to a fixed
memory location is inserted at the end of the program to
simulate control outputs. We configure the DWT to set a

I MTB Flush
I Trace Decode

[Trace Validation
I Interrupt Handle

HoR NN W
o u o u o
© o © o o

Runtime Overhead (%)
w
o

o

Fig. 4: Runtime-overhead breakdown.

N
o
o

I Num. of Events I Event Proc. Overh.

-
u
o

Percent-Pt Reduction
I S
o o

o

PRI & TXoe [DH S5
L& KT & o8 SEFS e
RSIRZR Q/é' v IS o QI\&
PSRN SIS S BN SES

& &

Fig. 5: Event quantity and event processing overhead reduction
with selective tracing.

breakpoint to this memory location and allocate one of eight
MPU regions for selective tracing.

Runtime overhead. The runtime overhead of InsectACIDE
comprises four components, as shown in Figure 4.

Specifically, (i) MTB flushing involves reading from the
MTB and pre-filtering events that are not of interest. (ii) Trace
decoding is conducted asynchronously to further separate the
pre-processed trace data into meaningful checking sequences
based on different interrupts and tasks, which are then (iii)
validated and removed. (iv) Interrupt handling encompasses
the time spent on exceptions/interrupts related to the MTB be-
coming full, selective tracing, and real-time integration mech-
anisms. Handling these exceptions and interrupts includes
hardware-configuration operations and entering and leaving
the TEE.

MTB flushing and selective tracing — The majority of the
runtime overhead is attributed to MTB flushing, resulting in
an average runtime expansion of 51%. Further investigation
reveals that this is mainly due to the speed limitation of the
MTB. Reading from the MTB takes approximately twice as
long as reading from device memory. The variation in MTB
flushing overhead among different benchmarks is primarily
linked to the utilization of selective tracing. As depicted in
Figure 5, selective tracing, on average, can reduce the number
of traced events and event processing overhead by 52% and
48%, respectively, highlighting the effectiveness of this ap-
proach. The overhead variation between Figure 4 and Figure 5
is highly correlated. The more effective selective tracing is, the

lower the overhead of MTB flushing. Among the benchmarks,
the program recur exhibits the highest MTB flushing overhead
and the least effective selective tracing. This is because the
program relies heavily on non-filterable recursive function
calls rather than filterable loops. Consequently, filtering traces
cannot offset the overhead incurred by dynamically turning
the MTB hardware on and off.

Decoding, validation and interrupt handling — Asynchronous
trace decoding incurs the second-largest overhead of 14%.
This is because performing context-sensitive checking re-
quires the separation of interrupts and different tasks. This
separation involves not only identifying control-flow types
from raw address data but also extracting context-switching
events from traces. Subsequently, asynchronous control-flow
checking incurs an overhead of 6% with the decoded traces.
In terms of interrupt handling, InsectACIDE experiences a low
overhead. This is primarily because the MTB, idle breakpoint,
and selective-tracing runtime configuration handling occur
infrequently compared to trace processing.

Comparison with alternative approaches - We evalu-
ated InsectACIDE against both hardware-tracing-based and
software-instrumentation-based alternative holistic CFI ap-
proaches designed for Cortex-M. We chose SHERLOC [8],
an approach that also leverages the MTB, as the hardware-
based comparison target. To compare with software-based
approaches, we implemented callsite-sensitive CFI as well as
a stronger variant, path-sensitive CFI. For path-sensitive CFI,
our comparison focused only on recording, since checking
is scheduled asynchronously, and the overhead of context
recording includes the recording of all conditional branches,
function calls, and indirect branches (i.e., if-else statements,
function calls, and returns).

As shown in Figure 6, the average runtime overhead for
InsectACIDE with callsite context is lower than the overhead
of SHERLOC because Insect ACIDE employs selective tracing
while SHERLOC does not. InsectACIDE exhibits a similar
average overhead compared to the software-based approach
with callsite context. However, when more context, such as
path-sensitivity, is employed to provide stronger protection,
InsectACIDE outperforms the software-based approaches with
only a 149% average overhead, while the software-based
approach incurs a 364% average overhead. The difference
arises from the requirement of holistic protection for the entire
non-secure state program. To achieve this, the trace data must
be placed in the TEE to prevent attackers from corrupting
it. These operations involve context-switching between the
normal and secure mode, thereby introducing significant over-
head. In contrast, InsectACIDE automatically uses hardware
to trace within the TEE, resulting in fewer context-switches.
In summary, InsectACIDE offers runtime-efficiency benefits
while implementing a stronger form of context-sensitive secu-
rity checks.

Memory consumption. Considering that some trace data
is temporarily stored in device memory, although they are

removed later after being checked, an extreme case can occur
when the temporarily stored trace data exceeds the device
memory limit. In such a case, InsectACIDE has to pause to
check. However, our measurement of the memory consump-
tion of InsectACIDE in the worst-case scenario — where there
is no trace checking and the trace data are not removed —
shows that the benchmark tasks can generate 35KB of trace
data on average, while our board has 4MB of memory. After
checking the control-flow data, the associated memory can be
freed, and therefore, this memory limitation should not be an
issue in practice.

Component Predictability. Given that InsectACIDE does not
add any inline instructions, the introduced overhead is related
to trace processing and interrupt handling, with different
components exhibiting varying levels of predictability. Since
the defense is deployed in real-time systems, it is essential that
the predictability is also well understood.

Among all the components, trace filtering and the handling
of DebugMon and idle-task preemption interrupts exhibit
remarkably predictable execution times, where the difference
between worst-case execution time and best-case execution
time is very small. The reason for the trace filtering component
is that its operations mainly involve referencing instruction
opcodes and tables. For the latter component, it is due to
relatively fixed workloads, which include performing context
switching and modifying corresponding hardware registers.
However, the components of trace decoding, control event
validation, and selective tracing configuration can exhibit
much larger variations in execution time, where the worst-case
execution time can be up to 870% of the best-case execution.
This is due to the variability of trace events in different
program executions, and the need to reallocate the limited
number of hardware breakpoints, which involves referring to
a pre-defined reallocation policy.

B. Schedulability Analysis

In order to evaluate the real-time impacts of InsectACIDE
in comparison to other CFI approaches, we conducted a
schedulability evaluation. This evaluation includes overheads
and parameter values inspired by our previous empirical
results. The goal of this evaluation is to demonstrate how
these overheads affect real-time schedulability, especially in
comparison to other CFI approaches.

Modeling. Before we detail the specific parameters of our
schedulability evaluation, we first must describe our task
model and how we include the effects of the InsectACIDE
overheads. We assume a standard sporadic task model in which
there are n tasks, {71, ..., 7, } that release an infinite sequence
of jobs with a minimum inter-arrival time of 7; and a WCET
of C;. We assume implicit deadlines, so the deadline of each
job is T; time units after its release. We assume a fixed-priority
scheduler as this is what FreeRTOS supports, and we assume
tasks are assigned rate-monotonic priorities.

We then must incorporate the temporal effects of
InsectACIDE, including flushing the buffer and applying the

Runtime Overhead(%)

I InsectACIDE-callsite
103 J

I InsectACIDE-path
102

10! 4

100 4

pinsrch pitonic psort Comp,\lpdcnﬂ"eg crc fac it geadim ir

[0 Software-callsite

insertsort jgctint

[Software-path I SHERLOC

\mS \ydemP patrix} md> pM prime recur st

Fig. 6: Comparison with alternative approaches.

checks, in our response-time analysis. Recall the standard
response-time analysis for fixed-priority tasks:

T €HP(ri) | Y

6]

We now demonstrate how to incorporate the overheads of
InsectACIDE. We first review the relevant overhead sources.
Recall from Sec. IV that a DebugMon exception must be
handled to flush the buffer when the MTB is filled. This
requires iterating through the entire buffer. This must be done
every time that the MTB is filled, regardless of which task is
running, as otherwise control-flow events will not be recorded
for checking. We make the conservative assumption that every
task has a control output, or another output that must be
checked before the deadline of the task. Therefore, there is
a corresponding check that must also be completed before the
deadline, so we model this as a per-event overhead, which we
define as 6.

We have also measured the rate at which control-flow events
occur, and thus can determine how often the MTB is filled.
We augment the sporadic task model to include the maximum
number of control-flow events, E;, that can occur during a
job of 7;. In our schedulability study we assume that there is
a control-event frequency F;, and the number of control events
in task 7; is determined as F; = F;C;. We assume the MTB
is of size S.

Now we derive how to incorporate these modeled overheads
into our response-time analysis. By definition, each job 7; that
runs in the scheduling window of ; introduces F; = C;F}
control events, each of which introduces § additional demand.
We also observe that we cannot guarantee that the buffer is
empty at the critical instant, and must therefore assume that the
buffer is full and will trigger an interrupt immediately after the
critical instant, forcing a check of the full buffer size, assumed
to be S. Thus, our resulting response-time analysis including
overheads is adapted from Eq. 1 as

| (F;ﬂ (C + Ejé)))

Note that this assumes that the control outputs occur at the
end of 7;, and thus all control-flow events in the task must
be checked before the control output. Therefore, at the end

Ri=S6+Ci+Ed+ Y
T, €HP(1;

of the task, a MPU/DWT fault will trigger InsectACIDE to
check any buffered control-flow events to be processed, even
if the buffer is not full. (We note that the previous work of
SHERLOC [8] behaves similarly to InsectACIDE except that
it does not apply any filtering and does not enforce checks
that are as strong as ours; hence it, too, can be modeled as
Eq. 2 by using different values for 6 and F.)

In practice, not all tasks may have control outputs, but there
may be dependencies between non-control-output tasks as the
output of one task may be the input of the next. In such cases it
may be possible to defer checks of non-control tasks until after
their deadline, potentially further improving schedulability
analysis. We leave analyzing this type of behavior to future
work. We have also only considered a single core in our
schedulability evaluation as our target platform only had one
core. We are not aware of any similar microcontroller that
both has multiple cores and support for the MTB and DWT.
However, having a separate core to process checks in parallel
could offer further benefits to asynchronous CFIL.

Experimental design. To evaluate the effects of these over-
head sources on real-time schedulability, we conducted a
schedulability study based on randomly generated task sys-
tems. We used SchedCAT [40] to analyze the response times
of tasks using rate-monotonic scheduling on a single-core
system, which is representative of our hardware platform.
Our experimental design applied commonly used task-system
distributions defined by Brandenburg [41] and also encoded in
SchedCAT. We include a representative subset of these graphs
in Fig. 7.

While we tested all of the standard distributions described
in SchedCAT and [41], here we review only the distributions
used in the graphs in Fig. 7. We used short, medium, and
long periods uniformly distributed in [3,33] ms, [10, 100] ms,
and [50, 250] ms, respectively. We also considered utilizations
that were light, medium, and heavy, uniformly distributed in
[0.001, 0.1], [0.1, 0.4], and [0.5, 0.9], respectively. For each
combination of periods and utilizations, we generated task
systems with total utilization in [0.1,0.2, ..., 1]. We randomly
generated F; from a uniform distribution with a maximum
of 100 cycles/event and minimum of 5 cycles/event taken
from what we observed from our implementation. We set the
hardware clock speed to 20 MHz.

We compared the results from Eq. 1, which represents a
system without InsectACIDE to the results from Eq. 2, which
represents InsectACIDE. Within InsectACIDE, we compared
the schedulability of tasks with filtering to the schedulability of
tasks without filtering. We also considered the schedulability
of using software tracing to the other hardware-based options.
Finally, we compared InsectACIDE to SHERLOC [8], which
we see as the most similar related work.

As previously discussed, task sets may generate control-flow
events at different rates. Thus, we define a parameter F' that
is set per-task from a uniform distribution in [5, 100] based on
the range we observed in our experimental findings. We use
this F for the no-filtering tests and the SHERLOC tests.

For the filtering tests, we define an “improvement factor”
between Fiofier and Fier. For each task, we pick an improve-
ment factor from a uniform distribution in [1, 596] based on
the range we observed in our experimental findings. We then
divide each task’s Fjofier by its improvement factor to arrive
at its Fhjer-

We also compare against a software-only instrumentation
(with callsite as context), as described in Sec. VI-A. To
approximate the schedulability of this approach we simply
inflate the execution time by the overhead factor of 0.57 that
we observed in our experimental measurements, since there is
no previous schedulability analysis.

For the rest of the non-normal approaches, we noted through
our experiments that ¢ differs between the different cases.
Notably, the cost for flushing the MTB differs for the filtering
approach to account for the added overhead of the selective
tracing mechanism, and the cost of checking each entry differs
for SHERLOC. Thus, we define § = 2.238 us for the no-filter
case, 0 = 3.543 us for the filtering case, and § = 2.032 us for
SHERLOC.

Results. Fig. 7 shows three representative graphs from our
study, from which we make several observations.

For task systems with long periods and heavy utilizations,
the utilization loss to overheads in InsectACIDE is compara-
tively smaller. In our response-time analysis (Eq. 2) there is
carry-in work at the critical instant that exists from events that
are buffered but not yet processed. This has a comparatively
smaller effect when periods are longer, as shown in Fig. 7(a).
Conversely, when periods are much shorter, this overhead is
quite costly, as can be seen in Fig. 7(c). We note that this
behavior is observed for both InsectACIDE and the prior state-
of-the-art, SHERLOC.

Next we consider the effects of selective filtering. In the
implementation of selective filtering there are greater over-
heads, and more of the recorded control-flow events must be
checked (vs. discarded if they are not security relevant — e.g.,
a for loop instead of a function return). Therefore, the per-
event processing time is greater, while the number of events
is reduced. Interestingly, in many of the schedulability graphs
these effects largely counteracted one another and filtering
usually had only a modest benefit, at best.

We also observe that InsectACIDE and SHERLOC, the

TABLE I: Quantitative security evaluation

Task SHERLOC | InsectACIDE Difference
Avg Lg Avg Lg Avg Lg

failsafe

check 2.8 4 1.2 2 157% | 150%

collision

prevent 2 2 1 1 150% | 150%

flight mode | g 115 | 45 12 | 428% | o0

manage

geofence

breach avoid 1.8 5 1.3 3 127% | 140%

vtol attitude 23 3 29 3 14% 0

control

Avg/Lg: average/largest equivalence class size.

hardware-based approaches, do not dominate the software-
based approach, or vice versa. However, we note that both
InsectACIDE and SHERLOC have advantages in that they
do not require any binary instrumentation, whereas software-
based approaches do.

Finally, we note that InsectACIDE applies context-sensitive
CFI whereas SHERLOC does not. Therefore, InsectACIDE is
a stronger defense and in many cases the analytical utilization
loss due to additional trace processing cost is quite modest,
with the possibility of even improved performance using our
selective-filtering technique.

C. Security Evaluation

To demonstrate the security benefits of InsectACIDE, both
qualitative and quantitative evaluations are conducted to com-
pare their ability to detect control-flow hijacking attacks. Five
real-time tasks from PX4 [42] (as listed in Table I) are used
in this case study.

Qualitative demonstration of added protection from the
use of application context. To demonstrate the attack, a
buffer-overflow vulnerability is manually injected by replacing
a safe length-checked st rncpy function in the Mav1ink mod-
ule with an unsafe strcpy function without length checking,
as shown in Listing 1. The manual injection of vulnerability is
a common security evaluation technique for defensive systems,
and was used in [5], [43]. This enables attackers to perform
out-of-bound writes.

We implemented an attack to exploit the over-
approximation in the points-to analysis, which is conducted
on an indirect function call
activate (last_setpoint) (Line 7). The indirect function
call uses a virtual function pointer of the object in the C++
class FlightTask to call its member function activate,
which is responsible for configuring flight parameters of
the current flight mode. Due to the C++ class inheritance
feature, there are twelve possible targets at the indirect call,
as shown in the SHERLOC-EC box. One of the flight modes
is Failsafe, a critical functionality to guarantee safety in
unexpected situations, and its invocation pattern is shown
from Line 4 to 9. In this case, the attacker’s goal is to divert
the control-flow of the Failsafe process to another one
of twelve targets, such as FlightTaskOrbit::activate,

_current_task.task->

Long Period, Heavy Utilization

Moderate Period, Medium Utilization

Short Period, Light Utilization

5

° °
S &

HRT Schedulability
°
S

—- NORMAL
— = NOFILTER
— FILTER

-+ SOFTWARE
+++ SHERLOC

—- NORMAL
— = NOFILTER
— FILTER
SOFTWARE
+++ SHERLOC

°

°
5

-
HRT Schedulability

—- NORMAL
== NOFILTER
— FILTER

-+ SOFTWARE
+++ SHERLOC

02 0.4 0.6 0.8 10 02 0.4
System Utilization

(a)

System Utilization

(b) (c)

06 08 10 02 04 06 08 10
System Utilization

Fig. 7: Results from schedulability study — see Sec. VI-B.

01 bool should_publish_current(mavlink_statustext_t &msg_statustext){ //malicious input
-02 strncpy(_log_msg.text+offset,msg_statustext.text, max_to_add);
+03 strcpy(_log_msg. text+offset,msg_statustext.text);
¥

04 FlightTaskError switchTask(FlightTaskIndex new_task_index){
05 switch (new_task_index) { case FlightTaskIndex::Failsafe:
06 _current_task.task = flightTaskFailsafe; }
_current_task.task->activate(last_setpoint); /* indirect call to protect */ |

¥

08 void FlightModeManager::tryApplyCommandIfAny() {

29 switchTask(FlightTaskIndex::Failsafe);/+ callsitel, context to leverage */

}

10 void FlightModeManager::start_flight_task() {

11 error = switchTask(FlightTaskIndex::0rbit);/* callsite2 context */ }
‘;HERLOC—EC FlightTaskDescend::activate FlightTaskOrbit::activate xxk::activatel

Listing 1: Example of attack detection.

to subvert the safety of the system. This attack cannot be
detected by SHERLOC, but InsectACIDE can utilize the
context at Line 9 and check the control-flow transition events
recorded at both Line 7 and 9 together to narrow its EC,
ultimately detecting the attack.

Quantitative analysis. We use EC size as a security metric
to quantify the added security protection. While this is by no
means a complete indication of security, EC size effectively
quantifies the benefits of leveraging the context, since the
fundamental vulnerability behind naive CFI is the ambiguity
of pointer values within the EC. Intuitively, the smaller the size
of the EC, the less room there is for an attacker to adversarially
manipulate by corrupting the pointer value with other values
in the same EC. The largest and average EC size of indirect
branches for each task are measured. To facilitate a comparison
between SHERLOC and InsectACIDE, the difference in the
measured metric, calculated as \I"““A(S:EDEER_L%%ERLOC |, is shown
in Table I. InsectACIDE can effectively reduce the EC size by
up to 57% using context.

However, for the task vrol_attitude_control, where
InsectACIDE performs least effectively, we found that this
is due to the ineffectiveness of using callsite as context,
because the target information of most code pointers cannot
be propagated along the function callsite. This also shows
that context-sensitive CFI depends heavily on the selection of
context type.

VII. SECURITY ANALYSIS

Security of system implementation. An attacker may attempt
to corrupt metadata to change malicious trace data into benign
ones in order to bypass detection. However, InsectACIDE
configures the MTB to be accessible only in TrustZone. Any
attempts to access the trace data from normal mode or normal
world DMA controller will trigger a fault.

The InsectACIDE implementation disables the MTB in
three instances. If an attacker is able to forcibly disable the
MTB they could bypass security checks, so we assess each of
these cases individually. First, when the MTB becomes full,
a DebugMon exception is raised and the buffer is flushed in
the secure mode. During this flushing, the MTB is disabled.
However, before disabling the MTB, InsectACIDE also dis-
ables interrupts, leaving no opportunity for the attacker to
forcibly preempt the flushing and hijack control flow without
detection. The second case is when trace data is processed
during idle time. Although interrupts are enabled in this case,
the interrupts are detectable in secure world, and MTB is re-
enabled before context switches back to normal world. The
third case is when performing selective tracing. In this case,
the MPU is configured to trap any code outside of the selected
untraced code, ensuring that the MTB is re-enabled at the exit
of selective-trace segment.

Security of control-flow protection. An attacker may lever-
age the asynchrony between trace recording and trace checking
to launch an attack, such as skipping the idle task to delay
trace checking, to cause critical consequences before being
detected. However, InsectACIDE ensures that all CF events
are checked prior to interaction with the physical world.
Moreover, attackers may attempt to leverage the selective
tracing mechanism, in which the MTB is disabled, to initiate
malicious control transitions. However, the code segments that
are filtered are carefully selected to not contain any indirect
transfers. As a result, attacks cannot hijack control solely
within the selectively untraced code.

VIII. RELATED WORK

Control-flow protection on embedded system. The com-
parison with related work is shown in Table II. To achieve
binary-preserving properties, existing works utilize either off-
the-shelf hardware [8], [16], [46], [47] or customized hard-

TABLE II: Control-flow Protection on Embedded System

System Arch. Il:sot. PN:::: Priv. ;;e(;'n Cxt Algl;.
RECFISH [27] R v v v
LRAI [5] M 7 7 X

Silhouette [26] M v v

Kage [25] M v v v
CaRE [21] M v v v

TZmCFI [20] M 7 7 7

SHERLOC (8] M v v v v

ECFI [44] A v v v
FastCFI [45] Cus. v v v v v
Kadar et al. [46] A v X X X v
InsectACIDE [M [Vv [v [v [v [vV

Arch: architecture, Cus: customized hardware, Inst: instrumentation requirement, Priv:
privileged mode protection, Ret Addr: return address protection, Ctx: context-sensitive
forward-edge checking, RT Ada: real-time adaption, W partially support.

ware [45], [48]. This is because hardware support is neces-
sary for monitoring a program whose binary is unmodified.
InsectACIDE can be deployed on commodity hardware. Exist-
ing approaches providing the holistic protection [5], [8], [20],
[21] often rely on modification of the system binary. However,
InsectACIDE transparently ensures the context-sensitive CFIL.
Another line of work focuses on the timeliness of program
execution [47], [48] rather than control-flow integrity, or only
checks partial control flow events [46] to accommodate real-
time requirements. Therefore, they do not provide holistic
protection either. Additionally, most of the works, including
SHERLOC [8], do not perform context-sensitive checks for
fine-grained control-flow protection, or offer real-time adap-
tation to optimize performance or provide analysis for real-
time guarantees, with the exception of [25], [27], [44]-[46].
Furthermore, SHERLOC does not address unique challenges
stemming from real-time operating systems, such as the idle
task in FreeRTOS. In comparison to these works, Insect ACIDE
is the first to support all the above-mentioned properties using
existing hardware on Arm Cortex-M.

Hardware-assisted tracing. Existing works leverage various
tracing hardware for security protection. On server platforms
such as x86, BTS (Branch Trace Store), LBR (Last Branch
Record) tracing, and Intel Processor Trace (PT) are used for
context/path-sensitive control-flow integrity [6], [7], [11]-[16].
On the Arm Cortex-A and M platforms, both CoreSight Em-
bedded Trace Macrocell (ETM) and MTB have been utilized
to monitor control flows [8], [46]. InsectACIDE also leverages
the hardware to provide traces to provide security protection.

IX. DISCUSSION AND LIMITATIONS

Finer-grained security scheduling policy. The existing im-
plementation of InsectACIDE conducts security checking dur-
ing idle time, and the scheduling of trace processing workloads
for different tasks is considered a unified security task, re-
quiring that all trace validation must be completed before any
physical outputs can occur. One might argue that not all tasks’
traces have to be validated; instead, only trace data of tasks
that generate output needs validation. If this were the case,
we could schedule the trace processing workloads of different

tasks separately to gain real-time benefits. However, an attack
on one task can potentially affect the entire system, as all
tasks and kernels share a single address space. One method
to mitigate this is to use intra-space isolation. It is important
to note that a hijacked process may never schedule the idle
task, in this case, such system anomalies can be detected by
observing unexpected number of traces for processing.

System requirements. InsectACIDE makes use several hard-
ware features, including the debugging (e.g., MTB), the trusted
execution environment (TrustZone), memory access control
(MPU), and therefore may not be directly applicable to low
power platforms that do not provide these hardware features.
Even though it is possible to leverage software realization
(such as software sandboxing) to realize the hardware features,
there will likely be additional performance overhead.

From the performance perspective, the added security pro-
tection from context sensitivity can incur non-trivial perfor-
mance overhead (both computational overhead and memory
overhead). This might also change the system size, weight and
power requirements. On the bright side, it might be possible
to leverage the idle core in modern multi-core processors
to conduct security enforcement without the need to change
system hardware.

X. CONCLUSION

In this paper we have presented InsectACIDE, the first
binary-preserving, asynchronous, context-sensitive, and holis-
tic CFI for embedded and real-time systems. InsectACIDE
provides control-flow protection for both userspace and kernel
processing using Arm TrustZone, and uses hardware de-
bugging features to separate the recording of control-flow
events from the checking for correct control flow. We have
implemented InsectACIDE on an Arm Cortex-M processor
and have presented empirical evaluations of the overheads of
the approach. Our experimental results show that InsectACIDE
incurs less runtime overhead compared to the state-of-the-art
holistic CFI solution, and our real-time schedulability analysis
and evaluations demonstrate the tradeoff between improved
protection with InsectACIDE, and schedulability.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback. This
work was partially supported by the NSF (CNS-1916926,
CNS-2038995, CNS-2154930, CNS-2229427, CNS-2141256,
NSF 2237238, CNS-2238635, CPS-2229290), and ARO
(W911NF2010141), Washington University in St. Louis, and
Vanderbilt University.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy, 2013.

[2] G. Thomas, “A proactive approach to more secure code,” 2019.

[3] C. Project, “Memory safety,” 2020.

[4] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and Communications Security, 2007.

[5]

[6]

[7]

[8]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “uRALIL
Securing embedded systems with return address integrity,” in Network
and Distributed Systems Security Symposium, 2020.

R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th USENIX Security
Symposium, 2017.

H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, 2018.

X. Tan and Z. Zhao, “SHERLOC: Secure and holistic control-flow
violation detection on embedded systems,” in ACM Conference on
Computer and Communications Security, 2023.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
USENIX Security, 2015.

M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th USENIX Security Symposium,
2019.

Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks, 2012.
V. Van der Veen, D. Andriesse, E. Goktag, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
CFL” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015.

P. Yuan, Q. Zeng, and X. Ding, “Hardware-assisted fine-grained code-
reuse attack detection,” in International Symposium on Research in
Attacks, Intrusions, and Defenses, 2015.

X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding control flows using
Intel processor trace,” ACM SIGPLAN Notices, 2017.

Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent backward-
edge control flow violation detection using Intel processor trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, 2017.

Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient CFI enforcement with Intel processor trace,” in [EEE
International Symposium on High performance computer architecture,
2017.

S. Baruah, P. Ekberg, M. Hosseinzadeh, A. Li, B. Ward, and N. Zhang,
“Who’s afraid of butterflies? a close examination of the butterfly attack,”
in 2023 IEEE Real-Time Systems Symposium (RTSS), pp. 5363, IEEE,
2023.

T. Mishra, T. Chantem, and R. Gerdes, “Survey of control-flow integrity
techniques for embedded and real-time embedded systems,” ACM Trans-
actions on Embedded Computing Systems, 2021.

B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “TZmCFI: RTOS-
aware control-flow integrity using trustzone for Armv8-M,” Interna-
tional Journal of Parallel Programming, 2021.

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2017.

J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time system
availability for cyber-physical systems using Arm TrustZone,” in /[EEE
Symposium on Security and Privacy, 2022.

J. Wang, Y. Wang, and N. Zhang, “Secure and timely GPU execution
in cyber-physical systems,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023.

J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and
N. Zhang, “ARI: Attestation of real-time mission execution integrity,”
in 32nd USENIX Security Symposium, 2023.

Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic control-flow protection on real-time embedded systems with
Kage,” USENIX Security Symposium, 2022.

J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in USENIX
Security, 2020.

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and
B. C. Ward, “Control-flow integrity for real-time embedded systems,”
in 31st Euromicro Conference on Real-Time Systems, 2019.

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

Y. Wang, A. Li, J. Wang, S. Baruah, and N. Zhang, “Opportunistic
data flow integrity for real-time cyber-physical systems using worst case
execution time reservation,” in USENIX Security Symposium, 2024.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security,
2018.

M. A. Elmohr, H. Liao, and C. H. Gebotys, “EM fault injection on ARM
and RISC-V,” in IEEE International Symposium on Quality Electronic
Design, 2020.

N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices,”
Cryptology ePrint Archive, 2016.

A. Li, M. Sudvarg, H. Liu, Z. Yu, C. Gill, and N. Zhang, “Polyrhythm:
Adaptive tuning of a multi-channel attack template for timing interfer-
ence,” in IEEE Real-Time Systems Symposium, 2022.

A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in IEEE Real-Time and Embedded Technology and Applications
Symposium, 2024.

H. Liu, Y. Wu, Z. Yu, Y. Vorobeychik, and N. Zhang, “Slowlidar: In-
creasing the latency of lidar-based detection using adversarial examples,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015.

C. Ferdinand and R. Heckmann, “aiT: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society,
Springer, 2004.

“Arm MPS2+ FPGA prototyping board.” https://www.arm.com/products/
development-tools/development-boards/mps2-plus, 2017.

“ANS505: Cortex™-M33 with IoT kit FPGA for MPS2+ Version 2.0.”
https://developer.arm.com/downloads/view/ANS505, 2017.

H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sgrensen, P. Wigemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis, 2016.

B. Brandenburg, “SchedCAT.” In B. Brandenburg and M. Giil, “Global
scheduling not required: Simple, near-optimal multiprocessor real-time
scheduling with semi-partitioned reservations,” Proceedings of the 37th
IEEE Real-Time Systems Symposium, 2016.

B. B. Brandenburg, Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in IEEE International Conference on Robotics and Automation,
2015.

Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting operation integrity
of embedded devices,” in IEEE Symposium on Security and Privacy,
2020.

A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “ECFI: Asynchronous
control flow integrity for programmable logic controllers,” in Proceed-
ings of Annual Computer Security Applications Conference, 2017.

L. Feng, J. Huang, J. Hu, and A. Reddy, “FastCFI: Real-time control-
flow integrity using FPGA without code instrumentation,” ACM Trans-
actions on Design Automation of Electronic Systems, 2021.

M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski, “Safety-aware
integration of hardware-assisted program tracing in mixed-criticality
systems for security monitoring,” in I[EEE 27th Real-Time and Embedded
Technology and Applications Symposium, 2021.

W. Chen, 1. Izhibirdeev, D. Hoornaert, S. Roozkhosh, P. Carpanedo,
S. Sharma, and R. Mancuso, “Low-overhead online assessment of timely
progress as a system commodity,” in 35th Euromicro Conference on
Real-Time Systems, 2023.

D. Lo, M. Ismail, T. Chen, and G. E. Suh, “Slack-aware opportunistic
monitoring for real-time systems,” in IEEE 19th Real-Time and Embed-
ded Technology and Applications Symposium, 2014.

https://www.arm.com/products/development-tools/development-boards/mps2-plus
https://www.arm.com/products/development-tools/development-boards/mps2-plus
https://developer.arm.com/downloads/view/AN505

	Introduction
	Background
	Control-flow Hijacking Attacks
	Holistic Control-flow Protection and Context Sensitivity
	Armv8-M Architecture

	Threat Model
	InsectACIDE Design
	Design Goals
	InsectACIDE Architecture

	Implementation
	Evaluation
	Performance Evaluation
	Schedulability Analysis
	Security Evaluation

	Security Analysis
	Related Work
	Discussion and Limitations
	Conclusion
	References

