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Abstract
Co-evolving networkmodels, wherein dynamics such as randomwalks on the network
influence the evolution of the network structure, which in turn influences the dynamics,
are of interest in a range of domains. While much of the literature in this area is
currently supported by numerics, providing evidence for fascinating conjectures and
phase transitions, proving rigorous results has been quite challenging. We propose a
general class of co-evolving tree network models driven by local exploration, started
from a single vertex called the root. New vertices attach to the current network via
randomly sampling a vertex and then exploring the graph for a random number of steps
in the direction of the root, connecting to the terminal vertex. Specific choices of the
exploration step distribution lead to the well-studied affine preferential attachment and
uniform attachment models, as well as less well understood dynamic network models
with global attachment functionals such as PageRank scores (Chebolu and Melsted,
in: SODA, 2008). We obtain local weak limits for such networks and use them to
derive asymptotics for the limiting empirical degree and PageRank distribution. We
also quantify asymptotics for the degree and PageRank of fixed vertices, including the
root, and the height of the network. Two distinct regimes are seen to emerge, based
on the expected exploration distance of incoming vertices, which we call the ‘fringe’
and ‘non-fringe’ regimes. These regimes are shown to exhibit different qualitative
and quantitative properties. In particular, networks in the non-fringe regime undergo
‘condensation’ where the root degree grows at the same rate as the network size.
Networks in the fringe regime do not exhibit condensation. Further, non-trivial phase
transition phenomena are shown to arise for: (a) height asymptotics in the non-fringe
regime, driven by the subtle competition between the condensation at the root and
network growth; (b) PageRank distribution in the fringe regime, connecting to the well
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known power-law hypothesis. In the process, we develop a general set of techniques
involving local limits, infinite-dimensional urn models, related multitype branching
processes and corresponding Perron–Frobenius theory, branching random walks, and
in particular relating tail exponents of various functionals to the scaling exponents
of quasi-stationary distributions of associated random walks. These techniques are
expected to shed light on a variety of other co-evolving network models.

Keywords Continuous time branching processes · Temporal networks · PageRank ·
Random trees · Stable age distribution theory · Local weak convergence · Multitype
branching processes · Perron–Frobenius theory · Quasi-stationary distribution ·
Phase transition

Mathematics Subject Classification Primary 60K35 · 05C80

1 Introduction

1.1 Motivation

Driven by the explosion in the amount of data on various real world networks, the
last few years have seen the emergence of many new mathematical network models.
Goals underlying these models include, (a) extracting unexpected connectivity pat-
terns within the network (e.g. community detection); (b) understanding properties of
dynamics on these real world systems such as the spread of epidemics and opinion
dynamics; (c) understanding mechanistic reasons for the emergence of empirically
observed properties of these systems such as heavy tailed degree distribution or the
small world property; see e.g. [1, 17, 23, 48, 49, 64] and the references therein. Within
this vast research area, dynamic or temporal networks, namely systems that change
over time, play an important role both in applications such as understanding social
networks or the evolution of gene regulatory networks [33, 34, 45]. One major fron-
tier, especially for developing rigorous understanding of proposed models, are the
so-called co-evolutionary (or adaptive) networks, where specific dynamics (e.g. ran-
dom walk explorations) on the network influence the structure of the network, which
in turn influences the dynamics; thus both modalities (dynamics on the network and
the network itself) co-evolve [5, 28, 60, 61]. Quoting [57], “. . . adaptive networks
provide a promising mechanistic approach to simultaneously explain both structural
features and temporal features . . . and can produce extremely interesting and rich
dynamics, such as the spontaneous development of extreme states in opinion models
. . . ” Despite significant interest in such models, deriving rigorous results has been
challenging. Let us describe two concrete motivations behind this paper:

(a) Evolving networks driven through local exploration:Motivated by the growth
of social networks, there has been significant interest in trying to understand the
influence of processes such as search engines or influence ranking mechanisms
in the growth of networks. A number of papers [15, 20, 56] have explored the
dynamic evolution of networks through new nodes first exploring neighborhoods
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Co-evolving dynamic networks 371

of randomly selected vertices before deciding on whom to connect. Even simple
microscopic rules seemed to result in non-trivial phase transitions.

(b) Preferential attachment models driven by global attachment schemes: Per-
haps the most well known class of co-evolving network models in practice are the
so-called preferential attachment class. Typically one fixes an attachment function
fatt : N → R+, with fatt (k) denoting the attractiveness of a degree k vertex
for new vertices joining the system. New vertices enter the system and attach to
existing vertices with probability proportional to their attractiveness. Such models
have been used in diverse settings including positing causal mechanisms for heavy
tailed degree distributions [8], understanding robustness of networks to attacks [16,
18], and modeling retweet networks [12]. Such models require global knowledge
of the network at each stage, yet use only the degree of each vertex for attach-
ment, eschewing potentially more relevant global attractiveness functions such as
centrality measures of vertices like the PageRank score (described in more detail
below).

Organization of the paper: We describe the general class of models in Sect. 1.2.
Section 2 describes initial constructions required to state the main results. Section 3
contains all themain results, wherewe also connect the results to existing literature and
conjectures. Proofs are commenced in Sect. 4 with individual subsections connecting
functionals of the model to continuous time branching processes, branching random
walks, quasi-stationary distributions and so on, and deriving relevant results for this
paper. The rest of the sections then use the technical foundations in Sect. 4 to complete
the proofs of the main theorems.

1.2 Model definition

Fix a probability mass function p := {pk : k ≥ 0} on Z+. For the rest of the paper,
let Z = {Z1, Z2, . . .} be an i.i.d sequence with distribution p. We now describe the
recursive construction of a sequence of random trees {Tn : n ≥ 1}, always rooted at
vertex {v0}, with edges pointed from descendants to their parents. Start with two
vertices {v0, v1}, with T1 a rooted tree at {v0}, an oriented edge from v1 to v0. Assume
for some n ≥ 1, we have constructed Tn . Then to construct Tn+1:

(a) New vertex {vn+1} enters the system at time n + 1.
(b) This new vertex selects a vertex Vn , uniformly at random, amongst the existing

vertices V(Tn) = {v0, . . . , vn}.
(c) LetP(v0, Vn) denote the path from the root to this vertex. This newvertex traverses

up this path for a random length Zn+1 and attaches to the terminal vertex. If the
graph distance to the root, dist(v0, Vn) ≤ Zn+1 then this new vertex attaches to
the root v0.

See Fig. 1 for a pictorial description. Thus newvertices enter the systemand perform
local explorations, before attaching themselves to an existing vertex. This, at first sight,
simplemechanism, results in a host of important special cases depending on the choice
of p which we describe next. We will let {Tn(p) : n ≥ 1} denote the corresponding
tree process and suppress dependence on p when this is clear from the context.
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Fig. 1 v6 is a new incoming vertex, and selects v4 to start exploring the network, with sampled number of
exploration steps Z6 = 2

1.2.1 Random recursive tree

If p0 = 1 then one obtains the random recursive tree where new vertices connect to
previously existing vertices uniformly at random. See [44, 62, 63] and the references
therein for the extensive use of this model in computer science.

1.2.2 Affine preferential attachment

Suppose p is Bernoulli(p) for some 0 < p < 1, namely p0 = 1 − p, p1 = p. Then
one can check that the corresponding tree process has the same distribution as an affine
preferential attachment model with attachment function fatt (k) = k + (1− 2p)/p.

1.2.3 PageRank driven preferential attachment

In trying to understand models where vertices try to game search engines and attempt
to increase their popularity by connecting to popular existing vertices in the system,
one natural approach is via preferential attachment models where attractiveness of
existing vertices is measured by their PageRank score (a global, as opposed to more
local degree-only based attachment schemes). The probabilisitic models of network
evolution that at first sight seem to need global information on the network, but then
have equivalent representations as local exploration schemes, has inspired a large body
of work especially in statistical physics, under the general area of network growth with
redirection [9, 24, 25, 40–42, 58, 65].

Definition 1.1 (PageRank scores) For a directed graph G = (V, E), the PageRank
scores of vertices v ∈ V with damping factor c, is the stationary distribution (Rv,c :
v ∈ G) of the following random walk. At each step, with probability c, follow an
outgoing edge (uniform amongst available choices) from the current location in the
graph while, with probability 1− c, restart at a uniformly selected vertex in the entire
graph. These scores are given by the linear system of equations:

Rv,c = 1− c

n
+ c

∑

u∈N−(v)

Ru,c

d+(u)
(1.1)
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whereN−(v) is the set of vertices with edges pointed at v and d+(u) is the out-degree
of vertex u.

At vertices with zero out-degree (e.g. the root of directed tree), the random walk
stays in place with probability c and jumps to a uniformly chosen vertex with proba-
bility 1− c. The stationary probabilities at such vertices are then multiplied by 1− c
to keep the formula (1.1) same for all vertices.

Definition 1.2 (PageRank driven preferential attachment [56]) Fix damping factor
c ∈ (0, 1). Consider the following sequence of directed random trees, started with a
root v0 and another vertex v1 with directed edge pointed to v0. At each discrete time
step n ≥ 2, a new vertex vn enters the system and connects to a previously existing
vertex with probability proportional to the PageRank of the existing vertex.

Now consider the process {Tn(p) : n ≥ 1}, with p as Geometric(p), namely for
k ≥ 0, pk = p(1− p)k . Thus a new vertex selects an existing vertex at random in the
current tree and then walks up the path from the selected vertex to the root, wherein at
each step, it decides to attach itself to the present location with probability p or move
upwards with probability 1− p.

Theorem 1.3 ([20, Thm 1.1]) The model with p as Geometric(p) has the same dis-
tribution as the PageRank driven preferential attachment model with damping factor
c = 1− p.

2 Notation and initial constructions

2.1 Mathematical notation

For J ≥ 1 let [J ] := {1, 2, . . . , J }. If Y has an exponential distribution with rate λ,
write this as Y ∼ exp(λ). Write Z for the set of integers, R for the real line, N for the

natural numbers and let R+ := (0,∞). Write
a.s.−→,

P−→,
d−→ for convergence almost

everywhere, in probability and in distribution respectively. For a non-negative function
g : Z+ → [0,∞) and another function f : Z+ → R, write f (n) = O(g(n)) when
f (n)/g(n) is uniformly bounded, and f (n) = o(g(n))when limn→∞ f (n)/g(n) = 0.
Write f (n) = �(g(n)) if lim infn→∞ f (n)/g(n) > 0. Furthermore, write f (n) =
�(g(n)) if f (n) = O(g(n)) and g(n) = O( f (n)). For two real valued stochastic
processes on the same space {Xt : t ≥ 0} and {Yt : t ≥ 0}, denote Xt = Yt + oa.s.(1)
if the random variable Xt −Yt → 0 almost surely as t → ∞. We write that a sequence
of events (An)n≥1 occurs with high probability (whp) if P(An) → 1 as n → ∞. We
use�st for stochastic domination between two real valued probability measures. For a
rooted finite tree t, let |t| denote the number of vertices in t and ht(t) denote its height,
namely, the maximal graph distance of the root from any other vertex. For graph G,
we write distG(·, ·) for graph distance and in most cases suppress dependence on G
when this is clear from context.
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2.2 Continuous timemodels

Recall the description of the model in Sect. 1.2. For much of the proofs, we will work
with the following continuous time versions of the above process.

Definition 2.1 (Continuous time versions) We let {T (t,p) : t ≥ 0} denote the contin-
uous time version of the above process wherein T (0,p) is a tree with vertex set {v0}
rooted at v0. Each existing vertex v in the tree reproduces at rate one. When vertex v

reproduces, a random variable Z following the law p is sampled independently.

(a) If Z ≤ dist(v0, v), then a new vertex ṽ is attached to the unique vertex u lying on
the path between v and v0 that satisfies dist(v, u) = Z via a directed edge from
ṽ to u.

(b) If Z > dist(v0, v), attach the new vertex ṽ to the root v0 via a directed edge
towards v0.

Let {T ∗(t,p) : t ≥ 0} denote the continuous time process which follows the dynamics
as above but with (b) above replaced by,

(b)′ If Z > dist(v0, v), nothing happens.

It will turn out later that the process T ∗ describes the evolution of the fringe tree
below non-root vertices. Define the stopping times

Tn = inf{t ≥ 0 : |T (t,p)| = n + 1},

which is the birth time of the incoming vertex vn . LetFt denote the natural sigma-field
of the process up to time t and {Ft : t ≥ 0} the corresponding filtration. The following
is obvious from construction.

Lemma 2.2 The processes {Tn(p) : n ≥ 1} and {T (Tn, p) : n ≥ 1} have the same dis-
tribution.

2.3 Fringe convergence

The aim of this section is to formalize the notion of convergence of neighborhoods
of large random trees to neighborhoods of limiting infinite discrete structures. Local
weak convergence of discrete random structures has now become quite standard in
probabilistic combinatorics see e.g. [3, 10]. In the case of trees, following [2], the
theory of local graph limits has an equivalent formulation in terms of convergence of
fringe distribution.

2.4 Extended fringe decomposition

Given two rooted (unlabeled) finite trees s, t, say that s ∼ t or s = t if there exists a
root preserving isomorphism between the two trees. For n ≥ 1, let Tn be the space
of all rooted trees on n vertices and let T = ∪∞

n=0Tn be the space of all finite rooted
trees. Here T0 = ∅ will be used to represent the empty tree (tree on zero vertices).
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Co-evolving dynamic networks 375

Fix a tree t ∈ T with root ρ and a vertex v at distance h from the root. Let (v0 =
v, v1, v2, . . . , vh = ρ) be the unique path from v to ρ. The tree t can be decomposed as
h+1 rooted trees f0(v, t), . . . , fh(v, t), where f0(v, t) is the tree rooted at v consisting
of all vertices for which there exists a path from the root passing through v, and for
i ≥ 1, fi (v, t) is the subtree rooted at vi consisting of all vertices for which the path
from the root passes through vi but not through vi−1. Call the map F : T → T

∞
defined by,

F(v, t) = ( f0(v, t), f1(v, t), . . . , fh(v, t),∅,∅, . . .) ,

as the fringe decomposition of t about the vertex v. Call f0(v, t) the fringe of the tree
t at v. For k ≥ 0, call Fk(v, t) = ( f0(v, t), . . . , fk(v, t)) the extended fringe of the
tree t at v truncated at distance k from v on the path to the root.

Now consider the space T
∞. An element ω = (t0, t1, . . .) ∈ T

∞ with |ti | ≥ 1
for all i ≥ 0, can be thought of as a locally finite infinite rooted tree with a single
path to infinity (thus called a sin-tree [2]) as follows: Identify the sequence of roots
of {ti : i ≥ 0} with the integer lattice Z+ = {0, 1, 2, . . .}, equipped with the natural
nearest neighbor edge set, rooted at ρ = 0. Analogous to the definition of extended
fringes for finite trees, for any k ≥ 0 write Fk(0,ω) = (t0, t1, . . . , tk). Call this the
extended fringe of the treeω at vertex 0, till distance k, on the infinite path from 0. Call
t0 = F0(0,ω) the fringe of the sin-tree ω. Now suppose P is a probability measure
on T

∞ such that if T := (t0(T ), t1(T ), . . .) ∼ P, then |ti (T )| ≥ 1 a.s. ∀ i ≥ 0. Then
T can be thought of as an infinite random sin-tree.

2.5 Convergence on the space of trees

Let T∞ be a random sin-tree with distribution P on T
∞. Suppose {Tn}n≥1 be a

sequence of finite rooted random trees all constructed on the same probability space

(for notational convenience assume |Tn| = n, all one needs is |Tn| P−→ ∞). Fix k ≥ 0
and (non-empty) trees s0, s1, . . . , sk ∈ T. Let ŝ = (s0, . . . , sk) ∈ T

k+1 and define the
empirical proportions,

Hk
n (ŝ) = 1

n

∑

v∈Tn

1 {Fk(v, Tn) = (s0, s1, . . . , sk)} .

As before “ f j (v, Tn) = s j” implies identical up to a root preserving isomorphism.
Consider two (potentially distinct) notions of convergence of {Tn : n ≥ 1}:
(a) Fix a probabilitymeasureπ onT. Say that a sequence of trees {Tn}n≥1 converges in

probability, in the fringe sense, toπ , if for every rooted tree t ∈ T, H0
n (t)

P−→ π(t).
(b) Say that a sequence of trees {Tn}n≥1 converges in probability, in the extended

fringe sense, to T∞ if for all k ≥ 0 and ŝ ∈ T
k+1, one has

Hk
n (ŝ)

P−→ P
(
Fk(0, T∞) = ŝ

)
.
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We shall denote this convergence by Tn
P-fr−→ T∞ as n → ∞.

Letting πT∞(·) = P(F0(0, T∞) = ·) denote the distribution of the fringe of T∞ on
T, convergence in (b) above implies convergence in notion (a). Further, both notions
imply convergence of functionals such as the degree distribution. For example notion
(a) implies, for any k ≥ 0,

# {v ∈ Tn, deg(v) = k + 1}
n

P−→ P(deg(0, T∞) = k). (2.1)

Here deg(0, T∞) denotes the number of edges connected to 0 in its fringe t0(T∞).
However, this convergence gives much more information about the asymptotic prop-
erties of Tn , including convergence of global functionals [11].

In terms of going from convergence in (a) to (b), Aldous in [2] showed that, amongst
the distributions π that arise as potential limits of the fringe convergence in (a), there
is a special sub-class of measures called fringe distributions, which automatically
imply the existence of and convergence to a limit infinite sin-tree. For each s ∈ T,
suppose the root has children v1, v2, . . . , vd for some d ≥ 0. Let { f (s, vi ) : 1 ≤ i ≤ d}
denote the subtrees at these vertices, with f (s, vi ) rooted at vi . For each t ∈ T, let
Q(s, t) =∑

i 1 { f (s, vi ) = t}.
Definition 2.3 Call a probability distribution π on T a fringe distribution if,

∑

s∈T

π(s)Q(s, t) = π(t), ∀ t ∈ T.

It is easy to check that the space of fringe measures is a convex subspace of the space
of probability measures on T. The next result summarizes some of the remarkable
findings in [2], relevant to this paper.

Theorem 2.4 ([2]) Fix a probability measure π on T. Suppose {Tn}n≥1 converges in
probability in the fringe sense to π .

(a) π is a fringe distribution in the sense of Definition 2.3 iff
∑

t π(t)root-degree(t) =
1.

(b) If π is a fringe distribution then, convergence in probability in the fringe sense
(notion (a)), implies the existence of a random sin-tree T∞ such that {Tn}n≥1
converges in probability in the extended fringe sense to T∞ (notion (b)).

(c) If π is a fringe distribution then ht(Tn) → ∞ in probability.

3 Results

We start by describing local weak convergence of the network model in Sect. 3.1.
This gives convergence of the degree distribution to an explicit limit. Further the tail
exponent of the limit degree distribution is shown to be related to a large deviation
rate constant of the quasi-stationary distribution of a random walk associated to the
exploration step distribution. Section 3.2 describes asymptotics of the root and other
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fixed vertex degrees, in particular deriving necessary and sufficient conditions on p for
condensation, namely the root obtaining a fixed density of the total number of edges.
Section 3.3 derives asymptotics for the height, appropriately normalized, in terms of
extremal statistics of related branching random walks, showing the emergence of a
phase transition. We conclude in Sect. 3.4 with asymptotics and phase transitions for
the asymptotic PageRank of fixed vertices as well as the limiting PageRank distribu-
tion.

3.1 Local weak convergence

Recall the process {T ∗(t,p) : t ≥ 0} in Definition 2.1.

Definition 3.1 (Fringe limit) Let τ ∼ Exp(1) independent of the process T ∗. Let
πp(·) denote the distribution of T ∗(τ,p), viewed as a random a.s. finite rooted tree in
T.

Assumption 3.2 Let Z ∼ p. Assume E[Z ] < ∞.

Theorem 3.3 (Fringe convergence)

(a) Under Assumption 3.2, the sequence of random trees {Tn(p) : n ≥ 1} converges
in probability, in the fringe sense, to πp(·). Writing D for the root degree of the
random tree sampled using πp, for every k ≥ 0,

1

n + 1

∑

v∈Tn(p)

1 {deg(v) = k + 1} P−→ P(D = k), as n → ∞.

(b) πp(·) is a fringe distribution, as in Definition 2.3, if and only if E[Z ] ≤ 1 where
Z ∼ p.

(c) The root degree D and the size of the limit fringe tree |T ∗(τ, p)| satisfy:

(i) If E[Z ] ≤ 1 then E[D] = 1 and E[|T ∗(τ, p)|] = ∞,
(ii) If E[Z ] > 1 then E[D] < 1 and E[|T ∗(τ, p)|] < ∞.

Remark 1 Owing to the above Theorem, we will refer to the setting E[Z ] ≤ 1 as the
fringe regime whilst E[Z ] > 1 will be referred to as the non-fringe regime.

The next result follows from Theorem 3.3 and results in [2] summarized in Theorem
2.4.

Corollary 3.4 (Convergence to limiting sin-tree) Assume for Z ∼ p, E[Z ] ≤ 1.

(a) There exists a limiting infinitesin-tree T∞(p) such that {Tn(p) : n ≥ 1} converges
in probability in the extended fringe sense to T∞(p).

(b) ht(Tn)
P−→ ∞.

Remark 2 (i) By [11], when E(Z) ≤ 1, local weak convergence above implies that
even global functionals such as the spectral distribution of the adjacency matrix
converge (in this case the limit spectral distribution can be shown to be non-random
with an infinite set of atoms). In Aldous’ terminology [2], it would be interesting
to derive a reduced Markov description of this limit object.
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(ii) In the non-fringe case when E(Z) > 1, whilst Theorem 3.3 shows convergence
in probability in the fringe sense, as described below in Theorem 3.9(a), in this
regime the degree of the root scales like ∼ (1 − q∗)n, and thus if one selects a
vertex at random, with probability ∼ (1− q∗) the parent of this vertex is the root
whose degree→ ∞. In particular, there is no convergence in the extended fringe
sense to a sin-tree, which by definition has to be locally finite.

In order to derive quantitative bounds on explicit functionals such as the degree
distribution and PageRank, we will need to make a fewmore assumptions on p. Recall
that in Sect. 1.2, the case p0 + p1 = 1 corresponds to either the random recursive
tree or affine preferential attachment, which have already been thoroughly analyzed
in the literature. While the techniques described below recover many results for these
models, we are mainly interested in settings not covered under these two models. Let
{Zi }i≥1 be a collection of i.i.d. random variables following the law p. Consider the
random walk,

Sn = S0 +
n∑

i=1

(Zi − 1), S0 ∈ Z, n ≥ 1. (3.1)

Define the probability generating function (pgf):

f (s) :=
∞∑

k=0

pksk, s ≥ 0. (3.2)

Assumption 3.5 Assume that p satisfies the following: (a) p0 ∈ (0, 1), p0 + p1 < 1.
(b)Assume that the random walk {Sn : n ≥ 0} in (3.1) is aperiodic, i.e., gcd{ j : p j >

0} = 1.

Remark 3 Most of our results can be extended to the case p0 + p1 = 1 by straightfor-
ward modifications of our proof techniques. See Remark 10.

Definition 3.6 (a) Let s0 be the unique positive root of s f ′(s) = f (s) if it exists,
otherwise let s0 be the radius of convergence of the power series f (·). Define
R := lims↑s0 s/ f (s).

(b) Let q∗ be the unique positive solution to the fixed point equation f (q) = q.

Let us briefly describe probabilistic interpretations of these objects before stating
our main results. Recall that q∗ denotes the extinction probability of a Galton-Watson
branching process with offspring distribution p. Next define

Ti := inf{n ≥ 0 : Sn = 0|S0 = i} (3.3)

to be the hitting time of zero of the random walk starting from state i > 0. Then
q∗ has the alternate interpretation q∗ = P(T1 < ∞). Moreover, by [22, 55], under
Assumptions 3.2 and 3.5, R arises as the following limit and lies in the asserted interval:

lim
n→∞

(
P(n < T1 < ∞)

)1/n = 1

R
∈ (0, 1]. (3.4)
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Standard results, connecting random walks to branching processes, imply q∗ =
P(T1 < ∞) < 1 if and only if E[Z ] > 1. The next lemma collects some classi-
cal facts about R, s0, q∗ arising in the analysis of quasi-stationary distributions for
random walks. We provide brief pointers to the literature for completeness. In the
following lemma, let r f denote the radius of convergence of the pgf f .

Lemma 3.7 Suppose Assumptions 3.2 and 3.5 hold.

(a) g(s) := f (s)/s is strictly decreasing on (0, s0) and, if s0 < r f , g is strictly
increasing on (s0, r f ). In particular, infs∈(0,1) f (s)/s ≥ 1/R.

(b) For E[Z ] < 1, if f (s) is analytic at s = 1, then R ∈ (1, 1/E[Z ]), s0 ∈ (1,∞),
otherwise R = s0 = 1.

(c) For E[Z ] = 1, R = s0 = 1.
(d) For E[Z ] > 1, R > 1 and q∗ < s0 < 1.

Proof Part (a) follows from the observation that g′(s) = (s f ′(s) − f (s))/s2, whose
numerator is strictly increasing on (0, r f ) as p0 + p1 < 1, and negative at s = 0 as
p0 > 0. For part (b), when f (s) is analytic at s = 1, note that s f ′(s) − f (s) < 0 at
s = 1 as E(Z) < 1, which implies s0 > 1. Moreover, if s0 = ∞, r f = ∞ and g(s)
is strictly decreasing on (0,∞), which is a contradiction as lims→∞ g(s) = ∞ (as
p0 + p1 < 1). Thus, s0 ∈ (1,∞). Further, this also implies f (s0) < ∞ and hence,
using part (a) and the definition of s0, 1 < R = s0/ f (s0) ≤ 1/ f ′(s0) < 1/E[Z ]. For
the remaining assertions, see [55, Lemma 1] and the Remark following it. ��

Note that Lemma 3.7 implies that, under Assumptions 3.2 and 3.5, s0, f (s0) are
both finite and R = s0/ f (s0). Now let the random variable D be as in Theorem
3.3, following the law of the limiting degree distribution of the discrete tree network
{Tn(p)}n≥1.

Theorem 3.8 (Tail of limit Degree distribution) Under Assumptions 3.2 and 3.5:

(i) Fringe regime: When E[Z ] ≤ 1, with R as in Definition 3.6,

lim
k→∞

logP(D ≥ k)

log k
= −R. (3.5)

(ii) Non-fringe regime: When E[Z ] > 1,

− R ≤ lim inf
k→∞

logP(D ≥ k)

log k
≤ lim sup

k→∞
logP(D ≥ k)

log k
≤ −

(
R ∧ log q∗

log s0

)
.

(3.6)

Although the upper and lower bounds in part (ii) above are different, they can be
checked to be equal in several cases even in the non-fringe regime. See Remark 9 for
a discussion.
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3.2 Condensation and fixed vertex degree asymptotics

The next result describes asymptotics for the root degree. In particular, part (a) shows
that in the non-fringe regime, there is a condensation phenomenon at the root and the
root neighbors asymptotically comprise a positive limiting density of all the vertices
in the tree.

Theorem 3.9 (Root degree asymptotics) Let deg(v0, n) denote the degree of the root
in Tn(p). Under Assumptions 3.2 and 3.5:

(a) Non-Fringe regime: Assume E[Z ] > 1. Then

deg(v0, n)

n
P−→ 1− q∗ > 0,

where q∗ is defined in Definition 3.6(b).
(b) Fringe regime: Assume E[Z ] ≤ 1. Then for any δ > 0, as n → ∞,

deg(v0, n)

n
1
R −δ

a.s.−→ ∞, and
deg(v0, n)

n
1
R (log n)1+δ

a.s.−→ 0. (3.7)

The next result describes the degree evolution of a fixed non-root vertex. In par-
ticular in the non-fringe regime there is a marked difference between the evolution of
the degree of the root v0 and any non-root vertex.

Theorem 3.10 (Fixed vertex degree asymptotics) Fix k ≥ 1 and let deg(vk, n) denote
the degree of vertex vk in Tn(p). Then under Assumptions 3.2 and 3.5, for any δ > 0,

deg(vk, n)

n
1
R −δ

a.s.−→ ∞, and
deg(vk, n)

n
1
R (log n)1+δ

a.s.−→ 0. (3.8)

Remark 4 Whenp is Geometric(p) for p ∈ (0, 1) so thatE[Z ] = (1− p)/p, themodel
was was first rigorously analyzed in [20] using combinatorial recursions. The authors
observed a phase transition for the expected root degree at p = 1/2 (precisely as one
transitions fromE[Z ] < 1 toE[Z ] ≥ 1). In brief, [20] showed that the expected degree
of the root in this special case satisfies E(deg(v0, Tn)) = �(n(log n)k) if p ≤ 1/2
whilst E(deg(v0, Tn)) = O(n4pq(log n)k′

) if p > 1/2, for some k, k′ ∈ Z. One can
check that in this case, R = 1/(4pq), thus this paper also clarifies the reason for the
mysterious constant 4pq, in terms of a large deviations exponent of the hitting time
of zero by the associated random walk.

3.3 Height asymptotics

Recall that f (·) denotes the pgf of p. Define
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κ(s) := f (s)

s log(1/s)
, s ∈ (0, 1).

It is shown in Lemma 8.2 that the infimum of s �→ κ(s) is attained at a unique point
in (0, s0].
Definition 3.11 Define,

κ0 := inf
s∈(0,1)

f (s)

s log(1/s)
(3.9)

Let s∗ ∈ (0, 1) be the point where the infimum of f (s)
s log(1/s) is attained, i.e., κ0 =

f (s∗)
s∗ log(1/s∗) .

The following theorem gives height asymptotics for our model. Interestingly, we
observe a phase transition in the limiting behavior of rescaled heights in the non-fringe
regime.

Theorem 3.12 (Height asymptotics) Let Hn denote the height of Tn(p). Then, under
Assumptions 3.2 and 3.5:

(i) Fringe regime: When E[Z ] ≤ 1, as n → ∞,

Hn

log n
a.s.−→ κ0.

(ii) Non-Fringe regime: When E[Z ] > 1, as n → ∞,

Hn

log n
a.s.−→

{
κ0 if s∗ ∈ (0, q∗],

1
log(1/q∗) if s∗ ∈ (q∗, s0],

where q∗ is defined as in Definition 3.6(b).

Three remarks are in order.

Remark 5 (Non-triviality in the non-fringe regime) Theorem 3.9(a) implies that in the
non-fringe regime, there are �(n) vertices within distance one of the root whp so it
is not obvious that in this case the height should diverge. Thus the result above on the
height shows, that even in this case, the height scales like log n with an appropriate
limit constant.

Remark 6 (Probabilistic interpretation of limit and phase transition) The limiting
rescaled height and associated phase transition can be probabilistically understood
via branching random walks [13, 14].

Definition 3.13 Fix pmf p. Consider a branching random walk with individuals being
born into the population in continuous time, and with spatial locations on Z, starting
with one individual at location zero with dynamics:

(a) Each vertex gives rise to offspring according to a rate one Poisson process.
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(b) Writing ρv for the location of particle v, if v is born to u then ρv = ρu + ζuv ,

where ζuv
d= (1− Z), independent across parent offspring connections and times

of birth, where Z ∼ p.

Write {BRW(t) : t ≥ 0}, for the corresponding process keeping track of genealogical
structure and locations.

Let B(t) denote the location of the rightmost particle at time t . Then, it turns
out, using [13] (see Sect. 4.3), in our setting, limt→∞ B(t)/t

a.s.−→ κ0. Hence, the
rescaled height asymptotics agrees with that of B(·) when E[Z ] ≤ 1, or E[Z ] > 1
and s∗ ∈ (0, q∗].

However, when E[Z ] > 1 and s∗ ∈ (q∗, s0], there is a competition between the
reproduction rate of the root and the upper tail large deviations behavior of B(·),
which is obtained in Lemma 4.9. An inspection of the proof reveals that, for large
t , the height of T (t,p) has the same asymptotics as the maximum of the heights
of the subtrees rooted at the children of the root that are born in the time interval
[ 1−ε
(1− f ′(q∗)) log(1/q∗) ,

1+ε
(1− f ′(q∗)) log(1/q∗ )

] for small ε > 0. This phenomenon manifests

itself through the phase transition observed in Theorem 3.12.

Remark 7 (Explicit height computation for PageRank driven networks) When p is
Geometric(p), the pgf is given by f (s) = p

1−qs , s ∈ [0, 1/q). Asymptotics for the
height in thismodel were previously addressed in [46] using quite different techniques.
For an explicit constant p̃ ≈ .206, they show that for p ∈ [ p̃, 1),Hn/ log n converges
to a limit constant whilst for p ∈ (0, p̃), there exist constants cL(p) < cU (p) such that
whp for any ε > 0,Hn ∈ [(cL(p)−ε) log n, (cU (p)+ε) log n] as n → ∞. Our result
shows that, contrary to what is conjectured in [46], there is indeed a phase transition
in the height asymptotics at p = p̃. More precisely, the minimizer s∗ ∈ (0, 1) in (3.9)
can be seen to be the unique solution to the equation

(1− p)s = 1+ log s

1+ 2 log s
, s ∈ (0, 1).

Define u∗ via the relation s∗ = e−1/u∗
. Then,

κ0 = pe1/u∗
u∗(2− u∗),

which matches the expression for cL(p) in [46, Theorem 2]. Moreover, for p ∈
(0, 1/2), q∗ = p/(1− p) and hence

1

log(1/q∗)
=
(
log

(
1− p

p

))−1

,

which matches cU (p) in [46, Theorem 2] for p ∈ (0, p̃). Finally, the value of p where
the height phase transition happens in Theorem 3.12 is seen to be the unique such
value which gives s∗ = q∗, or equivalently κ ′(q∗) = 0. This characterizes the value
as the unique solution to
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log

(
1− p

p

)
= 1− p

1− 2p
, p ∈ (0, 1/2),

which agrees with p̃ obtained in [46, Theorem 2].
Our proofs thus elucidate the connections between limit constants in [46] obtained

through subtle combinatorial analysis and extremal statistics in branching random
walks [13].

3.4 PageRank asymptotics

Recall the PageRank scores
{
Rv,c(n) : v ∈ Tn(p)

}
in Definition 1.1. For any v ∈

Tn(p), let Pl(v, n) denote the number of directed paths of length l that end at v in
Tn(p). Since Tn(p) is a directed tree, it is easy to check that the PageRank scores have
the explicit formulae for any vertex v,

Rv,c(n) = (1− c)

n

(
1+

∞∑

l=1

cl Pl(v, n)

)
. (3.10)

For the sequel, it will be easier to formulate results in terms of the graph normalized
PageRank scores [27]

{
Rv,c(n) : v ∈ Tn(p)

} = {
nRv,c(n) : v ∈ Tn(p)

}
. The first

result shows a non-trivial phase transition of the PageRank scores for fixed vertices
in the fringe regime. This phase transition carries over to the empirical distribution of
PageRank scores which will conclude this section.

Theorem 3.14 (PageRank asymptotics for fixed vertices) Fix vertex vk and damping
factor c ∈ (0, 1). Then under Assumptions 3.2 and 3.5,

(a) Non-fringe regime: when E[Z ] > 1,

(i) When k = 0 (root PageRank), Rv0,c(n)/n is bounded away from zero in prob-
ability: for any δ > 0, there exists ε > 0 such that

lim inf
n→∞ P

(
Rv0,c(n)

n
≥ c(1− c)(1− q∗) − ε

)
≥ 1− δ.

(ii) For any k ≥ 1, as n → ∞,

Rvk ,c(n)

n
1
R −δ

a.s.−→ ∞, and
Rvk ,c(n)

n
1
R (log n)1+δ

a.s.−→ 0. (3.11)

(b) Fringe regime: When E[Z ] ≤ 1,

(i) Fix any c ∈ (0, s−1
0 ] with c < 1. Then for any δ > 0, and any vertex vk , k ≥ 0,

as n → ∞,

Rvk ,c(n)

n
1
R −δ

a.s.−→ ∞, and
Rvk ,c(n)

n
1
R (log n)1+δ

a.s.−→ 0. (3.12)
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(ii) Suppose s0 > 1. Fix any c ∈ (s−1
0 , 1) and vk , k ≥ 0. Then there exists a

non-negative random variable Wk,c with P(Wk,c > 0) > 0 such that,

Rvk ,c(n)

ncf (1/c)

a.s.−→ Wk,c, as n → ∞.

Next define the empirical distribution of normalized PageRank scores,

μ̂n,PR := n−1
∑

v∈Tn(p)

δ
{

Rv,c(n)
}
.

General results on the implication of local weak convergence of sparse graphs on the
convergence of the empirical distribution of PageRank scores was derived in [7, 27].
In particular, the local weak convergence in Theorem 3.3 coupled with [7, 27] leads
to the following result. Recall the finite rooted random tree T ∗(τ,p) from Definition
3.1 and let Pl(∅) denote the number of directed paths of length l that end at the root
denoted as ∅. Define the normalized PageRank score at ∅ as,

R∅,c(∞) = (1− c)

(
1+

∞∑

l=1

cl Pl(∅)

)
. (3.13)

Corollary 3.15 (PageRank asymptotics) Under Assumption 3.2, the random variable
R∅,c(∞) is finite a.s. Further for every continuity point r of the distribution of
R∅,c(∞),

n−1
∑

v∈Tn(p)

1
{

Rv,c(n) > r
} P−→ P(R∅,c(∞) > r).

The next result which, in particular, displays a qualitative phase transition of the tail
exponent of the limiting empirical distribution of the PageRank scores in the fringe
regime (Theorem 3.16(b)), has not been observed before in the literature and continues
the vein of results displayed in Theorem 3.14(b).

Theorem 3.16 (Tail behavior of PageRank distribution) Under Assumptions 3.2 and
3.5,

(a) Non-fringe regime: When E[Z ] > 1, for c ∈ (0, 1),

−R ≤ lim inf
r→∞

log(P(R∅,c(∞) ≥ r))

log r
≤ lim sup

r→∞
log(P(R∅,c(∞) ≥ r))

log r

≤ −
(

R ∧ log q∗
log s0

)
.

where as before, q∗ < 1 is the solution to f (q) = q.
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(b) Fringe regime: When E[Z ] ≤ 1,

lim
r→∞

log(P(R∅,c(∞) ≥ r))

log r
=
{
−R for c ∈ (0, s−1

0 ] with c < 1,

− 1
c f (1/c) for c ∈ (s−1

0 , 1), provided s0 > 1.

Remark 8 (PageRank and the power-law hypothesis) Since its introduction by Brin
and Page [54], PageRank has been largely and successfully used to identify influential
nodes in a variety of network models [4, 30, 32]. Although PageRank ‘looks beyond’
degrees and capturesmore intricate local geometry around vertices, it can be computed
efficiently in a distributed fashion. The well known power-law hypothesis conjectures
that for real world networks with power-law (in)degree distribution, the PageRank
also has a power-law distribution with the same exponent as the degree. This has
been shown to hold in several static network models like the directed configuration
model [21, 53] and the inhomogeneous random digraph [43, 53]. Recently, [7] showed
that the power-law hypothesis is false for the affine preferential attachment model:
the PageRank distribution has a strictly heavier tail than the degrees. This suggests
that for dynamic networks (evolving over time), the PageRank captures strictly more
information than the empirical degree structure even at the level of large deviations.

In Theorem 3.16, we show for the first time a phase transition for the limiting
PageRank distribution in a random network model: in the fringe regime, the power
law hypothesis holds for damping factor c ∈ (0, s−1

0 ], but the PageRank tail becomes
heavier for larger c. Intuitively, when c crosses a threshold, the PageRank score incor-
porates information from a large enough local neighborhood of each vertex so as to
distinguish the extremal behavior of the limiting PageRank and degree distributions.
Identifying the class of network models for which such phase transitions occur should
further quantify the efficacy and limits of the power-law hypothesis.

Remark 9 Althoughwe explicitly characterize the tail exponent for the limiting degree
and PageRank distribution in the fringe regime (see Theorem 3.8(i) and Theorem
3.16(b)), only upper and lower bounds are established on this exponent in the non-
fringe regime (see Theorem 3.8(ii) and Theorem 3.16(a)). However, computation of
the quantities R, q∗, s0 in the specific models below suggests that the upper and lower
bounds actually match even in the non-fringe regime unless E[Z ] is much greater
than 1.

(i) PageRank driven preferential attachment: This model was described in example
(c) of Sect. 1.2 (see also Remark 7). In this case, pk = p(1 − p)k, k ≥ 0, and
E[Z ] = 1

p − 1. Thus, the non-fringe regime corresponds to p ∈ [0, 1/2). Writing
q = 1− p, the pgf is f (s) = p/(1−qs), s ∈ [0, 1/q),which gives R = 1/(4pq),
q∗ = (p/q) ∧ 1 and s0 = 1/(2q). Hence, the upper bound in the tail exponent in
the non-fringe regime is given by

−
(

R ∧ log q∗
log s0

)
= −

(
1

4pq
∧ log(q/p)

log(2q)

)
=
⎧
⎨

⎩
− 1

4pq for p ∈ [p′
0, 1/2),

− log(q/p)
log(2q)

for p ∈ (0, p′
0).

,
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where p′
0 ≈ 0.0616 is obtained usingMathematica. In particular, the tail exponent

for the limiting degree distribution is exactly −1/(4pq) for all p ∈ [p′
0, 1). For

the limiting PageRank, as described in Theorem 3.16(b), we see a phase transition
in the fringe regime as the damping factor c crosses s−1

0 . In the non-fringe regime,
for p ∈ [p′

0, 1/2), the tail exponent equals−1/(4pq) for all values of the damping
factor c ∈ (0, 1).

(ii) Simple random walk driven attachment: Here, we take p0 = p = 1 − p2. Thus,
at each attachment, the distance of the new vertex from the root behaves like a
(biased) simple random walk with increment ±1. E[Z ] = 2(1− p), and thus the
non-fringe regime corresponds to p ∈ [0, 1/2). In this case, writing q = 1 − p,
the pgf is f (s) = p + qs2, s ≥ 0, which gives R = 1/(2

√
pq), q∗ = p/q ∧ 1

and s0 = √
p/q . The upper bound in the tail exponent in the non-fringe regime

is given in this case by −
(

R ∧ log q∗
log s0

)
= −

(
1

2
√

pq ∧ 2
)

. In particular, the tail

exponent is exactly characterized for p ∈ ( 12 −
√
3
4 , 1).

The disparity between the upper and lower bounds in the non-fringe regimemay appear
to be an artifact of our proof techniques (see Theorem 6.2(iii) where this discrepancy
appears fromestimatingmoments of a functional of the process).However, preliminary
calculations using the many-to-few formula for branching random walks [31] (which
gives more refined estimates) suggest that this discrepancy might be qualitative in
nature due to certain rare events that affect the tail exponent when E[Z ] � 1. We will
investigate this in future work.

Remark 10 (Affine preferential attachment) As discussed before, affine preferential
attachment with attachment function fatt (k) = k + (1 − 2p)/p, p ∈ (0, 1), is a
special case of our model, corresponding to p0 = 1 − p, p1 = p. One can easily
verify that in this case s0 = ∞ and R = 1/p. Although we assume p0 + p1 < 1,
most of our proof techniques can be extended in a straightforward manner to the case
p0 + p1 = 1. Extrapolation of our results to the affine case recovers several known
resultswhichwe nowdescribe. In this case, sinceE[Z ] < 1,we are always in the fringe
regime. Theorem 3.8(i) implies that the limiting degree distribution has a power-law
with exponent R = 1/p. This is well known (see e.g. [19, 59]). The limiting PageRank
distribution, with damping factor c ∈ (0, 1), turns out to have a heavier tail than the
degrees, with exponent 1/((1− p)c + p), which was recently shown in [7].

4 Proofs: Technical foundations

4.1 Roadmap of the proofs

The goal of this section is to build the technical underpinnings for the proofs of the
main results, as well as elucidate the connections between the functionals of the model
and corresponding core areas in probability.

(i) Section 4.2 dealswith properties of the continuous time embeddings inDefinition
2.1; these are then used in Sect. 5 to prove Theorem 3.3.
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(ii) Section 4.3 describes stochastic orderings between the height and extremal dis-
placements of associated (upper and lower bounding) branching random walks.
Further, large deviations estimates are derived for branching random walks.
These results are then used in Sect. 8 to prove Theorem 3.12.

(iii) While Sect. 4.2 and 4.3 deal with direct embeddings of the process, the next
few subsections describe “non-obvious” embeddings. Section 4.4 derives con-
nections between the distance profile (in continuous time) and functionals of the
quasi-stationary distribution of the random walk in (3.1) through two infinite
dimensional matrices in (4.6), spectral properties of which result in the key role
of the constants R, s0, q∗ in the main results.

(iv) Analysis of truncations of the height profile leads to finite dimensional urn mod-
els and their corresponding Athreya-Karlin embeddings in finite dimensional
multitype branching processes in Sect. 4.5; asymptotics of these processes, in
particular as the level of truncation K → ∞ needs a careful analysis of the
Perron–Frobenius eigenvalue, since the corresponding limit infinite dimensional
operator is non-compact; this analysis culminates in Proposition 4.16. These
results form the core ingredients in obtaining lower bounds connected to evalu-
ating power-law exponents of the degree (Theorem 3.8) in Sect. 6 and PageRank
distribution (Theorem 3.16) in Sect. 9 respectively. They are also used for lower
bounds in the analysis of degree and PageRank of fixed (non-root) vertices (The-
orem 3.10 in Sect. 7 and Theorem 3.14 in Sect. 9).

(v) Asymptotics of the degree and PageRank of the root necessitate the construction
and analysis of an infinite dimensional multitype branching process (MTBP) in
Sect. 4.6. These results play a central role in the proof of Theorem 3.9 in Sect. 7
and Theorem 3.14 in Sect. 9. Technical properties related to α-recurrence and
transience of kernels arising in the analysis of theMTBP are proven in Appendix
A.

4.2 Size estimates on the continuous time embedding

Recall, from Definition 2.1, the construction of the tree process in continuous time.
Let n(t) = |T (t,p)|.
Definition 4.1 (Rate ν Yule process) Fix ν > 0. A rate ν Yule process is a pure
birth process {Yν(t) : t ≥ 0} with Yν(0) = k ∈ N and where the rate of birth of
new individuals is equal to ν times the size of the current population. More precisely,
P(Yν(t + dt) − Yν(t) = 1|F(t)) := νYν(t)dt + o(dt) and P(Yν(t + dt) − Yν(t) ≥
2|F(t)) := o(dt), where {F(t) : t ≥ 0} is the natural filtration of the process. Write
{Yule(t) : t ≥ 0} for the corresponding forest valued (tree valued if k = 1) rate one
process that keeps track of the genealogy of the process.

The following is a standard property of the Yule process.

Lemma 4.2 ([51, Section 2.5]) Fix t > 0 and rate ν > 0 and assume Yν(0) =
1. Then Yν(t) has a Geometric distribution with parameter p = e−νt . Precisely,
P(Yν(t) = k) = e−νt (1 − e−νt )k−1, k ≥ 1. The process {Yν(t) exp(−νt) : t ≥ 0}
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is an L
2 bounded martingale and thus ∃ W > 0 such that Yν(t) exp(−νt)

a.s.−→ W .
Further W ∼ Exp(1).

This property leads directly to the next two results.

Lemma 4.3 Let n(t) = |T (t, p)|. Then {n(t) : t ≥ 0} has the same distribution as a
rate one Yule process started with one individual at time zero. By Lemma 4.2,

(a)
{
e−t n(t) : t ≥ 0

}
is an L

2 bounded martingale, e−t n(t)
a.s.,L2−→ W with W ∼

Exp(1).
(b) Defining Tn = inf {t ≥ 0 : n(t) = n + 1}, then Tn − log n

a.s.−→ − log W as n →
∞.

Lemma 4.4 Let 0 ≤ s < t . We have

E[(e−t n(t))2|Fs] ≤ (e−sn(s))2 + e−2sn(s),

E

[
(e−t n(t))3|Fs

]
≤ 8(e−sn(s))3.

Proof Applying the generator L of the Yule process on (e−t n(t))2 we get,

L(e−t n(t))2 = e−2t n(t)
(
(n(t) + 1)2 − n(t)2

)
− 2e−2t n2(t) = e−2t n(t).

It follows that
{

M̄2(t) : t ≥ 0
}
defined next is a martingale:

M̄2(t) := (e−t n(t))2 −
∫ t

0
e−2un(u)du

Thus

E[(e−t n(t))2|Fs] = (e−sn(s))2 +
∫ t

s
e−2u

E[n(u)|Fs]du

≤ (e−sn(s))2 + e−2sn(s).

The second assertion of the Lemma follows the same reasoning, starting with the
application of the generator on (e−t n(t))3. We omit the details. ��
Lemma 4.5 Consider a rate one Yule process {Yule(t) : t ≥ 0} started with a single
individual at t = 0. Let ht(t) denote the corresponding height (maximal distance from
the root) of the corresponding genealogical tree at time t. For any β ≥ 1, we have
E(βht(t)) ≤ 2e2βt < ∞.

Proof Let Zn(t) denote the number of n-th generation individuals born before time t
and Bn denote the time of the first birth in the n-th generation. Then for θ > 0,

E(βht(t)) ≤
∞∑

n=0

βn
P(ht(t) ≥ n) =

∞∑

n=0

βn
P(Bn ≤ t) ≤

∞∑

n=0

βneθ t
E[e−θ Bn ]. (4.1)
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Theorem 1 in [39] implies that E[e−θ Bn ] ≤ ψ(θ)n where

ψ(θ) =
∫ ∞

0
θe−θ t

E[Z1(t)]dt = 1

θ
.

Thus E[e−θ Bn ] ≤ θ−n . Using this in (4.1) with θ = 2β completes the proof. ��

4.3 Branching randomwalks

Recall, the definition of BRW, in Definition 3.13. Consider the following variations in
step (b) of the dynamics:

(b)′ If the prospective location of a new particle is at zero or below, it is “reflected” to
location one. Then in terms of locations describing graph distance to the root, this
is precisely the evolution of distances in T . Thus the height HT (t) is precisely
the location of the rightmost particle.

(b)′′ If the prospective location of a new particle is zero or below it is killed (removed
from the system). This gives the distance process in T ∗. As before the height
HT ∗(t) is precisely the location of the rightmost particle in this process.

From the description of the dynamics, the following is obvious.

Lemma 4.6 Let B(t) be the rightmost particle in BRW(t). One can couple T , T ∗, BRW
on a common probability space such that for all t ≥ 0, HT ∗(t) ≤ B(t) ≤ HT (t).

For BRW, the offspring process for each individual is a rate one Poisson process and
the corresponding branching process (without location information) is a Yule process.
In particular, the offspring process is non-lattice and underlying branching process is
supercritical. Following [13], writeμ(dz, dτ) =∑∞

k=0 pkδ1−k(dz)⊗dτ for themean
intensity measure of the walk. Define for θ ∈ R, φ ≥ 0 the following functionals:

m(θ, φ) =
∫

e−θ z−φτμ(dz, dτ) =
∫ ∞

0

∞∑

k=0

e−θ(1−k)e−φτ pkdτ = f (eθ )

eθφ
.

α(θ) = inf{φ : m(θ, φ) ≤ 1} = f (eθ )

eθ
.

α∗(x) = inf
θ<0

{xθ + α(θ)} = inf
s∈(0,1)

{
x log s + f (s)

s

}
. (4.2)

We will be using the results in [13] that concern a very general branching random
walk model, where particles are allowed to move after birth. In comparison, a particle
in our branching random walk BRW performs no further movement beyond the initial
displacement from its parent at birth. It would be straightforward for the curious
reader to verify that BRW satisfies the mild assumptions in [13], so we will refrain
from repeating those detailed assumptions here.

We will rephrase Theorem 4 in [13] into the following proposition, which will be
used to prove large deviations results for BRW later.
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Proposition 4.7 Let Nt [xt,∞) denote the number of particles in BRW(t) that lie in
[xt,∞). For all x �= sup{y : α∗(y) > −∞},

log(E[Nt [xt,∞)])
t

→ α∗(x) as t → ∞.

Recall from Definition 3.11 that

κ0 = inf
s∈(0,1)

f (s)

s log(1/s)
.

The following result follows from [13, Corollary 2].

Proposition 4.8 For BRW(t) the rightmost particle satisfies,

B(t)

t
→ inf{x : α∗(x) < 0} = κ0 almost surely. (4.3)

Proof The convergence B(t)/t → inf{x : α∗(x) < 0} is proven in [13, Corollary 2].
To see that κ0 = inf{x : α∗(x) < 0}, note that for s ∈ (0, 1), x log s + f (s)

s < 0 is

equivalent to x >
f (s)

s log(1/s) . Thus, x > infs∈(0,1)
f (s)

s log(1/s) if and only if α∗(x) < 0. ��
Next we state a large deviations result for P(B(t) ≥ xt) for large t when x > κ0,

which is the key to our proof of Theorem 3.12, and is interesting in its own right.

Lemma 4.9 With κ0 as in (3.9) and B(t) as the rightmost particle in BRW(t), for
x > κ0,

P(B(t) ≥ xt) = exp(α∗(x)t + o(t)) as t → ∞.

Proof We start with the upper bound. For fixed x > κ0, recall the functional Nt [xt,∞)

from Proposition 4.7. Using Proposition 4.7 gives,

P(B(t) ≥ xt) ≤ P(Nt [xt,∞) ≥ 1) ≤ E[Nt [xt,∞)] ≤ exp(α∗(x)t + o(t)).

To prove the lower bound, we will use an argument of induction in time. For
ε ∈ (0, 1), let Fεt denote the filtration generated by the genealogies and locations
of all the particles in BRW born up till time εt . For v ∈ BRW(εt), let Sv denote the
location of the particle v in BRW(εt). For each such v consider the branching random
walk encoding the genealogy and location of particles born after time εt whose most
recent common ancestor in BRW(εt) is v. For t ′ ≥ 0, let Bv(t ′) denote the location
of the rightmost particle in this branching random walk originating from particle v

observed t ′ time units after εt . It is easy to see that

P(B(t) ≥ xt |Fεt ) = P( max
v∈BRW(εt)

Bv((1− ε)t) ≥ xt |Fεt )

= P

(
max

v∈BRW(εt)

{
Bv((1− ε)t) − Sv

(1− ε)t
+ Sv

(1− ε)t

}
≥ x

1− ε

∣∣∣∣Fεt

)
.
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If there exists a particle v ∈ BRW(εt) such that both Sv ≥ xεt and Bv((1− ε)t) −
Sv ≥ x(1 − ε)t , then we will have B(t) ≥ xt . Based on this observation, we define
Dεt := {v ∈ BRW(εt) : Sv ≥ xεt}, noting that Dεt is measurable with respect to Fεt .
In addition, the collection {Bv((1− ε)t)− Sv : v ∈ BRW(εt)} comprise i.i.d. random
variables, independent ofFεt , each distributed as the location of the rightmost particle
in BRW((1− ε)t). Hence,

P(B(t) ≥ xt |Fεt ) ≥ P

(
max
v∈Dεt

Bv((1− ε)t) − Sv

(1− ε)t
≥ x

∣∣∣∣Fεt

)

= 1−
(
1− P

(
B((1− ε)t)

(1− ε)t
≥ x

))|Dεt |

≥ P

(
B((1− ε)t)

(1− ε)t
≥ x

)
|Dεt |

(
1− P

(
B((1− ε)t)

(1− ε)t
≥ x

)
· |Dεt |

)
,

where the last line follows from the elementary inequality 1− (1− x)y ≥ 1− e−xy ≥
xy(1 − xy) for x ∈ [0, 1], y ≥ 0. Taking expectations on both sides of the above
bound, we have

P(B(t) ≥ xt) ≥ P

(
B((1− ε)t)

(1− ε)t
≥ x

)(
E|Dεt | − P

(
B((1− ε)t)

(1− ε)t
≥ x

)
· E(|Dεt |2)

)
,

(4.4)

where |Dεt | denotes the size of Dεt . Noting that |Dεt | = Nεt [xεt,∞), it follows
directly from Proposition 4.7 that for x > κ0,

log(E|Dεt |)
εt

→ α∗(x) = inf
s∈(0,1)

{x log s + f (s)/s} < 0,

i.e.,
E|Dεt | ≥ exp(α∗(x)εt − o(t)). (4.5)

We claim that P

(
B((1−ε)t)

(1−ε)t ≥ x
)
·E(|Dεt |2) = o(E|Dεt |) when ε > 0 is chosen to be

sufficiently small. To see this, we use the upper bound proved earlier to get

P

(
B((1− ε)t)

(1− ε)t
≥ x

)
≤ exp(α∗(x)(1− ε)t + o(t)).

In addition, Lemma 4.4 gives a trivial upper bound onE(|Dεt |2) ≤ E[n(εt)2] ≤ 2e2εt .
Knowing (4.5) and noting thatα∗(x) < 0 for x > κ0, we can then choose ε <

α∗(x)
3α∗(x)−2

so that

P

(
B((1− ε)t)

(1− ε)t
≥ x

)
· E(|Dεt |2) ≤ 2 exp

(
(α∗(x)(1− ε) + 2ε)t

) ≤ exp
(
2α∗(x)εt

)

= o(E|Dεt |).
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Therefore, when t is sufficiently large, combining the above with (4.4) and (4.5) leads
to

P(B(t) ≥ xt) ≥ 1

2
P

(
B((1− ε)t)

(1− ε)t
≥ x

)
· E|Dεt |

≥ 1

2
P

(
B((1− ε)t)

(1− ε)t
≥ x

)
exp(α∗(x)εt − o(t)),

which then implies the following relation

lim inf
t→∞

1

t
logP

(
B(t)

t
≥ x

)
≥ α∗(x)ε

+ (1− ε) lim inf
t→∞

1

(1− ε)t
logP

(
B((1− ε)t)

(1− ε)t
≥ x

)
.

This proves our desired conclusion

P

(
B(t)

t
≥ x

)
≥ exp(α∗(x)t − o(t)).

��

4.4 Connection to Quasi stationary randomwalks

We start by clarifying the appearance of the mysterious functionals such as R, s0 etc in
the statement of the main results. Recall the process T ∗(·), T (·) in Definition 2.1. For
i ≥ 0, let Pi (t) denote the number of vertices at distance i to the root in T ∗(t) with
P0(t) ≡ 1 for all t . Write P(t) = (P0(t),P1(t), . . .)′ for the entire column vector.
Let P̃i (t) and P̃(t) = (P̃0(t), P̃1(t), . . .)′ denote the analogous objects for T . Define
the two (infinite dimensional) matrices A = (Ai j )i, j≥0 and B = (Bi j )i, j≥0 ,

A =

⎛

⎜⎜⎜⎜⎝

0 0 0 · · ·
p0 p1 p2 · · ·
0 p0 p1 · · ·
0 0 p0 · · ·
0 · · ·

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎝

0 0 0 · · ·
c0 c1 c2 · · ·
0 p0 p1 · · ·
0 0 p0 · · ·
· · ·

⎞

⎟⎟⎟⎟⎠
, (4.6)

where ci = ∑∞
k=i pk . In particular, c0 = 1. The following is easy to check from the

evolution dynamics. We omit the proof.

Lemma 4.10 For t ≥ 0,

d

dt
E[P(t)] = A · E[P(t)], d

dt
E[P̃(t)] = B · E[P̃(t)].
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Now we will come to the first connection between the tree valued process and
random walk {Sn : n ≥ 0} as in (3.1) with increments distributed as Z − 1. Recall
the hitting times of zero started from location k namely Tk in (3.3). The next lemma
intuitively follows from solving the first differential equation above and noting that A
is the transition matrix for the Markov chain {Sn : n ≥ 0}.
Lemma 4.11 For all k ≥ 1,

E[Pk(t)] =
∞∑

i=0

t i

i !P(Tk = i).

Proof From Lemma 4.10, we have,

d

dt
E[Pk(t)] =

∞∑

j=0

Akj E[P j (t)]. (4.7)

Let fk(t) := ∑∞
i=0

t i

i !P(Tk = i) for k ≥ 1 and write f0(t) ≡ 1. Recalling the matrix
A = (Akj )k≥0, j≥0 from (4.6), note that

f ′
k(t) =

∞∑

i=0

t i

i !P(Tk = i + 1) = P(Tk = 1) +
∞∑

i=1

t i

i !
∞∑

j=1

Akj P(Tj = i)

= Ak0 +
∞∑

j=1

Akj f j (t) =
∞∑

j=0

Akj f j (t).

We then compare this system of ODEs with (4.7). Let hk(t) = fk(t) − E[Pk(t)] for
t ≥ 0. We have hk(0) = 0 and h′

k(t) =∑∞
j=0 Akj h j (t) for all k ≥ 1. Thus,

|hk(t)| ≤
∞∑

j=0

Akj

∫ t

0
|h j (s)|ds.

Let h∗(t) =∑∞
k=0 |hk(t)|. It is not difficult to check h∗(·) is continuous. Hence,

h∗(t) ≤
∞∑

j=0

( ∞∑

k=0

Akj

)∫ t

0
|h j (s)|ds ≤

∫ t

0
h∗(s)ds.

By Grönwall’s inequality, h∗(t) ≡ 0. This proves the lemma. ��
Given the connection between random walks and the tree evolution in Lemma 4.11, it
is clear that spectral properties of A and B are key to understanding the evolution of
tree functionals. The next result derives some properties. In all the ensuing results in
this Subsection, we will always make the Assumptions 3.2 and 3.5.
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Proposition 4.12 (Spectral properties of A,B)

(a) For any positive s such that f (s) < ∞, the vector vs = (vi (s) : i ≥ 0) with
vi (s) = s−i , i ≥ 0, is a non-negative left sub-invariant eigenvector of A for
eigenvalue f (s)/s.

(b) For any s ≥ 1 such that f (s) < ∞, the vector vs = (vi (s) : i ≥ 0) as before is a
non-negative left sub-invariant eigenvector of B for eigenvalue f (s)/s.

(c) Recall q∗ from Definition 3.6. When E[Z ] > 1, the vector u = (ui : i ≥ 0) with
u0 = 0 and for i ≥ 1 ui = qi−1∗ is a non-negative right eigenvector of B.

Proof (a) For j ≥ 0,

∞∑

i=1

s−i Ai j =
j+1∑

i=1

s−i p j+1−i = s−( j+1)
j+1∑

i=1

s j+1−i p j+1−i ≤ s− j f (s)

s
.

(b) Recall c j =∑∞
l= j pl . For j ≥ 0,

∞∑

i=1

s−i Bi j =
j+1∑

i=1

s−i p j+1−i + s−1c j+1 = s−( j+1)

⎛

⎝
j+1∑

i=1

s j+1−i p j+1−i + s j c j+1

⎞

⎠

≤ s−( j+1)

⎛

⎝
j∑

i=0

si pi +
∞∑

i= j+1

si pi

⎞

⎠ = s− j f (s)

s
,

where, in the first inequality, we have used s ≥ 1.
(c) Note that since f (q∗) = q∗,

(Bu)1 =
∞∑

k=0

ckuk =
∞∑

k=1

(
1−

k−1∑

l=0

pl

)
qk−1∗ =

(
1

1− q∗
−

∞∑

l=0

pl

∞∑

k=l+1

qk−1∗

)

= 1

1− q∗
− f (q∗)

1− q∗
= 1 = u1.

For j ≥ 2,

(Bu) j =
∞∑

k=0

pkuk+ j−1 =
∞∑

k=0

pkqk+ j−2∗ = q j−2∗ f (q∗) = q j−1∗ = u j .

Clearly, (Bu)0 = 0 = u0. ��

4.5 Urnmodels andmultitype branching processes

This section connects the evolution of P with urn models and eventually to finite
dimensional multitype branching processes. We will consider a truncated version of
P where we keep track of vertices at distance at most k ≥ 1 from the root for some
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fixed k. Recall the matrix A from (4.6) and let Ak denote a k × k matrix such that
(Ak)i j = Ai j for 1 ≤ i, j ≤ k. Let e(k)

j denote the unit basis vector in R
k with one in

the j-th co-ordinate and zero elsewhere.

Definition 4.13 (Urn model encoding distance from the root) Fix k ≥ 1. Con-
sider a generalized multitype Polya-urn process with types {1, . . . , k} starting with
a single ball of type 1. When a ball of type i is drawn, it is returned along with
ξ i = (ξi1, . . . , ξik) other balls, where

{
P(ξ i = e(k)

j ) = A ji (1 ≤ j ≤ k)

P(ξ i = 0) = 1−∑k
j=1 A ji

It is easy to see E(ξi j ) = A ji .

Akey tool in studying such urn processes is the so-calledAthreya-Karlin embedding
in finite multitype branching processes [6, 38], which in this case corresponds to the
following: we start with one individual (ball) at time zero of type 1. Each individual
of type i lives for an exponential mean one unit of time and upon dying gives birth
to an offspring of type i and possibly another vertex whose type is determined by an
i.i.d. sample of ξ i (only one offspring of type i is produced if the sampled ξ i = 0). In
this continuous time process let P̄k(t) = (P̄i (t) : 1 ≤ i ≤ k) denote the individuals
(balls) of various types alive at time t .

Lemma 4.14 Let σ1 denote the first time that the root reproduces a vertex at distance
one in T ∗ so that P1(σ1) = 1. We can couple P̄k(·) with the process P(·) defined in
Sect. 4.4 such that P1(t + σ1) ≥ P̄1(t) for all t .

Proof We describe an explicit coupling:

(i) If at time t + σ1, a vertex in T ∗ at distance 1 ≤ i ≤ k from the root reproduces to
produce a vertex at distance 1 ≤ j ≤ k, a ball of type i is removed from the urn
at time t and is returned along with a ball of type j .

(ii) If the new vertex is at distance greater than k from the root, or if the root or a vertex
of distance greater than k reproduces, then no change is made to the urn model.

It is clear from our construction that P1(t + σ1) ≥ P̄1(t) for all t ≥ 0. ��
The following is obtained by a direct application of [38, Theorem 3.1]. Define

k0 := inf{k ≥ 1 : pk > 0}. Note that k0 < ∞ as p0 < 1.

Proposition 4.15 For k ≥ k0, Ak possesses a positive largest (Perron–Frobenius)
eigenvalue αk and a strictly positive right eigenvector v̄k = (v̄k(i) : 1 ≤ i ≤ k) such
that,

e−αk t P̄k
1 (t)

a.s.−→ W v̄k(1)

for a strictly positive random variable W .

123



396 S. Banerjee et al.

Proof Recalling p0+ p1 < 1 and p0 > 0, it follows thatAk is irreducible in the sense
of [38] for every k ≥ k0 and one easily sees that assumptions (A1)-(A6) in [38] are
satisfied, required for the application of [38, Theorem 3.1]. The strict positivity of W
follows from the fact that extinction is impossible in our case (see [38, Lemma 2.1]).

��

Thus, for k ≥ k0, αk plays a crucial role in the growth of P̄k
1 (·). The next result

describes its asymptotics as k ↑ ∞.

Proposition 4.16 αk ↑ 1/R as k → ∞.

Remark 11 In principle we are asserting that the maximal eigenvalue of the submatrix
Ak of the infinite dimensional operatorA converges in the limit k → ∞ to themaximal
eigenvalue of A. If A was a compact operator then this would follow from standard
function analytic methods, however it can be checked thatA is not a compact operator
and thus we give a proof relying on the specific probabilistic interpretation of A and
the corresponding random walk.

Remark 12 In Sect. 4.6 we will construct an infinite dimensional multitype branching
process, driven by the matrix B to track the entire height profile of T . The analogous
argument for T ∗ does not work, since the corresponding process with B replaced by
matrixA is not α-recurrent (Lemma A.5) and thus necessitates the truncation scheme
here.

Proof Let {Zi }i≥1 be a collection of i.i.d. random variables distributed as p and recall
that Sn = S0 +∑n

i=1(Zi − 1). Define the stopping times,

T = inf{n ≥ 0 : Sn = 0}, τ = inf{n ≥ 1 : Sn = 1},
τk = inf{n ≥ 0 : Sn > k}, k ≥ 1.

In this proof, for j ∈ Z, let P j andE j denote the probability and expectation operators
for the walk started from S0 = j . For r ≥ 0, define �(r) = E1[erτ · 1{τ<T }]. The
proof of the Proposition hinges on the following lemma, whose proof is postponed to
the end of this section. ��

Lemma 4.17 �(log R) < 1 and �(r) = ∞ when r > log R.

Choose any k ≥ k0. As Ak is substochastic, αk ≤ 1 by standard Perron–Frobenius
theory. Write αk = e−θk for θk ≥ 0. We claim that θk > 0 and

E1[eθkτ1{τ<T∧τk }] = 1. (4.8)

To see this, consider the right eigenvector v̄k of Ak for k ≥ 1. Then, Pi j = Ai j v̄k ( j)
αk v̄k (i)

,
1 ≤ i, j ≤ k defines a probability transition matrix. Denote by Q1 the law of the
Markov chain associated with P starting from state 1. By slight abuse of notation,
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keep using T , τ, τi as above, to denote the associated stopping times for this Markov
chain. Then Q1(τ = 1) = P11 = A11

αk
. For i ≥ 2, observe that

Q1(τ = i) =
∑

{z j }1≤ j≤i−1:2≤z j≤k

1

αi
k

A1z1 Az1z2 · · · Azi−11

= eiθk · P1(τ = i, i < T ∧ τk).

Since P is irreducible (and finite),

1 = Q1(τ < ∞) = E1
[
eθkτ1{τ<T∧τk }

]
,

i.e., (4.8) holds. Since p0 > 0, P1(τ < T ∧ τk) < 1 and this implies that θk > 0.
Note that as

1 = E1
[
eθk+1τ1{τ<T∧τk+1}

] = E1
[
eθkτ1{τ<T∧τk }

] ≤ E1
[
eθkτ1{τ<T∧τk+1}

]
,

we have θk+1 ≤ θk for any k ≥ 1 and thus θk ↓ θ∗ for some θ∗ ≥ 0.
It remains to show that θ∗ = log R, which implies αk = e−θk ↑ e−θ∗ = 1/R as

k → ∞. First we prove θ∗ ≥ log R. It follows from the monotonicity of {θk} and
(4.8) that

�(θk) = E1[eθkτ1{τ<T }] = lim
i→∞ E1[eθkτ1{τ<T∧τi }] ≥ lim

i→∞ E1[eθi τ1{τ<T∧τi }] = 1.

�(·) is strictly increasing (as P1(τ < T ) > 0) and �(log R) < 1 by Lemma 4.17,
implying that θk > log R. Therefore, θ∗ = limk θk ≥ log R.

Next, to prove θ∗ ≤ log R, note that

�(θ∗) = E1[eθ∗τ1{τ<T }] = lim
i→∞ E1[eθ∗τ1{τ<T∧τi }] ≤ lim

i→∞ E1[eθi τ1{τ<T∧τi }] = 1.

As �(r) = ∞ for all r > log R by Lemma 4.17, the above implies that θ∗ ≤ log R.
The result follows. ��

Proof of Lemma 4.17 Define χ(u) = ∑∞
j=0 P1(T = j)u j for u ≥ 0. Note that

E1[erT ] = χ(er ). Defining κ = inf{n ≥ 0 : Sn = 1}, Strong Markov property
implies that

�(r) = er
∞∑

j=1

p j E j [erκ ] = er
∞∑

j=1

p j

(
E1[erT ]

) j−1 = er
∞∑

j=1

p jχ(er ) j−1

= er
(

f (χ(er )) − p0
χ(er )

)
< ∞ (4.9)
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for all r such that f (χ(er )) < ∞ and �(r) = ∞ when χ(er ) < ∞ but f (χ(er )) =
∞. We claim that

χ(R) = s0 and χ(u) = ∞ when u > R. (4.10)

The desired result now follows from (4.9):

�(log R) = R · f (s0) − p0
s0

= s0
f (s0)

(
f (s0)

s0
− p0

s0

)
= 1− p0

f (s0)
< 1,

recalling f (s0) < ∞, and �(r) = ∞ when r > log R.
It remains to prove the claim in (4.10). Lemma 1 in [55] implies that

lim
n→∞

P1(T = n + 1)

P1(T = n)
= 1

R
.

By the ratio test for power series, χ(u) < ∞ if s < R and χ(u) = ∞ if s > R.
In the cases where R = 1, by Lemma 3.7 we have s0 = 1 and E[Z ] ≤ 1. It follows

from [29, Lemma 11.3] that,

χ(1) =
∞∑

j=1

P1(T = j) = P1(T < ∞) = 1.

When R > 1, to show χ(R) = s0, observe that for u < R,

χ(u) = p0u +
∞∑

j=1

p j u(χ(u)) j = u f (χ(u)).

As χ(u) is strictly increasing on [0, R), it has an inverse function χ−1(·) given by

χ−1(z) = z

f (z)

for z ∈ [0, χ(R)), i.e., z
f (z) ∈ [0, R). Let {sl : l ≥ 1} be a sequence of positive

numbers such that liml→∞ sl = s0 and sl < s0,
sl

f (sl )
∈ [0, R) for all l ∈ N. Hence,

lim
l→∞χ

(
sl

f (sl)

)
= lim

l→∞ sl = s0.

The final step is now to show χ(R) = liml→∞ χ
(

sl
f (sl )

)
. We define a series of

functions {χk(u) : k ≥ 1} with χk(u) =∑k
j=1 P1(T = j)u j . For every k ≥ 1, χk(u)

is continuous and {χk(u) : k ≥ 1} is a non-decreasing sequence for all u ≥ 0. As χ(·)

123



Co-evolving dynamic networks 399

is the limit of a monotone increasing sequence of continuous functions, it is lower
semicontinuous, i.e., χ(R) ≤ lim infs↑R χ(u). Therefore,

χ(R) ≤ lim inf
s↑R

χ(u) ≤ lim
l→∞χ

(
sl

f (sl)

)
= lim

l→∞ sl = s0.

Further, by the monotonicity of χ(·), χ(R) ≥ χ(
sl

f (sl )
) for any l ∈ N and hence

χ(R) ≥ liml→∞ χ(sl/ f (sl)) = s0. This completes the proof. ��

4.6 Infinite dimensional multitype branching processes

In this section we introduce a specific class of continuous time multitype branching
processes {MBP(t) : t ≥ 0} studied in full generality in [35, 37]. The process MBP(·)
will once again track distances in T (·) so that a vertex at distance � from the root
corresponds to a type � individual in MBP(·).

The Ulam-Harris set I = ∪n≥0N
n , with N 0 = ∅ representing the root, is used to

encode the set of all possible individuals (vertices) in MBP, and let (S,S) denote the
space of types with a countably generated σ -algebra S, where S = {0, 1, . . . }. Start
with a single individual (the root) of some type r ∈ S. Any existing individual of type
r ′ ∈ S in the population independently reproduces according to a rate one Poisson
process, and each new individual y is independently assigned the type ρ(y) = s with
probability Bsr ′ , where B is the matrix defined in (4.6). The reproduction process ξx

of an individual x is a measure on S × R+, with ξx (A × B) denoting the number of
children of x of types in A born at times in B. We will write ξ for the reproduction
process of the root.

Observe that, if we assign each vertex in our tree process T (·) the type equalling
distance from the root, then T (·) has the same distribution asMBP(·) with root of type
0. In particular, for each k ≥ 0 and all t ≥ 0,

P̃k(·) d= |{x ∈ MBP(·) : ρ(x) = k}|. (4.11)

Let {τk : k ≥ 1} denote the birth times of the root in MBP(·). For r ∈ S, we
will denote by Er the expectation operator when the root is of type r . Define the
reproduction kernel μB,

μB(r , ds × dt) = Er [ξ(ds × dt)].

Note that for r , s ∈ S, μB(r , s × dt) := μB(r , {s} × dt) = Bsr dt . For any λ > 0
define the measure associated with the Laplace transform of μB,

μB
λ (r , ds × dt) = e−λtμB(r , ds × dt).

Define

μB
λ (r , s) := μB

λ (r , s × R+) =
∫ ∞

0
e−λtμB(r , s × dt) = Bsr

λ
.
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The n-th convolution of μB
λ is denoted by μ

(n)
λ (suppressing dependence on B)

where μ
(1)
λ := μB

λ and for n ≥ 2,

μ
(n)
λ (r , A × B) =

∫

S×R+
μ

(n−1)
λ (s, A × (B − t))μB

λ (r , ds × dt).

The Malthusian rate associated with MBP(·) is defined as

α := inf

{
λ > 0 :

∞∑

n=0

μ
(n)
λ (s, S × R+) < ∞ for some s ∈ S

}
.

Since BT is a stochastic matrix, it follows that α = 1, and MBP(·) is Malthusian
and supercritical as required for the results of [35, 37]. We show in Appendix A
that μB

α is irreducible and α-recurrent in the terminology of [52]. Choosing π(r) =
(1−q∗)ur , r ∈ S (note that this is non-trivial if and only ifE[Z ] > 1 so that q∗ < 1),
where u = (ui : i ≥ 0) is the right eigenvector of B in Proposition 4.12, and h(·) ≡ 1,
note that

∑
r∈S h(r)π(r) = 1 and

∑

r∈S

π(r)μB
α (r , s) = π(s) and

∑

s∈S

μB
α (r , s)h(s) = h(r).

To apply the results in [35, 37], we need to check that, in addition to the above,
the following conditions are satisfied forMBP(·). In the following, for a non-negative
random variableU on the probability space on whichMBP is defined, writeEπ (U ) :=∫

S Es(U )π(ds). Although α = 1 in our case, we retain this notation to highlight the
dependence on α in potentially more general applications.

(i) The reproduction kernelμB is non-lattice, Malthusian, supercritical and satisfies
sups μ(s, S × [0, ε]) < 1 for some ε > 0.

(ii) The homogeneity assumption on h, i.e., infs∈S h(s) > 0, is satisfied.
(iii) The kernel μB has strong α-recurrence in the sense that

0 < β :=
∫

S×S×R+
te−αt h(s)μB(r , ds × dt)π(dr) < ∞,

(iv) The x log x-condition is satisfied, i.e., Eπ [ξ̄ log+ ξ̄ ] < ∞, where ξ̄ =∫
S×R+ e−αt h(s)ξ(ds × dt).

For Condition (i), the Malthusian and supercritical property was discussed before.
The remaining conditions are immediate from the fact that births happen according
to a rate one Poisson process. Condition (ii) is trivially satisfied due to our choice of
h ≡ 1. Condition (iii) can be checked by computing,

β =
∞∑

r=0

∞∑

s=0

∫ ∞

0
te−αt h(s)μB(r , s × dt)π(r)dt =

∞∑

r=0

∞∑

s=1

∫ ∞

0
te−αt Bsrπ(r)dt
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=
(∫ ∞

0
te−αt dt

)
·

∞∑

s=1

∞∑

k=−1

Bs,s+kπ(s + k)

= 1− q∗
α2 ·

( ∞∑

k=1

ckqk−1∗ +
∞∑

s=2

∞∑

k=−1

pk+1qs+k−1∗

)

= 1

α2 · (1− q∗)
(
1+ q∗

1− q∗

)
= 1

α2 .

To check Condition (iv), note that since h ≡ 1, ξ̄ =∑
k≥1 e−ατk . Let F(k) denote the

natural filtration up to the birth of the k-th child in ξ . Then

Eπ [ξ̄ log+ ξ̄ ] ≤ Eπ [ξ̄2] =
∑

k,l≥1

E[e−α(τk+τl )]

=
∑

k≥1

E[e−2ατk ] + 2
∑

k<l

E[E[e−α(τk+τl )|F(k)]]

=
∑

k≥1

(
1

1+ 2α

)k

+ 2
∑

k<l

(
1

1+ α

)l−k ( 1

1+ 2α

)k

< ∞. (4.12)

L
1-convergence in the non-fringe regime.Let σx denotes the birth time of vertex x in

the multitype branching processMBP(·). Consider a characteristic ψ : S ×[0,∞) →
[0,∞), which is a random càdlàg measurable function, defined on the probability
space on whichMBP evolves, thought of as giving a ‘score’ to the root at time t based
on its type and its genealogical tree. For x ∈ I and t ≥ σx , write ψx (ρ(x), t − σx ) for
the corresponding score computed by evaluating the characteristic ψ on the subtree
rooted at x , when this vertex is of age t − σx . See [35, Section 7] for a more formal
treatment. Define the cumulative ψ-score

Zψ(t) =
∑

x :σx≤t

ψx (ρ(x), t − σx ).

We will write Es[ψ(t)] = E[ψ(s, t)]. The following theorem gives convergence
of expectations for normalized cumulative ψ-scores.

Theorem 4.18 (Theorem 1 in [37]) Consider a non-lattice strictly Malthusian, super-
critical branching population, counted with a bounded characteristic ψ such that the
function t �→ e−αt

Es[ψ(t)] is directly Riemann integrable with respect to π . Then,
for π -almost every s ∈ S,

e−αt
E[Zψ(t)] → h(s)Eπ [ψ̂(α)]/αβ.

Corollary 4.19 In the non-fringe regime where E[Z ] > 1,

lim
t→∞ e−t

E[P̃1(t)] = 1− q∗.
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Proof Let ψ(s, t) = 1{s = 1, t ≥ 0}. We can easily verify that t �→ e−αt
Es[ψ(t)] is

directly Riemann integrable with respect to π . Moreover,

Eπ [ψ̂(α)] =
∞∑

r=0

π(r)

∫ ∞

0
e−αt

Er [ψ(t)]dt = π(1)

α
= 1− q∗

as π(1) = 1 − q∗ and α = 1. Recall from previous section that β = 1/α2 = 1.
Applying Theorem 4.18 with ψ(s, t) = 1{s = 1, t ≥ 0} and h ≡ 1 gives the result. ��

Recall that n(t) denotes the population size at time t . Let Ft be the filtration
generated by the entire life histories of the first n(t) vertices. Let mx denote the
mother of vertex x and define for any t, c ≥ 0,

I (t) = {x; σmx ≤ t < σx < ∞}, I (t, c) = {x; σmx ≤ t, t + c < σx < ∞}.

Define wt = ∑
x∈I (t) e−σx and wt,c = ∑

x∈I (t,c) e−σx . We collect some useful
properties of wt and wt,c in the following lemma. Recall from Lemma 4.3 that W ∼
Exp(1) is the almost sure limit of e−t n(t) as t → ∞.

Lemma 4.20 (i) {wt } is a non-negative martingale with respect to {Ft }and E[wt ] =
1.

(ii) wt → W almost surely and in L
2 as t → ∞.

(iii) E[wt,c] → k(c) as t → ∞, where k(c) ↓ 0 as c → ∞.

Proof (i) Follows from Proposition 2.4 and (2.17) in [47]. The L
2 convergence in (ii)

follows from Theorem 4.1 in [36] using the fact that Ev[ξ̄2] < ∞ derived in (4.12).
Further, as wt is the reproductive martingale (see equation (2.15) in [47]), the almost
sure convergence to W follows from [47, Corollary 2.5 and Theorem 5.4]. (iii) follows
from [47, Lemma 3.5]. ��

A version of the following theorem is proved for a class of multitype branching
processes in [37]. However, it requires the finiteness of ξ(S × R+), which is not
satisfied in our case. We thus give a direct proof which bypasses some technicalities
in [37] introduced by their generality of hypotheses.

Theorem 4.21 In the non-fringe regime where E[Z ] > 1, as t → ∞,

e−t P̃1(t)
L
1−→ (1− q∗)W ,

where W is as defined in Lemma 4.20.

Proof Recall that α = β = 1. Let ψ(s, t) = 1{s = 1, t ≥ 0} so that Zψ(t) = P̃1(t).
For any M > 0, write ψ = ψM + ψ ′

M where ψM (s, t) = ψ(s, t)1{t ≤ M} and
ψ ′

M (s, t) = ψ(s, t)1{t > M}. To simplify notation, let

γ := Ev[ψ̂(α)]/αβ = 1− q∗ and γM := Ev[ψ̂M (α)]/αβ = (1− e−M )(1− q∗).

123



Co-evolving dynamic networks 403

Note that

E|e−t Zψ(t) − γ W | ≤ e−t
E|Zψ(t) − ZψM (t)|

+ E|e−t ZψM (t) − γM W | + |γM − γ |E[W ]. (4.13)

The first term is equal to e−t
E[Zψ ′

M (t)]. Theorem 4.18 implies that

lim
t→∞ e−t

E[Zψ ′
M (t)] = (1− q∗)e−M .

Hence, e−t
E[Zψ ′

M (t)] can be made arbitrarily small by taking both t and M to be
large. The third term vanishes as M → ∞ since E[W ] = 1 and limM→∞ γM = γ .

It remains to deal with the second term in (4.13). Let ζt = e−t ZψM (t) and ms(t) =
Es[ζt ]. By Theorem 4.18 we have

lim
t→∞ ms(t) = Ev[ψ̂M (α)]/αβ =: γM (4.14)

for v-almost sure s ∈ S.
Observe that ψM (u) = 0 for all u ≥ M . Hence, for t ′ ≥ M we have

ζt+t ′ =
∑

x∈I (t)

e−σx ζt+t ′−σx ◦ ρ(x),

where ζt+t0−σx ◦ ρ(x) denotes the normalized ψM score for the vertex x , whose type
is ρ(x), at time t + t ′ − σx . For t, c ≥ 0 and t ′ ≥ c, write η(t + t ′ − σx ) ◦ ρ(x) =
ζt+t ′−σx ◦ ρ(x) − mρ(x)(t + t ′ − σx ) and define

X(t, t ′, c) =
∑

x∈I (t)\I (t,c)

e−σx η(t + t ′ − σx ) ◦ ρ(x).

By triangle inequality we have

|ζt+t ′ − γM W | ≤ |X(t, t ′, c)| +
∣∣∣∣∣∣

∑

x∈I (t,c)

e−σx
(
ζt+t ′−σx ◦ ρ(x) − γM

)
∣∣∣∣∣∣

+ γM |wt − W | +
∑

x∈I (t)\I (t,c)

e−σx
∣∣mρ(x)(t + t ′ − σx ) − γM

∣∣ .

(4.15)

Fix any ε > 0. Our goal is to show that there exist t, c (depending on ε) sufficiently
large and t ′0 = t ′0(t, c) ∈ R+ such that for all t ′ ≥ t ′0, E|ζt+t ′ − γM W | ≤ ε. To do this
we will deal with each term in (4.15) separately.
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Note that X(t, t ′, c) is a sum of independent random variables each having expec-
tation zero under the conditional law P(·|Ft ). Hence, E[X(t, t ′, c)|Ft ] = 0 and

E[X(t, t ′, c)2|Ft ] = Var[X(t, t ′, c)|Ft ]
=

∑

x∈I (t)\I (t,c)

e−2σx Var[η(t + t ′ − σx ) ◦ ρ(x)|Ft ]

≤
∑

x∈I (t)\I (t,c)

e−2σx E[(η(t + t ′ − σx ) ◦ ρ(x))2|Ft ]

Since ζt ≤ e−t n(t), it follows from Lemma 4.4 that for all t ≥ 0 and s ∈ S,

Es[ζ 2
t ] ≤ E[E[e−2t n(t)2|F0]] ≤ 2.

Note that for any s ∈ S, ms = Es[ζt ] ≤ e−t
E[n(t)] = 1. Then, for any

x ∈ I (t)\I (t, c),

E[(η(t + t ′ − σx ) ◦ ρ(x))2|Ft ] ≤2E[(ζt+t ′−σx ◦ ρ(x))2 + mρ(x)(t + t ′ − σx )
2|Ft ]

≤2(2+ 1) = 6.

Therefore,

E[X(t, t ′, c)2] = E

[
E[X(t, t ′, c)2|Ft ]

]

≤ 6E

⎡

⎣
∑

x∈I (t)\I (t,c)

e−2σx

⎤

⎦ ≤ C ′e−t
E[wt ] = 6e−t .

Hence,
E|X(t, t ′, c)| ≤ E[X(t, t ′, c)2]1/2 ≤ √

6e−t/2. (4.16)

There exists some N1 ∈ R+ such that for t ≥ N1, and any choice of t ′, c,
E|X(t, t ′, c)| ≤ ε/4.

To address the second term in (4.15), simply observe that

E

⎡

⎣

∣∣∣∣∣∣

∑

x∈I (t,c)

e−σx
(
ζt+t ′−σx ◦ ρ(x) − γM

)
∣∣∣∣∣∣

∣∣Ft

⎤

⎦

≤
∑

x∈I (t,c)

e−σx (mρ(x)(t + t ′ − σx ) + γM ) ≤ (1+ γM )wt,c.

Lemma 4.20(iii) implies that there exists some N2 ∈ R+ so that if c, t ≥ N2 then, for
any choice of t ′,

E

∣∣∣∣∣∣

∑

x∈I (t,c)

e−σx
(
ζt+t ′−σx ◦ ρ(x) − γM

)
∣∣∣∣∣∣
≤ (1+ γM )E[wt,c] ≤ ε/4. (4.17)
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For the third term, since wt converges to W in L
1, there exists some N3 ∈ R+ so

that
E[γM |wt − W |] ≤ ε/4 (4.18)

for all t ≥ N3.
Finally we upper bound the expectation of the fourth term in (4.15). Let Et =

{HT (t) < 2κ0t}. It follows from Proposition 8.1 (whose proof is independent of the
tools using MBP) that limt→∞ P(Ec

t ) = 0. Note that on Et , the possible types for
x ∈ I (t)\I (t, c) inMBP(·) are in the set [2κ0t] := {0, 1, . . . , �2κ0t�}. Observe that

E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx
∣∣mρ(x)(t + t ′ − σx ) − γM

∣∣

⎤

⎦

≤ E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx sup
s∈[2κ0t]

∣∣ms(t + t ′ − σx ) − γM
∣∣ ; Et

⎤

⎦

+ E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx (1+ γM ); Ec
t

⎤

⎦ .

There exists some N4 ∈ R+ so that for all t ≥ N4, and any choice of t ′, c,

E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx (1+ γM ); Ec
t

⎤

⎦ ≤ (1+ γM )E[wt ; Ec
t ]

≤ (1+ γM )
(
E[|wt − W |] + E[W ; Ec

t ]
) ≤ ε/8,

(4.19)

where the last inequality follows from Lemma 4.20.
Choose and fix any t ≥ max1≤i≤4{Ni } and c ≥ N2. Since x ∈ I (t)\I (t, c), we

have t + t ′ −σx ≥ t ′ −c. Thus, there exists t ′0 = t ′0(t, c) ∈ R+ such that for all t ′ ≥ t ′0,

sup
s∈[2κ0t]

|ms(t + t ′ − σx ) − γM | ≤ ε/8.

Hence, for all t ′ ≥ t ′0,

E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx sup
s∈[2κ0t]

∣∣ms(t + t ′ − σx ) − γM
∣∣

⎤

⎦ ≤ (ε/8)E[wt ] = ε/8.

(4.20)
Combining (4.19) and (4.20) gives for all t ′ ≥ t ′0,

E0

⎡

⎣
∑

x∈I (t)\I (t,c)

e−σx
∣∣mρ(x)(t + t ′ − σx ) − γM

∣∣

⎤

⎦ ≤ ε/4. (4.21)
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Using (4.16), (4.17), (4.18), (4.21) in (4.15), we conclude that, for any given ε > 0,
there exists t0(ε) ∈ R+ such that for all t ≥ t0(ε),

E|ζt − γM W | ≤ ε.

Thus we have established the convergence of e−t Zψ(t) to γ W in L
1. The proof is

complete. ��

5 Proofs: Local weak convergence

The goal of this section is to prove Theorem 3.3. Recall the continuous time version
of the process T (·,p) in Definition 2.1; here we label vertices as {vi : i ≥ 0} in the
order they enter the system starting with v0 and recall that σi denotes the birth time
of vertex vi . For the rest of the section we will suppress dependence on p. We will
start by studying asymptotics of empirical functionals of the fringe distribution of this
process as t → ∞ and then leverage these results to prove Theorem 3.3.

Let F := {Ft : t ≥ 0} denote the natural filtration of the process {T (t) : t ≥ 0}.
Recall the space T of finite rooted trees from Sect. 2.4. For any T ∈ T and vertex
v ∈ V(T ), we will denote by Tv the fringe at vertex v namely the subtree rooted at
v, consisting of all vertices in T whose path to the root of T passes through v. Let
φ : T → R denote a non-negative boundedmeasurable function. For any i ≥ 0, define
φi : R+ → R by,

φi (u) =
{

φ(Tvi (u + σi )), u ≥ 0,

0, s < 0.

Thus the stochastic process {φi (u) : u ≥ 0} tracks the evolution of the “score” of the
fringe tree below vi as the age of vi increases. Now note that for any time s > 0
and for vi such that σi ≤ s, the age of vertex vi at time s is s − σi . Write Zφ(s) =∑

i :σi≤s φi (s − σi ); in words we are aggregating the scores of the fringe trees of
vertices born before time s. For the rest of this section, fix any F adapted process
{a(t) : t ≥ 0} with a(t)

a.s.−→ ∞, a(t)/t
a.s.−→ 0. We will write y(t) = t + a(t). Recall

the process T ∗(·,p) in Definition 3.1. When p is clear from context, we will write
T ∗(·) for T ∗(·,p).

Theorem 5.1 Let φ : T → R be a bounded measurable function. Assume that s →
E[φ(T ∗(s))] is Lipschitz on [0,∞). Then

e−y(t)Zφ(y(t))
P−→ W

∫ ∞

0
e−s

E[φ(T ∗(s))]ds as t → ∞,

where W ∼ Exp(1) is the almost sure limit of e−t n(t) as t → ∞.

The main tool to prove this Theorem is the following Proposition.
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Proposition 5.2 (Conditional moments of Zφ(t)) In the setting of Theorem 5.1, as
t → ∞,

e−y(t)
E
[
Zφ(y(t))|Ft

] a.s.−→ W
∫ ∞

0
e−u

E[φ(T ∗(u))]du, (5.1)

Var
[
e−y(t)Zφ(y(t))

∣∣Ft

]
a.s.−→ 0. (5.2)

Proof of Theorem 5.1 assuming Proposition 5.2 For any δ > 0, write

P

[∣∣∣∣e
−y(t)Zφ(y(t)) − W

∫ ∞

0
e−s

E[φ(T ∗(s))]ds

∣∣∣∣ > δ

]

≤ E

[
P

[∣∣∣e−y(t)Zφ(y(t)) − E[e−y(t)Zφ(y(t))|Ft ]
∣∣∣ > δ/2

∣∣∣∣Ft

]]

+ P

[∣∣∣∣E[e−y(t)Zφ(y(t))|Ft ] − W
∫ ∞

0
e−s

E[φ(T ∗(s))]ds

∣∣∣∣ > δ/2

]
.

We assert that each of these two terms converge to zero. For the first term, this follows
by applying Chebyshev’s inequality with (5.2), along with the bounded convergence
theorem. For the second term this follows from (5.1). ��

5.1 Proof of Proposition 5.2

Westart with the following technical LemmaprovidingFt measurable approximations
of birth times of new individuals after large t . Throughout recall the notation n(t) =
|T (t)|. As this Lemma lies at the heart of our local limit computations, we provide an
intuitive explanation first. Supposewe know the population size n(t) at time t andwant
to ‘guess’ the birth time αi (t) of the (n(t)+ i)-th individual based on this information.
From Lemma 4.2, we know that the population size (which is a Yule process) grows
approximately exponentially with time. Therefore, a good guess is αi (t) satisfying
n(t)eαi (t)−t = n(t) + i . The following lemma shows that, for sufficiently large t , this
is a uniformly good guess for all birth times after t .

Lemma 5.3 Let {σ̃t,i : i ≥ 1} denote the birth times after time t, i.e., σ̃t,i = σi+n(t).

Define αi (t) := t + log
(
1+ i

n(t)

)
for i ≥ 1. Then

sup
i≥1

|σ̃t,i − αi (t)| a.s.−→ 0 as t → ∞. (5.3)

Moreover,

E

[
sup
i≥1

|σ̃t,i − αi (t)|
∣∣Ft

]
a.s.−→ 0 as t → ∞. (5.4)

Proof (5.3) follows from [26, Lemma 3.4].
It remains to prove the convergence in expectation. As before, let {E j : j ≥ 0}

denote an i.i.d. sequence of exponential rate one random variables independent of
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Ft . The dynamics of the Yule process implies that conditional on Ft , all the joint
distributions can be constructed simultaneously as

σ̃t,i = t +
i−1∑

j=0

E j

n(t) + j
, i ≥ 1.

Thus,

|σ̃t,i − αi (t)| ≤
∣∣∣∣

i−1∑

j=0

(
E j

n(t) + j
− 1

n(t) + j

) ∣∣∣∣+
∣∣∣∣

i−1∑

j=0

1

n(t) + j
− log

(
n(t) + i

n(t)

) ∣∣∣∣.

It is easy to see that there exists some constant C > 0 such that the second term is
upper bounded by C

n(t) for all i ≥ 1 and all t ≥ 0. Since {E j } j≥0 are independent of

Ft , defining Mi := ∑i−1
j=0

E j−1
n(t)+ j , the sequence {Mi : i ≥ 1} conditioned on Ft is a

martingale. By Cauchy-Schwarz inequality and Doob’s L2 inequality, for any k ≥ 1,

E

⎡

⎣ sup
1≤i≤k

∣∣∣∣
i−1∑

j=0

E j − 1

n(t) + j

∣∣∣∣
∣∣Ft

⎤

⎦ = E

[
sup

1≤i≤k
|Mi |

∣∣Ft

]
≤ C ′ (

E[M2
k |Ft ]

)1/2

= C ′
⎛

⎝
k−1∑

j=0

1

(n(t) + j)2

⎞

⎠
1/2

≤ C ′
⎛

⎝
∞∑

j=0

1

(n(t) + j)2

⎞

⎠
1/2

≤ C ′′
√

n(t)

for some positive constants C ′, C ′′ not depending on k. Therefore,

E

[
sup
i≥1

|σ̃t,i − αi (t)|
∣∣Ft

]
≤ C

n(t)
+ C ′′

√
n(t)

a.s.−→ 0 as t → ∞.

��
We will now commence on the proof of Proposition 5.2.

Proof of (5.1) For the rest of this proof, let m(s) := E[φ(T ∗(s))] for s ≥ 0 and
m(s) = 0 for s < 0. By boundedness assumption on φ and Lipschitz continuity of
m(·), there exists constants M, L < ∞ such that

|φ(·)| ≤ M, |m(s) − m(t)| ≤ L|t − s|. (5.5)

Note thatZφ(y(t)) =∑
i :σi≤t φi (y(t)−σi )+∑i :σi∈(t,y(t)] φi (y(t)−σi ). To simplify

notation, we will write the second term as Z̃φ(y(t)) := ∑
i :σi∈(t,y(t)] φi (y(t) − σi ).

By (5.5), |φi (·)| ≤ M for all i ≥ 0. It is straightforward then, observing from Lemma
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4.2 that e−t n(t) converges almost surely to a finite random limit,

e−y(t)
E

⎡

⎣
∑

i :σi≤t

φi (y(t) − σi )
∣∣Ft

⎤

⎦ ≤ M ·E[e−y(t)n(t)|Ft ] a.s.−→ 0 as t → ∞. (5.6)

To address the second term, recalling from Lemma 5.3 that σ̃t,i = σi+n(t), write

E[Z̃φ(y(t))|Ft ] = E

⎡

⎣
∑

i :σ̃t,i≤y(t)

m(y(t) − σ̃t,i )|Ft

⎤

⎦ . (5.7)

Applying Lemma 5.3 we can approximate (5.7) by using the Ft -measurable approxi-
mations {αi (t)}i≥1 of the birth times {σ̃t,i }i≥1,

e−y(t)
∣∣∣∣E

⎡

⎣
∑

i :σ̃t,i≤y(t)

m(y(t) − σ̃t,i ) −
∑

i :αi (t)≤y(t)

m(y(t) − σ̃t,i )
∣∣Ft

⎤

⎦
∣∣∣∣

≤ e−y(t) · ME

[
∑

i

1{σ̃t,i≤y(t),αi (t)>y(t)}|Ft

]

≤ M · e−y(t)
E

[
|n(y(t)) −  n(t)(ea(t) − 1)"|∣∣Ft

]

≤ M ·
(
E

[
|e−y(t)n(y(t)) − e−t n(t)|∣∣Ft

]
+ e−y(t)(n(t) + 1)

)

≤ M
(
E

[
(e−y(t)n(y(t)) − e−t n(t))2

∣∣Ft

])1/2 + Me−y(t)(n(t) + 1). (5.8)

Since
{
e−sn(s) : s ≥ 0

}
is an L

2 bounded martingale we can compute

E

[
(e−y(t)n(y(t)) − e−t n(t))2

∣∣Ft

]
= E

[
(e−y(t)n(y(t)))2|Ft

]
− (e−t n(t))2 ≤ e−2t n(t),

where the last inequality follows from Lemma 4.4. Therefore,

(5.8) ≤ 2Me−t
√

n(t) + 2Me−y(t)(n(t) + 1). (5.9)

Now we estimate

e−y(t)
∣∣∣∣E

⎡

⎣
∑

i :αi (t)≤y(t)

m(y(t) − σ̃t,i ) −
∑

i :αi (t)≤y(t)

m(y(t) − αi (t))
∣∣Ft

⎤

⎦
∣∣∣∣

≤ e−y(t)n(t)ea(t) · LE

[
sup
i≥1

|σ̃t,i − αi (t)|
∣∣Ft

]

= e−t n(t) · LE

[
sup
i≥1

|σ̃t,i − αi (t)|
∣∣Ft

]
, (5.10)
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where L is as in (5.5).Next, letMφ(y(t)) :=∑
i :αi (t)≤y(t) m(y(t)−αi (t)). Combining

(5.9) and (5.10) yields

e−y(t)
∣∣∣∣E[Z̃φ(y(t))|Ft ] − E[Mφ(y(t))|Ft ]

∣∣∣∣

≤ 2M(e−t
√

n(t) + e−y(t)(n(t) + 1)) + e−t n(t) · LE

[
sup
i≥1

|σ̃t,i − αi (t)|
∣∣Ft

]
.

(5.11)

The part e−t√n(t)+e−y(t)(n(t)+1) vanishes almost surely as t → ∞. Then applying
Lemma 5.3 gives that (5.11) goes to 0 almost surely as t → ∞. It remains to evaluate
the almost sure limit of e−y(t)

E[Mφ(y(t))|Ft ]. Observe that, using the boundedness
and Lipschitz continuity of m(·),

e−y(t)
E[Mφ(y(t))|Ft ]

= e−y(t)
∑

i :αi (t)≤y(t)

m(y(t) − αi (t))

= e−y(t)
 n(t)ea(t)"∑

i=1

m

(
a(t) − log

(
n(t) + i

n(t)

))
+ oa.s.(1)

= e−y(t)
 ea(t)"∑

i=1

n(t)∑

j=1

m

(
a(t) − log

(
i + j

n(t)

))
+ oa.s.(1)

= e−y(t)
 ea(t)"∑

i=1

n(t)m(a(t) − log i) + oa.s.(1)

= e−y(t)n(t)
∫ ea(t)

1
m(a(t) − log x)dx + oa.s.(1)

= e−y(t)n(t)
∫ a(t)

0
m(u)ea(t)−udu + oa.s.(1)

= e−t n(t)
∫ a(t)

0
m(u)e−udu + oa.s.(1)

a.s.−→ W
∫ ∞

0
e−um(u)du. (5.12)

This proves (5.1). ��
Proof of (5.2) Note that

E

[
(Zφ(y(t)))2

∣∣Ft

]
= E

⎡

⎣
∑

i, j :σi≤t,σ j≤t

φi (y(t) − σi )φ j (y(t) − σ j )
∣∣Ft

⎤

⎦

+ 2E

⎡

⎣
∑

i, j :σi≤t<σ j≤y(t)

φi (y(t) − σi )φ j (y(t) − σ j )
∣∣Ft

⎤

⎦
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+ E

⎡

⎣
∑

i, j

φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )
∣∣Ft

⎤

⎦

=: T1(t) + 2T2(t) + T3(t),

where for the rest of this section, the sum in T3(t) is implicitly over i, j with σi , σ j ∈
(t, y(t)] but we have suppressed this to ease notation. Now, it can be readily checked
that

e−2y(t)T1(t) ≤ M2e−2y(t)(n(t))2
a.s.−→ 0 as t → ∞,

and

e−2y(t)T2(t) ≤ Me−y(t)n(t) · e−y(t)
E

[
Z̃φ(y(t))

∣∣Ft

]
a.s.−→ 0 as t → ∞,

where the second line follows from combining Lemma 4.3 with (5.1). Thus
E
[
(e−y(t)Zφ(y(t)))2

∣∣Ft
] = e−2y(t)T3(t) + oa.s.(1). We write (again recalling that

all the ensuing sums are over vertices born in (t, y(t)]),

T3(t) = E

[
∑

i

φ2
i (y(t) − σ̃t,i )

∣∣Ft

]
+ 2E

⎡

⎣
∑

i< j

φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )
∣∣Ft

⎤

⎦

= ε(t) + T̃3(t).

We restrict our attention to the second term since the first term is oa.s.(e−2y(t)):

e−2y(t)ε(t) := e−2y(t)
E

[
∑

i

φ2
i (y(t) − σ̃t,i )

∣∣Ft

]

≤ M2e−2y(t)n(t)ea(t) a.s.−→ 0 as t → ∞. (5.13)

For i < j , we write j → i if v j is a descendant of vi (and write j � i otherwise).
By convention we have i → i . Then for i < j ,

E
[
φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )

∣∣Ft
]

≤ M2
P
[

j → i, σ̃t, j ≤ y(t)
∣∣Ft
]+ E

[
φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )1{ j�i}

∣∣Ft
]
.

(5.14)

Recall that, for the rest of the argument, we are only interested in pairs born in the
interval (t, y(t)]. For any fixed time T , vertex vi with σi ≤ T , let Dv(T ) denote the
number of descendants of v by time T . Summing the bound (5.14) over all pairs of
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vertices born in the interval (t, y(t)], one gets,

T̃3(t) ≤ 2M2
E

⎡

⎣
∑

i : σi∈(t,y(t)]
Dvi (y(t))|Ft

⎤

⎦

+ 2E

⎡

⎣
∑

i< j : σi ,σ j∈(t,y(t)]
φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )1{ j�i}|Ft

⎤

⎦

:= T̃3,1(t) + T̃3,2(t). (5.15)

The following lemma completes the proof of (5.2). ��
Lemma 5.4 As t → ∞,

(a) e−2y(t)T̃3,1(t)
a.s.−→ 0.

(b) e−2y(t)T̃3,2(t) ≤ (e−y(t)
E[Zφ(y(t))|Ft ])2 + oa.s.(1).

Proof of Lemma 5.4(a) Note that, when a new vertex is attached to some existing vertex
v, the number of descendants of v and all its ancestor vertices increases by one.
Hence, we can dominate

∑
i :σi∈(t,y(t)] Dvi (y(t)) pathwise by ht(T (y(t),p))n(y(t))

where recall that ht(·) denotes the height of the associated tree. Moreover, observe
that, conditionally onFt , ht(T (y(t),p)) ≤ ht(T (t,p))+maxi≤n(t) hi (t, y(t)), where
hi (t, y(t)) denotes the height of the (maximal) tree rooted at the i th vertex formed
entirely by its descendants that arrived in the time interval (t, y(t)]. Further, note
that there exists a collection {h∗

i (a(t)) : i ≤ n(t)}, distributed as the heights of n(t)
independent Yule trees run till time a(t), independent of Ft , so that we can couple to
get hi (t, y(t)) ≤ h∗

i (a(t)) for every i ≤ n(t). Consequently, using Lemma 4.5 with
β = e,

E

(
(maxi≤n(t) hi (t, y(t)))2

∣∣Ft

)
≤ n(t)E((h∗

1(a(t))2)

≤ n(t)

(
9e2a(t)2 +

∫ ∞

9e2a(t)2
P(h∗

1(a(t)) ≥ √
x)dx

)

≤ n(t)

(
9e2a(t)2 +

∫ ∞

9e2a(t)2
2e2ea(t)e−

√
x dx

)

= 9e2a(t)2n(t) + 2n(t)(1+ 3ea(t))e−ea(t).

This implies that e−2y(t)
E
(
(maxi≤n(t) hi (t, y(t)))2

∣∣Ft
)→ 0 almost surely as t → ∞.

Also, by Lemmas 4.3 and 4.4,

e−2y(t)
E(n(y(t))2

∣∣Ft ) ≤ e−2t (n(t)2 + n(t))
a.s.−→ W 2

as t → ∞. Moreover, using the monotonicity of ht(T (t,p)) in t and Lemma 4.5,
it follows that e−y(t) ht(T (t,p)) → 0 almost surely as t → ∞. Therefore, using
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Cauchy-Schwarz inequality,

e−2y(t)T̃3,1(t) ≤ e−2y(t)
E[ht(T (t,p))n(y(t))|Ft ]

+ e−2y(t)
E[maxi≤n(t) hi (t, y(t)))2n(y(t))|Ft ]

≤ e−2y(t) ht(T (t,p))n(t)ea(t)

+
(

e−2y(t)
E

(
(maxi≤n(t) hi (t, y(t)))2

∣∣Ft

))1/2

×
(

e−2y(t)
E(n(y(t))2

∣∣Ft )
)1/2

,

which converges almost surely to 0 as t → ∞. ��

Proof of Lemma 5.4(b) For i < j , let F∗
i, j be the σ -field generated by the tree process

up to the (n(t) + j)-th birth time, and the birth times and attachment locations of all
vertices that are descendants of vi . Note that φi (y(t)− σ̃t,i )1{ j�i} isF∗

i, j -measurable
and φ j (y(t) − σ̃t, j ) is independent of F∗

i, j on the event { j � i}. Hence first con-
ditioning on F∗

i, j and then using the tower property for conditional expectations we
get,

E
[
φi (y(t) − σ̃t,i )φ j (y(t) − σ̃t, j )1{ j�i}

∣∣Ft
]

= E
[
φi (y(t) − σ̃t,i )1{ j�i}m(y(t) − σ̃t, j )

∣∣Ft
]

≤ E
[
m(y(t) − σ̃t,i )m(y(t) − σ̃t, j )

∣∣Ft
]
. (5.16)

The last inequality above follows from a similar conditioning by a sigma field contain-
ing information about birth times and attachment locations of all individuals except
the descendants of i (excluding i).

By the boundedness and Lipschitz assumption on the mean functional m(·), for
i < j , where j satisfies max{σ̃t, j , α j (t)} ≤ y(t), there exists some C > 0 such that

|m(y(t) − σ̃t,i )m(y(t) − σ̃t, j ) − m(y(t) − αi (t))m(y(t) − α j (t))|
≤ C(|σ̃i,t − αi (t)| + |σ̃ j,t − α j (t)|).

Hence (and writing EFt (·) = E(·|Ft )),

e−2y(t)
∣∣∣∣EFt

⎡

⎢⎢⎣
∑

i< j :
σ̃t,i ,σ̃t, j∈(t,y(t)]

m(y(t) − σ̃t,i )m(y(t) − σ̃t, j )

−
∑

i< j :
αi (t),α j (t)∈(t,y(t)]

m(y(t) − αi (t))m(y(t) − α j (t))

⎤

⎥⎥⎦

∣∣∣∣ (5.17)
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≤ e−2y(t) · CEFt

⎡

⎣
∑

i< j :max{σ̃t, j ,α j (t)}≤y(t)

(|σ̃i,t − αi (t)| + |σ̃ j,t − α j (t)|)
⎤

⎦

(5.18)

+ e−2y(t) · M2
EFt

⎡

⎣
∑

i< j

1{σ̃t, j≤y(t)<α j (t)}

⎤

⎦ (5.19)

+ e−2y(t) · M2
EFt

⎡

⎣
∑

i< j

1{α j (t)≤y(t)<σ̃t, j }

⎤

⎦ . (5.20)

By Lemma 5.3,

(5.18) ≤ e−2y(t) · 2CE

⎡

⎣
∑

i< j :max{σ̃t, j ,α j (t)}≤y(t)

sup
�≥1

|σ̃t,� − α�(t)|
∣∣Ft

⎤

⎦

≤ 2Ce−2y(t)(n(t))2e2a(t)
E

[
sup
�≥1

|σ̃t,� − α�(t)|
∣∣Ft

]

= 2C(e−t n(t))2E

[
sup
�≥1

|σ̃t,� − α�(t)|
∣∣Ft

]
a.s.−→ 0.

As for (5.19), observe that

(5.19) ≤ M2e−2y(t)
E

[
n(y(t))|n(y(t)) −  n(t)(ea(t) − 1)"| ∣∣Ft

]

≤ M2e−2y(t)n(t)ea(t)
E

[
|n(y(t)) −  n(t)(ea(t) − 1)"| ∣∣Ft

]

+ M2e−2y(t)
E

[
(n(y(t)) −  n(t)(ea(t) − 1)")2 ∣∣Ft

]
,

which goes to zero almost surely as t → ∞ following the same reasoning as in (5.9).
Similarly we have

(5.20) ≤ M2e−2y(t)
E

[
n(t)(ea(t) − 1)max{n(t)(ea(t) − 1) − n(y(t)), 0}∣∣Ft

]

≤ M2e−2y(t)n(t)ea(t)
E

[
|n(y(t)) − n(t)(ea(t) − 1)| ∣∣Ft

]
a.s.−→ 0.

Noting that the processes αi (t) are Ft adapted so that the conditional expectation
of the second sum in (5.17) is itself, the last step is to estimate

Mφ,(2)(y(t)) :=
∑

i< j :
αi (t),α j (t)∈(t,y(t)]

m(y(t) − αi (t))m(y(t) − α j (t))
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≤ 1

2

⎛

⎝
∑

i :αi (t)≤y(t)

m(y(t) − αi (t))

⎞

⎠
2

.

Recall the definition of Mφ(y(t)) = ∑
i :αi (t)≤y(t) m(y(t) − αi (t)) from the proof of

the first moment convergence in (5.1). Then, from (5.11) and (5.6),

2e−2y(t)Mφ,(2)(y(t)) ≤
(

e−y(t)Mφ(y(t))
)2

=
(

e−y(t)
E[Z̃φ(y(t))|Ft ]

)2 + oa.s.(1)

=
(

e−y(t)
E[Zφ(y(t))|Ft ]

)2 + oa.s.(1). (5.21)

Using (5.16), asymptotics for the terms in (5.18), (5.19), (5.20) and (5.21) completes
the proof. ��

This completes the proof of the second moment namely (5.2). ��

5.2 Completing the proof of Theorem 3.3

The goal now is to transfer the continuous time embedding asymptotics in Theorem
5.1 to the discrete time process {Tn(p) : n ≥ 1}. In Lemma 2.2, recall the stopping
times Tn = inf{t ≥ 0 : n(t) = n + 1}, connecting the embedding of the discrete
process in continuous time.

Theorem 5.5 Let φ be a non-negative functional on T satisfying the assumptions in
Theorem 5.1. Let v(n) be a uniformly chosen vertex in the graph Tn(p). Let Tv(n) denote
the fringe tree of v(n). Then

E[φ(Tv(n) )|Tn] := 1

n + 1

n∑

i=0

φi (Tn − σi ) →
∫ ∞

0
e−s

E[φ(T ∗(s))]ds

in probability as n → ∞.

Proof Write

E[φ(Tv(n) )|Tn] = 1

n + 1

n∑

i=0

φi (Tn − σi ) := 1

n + 1
Zφ(Tn).

Let �(t) := e−t n(t). Note that, by Lemma 4.2, �(t)
a.s.−→ W and thus,

Tn − log n + log W
a.s.−→ 0. (5.22)

However, working the limit random variable W for finite t approximations of the
embedding is difficult so we will work with approximations of the limit W . Define
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tn = log n − √
log n, T̃n = log n − log�(tn). Using (5.22) and �(tn)

a.s.−→ W , we
get,

|T̃n − Tn| ≤ | log n − log W − Tn| + | log W − log�(tn)| a.s.−→ 0.

For ε > 0, define T ±
n (ε) := T̃n ± ε. For any ε > 0 there exists a random nε such

that for all n ≥ nε, T −
n (ε) ≤ Tn ≤ T +

n (ε) almost surely. Since φ is non-negative, for
n > nε,

e−T +
n (ε)Zφ(T −

n (ε)) ≤ e−TnZφ(Tn) ≤ e−T −
n (ε)Zφ(T +

n (ε)). (5.23)

Recall the limit random variable in Theorem 5.1 and to simplify notation let X :=
W
∫∞
0 e−s

E[φ(T ∗(s)]ds. Also recall that W ∼ Exp(1). Fix δ > 0. For any η > 0 we
can take ε > 0 such that,

P

(
(X + δ)e−2ε > X + δ/2, (X − δ)e2ε < X − δ/2

)

= P

(
X <

δ(e2ε − 1/2)

e2ε − 1
∧ δ(e−2ε − 1/2)

1− e−2ε

)
≥ 1− η. (5.24)

Write Aδ,ε = {(X + δ)e−2ε > X + δ/2, (X − δ)e2ε < X − δ/2}.

lim sup
n→∞

P(e−TnZφ(Tn) > X + δ)

≤ lim sup
n→∞

P(e−T −
n (ε)Zφ(T +

n (ε)) > X + δ)

+ lim sup
n→∞

P(e−TnZφ(Tn) > e−T −
n (ε)Zφ(T +

n (ε)))

= lim sup
n→∞

P(e2εe−T +
n (ε)Zφ(T +

n (ε)) > X + δ)

≤ lim sup
n→∞

P(e−T +
n (ε)Zφ(T +

n (ε)) > X + δ/2, Aδ,ε) + η, (5.25)

where the third line comes from (5.23) and the last line follows from (5.24). Note that
T ±

n (ε) = tn + (
√
log n − log�(tn) ± ε) is measurable with respect to Ftn and

√
log n − log�(tn) ± ε

a.s.−→ ∞ and

√
log n − log�(tn) ± ε

tn

a.s.−→ 0.

Thus applying Theorem 5.1, we get that for any δ, ε > 0, as n → ∞,

e−T ±
n (ε)Zφ(T ±

n (ε)) → X in probability.

Applying this back to (5.25) shows that lim supn→∞ P(e−TnZφ(Tn) > X +δ) ≤ η for
arbitrary η > 0, i.e., lim supn→∞ P(e−TnZφ(Tn) > X + δ) = 0. Following a similar
argument we have lim supn→∞ P(e−TnZφ(Tn) < X − δ) = 0, thus establishing

e−TnZφ(Tn)
P−→ X .
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Since e−Tn · (n + 1)
a.s.−→ W , combining this with the above equation gives,

E[φ(Tv(n) )|Tn] = 1

n + 1
Zφ(Tn) = Zφ(Tn)

eTn
· eTn

n + 1

→
∫ ∞

0
e−s

E[φ(T ∗(s))]ds in probability.

��

Proof of Theorem 3.3 To complete the proof of part (a), namely, the convergence in
probability in the fringe sense, it suffices to show that for any fixed finite rooted tree
s0, the function m(u) := P (T ∗(u) = s0) , u ≥ 0, is Lipschitz continuous in u. But
this follows upon noting that there exists a finite positive constant C(|s0|) depending
only on the size of s0 such that, for any u > 0, δ > 0,

∣∣P
(
T ∗(u + δ) = s0

)− P
(
T ∗(u) = s0

)∣∣

≤
∑

s⊆s0

P (There is a birth in the Yule process with initial population size |s| before time δ)

≤ C(|s0|)δ,

where the sum above is over all rooted subtrees of s0.
Next we prove part (c). Observe that, from part (a),E[D] = E (P1(τ )), whereP1(·)

is defined in Sect. 4.4 and τ is an independent Exp(1) random variable. Using Lemma
4.11,

E[D] = E(P1(τ )) =
∞∑

i=0

E(τ i )

i ! P(T1 = i) =
∞∑

i=0

P(T1 = i) = P(T1 < ∞),

where we have used E[τ i ] = i ! to obtain the second equality. By standard results
on recurrence of random walks, eg. see the Remark after Lemma 1 in [55], the last
term above is 1 if and only if E[Z ] ≤ 1. This proves the claimed assertions on E[D].
Further, again using Lemma 4.11,

E(|T ∗(τ,p)|) =
∞∑

k=0

E(Pk(τ )) =
∞∑

k=0

∞∑

i=0

E(τ i )

i ! P(Tk = i) =
∞∑

k=0

P(Tk < ∞)

= 1+
∞∑

k=1

(P(T1 < ∞))k .

The right hand side above is finite if and only if E[D] = P(T1 < ∞) < 1, proving
the assertions on expected tree size.

Part (b) now follows from Theorem 2.4 (a). ��

123



418 S. Banerjee et al.

6 Proofs: Degree distribution asymptotics

In this section, we prove Theorem 3.8. The high correlation in the evolution of degrees
of different vertices renders conventional tools inapplicable and one has to develop
new stochastic analytic techniques to track the degree evolution. The proofs of the
degree distribution upper bounds in Theorem 3.8 rely crucially on the asymptotics of
a weighted linear combination of vertex counts at different distances from the root of
T ∗, summarized in Theorem 6.2. This theorem also plays a key role in subsequent sec-
tions involving fixed vertex degree asymptotics and PageRank asymptotics. The lower
bounds in Theorem 3.8 rely on a softer analysis involving approximation by multitype
branching processes with finitely many types using tools developed in Sect. 4.5.

Recall the processP(·) = (Pi (·) : i ≥ 0) from Sect. 4.4 keeping track of the num-
ber of vertices at various levels in the process T ∗. Let τ ∼ Exp(1) be an independent
random variable. The limit in Theorem 3.3 now results in the following description of
the limit degree distribution.

Corollary 6.1 Let D be as in Theorem 3.3. Then D
d= P1(τ ).

Thus understanding the evolution ofP will play a key role in the proof of Theorem
3.8. We will begin by stating Theorem 6.2. Assuming this Theorem, we will prove
Theorem 3.8. The rest of the section compartmentalized in Sect. 6.1 is then devoted
to the proof of Theorem 6.2. Recall the matrix A = (Ai j ) as in (4.6). With s0 as in
Definition 3.6 let,

P�
s (t) =

∞∑

i=1

s−iPi (t), for t ≥ 0, s > 0, P�(t) ≡ P�
s0(t). (6.1)

Recall the p.g.f of p, f (·).
Theorem 6.2 (i) For any s > 0 such that f (s) < ∞ and for all t ≥ 0,

E[P�
s (t)] ≤ p0

f (s)
e

f (s)
s t . (6.2)

(ii) When E[Z ] ≤ 1, for any s ∈ [1, s0], θ ≥ 1, there exists constant Cθ,s < ∞ such
that,

E[(P�
s (t))θ ] ≤ Cθ,se

f (s)
s θ t , ∀t > 0. (6.3)

(iii) When E[Z ] > 1 so that s0 < 1 by Lemma 3.7, let α∗(θ) := max{ f (sθ
0 )

sθ
0

, θ
R }. For

any θ ≥ 1, there exists some constant Cθ > 0 such that for all t ≥ 0,

E[(P�(t))θ ] ≤ Cθ (1+ tθ )eα∗(θ)t . (6.4)

Corollary 6.3 Define P̃�
s(t) :=∑∞

i=1 s−i P̃i (t).
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(i) For all t ≥ 0 and s ≥ 1 such that f (s) < ∞,

E[P̃�
s(t)] ≤ p0

f (s)
e

f (s)
s t .

(ii) When E[Z ] ≤ 1, for any s ∈ [1, s0], θ ≥ 1, there exists constant Cθ,s < ∞ such
that,

E[(P̃�
s(t))

θ ] ≤ Cθ,se
f (s)

s θ t , ∀t > 0. (6.5)

Proof The result follows from the same proof as of Theorem 6.2 upon noting that
(s−i : i ≥ 0) is a left subinvariant eigenvector of B associated with the eigenvalue
f (s)/s when s ≥ 1 (see Proposition 4.12(b)). ��
The proof of Theorem 6.2 is deferred to the end of this section. The above bounds

coupled with the preliminary analysis of P1 in Sect. 4.5 immediately lead to the
following two Corollaries.

Corollary 6.4 For any δ > 0, we have the following limit

lim
t→∞ e

−
(

1
R −δ

)
tP1(t) = ∞ a.s. (6.6)

lim
t→∞ t−(1+δ)e−t/RP1(t) = 0 a.s. (6.7)

Proof Fix δ ∈ (0, 1/R). Using Proposition 4.16 choose k = kδ ∈ N large enough
such that the Perron–Frobenius eigenvalue αk of the k × k principal submatrix Ak of
A satisfies

1

R
− δ

2
< αk ≤ 1

R
.

By the stochastic domination in Lemma 4.14 and the limit result for finite urns in
Proposition 4.15,

lim
t→∞ e

−
(

1
R −δ

)
tP1(t) = lim

t→∞ e
−
(

1
R −δ

)
(t+σ1)P1(t + σ1)

≥ e
−
(

1
R −δ

)
σ1 lim

t→∞ e
−
(

1
R −δ

)
t P̄1(t)

≥ e
−
(

1
R −δ

)
σ1 lim

t→∞ eδt/2 · (e−αk t P̄1(t)) = ∞ a.s.

This proves (6.6). To prove (6.7), for any given ε > 0 and N ≥ 0 we can define the
event

EN =
{

sup
s∈[N ,N+1]

s−(1+δ)e−s/RP1(s) > ε

}
.
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By Theorem 6.2, for any t ≥ 0

E[P1(t)] ≤ s0E[P�(t)] ≤ p0s0
f (s0)

e
f (s0)

s0
t = p0Ret/R .

Hence,

P(EN ) ≤ P(P1(N + 1) > εeN/R N 1+δ) ≤ E[P1(N + 1)]
εeN/R N 1+δ

≤ p0Re(N+1)/R

εeN/R N 1+δ
= p0Re1/R

εN 1+δ
.

Applying Borel-Cantelli Lemma then gives P(lim supN→∞ EN ) = 0. Hence,

t−(1+δ)e−t/RP1(t)
a.s.−→ 0,

proving (6.7). ��
Corollary 6.5 Let τ ∼ Exp(1) independent of T ∗.

(i) When E[Z ] ≤ 1, for θ ∈ [1, s
f (s) ) and s ∈ [1, s0], E[(P�

s (τ ))θ ] < ∞.

(ii) When E[Z ] > 1, let q∗ < 1 be as in Definition 3.6. For θ ∈ [1, R ∧ log q∗
log s0

),

E[(P�(τ ))θ ] < ∞.

Proof (i) Simply follows from (6.3). For θ ∈ (0, s
f (s) ),

E[(P�
s (τ ))θ ] =

∫ ∞

0
e−t

E[(P�
s (t))θ ]dt ≤ Cθ,s

∫ ∞

0
e−t e

f (s)
s θ t dt < ∞.

(ii)We first start by evaluatingα∗(·) in Theorem 6.2(iii). ForE[Z ] > 1 and θ ∈ [1, R∧
log q∗
log s0

)we obviously have then θ/R < 1. Further, noting that s0 ≥ sθ
0 > s(log q∗)/(log s0)

0 ,
Lemma 3.7(a) gives

f (sθ
0 )

sθ
0

<
f (s(log q∗)/(log s0)

0 )

s(log q∗)/(log s0)
0

= f (q∗)
q∗

= 1.

Hence α∗(θ) < 1. Using (6.5) gives

E[(P�(τ ))θ ] =
∫ ∞

0
e−t

E[(P�(t))θ ]dt ≤ Cθ

∫ ∞

0
e−t (1+ tθ )eα∗(θ)t dt < ∞,

from which the result follows. ��
Proof of Theorem 3.8 assuming Theorem 6.2 Throughout we use the representation in
Corollary 6.1.
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Upper bound for the tail exponent: Note that by construction, for any s > 0,
P1(t) ≤ sP�

s (t). We start with the regime E[Z ] ≤ 1. Note that s/ f (s) ↑ R as s ↑ s0.
Corollary 6.5(i) gives that for any δ ∈ (0, R), there exists some sδ > 0 such that

E(P1(τ )R−δ) ≤ sδE(P�
sδ (τ )R−δ) ≤ sδCδ.

It follows that

P(D ≥ k) = P(P1(τ ) ≥ k) ≤ E[(P1(τ ))R−δ]
k R−δ

≤ sδCδ

k R−δ
, (6.8)

for finite constant Cδ . This implies that,

lim sup
k→∞

logP(D ≥ k)

log k
≤ lim sup

k→∞
log(sδCδ) − (R − δ) log k

log k
= −R + δ.

As δ > 0 can be chosen arbitrarily small, this completes the upper bound for the tail
exponent when E[Z ] ≤ 1.

The case E[Z ] > 1 follows the exact same argument but using Corollary 6.5(ii)
with the exponent R in (6.8) replaced by R ∧ log q∗

log s0
.

Lower bound for the tail exponent: Here we want to show that R is a lower bound
on the tail exponent in all regimes. Fix 0 < δ < R. Note that for any fixed k ≥ 1,

P(D ≥ k) =
∫ ∞

0
e−s

P(P1(s) ≥ k)ds =
∫ ∞

0
e−s

P

(
e−

s
R+δ P1(s) ≥ e−

s
R+δ k

)
ds

≥
∫
{

s:e− s
R+δ k≤1

} e−s
P

(
e−

s
R+δ P1(s) ≥ 1

)
ds

=
∫ ∞

(R+δ) log k
e−s

P

(
e−

s
R+δ P1(s) ≥ 1

)
ds. (6.9)

By (6.6) in Corollary 6.4, e−
s

R+δ P1(s) → ∞ a.s. Thus there exists k0 ≥ 1 such that

P

(
e−

s
R+δ P1(s) ≥ 1

)
≥ 1/2 for all s ≥ (R + δ) log k0. Thus, for k ≥ k0, we have

P(D ≥ k) ≥ 1

2

∫ ∞

(R+δ) log k
e−sds = 1

2k R+δ
,

which leads to lim infk→∞ logP(D ≥ k)/log k ≥ −(R+δ) for arbitrarily small δ > 0.
��

6.1 Proof of Theorem 6.2

The following lemma gives a tractable formulation for the expectation of powers of
P�. This will be used to set up differential equations involving E[(P�(·))θ ] for θ ≥ 1
whose analysis will lead to the proof of Theorem 6.2. In the following, a crucially
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used object will be the generator L̄ of the continuous time Markov process P(·)
taking values in

S̄ :=
{
x = (xi : i ≥ 0) ∈ (N0)

N0 : x0 = 1, ∃ lx ∈ N

such that xl > 0 ∀ l ≤ lx and xl = 0 ∀ l > lx} .

For any function f : S̄ → R, define the action of the generator L̄ on f as the function
L̄ f : S̄ → R given by

L̄ f (x) =
∞∑

i=1

[ f (x+ ei ) − f (x)]
∞∑

j=0

Ai j x j , x ∈ S̄,

whenever the right hand side above is well-defined (here ei is the i-th coordinate unit
vector). For notational convenience, for g : S̄ → R, we will write L[g(P(t))] :=
L̄g(P(t)), t ≥ 0.

Lemma 6.6 For any s > 0, t ≥ 0 and θ ≥ 1,

E[(P�
s (t))θ ] =

∫ t

0
E[L[(P�

s (r))θ ]]dr < ∞, (6.10)

where

L[(P�
s (t))θ ] =

∞∑

i=1

[
(P�

s (t) + s−i )θ − (P�
s (t))θ

] ∞∑

j=0

Ai jP j (t). (6.11)

Proof Let Yule(·) denote a rate one Yule process as in Lemma 4.5, let Y (t) = |Yule(t)|
denote the size and ht(t) the corresponding height of the genealogical tree at time t .
Note that the height of T ∗(t) is stochastically dominated by the height ht(t) of the
Yule process. Thus for any θ ≥ 1 using Cauchy-Schwartz inequality,

E[(P�
s (t))θ ] ≤ E[( sup

i≤ht(t)
s−i · Y (t))θ ] ≤ E[(1 ∨ s−θht(t))(Y (t))θ ]

≤
√

E[(1 ∨ s−2θht(t))]
√

E[(Y (t))2θ ] < ∞,

where the finiteness of the first term follows from Lemma 4.5 and finiteness of
the second term follows from distributional identity Y (t) ∼ Geometric(e−t ). This
proves E[(P�

s (t))θ ] < ∞. To prove (6.10), first consider the truncation P�
s,N (t) =

∑N
i=1 s−iPi (t). Applying the generator of the Markov process P(·) gives

E[(P�
s,N (t))θ ] =

∫ t

0
EL[(P�

s,N (r))θ ]dr
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where,

L[(P�
s,N (t))θ ] :=

∞∑

i=1

1{i≤N }
[
(P�

s,N (t) + s−i )θ − (P�
s,N (t))θ

] ∞∑

j=0

Ai jP j (t).

Note that for each i ≥ 1,

1{i≤N }
[
(P�

s,N (t) + s−i )θ − (P�
s,N (t))θ

]
↗
[
(P�

s (t) + s−i )θ − (P�
s (t))θ

]

as N → ∞. By monotone convergence theorem,

E[(P�
s (t))θ ] = lim

N→∞ E[(P�
s,N (t))θ ] =

∫ t

0
E[L[(P�

s (r))θ ]]dr .

��
Remark 13 By the same argument conditional on Fu for any fixed u ≥ 0, it follows
that E[(P�

s (t + u)θ − (P�
s (u))θ |Fu] = ∫ t+u

u E[L[(P�
s (r))θ ] |Fu]dr , t ≥ 0. This

implies that the process
(
P�

s (t)θ − ∫ t
0 L[(P�

s (r))θ ]dr
)

t≥0
is a martingale.

Proof of Theorem 6.2(i) We begin by proving (6.2) namely θ = 1 case. Using (6.11)
and the form of A gives,

L(P�
s (t)) =

∞∑

i=1

s−i
∞∑

j=i−1

p j−i+1P j (t) =
∞∑

j=0

⎡

⎣
j+1∑

i=1

s−i p j−i+1

⎤

⎦P j (t),

=
∞∑

j=0

⎡

⎣
j+1∑

i=1

s j−i+1 p j−i+1

⎤

⎦ s−( j+1)P j (t) ≤ p0
s

+ f (s)

s

∞∑

j=1

s− jP j (t)

= p0
s

+ f (s)

s
P�(t).

Here we have essentially re-derived Proposition 4.12(a) on (s−i : i ≥ 0) being a
sub-invariant eigenvector with eigenvalue f (s)/s. Using Lemma 6.6 gives

d

dt
E(P�

s (t)) ≤ p0
s

+ f (s)

s
E(P�

s (t)).

Integrating completes the proof. ��
Proof of Theorem 6.2(ii) To prove (6.3), we will first start by assuming that θ is an
integer and argue by induction. After completing the proof for integer θ , we will
extend the proof to general θ . By (6.2), the assertion is true when θ = 1. We will use
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Ai j instead of p j−i+1 for ease of notation. Suppose (6.3) holds for θ ≤ k − 1.

L[(P�
s (t))k] =

∞∑

i=1

[
(P�

s (t) + s−i )k − (P�
s (t))k

] ∞∑

j=0

Ai jP j (t)

=
∞∑

i=1

k∑

l=1

(
k

l

)
(P�

s (t))k−l s−il
∞∑

j=0

Ai jP j (t)

≤
∞∑

i=1

k∑

l=1

(
k

l

)
(P�

s (t))k−l s−i
∞∑

j=0

Ai jP j (t)

=
k∑

l=1

(
k

l

)
(P�

s (t))k−l
∞∑

j=0

( ∞∑

i=1

s−i Ai j

)
P j (t)

≤
k∑

l=1

(
k

l

)
(P�

s (t))k−l
(

s−1 p0 + f (s)

s
P�

s (t)

)

= k f (s)

s
(P�

s (t))k + f (s)

s

k∑

l=2

(
k

l

)
(P�

s (t))k−l+1

+ s−1 p0

k∑

l=1

(
k

l

)
(P�

s (t))k−l .

Here the key inequality in line two follows fromassuming that s ≥ 1 so that s−il ≤ s−i ,
whilst the inequalities in the ensuing lines mimic calculations in the θ = 1 case.
By the induction hypothesis, for 1 ≤ i ≤ k − 1, ∃ finite constants Ci,s such that
E((P�

s (t))i ) ≤ Ci,s exp(
f (s)

s i · t). Let C̃k,s := max1≤i≤k−1{Ci,s}. Using Lemma 6.6
gives,

d

dt

[
e−k f (s)

s t
E[(P�

s (t))k]
]
≤ e−k f (s)

s t

[
f (s)

s

k∑

l=2

(
k

l

)
E[(P�

s (t))k−l+1]

+s−1 p0

k∑

l=1

(
k

l

)
E[(P�

s (t))k−l ]
]

≤ C̃k,se−
f (s)

s t ·
[

f (s)

s

k∑

l=2

(
k

l

)
e−(l−2) f (s)

s t

+s−1 p0

k∑

l=1

(
k

l

)
e−(l−1) f (s)

s t

]

≤ C̃k,se−
f (s)

s t · 2k
(

f (s)

s
+ s−1 p0

)
.
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Therefore, there exists Ck,s > 0 so that

E[(P�
s (t))k] ≤ C̃k,sek f (s)

s t
∫ t

0
e−

f (s)
s r dr · 2k

(
f (s)

s
+ s−1 p0

)
≤ Ck,sek f (s)

s t ,

proving (6.3) for θ = k. To extend to θ ∈ (k − 1, k], we apply Jensen’s inequality to
obtain,

E[(P�
s (t))θ ] ≤ E[(P�

s (t))k] θ
k ≤ C

θ
k

k,seθ
f (s)

s t = Cθ,seθ
f (s)

s t .

��
Proof of Theorem 6.2(iii) It remains to prove (6.5) when E[Z ] > 1 so that s0 < 1.
Recall that P� = P�

s0 . Note that for any θ > 1, i ≥ 1,

(P�(t) + s−i
0 )θ − P�(t)θ ≤ θs−i

0 P�(t)θ−1

+ θ(θ − 1)

2
s−2i
0

[
P�(t)θ−2 ∨ (P�(t) + s−i

0 )θ−2
]
.

It follows that

L[(P�(t))θ ] =
∞∑

i=1

[
(P�(t) + s−i

0 )θ − (P�(t))θ
] ∞∑

j=0

Ai jP j (t)

≤
∞∑

i=1

θs−i
0 P�(t)θ−1

∞∑

j=0

Ai jP j (t)

+
∞∑

i=1

θ(θ − 1)

2
s−2i
0

[
P�(t)θ−2 ∨ (P�(t) + s−i

0 )θ−2
] ∞∑

j=0

Ai jP j (t).

(6.12)

Since
∑∞

j=0 Ai jP j (t) = ∑∞
j=i−1 p j+1−iP j (t), it is easy to see

∑∞
j=0 Ai jP j (t) > 0

only when Pi−1(t) ≥ 1, which implies P�(t) ≥ s−(i−1)
0 .

Hence for θ ≥ 2,

[
P�(t)θ−2 ∨ (P�(t) + s−i

0 )θ−2
] ∞∑

j=0

Ai jP j (t) ≤ (1+ 1/s0)
θ−2P�(t)θ−2

∞∑

j=0

Ai jP j (t).

Taking into account the case where θ ∈ (1, 2), we have

[
P�(t)θ−2 ∨ (P�(t) + s−i

0 )θ−2
] ∞∑

j=0

Ai jP j (t) ≤
(
1 ∨ (1+ 1/s0)

θ−2
)
P�(t)θ−2

∞∑

j=0

Ai jP j (t).
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Plugging this back into (6.12) gives

L[(P�(t))θ ] ≤ θP�(t)θ−1
∞∑

j=0

( ∞∑

i=1

s−i
0 Ai j

)
P j (t)

+ θ(θ − 1)

2

(
1 ∨ (1+ 1/s0)

θ−2)P�(t)θ−2
∞∑

j=0

( ∞∑

i=1

s−2i
0 Ai j

)
P j (t)

≤ θ p0
s0

P�(t)θ−1 + θ

R
P�(t)θ + θ(θ − 1)

2

(
1 ∨ (1+ 1/s0)

θ−2) p0
s20

P�(t)θ−2

+ θ(θ − 1)

2

(
1 ∨ (1+ 1/s0)

θ−2) f (s20 )

s20
P�(t)θ−2

∞∑

j=1

s−2 j
0 P j (t).

Define d(t) = sup{i ≥ 0 : Pi (t) ≥ 1}. Observe that, since s0 ∈ (0, 1),∑∞
j=1 s−2 j

0 P j (t) ≤ s−d(t)
0 P�(t). Hence,

L[(P�(t))θ ] ≤
(

θ p0
s0

+ θ(θ − 1)

2

(
1 ∨ (1+ 1/s0)

θ−2
) f (s20 )

s20
s−d(t)
0

)
P�(t)θ−1

+ θ

R
P�(t)θ + θ(θ − 1)

2

(
1 ∨ (1+ 1/s0)

θ−2
) p0

s20
P�(t)θ−2

≤ C̃θ s−d(t)
0 P�(t)θ−1 + θ

R
P�(t)θ , (6.13)

for some finite constant C̃θ that depends on θ, s0 and p0. Notice that the termP�(t)θ−2

can be upper bounded by P�(t)θ−1 for all θ ≥ 1 since P�(t) ≥ 1. For any θ ≥ 1,

d

dt
E[P�(t)θ ] = E

[
L[(P�(t))θ ]] ≤ C̃θE[s−d(t)

0 P�(t)θ−1] + θ

R
E[P�(t)θ ]

≤ C̃θ

(
E[P�(t)θ ])

θ−1
θ

(
E[s−θd(t)

0 ]
) 1

θ + θ

R
E[P�(t)θ ].

By the definition of α∗(θ) and (6.2),

E[s−θd(t)
0 ] ≤ E

⎡

⎣
∞∑

j=1

s− jθ
0 P j (t)

⎤

⎦ ≤ p0
f (sθ

0 )
e

f (sθ0 )

sθ0
t ≤ p0

f (sθ
0 )

eα∗(θ)t .

Let g(t) = e−α∗(θ)t
E[P∗(t)θ ] and C ′

θ = C̃θ

(
p0

f (sθ
0 )

)1/θ

. Then

g′(t) ≤ C ′
θ (g(t))

θ−1
θ . (6.14)
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Define h(t) = 1+ g(0)1/θ + 2C ′
θ

θ
t − g(t)1/θ . Then (6.14) implies that,

h′(t) = 2C ′
θ

θ
− 1

θ
g′(t)(g(t))

1
θ
−1 ≥ C ′

θ

θ
.

Since h(0) > 0 we have h(t) > 0. It then follows that there exists some Cθ > 0 so
that g(t) ≤ Cθ (1+ tθ ) for all t ≥ 0, i.e.,

E[P�(t)θ ] ≤ Cθ (1+ tθ )eα∗(θ)t ,

which is assertion (iii). ��

7 Proofs: Condensation and fixed vertex degree asymptotics

We abbreviate dn(vk) = deg(vk, n), k ≥ 0, n ≥ k. We will first prove the non-root
fixed vertex asypmtotics.

Proof of Theorem 3.10 This follows from a direct application of Corollary 6.4. Using
the continuous time embedding, note that for any i ≥ 1,

{dn(vi ) : n ≥ i} d= {Pvi
1 (Tn − σi ) : n ≥ i},

where as before Tn = inf{t ≥ 0 : |T (t)| = n + 1}, σi is the birth time of vi and
Pvi
1 (t) denotes the number of children of vertex vi in T (t + σi ). Observe that Pvi

1 (·)
has the same distribution as the process P1(·). By Lemma 4.3, eTn

n
a.s.−→ 1

W where
W ∼ Exp(1). It follows from (6.6) that

dn(vi )

n1/R−δ
= Pvi

1 (Tn − σi )

n1/R−δ
= Pvi

1 (Tn − σi )

e(1/R−δ)(Tn−σi )
·
(

e(Tn−σi )

n

)1/R−δ
a.s.−→ ∞.

Similarly, by (6.7),

dn(vi )

n1/R(log n)1+δ
= Pvi

1 (Tn − σi )

n1/R(log n)1+δ

= Pvi
1 (Tn − σi )

e(Tn−σi )/R · (Tn − σi )1+δ
·
(

e(Tn−σi )

n

)1/R

·
(

Tn − σi

log n

)1+δ
a.s.−→ 0.

��
Now we proceed to root degree asymptotics.

Proof of Theorem 3.9(a) Recall that Tn is the stopping time when n(t) = |T (t)| first
becomes n + 1. Standard properties of the Yule process (see Lemma 4.2) imply that

P(|Tn − log n| ≥ M) ≤ 2e−M ,
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where M > 0 will be chosen later.
For any fixed ε > 0, it follows from Theorem 4.21 that there is some t0(ε) > 0

such that for t ≥ t0,
E|e−t P̃1(t) − W∞| ≤ ε3, (7.1)

where W∞ := (1− q∗)W .
For any n ≥ et0+M and some δ > 0 to be chosen later, let an,0 = log n − M and

define an,i = an,i−1 + δ for i ≥ 1. Then we can observe that

E|e−Tn P̃1(Tn) − W∞| ≤
�2M/δ�∑

i=0

E

[
|e−Tn P̃1(Tn) − W∞| · 1{ai≤Tn<ai+1}

]

+ E

[
|e−Tn P̃1(Tn) − W∞| · 1{|Tn−log n|≥M}

]
. (7.2)

To address the second term in (7.2), note that

E

[
|e−Tn P̃1(Tn) − W∞| · 1{|Tn−log n|≥M}

]

≤
(
E[(e−Tn P̃1(Tn) − W∞)2]

)1/2 · P(|Tn − log n| ≥ M)1/2

≤ √
2
(
2(n + 1)2E[e−2Tn ] + 2E[W 2∞]

)1/2
e−M/2.

To upper bound (n + 1)2E[e−2Tn ], write Xn = (n + 1)2e−2Tn . Observe that

E[Xn+1] = (n + 2)2E[e−2(Tn+1−Tn)e−2Tn ]

= E[e−2Tn ](n + 2)2 · n + 1

n + 3
= E[Xn] · (n + 2)2

(n + 1)(n + 3)
,

where we used the observation Tn+1 − Tn ∼ Exp(n + 1) and is independent of Tn .
Hence, for any n ≥ 1,

E[Xn+1] = E[Xn]
(
1+ 1

(n + 1)(n + 3)

)
≤ E[Xn]

(
1+ 1

n2

)

≤ E[X0]
n∏

k=1

e1/k2 ≤ C0

for some constant C0 > 0. This combined, along with the explicit form of W∞, shows

that there exists some constant C > 0 so that
√
2
(
2E[e−2Tn n(Tn)2] + 2E[W 2∞])1/2 ≤

C . Taking M = 2 log(2C/ε) then gives

E

[
|e−Tn P̃1(Tn) − W∞| · 1{|Tn−log n|≥M}

]
≤ ε/2. (7.3)
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For t ∈ [ai , ai+1), we have e−ai+1P̃1(ai ) ≤ e−t P̃1(t) ≤ e−ai P̃1(ai+1). Hence,

E

[
|e−Tn P̃1(Tn) − W∞| · 1{ai≤Tn<ai+1}

]

≤ E

[
max{|e−ai+1P̃1(ai ) − W∞|, |e−ai P̃1(ai+1) − W∞|} · 1{ai≤Tn<ai+1}

]

≤ E

[
max{e−δ|e−ai P̃1(ai ) − W∞|, eδ|e−ai+1P̃1(ai+1) − W∞|} · 1{ai≤Tn<ai+1}

]

+max{eδ − 1, 1− e−δ}E[W∞ · 1{ai≤Tn<ai+1}]
≤ e−δ

E|e−ai P̃1(ai ) − W∞| + eδ
E|e−ai+1P̃1(ai+1) − W∞|

+ 2δE[W∞ · 1{ai≤Tn<ai+1}]

where the last term follows from choosing δ ∈ (0, 1) to be sufficiently small so that
max{eδ −1, 1− e−δ} ≤ 2δ. Since n ≥ et0+M , for all i ≥ 0 we have ai ≥ t0. Applying
(7.1) to t = ai and t = ai+1 yields

E

[
|e−Tn P̃1(Tn) − W∞| · 1{ai≤Tn<ai+1}

]
≤(eδ + e−δ)ε3 + 2δE[W∞ · 1{ai≤Tn<ai+1}]
≤4ε3 + 2δE[W∞ · 1{ai≤Tn<ai+1}].

Hence, the first term in (7.2) satisfies

�2M/δ�∑

i=0

E

[
|e−Tn P̃1(Tn) − W∞| · 1{ai≤Tn<ai+1}

]
≤

�2M/δ�∑

i=0

(
4ε3 + 2δE[W∞ · 1{ai≤Tn<ai+1}]

)

≤ (�2M/δ� + 1)4ε3 + 2δE[W∞].

Take δ = ε/8. It follows from our choice of M = 2 log(2C/ε) that there exists ε0 > 0
such that for all ε ∈ (0, ε0) is sufficiently small we have (�2M/δ� + 1)4ε3 ≤ ε/4.
Since E[W∞] ≤ 1,

�2M/δ�∑

i=0

E

[
|e−Tn P̃1(Tn) − W∞| · 1{ai≤Tn<ai+1}

]
≤ ε/4+ 2(ε/8) = ε/2. (7.4)

Collecting (7.4) and (7.3) in (7.2) gives that for any ε ∈ (0, ε0), there exist some
t0, M > 0 depending on ε so that for all n ≥ et0+M ,

E|e−Tn P̃1(Tn) − W∞| ≤ ε.

Thus we have established the L
1-convergence of e−Tn P̃1(Tn) to W∞. By Lemma 4.3,

eTn /(n + 1)
a.s.−→ 1/W where W ∼ Exp(1). Hence,

P̃1(Tn)/(n + 1)
P−→ W∞/W = 1− q∗. (7.5)

The result now follows upon noting that { dn(v0)
n+1 : n ≥ 0} d= { P̃1(Tn)

n+1 : n ≥ 0}. ��
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Proof of Theorem 3.9(b) Let δ > 0 be given. Note that {dn(v0) : n ≥ 1} d= {P̃1(Tn) :
n ≥ 1}. It is easy to see P̃1(·) dominates P1(·) and hence it follows from the proof of
Theorem 3.10 that

dn(v0)

n1/R−δ

a.s.−→ ∞.

In the fringe regime E[Z ] ≤ 1 we have s0 ≥ 1. Using Corollary 6.3(i) with
s = s0 ≥ 1 to replace the estimate from Theorem 6.2(i) in the proof of (6.7) in
Corollary 6.4 yields

lim
t→∞ t−(1+δ)e−t/RP̃1(t) = 0 a.s. (7.6)

The same argument as in the proof Theorem 3.10 then gives

dn(v0)

n1/R(log n)1+δ

a.s.−→ 0.

��

8 Proofs: Height

Recall the processes and notation of Lemma 4.6 as well as κ0, s∗ fromDefinition 3.11.
The main goal of this section is to show the following:

Proposition 8.1 (i) Fringe regime: When E[Z ] ≤ 1,

HT (t)/t
a.s.−→ κ0 as t → ∞.

(ii) Non-Fringe regime: When E[Z ] > 1, as t → ∞,

HT (t)

t
a.s.−→

{
κ0 if s∗ ∈ (0, q∗],

1
log(1/q∗) if s∗ ∈ (q∗, s0],

where q∗ is defined as in Definition 3.6(b).

Proof of Theorem 3.12 assuming Proposition 8.1 By the continuous time embedding,
Hn = HT (Tn) where Tn as before is the time for T to get to size n + 1. By Lemma

4.3(b) Tn/ log n
a.s.−→ 1. Combining this with Proposition 8.1 completes the proof. ��

The rest of this section is devoted to the proof of Proposition 8.1. Recall from
Lemma 3.7 that under Assumptions 3.2 and 3.5, q∗ < s0 < 1 when E[Z ] > 1. Recall
that κ(s) := f (s)

s log(1/s) , s ∈ (0, 1).

Lemma 8.2 (i) Suppose E[Z ] > 1. For x > 0, the infimum of s �→ x log s + f (s)/s
is uniquely attained at some s∗x ∈ (0, s0] that satisfies x = f (s∗x )/s∗x − f ′(s∗x ). In
particular, s∗ = s∗κ0 ∈ (0, s0].
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(i) The infimum of s �→ κ(s) is uniquely attained at s∗.

Proof To prove part (i), for x > 0, write hx (s) = x log s + f (s)/s, s ∈ (0, 1). As
both log s and f (s)/s are increasing on (s0, 1), we see that

inf
s∈(0,1)

hx (s) = inf
s∈(0,s0]

hx (s).

Differentiating hx (s) leads to h′
x (s) = x−( f (s)/s− f ′(s))

s , which implies that the infimum
is attained at some s∗x ∈ (0, s0] satisfying the equation x = f (s∗x )/s∗x − f ′(s∗x ). As
f (s)/s and − f ′(s) are both strictly decreasing on (0, s0], the solution s∗x to this
equation is unique.

For part (ii), it is easy to see that κ(s) is increasing on (s0, 1) so we can restrict our
attention to (0, s0]. Differentiating κ(s) leads to

κ ′(s) = log(1/s)(s f ′(s) − f (s)) + f (s)

(s log(1/s))2
=

s f ′(s) − f (s) + f (s)
log(1/s)

s2 log(1/s)
.

It is straightforward to check that both s f ′(s)− f (s) and f (s)
log(1/s) are strictly increasing

on (0, s0]. Hence, the infimum of κ(·) is uniquely attained at s such that κ ′(s) = 0,
i.e.,

f (s)/s − f ′(s) = f (s)

s log(1/s)
.

By part (i) and (ii), we have f (s∗)/s∗ − f ′(s∗) = κ0 = f (s∗)
s∗ log(1/s∗) , i.e., s∗ is the

unique point where κ(·) is minimized. ��
Proof of Proposition 8.1 Fringe regime. Suppose E[Z ] ≤ 1. Lemma 4.6 and Propo-
sition 4.8 give lim inf t→∞ HT (t)/t ≥ κ0 almost surely. It remains to prove a
corresponding upper bound.

Let s ∈ (0, 1) and recall that we defined P�
s (t) = ∑∞

i=1 s−iPi (t). Using (6.2) in
Theorem 6.2 gives for any s ∈ (0, 1), non-negative x, t and t ′ ∈ (0, t),

P(HT ∗(t−t ′) ≥ xt) = P(s−HT ∗(t−t ′) ≥ s−xt ) ≤ P(P�
s (t − t ′) ≥ s−xt )

≤ sxt
E[P�

s (t − t ′)] ≤ p0
f (s)

exp

(
t(x log s + f (s)/s) − t ′ f (s)

s

)
. (8.1)

By definition, κ0 is the infimum of x such that infs∈(0,1){x log s + f (s)/s} < 0. It
follows from Lemma 8.2(i) that for any x > κ0, there exists s∗x ∈ (0, s0] such that

− δ := inf
s∈(0,1)

{x log s + f (s)/s} = x log s∗x + f (s∗x )/s∗x < 0. (8.2)

Note that in T (·), all subtrees rooted at level one evolve as T ∗(·). In order for T (t) to
have height larger than �xt�, one of the subtrees rooted at level one need to achieve
height at least xt .
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With R as in Definition 3.6, we partition the time interval [0, t] into segments
{[ti , ti+1] : i ≥ 0} where t0 = 0 and ti+1 = (ti + m R) ∧ t for some positive constant
m to be chosen later. Let Si = {vi j : j ≥ 0} denote the set of vertices at level one that
arrived during (ti , ti+1]. Fix any ε > 0. For i ≥ 0, define the event

Ei (t) = {one of the subtrees Tvi j rooted at vi j ∈ Si has height at least (κ0 + ε)t at time t}.
(8.3)

In the fringe regime, using Corollary 6.3(i) with s = s0 ≥ 1 gives

E(|Si |) ≤ E(P̃1(ti+1)) ≤ p0Reti+1/R .

Recall that by Lemma 3.7(a), f (s)/s ≥ 1/R for s ∈ (0, 1). Using (8.1) with t ′ = ti ,
x = κ0 + ε and s = s∗x as in (8.2) gives, writing δ := δx ,

P(Ei (t)) ≤ E(|Si |) · P(HT ∗(t−ti ) ≥ xt)

≤ p20 R

f (s∗x )
exp

(
ti+1

R
+ t(x log s∗x + f (s∗x )/s∗x ) − f (s∗x )

s∗x
ti

)

≤ p20 R

f (s∗x )
exp(−δt + ti+1 − ti

R
) ≤ p0R e−δt+m . (8.4)

Let i0 = min{i ≥ 0 : ti+1 ≥ t}. Note that i0 ≤ t/(m R). It follows that

P(HT (t) > �xt�) ≤ P(∪i0
i=0Ei (t)) ≤

(
t

m R
+ 1

)
p0R e−δt+m .

Choosing m = (δt)/2 we have

P(HT (t) > �xt�) ≤ (2/(δR) + 1)p0R e−δt/2. (8.5)

Given any ε > 0 and N ≥ 0 we can define the event

EN = {∃t ∈ [N , N + 1] : HT (t) > �(x + ε)t�}.

Let dN = (x + ε) N
N+1 . When N is sufficiently large, dN > x . Then (8.5) gives

P(EN ) ≤ P(HT (N+1) > �(x + ε)N�) = P(HT (N+1) > �dN (N + 1)�)
≤ (2/(δR) + 1)p0R e−δ(N+1)/2.

Applying Borel-Cantelli Lemma then gives P(lim supN→∞ EN ) = 0. As x = κ0 + ε

and ε > 0 is arbitrary,

lim sup
t→∞

HT (t)

t
≤ κ0 almost surely.

Combining this with the lower bound completes the proof for the case E[Z ] ≤ 1.
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Non-fringe regime with s∗ ∈ (0, q∗]. Recall from Lemma 8.2 that κ0 = f (s∗)/s∗ −
f ′(s∗). Using Lemma 3.7(a), f (s)/s− f ′(s) is a strictly decreasing function on (0, s0]
and f (s)/s − f ′(s) ↑ ∞ as s ↓ 0, for any x > κ0, there exists some s∗x < s∗ such
that

x = f (s∗x )/s∗x − f ′(s∗x ).

As before, fix any ε > 0 and set x = κ0 + ε. It follows from Lemma 8.2(i) that the
infimum of s �→ x log s + f (s)/s on (0, 1) is uniquely achieved at s∗x and by the
definition of κ0 we see that

−δ := inf
s∈(0,1)

{x log s + f (s)/s} = x log(s∗x ) + f (s∗x )/s∗x < 0.

Define {Ei (t)}i≥0 as in (8.3). Since s∗x < s∗ ≤ q∗ we have f (s∗x )/s∗x ≥ f (q∗)/q∗ =
1. By a similar calculation as (8.4) with E(|Si |) ≤ E(|T (ti+1)|) = exp(ti+1) and
s = s∗x , ti+1 = (ti + m) ∧ t , we can obtain

P(Ei (t)) ≤ E(|Si |) · P(HT ∗(t−ti ) ≥ (κ0 + ε)t)

≤ p0
f (s∗x )

exp

(
ti+1 + t((κ0 + ε) log s∗x + f (s∗x )/s∗x ) − f (s∗x )

s∗x
ti

)

≤ p0
f (s∗x )

exp(−δt + (ti+1 − ti )) ≤ e−δt+m .

The rest of the proof follows from the same arguments as the case before by choosing
m = δt/2.

Non-fringe regime with s∗ ∈ (q∗, s0]. We begin by proving the upper bound. Fix ε >

0.Let {Ei (t)}i≥0 be events defined as in (8.3)withκ0+ε replacedby (log(1/q∗))−1(1+
ε). Using the fact that E(|Si |) ≤ exp(ti+1), by a similar calculation as (8.4) with
x = (log(1/q∗))−1(1+ ε), s = q∗, ti+1 = (ti + m) ∧ t , we have

P(Ei (t)) ≤ E(|Si |) · P(HT ∗(t−ti ) ≥ (log(1/q∗))−1(1+ ε)t)

≤ p0
f (q∗)

exp

(
ti+1 + t((log(1/q∗)−1(1+ ε) log q∗ + f (q∗)/q∗) − f (q∗)

q∗
ti

)

= p0
f (q∗)

exp(−εt + (ti+1 − ti )) ≤ e−εt+m .

Choosing m = εt/2 and repeating the arguments in previous cases proves the upper
bound, i.e.,

lim sup
t→∞

HT (t)

t
≤ (log(1/q∗))−1 almost surely.

It remains to prove the matching lower bound. Let δ ∈ (0, 1) be a constant that we
will choose later. Conditional on the tree T ((1 − δ)t) at time (1 − δ)t , observe that
the height of T (t) is stochastically lower bounded by the maximum of |T ((1− δ)t)|
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many i.i.d. random variables, each distributed as the location of the rightmost particle
of a branching random walk BRW(δt), which has the distribution B(δt).

Fix any ε > 0. Let x = (1− ε)(log(1/q∗))−1. Using the above observation,

P(HT (t) < xt) ≤ P(B(δt) < xt)e(1−δ)t−t1/2 +P(|T ((1− δ)t)| ≤ e(1−δ)t−t1/2). (8.6)

Note that |T (·)| is a rate 1 Yule process and hence by Lemma 4.2 we have for large
enough t ,

P(|T ((1− δ)t)| ≤ e(1−δ)t−t1/2 ) =
 e(1−δ)t−t1/2 "∑

k=1

e−(1−δ)t (1− e−(1−δ)t )k−1

≤ 1− (1− e−(1−δ)t )e(1−δ)t−t1/2 ≤ 1− exp(−2e−t1/2 )

≤ 2e−t1/2 (8.7)

by the elementary inequality that 1− 2x ≤ e−2x ≤ 1− x for x ∈ [0, 1/2].
It remains to estimate P(B(δt) < xt). For reasons that will become clear soon, we

will take δ = 1−ε
(1− f ′(q∗)) log(1/q∗) so that x/δ = 1 − f ′(q∗). To verify that δ ∈ (0, 1)

it suffices to show (1 − f ′(q∗)) log(1/q∗) ≥ 1. In this case, it follows from Lemma
8.2(ii) that s∗ ∈ (q∗, s0] is the unique minimizer of κ(s) = f (s)

s log(1/s) , which implies
that κ ′(q∗) ≤ 0. This, in turn, leads to (1− f ′(q∗)) log(1/q∗) ≥ 1. Moreover,

κ0 = κ(s∗) < κ(q∗) = 1

log(1/q∗)
.

That is, our choice of x and δ gives x/δ = 1 − f ′(q∗) ≥ (log(1/q∗))−1 > κ0. Then
we can apply Lemma 4.9 to obtain

P(B(δt) ≥ xt) = exp(δt inf
s∈(0,1)

{(1− f ′(q∗)) log s + f (s)/s} + o(t)).

Lemma 8.2(i) then shows that the infimum of s �→ (1 − f ′(q∗)) log s + f (s)/s on
(0, 1) is uniquely achieved at s = q∗, which leads to

P(B(δt) ≥ xt) = exp
(
δt
(
(1− f ′(q∗)) log q∗ + 1

)+ o(t)
) = exp(−(1−ε−δ)t +o(t)) (8.8)

as δ = 1−ε
(1− f ′(q∗)) log(1/q∗) .

Combining (8.7) and (8.8) in (8.6) yields for large enough t ,

P(HT (t) < xt) ≤ (1− P(B(δt) ≥ xt))e(1−δ)t−t1/2 + 2e−t1/2

≤ exp
(
−P(B(δt) ≥ xt)e(1−δ)t−t1/2

)
+ 2e−t1/2

= exp (− exp(−(1− ε − δ)t + (1− δ)t + o(t))) + 2e−t1/2
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≤ exp(− exp(εt/2)) + 2e−t1/2 .

The same argument as in the previous cases with the Borel-Cantelli Lemma would
lead to

lim inf
t→∞

HT (t)

t
≥ (log(1/q∗))−1 almost surely,

which concludes our proof. ��

9 Proofs: PageRank asymptotics

In this section, we prove Theorems 3.14 and 3.16. As before, Assumptions 3.2 and
3.5 continue to hold and are not explicitly stated in the results.

As in the case of degrees, our analysis will rely on continuous time versions of
PageRank. Consider the PageRank of the root in T ∗(t)with damping factor c, namely,

R∗
c (t) = (1− c)

(
1+

∞∑

l=1

clPl(t)

)
. (9.1)

and the Pagerank of the root in T (t) given by

Rc(t) = (1− c)

(
1+

∞∑

l=1

cl P̃l(t)

)
. (9.2)

We begin with a lower bound on E[P�
s (t)] given in Lemma 9.1, which will play a

key role in showing that the limiting random variable Wk,c in Theorem 3.14 is non-
degenerate. This lower bound involves a ‘change of measure’ argument which we now
present.

For any s > 0, define a probability transition kernel

p∗
s (x, y) = s−y px+1−y

α(s)s−x
, x, y ∈ Z and −∞ < y ≤ x + 1,

where α(s) = f (s)
s . We can check that p∗

s is indeed a probability transition kernel by

∑

y≤x+1

s−y px+1−y

α(s)s−x
= s−(x+1) f (s)

α(s)s−x
= 1.

Let S∗
s be a discrete time randomwalk following the transition kernel p∗

s . Set S∗
s (0) = 0

and define

τ ∗
s = inf{n ≥ 1 : S∗

s (n) ≤ 0}.
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Lemma 9.1 For any s > 0 and t ≥ 0,

E[P�
s (t)] ≥ P(τ ∗

s = ∞)e
f (s)

s t .

In particular, when E[Z ] < 1 and s0 > 1, for any s ∈ [1, s0) and t ≥ 0,

e−
f (s)

s t
E[P�

s (t)] ≥ P(τ ∗
s = ∞) > 0.

Proof Recall the random walk S defined in (3.1), and recall from Lemma 4.11 that for
all k ≥ 1,

E[Pk(t)] =
∞∑

i=0

t i

i !P(Tk = i), (9.3)

where Tk := inf{n ≥ 0 : Sn = 0|S0 = k}. Consider the random walk S̃ given by
S̃0 = 0 and

S̃n :=
n∑

j=1

(1− Z j ), n ≥ 1.

Also, define τ̃ := inf{ j ≥ 1 : S̃ j ≤ 0}.By a time-reversal argument, it readily follows
that for any i, k ≥ 1,

P(Tk = i) = P(S̃i = k, τ̃ > i).

Using this and (9.3), we obtain

E[P�
s (t)] =

∞∑

i=0

t i

i !
∞∑

k=1

s−k
P(S̃i = k, τ̃ > i). (9.4)

The crucial elementary algebraic identity connecting S̃ to the random walk S∗
s defined

before the lemma is the following:

s−k
P(S̃i = k, τ̃ > i) = (α(s))i

P(S∗
s (i) = k, τ ∗

s > i), i ≥ 0, k ≥ 1, (9.5)

where α(s) = f (s)
s . Using this observation in (9.4), we obtain

E[P�
s (t)] =

∞∑

i=0

t i

i ! (α(s))i
∞∑

k=1

P(S∗
s (i) = k, τ ∗

s > i)

=
∞∑

i=0

(α(s)t)i

i ! P(τ ∗
s > i) ≥ eα(s)t

P(τ ∗
s = ∞).
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This proves the first assertion in the lemma. To prove the second assertion, namely
P(τ ∗

s = ∞) > 0 for s ∈ [1, s0) in the caseE[Z ] < 1, it suffices to show E[S∗
s (1)] > 0

(this implies the result, e.g., by Lemma 11.3 of [29]). We compute the probability
generating function f ∗(·) (suppressing dependence on s) of S∗

s (1):

f ∗(ψ) :=
1∑

j=−∞
ψ j p∗

s (0, j) =
1∑

j=−∞
ψ j s− j p1− j

α(s)
= ψ f ( s

ψ
)

f (s)
, ψ ≥ 0.

Then,

E[S∗
s (1)] = ( f ∗)′(1) = 1

f (s)

[
f

(
s

ψ

)
− s

ψ
f ′
(

s

ψ

)] ∣∣∣∣
ψ=1

= f (s) − s f ′(s)
f (s)

.

Let g(s) = f (s) − s f ′(s). Since g(1) = 1− E[Z ] > 0, by definition of s0, we have
g(s) > 0 for any s ∈ [1, s0) and hence E[S∗

s (1)] > 0. This completes the proof. ��
The following theorem proves the analogous assertions of Theorem 3.14 for the

continuous time versions of the PageRank defined in (9.1) and (9.2). Recall Tn =
inf{t ≥ 0 : |T (t)| = n + 1}
Theorem 9.2 Fix c ∈ (0, 1).

(a) Non-fringe regime: When E[Z ] > 1,

(i) For any δ > 0, there exists ε > 0 such that

lim inf
n→∞ P

(
Rc(Tn)

n
≥ c(1− c)(1− q∗) − ε

)
≥ 1− δ. (9.6)

(ii) For any δ > 0,

lim
t→∞ e

−
(

1
R −δ

)
t
R∗

c (t) = ∞ and lim
t→∞ t−(1+δ)e−t/R R∗

c (t) = 0 a.s. (9.7)

(b) Fringe regime: When E[Z ] ≤ 1,

(i) Fix any c ∈ (0, s−1
0 ] with c < 1. Then for any δ > 0,

lim
t→∞ e

−
(

1
R −δ

)
t
Rc(t) = ∞ and lim

t→∞ t−(1+δ)e−t/R Rc(t) = 0 a.s. (9.8)

lim
t→∞ e

−
(

1
R −δ

)
t
R∗

c (t) = ∞ and lim
t→∞ t−(1+δ)e−t/R R∗

c (t) = 0 a.s. (9.9)

(ii) Suppose s0 > 1. For any c ∈ (s−1
0 , 1), there exist non-negative random vari-

ables Wc and W ∗
c with P(Wc > 0) > 0 and P(W ∗

c > 0) > 0 so that as
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t → ∞,

e−c f (1/c)t Rc(t)
a.s.−→ Wc and e−c f (1/c)t R∗

c (t)
a.s.−→ W ∗

c .

Proof We first focus on the non-fringe regime.
Denoting the size of T (t) by |T (t)|, observe that

Rc(t) ≥ (1− c)cP̃1(t).

(9.6) then follows from (7.5).
For R∗

c (t) with any c ∈ (0, 1), recalling from Lemma 3.7(d) that s−1
0 > 1,

(1− c)cP1(t) ≤ R∗
c (t) ≤ (1− c)

(
1+

∞∑

l=1

s−l
0 Pl(t)

)
= (1− c)(1+P�(t)). (9.10)

Hence, the first limit in (9.7) follows from (6.6) and the first inequality in (9.10).
To show the second limit in (9.7) take any δ > 0. For ε > 0 and N ≥ 0, define the

event

EN =
{

sup
u∈[N ,N+1]

u−(1+δ)e−u/R R∗
c (u) > ε

}
.

It follows from the upper bound in (9.10) and (6.2) that for any c ∈ (0, 1) and N ≥ 1,

P(EN ) ≤ P(R∗
c (N + 1) > εeN/R N 1+δ) ≤ E[R∗

c (N + 1)]
εeN/R N 1+δ

≤ (1− c)(1+ E[P�(N + 1)])
εeN/R N 1+δ

≤
(1− c)

(
1+ p0

f (s0)
e(N+1)/R

)

εeN/R N 1+δ
≤ Ce1/R

εN 1+δ

for some constant C > 0. Applying Borel-Cantelli Lemma then gives
P(lim supN→∞ EN ) = 0. Hence,

t−(1+δ)e−t/R R∗
c (t)

a.s.−→ 0,

proving the second limit in (9.7).
We now turn to the fringe regime. Define P̃�(t) =∑∞

i=1 s−i
0 P̃i (t),

(1− c)cP̃1(t) ≤ Rc(t) ≤ (1− c)
(
1+ P̃�(t)

)
.

The first limit in (9.8) comes from the observation that P̃1(t) dominates P1(t) and
Corollary 6.4. The second limit follows froman argument that is essentially the same as
that of the second limit in (9.7) except that we applyCorollary 6.3(i) for the expectation
of P̃�(t).
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The proof of (9.9) is essentially the same as that of (9.7) upon noting that the bounds
in (9.10) remain valid for c ∈ (0, s−1

0 ].
It remains to prove (ii) of part (b). For t ≥ 0, define

M∗
c (t) = e−c f (1/c)t R∗

c (t).

Using the generator expression in (6.11) (see also Remark 13), observe that for any
t ≥ 0,

L(M∗
c (t)) = −c f (1/c)e−c f (1/c)t R∗

c (t) + e−c f (1/c)t (1− c)
∞∑

i=1

ci
∞∑

j=i−1

Ai jP j (t)

= −c f (1/c)e−c f (1/c)t R∗
c (t) + e−c f (1/c)t (1− c)

∞∑

j=0

⎛

⎝
j+1∑

i=1

ci Ai j

⎞

⎠P j (t)

= −c f (1/c)e−c f (1/c)t R∗
c (t) + e−c f (1/c)t (1− c)c

×
∞∑

j=0

⎛

⎝
j+1∑

i=1

ci− j−1 p j−i+1

⎞

⎠ c jP j (t)

≤ −c f (1/c)e−c f (1/c)t R∗
c (t) + c f (1/c)e−c f (1/c)t R∗

c (t) = 0.

Hence, M∗
c (t) is a non-negative supermartingale and thus

M∗
c (t)

a.s.−→ W ∗
c as t → ∞, (9.11)

for some non-negative random variable W ∗
c .

By Theorem 6.2(ii), we conclude that supt<∞ E(M∗
c (t))2 < ∞. Using this obser-

vation and Lemma 9.1,

E(W ∗
c ) = lim

t→∞ E(M∗
c (t)) ≥ P(τ ∗

1/c = ∞) > 0.

This implies that P(W ∗
c > 0) > 0.

The proof for the convergence of Mc(t) := e−c f (1/c)t Rc(t) to some Wc follows sim-
ilarly upon noting that when E[Z ] ≤ 1, (ci : i ≥ 0) is a sub-invariant left eigenvector
of B with eigenvalue c f (1/c), see Proposition 4.12(b). We can show L(Mc(t)) ≤ 0,
which implies that Mc(t) is a non-negative supermartingale that converges to a random
variable Wc. By Corollary 6.3(ii), supt<∞ E(Mc(t)2) < ∞. Combined with the fact
that P̃i (t) dominates Pi (t) for all i ≥ 0, t ≥ 0, we have

E(Wc) = lim
t→∞ E(Mc(t)) ≥ lim

t→∞ E(M∗
c (t)) > 0,

proving P(Wc > 0) > 0. This concludes the proof of (ii) of part (b), and the Theorem.
��
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Proof of Theorem 3.14 Using the continuous time embedding, observe that for any
k ≥ 0,

{Rvk ,c(n), n ≥ v} d= {R◦
vk ,c(Tn − σk), n ≥ v},

where σk is the birth time of vk , Tn = inf{t ≥ 0 : |T (t)| = n + 1} and R◦
vk ,c(t) is

the PageRank of vk in T (t + σk). Part (a) and part (b)(i) of the Theorem now follow
from Theorem 9.2 upon noting that {R◦

vk ,c(t) : t ≥ 0} has the same distribution as
{Rc(t) : t ≥ 0} for k = 0 and {R∗

c (t) : t ≥ 0} for k ≥ 1.
To prove (b)(ii), note that for k ≥ 1,

Rvk ,c(n)

ncf (1/c)
= R◦

vk ,c(Tn − σk)

ec f (1/c)(Tn−σk )
·
(

eTn−σk

n

)c f (1/c)

a.s.−→ e−σk c f (1/c)W̃k,cW−c f (1/c) =: Wk,c,

where the limit W := limn→∞ ne−Tn almost surely exists by Lemma 4.3. The random

variable W̃k,c
d= W ∗

c for k ≥ 1 and W̃k,c
d= Wc for k = 0, where W ∗

c and Wc are
obtained in Theorem 9.2 and The result follows. ��
Proof of Theorem 3.16 Recall the form of the limiting PageRank distribution given in
(3.13), from which we conclude that R∅,c(∞) has the same distribution as R∗

c (τ )

where τ is a unit rate exponential random variable independent of the random tree
process T (·).

Part (a) and the assertion in part (b) for c ∈ (0, s−1
0 ] with c < 1 now follow along

the same argument as in the proof of Theorem 3.8 upon using the bounds in (9.10). The
analogue of (6.8) in part (a) uses Corollary 6.5(ii) and that in part (b) uses Corollary
6.5(i). The other direction follows from (6.9) and the lower bound in (9.10).

It only remains to prove the assertion in part (b) for c ∈ (s−1
0 , 1). Observe that for

any δ ∈ (0, 1
c f (1/c) ), r > 0, using Markov’s inequality and Corollary 6.5(i),

r
1

c f (1/c)−δ
P(R∅,c(∞) ≥ r) ≤ E

[
(R∅,c(∞))

1
c f (1/c)−δ

]

≤ E

[(
(1− c)(1+ P�

1/c(τ )
) 1

c f (1/c)−δ
]

< ∞,

which implies

lim sup
r→∞

logP(R∅,c(∞) ≥ r)

log r
≤ − 1

c f (1/c)
.

Moreover, by the almost sure convergence in Theorem 9.2 (b)(ii) to a non-degenerate
non-negative random variable, there exist positive η1, η2, t0 such that

P

(
e−c f (1/c)t R∗

c (t) ≥ η1

)
≥ η2, t ≥ t0.
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Now, proceeding as in Theorem 3.8, for r ≥ η1ec f (1/c)t0 ,

P(R∅,c(∞) ≥ r) =
∫ ∞

0
e−s

P
(
R∗

c (s) ≥ r
)

ds

=
∫ ∞

0
e−s

P

(
e−c f (1/c)s R∗

c (s) ≥ e−c f (1/c)sr
)

ds

≥
∫ ∞

1
c f (1/c) log(r/η1)

e−s
P

(
e−c f (1/c)s R∗

c (s) ≥ η1

)
ds

≥ η2

∫ ∞
1

c f (1/c) log(r/η1)

e−sds = η2

(η1

r

) 1
c f (1/c)

.

This implies

lim inf
r→∞

logP(R∅,c(∞) ≥ r)

log r
≥ − 1

c f (1/c)
,

completing the proof of the theorem. ��
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Appendix A: ˛-recurrence and transience of �B and �A

A full account of α-recurrence/transience for Markov chains can be found in Chapter
2 of [52]. To be concise we only state what is needed for the rigorous definition of
α-recurrence.

Let ϕ be a σ -finite measure on S and let A ∈ S be a ϕ-positive set (i.e., ϕ(A) > 0).

Definition A.1 (irreducible measure) The set A is called ϕ-communicating for a
Markov kernel K on S × S if every ϕ-positive subset B ⊆ A is attainable from
A, i.e., K (n)(x, B) > 0 for some n ≥ 0 for all x ∈ A and all ϕ-positive B ⊆ A.

If the whole state space S is ϕ-communicating, then the kernel μ is called ϕ-
irreducible and ϕ is called an irreducibility measure for K .

It is clear that any measure ψ which is absolutely continuous with respect to an
irreducibility measure ϕ is itself an irreducibility measure.

Proposition A.2 (Proposition 2.4 in [52]) Suppose kernel K is ϕ-irreducible. Then
there exists a maximal irreducibility measure ψ in the sense that all other irreducibility
measures are absolutely continuous with respect to ψ .

Nowwepresent a definition ofα-recurrence in the context of our problem. It follows
from the discussion on page 194 of [35] (see also Proposition 2.1 of [50]) that

123



442 S. Banerjee et al.

Definition A.3 (α-recurrence) Let ϕ be the maximal irreducibility measure for the
kernel μ(·, · × R+). The kernel μ(·, · × R+) is said to be α-recurrent if

∞∑

n=0

μ(n)
α (s, A × R+) = ∞

for all s ∈ S and A ∈ S with ϕ(A) > 0. Otherwise it is said to be α-transient.

For the rest of this section we will discuss the α-recurrence/transience of the con-
tinuous time branching process embedding of our model.

Lemma A.4 When E[Z ] > 1, the kernel μB(s, r × dt) := Brsdt is α-recurrent.

Proof In this case the Malthusian parameter α = 1. Hence

μB
α (s, r × R+) =

∞∑

n=0

(Bn)rs

αn
=

∞∑

n=0

(Bn)rs .

Let B̂ denote the matrix obtained by restricting B to states {1, 2, . . . }. As E[Z ] > 1
implies p0 + p1 < 1, it can be checked that B̂ is irreducible, which follows from
the fact that for any r , s ∈ N, there exist m1, m2 ∈ N such that (B̂m1)r1 > 0 and
(B̂m2)1s > 0.

First, we will show
∑∞

n=0(B̂
n)11 = ∞ which, by irreducibility, will imply∑∞

n=0(B̂
n)rs = ∞ for any r , s ∈ N. Notice that B̂n

11 = ((B̂T )n)11 and B̂T is a
probability transition matrix. Let {Xn}n≥1 denote the Markov chain following the
transition matrix B̂T started at X0 = 1 and let τ = inf{n ≥ 1 : Xn = 1} be the
first returning time to 1. It is well known that

∑∞
n=0((B̂

T )n)11 = ∞ if and only if
Xn is recurrent. Therefore, to show the α-recurrence of μB we only need to show
P(τ < ∞|X0 = 1) = 1. Note that

E[Xn − Xn−1|Xn−1 = i] = ci +
i−1∑

k=0

(i + 1− k)pk − i

= ci + (i + 1)
i−1∑

k=0

pk −
i−1∑

k=0

kpk − i = 1−
(

ci i +
i−1∑

k=0

kpk

)

= 1− E[Z ] +
∞∑

k=i

(k − i)pk ↓ 1− E[Z ] as i → ∞.

When E[Z ] > 1, there exists i0 ∈ N such that for all i ≥ i0, E[Xn − Xn−1|Xn−1 =
i] < 0. Let τi0 = inf{n ≥ 0 : Xn ≤ i0}. We claim that for all j > i0 we have
P j (τi0 < ∞) = 1. If we view the set A = {1, 2, . . . , i0} as an absorbing state and let
Yn be a Markov chain obtained by projecting Xn onto {A, i0 + 1, . . . } with Y0 = j ,
then Yn is a non-negative supermartingale and has to converge almost surely. Note
that Yn can only converge by getting absorbed at A, which implies P j (τi0 < ∞) = 1.
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This means that Xn returns to the set A infinitely often almost surely and thus, by
irreducibility of B̂T , will return to 1 in finite time almost surely.

For r ∈ N and s = 0, note that (Bn)r0 ≥ (Bm1)r1(Bn−(m1+1))11B10 for n ≥ m1+1
and the above argument implies

∑∞
n=0(B̂

n)r0 = ∞. It follows from Definition A.1
that the maximal irreducibility measure ϕ for μB must satisfy ϕ({0}) = 0. Hence we
don’t need to consider the case where r = 0. ��
Lemma A.5 The kernel μA(s, r × dt) := Arsdt is α-transient.

Proof Recall the function χ(u) = ∑∞
n=0 un

P1(T = n) as defined in the proof of
Lemma 4.17.

It is easily checked that for s, r ∈ {0, 1, . . . },
∞∑

n=0

(μA
α )(n)(s, r × R+) =

∞∑

n=0

(An)rs

αn
.

Take (s, r) = (0, 1) and note that ϕ(1) > 0. Since (An)10 = P1(T = n) we can
observe that

∞∑

n=0

(μA
α )(n)(0, 1× R+) =

∞∑

n=0

P1(T = n)

αn
= χ(1/α).

Note that the Perron root of A is 1/R and hence the corresponding Malthusian rate
is α = 1/R. It follows from the proof of Lemma 4.17 (see (4.10)) that χ(1/α) =
χ(R) < ∞, which immediately implies the α-transience for μA. ��
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