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ABSTRACT Understanding the ecological impacts of viruses on natural and engineered 
ecosystems relies on the accurate identification of viral sequences from community 
sequencing data. To maximize viral recovery from metagenomes, researchers frequently 
combine viral identification tools. However, the effectiveness of this strategy is unknown. 
Here, we benchmarked combinations of six widely used informatics tools for viral 
identification and analysis (VirSorter, VirSorter2, VIBRANT, DeepVirFinder, CheckV, and 
Kaiju), called “rulesets.” Rulesets were tested against mock metagenomes composed of 
taxonomically diverse sequence types and diverse aquatic metagenomes to assess the 
effects of the degree of viral enrichment and habitat on tool performance. We found that 
six rulesets achieved equivalent accuracy [Matthews Correlation Coefficient (MCC) = 0.77, 
Padj ≥ 0.05]. Each contained VirSorter2, and five used our “tuning removal” rule designed 
to remove non-viral contamination. While DeepVirFinder, VIBRANT, and VirSorter were 
each found once in these high-accuracy rulesets, they were not found in combination 
with each other: combining tools does not lead to optimal performance. Our valida­
tion suggests that the MCC plateau at 0.77 is partly caused by inaccurate labeling 
within reference sequence databases. In aquatic metagenomes, our highest MCC ruleset 
identified more viral sequences in virus-enriched (44%–46%) than in cellular metage­
nomes (7%–19%). While improved algorithms may lead to more accurate viral identifica-
tion tools, this should be done in tandem with careful curation of sequence databases. 
We recommend using the VirSorter2 ruleset and our empirically derived tuning removal 
rule. Our analysis provides insight into methods for in silico viral identification and will 
enable more robust viral identification from metagenomic data sets.

IMPORTANCE The identification of viruses from environmental metagenomes using 
informatics tools has offered critical insights in microbial ecology. However, it remains 
difficult for researchers to know which tools optimize viral recovery for their specific 
study. In an attempt to recover more viruses, studies are increasingly combining the 
outputs from multiple tools without validating this approach. After benchmarking 
combinations of six viral identification tools against mock metagenomes and environ­
mental samples, we found that these tools should only be combined cautiously. Two to 
four tool combinations maximized viral recovery and minimized non-viral contamination 
compared with either the single-tool or the five- to six-tool ones. By providing a rigorous 
overview of the behavior of in silico viral identification strategies and a pipeline to 
replicate our process, our findings guide the use of existing viral identification tools and 
offer a blueprint for feature engineering of new tools that will lead to higher-confidence 
viral discovery in microbiome studies.
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V iruses are an essential component of microbial ecosystems: they influence nutrient 
cycling and microbial community dynamics (1), account for 20%–40% of microbial 

mortality per day (2), reprogram their hosts’ metabolism (3, 4), and horizontally transfer 
genes between host populations (5, 6). The primary approach used to discover and 
describe viral diversity is culture-independent metagenomic sequencing. However, viral 
sequences remain challenging to differentiate from non-viral ones because viruses 
have no universal marker gene (7), high mutation rates (8, 9), and relatively small 
reference databases relative to the magnitude of their diversity (10). Additionally, current 
environmental sample collection and sequencing methods recover predominantly short 
contigs. Short sequences are challenging to classify correctly because they often do not 
contain enough information (e.g., too few genes) to leverage our knowledge of what 
makes viral sequences distinct (11, 12).

The challenge of identifying viral sequences in metagenomic data sets has driven 
the development of many viral identification tools over the past decade that aim to 
differentiate viral sequences from non-viral sequences (13). Tools differ in the types of 
viruses they identify, what sequence lengths they are optimized for, and the training 
data and algorithms underlying them. To be confidently applied to environmental 
data, viral identification tools must be trained on sequences representative of the 
microbiota being studied to ensure the tool has seen enough of the sequence space 
to correctly classify viral sequences. Sequence types commonly found in environmental 
metagenomes include bacteria, viruses, plasmids, archaea, protists, and fungi. Some 
tools, such as VirSorter2 (12) and VIBRANT (14), include these diverse sequence types, 
as well as representative diversity within each sequence type, expanding the classifica-
tion accuracy of each tool. Other tools like DeepVirFinder and VirSorter do not include 
as diverse sequences: DeepVirFinder does not include non-prokaryotic references and 
VirSorter is only built on bacterial and archaeal virus references. Further, the performance 
of viral identification tools depends on the interaction between the tool algorithm and 
the sample type. In a comparison of the viruses recovered by different viral identifica-
tion tools across 13 environmental samples, differences were found in the number of 
sequences called viral between environments (14).

While many viral identifications tools have comparable accuracy, their underlying 
algorithms differ and may capture different sets of viruses from the same sample. With so 
many tools available, it can be difficult to choose the most appropriate tool for a given 
study. Rather than choose one tool, a number of studies have combined the outputs of 
multiple tools to classify viral sequences to capture a greater portion of the viral signal 
(15–21). This approach assumes that combining multiple tools will improve the overall 
accuracy by discovering more viruses without greatly increasing non-viral contamination 
(non-viral sequences called viral by the approach), but this assumption has not been 
rigorously evaluated. In particular, it remains unknown whether or not these multi-tool 
strategies significantly increase contamination (e.g., by each tool returning non-overlap­
ping false positive viral sequences).

Here, we benchmarked whether multi-tool approaches can distill a more complete 
and accurate set of viral sequences. From our analysis, we recommend pipelines specific 
to short and long-read sequences, as well as cellular metagenomes and virus-enriched 
samples. By returning more viral sequences with less non-viral contamination, these 
pipelines will enable new and more accurate insights into the ways viruses impact 
microbial ecosystem functions, with far-reaching implications for human and environ­
mental health.

MATERIALS AND METHODS

Creation of sequence testing set

To create a testing set for benchmarking multi-tool pipelines, we downloaded viral, 
bacterial, fungal, plasmid, protist, and archaeal genome sequences from the NCBI 
reference sequence database (RefSeq), as well as a unique set of non-RefSeq virus 
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genomes compiled by the VirSorter2 tool developers, herein “VirSorter2 database” (22) 
(Fig. 1). These non-RefSeq virus genomes represent a comprehensive validated set 
of viruses. We originally created nine testing sets by randomly sampling sequences 
with replacement from these sources to create data sets that mimicked metagenomic 
environmental data. As the variability between testing sets plateaued at five data 
sets (Fig. S1), five data sets were used for subsequent analyses. The testing sets were 
designed to contain approximately 68% bacteria, 10% archaea, 10% virus (not provi­
ruses), 5% plasmid, 5% protist, and 2% fungi sequences, totaling ~8k sequences (Fig. 
1B). The proportion of sequences was chosen to be representative of cellular-enriched 

FIG 1 Overview of study workflow. (A) A set of sequences > 3 kb were randomly downloaded from NCBI and a curated Non-RefSeq viral genomes database 

(“VirSorter2 database”) to (B) generate five mock environmental metagenomes, where the donut chart represents the proportion of each sequence type in each 

mock metagenome. (C) Mock metagenomes were run through six viral identification tools, (D) where score cutoffs were defined based on each tool’s outputs to 

maximize their accuracy. (E) Accuracy was then assessed for each tool combination to guide the development of defined “rulesets.” (F) Rulesets were then used to 

classify sequences from six real-world aquatic metagenomes: three cell-enriched metagenomes and three virus-enriched metagenomes.
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metagenomic data, which are dominated by bacterial sequences and reportedly 
contain ~10% viral sequences (15, 23). The non-viral portion was randomly sampled from 
5.3M bacteria, 55.1k archaea, 6.6k plasmid, 69.6k fungi, and 216.5k protist sequences 
from the NCBI database (accessed November 2019 for bacteria and archaea and April 
2022 for others). The viral portion of the testing set was generated by random sampling 
from 13.8k viral sequences from the NCBI database and 370.153k viral sequences from 
the VirSorter2 database. As DeepVirFinder requires sequences to be less than 2,100 kb, 
a custom python script was written to trim the testing set sequences to meet this 
length cutoff. We did not expect trimming to impact results since the largest phage 
genome reported is smaller than this length cutoff (735 kb) (24). Further, only sequences 
longer than 3 kb were used because it has been previously shown that tool accuracy 
significantly decreases below 3 kb (12).

Selection of viral identification tools

Twenty-seven viral identification tools (12, 14, 25, 25–49) were found through literature 
search and assessed to determine their suitability for inclusion in this study (Table S1). 
Tools were included if they met the following criteria: (i) the tool identifies viruses that 
infect prokaryotes (i.e., bacteria and archaea), (ii) the tool is suitable for application 
to multiple environments (e.g., not only the human gut), (iii) the tool is designed to 
target viral sequences of lengths greater than 3 kb, (iv) the tool can classify millions 
of sequences within a few days on high-performance computing clusters (i.e., not only 
available on a web server), (v) developers actively respond to user issues, (vi) the tool 
performs well in previous comparative studies of viral identification tools (12, 14, 50), (vii) 
the tool is not specific to prophages, and (viii) the tool was published before June 2022.

Four of the 29 viral identification tools met the above criteria: DeepVirFinder (27), 
VIBRANT (14), VirSorter (46), and VirSorter2 (12). While not designed strictly as viral 
identification tools, Kaiju (51) and CheckV (26) were used to tune the viral predictions in 
our test sets. All six are referred to as “viral identification tools” or simply “tools” in this 
manuscript (Table 1; Fig. 1C).

Design of viral identification rules

Viral identification tools generate scores that indicate how confident they are that a 
given sequence is of viral origin, but users are often faced with the dilemma of setting 
their own score cutoff to decide which sequences to call “viral.” To aid in the process of 
choosing rules and cutoffs for predicting viral sequences, we designed six rules (Fig. 1D 
and 2). Each rule includes at least two subrules that use outputs from the six selected 
tools. These subrules were designed through two processes:

1. Evaluation of existing recommendations for tool cutoffs and application: the 
recommended cutoffs for distinguishing viral and non-viral sequences in each 
tool’s protocol were used as an initial set of rules (12, 15, 16, 52).

2. Curation and evaluation of biological features: some viral identification tools 
generate information describing biological features for each sequence, e.g., 
VirSorter2 reports the number of viral hallmark genes identified, CheckV reports 
the completeness of a sequence and relative percentage of viral versus non-viral 
genes, and VIBRANT identifies virus orthologous genes (VOGs). These biological 
features were used to create classification criteria (Fig. 2) to distinguish viral and 
non-viral sequences.

The developers’ recommendations for calling a sequence viral served as a baseline for 
assigning a given sequence a “viral score” that captured the relative likelihood that a 
given sequence was viral. The cutoffs were then adjusted to maximize the number of 
true viral sequences being classified as viral (true positives) and minimize the number of 
non-viral sequences being classified as viral (false positives) in the mock environmental 
microbial communities. We first defined four single-tool rules (Fig. 2A through D) derived 
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from four viral identification tools (i.e., VIBRANT, VirSorter, VirSorter2, and DeepVirFinder). 
Next, we defined two sets of tuning rules derived from outputs of different tools that 
indicated a strongly viral or non-viral signal (Fig. 2E and F). These included the following: 
(i) a “tuning removal” rule that decreases the viral score based on distinctly non-viral 
sequence features and (ii) a “tuning addition” rule that increases the viral score based on 
distinctly viral sequence features.

Each putative viral sequence is assigned a numerical value by each rule; these are 
combined to give a value that comprises the sequence’s viral score (Fig. 2G). Sequences 
with a final viral score ≥ 1 were considered viral, and scores < 1 are non-viral (Fig. 2G).

Evaluation of viral identification rulesets

Ultimately, 63 combinations (rulesets) of these six rules were evaluated by comparing the 
viral score of each sequence to the classification assigned by the database (Fig. 1E). From 
these values, precision (the number of true viruses in our test set called viral divided by 
all contigs called viral), recall (the number of true viruses in our test set called viral 
divided by all true viruses), and MCC (considers the relative proportion of false positives, 
false negatives, true positives, and true negatives) (53) were calculated.

Application of rulesets to environmental metagenomes

All rulesets were used to identify viruses from five previously published environmental 
data sets representing different aquatic environments and size fractions (Fig. 1F; Table 
S2). Three environments (drinking water, global ocean water, and eutrophic lake water) 
contained metagenomic assemblies (>2 µm), and three environments (wastewater, 
eutrophic lake water, and oligotrophic lake water) contained virome assemblies 
(<0.2 and <0.45 µm), meaning samples were enriched for viruses by filtering through a 
small pore to remove most cellular organisms before DNA extraction.

The default tool settings were used except for the oligotrophic lake and wastewater 
virus-enriched samples, where the “-virome” flag was used for VIBRANT and VirSorter to 

TABLE 1 Overview of viral identification tools selected for inclusion in this study

Tool name (version) Tool description Algorithmic approach Why we included the tool

CheckV (26) CheckV is an automated pipeline that 
identifies closed viral genomes, estimates 
the completeness of genome fragments, 
and removes host regions from proviruses.

HMM virus and host marker genes, 
virus-host boundary prediction, and 
AAI-based estimation of genome 
completeness

Not a viral identification tool but 
provides benchmarking information 
for refining predictions from other 
tools

DeepVirFinder (27) DeepVirFinder uses a multi-layered deep 
learning algorithm trained on a positive set 
of viral sequences from viral RefSeq data 
and a negative set of prokaryotic ones.

K-mer-based deep learning
convolutional neural network

Recent and increasingly commonly 
used tool based on a neural network

VIBRANT (14) VIBRANT is a hybrid tool that uses both 
machine learning and protein similarity to 
classify viruses as either high, medium, low 
quality, or non-viral.

Neural network of protein annotations
of HMMs

Recent and commonly used tool 
and provides gene annotation 
information

VirSorter (46) VirSorter uses probabilistic models with 
reference and non-reference dependencies, 
as well as detecting hallmark viral genes.

Probabilistic modeling using HMMs Commonly used and high-quality 
predictions

VirSorter2 (12) VirSorter2 uses a neural network classi­
fier built on top of the existing Vir­
Sorter infrastructure of reference-based viral 
identification.

A multi-classifier combining a Random 
Forest model and expert knowledge of 
viral features

Recent and increasingly commonly 
used tool that is more inclusive of 
viral diversity than most other tools

Kaiju (51) Kaiju is a taxonomic classifier that compares 
metagenomic sequences to NCBI reference 
databases at the protein level and assigns a 
near or exact taxon match if one is found.

A taxonomic classifier that uses 
protein-level classifications to assign 
reads to taxon from NCBI databases

Not a viral identification tool but 
extremely fast method of taxonomic 
identification based on NCBI releases

Research Article mSystems

March 2024  Volume 9  Issue 3 10.1128/msystems.01105-23 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

18
 Ju

ne
 2

02
4 

by
 2

60
0:

88
06

:2
90

f:e
c0

0:
39

cd
:8

c0
f:3

58
d:

fb
f6

.

https://doi.org/10.1128/msystems.01105-23


reduce sensitivity, as recommended by the developers of those tools given that a greater 
fraction of total sequences are expected to be viral in virus-enriched samples. The “-
virome” flag was not used for the eutrophic lake water virome assemblies due to all 
eutrophic lake water assemblies being processed together, but the eutrophic lake water 
virome still was most similar to the other virus-enriched samples (Fig. 7). All tools were 
run with a 3-kb cutoff to remove small sequences.

FIG 2 Diagram of approach details. (A) Sequences are first processed by each (B) viral identification tool. Next, (C) the tool outputs are programmatically 

post-processed to generate a viral score based on both (D) single-tool rules and the data-driven creation of (E) tuning addition and (F) tuning removal processes. 

(G) This combined post-processing generates a viral score that indicates whether each sequence input is predicted as “Virus” or “Not Virus.” Subrules are scored 

based on the confidence of the prediction: low confidence = ±0.5, confident = ±1, and highly confident not viral = −3.
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RESULTS AND DISCUSSION

Viral identification tools use algorithms based on the knowledge of viral sequences and 
machine learning to separate viral and non-viral sequences. In this study, we test the 
hypothesis that combining viral identification tools with different underlying algorithms 
will improve accuracy. The performance of 63 combinations (rulesets) of the six rules was 
evaluated using five mock metagenomes of known composition (Fig. 3B; Fig. S1). The six 
rules are as follows: four single-tool rules derived from four viral identification tools (i.e., 
VIBRANT, VirSorter, VirSorter2, and DeepVirFinder; Fig. 2A through D) and two additional 
tuning rules: tuning removal (which removes predictions using Kaiju, CheckV, VirSorter2, 
VirSorter, and VIBRANT outputs) and tuning addition (which adds predictions using 
Kaiju, CheckV, and VirSorter2 outputs; Fig. 2E and F). In this section, we compare the 
performance of our rulesets, elaborate on their strengths and weaknesses, and provide 
recommendations for use.

More tools are better… to a point

Across the 63 rulesets, MCC, our metric for overall performance (“accuracy,” herein), 
ranges from 0.05 (DeepVirFinder) to 0.77 (VirSorter2 + Tuning Removal). With the 
exception of VirSorter2 (MCC = 0.75), single-rule rulesets (i.e., viral identification tools 
run on their own) either missed most of the viruses in the benchmarking data set 

FIG 3 Comparison of different rulesets. (A) Distribution of viral scores assigned to mock metagenome sequences for our six rules: four single-tool and two tuning 

rules. (B) Viral scores of all sequences across six mock metagenomes classified by each ruleset. Ruleset rows are colored based on whether or not each rule was 

used to attain the viral score result for a given sequence. In both A and B, viral scores ≥ 1 are classified as viral and <1 as not viral. All sequences are grouped by 

their assigned taxonomy.
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or misclassified such a large number of non-viruses that the viral signal was heavily 
contaminated (Fig. 3A). Of the single-rule rulesets, VIBRANT performs second best (MCC 
of 0.55), followed by VirSorter (MCC of 0.16) and DeepVirFinder (MCC of 0.05). Previous 
studies have reported higher accuracy for these tools, but those studies used a testing 
set composed of 50% or more viruses compared with our 10% viral sequences and/or 
did not include taxonomically diverse sequences compared with the taxonomically 
diverse training data used here (14, 27, 46, 52). Using testing data sets representative 
of environmental metagenomic data sets is important for accurate ecological interpreta­
tions. We found that our MCCs increased when using a testing set with a more similar 
composition to other studies (50% viral and 50% non-viral; max MCC = 0.91); and, in their 
validation of DeepVirFinder, Ren et al. (27) demonstrated that the relative proportion of 
viral to non-viral sequences in a data set can have a strong effect on AUROC (area under 
receiver operating characteristic; a performance metric). Given the observed taxonomic 
distribution of environmental cellular metagenomic sequences (15, 23), users likely need 
to be more conservative (higher classification score cutoffs) in viral calling and assume 
lower accuracy than previous studies have reported.

Combining rules generally increased the average MCC (Fig. 4). This is driven by a 
statistically significant increase in recall for multi-rule rulesets compared with single-rule 
rulesets and for three or more rule rulesets compared with two-rule rulesets (Table S3). 
While the average precision is constant as rules are combined (Fig. 4A; Table S4), the 
precision of higher-precision rules (precision > 0.7, five right-most points; Fig. S2A; the 
VIBRANT and VirSorter2 rules) decreases as they are combined with lower-precision rules 
(precision < 0.5; the DeepVirFinder and VirSorter rules). Accuracy is maximized by the 
VirSorter2 and tuning removal ruleset and is not improved by adding more rules (Fig. 4B).

The VirSorter2-based and tuning removal rules are the most critical for accurate virus 
identification in our testing. When rulesets were ranked by increasing MCC, top-
performing “high MCC” rulesets were identified as those that did not demonstrate a 
statistically significant decrease relative to the highest MCC ruleset (Padj > 0.05; Fig. 4B). 
VirSorter2’s rule (“vs2”) was in all six of these high-MCC rulesets (Fig. 4B) and tuning 
removal (“tnv”) was in five of them. For comparison, the other single-tool rules (i.e., 
VirSorter, DeepVirFinder, and VIBRANT) were each only in one of the high-MCC rulesets, 
where they always co-occurred with VirSorter2 and the tuning removal rule (Fig. 4B). 
None of the high-MCC rulesets have more than four rules. In the same way, “high 
precision” (three rulesets; Fig S2A) and “high recall” (four rulesets; Fig S2B) rulesets were 
defined.

There is a high degree of overlap in the viruses predicted by the different rulesets (Fig. 
5). Of the comparisons between rulesets , 68% (Fig. 5, green and yellow cells) was more 
than 50% identical to each other and 30 rulesets were at least 90% identical to at least 
one other ruleset (Fig. 5, yellow cells), representing 4% of the total comparisons between 
rulesets. Rulesets with VirSorter, DeepVirFinder, and VIBRANT all have more sequences in 
common as the number of rules in the compared sets increases, but this trend is much 
less pronounced for VirSorter2 (Fig. S3). This suggests that our observed increase in recall 
through combining rules is being driven by a subset of rules that give more tool-specific 
viral predictions (i.e., VirSorter, DeepVirFinder, and VIBRANT), leading to the question 
“how confident should users be of their tool-specific predictions?”

One assumption made during in silico virus identification by previous studies is that 
sequences with low-confidence predictions by multiple tools are more likely to be viral 
(i.e., called viral by multiple + 0.5 subrules). For example, if one tool predicts a sequence 
as viral with low confidence, it may be disregarded. But if multiple tools each provide 
low-confidence predictions for a given sequence, many studies have presumed the 
sequence is more likely to be viral, thereby combining low-quality predictions to arrive at 
the set of predicted viruses (15, 16, 18). However, we found this was not a safe strategy as 
it did not increase the number of true positives . Rulesets using multiple low-quality 
prediction subrules in the single-tool rules did not significantly increase MCC (P = 0.19) or 
recall (P = 0.18) and, in fact, slightly decreased precision (0.54 vs 0.59, P = 2.5*10−5) when 
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compared with rulesets that did not use low-quality prediction subrules (Fig. S4). This 
pattern is likely due to the rulesets being similarly uncertain about sequences that are 
unlikely to be viral, thus introducing a significant amount of non-viral contamination. The 
additive uncertainty did not create certainty. We recommend being cautious of sequen­
ces classified as viral by multiple low-quality predictions and manually inspecting them 
before viral assignment.

FIG 4 Performance of the 63 rulesets. (A) Box and whisker plots of the performance scores representing variation in MCC, precision, and recall of different 

rulesets based on the number of rules used for prediction. (B) Ruleset accuracy (MCC) ordered by increasing MCC and colored based on the ruleset’s type 

according to statistically equivalent (Padj ≥ 0.05) rulesets. For A and B, the middle line represents the group mean; boxes above and below the middle line 

represent the top and bottom quartiles, respectively; whiskers above and below the boxes represent 1.5 times the interquartile range (roughly the 95% CI), 

outliers are represented by circles beyond the whiskers. The boxplots in A are overlaid with points that represent each testing set’s MCC.
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As metagenomes frequently have a high proportion of short-sequence fragments 
and the correct identification of short fragments with only a few genes is particularly 
challenging (26), we tested the rulesets on 3–5-kb fragments from our original testing 
sets. Like the >3-kb testing sets, many rulesets performed similarly for the 3–5-kb 
fragments (Fig. S6). Unlike in the >3-kb testing sets where the VirSorter2 single-rule 
ruleset was in the high-MCC set (Fig. 4B), no single-rule ruleset was in the high-MCC 
rulesets for the short fragments (Fig. S5). Also in contrast with the >3-kb testing sets, the 
six-rule ruleset was identified as a high-MCC ruleset and DeepVirFinder is in 8 of the 12 
high-MCC rulesets. In part due to our newly defined viral tuning rules, the accuracy of 
the viral predictions reported here for these short fragments is greater than previously 
published (12). This increase in accuracy suggests that data sets where short fragments 

FIG 5 Proportion of viruses in common between rulesets. Heatmap values calculated by dividing the intersection (called viral by both rulesets) by the union 

(called viral by at least one) of the viruses found by both rulesets, which represents the proportion in common between the tools (scale bar on right: dark-purple: 

0–0.1, blue: 0.1–0.5, green: 0.5–0.9, and yellow: 0.9–1). The bar to the left of the heatmap represents the total number of viruses identified by each tool 

combination (scalebar to its left). The bars above the heatmap indicate the tool(s) used in the rulesets, as well as the ruleset type.
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abound may particularly benefit from our tuning rules. Further, while researchers with 
only 3–5-kb fragments may consider using more tools, equally accurate predictions can 
still be achieved from the VirSorter2 and tuning removal ruleset.

Tuning rules increase confidence of viral predictions

To leverage expert knowledge of the differences between viral and non-viral sequences, 
we designed tuning addition and removal rules (Fig. 2E and F; see Fig. S6 for subrule 
performance). These rules were designed based on specific outputs from multiple tools 
that distinguish between viral and non-viral sequences, such as sequence length and 
the number of host genes. In general, tuning addition improved MCC and recall, while 
tuning removal improved MCC and precision (Fig. S7). Seven of the 10 highest-MCC 
rulesets have both tuning addition and removal rules (Fig. 4B), demonstrating the 
importance of the tuning rulesets for accurate classification. The tuning removal rule 
was able to identify 89% of the testing set’s non-viral sequences and only (mis)identified 
2% of testing set’s viral sequences as non-viral (viral score < 0 when only the tuning 
removal rule was applied). The tuning addition rule accurately identified 74% of the viral 
sequences and only misidentified 4% of non-viral sequences in the testing set as viral 
(viral score ≥ 1 when only the tuning addition rule was applied). Overall, the tuning 
rules increased our prediction accuracy beyond that of the rulesets composed of the 
single-tool rules. As such, we demonstrated the value of automating the refinement of 
viral identification tool predictions, a task that, if done at all, is currently a laborious 
manual process.

Even with the tuning rules, we could not improve both precision and recall beyond 
0.77 (Fig. S8). Building a more accurate classifier means overcoming barriers such as 
imperfect gene reference data sets, overlap between viral and host sequences, and 
underrepresentation of viral types. This is because to recover more viruses, it becomes 
necessary to rely more on genes of unknown origin. These may include non-viral genes, 
particularly of eukaryotes, which were not represented in the reference data sets of 
DeepVirFinder, VirSorter, or CheckV (Fig. S9 to S16). Further, many true viral features 
overlap with non-viral features (Fig. S9 to S16) due to our imperfect knowledge of 
what distinguishes viruses and non-viruses (and homologous sequences shared by 
both viruses and cellular organisms), leading non-viruses with virus-like features to be 
misclassified as viruses. This challenge is particularly acute when trying to accurately 
classify both short sequences (<5 kb) (12, 27) and viral types underrepresented in our 
testing data (e.g., the accuracy of the “high MCC” ruleset is the highest for dsDNAphages 
compared with other viral sequence types; Fig. S17).

Mislabeled sequences within databases hinder tool accuracy and validation

To improve upon the maximum MCC of 0.77, we looked for patterns in the types of 
sequences being misclassified that could aid future tool design. To our surprise, the “false 
positive” sequences labeled as bacteria by the NCBI database, but classified as viral by 
our high MCC ruleset, looked more “viral” than the viruses themselves. Specifically, the 
proportion of the sequence’s genes identified as VOGs was higher in the misclassified 
bacteria than the known viruses (P < 2.2*10−16; Fig. 6A). The plasmids misclassified as viral 
have a similar proportion of viral genes as the viruses (P = 0.63). For all three sequence 
types, the proportion of sequences represented by VOGs increases with the number of 
VOGs in that sequence (Fig. 6B). If these highly viral sequences are not actually viruses, 
viral identification tools can be improved by removing these genes from viral gene 
databases. On the contrary, if these sequences are actually viruses, viral identification 
tools can be improved by relabeling these sequences in sequence databases because 
tools rely on accurate database classification for training and testing.

Manual inspection of a subset of these misclassified sequences revealed them to be 
viral sequences (Fig. 6C; Fig. S18). These false positives represented two types of misla­
beled sequences: (i) viruses (either extracellular virions or intracellular extrachromosomal 
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viral genomes) co-sequenced when a host isolate was sequenced (Fig. 6C; Fig. S18A) and 
(ii) prophages integrated into their hosts’ genome (Fig. S18B). We also screened for ΦX 
contamination, as it is a known problem for database sequences using Illumina library 
preparation due to its use in Illumina libraries (54). Only 19 ΦX sequences were taxonom­
ically identified by Kaiju and thus do not explain our high degree of false positives. These 
findings support the known problem of phage sequences not being removed before 
being deposited on NCBI (54) and lead to phages being misclassified as bacteria, 
archaea, plasmids, and cellular and satellite chromosomes. Mislabeled sequences in 
public databases make it difficult to produce accurate viral identification tools because 
developers rely on accurately labeled data sets to train and test their classifiers. We 
recommend that before uploading sequences to public databases where non-viral 
sequences are screened for viral contamination.

Sample preparation and viral identification tool choice affects viral sequence 
recovery

To compare our rulesets across environments, we evaluated the proportion of sequen­
ces classified as viral for five publicly available aquatic metagenomic assemblies (Table 
S2; Fig. S19). We found that viral sequence recovery varied greatly based on sample 
preparation (e.g., virus enriched or not) and viral identification tool(s) used (Fig. 7). 
The highest MCC ruleset identified a higher proportion of viral sequences in the 
virus-enriched samples (44%–46%) compared with the non-enriched metagenomes 
(7%–19%). The proportion of viruses recovered across rulesets for the environmental 
data sets mimics the behavior of the testing data: the “high recall” rulesets classified 
the most sequences as viral (with presumably the greatest non-viral contamination, 
given the results on our testing sets), while the “high precision” rulesets labeled the 
fewest sequences as viral (with presumably the least non-viral contamination, given the 

FIG 6 Mislabeled sequences. (A) Box and whisker plots of the proportion of genes on a sequence with a VOG annotation by VIBRANT broken down by sequence 

type (for the high-MCC rules). (B) Proportion of a sequence’s genes with a VOG annotation versus the number of genes with a VOG annotation faceted by 

sequence type. Because VIBRANT is the only tool that provided VOG annotation, only sequences classified as viral by VIBRANT are included in panels A and 

B (which only included bacteria, viruses, and plasmids). (C) Sequence synteny plots indicating sequence similarity between a representative bacterial “false 

positive:” NZ_LLFE01000196 (NCBI label: bacteria) versus Salmonella phage SSU5. All genes of the testing set sequences are colored by their gene identity.
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results on the testing sets) (Fig. 7; Table S2). Previous metagenomic studies of biomass 
collected on a 0.2-µm filter have found viral sequences to be less than 16% of the total 
metagenome (15, 23), which is in line with our results.

For the virus-enriched samples, nearly all sequences were called viral by the “high 
recall” rulesets (Fig. 7; Fig. S18). It is likely that some of these sequences are false 
positives because the tuning removal rule reduces the number of sequences called 
viral by 14.9% (1 SD = 2.1%) when comparing the “all” to the “highest recall” rulesets, 
and our benchmarking demonstrated that the tuning removal rule effectively removed 
the contaminating non-viral sequences without removing true viruses. Further, one of 
the few studies to report the proportion of viral sequences found that 30%–60% of 
the sequences with known taxonomy were similar to at least one viral sequence (55). 
Even if all unknown sequences were viruses in this study, the proportion of viruses 
would not exceed 92%, which is still lower than the proportions we found in two 
of our three virus-enriched samples and further suggests the importance of tuning 
removal even for viral-enriched metagenomes. We present this “high recall” example to 
caution readers against using the “high recall” rulesets on virus-enriched metagenomes. 
It may be tempting to assume virus enrichment removes nearly all non-viral sequence 
contamination, but even for virus-enriched fragments, we instead recommend using the 
tuning removal rule unless the number of sequences is small enough to be manually 
inspected.

Recommendations and future work

In silico prediction of viral sequences is a critical first step to any metagenomic study 
that aims to resolve viral ecology and virus-microbe interactions. As downstream 
analyses and conclusions are predicated on accurate viral prediction, it is paramount 
to choose the most suitable tool(s) [and know how to interpret its output(s)] among 
the rapidly increasing number of in silico viral prediction tools available. Through the 
above benchmarking, we demonstrated that specific two-rule rulesets provide the 
highest-precision viral identification with only minor sacrifices in recall, whereas the 
worse performance of combining all tools may lead to erroneous biological conclusions. 
For this reason, we urge caution when using recent automated pipelines for sequence 
identification that combine the output of multiple tools (17, 19–21).

Our recommendations based on this study vary depending on research question and 
experimental design Fig. 8. For a typical study investigating viral diversity and functional 
potential from a mixed metagenome, we recommend our “high MCC” ruleset (VirSorter2 

FIG 7 Proportion of viruses predicted by each tool combination across (A) our testing sets and (B) environmental data sets. Rulesets are grouped based on the 

accuracy type on the testing set shown in the highlighted rulesets in Fig. 5.
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with tuning removal). If the majority of eukaryotes were filtered out of the sample 
(e.g., <3 µm fraction was sequenced), the tuning additional rule may increase recall. For 
researchers seeking to minimize the number of tools they use, we recommend using 
VirSorter2 with our CheckV-based tuning subrules. VirSorter2 has a comparable MCC to 
multi-tool rules (Fig. 4), though its high recall comes at the cost of more false positives 
when used in isolation (Fig. S2). While VIBRANT’s high precision with and without our 
tuning removal rule (Fig. 4; Fig. S2) and convenient information about the viruses (e.g., 
their metabolic potential) are attractive, we found that its recall was much worse than 
our other recommendations on the environmental data sets. In general, however, we 
do not recommend researchers to use any of the tools in isolation, based on the poor 
accuracy of the single-rule sets on the short sequences (3–5-kb testing set; Fig. S5).

One limitation of this work is that the available testing data included sequences that 
were part of the tools’ original training and testing data: all tools included in this study 
were trained in part using NCBI sequences that overlap with our testing data, and some 
were trained using the VirSorter2 non-RefSeq genome set. These data sets also happen 
to harbor a substantial number of mislabeled sequences, making it difficult to assess 
the accuracy of the benchmarking results. As additional curated viral sets are published 
(56), other researchers can test our rules against the new data sets providing further 
information about the limitations and scope of our rules.

We focused on tools that were developed primarily for bacteriophage identification, 
as these are most commonly used by microbial ecologists and microbiome researchers. 
We did not evaluate tools that were specifically for prophages, human viral pathogens, 
eukaryotic viruses, or archaeal viruses more broadly (Table S1). Future integration of new 

FIG 8 Recommendations. Flowcharts are based on (A) sample type and (B) study goals when looking to minimize the number of tools used.
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tools for plasmid and eukaryotic sequence identification (54, 57) is likely to improve viral 
identification tool pipelines.

Conclusions

With the rapid development of new viral identification tools, this paper offers a blueprint 
for intentional, data-driven validation of tool combinations. We found that the highest 
accuracy resulted from rulesets with four or fewer rules. For most applications, we 
recommend a combination of VirSorter2 and tuning rules based on features of viral 
and non-viral sequences and caution against simply combining viral identification tools 
expecting higher quality virus sets. By increasing the proportion of high-confidence 
viruses identified from mixed metagenomic data sets through intentional, data-driven 
combination of tools, this study enables more accurate ecological analyses by decreasing 
contamination of the viral signal, particularly from eukaryotic sequences.
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