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Abstract

Co-evolving network models, wherein dynamics such as random walks on the network
influence the evolution of the network structure, which in turn influences the dynamics,
are of interest in a range of domains. While much of the literature in this area is
currently supported by numerics, providing evidence for fascinating conjectures and
phase transitions, proving rigorous results has been quite challenging. We propose a
general class of co-evolving tree network models driven by local exploration, started
from a single vertex called the root. New vertices attach to the current network via
randomly sampling a vertex and then exploring the graph for arandom number of steps
in the direction of the root, connecting to the terminal vertex. Specific choices of the
exploration step distribution lead to the well-studied affine preferential attachment and
uniform attachment models, as well as less well understood dynamic network models
with global attachment functionals such as PageRank scores (Chebolu and Melsted,
in: SODA, 2008). We obtain local weak limits for such networks and use them to
derive asymptotics for the limiting empirical degree and PageRank distribution. We
also quantify asymptotics for the degree and PageRank of fixed vertices, including the
root, and the height of the network. Two distinct regimes are seen to emerge, based
on the expected exploration distance of incoming vertices, which we call the ‘fringe’
and ‘non-fringe’ regimes. These regimes are shown to exhibit different qualitative
and quantitative properties. In particular, networks in the non-fringe regime undergo
‘condensation’ where the root degree grows at the same rate as the network size.
Networks in the fringe regime do not exhibit condensation. Further, non-trivial phase
transition phenomena are shown to arise for: (a) height asymptotics in the non-fringe
regime, driven by the subtle competition between the condensation at the root and
network growth; (b) PageRank distribution in the fringe regime, connecting to the well
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known power-law hypothesis. In the process, we develop a general set of techniques
involving local limits, infinite-dimensional urn models, related multitype branching
processes and corresponding Perron—Frobenius theory, branching random walks, and
in particular relating tail exponents of various functionals to the scaling exponents
of quasi-stationary distributions of associated random walks. These techniques are
expected to shed light on a variety of other co-evolving network models.

Keywords Continuous time branching processes - Temporal networks - PageRank -
Random trees - Stable age distribution theory - Local weak convergence - Multitype
branching processes - Perron—Frobenius theory - Quasi-stationary distribution -
Phase transition

Mathematics Subject Classification Primary 60K35 - 05C80

1 Introduction
1.1 Motivation

Driven by the explosion in the amount of data on various real world networks, the
last few years have seen the emergence of many new mathematical network models.
Goals underlying these models include, (a) extracting unexpected connectivity pat-
terns within the network (e.g. community detection); (b) understanding properties of
dynamics on these real world systems such as the spread of epidemics and opinion
dynamics; (c¢) understanding mechanistic reasons for the emergence of empirically
observed properties of these systems such as heavy tailed degree distribution or the
small world property; see e.g. [1, 17,23, 48, 49, 64] and the references therein. Within
this vast research area, dynamic or temporal networks, namely systems that change
over time, play an important role both in applications such as understanding social
networks or the evolution of gene regulatory networks [33, 34, 45]. One major fron-
tier, especially for developing rigorous understanding of proposed models, are the
so-called co-evolutionary (or adaptive) networks, where specific dynamics (e.g. ran-
dom walk explorations) on the network influence the structure of the network, which
in turn influences the dynamics; thus both modalities (dynamics on the network and
the network itself) co-evolve [5, 28, 60, 61]. Quoting [57], “... adaptive networks
provide a promising mechanistic approach to simultaneously explain both structural
features and temporal features ... and can produce extremely interesting and rich
dynamics, such as the spontaneous development of extreme states in opinion models
... ” Despite significant interest in such models, deriving rigorous results has been
challenging. Let us describe two concrete motivations behind this paper:

(a) Evolving networks driven through local exploration: Motivated by the growth
of social networks, there has been significant interest in trying to understand the
influence of processes such as search engines or influence ranking mechanisms
in the growth of networks. A number of papers [15, 20, 56] have explored the
dynamic evolution of networks through new nodes first exploring neighborhoods
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of randomly selected vertices before deciding on whom to connect. Even simple
microscopic rules seemed to result in non-trivial phase transitions.

(b) Preferential attachment models driven by global attachment schemes: Per-
haps the most well known class of co-evolving network models in practice are the
so-called preferential attachment class. Typically one fixes an attachment function
Sfarr ' N — Ry, with f,;,(k) denoting the attractiveness of a degree k vertex
for new vertices joining the system. New vertices enter the system and attach to
existing vertices with probability proportional to their attractiveness. Such models
have been used in diverse settings including positing causal mechanisms for heavy
tailed degree distributions [8], understanding robustness of networks to attacks [16,
18], and modeling retweet networks [12]. Such models require global knowledge
of the network at each stage, yet use only the degree of each vertex for attach-
ment, eschewing potentially more relevant global attractiveness functions such as
centrality measures of vertices like the PageRank score (described in more detail
below).

Organization of the paper: We describe the general class of models in Sect. 1.2.
Section 2 describes initial constructions required to state the main results. Section 3
contains all the main results, where we also connect the results to existing literature and
conjectures. Proofs are commenced in Sect. 4 with individual subsections connecting
functionals of the model to continuous time branching processes, branching random
walks, quasi-stationary distributions and so on, and deriving relevant results for this
paper. The rest of the sections then use the technical foundations in Sect. 4 to complete
the proofs of the main theorems.

1.2 Model definition

Fix a probability mass function p := {px : k > 0} on Z.. For the rest of the paper,
letZ = {Z, Z>, ...} be an i.i.d sequence with distribution p. We now describe the
recursive construction of a sequence of random trees {7, : n > 1}, always rooted at
vertex {vo}, with edges pointed from descendants to their parents. Start with two
vertices {vg, v1}, with 7] arooted tree at {vp}, an oriented edge from v; to vy. Assume
for some n > 1, we have constructed 7,,. Then to construct 7,4 :

(a) New vertex {v,+1} enters the system at time n + 1.

(b) This new vertex selects a vertex V,,, uniformly at random, amongst the existing
vertices V(7,,) = {vg, ..., vy }.

(c) LetP(vg, Vy,) denote the path from the root to this vertex. This new vertex traverses
up this path for a random length Z,,11 and attaches to the terminal vertex. If the
graph distance to the root, dist(vg, V,;) < Z, 41 then this new vertex attaches to
the root vy.

See Fig. 1 for a pictorial description. Thus new vertices enter the system and perform
local explorations, before attaching themselves to an existing vertex. This, at first sight,
simple mechanism, results in a host of important special cases depending on the choice
of p which we describe next. We will let {7,,(p) : n > 1} denote the corresponding
tree process and suppress dependence on p when this is clear from the context.
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Fig.1 vg is a new incoming vertex, and selects vy to start exploring the network, with sampled number of
exploration steps Zg = 2

1.2.1 Random recursive tree

If po = 1 then one obtains the random recursive tree where new vertices connect to
previously existing vertices uniformly at random. See [44, 62, 63] and the references
therein for the extensive use of this model in computer science.

1.2.2 Affine preferential attachment

Suppose p is Bernoulli(p) for some 0 < p < 1, namely pg = 1 — p, p1 = p. Then
one can check that the corresponding tree process has the same distribution as an affine
preferential attachment model with attachment function f,;, (k) =k + (1 —2p)/p.

1.2.3 PageRank driven preferential attachment

In trying to understand models where vertices try to game search engines and attempt
to increase their popularity by connecting to popular existing vertices in the system,
one natural approach is via preferential attachment models where attractiveness of
existing vertices is measured by their PageRank score (a global, as opposed to more
local degree-only based attachment schemes). The probabilisitic models of network
evolution that at first sight seem to need global information on the network, but then
have equivalent representations as local exploration schemes, has inspired a large body
of work especially in statistical physics, under the general area of network growth with
redirection (9, 24, 25, 40-42, 58, 65].

Definition 1.1 (PageRank scores) For a directed graph G = (V, £), the PageRank
scores of vertices v € V with damping factor c, is the stationary distribution (R, . :
v € G) of the following random walk. At each step, with probability ¢, follow an
outgoing edge (uniform amongst available choices) from the current location in the
graph while, with probability 1 — c, restart at a uniformly selected vertex in the entire
graph. These scores are given by the linear system of equations:

1—c Ru.c
Ry = te Yy = (1.1)
n ueN—(v) d (u)
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where N~ (v) is the set of vertices with edges pointed at v and d* (u) is the out-degree
of vertex u.

At vertices with zero out-degree (e.g. the root of directed tree), the random walk
stays in place with probability ¢ and jumps to a uniformly chosen vertex with proba-
bility 1 — c. The stationary probabilities at such vertices are then multiplied by 1 — ¢
to keep the formula (1.1) same for all vertices.

Definition 1.2 (PageRank driven preferential attachment [56]) Fix damping factor
¢ € (0, 1). Consider the following sequence of directed random trees, started with a
root vp and another vertex v with directed edge pointed to vy. At each discrete time
step n > 2, a new vertex v, enters the system and connects to a previously existing
vertex with probability proportional to the PageRank of the existing vertex.

Now consider the process {7, (p) : n > 1}, with p as Geometric(p), namely for
k >0, px = p(1 — p)*. Thus a new vertex selects an existing vertex at random in the
current tree and then walks up the path from the selected vertex to the root, wherein at
each step, it decides to attach itself to the present location with probability p or move
upwards with probability 1 — p.

Theorem 1.3 ([20, Thm 1.1]) The model with p as Geometric(p) has the same dis-
tribution as the PageRank driven preferential attachment model with damping factor
c=1—p.

2 Notation and initial constructions
2.1 Mathematical notation

For J > 1let [J]:={1,2,..., J}. If Y has an exponential distribution with rate A,
write this as ¥ ~ exp()). Write Z for the set of integers, R for the real line, N for the

natural numbers and let R4 := (0, 0o0). Write g, —P>, —d> for convergence almost
everywhere, in probability and in distribution respectively. For a non-negative function
g : Z4+ — [0, 00) and another function f : Z; — R, write f(n) = O(g(n)) when
f(n)/g(n)is uniformly bounded, and f(n) = o(g(n)) whenlim, . f(n)/g(n) = 0.
Write f(n) = Q(g(n)) if liminf,— ~ f(n)/g(n) > 0. Furthermore, write f(n) =
®(gn)) if f(n) = O(g(n)) and g(n) = O(f(n)). For two real valued stochastic
processes on the same space {X; : t > 0} and {Y; : t > 0}, denote X; = Y; + 0,4.5.(1)
if the random variable X; —Y; — 0 almost surely as ¢t — oco. We write that a sequence
of events (A,),>1 occurs with high probability (whp) if P(A,) — 1 asn — oo. We
use =< for stochastic domination between two real valued probability measures. For a
rooted finite tree t, let [t| denote the number of vertices in t and ht(t) denote its height,
namely, the maximal graph distance of the root from any other vertex. For graph G,
we write distg (-, -) for graph distance and in most cases suppress dependence on G
when this is clear from context.
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2.2 Continuous time models

Recall the description of the model in Sect. 1.2. For much of the proofs, we will work
with the following continuous time versions of the above process.

Definition 2.1 (Continuous time versions) We let {7 (¢, p) : t > 0} denote the contin-
uous time version of the above process wherein 7 (0, p) is a tree with vertex set {vg}
rooted at vg. Each existing vertex v in the tree reproduces at rate one. When vertex v
reproduces, a random variable Z following the law p is sampled independently.

(a) If Z < dist(vg, v), then a new vertex v is attached to the unique vertex u lying on
the path between v and v that satisfies dist (v, u) = Z via a directed edge from
v to u.

(b) If Z > dist(vg, v), attach the new vertex v to the root vg via a directed edge
towards vg.

Let{7*(¢, p) : t > 0} denote the continuous time process which follows the dynamics
as above but with (b) above replaced by,

(b)’ If Z > dist(vg, v), nothing happens.

It will turn out later that the process 7 * describes the evolution of the fringe tree
below non-root vertices. Define the stopping times

T, =inf{tr > 0:|7(,p)| =n+ 1},

which is the birth time of the incoming vertex v,. Let F; denote the natural sigma-field
of the process up to time ¢ and {F; : ¢t > 0} the corresponding filtration. The following
is obvious from construction.

Lemma 2.2 The processes {1,(p) : n > 1} and {T (T,,, p) : n > 1} have the same dis-
tribution.

2.3 Fringe convergence

The aim of this section is to formalize the notion of convergence of neighborhoods
of large random trees to neighborhoods of limiting infinite discrete structures. Local
weak convergence of discrete random structures has now become quite standard in
probabilistic combinatorics see e.g. [3, 10]. In the case of trees, following [2], the
theory of local graph limits has an equivalent formulation in terms of convergence of
fringe distribution.

2.4 Extended fringe decomposition

Given two rooted (unlabeled) finite trees s, t, say that s ~ t or s = t if there exists a
root preserving isomorphism between the two trees. For n > 1, let T, be the space
of all rooted trees on n vertices and let T = U2 (T, be the space of all finite rooted
trees. Here Tog = @ will be used to represent the empty tree (tree on zero vertices).
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Fix a tree t € T with root p and a vertex v at distance & from the root. Let (vg =
v, v1, V2, ..., Uy = p) be the unique path from v to p. The tree t can be decomposed as
h+1rooted trees fo(v, t), ..., fu(v, t), where fo(v, t) is the tree rooted at v consisting
of all vertices for which there exists a path from the root passing through v, and for
i > 1, fi(v, t) is the subtree rooted at v; consisting of all vertices for which the path
from the root passes through v; but not through v;_;. Call the map F : T — T
defined by,

F(,t) = (fov,t), filv,t), ..., fa(v, t),9,0,...),

as the fringe decomposition of t about the vertex v. Call fj(v, t) the fringe of the tree
tatv. For k > 0, call Fr(v,t) = (fo(v,t),..., fr(v, t)) the extended fringe of the
tree t at v truncated at distance k from v on the path to the root.

Now consider the space T®. An element @ = (tg, t;,...) € T with |t;| > 1
for all i > 0, can be thought of as a locally finite infinite rooted tree with a single
path to infinity (thus called a sin-tree [2]) as follows: Identify the sequence of roots
of {t; : i > 0} with the integer lattice Z = {0, 1, 2, ...}, equipped with the natural
nearest neighbor edge set, rooted at p = 0. Analogous to the definition of extended
fringes for finite trees, for any k > 0 write F; (0, ®) = (to, t1, ..., t;). Call this the
extended fringe of the tree w at vertex 0, till distance &, on the infinite path from 0. Call
to = Fo(0, ) the fringe of the sin-tree @. Now suppose PP is a probability measure
on T such that if 7 := (to(7), t;(7),...) ~ P, then |[t;(7)| > 1 a.s. Vi > 0. Then
7T can be thought of as an infinite random sin-tree.

2.5 Convergence on the space of trees

Let 7o be a random sin-tree with distribution P on T°°. Suppose {7}, be a
sequence of finite rooted random trees all constructed on the same probability space

. . . p .
(for notational convenience assume |7,,| = n, all one needs is |7,| —> 00).Fixk > 0
and (non-empty) trees Sg, Sq, ..., S € T.Let§ = (g, ..., ) € T**+1 and define the
empirical proportions,

. 1
HY®) == Y T{F(v,T) = (s0.51. ... 80}
n veT,

As before “f;(v, 7,) = s;” implies identical up to a root preserving isomorphism.
Consider two (potentially distinct) notions of convergence of {7,, : n > 1}:

(a) Fixaprobability measure 7r on T. Say that a sequence of trees {7, },,>| convergesin

probability, in the fringe sense, to i, if for every rooted tree t € T, H,? (t) —P> 7 (t).
(b) Say that a sequence of trees {7,},> converges in probability, in the extended
fringe sense, to 7 if for all k > 0 and § € T**!, one has

HY®) 2> P (F(0, Too) = §) .
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We shall denote this convergence by 7, Py Too a8 N — 00.

Letting 77, (-) = P(Fp(0, 7o) = -) denote the distribution of the fringe of 7o, on
T, convergence in (b) above implies convergence in notion (a). Further, both notions
imply convergence of functionals such as the degree distribution. For example notion
(a) implies, for any k > 0,

#{v € Ty, deg(v) =k + 1} L, P(deg(0, Too) = k). 2.1

n

Here deg(0, 7o) denotes the number of edges connected to O in its fringe ty(7oo).
However, this convergence gives much more information about the asymptotic prop-
erties of 7, including convergence of global functionals [11].

In terms of going from convergence in (a) to (b), Aldous in [2] showed that, amongst
the distributions 7 that arise as potential limits of the fringe convergence in (a), there
is a special sub-class of measures called fringe distributions, which automatically
imply the existence of and convergence to a limit infinite sin-tree. For each s € T,
suppose the root has children vy, vy, ..., vg forsomed > 0.Let{f(s,v;) : 1 <i < d}
denote the subtrees at these vertices, with f(s, v;) rooted at v;. For each t € T, let

O(s.t) =3, L{f(s,vi) =t}.

Definition 2.3 Call a probability distribution 7z on T a fringe distribution if,

Y w06 ) =n(t)., VteT.

seT

It is easy to check that the space of fringe measures is a convex subspace of the space
of probability measures on T. The next result summarizes some of the remarkable
findings in [2], relevant to this paper.

Theorem 2.4 ([2]) Fix a probability measure w on T. Suppose {1}, converges in
probability in the fringe sense to .

(a)  is a fringe distribution in the sense of Definition 2.3 iff ), 7w (t)root-degree(t) =
1.

(b) If w is a fringe distribution then, convergence in probability in the fringe sense
(notion (a)), implies the existence of a random sin-tree Too such that {T,},>,
converges in probability in the extended fringe sense to T, (notion (b)).

(¢c) If  is a fringe distribution then ht(7,) — oo in probability.

3 Results

We start by describing local weak convergence of the network model in Sect. 3.1.
This gives convergence of the degree distribution to an explicit limit. Further the tail
exponent of the limit degree distribution is shown to be related to a large deviation
rate constant of the quasi-stationary distribution of a random walk associated to the
exploration step distribution. Section 3.2 describes asymptotics of the root and other
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fixed vertex degrees, in particular deriving necessary and sufficient conditions on p for
condensation, namely the root obtaining a fixed density of the total number of edges.
Section 3.3 derives asymptotics for the height, appropriately normalized, in terms of
extremal statistics of related branching random walks, showing the emergence of a
phase transition. We conclude in Sect. 3.4 with asymptotics and phase transitions for
the asymptotic PageRank of fixed vertices as well as the limiting PageRank distribu-
tion.

3.1 Local weak convergence

Recall the process {7 *(¢, p) : t > 0} in Definition 2.1.

Definition 3.1 (Fringe limit) Let T ~ Exp(l) independent of the process 7*. Let
7p(+) denote the distribution of 7*(t, p), viewed as a random a.s. finite rooted tree in
T.

Assumption 3.2 Let Z ~ p. Assume E[Z] < oo.

Theorem 3.3 (Fringe convergence)

(a) Under Assumption 3.2, the sequence of random trees {T,,(p) : n > 1} converges
in probability, in the fringe sense, to my(-). Writing D for the root degree of the
random tree sampled using mp, for every k > 0,

1
—— 3 d{deg) =k +1) "> B(D=k)., asn—> .
n—+1

veT, (p)

(b) mp(-) is a fringe distribution, as in Definition 2.3, if and only if E[Z] < 1 where
Z ~Dp.
(¢) The root degree D and the size of the limit fringe tree |T*(t, p)| satisfy:

(1) IfE[Z] < 1 then E[D] = 1 and E[|T*(t,p)|] = o0,
(i) IfE[Z] > 1 then E[D] < 1 and E[|T*(z,p)|] < oo.

Remark 1 Owing to the above Theorem, we will refer to the setting E[Z] < 1 as the
fringe regime whilst E[Z] > 1 will be referred to as the non-fringe regime.

The next result follows from Theorem 3.3 and results in [2] summarized in Theorem
2.4.

Corollary 3.4 (Convergence to limiting sin-tree) Assume for Z ~ p, E[Z] < 1.

(a) There exists a limiting infinite sin-tree Too (p) such that {7,,(p) : n > 1} converges
in probability in the extended fringe sense to Too(p).

(b) ht(T,) > 0.

Remark2 (i) By [11], when E(Z) < 1, local weak convergence above implies that
even global functionals such as the spectral distribution of the adjacency matrix
converge (in this case the limit spectral distribution can be shown to be non-random

with an infinite set of atoms). In Aldous’ terminology [2], it would be interesting
to derive a reduced Markov description of this limit object.
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(i1) In the non-fringe case when E(Z) > 1, whilst Theorem 3.3 shows convergence
in probability in the fringe sense, as described below in Theorem 3.9(a), in this
regime the degree of the root scales like ~ (1 — g4)n, and thus if one selects a
vertex at random, with probability ~ (1 — g,) the parent of this vertex is the root
whose degree — oo. In particular, there is no convergence in the extended fringe
sense to a sin-tree, which by definition has to be locally finite.

In order to derive quantitative bounds on explicit functionals such as the degree
distribution and PageRank, we will need to make a few more assumptions on p. Recall
that in Sect. 1.2, the case pg + p1 = 1 corresponds to either the random recursive
tree or affine preferential attachment, which have already been thoroughly analyzed
in the literature. While the techniques described below recover many results for these
models, we are mainly interested in settings not covered under these two models. Let
{Zi}i>1 be a collection of i.i.d. random variables following the law p. Consider the
random walk,

n
Si=So+» (Zi—1). SoeZ. nxl (3.1)
i=1

Define the probability generating function (pgf):

&)= pmst, s=0. (3.2)
k=0

Assumption 3.5 Assume that p satisfies the following: (a) po € (0, 1), po + p1 < .
(b) Assume that the random walk {S,, : n > 0} in (3.1) is aperiodic, i.e., gcd{j : pj >
0} =1.

Remark 3 Most of our results can be extended to the case pg + p; = 1 by straightfor-
ward modifications of our proof techniques. See Remark 10.

Definition 3.6 (a) Let sy be the unique positive root of sf’(s) = f(s) if it exists,
otherwise let so be the radius of convergence of the power series f(-). Define
R :=limgqg, s/ f ().

(b) Let g, be the unique positive solution to the fixed point equation f(g) = g.

Let us briefly describe probabilistic interpretations of these objects before stating
our main results. Recall that g, denotes the extinction probability of a Galton-Watson
branching process with offspring distribution p. Next define

T, :==inf{n >0:S, =0|Sy =i} (3.3)
to be the hitting time of zero of the random walk starting from state i > 0. Then

g+ has the alternate interpretation g, = }P’(T] < 00). Moreover, by [22, 55], under
Assumptions 3.2 and 3.5, R arises as the following limit and lies in the asserted interval:

lim (P(n < Ty < 00))/" = % € (0, 1]. (3.4)

n—o0o
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Standard results, connecting random walks to branching processes, imply g, =
P(Ty < o0) < 1if and only if E[Z] > 1. The next lemma collects some classi-
cal facts about R, s, g, arising in the analysis of quasi-stationary distributions for
random walks. We provide brief pointers to the literature for completeness. In the
following lemma, let r y denote the radius of convergence of the pgf f.

Lemma 3.7 Suppose Assumptions 3.2 and 3.5 hold.

(a) g(s) = f(s)/s is strictly decreasing on (0, so) and, if so < ry, g is strictly
increasing on (o, r f). In particular, infsc 0,1y f(s)/s > 1/R.

(b) For E[Z] < 1, if f(s) is analyticat s = 1, then R € (1, 1/E[Z]), so € (1, 00),
otherwise R = so = 1.

(c) ForE[Z]=1, R =50 = 1.

(d) ForE[Z] > 1,R > land g, < so < 1.

Proof Part (a) follows from the observation that g’(s) = (sf’(s) — f(s))/s?, whose
numerator is strictly increasing on (0, r¢) as po + p1 < 1, and negative at s = 0 as
po > 0. For part (b), when f(s) is analytic at s = 1, note that s/’ (s) — f(s) < O at
s = las E(Z) < 1, which implies so > 1. Moreover, if 5o = 00, ry = 0o and g(s)
is strictly decreasing on (0, c0), which is a contradiction as lim;_, o, g(s) = 00 (as
po + p1 < 1). Thus, 5o € (1, 00). Further, this also implies f(sp) < oo and hence,
using part (a) and the definition of 59, 1 < R = so/ f(s0) < 1/f'(so) < 1/E[Z]. For
the remaining assertions, see [55, Lemma 1] and the Remark following it. O

Note that Lemma 3.7 implies that, under Assumptions 3.2 and 3.5, so, f(so) are
both finite and R = 59/ f(s0). Now let the random variable D be as in Theorem
3.3, following the law of the limiting degree distribution of the discrete tree network

{Tu(@)}n=1-

Theorem 3.8 (Tail of limit Degree distribution) Under Assumptions 3.2 and 3.5:
(i) Fringe regime: When E[Z] < 1, with R as in Definition 3.6,

logP(D > k)

—R. 3.5
k— 00 logk ( )

(ii)) Non-fringe regime: When E[Z] > 1,

logP(D > k logP(D > k 1
_Riliminfuflimsupu<_ R/\% A
k—00 log k k00 log k log so

(3.6)

Although the upper and lower bounds in part (ii) above are different, they can be
checked to be equal in several cases even in the non-fringe regime. See Remark 9 for
a discussion.
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3.2 Condensation and fixed vertex degree asymptotics

The next result describes asymptotics for the root degree. In particular, part (a) shows
that in the non-fringe regime, there is a condensation phenomenon at the root and the
root neighbors asymptotically comprise a positive limiting density of all the vertices
in the tree.

Theorem 3.9 (Root degree asymptotics) Let deg(vg, n) denote the degree of the root
in T, (p). Under Assumptions 3.2 and 3.5:

(a) Non-Fringe regime: Assume E[Z] > 1. Then

deg(vo,n) P
———— — 1—gqs >0,
n

where q, is defined in Definition 3.6(b).
(b) Fringe regime: Assume E[Z] < 1. Then for any § > 0, asn — oo,

deg(vo, n) ﬂ)oo, and deg(vo, n) asg

T, ; 0. 3.7

nk- n¥ (logn)!+?

The next result describes the degree evolution of a fixed non-root vertex. In par-

ticular in the non-fringe regime there is a marked difference between the evolution of
the degree of the root vy and any non-root vertex.

Theorem 3.10 (Fixed vertex degree asymptotics) Fix k > 1 and let deg(vy, n) denote
the degree of vertex vy in T, (p). Then under Assumptions 3.2 and 3.5, for any § > 0,

deg(vk,n)ﬂ)oo’ and deg(vk, n) as;

1 1 O (38)
nE " n¥ (logn)!+?

Remark 4 When p is Geometric(p) for p € (0, 1) sothat E[Z] = (1—p)/p, the model
was was first rigorously analyzed in [20] using combinatorial recursions. The authors
observed a phase transition for the expected root degree at p = 1/2 (precisely as one
transitions from E[Z] < 1toE[Z] > 1). Inbrief, [20] showed that the expected degree
of the root in this special case satisfies E(deg(vo, 7)) = Q2 (n(log & if p < 1/2
whilst E(deg(vo, 7)) = O (n*P4 (log n)k/) if p > 1/2, for some k, k' € Z. One can
check that in this case, R = 1/(4pq), thus this paper also clarifies the reason for the
mysterious constant 4 pg, in terms of a large deviations exponent of the hitting time
of zero by the associated random walk.

3.3 Height asymptotics

Recall that f(-) denotes the pgf of p. Define

@ Springer



Co-evolving dynamic networks 381

. f@)
K(s) = TToz(1/) Tog(1/5)" s €(0,1).

It is shown in Lemma 8.2 that the infimum of s +— «(s) is attained at a unique point
in (0, so].

Definition 3.11 Define,
o= inf —18_ (3.9)
se(o s 10g(l/s)

Let s* € (0, 1) be the point where the infimum of me) is attained, i.e., ko =

fG*)
s¥log(1/s%) "

The following theorem gives height asymptotics for our model. Interestingly, we
observe a phase transition in the limiting behavior of rescaled heights in the non-fringe
regime.

Theorem 3.12 (Height asymptotics) Let H,, denote the height of T,(p). Then, under
Assumptions 3.2 and 3.5:

(i) Fringe regime: When E[Z] < 1, as n — o0,

(ii)) Non-Fringe regime: When E[Z] > 1, asn — oo,

H, as. | Ko if s* € (0, g«],
logn m l'fS* € (g, sol,

where g, is defined as in Definition 3.6(b).
Three remarks are in order.

Remark 5 (Non-triviality in the non-fringe regime) Theorem 3.9(a) implies that in the
non-fringe regime, there are ® (n) vertices within distance one of the root whp so it
is not obvious that in this case the height should diverge. Thus the result above on the
height shows, that even in this case, the height scales like logn with an appropriate
limit constant.

Remark 6 (Probabilistic interpretation of limit and phase transition) The limiting
rescaled height and associated phase transition can be probabilistically understood
via branching random walks [13, 14].

Definition 3.13 Fix pmf p. Consider a branching random walk with individuals being
born into the population in continuous time, and with spatial locations on Z, starting
with one individual at location zero with dynamics:

(a) Each vertex gives rise to offspring according to a rate one Poisson process.
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(b) Writing p, for the location of particle v, if v is born to u then p, = p, + {uv,

where ¢,y 4 (1 — Z), independent across parent offspring connections and times
of birth, where Z ~ p.

Write {BRW(¢) : ¢ > 0}, for the corresponding process keeping track of genealogical
structure and locations.

Let B(¢) denote the location of the rightmost particle at time ¢. Then, it turns

out, using [13] (see Sect. 4.3), in our setting, lim,_, o B(t)/t 2% ko. Hence, the
rescaled height asymptotics agrees with that of B(-) when E[Z] < 1, or E[Z] > 1
and s* € (0, gx].

However, when E[Z] > 1 and s* € (g, sol, there is a competition between the
reproduction rate of the root and the upper tail large deviations behavior of B(-),
which is obtained in Lemma 4.9. An inspection of the proof reveals that, for large
t, the height of 7 (¢, p) has the same asymptotics as the maximum of the heights
of the subtrees rooted at the children of the root that are born in the time interval

1—¢ 1+¢ . .
[(l—/"(q*))log(l/q*) , (l—f"(q*))log(l/q*)] for small ¢ > 0. This phenomenon manifests

itself through the phase transition observed in Theorem 3.12.

Remark 7 (Explicit height computation for PageRank driven networks) When p is
Geometric(p), the pgf is given by f(s) = ﬁ, s € [0, 1/q). Asymptotics for the
height in this model were previously addressed in [46] using quite different techniques.
For an explicit constant p & .206, they show that for p € [p, 1), H,/logn converges
to a limit constant whilst for p € (0, p), there exist constants ¢z (p) < cy(p) such that
whp forany ¢ > 0, H,, € [(cL(p) —¢)logn, (cy(p)+¢)logn]asn — oo. Our result
shows that, contrary to what is conjectured in [46], there is indeed a phase transition
in the height asymptotics at p = p. More precisely, the minimizer s* € (0, 1) in (3.9)
can be seen to be the unique solution to the equation

1+ logs
1—- = —, € (0,1).
=P = T 500ese SEOD

Define u* via the relation s* = e~ /%" Then,
Ko = pe"ut (2 — u),

which matches the expression for ¢y (p) in [46, Theorem 2]. Moreover, for p €
(0,1/2), g« = p/(1 — p) and hence

= (ee(55)
— = |log| — ,
log(1/qx) p

which matches cy (p) in [46, Theorem 2] for p € (0, p). Finally, the value of p where
the height phase transition happens in Theorem 3.12 is seen to be the unique such
value which gives s* = g, or equivalently «’(g,) = 0. This characterizes the value
as the unique solution to
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1— 1—
log< ”) =L pew1)2),
p 1-2p

which agrees with p obtained in [46, Theorem 2].

Our proofs thus elucidate the connections between limit constants in [46] obtained
through subtle combinatorial analysis and extremal statistics in branching random
walks [13].

3.4 PageRank asymptotics

Recall the PageRank scores {ER,,,C(n) 1V E ﬂ(p)} in Definition 1.1. For any v €
7,(p), let P;(v, n) denote the number of directed paths of length [ that end at v in
7,(p). Since 7,,(p) is a directed tree, it is easy to check that the PageRank scores have
the explicit formulae for any vertex v,

Ry o(n) = 4 ;C) (1 +Y P, n)) . (3.10)

=1

For the sequel, it will be easier to formulate results in terms of the graph normalized
PageRank scores [27] {Ry.c(n) : v € T,(p)} = {nRyc(n) : v e T,(p)}. The first
result shows a non-trivial phase transition of the PageRank scores for fixed vertices
in the fringe regime. This phase transition carries over to the empirical distribution of
PageRank scores which will conclude this section.

Theorem 3.14 (PageRank asymptotics for fixed vertices) Fix vertex vy and damping
factor ¢ € (0, 1). Then under Assumptions 3.2 and 3.5,

(a) Non-fringe regime: when E[Z] > 1,

(i) When k = 0 (root PageRank), Ry, .(n)/n is bounded away from zero in prob-
ability: for any § > 0, there exists ¢ > 0 such that

Ry o
1imian<L(") >c(l—co)(1 —qy) —s) >1—38.
n

n—0oo
(i) Foranyk > 1, as n — 09,

R R

—”";”(”) 4 o, and ——2 we)  as 3.11)
nko n® (logn)l+s

(b) Fringe regime: When E[Z] < 1,

(1) Fixanyc € (0, so_l] with ¢ < 1. Then for any § > 0, and any vertex vy, k > 0,
asn — oo,

Ry c(n) as, Ry c(n)  as.
rareindic St and ——— 5

: 0. (3.12)
nrw n®(logn)!+s
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(i) Suppose sy > 1. Fix any c € (so_l, 1) and v, k > 0. Then there exists a
non-negative random variable Wi . with P(Wy . > 0) > 0 such that,

—Rvk’C(n) 25w, asn — oo
nef (/o kics '

Next define the empirical distribution of normalized PageRank scores,

fnpri=n""" )" 8{R,.m}.
veT, (p)

General results on the implication of local weak convergence of sparse graphs on the
convergence of the empirical distribution of PageRank scores was derived in [7, 27].
In particular, the local weak convergence in Theorem 3.3 coupled with [7, 27] leads
to the following result. Recall the finite rooted random tree 7 *(t, p) from Definition
3.1 and let P;(#) denote the number of directed paths of length / that end at the root
denoted as @J. Define the normalized PageRank score at ¥ as,

Ry, (00) = (1 — ¢) (1 +ZCIPZ(@)>. (3.13)

=1

Corollary 3.15 (PageRank asymptotics) Under Assumption 3.2, the random variable
Rp.c(00) is finite a.s. Further for every continuity point r of the distribution of
RV),C(OO),

n ST 1 {Rucn) > 1) 5 B(Rpc(00) > 1),
veT, (p)

The next result which, in particular, displays a qualitative phase transition of the tail
exponent of the limiting empirical distribution of the PageRank scores in the fringe
regime (Theorem 3.16(b)), has not been observed before in the literature and continues
the vein of results displayed in Theorem 3.14(b).

Theorem 3.16 (Tail behavior of PageRank distribution) Under Assumptions 3.2 and
3.5

(a) Non-fringe regime: When E[Z] > 1, for c € (0, 1),

log(P > log(P -
—R < lim inf Og( (RQ)’C(OO) — V)) < lim sup Og( (R@,C(OO) = 7‘))
e logr r—o00 logr

< — (R A 10g_q*> .
log s

where as before, g, < 1 is the solution to f(q) = q.
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(b) Fringe regime: When E[Z] < 1,

o 08B Ry c(00) =) _ [ =R forc e (0, sy Nwithc < 1,
1m =

r—00 logr

_m forc e (s(;], 1), provided sy > 1.

Remark 8 (PageRank and the power-law hypothesis) Since its introduction by Brin
and Page [54], PageRank has been largely and successfully used to identify influential
nodes in a variety of network models [4, 30, 32]. Although PageRank ‘looks beyond’
degrees and captures more intricate local geometry around vertices, it can be computed
efficiently in a distributed fashion. The well known power-law hypothesis conjectures
that for real world networks with power-law (in)degree distribution, the PageRank
also has a power-law distribution with the same exponent as the degree. This has
been shown to hold in several static network models like the directed configuration
model [21, 53] and the inhomogeneous random digraph [43, 53]. Recently, [7] showed
that the power-law hypothesis is false for the affine preferential attachment model:
the PageRank distribution has a strictly heavier tail than the degrees. This suggests
that for dynamic networks (evolving over time), the PageRank captures strictly more
information than the empirical degree structure even at the level of large deviations.

In Theorem 3.16, we show for the first time a phase transition for the limiting
PageRank distribution in a random network model: in the fringe regime, the power
law hypothesis holds for damping factor ¢ € (0, s, ', but the PageRank tail becomes
heavier for larger c. Intuitively, when ¢ crosses a threshold, the PageRank score incor-
porates information from a large enough local neighborhood of each vertex so as to
distinguish the extremal behavior of the limiting PageRank and degree distributions.
Identifying the class of network models for which such phase transitions occur should
further quantify the efficacy and limits of the power-law hypothesis.

Remark 9 Although we explicitly characterize the tail exponent for the limiting degree
and PageRank distribution in the fringe regime (see Theorem 3.8(i) and Theorem
3.16(b)), only upper and lower bounds are established on this exponent in the non-
fringe regime (see Theorem 3.8(ii) and Theorem 3.16(a)). However, computation of
the quantities R, g, so in the specific models below suggests that the upper and lower
bounds actually match even in the non-fringe regime unless E[Z] is much greater
than 1.

(i) PageRank driven preferential attachment: This model was described in example
(c) of Sect 1.2 (see also Remark 7). In this case, py = p(1 — p)k k > 0, and
E[Z] = - — 1. Thus, the non-fringe regime corresponds to p € [0, 1/2). Writing
q = l—p,thepgfls f(@s)=p/(1—gs), s €[0,1/q), whichgives R = 1/(4pq),

= (p/q) A 1 and so = 1/(2q). Hence, the upper bound in the tail exponent in
the non-fringe regime is given by

1 /
_ (R A logq*> =" <_1 N 1og<q/p>.> _|Tme forpelng 172,
p— - 1 ’
log so 4pg  log(2q) —% for p € (0, py).
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where p(, 2 0.0616 is obtained using Mathematica. In particular, the tail exponent
for the limiting degree distribution is exactly —1/(4pg) for all p € [p, 1). For
the limiting PageRank, as described in Theorem 3.16(b), we see a phase transition
in the fringe regime as the damping factor ¢ crosses s, ! In the non-fringe regime,
for p € [py. 1/2), the tail exponent equals —1/(4 pg) for all values of the damping
factor ¢ € (0, 1).

(i) Simple random walk driven attachment: Here, we take po = p = 1 — p». Thus,
at each attachment, the distance of the new vertex from the root behaves like a
(biased) simple random walk with increment +1. E[Z] = 2(1 — p), and thus the
non-fringe regime corresponds to p € [0, 1/2). In this case, writingg =1 — p,
the pgfis f(s) = p + gs2, s > 0, which gives R = 1/2Jpq), g« = p/g N 1
and so = +/p/q. The upper bound in the tail exponent in the non-fringe regime

log g«
log s

= — (#ﬁ A 2) . In particular, the tail
13

exponent is exactly characterized for p € (5 — 73, ).

is given in this case by — (R A

The disparity between the upper and lower bounds in the non-fringe regime may appear
to be an artifact of our proof techniques (see Theorem 6.2(iii) where this discrepancy
appears from estimating moments of a functional of the process). However, preliminary
calculations using the many-to-few formula for branching random walks [31] (which
gives more refined estimates) suggest that this discrepancy might be qualitative in
nature due to certain rare events that affect the tail exponent when E[Z] > 1. We will
investigate this in future work.

Remark 10 (Affine preferential attachment) As discussed before, affine preferential
attachment with attachment function f,;;(k) = kK + (1 — 2p)/p, p € (0,1),1is a
special case of our model, corresponding to po = 1 — p, p; = p. One can easily
verify that in this case so = oo and R = 1/p. Although we assume py + p; < 1,
most of our proof techniques can be extended in a straightforward manner to the case
po + p1 = 1. Extrapolation of our results to the affine case recovers several known
results which we now describe. In this case, since E[Z] < 1, we are always in the fringe
regime. Theorem 3.8(i) implies that the limiting degree distribution has a power-law
with exponent R = 1/p. This is well known (see e.g. [19, 59]). The limiting PageRank
distribution, with damping factor ¢ € (0, 1), turns out to have a heavier tail than the
degrees, with exponent 1/((1 — p)c + p), which was recently shown in [7].

4 Proofs: Technical foundations
4.1 Roadmap of the proofs

The goal of this section is to build the technical underpinnings for the proofs of the
main results, as well as elucidate the connections between the functionals of the model
and corresponding core areas in probability.

(i) Section4.2 deals with properties of the continuous time embeddings in Definition
2.1; these are then used in Sect. 5 to prove Theorem 3.3.
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(i1) Section 4.3 describes stochastic orderings between the height and extremal dis-
placements of associated (upper and lower bounding) branching random walks.
Further, large deviations estimates are derived for branching random walks.
These results are then used in Sect. 8 to prove Theorem 3.12.

(iii) While Sect. 4.2 and 4.3 deal with direct embeddings of the process, the next
few subsections describe “non-obvious” embeddings. Section 4.4 derives con-
nections between the distance profile (in continuous time) and functionals of the
quasi-stationary distribution of the random walk in (3.1) through two infinite
dimensional matrices in (4.6), spectral properties of which result in the key role
of the constants R, sq, g in the main results.

(iv) Analysis of truncations of the height profile leads to finite dimensional urn mod-
els and their corresponding Athreya-Karlin embeddings in finite dimensional
multitype branching processes in Sect. 4.5; asymptotics of these processes, in
particular as the level of truncation K — oo needs a careful analysis of the
Perron-Frobenius eigenvalue, since the corresponding limit infinite dimensional
operator is non-compact; this analysis culminates in Proposition 4.16. These
results form the core ingredients in obtaining lower bounds connected to evalu-
ating power-law exponents of the degree (Theorem 3.8) in Sect. 6 and PageRank
distribution (Theorem 3.16) in Sect. 9 respectively. They are also used for lower
bounds in the analysis of degree and PageRank of fixed (non-root) vertices (The-
orem 3.10 in Sect. 7 and Theorem 3.14 in Sect. 9).

(v) Asymptotics of the degree and PageRank of the root necessitate the construction
and analysis of an infinite dimensional multitype branching process (MTBP) in
Sect. 4.6. These results play a central role in the proof of Theorem 3.9 in Sect. 7
and Theorem 3.14 in Sect. 9. Technical properties related to a-recurrence and
transience of kernels arising in the analysis of the MTBP are proven in Appendix
A.

4.2 Size estimates on the continuous time embedding

Recall, from Definition 2.1, the construction of the tree process in continuous time.
Letn(t) = |7 (¢, p)|.

Definition 4.1 (Rate v Yule process) Fix v > 0. A rate v Yule process is a pure
birth process {Y,(¢) : t > 0} with Y,,(0) = k € N and where the rate of birth of
new individuals is equal to v times the size of the current population. More precisely,
PY,(t +dt) — Y, (t) = 1|F (1)) := vYy,(t)dt + o(dt) and P(Y,, (t +dt) — Y, (t) >
2|F (1)) := o(dt), where {F(¢) : t > 0} is the natural filtration of the process. Write
{Yule(¢) : t > 0} for the corresponding forest valued (tree valued if k = 1) rate one
process that keeps track of the genealogy of the process.

The following is a standard property of the Yule process.
Lemma4.2 ([51, Section 2.5]) Fixt > 0 and rate v > 0 and assume Y,(0) =

1. Then Y, (t) has a Geometric distribution with parameter p = e~ "!. Precisely,
P(Y,(t) = k) = e (1 — e ") "1 k > 1. The process {Y,(t) exp(—vt) : t > 0}
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is an L2 bounded martingale and thus 3 W > 0 such that Y, (t) exp(—vt) i 14
Further W ~ Exp(1).

This property leads directly to the next two results.

Lemma4.3 Let n(t) = |7 (t,p)|. Then {n(¢t) : t > 0} has the same distribution as a
rate one Yule process started with one individual at time zero. By Lemma 4.2,

2
(a) {e_’n(t) it > O} is an L bounded martingale, e 'n(t) @k W with W ~
Exp(1).
(b) Defining T,, = inf {t > 0:n(t) =n+ 1}, then T, — logn £ —logWasn —
0.

Lemmad.4 Let0 <s < t. We have

E[(e~"n(0))*|F5] < (e7*n(s))* + e > n(s),
E[(n0)15 ] < 8 n)"

Proof Applying the generator £ of the Yule process on (e ~'n(t))* we get,

L 'n@)? = e 2n(t) ((n(t) F 12— n(r)2) —2e7202(1) = e 20 ().

It follows that {M2(t) : t > 0} defined next is a martingale:

t
Ma(t) := (e*fn(t))z—/ e 2 n(u)du
0
Thus

t
El(e " n(1))*|Fs] = (e n(s)* + / e MEln(u)| Fyldu

< (e n(s))* + e Fn(s).

The second assertion of the Lemma follows the same reasoning, starting with the
application of the generator on (e’ n(t))3. We omit the details. O

Lemma 4.5 Consider a rate one Yule process {Yule(t) : t > 0} started with a single
individual att = 0. Let ht(t) denote the corresponding height (maximal distance from
the root) of the corresponding genealogical tree at time t. For any f > 1, we have
E(pM1) < 262" < .

Proof Let Z,(t) denote the number of n-th generation individuals born before time ¢
and B, denote the time of the first birth in the n-th generation. Then for 6 > 0,

E(M0) < Y BB zn) =) p'P(By <0 <) pre"Ele™ ] @1

n=0 n=0 n=0
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Theorem 1 in [39] implies that E[e~?8] < Y (0)" where
© 1
V() = / Qe "E[Z,(1)]dt = 7
0

Thus E[e~?8»] < 9", Using this in (4.1) with 6 = 28 completes the proof. O

4.3 Branching random walks

Recall, the definition of BRW, in Definition 3.13. Consider the following variations in
step (b) of the dynamics:

(b)" If the prospective location of a new particle is at zero or below, it is “reflected” to
location one. Then in terms of locations describing graph distance to the root, this
is precisely the evolution of distances in 7. Thus the height H7 ;) is precisely
the location of the rightmost particle.

(b)” If the prospective location of a new particle is zero or below it is killed (removed
from the system). This gives the distance process in 7 *. As before the height
H7+() is precisely the location of the rightmost particle in this process.

From the description of the dynamics, the following is obvious.

Lemma 4.6 Let B(t) be the rightmost particle in BRW(t). One can couple T, T*, BRW
on a common probability space such that for all t > 0, Hr«i) < B(t) < H7 ().

For BRW, the offspring process for each individual is a rate one Poisson process and
the corresponding branching process (without location information) is a Yule process.
In particular, the offspring process is non-lattice and underlying branching process is
supercritical. Following [13], write ju(dz, dt) = Y je pkd1—k(dz) ®dt for the mean
intensity measure of the walk. Define for 8 € R, ¢ > 0 the following functionals:

oo X 0
m(. ¢) = /efezfm,u(dz,dr) =/ D e R par = S
0 =0

e
0
«(0) = inflp : m©0, ¢) < 1} = f(z )
e
at(x) = eigg{xé? +a@)} = seigg]) {x logs + @} . “4.2)

We will be using the results in [13] that concern a very general branching random
walk model, where particles are allowed to move after birth. In comparison, a particle
in our branching random walk BRW performs no further movement beyond the initial
displacement from its parent at birth. It would be straightforward for the curious
reader to verify that BRW satisfies the mild assumptions in [13], so we will refrain
from repeating those detailed assumptions here.

We will rephrase Theorem 4 in [13] into the following proposition, which will be
used to prove large deviations results for BRW later.
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Proposition 4.7 Let N;[xt, 00) denote the number of particles in BRW(t) that lie in
[xt, 00). For all x # sup{y : a™(y) > —o0},

log(E[N; [xt, 00)]) N

; a*(x) ast— oo.

Recall from Definition 3.11 that

. 1)
ko= mf ————.
s€(0,1) s log(1/s)

The following result follows from [13, Corollary 2].
Proposition 4.8 For BRW(¢) the rightmost particle satisfies,

BGO) .. .
- — inf{x : ™ (x) < 0} = ko almost surely. 4.3)

Proof The convergence B(t)/t — inf{x : «*(x) < 0} is proven in [13, Corollary 2].
To see that kg = inf{x : «*(x) < 0}, note that for s € (0, 1), x logs + @ < 0is
equivalent to x > % Thus, x > infs¢(,1) % if and only if «*(x) < 0. O

Next we state a large deviations result for P(B(¢) > xt) for large + when x > ko,
which is the key to our proof of Theorem 3.12, and is interesting in its own right.

Lemma 4.9 With ko as in (3.9) and B(t) as the rightmost particle in BRW(z), for
X > Ko,

P(B(t) > xt) = exp(a™(x)t + 0o(r)) as t — oo.

Proof We start with the upper bound. For fixed x > «, recall the functional N;[xt, c0)
from Proposition 4.7. Using Proposition 4.7 gives,

P(B(r) > xt) < P(N;[xt, 00) > 1) < E[N;[x1, 00)] < exp(a™(x)r + o(1)).

To prove the lower bound, we will use an argument of induction in time. For
e € (0, 1), let F¢; denote the filtration generated by the genealogies and locations
of all the particles in BRW born up till time ¢t. For v € BRW(¢et), let S, denote the
location of the particle v in BRW(et). For each such v consider the branching random
walk encoding the genealogy and location of particles born after time e whose most
recent common ancestor in BRW(et) is v. For ¢/ > 0, let BY(¢’) denote the location
of the rightmost particle in this branching random walk originating from particle v
observed ¢’ time units after 7. It is easy to see that

P(B(t) > xt | Fer) = P(_max  B"((1 —&)t) > xt | Fer)
veBRW (er)

v — —
_p max BY((1 —&)t) — S, n Sy > X
veBRW (er) (1 —e) (1 —e)t 1—¢

fgt).
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If there exists a particle v € BRW(er) such that both S, > xet and BY((1 — &)t) —
Sy > x(1 — e)t, then we will have B(z) > xt. Based on this observation, we define
D¢ := {v € BRW(¢?) : S, > xet}, noting that D, is measurable with respect to F;.
In addition, the collection {B"((1 — &)t) — S, : v € BRW(et)} comprise i.i.d. random
variables, independent of F;, each distributed as the location of the rightmost particle
in BRW((1 — &)r). Hence,

P(B(t) > xt | Feoy) = P (max Bld=-on=5 > x ;fg,)

veDu (1—e)

_ Der|
—1_ (1_P<M zx))
(1—e)

Zp(M Zx)|Dg,|<1—IP<M zx)-\DsA),
(1 —e)x (1 —e)

where the last line follows from the elementary inequality 1 — (1 —x)¥ > 1 —e¢™ >
xy(l —xy) for x € [0, 1],y > 0. Taking expectations on both sides of the above
bound, we have

B((1 —e)t) B((1 —é&)t) 2
P(B(t) = xt) = P <W = x) (E|Dsr| -P (W = X) “E(| Des | )) ,
“4.4)

where |D,;| denotes the size of Dg,. Noting that |Dg;| = Ng[xet, 00), it follows
directly from Proposition 4.7 that for x > ko,

log(E[Dg;|)
- -

*(x) = inf {x1 0,
p” o (x) Sel{(l)’]){x ogs + f(s)/s} <

ie.,

E|Dg| > exp(e™ (x)et — o(1)). 4.5

We claim that P (% > x) ~E(|D5t|2) = o(E|D¢|) when ¢ > 0 is chosen to be
sufficiently small. To see this, we use the upper bound proved earlier to get

P (M > x) < exp(a” (@) (1 — &)t + o(1)).
(1 —e)x

In addition, Lemma 4.4 gives a trivial upper bound on E(| D |?) < E[n(et)?] < 2¢%.

Knowing (4.5) and noting that o™ (x) < O forx > k¢, we can then choose ¢ < 3;,‘;%
so that

P (% > x) "E(|Dg|?) < 2exp ((@*(x)(1 — &) +28)1) < exp (2a™(x)er)

= 0(E|Dg: ).
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Therefore, when ¢ is sufficiently large, combining the above with (4.4) and (4.5) leads
to

P(B(1) = x1)

v

l]P’ (B((l —o)r) -
2 1—-er —
1]P> (B((l — &)
2 (1 —e)t

x) . E|Dst|
> x) exp(a™(x)et — o(1)),

which then implies the following relation

1 B(t
lim inf — log P (L > x) > a*(x)e
—00 t t

. 1 B((1 — &)1)
w0 o e (TS0 2 x).

This proves our desired conclusion

P (@ > x) > exp(a®(x)t — o(1)).

4.4 Connection to Quasi stationary random walks

We start by clarifying the appearance of the mysterious functionals such as R, s etc in
the statement of the main results. Recall the process 7 *(-), 7 (-) in Definition 2.1. For
i > 0, let P;(t) denote the number of vertices at distance i to the root in 7 *(¢) with
Po(t) = 1 for all . Write P(t) = (Py(t), P1(t), ...) for the entire column vector.
Let P; (¢) and 73(t) = (750 (1), P1(2), ...) denote the analogous objects for 7. Define
the two (infinite dimensional) matrices A = (A;;); j>0 and B = (B;;); j>0 ,

00 0 --- 0O0@O0-:--
po p1 p2 - co €1 €2 -
A=|0popr---|., B=|0popr---|, (4.6)
0 0 po--- 0 0 po---
0 ---

where ¢; = Y 2, pk. In particular, ¢o = 1. The following is easy to check from the
evolution dynamics. We omit the proof.

Lemma4.10 Fort > 0,

d d_. - -
EE[’PU)] =A-E[P®)], EE[PO)] =B-E[P@®)].
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Now we will come to the first connection between the tree valued process and
random walk {S,, : n > 0} as in (3.1) with increments distributed as Z — 1. Recall
the hitting times of zero started from location k namely Ty in (3.3). The next lemma
intuitively follows from solving the first differential equation above and noting that A
is the transition matrix for the Markov chain {S,, : n > 0}.

Lemma4.11 Forall k > 1,

o
o
E[Pe0)] =) P =1).
i=0
Proof From Lemma 4.10, we have,
d o0
—EIP()] = jZ_(j)Ak,-E[P,- 1. (4.7)

Let fi(?) := Z?io %P(Tk =) for k > 1 and write fo(¢) = 1. Recalling the matrix
A = (Agj)r=0, >0 from (4.6), note that

o ; o ;. OQ
- - tt -
fil@) = § i—'P(Tk =i+ =PIy =1+ E q § A P(Tj =)
i=0 i=1 " j=1

= A+ YAk fi() =) A fi(0).

j=1 J=0

We then compare this system of ODEs with (4.7). Let hx(t) = fx(t) — E[P(t)] for
t > 0. We have h;(0) = 0 and h;{(t) = ZC;OZO Ayjhj(t) for all k > 1. Thus,

0 t
()] < ZAkjfo | (s)lds.
Jj=0

Let h*(t) = Y _peg |hk(2)]. It is not difficult to check 2*(+) is continuous. Hence,
oo o t t
NOEDY (Z Akj> / hj(s)|ds < / h*(s)ds.
j=0 \k=0 0 0
By Gronwall’s inequality, 2*(¢) = 0. This proves the lemma. O

Given the connection between random walks and the tree evolution in Lemma 4.11, it
is clear that spectral properties of A and B are key to understanding the evolution of
tree functionals. The next result derives some properties. In all the ensuing results in
this Subsection, we will always make the Assumptions 3.2 and 3.5.
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Proposition 4.12 (Spectral properties of A, B)

(a) For any positive s such that f(s) < oo, the vector vy = (vi(s) : i > 0) with
vi(s) = s\, i > 0, is a non-negative left sub-invariant eigenvector of A for
eigenvalue f(s)/s.

(b) Forany s > 1 such that f(s) < oo, the vector vy = (v;i(s) : i > 0) as before is a
non-negative left sub-invariant eigenvector of B for eigenvalue f(s)/s.

(¢) Recall g« from Definition 3.6. When E[Z] > 1, the vectoru = (u; : i > 0) with
ug=0andfori > 1u; = qi’l is a non-negative right eigenvector of B.

Proof (a) For j > 0,

00 Jj+1 Jj+1

i i "y 1 _jf)
ZS tAij:ZS lpj+17i=S (/-H)ZSJ-H lpj+17i§S RS

i=1 i=1 i=1 §
(b) Recall ¢; = Zf’ij pi.For j >0,

00 Jj+1 Jj+1
i i -1 —(j+1 i1 '
E ) lB,'j = E s ’pj+1_i+s Cjit1 = G+D E st lpj+1_i+S]Cj+1

i=1 i=1 i=1

—(j+1) . i - i —jf(s)
=5 ZSP,‘-FZspi =5 P

i=0 i=j+1

where, in the first inequality, we have used s > 1.
(c) Note that since f(g«) = gx,

00 00 k—1 1 00 00
_ _ k—1 __ k—1
<Bu>1_ZCkuk_z(1—2p,)q* _(l_q*—zpz 3 4 )
k=0 k=1 =0 =
L S
l—qgx 1—gx

=uj.
For j > 2,

o0 o0
k+j—2 —2 i—1
Bu); = purrj1= prgs | =gl flg) =qi  =uj.
k=0 k=0

Clearly, Bu)g = 0 = ug. O

4.5 Urn models and multitype branching processes
This section connects the evolution of P with urn models and eventually to finite

dimensional multitype branching processes. We will consider a truncated version of
P where we keep track of vertices at distance at most k > 1 from the root for some
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fixed k. Recall the matrix A from (4.6) and let A, denote a k x k matrix such that
(Ap)ij = Ajjforl <i,j <k Let e® denote the unit basis vector in R¥ with one in
the j-th co-ordinate and zero elsewhere.

Definition 4.13 (Urn model encoding distance from the root) Fix k > 1. Con-
sider a generalized multitype Polya-urn process with types {1, ..., k} starting with
a single ball of type 1. When a ball of type i is drawn, it is returned along with
&, = (&1, ..., &) other balls, where

P& =€) =Aj (1<j<k
P =00=1-Y5_ 4

Itis easy to see E(&;;) = Aj;.

Akey tool in studying such urn processes is the so-called Athreya-Karlin embedding
in finite multitype branching processes [6, 38], which in this case corresponds to the
following: we start with one individual (ball) at time zero of type 1. Each individual
of type i lives for an exponential mean one unit of time and upon dying gives birth
to an offspring of type i and possibly another vertex whose type is determined by an
i.i.d. sample of &; (only one offspring of type i is produced if the sampled &§; = 0). In
this continuous time process let Pk (t) = Pi):1<i< k) denote the individuals
(balls) of various types alive at time ¢.

Lemma4.14 Let o) denote the first time that the root reproduces a vertex at distance
one in T* so that Pi(o1) = 1. We can couple Pk () with the process P (-) defined in
Sect. 4.4 such that P1(t + o1) = P1(¢t) forall t.

Proof We describe an explicit coupling:

(i) Ifattime ¢ + o, a vertex in 7 * at distance 1 < i < k from the root reproduces to
produce a vertex at distance 1 < j < k, a ball of type i is removed from the urn
at time ¢ and is returned along with a ball of type j.

(i1) If the new vertex is at distance greater than k from the root, or if the root or a vertex
of distance greater than k reproduces, then no change is made to the urn model.

It is clear from our construction that P;(t + o1) > 751 (1) forallt > 0. O

The following is obtained by a direct application of [38, Theorem 3.1]. Define
ko :=inf{k > 1 : pr > 0}. Note that kg < oo as pg < 1.

Proposition 4.15 For k > ko, A possesses a positive largest (Perron—Frobenius)
eigenvalue oy and a strictly positive right eigenvector v = (v (i) : 1 <i < k) such
that,

e PRy L5 W (1)

for a strictly positive random variable W.
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Proof Recalling po+ p; < 1 and pg > 0, it follows that Ay is irreducible in the sense
of [38] for every k > k(o and one easily sees that assumptions (A1)-(A6) in [38] are
satisfied, required for the application of [38, Theorem 3.1]. The strict positivity of W
follows from the fact that extinction is impossible in our case (see [38, Lemma 2.1]).

O

Thus, for k > ko, oy plays a crucial role in the growth of 75{‘(~). The next result
describes its asymptotics as k 1 oo.

Proposition4.16 oy 1+ 1/R as k — oo.

Remark 11 In principle we are asserting that the maximal eigenvalue of the submatrix
Ay of the infinite dimensional operator A converges in the limit k — oo to the maximal
eigenvalue of A. If A was a compact operator then this would follow from standard
function analytic methods, however it can be checked that A is not a compact operator
and thus we give a proof relying on the specific probabilistic interpretation of A and
the corresponding random walk.

Remark 12 In Sect. 4.6 we will construct an infinite dimensional multitype branching
process, driven by the matrix B to track the entire height profile of 7. The analogous
argument for 7 does not work, since the corresponding process with B replaced by
matrix A is not «-recurrent (Lemma A.5) and thus necessitates the truncation scheme
here.

Proof Let{Z;};>1 be a collection of i.i.d. random variables distributed as p and recall
that S, = So + >_i_,(Z; — 1). Define the stopping times,

T=infln>0:5,=0}, t=inf{n>1:85,=1},
w=inf{n >0:S, >k}, k> 1.

In this proof, for j € Z,let P; and E ; denote the probability and expectation operators
for the walk started from Sop = j. For r > 0, define ®(r) = Ei[e'" - 1jr<7}]. The
proof of the Proposition hinges on the following lemma, whose proof is postponed to
the end of this section. O

Lemma4.17 ®(logR) < 1 and ®(r) = oo whenr > log R.

Choose any k > ko. As Ay is substochastic, oy < 1 by standard Perron—-Frobenius
theory. Write oy = e~% for 6, > 0. We claim that 6 > 0 and

Ei[e* 1rarngyl = 1. (4.8)
To see this, consider the right eigenvector v; of Ay for k > 1. Then, P;; = f:,f;:((ij))’

1 < i,j < k defines a probability transition matrix. Denote by Q; the law of the
Markov chain associated with P starting from state 1. By slight abuse of notation,
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keep using T, 7, 7; as above, to denote the associated stopping times for this Markov
chain. Then Qi (t = 1) =Py = f;—i{‘. For i > 2, observe that

. 1
Qi(zr =i) = Z — Atz Az An
{zjh<j<ic12<zj<k "~k
=% . Pi(r=i,i <T Am).

Since P is irreducible (and finite),
1 =Qi(r <o00) =E [egkrl{t<T/\rk}] s

i.e., (4.8) holds. Since pg > 0, Pi(t < T A 1¢) < 1 and this implies that 6; > 0.
Note that as

1=E [" T Neerng, )] = Ei [ Nearang] < Ei [e* 1r<rann]

we have 61 < 6 for any k > 1 and thus 6 | 6* for some 6* > 0.

It remains to show that 6* = log R, which implies oy = ¢~% 4 ¢~ = 1/R as
k — oo. First we prove 8* > log R. It follows from the monotonicity of {6} and
(4.8) that

DO = Ei[" 1rory] = lim Eq[e% 1 ropnry] = lim Bi[e® "1 orpg)] = 1.
11— 00 1—> 00

®(-) is strictly increasing (as P1(t < T) > 0) and ®(log R) < 1 by Lemma 4.17,
implying that 6; > log R. Therefore, 6* = limy 6 > log R.
Next, to prove 6* < log R, note that

®O%) =Ei[e” 1rary] = lim Ey[e? " 1porag)] < lim Ei[e 1 oppm] = 1.
11— 00 11— 00

As ®(r) = oo for all » > log R by Lemma 4.17, the above implies that 6* < log R.
The result follows. m|

Proof of Lemma4.17 Define x(u) = Y 52,Pi(T = j)ul for u > 0. Note that
Ei[e'T] = x(¢"). Defining k = inf{n > 0 : S, = 1}, Strong Markov property
implies that

0w = Y pEl 1= Y p (EileT)) T = Y px@ V!
j=1 j=1

j=1

:er<f(x(e’))—po) = 49)
x(e")
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for all r such that f(x(e")) < oo and ®(r) = oo when x(e") < cobut f(x(e")) =
00. We claim that

X(R) =59 and x(u) =00 whenu > R. (4.10)

The desired result now follows from (4.9):

<1,

CI)(IOgR):R-f(SO)_pO— 50 (f(So)_@)zl_ Po

50 © fGo) \ so 50 f(s0)

recalling f(sg) < oo, and ®(r) = co when r > log R.
It remains to prove the claim in (4.10). Lemma 1 in [55] implies that

P(T=n+1) 1

Iim — = —.
n—oo P(T =n) R
By the ratio test for power series, x (#) < oo if s < R and y (u) = ocoifs > R.

In the cases where R = 1, by Lemma 3.7 we have so = 1 and E[Z] < 1. It follows
from [29, Lemma 11.3] that,

o
x() =) P(T=j)=P (T <o0)=1.
j=1
When R > 1, to show x (R) = sg, observe that for u < R,
e .
X)) = pou+ Y pjuCx@)’ = uf (x ).
j=1

As x (u) is strictly increasing on [0, R), it has an inverse function x 1) given by

ey _*
X (Z)_f(z)

for z € [0, x(R)), i.e., % € [0, R). Let {s; : [ > 1} be a sequence of positive
numbers such that lim;_, o §; = s¢ and s; < 50, % € [0, R) for all [ € N. Hence,

. 81 .
l = l = .
1o ( f(s,)> bS50
The final step is now to show x(R) = lim;_ X (%) We define a series of
functions {c(u) : k > 1} with xi(u) = Y5 P{(T = j)u’. For every k > 1, yi (1)

is continuous and {xx(«) : kK > 1} is a non-decreasing sequence for all u > 0. As x (-)
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is the limit of a monotone increasing sequence of continuous functions, it is lower
semicontinuous, i.e., x (R) < liminfg4g x (u). Therefore,

.. . Ni .
R) <1 f <1 =1 = 50.
0 < it 0 < i (765) = Jim o =0

Further, by the monotonicity of x(-), x(R) > x(—= f(s )) for any / € N and hence
X (R) > lim;_, o0 x (s1/ f (1)) = so. This completes the proof. O

4.6 Infinite dimensional multitype branching processes

In this section we introduce a specific class of continuous time multitype branching
processes {MBP(¢) : + > 0} studied in full generality in [35, 37]. The process MBP(-)
will once again track distances in 7 (-) so that a vertex at distance ¢ from the root
corresponds to a type £ individual in MBP(+).

The Ulam-Harris set I = U,>oN", with N 0=p representing the root, is used to
encode the set of all possible individuals (vertices) in MBP, and let (S, S) denote the
space of types with a countably generated o -algebra S, where S = {0, 1, ...}. Start
with a single individual (the root) of some type r € S. Any existing individual of type
r’ € § in the population independently reproduces according to a rate one Poisson
process, and each new individual y is independently assigned the type p(y) = s with
probability By,/, where B is the matrix defined in (4.6). The reproduction process &,
of an individual x is a measure on S x R, with £, (A x B) denoting the number of
children of x of types in A born at times in B. We will write & for the reproduction
process of the root.

Observe that, if we assign each vertex in our tree process 7 (-) the type equalling
distance from the root, then 7 (-) has the same distribution as MBP(-) with root of type
0. In particular, for each k > 0 and all 7 > 0,

~ d
Pr(-) = {x € MBP(-) : p(x) = k}|. (4.11)
Let {tx : k > 1} denote the birth times of the root in MBP(-). For r € §, we
will denote by E, the expectation operator when the root is of type r. Define the
reproduction kernel /LB,

wB(r,ds x dr) = E,[£(ds x d1)].

Note that for r,s € S, uB(r,s x dt) :== uB(r, {s} x dt) = By,dt. For any » > 0
define the measure associated with the Laplace transform of ,uB,

uB(r,ds x dt) = e M B (r, ds x dr).

Define

B B * e B By,
Wy (rys) = (r,s x Ry) = (r,s xdt) =
0
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The n-th convolution of pL]f is denoted by u&") (suppressing dependence on B)

where u&l) = ,u]f and forn > 2,

w(r, A x B) =/ 1" V(s, Ax (B—0)ulr, ds x dr).
SxR4

The Malthusian rate associated with MBP(-) is defined as

o0
a::inf{)\>0:2,u§")(s,SXR+)<ooforsomeseS )
n=0

Since BT is a stochastic matrix, it follows that « = 1, and MBP(-) is Malthusian
and supercritical as required for the results of [35, 37]. We show in Appendix A
that ug is irreducible and «-recurrent in the terminology of [52]. Choosing 7 (r) =
(1—gx)uy, r € S (note that this is non-trivial if and only if E[Z] > 1 sothatg, < 1),
where u = (u; : i > 0) is the right eigenvector of B in Proposition 4.12, and h(-) = 1,
note that Y _¢h(r)m(r) = 1 and

res

Zn(r)ug(r, s) =m(s) and Zug(r,s)h(s) =h(r).

reS ses

To apply the results in [35, 37], we need to check that, in addition to the above,
the following conditions are satisfied for MBP(-). In the following, for a non-negative
random variable U on the probability space on which MBP is defined, write E, (U) :=
f s E(U)m(ds). Although « = 1 in our case, we retain this notation to highlight the
dependence on « in potentially more general applications.

(i) The reproduction kernel u® is non-lattice, Malthusian, supercritical and satisfies
sup, u(s, S x [0, €]) < I for some ¢ > 0.
(i1) The homogeneity assumption on 4, i.e., infseg h(s) > 0, is satisfied.
(iii) The kernel B has strong «-recurrence in the sense that

0<B:= / te " h(s)uB(r,ds x dt)ym(dr) < oo,
SxSxRy

(iv) The xlogx-condition is satisfied, i.e., Er[Elog"&] < oo, where & =
Jsxr, € h(s)E(ds x dt).

For Condition (i), the Malthusian and supercritical property was discussed before.
The remaining conditions are immediate from the fact that births happen according
to a rate one Poisson process. Condition (ii) is trivially satisfied due to our choice of
h = 1. Condition (iii) can be checked by computing,

B = ZZ/:O te " h(s)uBr, s x dtym (rydt = ZZ/OOO te=® By (r)dt

r=0 s=0 r=0 s=1
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_ ( | oote_‘”dt) 33 Beswinls +4)
0

s=1k=—1

1 _ q o0 oo oo
k=1

s=2k=—1

1 9 1
=—-(1- 1+ =—.
a? ( q*)< l—q) a?

*

To check Condition (iv), note that since h = 1, £ = D k1€ ™. Let F) denote the
natural filtration up to the birth of the k-th child in &. Then

Ex[€logt ] <E[E*] = ) Ele ™)

k,>1

=Y Ele ™ +2)  E[E[e ™| F)]]
k>1 k<l

1 k 1 -k 1 k
:Z(l—i—Za) +2kZ<;<l+oc> (1+2a) <o (12)

k>1

L!-convergence in the non-fringe regime. Let o, denotes the birth time of vertex x in
the multitype branching process MBP(-). Consider a characteristic ¥ : S x [0, 00) —
[0, 00), which is a random cadlag measurable function, defined on the probability
space on which MBP evolves, thought of as giving a ‘score’ to the root at time ¢ based
on its type and its genealogical tree. For x € I and ¢t > oy, write ¥ (p(x), t — oy) for
the corresponding score computed by evaluating the characteristic ¢ on the subtree
rooted at x, when this vertex is of age r — oy. See [35, Section 7] for a more formal
treatment. Define the cumulative -score

ZV)y = ) Yu(px),t — o).

X0, <t

We will write Eg[v¥(f)] = E[{ (s, t)]. The following theorem gives convergence
of expectations for normalized cumulative ¥-scores.

Theorem 4.18 (Theorem 1 in [37]) Consider a non-lattice strictly Malthusian, super-
critical branching population, counted with a bounded characteristic \ such that the
function t — e~ *'Es[y(t)] is directly Riemann integrable with respect to . Then,
for w-almost every s € S,

e B2V ()] = h($)Bxlr(e)]/ap.
Corollary 4.19 In the non-fringe regime where E[Z] > 1,

lim e "E[Py ()] = 1 — ¢x.
—00
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Proof Let ¥ (s, t) = 1{s = 1, > 0}. We can easily verify that t > e~ E [y (1)] is
directly Riemann integrable with respect to 7. Moreover,

E (@)=Y n(r) /0 ey = T — 1 g,
r=0

o

as (1) = 1 — g4 and @ = 1. Recall from previous section that 8 = 1/a? = 1.
Applying Theorem 4.18 with ¢ (s, t) = 1{s = 1,# > 0} and & = 1 gives the result. O

Recall that n(¢) denotes the population size at time 7. Let .%; be the filtration
generated by the entire life histories of the first n(¢) vertices. Let mx denote the
mother of vertex x and define for any 7, ¢ > 0,

I(t)={x;0mx <t <0y <0}, F(t,c)={x;0mx <, 14+ <0y <}

Define wi = 3 c sy e ™ and wye = 3 c s ¢ - We collect some useful
properties of w; and wy . in the following lemma. Recall from Lemma 4.3 that W ~
Exp(1) is the almost sure limit of e~ 'n(t) as t — oo.

Lemma4.20 (i) {w,}isanon-negative martingale withrespectto {.%;} and E[w,] =
1.
(i) w; — W almost surely and in L% ast — oo.
(i) E[w; ] — k(c) ast — oo, where k(c) | 0 as c — oo.

Proof (i) Follows from Proposition 2.4 and (2.17) in [47]. The L2 convergence in (ii)
follows from Theorem 4.1 in [36] using the fact that [E, [é‘ 2] < oo derived in 4.12).
Further, as wy is the reproductive martingale (see equation (2.15) in [47]), the almost
sure convergence to W follows from [47, Corollary 2.5 and Theorem 5.4]. (iii) follows
from [47, Lemma 3.5]. O

A version of the following theorem is proved for a class of multitype branching
processes in [37]. However, it requires the finiteness of £(S x R, ), which is not
satisfied in our case. We thus give a direct proof which bypasses some technicalities
in [37] introduced by their generality of hypotheses.

Theorem 4.21 In the non-fringe regime where E[Z] > 1, ast — 00,

- 1
TP > (1 - g)W,
where W is as defined in Lemma 4.20.

Proof Recall thata = B = 1. Let ¢ (s, 1) = 1{s = 1,7 > 0} so that Z¥ () = P1(?).
For any M > 0, write = vy + V), where Yy (s, 1) = ¥ (s,t)1{t < M} and
1/f1’w(s, t) = ¥ (s, t)1{r > M}. To simplify notation, let

y =B @]/afp=1—q. and yy =Ey[Yu(@]/af = (1 —e M) (1 - g).
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Note that

Ele™"ZV (1) — yW| < e 'E|ZY (1) — ZV™ (1))
+Ele™ ZM (1) — yuW| + lym — y|E[W]. (4.13)

The first term is equal to e 'E[Z i (t)]. Theorem 4.18 implies that

lim e "E[ZYM ()] = (1 — g.)e ™.
11— 00

Hence, e 'E[Z an (#)] can be made arbitrarily small by taking both # and M to be
large. The third term vanishes as M — oo since E[W] = 1 and limpy/— 00 Y1 = ¥

It remains to deal with the second term in (4.13). Let ¢, = e~ ' Z Y (1) and my (1) =
E[¢/]. By Theorem 4.18 we have

Jim (1) = By [ (@))/ef = yu (4.14)

for v-almost sure s € S.
Observe that Yy (1) = 0 for all u > M. Hence, for ' > M we have

Sy = Z e_JX§t+t’—aX o p(x),
xeS(t)

where ¢;4;,—s, © p(x) denotes the normalized /s score for the vertex x, whose type
is p(x),attime r +1 —oy. Fort,c > O0and ¢’ > ¢, write n(t +1 — 0) o p(x) =
Sitt'—a, © P(X) —mp (t +1' — oy) and define

X, t', c)= Z e (it +1t —oy)opx).
xeI(H\H(t,c)

By triangle inequality we have

G =y W <X 01+ Y € (Ggir—o, 0 p(X) — i)
xeJ(t,c)
+ymlw, — W[+ Z e |mp(X)(t+t/_0x)_)/M|~
xeF(O\I (t,c)
(4.15)

Fix any ¢ > 0. Our goal is to show that there exist ¢, ¢ (depending on ¢) sufficiently
large and 7 = 1(¢, ¢) € Ry such that forall ' > ), |, — yuW| < &. To do this
we will deal with each term in (4.15) separately.
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Note that X (¢, ¢/, ¢) is a sum of independent random variables each having expec-
tation zero under the conditional law P(-|.%;). Hence, E[X (¢, ', ¢)|.%;] = 0 and

E[X (1,1, ¢)*.F] = Var[X (1,1, ©)|.F1]

= ) Va1~ 0y 0 p()|F]
xe I )\ A (t,c)

< Y PRI+ —o0) 0 p(x) 1T
xeJ(HO\I(t,c)

Since ¢; < e~ 'n(t), it follows from Lemma 4.4 that forallt > O and s € S,
Es[¢7] < E[E[e™'n(t)*| Fol] < 2.

Note that for any s € S, my = E[&] < e 'E[n(r)] = 1. Then, for any
x € S(O\I(,0),

El((t +1' —0y) 0 p(x)F] <2E[(Grprr—0, © PO+ Mp(y(t + 1 — 02)*F]
<22+ 1) =6.

Therefore,

E[X(, 7, c)"] =E [E[X(t, 3 c)2|9‘,]]

< 6E Z e 2 | < Cle 'Elw,] = 6e".
xedJ()\HL(t,c)

Hence,
E|X(t, 7, )| <E[X(t, 1, c)*])"/? < V6e /2. (4.16)

There exists some N; € Ry such that for ¢+ > Nj, and any choice of ¢, c,
E|X(t, 1, c)| < e/4.
To address the second term in (4.15), simply observe that

E Z ¢ (Gipr—oy 0 PX) — ym)| |
xeJ(t,c)

< D e T mpmt+1 = o) +ym) < (L4 ya)wye.
xeS(t,c)

Lemma 4.20(iii) implies that there exists some N> € R so thatif ¢, > N, then, for
any choice of ¢/,

E| D ™ (Gr—o 0p(@) —ym)| = A+ ym)Elwec] <e/d. (417)
xeH(t,c)
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For the third term, since w; converges to W in IL!, there exists some N3 € R4 so
that
Elyplw, — W] < ¢/4 (4.18)

forall t > Nj.

Finally we upper bound the expectation of the fourth term in (4.15). Let & =
{H7@) < 2«ot}. It follows from Proposition 8.1 (whose proof is independent of the
tools using MBP) that lim;_, o P(&f) = 0. Note that on &, the possible types for
x € F()\A(t, ¢) in MBP(+) are in the set [2xot] := {0, 1, ..., [2kot]}. Observe that

Eo Yo e mpwy(t +1' —0) — yu]
xed )\ A (t,c)

<Ep Z e ™ sup |ms(t+t/_ox)_YM|;€l
xeJ (HO\S(t.0) s€[2k01]

+Eo Yo U ym)i &
xe I (HO\I(t,c)

There exists some Ny € R so that for all # > N4, and any choice of ¢/, c,

Eo Do e U4 ym)iE | = (L4 ym)Elw: &1
xe I (H)\H (t,c)

< (1+ym) (Ellw, — W1+ E[W; £]) < &/8,
(4.19)

where the last inequality follows from Lemma 4.20.
Choose and fix any ¢ > maxj<;<4{N;} and ¢ > N,. Since x € Z(t)\.Z (¢, ¢), we
have r +1t'— o, > t'—c. Thus, there exists 7, = (¢, ¢) € Ry such that forall ¢’ > ),

sup |my(t +1" —oy) — yul < /8.

s€[2kpt]
Hence, for all ' > 1,
Eo| Y ™ sup |mot+1' —o0) —yu|| < (e/8Ew]=¢/8.
xe I O\I(1,0) $€[2k01]
(4.20)
Combining (4.19) and (4.20) gives for all ' > ¢,
Eo Z e Mmoo (t + t—oy) — yM| <e/4. 4.21)

xeI(H\L(t,c)
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Using (4.16), (4.17), (4.18), (4.21) in (4.15), we conclude that, for any given ¢ > 0,
there exists #p(e) € R4 such that for all # > #¢(e),

E|g: —ymW| < e.

Thus we have established the convergence of e~ Z¥ (1) to y W in L!. The proof is
complete. O

5 Proofs: Local weak convergence

The goal of this section is to prove Theorem 3.3. Recall the continuous time version
of the process 7 (-, p) in Definition 2.1; here we label vertices as {v; : i > 0} in the
order they enter the system starting with vy and recall that o; denotes the birth time
of vertex v;. For the rest of the section we will suppress dependence on p. We will
start by studying asymptotics of empirical functionals of the fringe distribution of this
process as t — oo and then leverage these results to prove Theorem 3.3.

Let F := {F; : t > 0} denote the natural filtration of the process {7 (¢) : t > 0}.
Recall the space T of finite rooted trees from Sect. 2.4. For any 7 € T and vertex
v € V(7), we will denote by 7, the fringe at vertex v namely the subtree rooted at
v, consisting of all vertices in 7 whose path to the root of 7 passes through v. Let
¢ : T — R denote a non-negative bounded measurable function. For any i > 0, define
¢i : Ry — Rby,

by — [P T+, wz0,

0, s < 0.
Thus the stochastic process {¢; (u) : u > 0} tracks the evolution of the “score” of the
fringe tree below v; as the age of v; increases. Now note that for any time s > 0
and for v; such that o; < s, the age of vertex v; at time s is s — o;. Write Z(@s) =
Zml_ - @i(s — 07); in words we are aggregating the scores of the fringe trees of
vertices born before time s. For the rest of this section, fix any  adapted process
{a(t) : t > 0} with a(t) A% 00, a(t)/t 2% 0. We will write y(t) =t 4+ a(t). Recall
the process 7 *(-, p) in Definition 3.1. When p is clear from context, we will write
T*() for 7*(-, p).

Theorem 5.1 Let ¢ : T — R be a bounded measurable function. Assume that s —
E[¢ (T *(s))] is Lipschitz on [0, 00). Then

029y B W/OO e “E[¢(T"(s))lds ast — oo,
0

where W ~ Exp(1) is the almost sure limit of e 'n(t) as t — oo.

The main tool to prove this Theorem is the following Proposition.
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Proposition 5.2 (Conditional moments of Z% (1)) In the setting of Theorem 5.1, as
t — 00O,

VR[22 () F] 5 W / e "E[¢p(T*(u))du, (5.1)
0
Var [0 29 (v (0))| 7 | £ 0, (5.2)

Proof of Theorem 5.1 assuming Proposition 5.2 For any § > 0, write

]p[ e D29 (y(1)) — W/OO e “E[p(T*(s))ds| > 8}
0

«of] o]

+P H]E[e—w>z¢(y(r))|f,] -W /Oo e E[p(T*(s))ds| > 5/2] .
0

e YO Z2(y(1)) — Ele D 2% (y(1))| ]

We assert that each of these two terms converge to zero. For the first term, this follows
by applying Chebyshev’s inequality with (5.2), along with the bounded convergence
theorem. For the second term this follows from (5.1). m]

5.1 Proof of Proposition 5.2

We start with the following technical Lemma providing F; measurable approximations
of birth times of new individuals after large ¢. Throughout recall the notation n(z) =
|7 (t)]. As this Lemma lies at the heart of our local limit computations, we provide an
intuitive explanation first. Suppose we know the population size n(¢) at time ¢ and want
to ‘guess’ the birth time «; () of the (n(¢) +i)-th individual based on this information.
From Lemma 4.2, we know that the population size (which is a Yule process) grows
approximately exponentially with time. Therefore, a good guess is «;(¢) satisfying
n(1)e%O~" = n(t) + i. The following lemma shows that, for sufficiently large ¢, this
is a uniformly good guess for all birth times after 7.

Lemma5.3 Let {0;; : i > 1} denote the birth times after time t, i.e., ;i = Oi4n().
Define ai(t) :=t + log (1 + #t))fori > 1. Then

sup |67, — a;(1)] 250 as t— oo (5.3)
i>1
Moreover,
E |:sup|6,,,~ —oz,(t)||]—',i| 250 as t— oo. (5.4)
i>1

Proof (5.3) follows from [26, Lemma 3.4].
It remains to prove the convergence in expectation. As before, let {E; : j > 0}
denote an i.i.d. sequence of exponential rate one random variables independent of
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F;. The dynamics of the Yule process implies that conditional on F;, all the joint
distributions can be constructed simultaneously as

i
- E;

ori =1+ E —_—,
1,i jzon(t)—i-]

Thus,

i—1 i—1

> (0 )|+ S (5]
s n(t)+j n(t)—l—] = On(t)—i-] n(t) ’

It is easy to see that there exists some constant C > 0 such that the second term is

Gri — o (t)] <

upper bounded by G forall i > 1 and all # > 0. Since {E};>( are independent of
Ft, defining M; := Z’] 10 nE(t)+/ the sequence {M; : i > 1} conditioned on F; is a

martingale. By Cauchy-Schwarz inequality and Doob’s L? inequality, for any k > 1,

i—1

1/2
]i‘lgk ’l(l) ] ‘| ! ]s | || ' ( [ kl t])

- 12 o 12
el
(,_0 () + J)2) =¢ (Z () + /)2)

C//
/n(t)

IA

for some positive constants C’, C” not depending on k. Therefore,

- C C" s
E|suplor;i —ai®)||F | < — + —— — 0 ast — oo.
|:izll)| t,i Olt()|| t:| O RNIO)

We will now commence on the proof of Proposition 5.2.

Proof of (5.1) For the rest of this proof, let m(s) := E[¢(7*(s))] for s > 0 and
m(s) = 0 for s < 0. By boundedness assumption on ¢ and Lipschitz continuity of
m(-), there exists constants M, L < oo such that

lp()I <M, |m(s) —m(@)| < Lt —s]|. (5.5)
Note that 2 (y(1)) = .5, <, i (0(0) =01 + Xt 1.y (0y) $i V(1) — 7). To simplify
notation, we will write the second term as Z% (y(2)) := Zime(,‘y(m ¢i (y(t) — 0y).

By (5.9), |¢i (-)| < M for all i > 0. It is straightforward then, observing from Lemma
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4.2 that e~ "n(t) converges almost surely to a finite random limit,
VR Y 00 — 0| F | < MEYOn0)IF] L5 0 ast — oo, (5.6)
i:0; <t
To address the second term, recalling from Lemma 5.3 that 6;; = 0jn(r), Write
EIZGONFI=E| > my@) —&lF |. (5.7)
i:67, <y (1)
Applying Lemma 5.3 we can approximate (5.7) by using the J;-measurable approxi-

mations {o; (7)};>1 of the birth times {; ;}i>1,

SOEl Y me0-a0 - Ym0 - 60| \

i:67,i <y(t) i (1) =<y(1)

<e?".ME [Z 1{&,.i5y(z>,ai<z)>y<r>}|fr}

1

= M- OE[In(r(1) — ln)e® = 11| F]
<M- (IE [le_y(’)n(y(t)) - e—fn(t)||f,] e D (n(r) + 1))
<M <E [(e—ymn(y(t)) - e_tn(t))2|.7:,])l/2 +MeOm@)y+1).  (58)
Since {e_s n(s):s > 0} is an L% bounded martingale we can compute
E [ On(y0) = e n@)?| 7| =E[ @ On(a)F ] - € nw)? < e,
where the last inequality follows from Lemma 4.4. Therefore,
(5.8) <2Me " \/n(t) + 2Me™> O (n(r) + 1). (5.9)

Now we estimate

e YO

E|l Y mo0-6o-— Y, mO@)-an)|Ff

i (1)<y(t) i () <y(t)

< e Dn(r)e”” . LE [sup |61 — a; <t)||f,}

i>1

—e¢'n@t) - LE [sup 1610 — o (t)|’f{| , (5.10)
i>1
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where L isasin (5.5). Next, let M?(y(1)) := Zi:ai <y() m(y(t)—a;(t)). Combining
(5.9) and (5.10) yields

e YOIEZ? (y(1))|F ] — EIM® (y(1))| Fi]

i>1

<2M(e"'Vn(t) + e (@) + 1)) + e 'n(t) - LE [sup 161, — ati (1)) IE} :
(5.11)

The parte ™" /n(t)+e~> (n(t)+1) vanishes almost surely as  — o0o. Then applying
Lemma 5.3 gives that (5.11) goes to 0 almost surely as t — oo. It remains to evaluate
the almost sure limit of =Y )E[Md’(y(t)) | F¢]. Observe that, using the boundedness
and Lipschitz continuity of m(-),

e YORIM? (y(1))|F1]

=e 3" my(n) — i)
i (1)=<y(t)
[n(1)e*® |

= Y0 Z m(a(t)—log<n(t)(;i>>+0a.s.(1)
n

i=1
"D | n(r)

— YD Z Zm (a(t) — log (i + ﬁ)) + 0q.5.(1)

i=1 j=1

L]

— e*}’(l) Z n(t)ym(a(t) — IOgi) 4+ 04.5.(1)
i=1
eu(r)
_ efy(nn(t)/ m(a(t) —logx)dx + 04.5.(1)
1

a(t)
= e*y(t)n(t)/‘ mw)e* D7 du + 045 (1)
0
a(t) s o0
= e*’n(t)/ mu)e "du + o045 (1) = W/ e "m@u)du. (5.12)
0 0

This proves (5.1). O
Proof of (5.2) Note that

E[E00)FR]=E] Y 6060 -0)e00 —0p|F

i,j:a,-gt,ajft

+2E D b0 — o) (y(1) — 0| Fi

i,jioi<t<0;<y(t)
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+E | Y i) = 6.0 (v(t) — 61| F
i,J
=:T1(t) + 2T»(t) + T5(1),

where for the rest of this section, the sum in 73(¢) is implicitly over i, j with o;, 0 €
(t, y(t)] but we have suppressed this to ease notation. Now, it can be readily checked
that

e 2OT () < M?e 2D )2 L5 0 ast — oo,
and

YO < MeOn(r) . e VOR [2’¢(y(r))|f,] 450 ast — oo,

where the second line follows from combining Lemma 4.3 with (5.1). Thus
E [(e_y(’)Z¢(y(t)))2|ft] = e 2YOT3(1) + 045.(1). We write (again recalling that
all the ensuing sums are over vertices born in (¢, y(#)]),

Ty(t) =E [Z 7 (v(1) — &z,i)|f,} +2E | Y di(v(t) = 6.0, (v(1) — 61, )| Fi

i<j

=e(t) + T3(1).

We restrict our attention to the second term since the first term is o, 5. (e_zy(’ )):

e P Ve(t) = e PR [Z ANOE &t,i>|f,]
i
< M2 2Op1)e® L5 0 ast — oo. (5.13)

Fori < j, we write j — i if v; is a descendant of v; (and write j — i otherwise).
By convention we have i — i. Then fori < j,

E[¢i(y(1) = 61,09 (y(1) — 61, )| Fi]

< MPP[j = i.61; < yO|F]+E[¢: 0(0) — 61.0¢; (1) — G0 )L ijy | F ]
(5.14)

Recall that, for the rest of the argument, we are only interested in pairs born in the
interval (¢, y(¢)]. For any fixed time T, vertex v; with o; < T, let D,(T) denote the
number of descendants of v by time 7. Summing the bound (5.14) over all pairs of
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vertices born in the interval (¢, y(7)], one gets,

Ty(t) <2MPE| > Dy,()IF

iroi€t,y(0)]
+2E Do i) =606 () = G Dy F
i<j:oj,0;€(t,y(t)]
i=Ts1(0) + T3.2(0). (5.15)
The following lemma completes the proof of (5.2). O

Lemmab5.4 Ast — oo,

(@) e 2OT5 (1) =5 0.
(b) e 2 OT35(1) < (e DE[Z? (1)) F)? + 0as.(1).

Proof of Lemma 5.4(a) Note that, when a new vertex is attached to some existing vertex
v, the number of descendants of v and all its ancestor vertices increases by one.
Hence, we can dominate Zi:oie(t,y(t)] D,,; (y(t)) pathwise by ht(7 (y(t), p))n(y(t))
where recall that ht(-) denotes the height of the associated tree. Moreover, observe
that, conditionally on F;, ht(7 (y(¢), p)) < ht(7 (¢, p)) + max; <, h; (¢, y(t)), where
h;(t, y(t)) denotes the height of the (maximal) tree rooted at the ith vertex formed
entirely by its descendants that arrived in the time interval (¢, y(¢)]. Further, note
that there exists a collection {A} (a(t)) : i < n(t)}, distributed as the heights of n()
independent Yule trees run till time a(#), independent of F;, so that we can couple to
get h;(t, y(t)) < hi(a(t)) for every i < n(t). Consequently, using Lemma 4.5 with
B=e,

E ((max;<nq) hi (¢ y))?|F; ) < n@E @(0)?)
< n(0) (9e2a(r>2 + [ T RGa) = ﬁ)dx)
9¢2a(r)?

o0
< n(t) <9e2a(t)2 + / 2e2€“<’>e—ﬁdx>
9¢2a(r)?

= 9¢%a(1)’n(t) + 2n(t)(1 + 3ea(r))e *®.

This implies thate > W E ((max; <n(r) hi (¢, y(1)))*|F;) — Oalmostsurely ast — oo.
Also, by Lemmas 4.3 and 4.4,

UM ) [F) = e (1) + () <5 W3

as t — 00. Moreover, using the monotonicity of ht(7 (¢, p)) in # and Lemma 4.5,
it follows that e =¥ ht(7 (z, pP)) — 0 almost surely as t — o0o. Therefore, using
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Cauchy-Schwarz inequality,

e POTy (1) < e POE(T (1, p))n(y(0)|F]
+ e P OEmax; <) hi (1, y()))*n(y(1))|Fi]
e 2O (T (¢, p))n(t)e® ™

+ (6723’“)15 ((maxiin(t) hi(t, y(t)))zu-t))l/z

< (e 2OBmp) 7))

which converges almost surely to 0 as t — oo. O

Proof of Lemma 5.4(b) Fori < j,let ;' i jbetheo- -field generated by the tree process
up to the (n(¢) + j)-th birth time, and the birth times and attachment locations of all
vertices that are descendants of v;. Note that ¢; (y(¢) — 6;,;) 1{j i} is .7-' * -measurable

and ¢;(y(t) — 67, ) is independent of }'* ; on the event {j - i}. Hence first con-
ditioning on }' * and then using the tower property for conditional expectations we
get,

E (i (v(t) — 61,006 (y(1) — 61, ) 1jomiy| Fi]
=E [¢i (y(t) — 61,0 L(jwiym(y(t) — &1, ))| ]
<E[m(y@) —&.)m(y(@) — &1, ))| 7] - (5.16)

The last inequality above follows from a similar conditioning by a sigma field contain-
ing information about birth times and attachment locations of all individuals except
the descendants of i (excluding 7).

By the boundedness and Lipschitz assumption on the mean functional m(-), for
i < j, where j satisfies max{o;,;, a;(t)} < y(t), there exists some C > 0 such that

Im(y (1) = 01,)m(y(t) — 6y,j) —m(y(t) — o (1))m(y(t) — o ;(1))]
= C(6i,; — i+ 0,0 — ;D).

Hence (and writing E£, (-) = E(-|F)),

e 2

Ez, > mO@) = &m0 =6 )
i<j:
G1,i»07,j€(t,y(1)]

= Z m(y(t) — i ()m(y(t) — aj (1)) (5.17)

ai (1), (t>e(t Y]
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< e . CEf, > (1610 — @i (D] + 1670 — a; (D))
i<jmax{oy, j,o (1)} =<y ()
(5.18)
+e O MPEr | Y 1, 5v0<a; 00) (5.19)
L i<J i
+e 20 2B 5 | S w2025, | - (5.20)
L i<J i
By Lemma 5.3,
(5.18) < e 2™ . 2CE > sup [G1,¢ — e (1) F

i<jmax{6y, j,oj (1)}<y(r) £zl

<2Ce D (n(1))?*E [sup 1610 — (1) |f[]
>1
=2C(e"'n(1))’E [sup 1616 — Olz(l)||fz:| 50.
>1

As for (5.19), observe that

(5.19) = M2 OF [n(:)|n((0) = L@ = 11| F]
= M2 2O VE [In(r(0) = In(@)® = ]| | 7]

+ M7 OR [(u(y(t)) — 0@ =)’ iff] ’

which goes to zero almost surely as + — oo following the same reasoning as in (5.9).
Similarly we have

(5.20) < M2e 2 OR [n(t)(e”<’> — D max{n(0)(e® — 1) — n(y(0)), O}|]-}]

< Mze—Zy(t)n(t)ea(t)E [|n(y(t)) _ n(t)(ea(t) Y }]:l] as o

Noting that the processes «; (¢) are F; adapted so that the conditional expectation
of the second sum in (5.17) is itself, the last step is to estimate

MPD (y(t)) = 3 m(y(t) — o (1)m(y(t) — ;1))

i<j:
a; (), (t)e(t,y ()]
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2

Yo my®) — i)

i ()=y(r)

IA
| =

Recall the definition of M?(y(r)) = Zi:a,- =y(ey MY (1) — ai(1)) from the proof of
the first moment convergence in (5.1). Then, from (5.11) and (5.6),

2¢O MO (y(1)) < (e‘ym/\/ld’(y(f)))2

= (" OBIZP GOIF) +o0s (D)

2
= (PORIZ* GO)IFD) +oanD. (52D
Using (5.16), asymptotics for the terms in (5.18), (5.19), (5.20) and (5.21) completes
the proof. O
This completes the proof of the second moment namely (5.2). O

5.2 Completing the proof of Theorem 3.3
The goal now is to transfer the continuous time embedding asymptotics in Theorem
5.1 to the discrete time process {7,(p) : n > 1}. In Lemma 2.2, recall the stopping

times 7,, = inf{r > 0 : n(#) = n + 1}, connecting the embedding of the discrete
process in continuous time.

Theorem 5.5 Let ¢ be a non-negative functional on T satisfying the assumptions in
Theorem 5.1. Let v be a uniformly chosen vertex in the graph T, (p). Let T,m denote
the fringe tree of v™. Then

| — o0
B9 (T Tl i= —— " i(T, o) /0 e~ El$(T*(5))lds
i=0
in probability as n — o0.

Proof Write

1 < 1
Bl (Tl Tal =~ D ¢i(Tu = 0) 1=~ Z(Ty)
i=0

Let ©(¢) := e~ "n(r). Note that, by Lemma 4.2, © () 2% W and thus,
T, —logn +logW <5 0. (5.22)

However, working the limit random variable W for finite ¢ approximations of the
embedding is difficult so we will work with approximations of the limit W. Define
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t, = logn — /logn, f’,, = logn — log ®(#,). Using (5.22) and O(z,) 2% W, we
get,

Iy = Tyl < |logn —log W — T,| + | log W — log ©(t,)| == 0.

For ¢ > 0, define TnjE (e) := 7~“,, =+ ¢. For any ¢ > 0 there exists a random n, such
that foralln > n,, T, () < T, < Tn+(£) almost surely. Since ¢ is non-negative, for
n > ng,

O ZYT(e)) < e ZH(T,) < e T O Z(TH (o)), (5.23)

Recall the limit random variable in Theorem 5.1 and to simplify notation let X :=
w fooo e *E[¢p(T*(s)]ds. Also recall that W ~ Exp(1). Fix § > 0. Forany n > 0 we
can take ¢ > 0 such that,

P ((X £ 8)e % > X 4+8/2, (X —8)e¥ < X — 3/2)

§(e* —1/2)  8(e™* —1)2)
e — 1 N 1 —e 2 zl=n

=P<X< (5.24)

Write Ase = {(X +8)e™ > X 4+8/2, (X — 8)e** < X —§/2).

limsup P(e ™" Z2(T,) > X +6)

n—o0o

< limsupP(e~Tn ©Z9(TF(e)) > X +68)

n—oQ

+ limsup P(e ™ Z%(T;,) > e In © Z2(TF(e)))

n—0o0

= limsup P(e*e " © Z9(TH(e)) > X + )

n— oo

<limsupP(e™ " @ Z2(TF(e)) > X +8/2, As.e) + 1, (5.25)

n—oQo

where the third line comes from (5.23) and the last line follows from (5.24). Note that
Tni(e) = t, + (Vlogn —log ©(t,) &£ ¢) is measurable with respect to F;, and

Jlogn —log®(t,) £ ¢ as;

In

V]ogn —log®(t,) £ ¢ 2% oo and 0.

Thus applying Theorem 5.1, we get that for any §, ¢ > 0, as n — oo,
eiT"i(E)qu(Tni (¢)) — X in probability.
Applying this back to (5.25) shows that lim sup,,_, ., P(e =" Z%(T,,) > X +8) < n for

arbitrary n > 0, i.e., limsup,,_, . P(e~ 7" Z%(T,) > X 4 §) = 0. Following a similar
argument we have lim sup,,_, ., P(e~7" Z?(T,,) < X — §) = 0, thus establishing

T z9(T,) 2> X,
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Since e~ T - (n + 1) 25w, combining this with the above equation gives,

Z9(T,) eln
T,

1
]E Tn 7;, =—Z¢Tn = .
[BTIT) = —— 22 (T) = == ——

o0
_)/ e—Y]E[d)(’]’*(s))]ds 1nprobab1hty
0

m}

Proof of Theorem 3.3 To complete the proof of part (a), namely, the convergence in
probability in the fringe sense, it suffices to show that for any fixed finite rooted tree
so, the function m(u) := P (7*(u) = sg), u > 0, is Lipschitz continuous in u. But
this follows upon noting that there exists a finite positive constant C(|sp|) depending
only on the size of sg such that, for any # > 0, § > 0,

[P (T*u+8)=s0) = P(T*(u) =s0)]
< Z P (There is a birth in the Yule process with initial population size |s| before time §)
sCso

< C(Isol)é,

where the sum above is over all rooted subtrees of sg.

Next we prove part (c). Observe that, from part (a), E[D] = E (P (r)), where Py (-)
is defined in Sect. 4.4 and 7 is an independent Exp(1) random variable. Using Lemma
4.11,

o) E i _ 00 _ _
E[D] =E(Pi(1)) = Y (l.’, Yo =iy = 3 PR = i) = () < o),
i=0 ’ i=0

where we have used E[r/] = i! to obtain the second equality. By standard results
on recurrence of random walks, eg. see the Remark after Lemma 1 in [55], the last
term above is 1 if and only if E[Z] < 1. This proves the claimed assertions on E[D].
Further, again using Lemma 4.11,

e8] o0 00 E i _ 00 _
E(T*(r,p)) = Y E(Pu(x) =) > (.’, Jp(f = i) = > P(Ti < 00)
k=0 k=0i=0 k=0
=1+ Z(P(Tl < o)k,
k=1

The right hand side above is finite if and only if E[D] = P(T) < o0) < 1, proving
the assertions on expected tree size.
Part (b) now follows from Theorem 2.4 (a). O
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6 Proofs: Degree distribution asymptotics

In this section, we prove Theorem 3.8. The high correlation in the evolution of degrees
of different vertices renders conventional tools inapplicable and one has to develop
new stochastic analytic techniques to track the degree evolution. The proofs of the
degree distribution upper bounds in Theorem 3.8 rely crucially on the asymptotics of
a weighted linear combination of vertex counts at different distances from the root of
T*, summarized in Theorem 6.2. This theorem also plays a key role in subsequent sec-
tions involving fixed vertex degree asymptotics and PageRank asymptotics. The lower
bounds in Theorem 3.8 rely on a softer analysis involving approximation by multitype
branching processes with finitely many types using tools developed in Sect. 4.5.

Recall the process P(-) = (P;(-) : i > 0) from Sect. 4.4 keeping track of the num-
ber of vertices at various levels in the process 7 *. Let T ~ Exp(1) be an independent
random variable. The limit in Theorem 3.3 now results in the following description of
the limit degree distribution.

Corollary 6.1 Let D be as in Theorem 3.3. Then D 4 P (7).

Thus understanding the evolution of P will play a key role in the proof of Theorem
3.8. We will begin by stating Theorem 6.2. Assuming this Theorem, we will prove
Theorem 3.8. The rest of the section compartmentalized in Sect. 6.1 is then devoted
to the proof of Theorem 6.2. Recall the matrix A = (A;;) as in (4.6). With s¢ as in
Definition 3.6 let,

o0
Prt) =) sTPir). fort=0,5>0, P@)=Pr®. (6.1
i=1
Recall the p.g.f of p, f(-).

Theorem 6.2 (i) For any s > 0 such that f(s) < oo and forallt > 0,

" po  fe),
E[P{ ()] < es ! (6.2)
’ f()
(i) WhenE[Z] < 1, foranys € [1, sol, 6 > 1, there exists constant Cg s < 00 such
that, ,
Ji0)
E[(P (1)1 < Coze %, Vi >0. (6.3)
fGsg)

(iii) When E[Z] > 1 so that sg < 1 by Lemma 3.7, let a*(0) := max{ N %}. For

any 6 > 1, there exists some constant Cy > 0 such that for all t > 0,
E[(P*(1))?] < Co(1 + 17)e® @1, (6.4)
Corollary 6.3 Define P*, (1) := Y22, s~/ P; (1)
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(1) Forallt > 0ands > 1 such that f(s) < 0o,

po I

e s
f()

E[P*(1)] <

(i) When E[Z] < 1, for any s € [1, s0l, 0 > 1, there exists constant Cy 3 < 00 such
that,

E[(P* ()] < Coye’s %, Vi > 0. 6.5)

Proof The result follows from the same proof as of Theorem 6.2 upon noting that
(s™" : i > 0) is a left subinvariant eigenvector of B associated with the eigenvalue
f(s)/s when s > 1 (see Proposition 4.12(b)). O

The proof of Theorem 6.2 is deferred to the end of this section. The above bounds
coupled with the preliminary analysis of P; in Sect. 4.5 immediately lead to the
following two Corollaries.

Corollary 6.4 For any 6 > 0, we have the following limit

_(1_
lim e (4 8)t731(t)=oo as. (6.6)
Jlim 1~ RD (1) =0 a.s. 6.7)

Proof Fix § € (0, 1/R). Using Proposition 4.16 choose k = ks € N large enough
such that the Perron—Frobenius eigenvalue o of the k x k principal submatrix Ay of
A satisfies

1 ) 1
——— <oy < —.
R 2 R

By the stochastic domination in Lemma 4.14 and the limit result for finite urns in
Proposition 4.15,

tim ¢ (F)py 1) = tim o (R0
t—00 PareroN

Pi(t +o1)

1 1
- 7—5)0 . —(7—5
>e (R "lim ¢ \F
11— 00

VB

(1_ >
> e (R 5)51 Jim 2 (e Py(1) = 00 as.
—00

This proves (6.6). To prove (6.7), for any given ¢ > 0 and N > 0 we can define the
event

En = sup s UFDe=S/IRD (g) > e
s€[N,N+1]
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By Theorem 6.2, for any t > 0

SGs0)
O t
S0 = po Re

E[P)(1)] < soE[P*(1)] < R,

- f (s0)
Hence,

E[Pi1(N + D]
N/R pr146

P(En) <P(Pi(N +1) >ege”/"N' ™) < coN/RNTTS
poReNHTD/R — poRel/R

ceN/RNTHS — gNI+o -

Applying Borel-Cantelli Lemma then gives P(lim supy_, o, En) = 0. Hence,
IR (1) 255 0,

proving (6.7). O

Corollary 6.5 Let © ~ Exp(1) independent of T*.

(i) When E[Z] < 1, for0 € [1, ﬁ) and s € [1, so], E[(Ps*(r))g] < 0.
(i) When E[Z] > 1, let g« < 1 be as in Definition 3.6. For 6 € [1, R A llzggzg ),
E[(P*(1))] < oo.

Proof (i) Simply follows from (6.3). For 6 € (0, ﬁ),

f(s

Odt < oo.

E[(P: ()] = f e 'E[(P (1)) 1dt < Cy. / e
0 0

(i) We first start by evaluating o™ (+) in Theorem 6.2(iii). For E[Z] > 1and 6 € [1, RA

llgzzt’:)we obviously have then /R < 1.Further, noting that so > 5§ > s(log 4:)/(logs0),

Lemma 3.7(a) gives

f(sg) f(s (lqu*)/(IOgSO)) ~ F(qw)

< =
sg s(glog q)/(log 50) gs

=1.

Hence a*(0) < 1. Using (6.5) gives
o0 o0 «
E[(P*(x))?] =/ e "E[(P*(1)")dt < CQ/ e (1419 @dr < o0,
0 0

from which the result follows. |

Proof of Theorem 3.8 assuming Theorem 6.2 Throughout we use the representation in
Corollary 6.1.
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Upper bound for the tail exponent: Note that by construction, for any s > O,
P1(t) < sP;(t). We start with the regime E[Z] < 1. Note that s/ f(s) 1 R as s 1 so.
Corollary 6.5(i) gives that for any § € (0, R), there exists some ss > 0 such that

E(P1(1)*7%) < ssE(Py (1) %) < 55Cs.
It follows that

E[(P1 ()R] _ 5sCs

B(D = k) = B(PI(r) 2 k) < ————— < 155

(6.8)

for finite constant Cy. This implies that,

loglP(D >k
lim supM < lim su

b log(ssCs) — (R — ) logk .
k—o00 logk k— 00 logk

=—R+34.

As § > 0 can be chosen arbitrarily small, this completes the upper bound for the tail
exponent when E[Z] < 1.

The case E[Z] > 1 follows the exact same argument but using Corollary 6.5(ii)
with the exponent R in (6.8) replaced by R A llgiz(’;
Lower bound for the tail exponent: Here we want to show that R is a lower bound
on the tail exponent in all regimes. Fix 0 < § < R. Note that for any fixed k > 1,

o0

0o § s
P(D > k) = f eSP(Py(s) > k)ds = / eSP (e*ﬁspl (s) > e*mk) ds
0 0

zf{ s l}e—fp(e—kim(s)z l)ds
s.e <

0o S
= / ¢SP (e*RTaPI (s) > 1) ds. (6.9)
(R+8) logk

By (6.6) in Corollary 6.4, e_R%rﬁP] (s) = o0 a.s. Thus there exists ky > 1 such that
P (fﬁspl (s) > 1) > 1/2forall s > (R + &) log ko. Thus, for k > ko, we have

IP>(D>/<)>1/OO —5d !
>k) > = e tds = ——,
(R+8) logk 2kR+S

whichleads tolim infy_, o, logP(D > k)/logk > —(R+3) for arbitrarily small § > 0.
O

6.1 Proof of Theorem 6.2
The following lemma gives a tractable formulation for the expectation of powers of
P*. This will be used to set up differential equations involving E[(P*(-))?] for 6 > 1

whose analysis will lead to the proof of Theorem 6.2. In the following, a crucially
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used object will be the generator £ of the continuous time Markov process P(-)
taking values in

S = {x:(xi:iEO)e(No)NO xo=1,3eN
suchthat x; > 0V/ <Igyandx; =0V > Ix}.

For any function f : S — R, define the action of the generator £ on f as the function
Lf :S — R given by

LI =) [fx+e)—fM]) Ayxj, xe,

i=1 j=0
whenever the right hand side above is well-defined (here e; is the i-th coordinate unit
vector). For notational convenience, for g : S — R, we will write L[g(P(¢))] :=

Lg(P1)), t > 0.

Lemma 6.6 Foranys > 0,t > 0and 6 > 1,

t
BP0 = [ BLLIP; ) 1idr < oo, 6.10)
0
where
LIP; ) 1= [(P;(z) +s7H7 — (P;(t))e] > AiP;@). 6.11)

i=1 j=0

Proof Let Yule(-) denote arate one Yule process asin Lemma4.5,let Y () = |Yule(?)|
denote the size and ht(z) the corresponding height of the genealogical tree at time ¢.
Note that the height of 7*(¢) is stochastically dominated by the height ht(¢) of the
Yule process. Thus for any 6 > 1 using Cauchy-Schwartz inequality,

E[(P))"1 < E[(sup s - Y(0)"] < E[(1 v s ™M) (1))’
i<ht(t)

< VEL(1 v s=200O) | \/E[(Y (1))¥] < oo,

where the finiteness of the first term follows from Lemma 4.5 and finiteness of
the second term follows from distributional identity Y (1) ~ Geometric(e™"). This
proves E[(P} (1)?1 < o0o. To prove (6.10), first consider the truncation P: N@® =

ZlNzl s~IP;(t). Applying the generator of the Markov process P(-) gives

t
E[(P; y ()] = /O ELI(P; ()’ 1dr
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where,

LIP N(r))]—Zn{,<N}[( N0+ (P N(r))]ZA,,P,(w

i=1 j=0
Note that for each i > 1,
Lz [P @) +57) = Ly | A [P +57) = P10’ |

as N — oo. By monotone convergence theorem,

t
E[(P; (1))"] = Jim E[(P s () ]—/0 ELLL(P; () 1ldr

O

Remark 13 By the same argument conditional on F,, for any fixed u > 0, it follows
that E[(PF(t + u)? — (Pr)? | Ful = [T EILIPE (1)1 | Fuldr, t > 0. This

implies that the process (P;(r)g fo (P*(r))e]dr> o is a martingale.

Proof of Theorem 6.2(i) We begin by proving (6.2) namely & = 1 case. Using (6.11)
and the form of A gives,

00 00 oo | j+1 )

L(P; (1)) =Z D i Pty =Y | Y s pjin | Pi(0),

j=i—1 j=01] i=I
oo | j+1
Z s’ i | P < 204 L (S) Z P
j=0 j=1
=24 f(S)P*(t)
Here we have essentially re-derived Proposition 4.12(a) on (st i >0 being a

sub-invariant eigenvector with eigenvalue f(s)/s. Using Lemma 6.6 gives

f()

%E(P;m) <20 TS gy,

Integrating completes the proof. O
Proof of Theorem 6.2(ii) To prove (6.3), we will first start by assuming that 6 is an

integer and argue by induction. After completing the proof for integer 6, we will
extend the proof to general 6. By (6.2), the assertion is true when 6 = 1. We will use
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A;j instead of p;_;41 for ease of notation. Suppose (6.3) holds for < k — 1.

Mg

LR T = 30 [P +57) = L) > Py

j=0

I
-

pnqs;

k o0
Z ( )(P;(r»"—’s—” > APt

=1 j=0

I
-

k oo
> 2 ( )(P;(r»k—ls"' > AiP;(0)
=1 j=0
( )(P*(t))k ’Z (Zs ’AU> Pj(0)
1 j=0
( )(P*(z))k ’(s Po +&7>*<t>)
1

k
k) ok PO S (R e kit
= =PI + == Z<l><ﬂ<m

=2

0

I
=
—

|
M»

~
I

M»

1

k
_ k N _
+s 1p0§(1>(77s(t))k L

Here the key inequality in line two follows from assuming thats > 1sothats ™" < s~/
whilst the inequalities in the ensuing lines mimic calculations in the & = 1 case.
By the induction hypothesis, for I < i < k — 1, 3 finite constants C; s such that
E((P; (1)) < Cisexp(£&i - 1). Let Crs := max)<i=k—1{Ci,y). Using Lemma 6.6
gives,

k
& e m(prant] < et [f ©) 3 (';)E[@;m)k—’“]
=2
+s7'po Y (k)EKP*(t))""]}
l S
k
= 10, | f(s) K\ _i_piw
< Eyre [ ( Z(,)e =218

=2

~ f(s)
< Cpge v 1.2k <@ + s_lpo) .
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Therefore, there exists C s > 0 so that

t
EL(P; (1)!] < Croet S / 5 ar 2’<(f O 4y po)<Ck,se"~v :
0

proving (6.3) for & = k. To extend to 6 € (k — 1, k], we apply Jensen’s inequality to
obtain,

EIPr(1)°] < EI(P0)E < Cf 8 50 = € e
O

Proof of Theorem 6.2(iii) 1t remains to prove (6.5) when E[Z] > 1 so that 59 < 1.
Recall that P* = Py - Note that for any 6 > 1,i > 1,

P*(1) + 551 — P*(1)? <65y P (1)’ !
00 —

1) —21 * 6-2 * i\0—2
+ 5 [P(r) V(P10 +557) ]

It follows that

2

LIP ) 1= Y [P0+ 5 = P 0| Y AyPi 0

i=1 j=0

<Y sy P’ 1ZA,,7>,<r)
Jj=0

i=1
00 1>,, . .
+;T 2 [P 072V (P*(t) + 550 2]JZOA,,7> (1),

8

6.12)

Since Z?O:o AijPj(t) = Z(;ii_l Pj+1-iPj(1), it is‘ easy to see Z‘j?‘;o AijPi(t) > 0
only when P;_(1) > 1, which implies P*(1) > 55 “~".
Hence for 6 > 2,

[P*(z)H v (P*(t) + so—f)H} D AP < (14 1/50)"2Pr 0" Y AP ().
j=0 j=0

Taking into account the case where 6 € (1, 2), we have

[P 2 v ) + 551~ 2]2A,,P,(;) < (1v A+ 1/50)"72) P2

]—

ZA,‘j'Pj(Z).
j=0
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Plugging this back into (6.12) gives

LIP* @)1 < 0P 1)) (Zso‘"Au) P

j=0 \i=1

+0(0—1)( \/(1+1/So)9 -2 P*(t)" 22(2 ]) P/([)

2 =0 \i=1

9(92_ D (1v (1 +1/50)"72) p—fP*(rﬁ—Z
0

P*(1)0~ 2Zs02’73,(t).

j=1

0 0
< 0=t 4 Zpr(yf +
S0 R

(1v 1+ 1/s0) “)f(o)

0@ —1)
+ 2

Define d(t) = sup{i > 0 : P;i(r) > 1}. Observe that, since so < (0, 1),
Z, 150 P,(t) <5y d(t)P*(t) Hence,

— 2
LIP @) < (9ﬂ + 202D (v g gser2) L0 ‘“”) P!
S0 2 50

00 —1)
2

+ gp*(t)e + (l V (1 -|— 1/S0)972) p_gp*(t)672
So

C d(t)P*(t)G 1 + 7)*(09 (613)

for some finite constant C‘g that depends on 6, sg and pg. Notice that the term P* (1?2
can be upper bounded by P*()?~! forall @ > 1 since P*(¢) > 1. For any 0 > 1,

%E{P*(:)G] = E[LI(P*1))°]] < CoElLsy “OP )"~ "1 + %E[P*(t)e]
< BP0 T (Bl 1) + ZEPr o)

By the definition of «*(0) and (6.2),

f(vg)[
]E[ —ed(t) <E s P ) .Yg < Po SO
JZI © f( 0) £Gs9)

1/0
Let g(t) = e O'E[P*(1)?] and C), = Cy ( ) . Then

fGs)

g(t) < Ch(g)7 . (6.14)
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Define h(t) = 1+ g(0)!/? + z%z — g(H)!/9_ Then (6.14) implies that,

/

/ 2C9 1 4 11 Cé
h(t) = 7 —5g(t)(g(t))9 z 5

Since h(0) > 0 we have h(t) > 0. It then follows that there exists some Cy > 0 so
that g(t) < Co(1 + 1) forall r > 0, i.e.,

E[P*(1)"] < Co(1 +19)e 1,

which is assertion (iii). O

7 Proofs: Condensation and fixed vertex degree asymptotics

We abbreviate d,,(vy) = deg(vk, n), k > 0,n > k. We will first prove the non-root
fixed vertex asypmtotics.

Proof of Theorem 3.10 This follows from a direct application of Corollary 6.4. Using
the continuous time embedding, note that for any i > 1,

{dn(vi) i > i} £ (PY(Ty — ;) in > i),

where as before 7, = inf{t > 0 : |7(¢)] = n + 1}, o; is the birth time of v; and
Pf i(t) denotes the number of children of vertex v; in 7 (¢ + o;). Observe that Pf )

e JTn as.
has the same distribution as the process P;(-). By Lemma 4.3, LT £ % where

W ~ Exp(1). It follows from (6.6) that

nl/R=6 = pI/R=5 T o(/R=8)(Ty—01) |

. . ) 1/R-§
do))  PU (T —oi)  PU(T, — o) (e“n—m)
= —> OQ.
n

Similarly, by (6.7),

dy(vi) Py(T, — 0y)

nl/R(logn)H"S - l’ll/R(lOgl’l)H's

_ I\ I/R
B PY(T, — o7) . (e(T'""’)) , (M)HB 250

e(Tn_Ui)/R . (Tn — O-l.)1+8 n lOgl’l

Now we proceed to root degree asymptotics.

Proof of Theorem 3.9(a) Recall that T, is the stopping time when n(t) = |7 (¢)] first
becomes n + 1. Standard properties of the Yule process (see Lemma 4.2) imply that

P(|T, — logn| > M) < 2¢™M,
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where M > 0 will be chosen later.
For any fixed ¢ > 0, it follows from Theorem 4.21 that there is some #y(g) > 0
such that for r > f,

Ele ™ Py (1) — Wool < &, (7.1)

where Woo := (1 — g,)W.
For any n > e0tM and some § > 0 to be chosen later, let ano = logn — M and
define a, ; = an,;—1 + & fori > 1. Then we can observe that
2M /8]

Ele " Pi(T,) = Woel = Y E[1e7Pi(T) = Woel - Ty <are
i=0

+E[1e7Pi(T) = Wool - iz, -toguizin] - (7:2)

To address the second term in (7.2), note that

E [Ie_ "Pi(Ty) — Wool - 1{\Tn710gn\zM}]
. 1/2
= (Bl Pi(T) = Wo)1) - BT, — logn| = M)/

<2 (2(n + 1)?E[e 2] + ZIE[Wgo])I/2 e M2

To upper bound (n 4+ 1)2E[e "], write X,, = (n + 1)2¢~2T». Observe that

E[Xpt1] = (n 4 2)°E[e™2Tm1=Tn) =21

(2T 2 mH1l_ ek
=Bl +2)° 3 =EX]- o

where we used the observation 7,41 — T, ~ Exp(n + 1) and is independent of 7,,.
Hence, for any n > 1,

1 1
E[X,+1] = E[X,] (1 + m) < E[X,] (1 + E)

n
<E[Xol[]e'¥ < o
k=1

for some constant Cp > 0. This combined, along with the explicit form of W, shows

that there exists some constant C > 0 so that /2 (2E[eTrn(T,)*] + 2E[W2.]) 2
C. Taking M = 210g(2C/¢) then gives

E [IE_T"751(Tn) — Weol - 1{|T,,—logn|zM}] <e/2. (7.3)
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Fort € [a;i, ai+1), we have e’”"+1751 (aj) < e”751 (1) < e"‘i751 (ai+1). Hence,

E [|€_ "Pr(Ty) — Wool - l{lliSTn<ai+l}]
<E [max{le*‘”“ﬁl (ai) — Wool, le 4 P1(ai11) — Wool} - 1{a,—§T,,<a,-+1}]
<E [max{e_ale_“"ﬁl (@) — Wool, € |e ™+ Py(ais1) — Wool} - 1{“1'5T"<“"+'}]
+max{e’ — 1,1 — e YE[Weo - 1{; <7 <ai11}]

< e ElePi(a;) — Weol + €’Ele™+' Py (a;41) — Weol
+ 28E[W - l{ai§Tn<ai+1}]
where the last term follows from choosing § € (0, 1) to be sufficiently small so that

max{e6 —-1,1— e“s} < 28.Sincen > ¢0tM foralli > 0 we have a; > to. Applying
(7.1)tot = a; and t = a;4 yields

E [|e—T"751<Tn> — Weol - 1{[,,.57,1@,.“}] <(€® 4+ e70)ed + 28E[Woo - Ligy<7, <ay11)]

5483 + 20 E[Woo - 1ig; <7 <aii1}]-

Hence, the first term in (7.2) satisfies

[2M /8] 12M /8]
Z E I:'eirntpl(Tn) — Wl - llaiSTn<ai+1}] = Z (483 + 20E[Weo - l{aiSTn<ai+|]])
i=0 i=0

< (12M /87 + 1)4e® + 28E[Weo].

Take § = ¢/8. It follows from our choice of M = 21og(2C/¢) that there exists &g > 0
such that for all ¢ € (0, g9) is sufficiently small we have ([2M /5] + Dde3 < ¢/4.
Since E[Wx] < 1,

[2M /5]
> B[l PiT) ~ Woel - Nasty<aan) | < /4 +2(e/8) =22, (1.4)
i=0

Collecting (7.4) and (7.3) in (7.2) gives that for any ¢ € (0, gp), there exist some
to, M > 0 depending on ¢ so that for all n > ¢0+M

Ele™ " Py(T,) — Weol < &.

Thus we have established the Ll-convergence of e” "751 (Ty,) to Woo. By Lemma 4.3,
el /(n+1) =5 1/W where W ~ Exp(1). Hence,

~ P
PrT)/(n+1) — Weo/W =1 — g, (7.5)
The result now follows upon noting that {% :n >0} 4 {% :n >0} O
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Proof of Theorem 3.9(b) Let § > 0 be given. Note that {d,,(vo) : n > 1} & {Py(T,) :
n > 1}. Itis easy to see P;(-) dominates P;(-) and hence it follows from the proof of
Theorem 3.10 that

dy(v0) as.
nl/R=3

In the fringe regime E[Z] < 1 we have so > 1. Using Corollary 6.3(i) with

s = sp > 1 to replace the estimate from Theorem 6.2(i) in the proof of (6.7) in
Corollary 6.4 yields

lim == /RD (1) =0 a.s. (7.6)

1—>00

The same argument as in the proof Theorem 3.10 then gives

nl/R(logn)H"s

8 Proofs: Height

Recall the processes and notation of Lemma 4.6 as well as «p, s* from Definition 3.11.
The main goal of this section is to show the following:

Proposition 8.1 (i) Fringe regime: When E[Z] < 1,
Hry/t L5 ko ast — oo.

(i) Non-Fringe regime: When E[Z] > 1, ast — oo,

Hrw as. ko if's* € (0, g«],
1 . *
! Tog(1/q%) if s* € (gx, sol,
where g is defined as in Definition 3.6(b).

Proof of Theorem 3.12 assuming Proposition 8.1 By the continuous time embedding,
H, = Hr(1,) where T, as before is the time for 7 to get to size n + 1. By Lemma

4.3(b) T,/ logn 250 Combining this with Proposition 8.1 completes the proof. O

The rest of this section is devoted to the proof of Proposition 8.1. Recall from
Lemma 3.7 that under Assumptions 3.2 and 3.5, g, < so < 1 when E[Z] > 1. Recall

that x (s) 1= % s €(0,1).

Lemma 8.2 (i) Suppose E[Z] > 1. For x > 0, the infimum of s — xlogs + f(s)/s
is uniquely attained at some s € (0, so] that satisfies x = f(s¥)/sk — f'(s¥). In
particular, s* = s,j‘o € (0, so].
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(1) The infimum of s — Kk (s) is uniquely attained at s*.

Proof To prove part (i), for x > 0, write A, (s) = xlogs + f(s)/s, s € (0, 1). As
both log s and f(s)/s are increasing on (sg, 1), we see that

inf h f hy
sel{(l),l) X(S) AGH(; sol (S)

Differentiating A (s) leads to ', (s) = M, which implies that the infimum
is attained at some s € (0, so] satisfying the equation x = f(s¥)/sk — f/(s¥). As
f(s)/s and — f'(s) are both strictly decreasing on (0, so], the solution s¥ to this
equation is unique.

For part (ii), it is easy to see that « (s) is increasing on (sg, 1) so we can restrict our
attention to (0, so]. Differentiating « (s) leads to

sy = BT @) = F6) 4+ £6) _ S0~ fO) + iy
B (s log(1/5))2 B s2log(1/s) '

It is straightforward to check that both s f/(s) — f (s) and mg(% are strictly increasing
on (0, so]. Hence, the infimum of «(-) is uniquely attained at s such that «’(s) = 0,

ie.,

f(s)
/ —_
f@)/s =)= STog(1/3)°
By part (i) and (ii), we have f(s*)/s* — f/(s*) = ko = %, ie., s* is the
unique point where « () is minimized. O

Proof of Proposition 8.1 Fringe regime. Suppose E[Z] < 1. Lemma 4.6 and Propo-
sition 4.8 give liminf, .o H7()/t > ko almost surely. It remains to prove a
corresponding upper bound.

Let s € (0, 1) and recall that we defined P} (t) = Z;’il s7IP;(1). Using (6.2) in
Theorem 6.2 gives for any s € (0, 1), non-negative x, t and ¢’ € (0, t),

P(Hw( ) > xt) = P(s~ 701 > s*x’) <P(P;@t—1t)=s""

<sYE[P}(t —1')] < exp <t(x logs + f(s)/s) — ,fiﬂ) . (8.1

_f()

By definition, ¢ is the infimum of x such that infe (o, 1){x logs + f(s)/s} < 0. It
follows from Lemma 8.2(i) that for any x > ko, there exists s} € (0, so] such that

—§:= i(%fl){x logs + f(s)/s} = xlogs; + f(sy)/si <O. (8.2)
s€(0,

Note that in 7 (-), all subtrees rooted at level one evolve as 7 *(-). In order for 7 (¢) to
have height larger than [x?], one of the subtrees rooted at level one need to achieve
height at least x¢.
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With R as in Definition 3.6, we partition the time interval [0, 7] into segments
{[ti, ti+1] : i = 0} where tgo = 0 and #;+-1 = (t; + mR) A t for some positive constant
m to be chosen later. Let S; = {v;; : j > 0} denote the set of vertices at level one that
arrived during (#;, t;4+1]. Fix any ¢ > 0. For i > 0, define the event

E;(t) = {one of the subtrees 77)[_/- rooted at v;; € S; has height at least (ko + )t at time ¢}.
(8.3)
In the fringe regime, using Corollary 6.3(i) with s = 59 > 1 gives

IE(|‘Sl|) = E(ﬁl([i+1)) < pORetH—I/R‘

Recall that by Lemma 3.7(a), f(s)/s > 1/R fors € (0, 1). Using (8.1) with ¥’ = £,
X =ko+¢ands = s as in (8.2) gives, writing § := §,

P(E;i (1)) = E(ISi]) - P(HT+(—) = x1)

2 *
< — — +1(x1 — t
— f(S;‘) eXp( R + ('x Ogsx +f(sx)/sx) S;k 1
2
PoR tiv1 — i —St4m
< exp(—dt + ————) < poRe . (8.4)
Fp P R

Letip = min{i > 0 : #;+-1 > t}. Note that iy < ¢/(mR). It follows that

P(H7) > [xt]) < PULGE; (1)) < (mt—R + 1) poR e,
Choosing m = (6t)/2 we have
P(Hza) > [x11) < (2/(8R) + DpoR e/, (8.5)
Given any ¢ > 0 and N > 0 we can define the event
Ey={3t € [N,N+1]: Hr > [(x + )1}
Letdy = (x + s)NLH. When N is sufficiently large, dy > x. Then (8.5) gives

P(EN) = P(HTv+1) > T(x + )N =P(Hrv+1) > Tdv(N + D)
< (2/(BR) + 1) poR e *WN+D/2,

Applying Borel-Cantelli Lemma then gives P(lim supy_, ., En) = 0. Asx =« + ¢
and ¢ > 0 is arbitrary,

. H
lim sup f(t)

—>00

< ko almost surely.

Combining this with the lower bound completes the proof for the case E[Z] < 1.
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Non-fringe regime with s* € (0, ¢.]. Recall from Lemma 8.2 that kg = f(s*)/s* —
f'(s*). Using Lemma 3.7(a), f (s)/s — f(s) is a strictly decreasing function on (0, 5]
and f(s)/s — f'(s) + ooass | 0, for any x > ko, there exists some s¥ < s* such
that

x = f(s9)/sy — f(sp).
As before, fix any ¢ > 0 and set x = ko + €. It follows from Lemma 8.2(i) that the

infimum of s > xlogs + f(s)/s on (0, 1) is uniquely achieved at s} and by the
definition of ko we see that

-8 = ig)fl){x logs + f(s)/s} = xlog(sy) + f(s¥) /sy <O.

Define {E; (t)};>0 asin (8.3). Since s} < s* < g, wehave f(s})/sf > f(q+)/q+ =
1. By a similar calculation as (8.4) with E(|S;|) < E(|7 (t;+1)]) = exp(ti+1) and
s = s}, tiy1 = (ti +m) A t, we can obtain

P(E; (1)) < E(S;) - P(H7+(1—1;) = (ko + &)t)

< fl(jso*) exp (ti+1 +t((ko + &) logs¥ + f(s¥)/s¥) — fiix)ti>
= fl()so*) exp(—é&t + (tir1 — 1;)) < o ttm.

The rest of the proof follows from the same arguments as the case before by choosing
m = 6t/2.

Non-fringe regime with s* € (g, so]. We begin by proving the upper bound. Fix ¢ >
0.Let{E;(t)};>0 be events defined as in (8.3) with ko +¢ replaced by (log(1 /g:) " (1+
¢). Using the fact that E(|S;]) < exp(fi+1), by a similar calculation as (8.4) with
x = (log(1/g:)) "' (1 + €), 5 = gu. tix1 = (4 +m) AL, we have

P(E; (1)) < E(1Si]) - P(Hrw(—ry = (log(1/g:) " (1 +e)1)

=

exp (tm +1((log(1/q:) ™" (1 + &) log gu + f(g2)/q:) — f;q*)ti)

*

0

_ —et+m

Po

exp(—et + (tip1 — 1)) <e
Flgn 7P R

Choosing m = ¢t /2 and repeating the arguments in previous cases proves the upper

bound, i.e.,

H
lim sup # < (log(l/q*))_l almost surely.

—>00

It remains to prove the matching lower bound. Let § € (0, 1) be a constant that we
will choose later. Conditional on the tree 7 ((1 — §)¢) at time (1 — §)¢, observe that
the height of 7 (¢) is stochastically lower bounded by the maximum of |7 ((1 — 8)¢)|
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many i.i.d. random variables, each distributed as the location of the rightmost particle
of a branching random walk BRW(67), which has the distribution B(5¢).
Fix any ¢ > 0. Letx = (1 — 8)(log(1/q*))_1. Using the above observation,

—sy—t1/2
P(Hrq) < xt) <P(BGH <xn)f ' +P(T(1—8)n)] < =917 (8.6)

Note that |7 (-)| is a rate 1 Yule process and hence by Lemma 4.2 we have for large
enough ¢,

[e(1-0u—11/2
—§)1—11/2 —(1— —(1— —
]P)(lT((l—S)l)l Se(] 8)t—t )= Z e (1 5)t(l_e (1 5)1)/( 1
k=1
syil/2
< 1= (1= =™ < exp(—2¢7"")

_An
<2e!

8.7
by the elementary inequality that 1 — 2x < e~>* < 1 — x for x € [0, 1/2].
It remains to estimate P(B(§¢) < xt). For reasons that will become clear soon, we

will take § = m sothat x/8§ = 1 — f'(g4). To verify that § € (0, 1)
it suffices to show (I — f'(g«))1og(1/g,) > 1. In this case, it fpllows from Lemma
8.2(ii) that s* € (g, so] is the unique minimizer of «(s) = /

%, which implies
that ’(¢g,) < 0. This, in turn, leads to (1 — f’(gx)) log(1/g,) > 1. Moreover,
! q g(l/q

1

ko = k(s*) < k(gs) = W.

That is, our choice of x and § gives x/8 = 1 — f'(gs) > (log(1/¢+))~" > ko. Then
we can apply Lemma 4.9 to obtain

P(B(8t) = xt) = exp(3t eig)fl){(l = f'(@))logs + f(s)/s} + o(1)).

Lemma 8.2(i) then shows that the infimum of s — (I — f/(g«))logs + f(s)/s on
(0, 1) is uniquely achieved at s = g, which leads to

P(B(8t) = xt) = exp (81 (1 — f'(gx)) loggs + 1) + 0(1)) = exp(—(1 —e = &)t +0(1)) (8.8)

_ 1—¢
a8 = T log(i/an)

Combining (8.7) and (8.8) in (8.6) yields for large enough ¢,

(1—-8)1—t1/2 V)

P(H7@) < xt) < (1 —P(B(8t) = xt))* + 2e
< exp (—P(B(at) > xt)e“*a)’*’”z) ny

2

V)

=exp(—exp(—(1 —e =81+ (1 —=¥8)t+o())) + 2e
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V)

< exp(—exp(st/2)) + 2e

The same argument as in the previous cases with the Borel-Cantelli Lemma would
lead to

Hr

li[m inf > (log(1/ q*))*] almost surely,
— 00

which concludes our proof. O

9 Proofs: PageRank asymptotics

In this section, we prove Theorems 3.14 and 3.16. As before, Assumptions 3.2 and
3.5 continue to hold and are not explicitly stated in the results.

As in the case of degrees, our analysis will rely on continuous time versions of
PageRank. Consider the PageRank of the root in 7 *(¢) with damping factor ¢, namely,

R¥(t) = (1 —c¢) (1 —i—chPl(t)). 9.1)

=1

and the Pagerank of the root in 7 () given by

R.(t) = (1—c¢) (1 +ch75,(z)>. 9.2)

=1

We begin with a lower bound on E[P}(f)] given in Lemma 9.1, which will play a
key role in showing that the limiting random variable Wj . in Theorem 3.14 is non-
degenerate. This lower bound involves a ‘change of measure’ argument which we now
present.

For any s > 0, define a probability transition kernel

siypx+l—y

o x,ye€Zand —oo<y<x+1,
a(s)s

py(x,y) =

where a(s) = @ We can check that p} is indeed a probability transition kernel by

1.

a(s)s™ a(s)s™

Z S periy s OV f(s)

y<x+1

Let S be adiscrete time random walk following the transition kernel p}. Set S5 (0) = 0
and define

7 =inf{n > 1: S} (n) < 0}.
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Lemma9.1 Foranys > Qandt > 0,

E[P; ()] = P(z} = o0)e’s .

In particular, when E[Z] < 1 and sy > 1, forany s € [1, so) and t > 0,
—Mt * *
e 5 E[P{ ()] = P(zy = o0) > 0.

Proof Recall the random walk S defined in (3.1), and recall from Lemma 4.11 that for
allk > 1,

EIP0] = Y o P(Te = i), 93)
i=0

where Ty := inf{n > 0 : S, = 0|Sy = k}. Consider the random walk S given by
So = 0 and

n
Spi=> (1=Zp. nx=1
j=1
Also, define T := inf{j > 1: S j < 0}. By atime-reversal argument, it readily follows
that for any i, k > 1,
P(Ty =i)=P(S; =k, T > i).

Using this and (9.3), we obtain

E[P ()] =Y i—' S5 FRGS =k, 7 > i), 9.4)

i=0 k=1

The crucial elementary algebraic identity connecting S to the random walk Sy defined
before the lemma is the following:

sTEP(S; =k, T > i) = (@()' P(SFG) =k, tf > i), i =0,k > 1, 9.5)
where a(s) = A is). Using this observation in (9.4), we obtain
0 ti >
E[P}O] =) (@) Y _PS{() =kt > 1)
i=0 k=1
~ .
t 1
= (a(i) ) P(t) > i) = *@'P(cF = o0).
l.
i=0
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This proves the first assertion in the lemma. To prove the second assertion, namely
P(t) = 00) > Ofors € [1, so) in the case E[Z] < 1, it suffices to show E[S; (1)] > 0
(this implies the result, e.g., by Lemma 11.3 of [29]). We compute the probability

generating function f*(-) (suppressing dependence on s) of S; (1):

1 ; s
. . sTIpi—j lﬁf(g)
=" wipio. ) = Z VT R

j==o00 j==o0

Then,

. 1 s s s f(s) —sf'(s)
E[Sy (D] = 1 2y s _ S8 =SB
S 1= (W = f()[f<w> v’ (w)”v,_l )

Let g(s) = f(s) — sf'(s). Since g(1) = 1 — E[Z] > 0, by definition of so, we have

g(s) > Oforany s € [1, so) and hence E[S; (1)] > 0. This completes the proof.

m}

The following theorem proves the analogous assertions of Theorem 3.14 for the
continuous time versions of the PageRank defined in (9.1) and (9.2). Recall 7,, =

inf{r >0:|7@)|=n+1}
Theorem 9.2 Fixc € (0, 1).
(a) Non-fringe regime: When E[Z] > 1,

(1) Forany § > 0, there exists € > 0 such that

n—oo

. (Rc(Tn) )
liminfP| ——= >c(1—c)(1 —gs) — &) > 1—3.
n

(i) Foranyd > 0,

_(1_
lim e (% ‘3)’R;‘(t)=oo and  lim D RRE 1) =0 as.
— 00

—>0o0

(b) Fringe regime: When E[Z] < 1
(1) Fixany c € (0, so_l] with ¢ < 1. Then for any § > 0,

| —

lim e (

1—00

‘5)‘Rc(t)=oo and Tim = /RR (1) =0 as.
11— 00

_(1_
lim e <R B)ZR’f(t) =00 and lim 1~ /RR*(1) =0 a.s.
¢ t—00 ¢

—00

9.6)

9.7)

9.8)

9.9)

(ii) Suppose so > 1. For any ¢ € (sy 1), there exist non-negative random vari-
ables W, and W} with P(W, > 0) > 0 and P(W} > 0) > 0 so that as
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t%w)
SV R) “5 W, and VR @) L5 W

Proof We first focus on the non-fringe regime.
Denoting the size of 7 (¢) by |7 (¢)|, observe that

Ro(1) = (1 — )Py (1).

(9.6) then follows from (7.5).
For R*(¢) with any ¢ € (0, 1), recalling from Lemma 3.7(d) that s, >,

(1—c)cPi(t) < RE(t) < (1—¢) (1 + ZsOIPI(t)> =({1=0o)(1+P*(1)). (9.10)

=1

Hence, the first limit in (9.7) follows from (6.6) and the first inequality in (9.10).
To show the second limit in (9.7) take any § > 0. For ¢ > 0 and N > 0, define the
event

Ey = sup u_(]+8)e_”/RR:f(u) >er.
ue[N,N+1]

It follows from the upper bound in (9.10) and (6.2) that forany ¢ € (0, 1) and N > 1,

E[RY(N + 1)]

146
P(EN) < P(RE(N + 1) > e AN < = ms

N+1)/R
_a-ou+EPw Dy _ (-0 (14 e ) o
- geN/RN1+6 - geN/RN1+6 — gNI1+d

for some constant C > 0. Applying Borel-Cantelli Lemma then gives
Plimsupy_, , En) = 0. Hence,

(D —1/R g2 (1) 45

proving the second limit in (9.7). y _
We now turn to the fringe regime. Define P*(t) = > 72, s," Pi (1),

(1= aePi() = R0 = (1 =) (1+P"0)).

The first limit in (9.8) comes from the observation that P (t) dominates P, (t) and
Corollary 6.4. The second limit follows from an argument that is essentially the same as
that of the second limitin (9.7) except that we apply Corollary 6.3(i) for the expectation
of P*(z).
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The proof of (9.9) is essentially the same as that of (9.7) upon noting that the bounds
in (9.10) remain valid for ¢ € (0, sal].
It remains to prove (ii) of part (b). For ¢+ > 0, define
M (1) = e~V RED).

Using the generator expression in (6.11) (see also Remark 13), observe that for any
t>0,

LME(t) = —cf(1/c)e TV REt) + WA — )Y " > AP0

i=1  j=i—1
0o Jj+1
= —cf(1/c)e” TN RE@t) + =T VN A —) Y | > A | Pj(0)
j=0 \i=1
= —cf(1/c)eTUNR* (1) 4 ¢~/ V(] — )¢
oo j+1
XZ Zci_j_lpjfﬂrl P (1)
j=0 \i=1

< —cf(1/c)e < TVNR 1) 4 cf (1/c)e™/ VI R* (1) = 0.
Hence, M(¢) is a non-negative supermartingale and thus

M) L5 W ast — oo, (9.11)

for some non-negative random variable W}.
By Theorem 6.2(ii), we conclude that sup, _, E(M} (1))? < oo. Using this obser-
vation and Lemma 9.1,

E(W;) = lim B(M (1) = P(tf), = 00) > 0.

This implies that P(W} > 0) > 0.

The proof for the convergence of M. (t) := e~/ A/ R (1) to some W, follows sim-
ilarly upon noting that when E[Z] < 1, (¢/ : i > 0) is a sub-invariant left eigenvector
of B with eigenvalue cf (1/c), see Proposition 4.12(b). We can show L(M,(t)) < 0,
which implies that M, (¢) is a non-negative supermartingale that converges to a random
variable W,.. By Corollary 6.3(ii), sup, _ o, E(M, (1)?) < oo. Combined with the fact
that 75,~ (t) dominates P;(¢) foralli > 0, ¢ > 0, we have

E(We) = lim E(Mc(1) = lim E(M; (1)) > 0,

proving P(W, > 0) > 0. This concludes the proof of (ii) of part (b), and the Theorem.
O
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Proof of Theorem 3.14 Using the continuous time embedding, observe that for any
k>0,

{Ruecm),n = v) £ (RS (T, — op),n = v},
where oy is the birth time of v, T, = inf{t > 0 : |7 (¢t)| = n + 1} and Ry, (1) 1s
the PageRank of vg in 7 (¢ + o). Part (a) and part (b)(i) of the Theorem now follow
from Theorem 9.2 upon noting that {R,‘jk’ () : t > 0} has the same distribution as
{Rq(t) : t = 0} fork =0and {R}(t) : t > 0} for k > 1.
To prove (b)(ii), note that for k > 1,

Rvk,c(n) _ R;’k,c(Tn _O—k) eTn—O'k cf(1/c)
nefje) = pef (o) (Tu—ox) n

a.s

8 kel (/g Wwef /O .y,

where the limit W := lim,,_, o, ne 7 almost surely exists by Lemma 4.3. The random

variable Wk,c < Wi for k > 1 and Wk,c < W, for k = 0, where W} and W, are
obtained in Theorem 9.2 and The result follows. O

Proof of Theorem 3.16 Recall the form of the limiting PageRank distribution given in
(3.13), from which we conclude that Ry (00) has the same distribution as R*(t)
where 7 is a unit rate exponential random variable independent of the random tree
process 7 (-).

Part (a) and the assertion in part (b) for ¢ € (0, s, 1] with ¢ < 1 now follow along
the same argument as in the proof of Theorem 3.8 upon using the bounds in (9.10). The
analogue of (6.8) in part (a) uses Corollary 6.5(ii) and that in part (b) uses Corollary
6.5(1). The other direction follows from (6.9) and the lower bound in (9.10).

It only remains to prove the assertion in part (b) for ¢ € (s, I 1). Observe that for
any 6 € (0, ﬁ), r > 0, using Markov’s inequality and Corollary 6.5(),

_L __5 _L __5
PR (Ry o (00) 2 1) < B [ (R (00) T |
_L __5
<E |:((1 —o)(1+ Pf/c(f)>cf(1/c> ] < 00,

which implies

. log P(Ry,c(00) > r) 1
lim sup . < — .
r—00 IOgr Cf(l/c)

Moreover, by the almost sure convergence in Theorem 9.2 (b)(ii) to a non-degenerate
non-negative random variable, there exist positive 11, 12, fo such that

P (VIR =) = s 1 2 10
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Now, proceeding as in Theorem 3.8, for r > e/ 1/,
o
P(Ry..(00) > r) =/ e P (Ri(s) = r)ds
0
0
= / e P (e_cf(l/C)SRf(s) > e_Cf(l/c)sr> ds
0

o
> / e P (e_cf(l/C)SR:(S) > '71) ds

Cf(ll/p) log(r/n1)

o0 1
_ m cf(1/c)
2772/1 esds=772(7> .

F7e log(r/n)

This implies
. JogP(Ry,c(o0) = 1) 1
lim inf e )
r—00 log r cf(1/c)
completing the proof of the theorem. O
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Appendix A: a-recurrence and transience of 48 and u?

A full account of a-recurrence/transience for Markov chains can be found in Chapter
2 of [52]. To be concise we only state what is needed for the rigorous definition of
a-recurrence.

Let ¢ be a o-finite measure on S and let A € S be a p-positive set (i.e., p(A) > 0).

Definition A.1 (irreducible measure) The set A is called ¢-communicating for a
Markov kernel K on § x § if every g-positive subset B € A is attainable from
A, ie., K(”)(x, B) > 0 for some n > 0 for all x € A and all ¢-positive B C A.

If the whole state space S is ¢-communicating, then the kernel p is called ¢-
irreducible and ¢ is called an irreducibility measure for K.

It is clear that any measure ¥ which is absolutely continuous with respect to an
irreducibility measure g is itself an irreducibility measure.

Proposition A.2 (Proposition 2.4 in [52]) Suppose kernel K is -irreducible. Then
there exists a maximal irreducibility measure  in the sense that all other irreducibility
measures are absolutely continuous with respect to .

Now we present a definition of «-recurrence in the context of our problem. It follows
from the discussion on page 194 of [35] (see also Proposition 2.1 of [50]) that
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Definition A.3 (a-recurrence) Let ¢ be the maximal irreducibility measure for the
kernel (-, - x R). The kernel u(-, - x R4) is said to be a-recurrent if

o0
> nls, A X Ry) =00
n=0

forall s € S and A € S with ¢(A) > 0. Otherwise it is said to be a-transient.

For the rest of this section we will discuss the a-recurrence/transience of the con-
tinuous time branching process embedding of our model.

LemmaA.4 When E[Z] > 1, the kernel ,l,LB(S, r x dt) := Bygdt is a-recurrent.

Proof In this case the Malthusian parameter « = 1. Hence

oo (Bn) o0
Mg r xRy =) =3 (B,
n=0 n=0

Let B denote the matrix obtained by restricting B to states {1, 2,...}. As E[Z] > 1
implies pp + p1 < 1, it can be checked that B is irreducible, which follows from
the fact that for any r,s € N, there exist mj,my € N such that B™),; > 0 and
B"2)15 > 0.

First, we will show ZZOZO(]}”)U = oo which, by irreducibility, will imply
ZZO:O(ﬁﬂ)rs = oo for any r,s € N. Notice that ﬁ’fl = (B7)"),; and BT is a
probability transition matrix. Let {X,},>1 denote the Markov chain following the
transition matrix BY started at Xo = landlett = inf{n > 1 : X,, = 1} be the
first returning time to 1. It is well known that Zflozo((ﬁT)n)ll = oo if and only if
X, is recurrent. Therefore, to show the a-recurrence of MB we only need to show
P(t < o0|Xp = 1) = 1. Note that

i—1
E[X, — Xp 1| Xpo1 =il=ci+ Y (+1-kp—i
k=0

i—1 i—1 i—1
=ci+G+DY p—) kpp—i=1- (Cii+2kl’k)
k=0 k=0 k=0

=1-E[Z]+ ) (k—i)px | 1 —E[Z] asi— oo.
k=i

When E[Z] > 1, there exists igp € N such that for all i > ig, E[X,, — X,—1|Xn—1 =
i] < 0.Let 7, = inf{n > 0 : X,, < ip}. We claim that for all j > iy we have
P;(ti, < oo) = 1.1If we view the set A = {1, 2, ..., ip} as an absorbing state and let
Y, be a Markov chain obtained by projecting X,, onto {A,ip + 1, ...} with Yy = j,
then Y, is a non-negative supermartingale and has to converge almost surely. Note
that ¥, can only converge by getting absorbed at A, which implies IP; (t;, < 00) = 1.
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This means that X, returns to the set A infinitely often almost surely and thus, by
irreducibility of B”, will return to 1 in finite time almost surely.

Forr € Nand s = 0, note that (B"),o > (B™1),;(B"~"1+Dy, By forn > m; + 1
and the above argument implies Zflio(f}")ro = oo. It follows from Definition A.1
that the maximal irreducibility measure ¢ for w® must satisfy ¢({0}) = 0. Hence we
don’t need to consider the case where r = 0. O

LemmaA.5 The kernel ,uA (s,r x dt) := A,sdt is a-transient.

Proof Recall the function x(u) = Z:io u"P(T = n) as defined in the proof of
Lemma 4.17.
It is easily checked that for s, r € {0, 1, ...},

S Wi <y = Y0 B

n=0 n=0

Take (s,7) = (0, 1) and note that ¢(1) > 0. Since (A");9 = P{(T = n) we can
observe that

Y01 xRy =3 = < 1w,

n=0 n=0

Note that the Perron root of A is 1/R and hence the corresponding Malthusian rate
is @ = 1/R. It follows from the proof of Lemma 4.17 (see (4.10)) that x (1/«x) =
x (R) < 0o, which immediately implies the a-transience for 4. O
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