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Abstract—Multi-core platforms are becoming increasingly
prevalent in cyber-physical systems such as automobiles and
robots. However, contention for shared resources makes it chal-
lenging to guarantee timing predictability. Existing studies have
primarily focused on characterizing the extent to which such
interference can induce delays (usually from an adversarial
perspective). Unfortunately, less is understood on the physical
impacts of these timing delays in different cyber-physical plat-
forms. In this paper, we fill this gap by providing an empirical
examination of the end-to-end effects of performance interference
on real-world applications. We analyze the root causes of harmful
interference and summarize potential implementation pitfalls.

To automate this process, we introduce TimeTrap, a tool
that analyzes performance interference in autonomous systems
through the lens of control outcome. To understand the extent
to which timing interference may cause control deviations,
TimeTrap has to strategically leverage different magnitudes of
resource contention to trigger targeted deadline miss patterns.
Through this exercise, we found that a naive approach that
maximizes task latency via performance interference may fail
to trigger worst-case outcomes (i.e. physical damages) due to
built-in fail-safe mechanisms. As a result, delays have to be
induced in a stealthy manner to avoid triggering fail-safes. To
achieve this, TimeTrap first employs a system that actively
injects fine-grained delays into the target software, adjusting
the duration based on measured feedback. Second, TimeTrap
leverages predictability in CPS execution patterns and resource
usage to automatically tune its aggressor workloads, matching
these patterns to achieve targeted interference and execution
delays in a victim. We evaluate TimeTrap on two physical-world
platforms and six platforms in a hardware-in-the-loop simulation
environment, including robotic arms, UGVs, UAVs, self-driving
cars, and humanoid robots. These studies demonstrate that an
interference-based attack surface exists in different stages of the
CPS pipeline, from perception to planning and control.

I. INTRODUCTION

Multi-core architectures are highly effective at providing
increased computational resources under constraints on size,
weight, and power (SWaP) in embedded platforms. However,
when deployed in real-time cyber-physical systems (CPS)
where timing predictability is essential, performance interfer-
ence from contention for shared resources among concurrent
tasks is increasingly a concern. Such interference may lead
to delays in data propagation along the processing pipeline in
modern CPS platforms, consequently degrading performance.

Existing Literature. Understanding the impacts of perfor-
mance interference in CPS requires a comprehensive analysis
of both the sources and characteristics of interference, as well
as its resulting impact on control outcomes. This demand is

also highlighted by a recent industrial challenge presented
by Arm [1]. Existing studies follow three distinct lines of
research: (i) The first exclusively examines the extent of worst-
case performance interference [2]-[12] without considering
the subsequent implications on system and software behavior.
(ii) The second primarily focuses on analyzing the propagation
of delays throughout the execution pipeline [13]-[19]. Such
works approach the problem from the scheduling perspective,
yet often do not consider the impact on control outcomes. (iii)
The third abstractly models the control degradation resulting
from various deadline miss patterns in an individual task [20]-
[23]. However, these models do not consider the broader view
of cascading effects among multiple tasks in the system. To
analyze the impact of performance interference through a
holistic view that interconnects software properties, real-time
properties, and control properties [24], our work empirically
studies the manifestation of performance interference in differ-
ent CPS platforms to illuminate the implications for physical
safety risks in the real world.

Systematizing Timing Issues in Real-World CPS Software.
To develop an appropriate abstraction over timing issues,
we analyzed 241 real-world timing-related bugs from eight
prominent CPS applications. We discovered that these bugs
often arise from the inadequate specification or enforcement
of timing semantics. We also found that not all timing bugs
result in adverse control outcomes in the physical world. In
this paper, we use timing issues to refer to the timing bugs
that produce adverse physical outcomes. Dissecting these real-
world timing issues has provided us with new insights to
formulate the problem of performance interference impact
as temporal displacements in key state variables of the CPS
process (more details about the bug systematization can be
found in Section II).

TimeTrap — Technical Challenges and Solutions. Informed
by our observations, we introduce TimeTrap, a tool that aims
to characterize the worst-case end-to-end impacts of per-
formance interference by adversarially inducing interference
with the goal of maximizing control deviation (i.e. difference
in physical outcome). However, naively exhausting system
resources is often ineffective due to built-in safety checks,
as we discuss in Section II. Consequently, it is imperative
to discern which task(s) should be delayed in order to effect
significant control deviation. Determining how much delay
the attacker should cause is also challenging, since too little



delay is insufficient to breach safety standards, yet too much
may trigger fail-safe mechanisms. To address this, TimeTrap
borrows methodology from software fault injection [25] by
actively injecting delays into the target system to discover
exploitable execution timing patterns. To further automate this
process, we have also developed program analysis and in-
strumentation tools to automatically determine the appropriate
delay injection location(s) and magnitude.

Even with such patterns identified, TimeTrap needs to
further verify that the intended interference pattern is achiev-
able. There are numerous ways to cause performance inter-
ference ( [4], [8], [26]-[32]), each with unique triggering
mechanisms and interference characterization. Furthermore,
the effectiveness of the interference also depends heavily on
the resource utilization pattern of the victim thread. TimeTrap
takes advantage of the fact that different task execution phases
often exhibit distinct sensitivity to each performance interfer-
ence vector. It parameterizes the attack strategy and uses it
to control interference intensity. By strategically generating
aggressor workloads targeted at specific vectors, TimeTrap
induces the intended delay during the target execution phases
of the specified task(s).

Experiments and Results. Using TimeTrap, we were able to
attack different CPS pipeline components, including percep-
tion, localization, planning, and control. We evaluated Time-
Trap on eight autonomous systems (including autonomous
vehicles, drones, humanoid robots) in a hardware-in-the-loop
(HiTL) simulation environment. We also tested it on two
real physical systems: the OpenManipulator robotic arm [33]
and the Turtlebot3 indoor robot [34]. We show that naive
Denial-of-Service (DoS) attacks with high CPU bandwidth
and priority do not necessarily cause harmful physical effects,
whereas TimeTrap can create workloads that trigger specific
timing patterns to achieve these outcomes.

In summary, this work! makes the following contributions:

« It provides a systematization of timing bugs from multiple
real-world autonomous systems, covering root causes, man-
ifestations, fix strategies, and other characteristics.

« It empirically examines several real-world CPS applications
to understand how performance interference can trigger bugs
and assesses the impacts of these timing issues on control
performance. It dissects the root cause of control degradation
and formulates it as a problem of temporal displacement in
a subset of critical control data consumed by safety-critical
computations.

« It introduces TimeTrap, an automatic tool framework for dis-
covering timing issues that cause significant control degra-
dation and for constructing adversarial aggressor workloads
to trigger them. TimeTrap is evaluated on eight autonomous
systems: two in the real world and six in HiTL simulation.
TimeTrap generates aggressor workloads that cause signif-

'Materials can be accessed from the GitHub repository at https://
github.com/WUSTL-CSPL/TimeTrap and the project’s website at https://
timetrap-rtas.github.io/.

icant control deviations in various CPS modules, including
perception, localization, planning, and control.

II. SYSTEMATIZATION OF REAL-WORLD ISSUES AND
TEMPORAL DISPLACEMENT

In this section, we first utilize ORB-SLAM as an example to
dissect real-world timing issues, and then we formulate these
timing issues to femporal displacement, followed with a more
comprehensive analysis of timing issues that developers have
encountered in real-world CPS software.

A. Dissecting the Timing Issues — Temporal Displacement

To introduce the concept of temporal displacement, we
employ ORB-SLAM [35], [36] as an illustrative example.
ORB-SLAM is a localization pipeline that sees broad use in
self-driving applications [37]. It employs a feature extractor
to process an incoming video stream and output landmark
descriptions. It matches them with previous descriptions saved
in its map database to estimate vehicle position. Instead of a
computationally intensive exhaustive search, ORB-SLAM uses
an IMU-based motion model to narrow the search scope. At
this stage, both IMU sensor data and camera image frames
are combined. ORB-SLAM also periodically updates the map
to account for changes in its surroundings. Figure 1 shows
ORB-SLAM’s three primary data trackers, each handling data
from a different source.

Temporal
displacement
Expected time Actual time
@ +IMUN
vk+le
~et
S Impacts on
data fusion

Inertial data
Tracker

Map
Tracker

Landmark
Tracker

Timeline

Impacts on
single data tracker

Fig. 1: Dissection of temporal displacement.

Figure 1 also illustrates an example of data delay. Inertial
data (IMUy+1), expected to be available at the instant indicated
by the dashed circle, is delayed due to an adversarial task. This
delay impacts both its data tracker and the data fusion process.
Within the Inertial Data Tracker, delayed inertial
data amplifies the uncertainty of motion prediction. More
critically, this delay can cause the Landmark Tracker to
utilize temporally misaligned inertial data. This misalignment
subsequently results in a failure to match the current landmark
descriptions against the map database, causing the algorithm to
lose track of its position. This data misuse can be conceptually
considered as Temporal Displacement, 6 = Ticual — Texpected-
Intuitively, it is the difference between the actual and the
expected timing of the update. In fact, temporal displacements
always exist, but built-in system mechanisms are engineered
to minimize them.
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Examples of Timing Issues in Software. Although many
autonomous systems already employ mechanisms to check and
handle abnormal timing, this approach does not always ensure
accurate timing.

1: while (true) {

2 // Browser the queue where IMU data are sorted by timestamps.

3 imu = ImuTracker.DataQueue.front();

4 if (imu->Timstamp < PreviousImage->TimeStamp) {

5: ImuTracker.DataQueue.pop_front(); // Drop the out-dated IMU data.
6: } else if (imu->Timstamp < CurrentImage->TimeStamp) {

7 res.push_back(ximu); // Keep the data between two frames.

8 ImuTracker.DataQueue.pop_front();
9 } else {
0 break;}} // Reach the end

(a) Timestamp checking of IMU data between two image frames

/* Thread A (Landmark Tracker) x/

1: elapsedTime = now() - lastUpdateTime;

2: if (elapsedTime > 0.5) {

3 points = CreatNewMapPoints();

4: MapTracker.InsertMapPoints(points);

) MapTracker.NeedBA = true; // Should update map now
6: } End of if

/* Thread B (Map Tracker)/*/

1: while (true) {

28 if (this->NeedBA) {

3: BAOptimization(); // Update the map
4: } }; End of while

(b) Timing policy specified in userspace application.
Fig. 2: Simplified snippets in ORB-SLAM?2.

A straightforward solution to prevent temporal displacement
is to check the data age and act according to its freshness.
However, this often requires sophisticated condition checks
due to the complex nature of timing behavior. Many program-
ming languages lack timing semantics, leading to incomplete
expression of the programmer’s intent. Figure 2(a) shows code
from ORB-SLAM?2 [35] that fetches IMU data between two
images, checking that the timestamps fall between those of
the images to avoid temporal misalignment. Given that the
IMU’s sampling rate, R;, is typically greater than the camera’s,
R,, there should ideally be R;/R. IMU samples between two
image frames. However, the code fails to detect missing IMU
samples. Even if the retrieved IMU data has valid timestamps,
data loss can still lead to erroneous results.

As depicted in Figure 2(b), ORB-SLAM?2’s Landmark
Tracker code checks if the time since the last map update
exceeds 0.5 seconds. If so, it sets a flag to trigger a map update.
Ideally, given sufficient resources, the BAOptimization ()
function, which runs in its own thread, is immediately invoked.
However, high system overhead may prevent this function
from timely execution because the CPU scheduler is unaware
of the intrinsic timing requirements of the application (such
as those illustrated in Figure 2(b)).

B. Temporal Displacement in Real-world Applications

To explore temporal displacement and characterize its pat-
terns in real-world software implementations, we examined
timing-related issues and pull requests in the GitHub projects
of popular (by the number of forks and stars) CPS appli-
cations. We covered a wide variety of modules including
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Timing # 17 27 43 55 12 22 65
Type 1 3 4 10 12 8 2 5
Type 11 5 11 16 23 - 6 2
Type III 2 9 10 12 6 1 37

Full=Full stack, including perception, localization, planning and control;
* Control here includes mission planning, motion planning, and controller;
Loc. = Localization; Sw. = Software; Mw. = Middleware.

TABLE I: Analysis of Timing-Related Issues Across Various
GitHub Projects

perception, planning, control, etc. The 8 projects studied are
Autoware.Auto [38], Movelt [39], Google Cartographer [40],
Baidu Apollo [41], ORB-SLAM?2/3 [42], [43], ROS-Planning
Navigation [44], and ROS2 rcl middleware [45]. We manually
inspected the discussions of each issue and pull request, ex-
cluding any falsely reported issues. The threats to the validity
of our study include the representativeness of the application
we have chosen and our examination methodology.

Prevalence of Timing Issues. The statistics are reported in
Table 1. Each project is seen to suffer from dozens of timing-
related issues in development. The timing issues constitute
approximately 0.5% to 2% of the overall bugs. It is worth
noting that the number of issues does not directly indicate a
project’s quality, but is heavily influenced by its popularity
and the developers’ activity in the target GitHub repository.
By analyzing these 241 timing issues and reproducing some
of them, we detail our findings in the following discussion.

Current Practice for Timing Constraints. Timing con-
straints are programmed diversely in practice. We classify
them into two categories: control-flow-centric and data-flow-
centric. Control-flow-centric timing constraints are defined
from the perspective of the program’s execution, such as
through scheduling models (e.g., deadlines and periods) and
locking protocols, which are among the most conventional
methods. In the data-flow-centric paradigm, timing informa-
tion is coupled with data and then utilized to determine
software behaviors. A common example involves messages in
ROS, which are tagged with timestamps. Developers leverage
these timestamps to check the freshness or temporal alignment
of data, thus adjusting software behavior accordingly. In
userspace applications (except for ROS2 rcl [45]), the data-
flow-centric paradigm is preferred, with 69.3% of issues being
related to it, because (1) it does not require modifications
to the underlying scheduling infrastructure, and (2) it better
captures the dependency between tasks, helping developers to
reason about the correct timing constraints within the context
of complex task chains.

Root Causes. We identify three timing issue root causes:

e Type I. Timing constraints are missing or implicitly as-
sumed without proper enforcement, where any variations
on task execution timings can potentially introduce temporal



displacement. This accounts for 23.9% of the issues.

e Type II. Timing constraints are specified, but they are
incomplete (34.2%); temporal displacement is permitted
only for a subset of the data or within a certain threshold.

e Type III. Specified timing constraints are completely
defined but not effectively enforced, which account for
41.8%. These are often caused by flaws in system executors
(e.g., schedulers) and improper coordination among them.
As data-flow-centric timing constraints are more prevalent

in software (69.3%), many Type I issues are largely caused
by the absence of timing information (e.g., timestamps) on
data. Although ROS offers a built-in timestamp assignment
interface in its API, developers often fail to propagate these
timestamps throughout the lengthy processing pipeline. This
issue is exacerbated when multiple sensor data streams are
fused within a single component.

Type II issues prevail due to the challenge of accurately
expressing timing semantics across different scenarios. This
category includes vulnerabilities like imprecise value ranges
or TOCTOU (‘time-of-check-to-time-of-use’) problems (e.g.,
Apollo#14461?), where timestamp verification occurs prema-
turely. Sometimes, these issues arise when timestamps are
not expressed with sufficient granularity (Cartographer#6003).
Exploiting these issues necessitates inducing precise delays
during specific execution stages.

Type IIT issues are commonly found in the ROS2 mid-
dleware [45] due to flawed implementations in schedulers.
Most of these issues stem from race conditions (e.g., ROS2-
rcl#2012%) and often involve various scheduling entities, such
as timers (e.g., ROS2-rclpy#1016°). Additionally, timing-
related utilities are also error-prone. For example, the issues
caused by incompatible timing formats between different clock
systems (e.g., ROS2-rcl#947%) are common.

Manifestation. The triggering conditions of timing issues
we collected exhibit characteristics similar to conventional
concurrency bugs [46], making them challenging to distinguish
since both are triggered by unexpected timing. Our focus is
on the issues related to algorithm-level semantics and control
performance, given that the symptoms of concurrency bugs
have been well-studied in prior work. Generally, timing issues
do not necessarily lead to delays in control outputs because
actuation commands are usually sent by a separate task that
may be unaffected by the task experiencing abnormal timings.
However, timing issues often lead to data misuse, predom-
inantly arising from the use of stale data or, occasionally,
premature data. This stale data can lead to desynchroniza-
tion when the program consumes data from disparate sensor
modalities or components. Furthermore, it can cause data
jitter if updates occur at inconsistent intervals (e.g., Cartogra-
pher#2427). Desynchronization is common (more than 30%)

Zhttps://github.com/ApolloAuto/apollo/pull/14461/files
3https://github.com/cartographer-project/cartographer/issues/600
“https://github.com/ros2/rclcpp/issues/2012
Shttps://github.com/ros2/rclpy/issues/1016
Shttps://github.com/ros2/rcl/issues/947
7https://github.com/cartographer- project/cartographer/issues/242

due to the complexities in reasoning about multi-threaded
concurrent execution. The scope of most issues involves two or
three threads (both intra- and inter-process), where the delays
in a subset of threads trigger unexpected timing.

Most of these issues yield false computational results, which
subsequently undermine the physical stability of the control
system. Some of them (< 5%) cause the software to become
unresponsive, while slightly more (< 10%) even lead to soft-
ware crashes. Desynchronization and jitter are more subtle and
typically result in adverse control degradation. In contrast, end-
to-end latency is less of a concern because programmers are
typically more aware of the data’s age within a sequential
context and thus often adopt compensation strategies for such
delays. When reproducing some timing issues, it is found that
while timing issues cause erroneous intermediate results, most
robotic software is robust enough to filter out such occasional
faults; an adverse outcome (task output) requires consecutive
abnormal timings to manifest.

Insight: Discovering timing issues requires inducing delays
in only a subset of the threads, leading to an abnormal
execution order. Such delays should be injected consecutively
to propagate the erroneous results to the final control outcome.

Mitigation Strategies. Among the analyzed issues, 141
(58.5%) have been fixed in their codebase. In general, we
found that timing issues can be fixed by either enforcing the
correct execution timing or changing the software’s handling
of the abnormal timing. The former is typically achieved by
adding or modifying synchronization primitives (e.g., mutexes)
in the software, while it is rarely achieved by modifying the
underlying enforcement infrastructure, such as schedulers and
timers. However, synchronization primitives are not a silver
bullet. Adding locks can introduce new problems, including
increased real-time overhead and potential inversion in lock
ordering (rcl#1121). Regarding the latter, most issues (over
80%) were fixed in a data-flow-centric manner. The mitigation
strategy involves integrating more timing information into
the data, typically by adding timestamps to data structures,
and then adopting check conditions and handling mechanisms
for abnormal timing cases. The most prevalent mechanisms
for handling task misses are to (i) abort the task instances
(e.g., callback in ROS) and then trigger operational-safe or
fail-safe mechanisms (e.g., setting the velocity to zero); or
(ii) use predictive models or algorithms to approximate the
correct data. Such handling mechanisms introduce challenges
to TimeTrap, which are discussed in Section IV.

Insight: Among the target software we investigated, besides
enforcing timing constraints (e.g., deadlines or periods) as
conventional scheduling problems, it is also common for
developers to implement detectors for abnormal timing and
case-specific handlers to avoid adverse control outcomes.

III. SYSTEM MODEL

In this work, we target real-time systems with both event-
triggered (e.g., data-driven) and time-triggered (e.g., periodic)
execution models. These mechanisms are natively supported
by the systems that we evaluate in Section VI. We consider
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adversarial behavior under the following conditions. (i) The
aggressor workload executes on the same computing platform
as the target application. (ii) The aggressor is restricted to
execute at a lower priority than all other tasks on the system.
It lacks the ability to directly modify scheduling priorities or
CPU affinities, including its own. (iii) The aggressor workload
executes at a non-privileged level — it does not have access to
the address space of any other task.

IV. TIMETRAP DESIGN

Overview. TimeTrap is a tool that aims to discover tim-
ing issues and generate aggressor workloads to confirm the
possibility of triggering such timing issues. Its workflow is
generalized into three steps, as shown in Figure 3.
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Fig. 3: The workflow of TimeTrap.

Step 1 - Exploitable Temporal Displacement Discovery. (Sec-
tion IV-A) It is clear that not all temporal displacements
can trigger timing bugs, and that not all timing bugs lead
to severe control performance degradation. Building on top
of existing literature that features discovering concurrency
bugs [47], TimeTrap injects delays into program execution and
then observes the control behavior and immediate variables
in the testing. The delay patterns that have evident physical
impacts are regarded as exploitable timing bugs.

Step 2 - Task Execution Phase Breakdown and Interference.
(Section IV-B) This step involves the profiling of resource
contention sensitivity. To cause the desired timing delay in
specific tasks, it is essential to have an in-depth understand-
ing of the target workloads’ resource usage, as well as the
potential impact of the aggressor workload. To facilitate finer
control over the delay, we break down program execution into
phases that display unique resource usage profiles. Based on
these execution phases, individual attack primitives (contention
channels) are then measured to understand their potential
impact on the temporal properties of the system.

Step 3 - Aggressor Workload Generation. (Section IV-C) The
attack strategy is developed based on exploitable temporal
displacement and sensitivity analysis, formulating the genera-
tion as an optimization problem. The objective is to maximize
expected execution timings while minimizing side effects on
unrelated co-running tasks.

A. Discovering Exploitable Conditions

Challenge. To cause temporal displacement, an attacker must
selectively delay certain threads with minimal impact on
others. Simply delaying all tasks often leads to an end-to-
end delay (input-output latency), which is typically handled
by built-in mechanisms, such as aborting the task or algorith-
mically predicting data (refer to Section II). TimeTrap seeks to
introduce specific data desynchronization or jitters, bypassing
these countermeasures.

Execution timing control via delay injection. To discover such
exploitable conditions, TimeTrap follows the principles of
software fault injection [25], injecting delays during execution
to generate diverse timing execution patterns. Concretely, it
injects delays in different program locations to drive the
program toward producing erroneous control results. There are
two key design questions to answer: (i) which code locations
are eligible for delay injection? and (ii) how much delay
should be injected to trigger adverse control outcomes?

Where to inject delays? There are three alternative methods for
injecting delays: (1) injecting delays at the OS level by manip-
ulating scheduling; (2) injecting delays in the runtime library
by intercepting library calls; and (3) directly injecting delays
into the source code through compile-time transformation. The
first two methods do not require the availability of source
code. However, they also come with drawbacks. Injecting
delays in scheduling loses a lot of semantic context, such
as the data dependencies between different code locations.
Injecting delays in the library can potentially maintain such
relations, since it can provide semantic information about the
sender and receiver. However, this approach is specific to the
implementation of the target software and cannot scale to cases
where shared data are not implemented via APIs, such as
variables used for communication.

As such, TimeTrap injects delay in source code. At compile-
time, it performs static analysis to identify all the code
regions that access shared data with other tasks. This shared
data can be intra-process memory or inter-process messages,
exhibiting different granularity across various target software.
For intra-process shared variable analysis, it employs points-
to analysis [48]; for inter-process communication analysis, it
utilizes string matching. This analysis is straightforward and it
reports the code location without checking their contexts. We
will refer to these locations as delay injection points. Each
delay injection point is paired with other locations interacting
with the shared data, with at least one point in a pair involving
a write operation.

Since most timing issues often lead to erroneous results,
TimeTrap conducts A/B testing to infer the impacts of delays.
Specifically, it sets up the software on the target testing plat-
form and replays the same data for two different runs, one with
delay and one without. It then compares the computational
results of these two executions; the results could be interme-
diate or final control outcomes, which can be logged through
instrumentation or built-in logging mechanisms. The extent
of the difference between these results indicates the impact of



delays. For each pair of injection points, it selects one to inject
a delay at runtime. There is a clear trade-off between injecting
a single delay and multiple delays throughout a run. Delays
are injected at multiple points in one run if the intermediate
results can be observed to distinguish the impact of the delay
at each injection point.

How much should threads be delayed? As discussed in Sec-
tion II-B, erroneous results only manifest after consecutive ab-
normal timings. Thus, traditional delay injection methods for
discovering concurrency bugs, which are one-time shots [47],
are not suitable for these scenarios. Instead, TimeTrap contin-
uously injects the same execution timing patterns throughout
one mission execution. The timing patterns are represented
by three factors: the code location, whether the type is delay
or jitter, and the extent of delay or jitter. An alternative
representation is the weakly-hard task model [49], [50], which
is unsuitable for our scenario for two reasons. First, this
model only describes the number of deadline hits or misses
but ignores the extent of the delay. Our preliminary study
found that many applications have built-in check conditions on
the data freshness. Second, the shared data is not necessarily
updated at the end of the deadline, which means a deadline
miss does not necessarily impact the data consumption of
dependent tasks.

To obtain an effective range of delay, we progressively inject
delays from large to small at the same program location. We
then observe the intermediate results and the final control
outcome after each change. If the final control outcome shows
fail-safe operations, the extent of delays will be decreased to
avoid triggering it. If the intermediate results show significant
changes but the control outcome does not, this indicates that
the downstream tasks are robust to such timing issues. In this
case, or after exploring all extents of delays within a predefined
range, the injection point is removed from the candidate list.
Once an execution timing pattern is demonstrated to cause
an adverse physical outcome, that pattern is recorded as
exploitable and used in subsequent steps.

B. Resource-Oriented Execution Profiling

Challenge. Triggering an expected timing execution pattern
through performance interference is non-trivial. Typically,
multiple threads are co-running on the target platform. To
induce the expected timing, it is necessary to interfere with
only a subset of tasks while keeping the remaining ones un-
touched. Additionally, the delay should be manipulated within
a specific range. TimeTrap exploits the diversity of resource
usage patterns and the sensitivity of different interference
channels to achieve targeted delays.

Resource-focused task execution phases. Different tasks often
have diverse demands on resources. For example, motion plan-
ning tasks often solve cache-intensive optimization problems,
whereas drivers that read from sensor devices rely more on I/O
resources. In addition, the resource usage pattern of individual
tasks also varies throughout its execution. Inspired by previous
work [51], we first precisely profile a workload’s resource
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Fig. 4: Profiling resource contention sensitivity for tasks.

usage over time, and then divide each task into a sequence of
execution phases where similar resources are intensively used
in each phase. Depending on the desired granularity, the phase
may vary from thousands to tens of thousands of instructions.
Then, we individually characterize each phase’s sensitivity to
individual resource contention channels. This is achieved by
scheduling the target phase of the victim task on a specific core
and placing interference tasks on other cores. By measuring
the delays in the victim tasks’ phases, we determine the effects
of interference.

This fine-grained analysis benefits aggressor workload gen-
eration in three aspects: First, this analysis concentrates our
focus on the most resource-demanding phases of the task.
Launching attacks at these phases can be far more effective,
allowing us to make a conscious trade-off between conserving
the CPU budget, and triggering the delay at the appropriate
phase. Second, separating each resource channel also helps
to find the attack strategy that delays some specific threads
without affecting the rest. Third, this fine-grained analysis
facilitates TimeTrap to target only one resource channel at
each phase, which reduces the search space while finding the
optimal attack strategy.

Sensitivity analysis of interference channels. In TimeTrap, the
aggressor workloads have to create an appropriate delay that
corrupts the algorithmic results without triggering the fail-
safe. To this end, we leverage the insight that a performance
interference attack can be parameterized, thus allowing control
over its delay extent by changing the attack parameters [9]. We
first profile task delays under different levels of contention,
with each level representing one set of attack parameters.
As illustrated in Figure 4, for each resource channel, we
incrementally increase the contention intensity and record the
corresponding task delay. The attack intensity is controlled
by tuning the parameters, such as memory access stride in
memory-related contention. The result is a set of delays at
varying discretized attack intensities. These recorded delays
are then interpolated to produce a sensitivity curve [52]. This
curve is utilized during the generation of an attack strategy
(aggressor workloads) to predict the delay caused by any
contention intensity (Section IV-C). Furthermore, we analyze
sensitivity to different task alignments, yielding different col-
lective resource usage profiles.

A limitation is that the relations between delay and attack
parameters are non-linear, and the effects of different channels



are sometimes interdependent. Using the sensitivity curve to
predict delay may introduce errors. One solution is to increase
the granularity of sensitivity analysis to mitigate such errors.

C. Generation of Aggressor Workloads

Given the exploitable execution timing patterns and inter-
ference sensitivity, generating aggressor workloads is modeled
as an optimization problem. Consider K tasks running on the
target autonomous system, denoted as T = {1y, 13, ..., Tk }.
Among them, 7, represents the victim task. Each task is
characterized by a set of execution phases {pi,pa, ..., Pn}-
The objective is to design an attack strategy Ay, = {R;,, I}
for each phase p;, with a focus on optimizing both the resource
channel R and the attack intensity I. The influence of strategy
A on the system is quantified by the delay D = {t, t5, ..., tx}
experienced by each task. This delay can be inferred using sen-
sitivity profiles of the tasks, as determined in the second step
(Section IV-B). We establish a mapping function S that relates
the attack strategy A and the system state psys (representing
the system-level execution phase) to the probability of time
delay for each task d,, 7; € T:

S(Ar Psys) - DrD = {d’ﬁrd’[z/ '-‘rdTK}r (1)

where d; is the vector for task 7; containing the delays under
different probabilities. The goal is to maximize the time delay
for the victim task d,, while minimizing the delay in other
tasks. By selectively delaying different invocations of the task,
this mapping strategy can also introduce jitter. Simultaneously,
d., has to lie within a proper range (obtained in Section IV-A)
so as to avoid triggering fail-safe mechanisms. Therefore,
we select the attack strategy that maximizes the following
objective:

K
A* = de, —de)?,
argmgx;( t, — dr;) 2

st dI < de, < AT

While the presented equations assume only one task needs
to be delayed, the actual number varies with the platform. For
complex systems like self-driving cars (e.g., Apollo [41] and
Autoware [53]) with many tasks, up to three might need to be
delayed, whereas drones typically require just one.

dey < dT,i % 0.

V. TIMETRAP IMPLEMENTATION

In this section, we detail the implementation on Linux-
based systems, such as OpenManipulator X and Turtlebot 3.
Although diverse systems necessitate tailored attacks targeting
specific resources and execution phases, the approach to
constructing attacks on other platforms remains consistent.

Discovering Exploitable Conditions. The delay injection
component of TimeTrap is realized by a compile-time instru-
menter and a runtime system. The instrumenter is implemented
as a compiler pass in LLVM-13 [54]. For inter-process com-
munication, the target software predominantly uses ROS; we
identify functions such as publish () as the delay injection
points. For more fine-grained shared variables, we integrate the

points-to analysis tool, SVF [48], into the pass and use it to
identify the shared variables between threads. After identifying
the injection points, the pass inserts the delay function before
each one. The sleep duration is then dynamically set by
the runtime system to mitigate natural variation and achieve
more deterministic execution patterns. The delay function is
transformed from the POSIX usleep () such that a delay
injection point can wait until a specific time point. To analyze
the computational results, a set of Python scripts has been
developed to calculate the deviation in result output from its
expected values for each task, serving as a gauge of control
performance. Informed by the feedback from these outputs,
the delay injection runtime system readjusts the duration of
delay or removes the candidate pairs.

Performance Interference Sensitivity Analysis. Resource
usage profiling is based on the Linux perf subsystem, which
monitors performance events (e.g., cache misses) via hardware
performance counters. The number of related hardware events
(e.g., cache misses) indicates the intensity of using a specific
resource. Given the limited number of counters, to minimize
errors introduced by the multiplexing of performance coun-
ters [55], we perform and align multiple runs that each capture
an equal number of hardware events to the number of counters.

To diversify the range of attack primitives, we implemented
eight resource contention primitives based on the project
PolyRhythm [9]. These include architectural channels such
as cache, row buffer, TLB, and memory bus, as well as
operating system-based channels like network I/O, disk /0,
file system, and thread spawn. By fine-tuning the respective
parameters, we can achieve various attack intensities for each
attack primitive.

VI. EVALUATION

In this section, we (i) present three case studies of timing
issues identified by TimeTrap, with two cases evaluated in
real-world robots (Section VI-A); (ii) demonstrate that Time-
Trap achieves effective attacks by exploring different factors
(Section VI-B); and (iii) show how TimeTrap applies generally
to different CPS platforms (Section VI-C).

A. Case Studies

This section covers case studies on three platforms, with
five more available on the website®.

Case Study I on Robotic Arm. We first experiment on an
open-source robotic arm, OpenManipulator X [33], as shown
in Figure 5(a). The software stack we employ is the industrial-
grade Movelt [39], which is widely adopted in both indus-
try [56] (e.g., NASA [57] and Intel [58]) and academia [59]-
[61]. The robotic arm is integrated with a Raspberry Pi 3B for
workload computation and a Pi Camera M2 for sensory input.
In our attack scenarios, it is tasked with sensing and retrieving
a soft drink can.

Attack Method. We schedule the Movelt control tasks using
priority 80 under the Linux SCHED_RR scheduling class.

8https://timetrap-rtas.github.io/
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Fig. 5: Case study on a robotic arm.

TimeTrap is assigned priority 20. Utilizing the attack synthesis
approach, TimeTrap identifies that the robotic arm exhibits
anomalous behavior if there is a disparity in the release time
of a victim task. To intentionally cause jitters in the victim, the
aggressor workloads are tuned to contend for cache resources
just before the scheduled release times of victim tasks.

Attack Result. The robotic arm is programmed to perform
the following sequence: Initially, it identifies the can and
approaches it. It then grips the can and transports it to the
designated location. Under standard circumstances, the robotic
arm can reliably grasp the can and accurately position it at the
destination. However, when influenced by TimeTrap, the arm
deviates from its pre-determined motion path and collides with
the table, causing the can to fall (as shown in Figure 5(a)).
Throughout this action, the intermediate control variables —
including planned position and effort (torque) — spike to
irregular levels. These trends are depicted in Figure 5(c).
For clearer visualization, we have intentionally offset the plot
representing the normal state slightly on the horizontal axis.

Root Cause Analysis — User-level Crafted Timer. Upon further
investigation of the source code, the abnormal intermediate
values are caused by a data race. The mission consists of
multiple stages, with the robot following a subset of way-
points in each stage. Each stage activates a callback (thread)
that generates a motion path. This path is calculated by an
optimization solver that takes a subset of waypoints as input.
However, if two tasks simultaneously generate motion trajec-
tories, the solver processes inputs from two different subsets of
waypoints, leading to incorrect results. In the implementation,
each thread is triggered by a timer set at intervals of several
seconds. Given that the computation itself only takes tens of
milliseconds, data races normally do not happen. However, a
key vulnerability lies in the userspace implementation of the
ROS timer used by Movelt, which makes it susceptible to
disruption.

Figure 5(d) depicts the ROS timer mechanism: on delivery
of a timeout signal, ROS places an entry into a queue for
delivery to the next available thread. Figure 5(b) plots the
amount of jitter that we produced with the attack. The kernel-
level timer (hrtimer) is robust against TimeTrap due to its
fast path in the kernel. However, due to the POSIX timer’s
userspace semantics, its release can be delayed up to 800 ms
due to interference in the active task. The ROS timer is even

worse, experiencing jitters extending beyond 2 seconds under
attack. This manipulation by TimeTrap can cause delays that
result in the simultaneous triggering of two subtasks (Threads
A and B in the figure), causing errors. To conclude, though
userspace timers are flexible and easy to implement, TimeTrap
highlights their drawbacks in enforcing timing constraints.
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(a) The two zoomed rectangles contain the generated costmap and the
path. The path under temporal displacement of 0.76s is in red while the
path in the real physical world is in blue.
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// check that the observation buffers for the costmap are current,
// we don't want to drive blind

iy if(!controller costmap_ros —>isCurrent()){

2: ROS_WARN (" :Sensor data is out of date,
commanding of the lnw for safety", _node::
3: publishZeroVelocity();

4: return false;

5:

we're not going to allow

ros::this getName().c_str());

(b) A code snippet of fail-safe mechanism.

Fig. 6: Case study on Turtlebot3.

Case Study II on Turtlebot3. This case study focuses on the
Turtlebot 3 Burger, an indoor robot designed for home service,
as seen in Figure 9. Equipped with an LDS-01 LiDAR and
IMU, it uses Adaptive Monte-Carlo Localization (AMCL) and
path planning in ROS navigation software [44] as the software
stack. During tests in an office, the Turtlebot sends continuous
location and task updates to a Ground Control Station (GCS)
set on another PC. The GCS periodically sends trajectory data,
guiding the Turtlebot’s movement.

Attack Method. Similar to the earlier case study, the software
stack integrates with Linux’s real-time RR scheduler. An
adversarial task, which holds a lower priority than all victim
tasks, is also added. After the attack synthesis process, the



identified victim task emerges as the thread responsible for
creating the map essential for motion planning.

Attack Result. As the Turtlebot navigates the room, it contin-
ually maps its surroundings, as the sensed map illustrated in
Figure 6(a). For each control loop, the Turtlebot obtains a point
cloud, matching these points with a previously established
map database to deduce its current position. This point cloud
also aids in the creation of a costmap, filled with obstacle
information for the path planning module. TimeTrap can cause
the path planning module to produce a wrong path based on a
temporally mismatched costmap, thereby crashing the robot.

Root Cause Analysis — Inappropriate Timestamp Validation
Checks. The Turtlebot’s planning module consists of two
planners: a global planner for mission trajectories and a local
planner for real-time paths. The local planner’s input includes
the pose and a costmap detailing both static and dynamic ob-
stacles in the current environment. For a viable path, both the
pose and costmap must temporally align to correctly position
obstacles. Yet, since these inputs update in separate threads,
they are vulnerable to temporal displacement. TimeTrap causes
Turtlebot to plan a path using a stale costmap that coincides
with obstacles. Although mechanisms are in place to check
the freshness of the costmap during the update of the global
planner, as shown in the code snippet in Figure 6(b), there
is no check for the temporal alignment between the costmap
and the current pose when the software is using them together.
With TimeTrap active, the Turtlebot generates its route based
on the outdated costmap, shown in red in Figure 6(a). While
the robot perceives its path as clear, it collides with an actual
wall depicted in the blue costmap in the figure.

Control
tasks

R

E
2 Temporal Priority X
s Displacement| Deadline.

Sensor
tasks

\\
~ o
.*.-/

Take off

%

Fall down

=== baseline \
TimeTrap ,Attaa(elyl A

@ Start Point L J 15
- ho

|

|

‘ -150
-100 &

-80
. . -160
Trajectories X axis (m) —220 °

3 Interference

Cause Analysis

Fig. 7: Case study on Ardupilot drone.

Case Study III on Drone. We evaluated TimeTrap on a self-
built quadcopter powered by a Raspberry Pi 3 Model B and
Navio2 board. We deployed the widely-used Ardupilot [62]
Copter-4.0 software. We sent Mavlink messages from another
host PC to assign missions to the drone. As shown in the
top-left of Figure 7, TimeTrap caused the drone to crash. To
collect more detailed data, we also test the drone in simulation.
Ardupilot supports only software-in-the-loop (SiTL) simula-
tion, where physics simulation and control tasks are executed
within the same cyclic task loop. In this setting, delays do
not affect control performance, as they are translated into the

SiTL’s end-to-end delays. For proof-of-concept, we modified
the sensor data emulation to run as a separate task, aligning
with Ardupilot’s normal flight mode, where sensors are fetched
by distinct tasks.

Attack Method and Result. Tasks in Ardupilot fall into two
categories: input/output (I/O) and control. I/O tasks handle
sensor drivers, control outputs, and remote messages, each
having its own high-priority thread with a priority of 80. In
contrast, control tasks, which process sensor data and compute
control outputs, are grouped into a single low-priority thread
with a priority of 60. A built-in user-level scheduler manages
their execution. The adversarial task thread has the lowest
priority, set at 20. We designated 11 waypoints for the drone’s
mission. At one specific waypoint, where the drone was set
to make a sharp turn, we activated TimeTrap. Until that point,
the drone maintained a steady speed. However, once TimeTrap
was launched, the drone became unstable and crashed. its
deviations from reference velocity are shown in Figure 7.

Root Cause Analysis — User-level Scheduler. The underlying
issue stems from Ardupilot’s reliance on user-level schedul-
ing. In this setup, all control-related tasks are bundled into
one thread, while sensor operations run on separate threads.
Although user-level scheduling is efficient and versatile, it fails
to provide solid guarantees of timing constraints. In essence,
the kernel-level scheduling remains oblivious to priorities set
at the user level. Furthermore, when there is a switch in the
active thread at the kernel level, the user-level scheduling does
not register this change. Consequently, the control loop task
becomes unsynchronized with the sensor data loops, severely
impairing the control’s efficacy. As depicted in Figure 7,
TimeTrap-induced data desynchronization caused the drone’s
velocity to exhibit substantial oscillations. It is crucial to
understand that TimeTrap is not a rudimentary DoS attack
that indiscriminately stalls all threads. If that were the case,
the impact on control would be minimal, as the software is
designed to withstand frequency reductions.

B. Effectiveness of TimeTrap

The experiments in this section aim to (i) showcase the
effectiveness of the attack strategy and attack synthesis pro-
cess in TimeTrap, and (ii) explore the factors that influence
TimeTrap, including the resource channels, real-time execution
priorities, and budgets of the attacking process.

Direct DoS is not Effective. To underscore the necessity
of the attack strategy in TimeTrap, we demonstrate that a
direct DoS attack, which exhausts cache resources [4], does
not significantly impact the end-to-end control performance of
either the Turtlebot or the robotic arm. We place a TurtleBot
into the WashU Mini-City, a 3000 sq. ft. 1:8 scale city replica
with realistic streets, buildings, cars, and pedestrians. In this
scenario (shown in Figure 9), the adversarial task, allocated
80% CPU bandwidth and assigned a highest priority of 40,
markedly delayed other tasks. However, rather than crashing
into the building, the controller detected the excessive delay
in input sensor data and activated fail-safe measures, halting
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Trajectories

the vehicle. There are 7 fail-safe conditions implemented in
Turtlebot3 and Figure 6(b) shows one of them. Similarly, a
direct DoS attack on the robotic arm resulted in only a minor
control deviation of 3.78 cm, highlighted by the horizontal line
in Figure 8. In contrast, an attack by TimeTrap could cause
a deviation of up to 30.1 cm, as illustrated in Figure 8(d).
This discrepancy arises because a direct DoS attack does
not compromise the timer’s functionality, the vulnerability
explored in the previous case study. We also examined another
type of direct DoS attack that does not deplete all resources,
assigning the adversarial task a high priority of 40 but a
low CPU bandwidth of 20%. The Turtlebot3 experienced a
slowdown due to a decreased rate of control output messages
but maintained its path. The robotic arm, however, exhibited
only minimal temporal displacement (0.23 s) and control
deviation (1.23 cm).

Impact Factors of TimeTrap. We assessed the effects of
attack primitives on various shared resources, including cache,
network, and disk I/O. Each attack primitive optimized a
single shared resource. These individual attacks were then
compared to an attack targeting a combination of resources.
Additionally, we analyzed the influence of task priorities and
CPU budgets. We assigned the adversarial task five levels of
CPU bandwidths, ranging from 1% to 20%, and five levels of
priorities: low, medium-low, medium, medium-high, and high.
Here, “low” priority means the adversarial task’s priority is
lower than all other tasks. “Medium-low” matches the lowest

existing priority in the system, while the other levels ascend
accordingly. The evaluation is on the robotic arm with a
Raspberry Pi 3B as the computing unit. Results are reported
in Figure 8.

The attacks on disk I/O and cache are more powerful
than those on network due to the system’s minimal data
transfers via the network. Robots utilizing SD card storage are
particularly vulnerable to disk I/O attacks (Figure 8(a)), while
SSD-based systems are less affected. Cache attack potency is
closely tied to CPU budgets: more CPU time allows greater
cache eviction. In contrast, network (Figure 8(b)) and I/O
attacks (Figure 8(a)) demand less CPU time since they’re
managed by dedicated hardware controllers. However, such
attacks yield limited temporal displacements. Attacks spanning
multiple resources (as in Figure 8(d)) merge the strengths of
individual ones. Lastly, as the CPU bandwidth increases, the
significance of task priority becomes more obvious.

TABLE II: TimeTrap on Static and Dynamic Scenarios

S Sensing Temporal Control Succ.
€N Overhead (%)  Disp. (s) Dev. (cm) Rate
Robotic TimeTrap Static 0.18 1.6 22.1 72%
Arm Dyna. 0.22 1.9 25.7 86%
Direct DoS - - 53 1.78 0%
. Static 0.19 0.93 13.2 61%

Turtlebot3 TimeTrap
) Dyna. 0.32 0.81 14.5 81%
Direct DoS - - 35 6.3 24%

Result of Direct DoS on static and dynamic scenarios are merged.

TimeTrap on Various Physical Scenarios. We established ten
mission tasks, with half in dynamic scenarios. Specifically, the
robotic arm had two 3.5 cm cubes as randomly placed target
objects, while the Turtlebot navigated ten randomly generated
indoor trajectories with diverse obstacles. Each task underwent
10 evaluations. Results in Table II show that the CPU usage
during the sensing phase (sensing overhead) is minimal, and
the attack success rates exceed 60% in both static and dynamic
settings. Dynamic scenarios generally yielded higher success
rates due to their stricter timeliness requirements.

We also tested the Direct DoS attack, where the adversarial
task had a higher priority and consumed 80% of the CPU



budget. Its success rates were low across scenarios, as detailed
in Table II. Despite causing substantial delays, Direct DoS
could not notably deviate control behaviors.

C. Generalization of TimeTrap

Besides the three case studies, we tested eight cyber-

physical systems: OpenManipulator X [33], Turtlebot3 [34],
Jackal UGV [65], Ardupilot [62], PX4 Autopilot [63], ROBO-
TIS OP3 [64], Autoware.Auto [66], and Baidu Apollo [41]
in a hardware-in-the-loop setup. Table III details the comput-
ing platforms, software stacks, scheduling mechanisms, and
vulnerable modules identified. The evaluation is conducted
in real-world scenarios or official simulations to ensure the
practicality of TimeTrap.
Scheduling Mechanism Setup — Among the platforms tested,
PX4 [63] utilizes an RTOS (Nuttx), while the others run on
Linux. Autoware and Apollo also integrate ROS2 and Cyber-
RT as their primary real-time middleware schedulers. For the
platforms that default to Linux’s Completely Fair Scheduling
(CFS), we integrate their tasks into the Round Robin (RR) and
Earliest Deadline First (EDF) real-time schedulers in Linux
with the PREEMPT_RT patch. For RR, we assigned the target
tasks a priority of 60 (with the highest being 99) and the
adversarial task a priority of 20. We assigned the periods
of tasks according to their input. For EDF, we aligned the
deadlines with sensor input frequencies, ensuring no input
drops.

Contention in Single-core Platform is less Effective. While
single-core platforms also have shared stateful resources be-
tween tasks that can be maliciously polluted by adversarial
tasks, the delay effects are limited. PX4, which uses the single-
core platform Pixhawk (Arm Cortex-M7), did not crash by re-
source contention. However, we have identified inefficiency in
priority inheritance in PX4, which can be triggered remotely.
This case study is presented in Section VII.

Timing Issues Triggering Conditions. Our experimental
results show that direct DoS attacks often do not guarantee
a crash. (One exception is the drone where the naive attack
can also succeed due to unique aerial properties.) Their are two
primary reasons. First, the naive DoS attack, as described, re-
quires excessive CPU budgets to cause temporal displacement.
Second, significant delays on critical components can trigger
the fail-safe mechanism in autonomous systems. Conversely,
we discovered that even minor timing in TimeTrap can po-
tentially cause devastating control degradation if the attack
is launched at carefully selected moments. Additionally, we
found that most of the timing issues discussed in Section II
cannot be intentionally triggered in a predictable manner
through performance interference. However, they still pose a
problem, as they can be triggered by timing variability from
workloads [67], system or hardware faults [68]. TimeTrap’s
temporal displacement discovery stage is capable of identify-
ing these issues.

Various Modules in the Control Pipeline are Vulnerable.
The proposed attack framework enabled us to identify vul-

nerable states in different realistic scenarios. The number of
issues we identified are reported in Table III. We observe that
the localization module is more prone to timing issues because
it generally involves more threads, making it harder for pro-
grammers to reason about correctness in concurrent execution.
We have examined the software patterns and scheduling mech-
anisms that make each platform susceptible to such attacks.

Built-in scheduling mechanisms offer limited mitigation
on multi-core platforms. One reason is that middleware,
which typically adopts data-driven execution models such as
ROS2 and Cyber-RT, does not incorporate resource partition-
ing by design. Another reason is that many existing real-time
scheduling mechanisms, such as those in RTOS Nuttx, only
consider CPU usage during scheduling. Resource contention or
blocking can occur across various stacks, such as the network
or I/O stacks, with each single resource channel potentially
leading to temporal displacements [9].

Static Timing Policy is Not Adequate. Specifying appro-
priate timing policies in complex autonomous systems is a
challenge. In the platforms we investigated, policies primar-
ily encompass static priorities and hardcoded thresholds for
checking data freshness, which may be overly large in some
scenarios. Given that a task’s execution timings can vary
significantly [69] due to multiple factors, such as input [70],
autonomous systems interacting with dynamic environments
necessitate adaptive, dynamic timing policies [69], [71].

VII. LIMITATIONS AND DISCUSSION

Attack Outcome Depends on Physical Environment. At-
tacks on CPS uniquely manifest in kinetic effects. The conse-
quences of such attacks are often tied to the physical state of
the system. For instance, a DoS attack on a stationary drone
would lead to minimal real-world repercussions. Similarly,
injecting false data into a power grid would be inconsequential
if the generation is physically switched off. While TimeTrap’s
outcomes are heavily influenced by the system’s physical state,
our research indicates that it can consistently compromise the
targeted CPS. The time taken for system destabilization can
vary, however, sometimes requiring several seconds.

Remote Execution of TimeTrap. In addition to investigating
performance interference and attacks on voltage configura-
tions [72], we also explore methods to influence software tim-
ing in non-local environments, such as networked systems. We
were able to send specially-crafted messages from a ground
station to a drone running PX4 that cause priority inversion
and delay task execution. In PX4, logging is handled asyn-
chronously by a low priority (SCHED_PRIORITY_DEFAULT
— 40) thread to avoid interference with critical tasks, since
it consumes heavy 10 bandwidth. The logging rate is further
restricted using a variable _log_interval to avoid short,
heavy data bursts.

However, PX4 handles user messages via the Mavlink
protocol from the ground station in a high priority thread.
User messages may request logging data, and the handler
(MavlinkLogHandler ()) also executes at the same high



TABLE III: TimeTrap on Various Autonomous Systems

# Issues in Vul. Modules

Name Type Software Stack Official Platforms  Evaluation Platforms Tested Schedulings Direct DoS [4]  TimeTrap
Percep. Loc. Plan. Con.

Turtlebot3t UGV Navigation [44] RaspberryPi 4b RaspberryPi 4b {CFS,RR,EDF}+ROS 2 2 v
Jackal Google Cartographer [40] Intel i3-4330TE Intel i3-8100 {CFS,RR,EDF}+ROS 3 v
Ardupilot Drone Ardupilot Sw. [62] Navio2 (RPi3) Navio2 (RPi 3b) Built-in Scheduler 1 v v
PX4 PX4 Autopilot [63] Pixhawk Pixhawk Nuttx 1 VE
Apollo AV Apollo full-stack [41] Neousys 6108GC Ryzen7 1700X CFS+CyberRT 1 2 1 v
Autoware Autoware full-stack [38] 8-cores CPU Ryzen7 1700X CFS+ROS2 1 3 1 1 v
OP3 Hum. OP3 controllers [64] Intel i3 dual core Jetson Nano {CFS,RR,EDF}+ROS 2 v
OpenM. Xt Arm Movelt [39] RPi 3b RPi 3b {CFS,RR,EDF}+ROS 1 1 v

* is attacked remotely; T denotes the platforms evaluated in real world; The RAM size is also set as the same with official requirements; Percep = Perception; Loc. = Localization; Plan. =

Path Planning; Con. = Controller.

priority. TimeTrap can send repeated log requests to the drone,
causing it to deviate from its mission path or crash. The
problem here is that the Mavlink handler retains its high
priority when invoking functions; this causes the logging
functionality to incorrectly inherit the high priority, leaving
open a vulnerability to performance interference. To mitigate
this, PX4 should specify a separate priority for running the
function MavlinkLogHandler (), e.g., by propagating pri-
orities with requests [73].

While most of the timing violations presented in this paper
assume that a local process senses and induces interference,
this shows that it is also possible to find a remotely exposed
API that can invoke the interference workload.
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Fig. 10: Remote malicious requesting on PX4.

VIII. RELATED WORK

Denial-of-Service Attacks via Performance Interference.
DoS attacks have been extensively studied on various shared
resources over the past two decades, with the primary goal
being to characterize the maximum interference (slowdown)
on different attack surfaces. These surfaces include individual
channels such as cache [4], [12], [26], [27], [74], [75], row
buffer [27], memory bus [30], network stack [28], I/O [29], and
GPU [10]. Some works also consider combinations of different
channels to achieve better interference [8], [9], [11], [76].
TimeTrap builds upon these prior works, taking a further step
by synthesizing appropriate aggressor workloads to trigger
timing issues, rather than maximizing interference.

Timing Security in Real-time Software. Given that timing
is crucial for autonomous systems, several studies have been

dedicated to investigating timing-related flaws and vulnerabil-
ities. Degradation of controllers induced by input/output jitters
is well studied in [77]-[79]. Synchronization attacks on smart
grid [80] spoof the timestamps in GPS packets to desynchro-
nize the phasor measurement units. The butterfly attack [81]
assumes the existence of a software feature (vulnerability) that
can be triggered using malicious input to increase the control
jitters, thereby destabilizing the system. Mitigation methods
for this issue are also explored in [24], [82]. These works
primarily focus on the interplay between timing and the control
model, while overlooking the software implementation. In this
work, we go a step further by analyzing timing problems in-
duced by the internal software implementation. A similar effort
is from [83], which only analyzes the control performance
of an AR application. Conversely, TimeTrap provides a more
comprehensive study of control performance across the full
stack of autonomous systems.

IX. CONCLUSION

This paper empirically studies how DoS attacks, facilitated
by performance interference from shared resources, can trigger
harmful task miss patterns, subsequently leading to control
degradation in CPS platforms. We analyzed the results on
several autonomous system platforms and formulated the
cause as a problem of temporal displacement in critical data.
To automate the analysis, we introduce TimeTrap, a tool
specifically designed to analyze the end-to-end impact of
performance interference on target CPS platforms. TimeTrap
is capable of identifying potentially harmful task execution
patterns resulting from software implementation flaws and syn-
thesizing aggressor workloads to trigger these specific patterns.
We conducted experiments on eight well-known autonomous
systems in both real-world and simulated environments, and
found that TimeTrap is applicable to different stages of the
control pipeline across these platforms.
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