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Abstract

Oxygen 1sotope ratios and elemental compositions of porphyritic chondrules and olivine and
pyroxene fragments in the Asuka-881020 CH chondrite were analyzed. The oxygen isotope ratios
inside individual porphyritic chondrules are homogeneous within the uncertainty, except for relict
grains of olivine and low-Ca pyroxene that have distinct oxygen isotope ratios. The average
oxygen isotope ratios of the individual chondrules plot along and above the primitive chondrule
mineral (PCM) line with A0 (= 870 — 0.52 x &'%0) values from —4.7%o to +4.1%o. The olivine
and pyroxene fragments, which have A0 values ranging from —2.1%o to +3.2%o, are likely to be
fragments of the porphyritic chondrules.

Unlike the non-porphyritic chondrules in CH and CB chondrites and chondrules in other
carbonaceous chondrites, the type I and II chondrules do not show a systematic difference in the
A0 values. Furthermore, the A'’O values of the type I chondrules increase from —4.7%o to +4.1%o
with increasing Mg# (= molar [MgO]/[MgO+FeO]x100) from 96 to 99. We argue that the positive
AY0O-Mg# trend is explained by an addition of '®O-poor carbon-rich organics as a reducing agent
to the relatively ®O-rich precursor silicate, which is a new environment for chondrule formation.
This hypothesis is supported by the two lines of evidence observed in the present study. (1) The
chondrules and fragments with higher A'’O values show larger deviations from the PCM line
towards low 8'®0, suggesting oxygen isotope mass fractionation between the chondrule melt and
CO or CO:s. (2) Olivine phenocrysts in the chondrules with high A’O values contain Ni-poor Fe-
metal particles surrounded by silica-rich glass, which may be reduction products during the
chondrule formation. Thus, it is suggested that the porphyritic chondrules in CH and CB chondrites
have different origins from chondrules in any other chondrite types, even from the non-porphyritic

chondrules in CH and CB chondrites.
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1. Introduction

Chondrules are igneous spherules composed mainly of olivine, pyroxene, glass, and Fe-Ni
metal and are observed in most chondritic meteorites (e.g., Gooding and Keil, 1981; Scott and
Krot, 2003). Chondrules have formed by transient heating and rapid cooling (e.g., Jones et al.,
2005), ~ 1 — 5 Myr after the oldest Ca-Al-rich inclusions (CAIs) (e.g., Kita et al., 2000; Kurahashi
et al., 2008; Hutcheon et al., 2009; Villeneuve et al., 2009; Kita and Ushikubo, 2012; Ushikubo et
al., 2013; Nagashima et al., 2014, 2017, 2018; Schrader et al., 2017; Hertwig et al., 2019a; Tenner
etal., 2019; Siron etal., 2021, 2022; Fukuda et al., 2022; Piralla et al., 2023). Based on the textures,
chondrules are classified into porphyritic and non-porphyritic types (Gooding and Keil, 1981).
Porphyritic chondrules have been heated to near-liquidus temperatures, and nucleation sites
resulting from incomplete melting of precursor materials persist: growth of crystals can occur on
multiple nucleation sites as the chondrule cools. Non-porphyritic chondrules have been heated
above the liquidus, and most nucleation sites have been destroyed during the melting interval
(Jones, 2012). Based on the Mg# (= molar [MgO]/[MgO+FeO]x100), chondrules are classified
into type I (FeO-poor; Mg# > 90) and type II (FeO-rich; Mg# < 90) (e.g., Jones et al., 2005). The
Mg# of chondrules is controlled by the oxygen fugacity of the chondrule-forming environment
(Ebel and Grossmann, 2000; Zanda et al., 1994), and type I chondrules formed under more
reducing conditions than type II chondrules (e.g., Tenner et al., 2015; Hertwig et al., 2018), though
precursor compositions of individual chondrules can also affect the Mg# of chondrules (Connolly
et al., 1994). Since chondrule-like objects were observed in cometary samples such as particles
returned from comet Wild 2 (Nakamura et al., 2008; Ogliore et al., 2012; Joswiak et al., 2014), it
1s considered that chondrules were widely distributed in the protoplanetary disk even in the Kuiper
belt region. Thus, chondrules are essential for understanding of the material evolution in the early
Solar System.

In-situ analyses of chondrules in Acfer 094 (ungrouped C3.0) using secondary ion mass
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spectrometry (SIMS) revealed that oxygen isotope ratios of the chondrules are distributed along
the slope ~ 1 line of 870 = (0.978 £ 0.013) x 80 — (2.70 £ 0.11) in the oxygen three-isotope
diagram, which is called as the primitive chondrule mineral (PCM) line (Ushikubo et al., 2012).
Oxygen isotope ratios of individual mineral phases in chondrules from pristine carbonaceous
chondrites plot along and above the PCM line (Connolly and Huss, 2010; Russell et al., 2010;
Rudraswami et al., 2011; Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017, 2018;
Davidson et al., 2014; Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi
etal., 2018, 2019, 2021, 2022; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Fukuda et al_,
2022; Zhang et al., 2022; Pinto et al., 2024). Since the PCM line represents the primary trend of
the major oxygen isotope reservoirs (1°O-rich CAIs and °O-poor cosmic symplectites) in the
protoplanetary disk, chondrules that plot around the PCM line originated from the reservoirs
(Ushikubo et al., 2012). Recent high precision analyses of chondrules further revealed that there
are two groups of chondrules among carbonaceous chondrites that plot slightly below and above
the PCM line, some of which show correlation to nucleosynthetic anomalies of Cr and Ti (Williams
et al., 2020; Zhang et al., 2022). The chondrules with Cr and Ti isotope anomalies may have come
from formation regions of ordinary chondrite chondrules (Williams et al., 2020). On the other hand,
Schneider et al. (2020) found no carbonaceous chondrite chondrules related to ordinary chondrite
chondrules from the Cr-Ti-O isotope analyses.

Oxygen isotope ratios of the Acfer 094 chondrules are internally homogeneous, except for
relict grains that have distinct oxygen isotope ratios (Ushikubo et al., 2012). The Acfer 094
chondrules show bimodal A0 (= &0 — 0.52 x §'%0) values of ~ —5%o and —2%o that negatively
correlate with the Mg# values of chondrule phenocrysts, suggesting the former presence of two
separate 1sotope reservoirs with different redox states in the protoplanetary disk and that the
homogeneous oxygen isotope ratios represent localized oxygen isotope reservoirs in the disk

(Ushikubo et al., 2012). Other primitive carbonaceous chondrites also show similar systematic
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trends between Mg# and A!’O values, though the detailed trends are specific to individual
chondrite groups (Connolly and Huss, 2010; Russell et al., 2010; Rudraswami et al., 2011;
Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017, 2018; Davidson et al., 2014;
Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi et al., 2018, 2019,
2021, 2022; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Fukuda et al., 2022; Pinto et al.,
2024). Continuous negative A’O-Mg# trends have been observed from chondrules in CR
chondrules that are explained by an addition of '*0O-poor water ice as an oxidant to the ®O-rich
anhydrous solid precursors (Tenner et al., 2015). An addition of '*0-poor CI-like dust is also
suggested, which is supported by the peculiar **Cr signature of CR chondrules (Marrocchi et al.,
2022).

In metal-rich carbonaceous CH and CB chondrites, non-porphyritic chondrules such as
cryptocrystalline (CC) and skeletal olivine (SO) chondrules dominate the chondrule inventory (>
80%), though with their huge size difference between CH chondrules and CB chondrules (0.02 —
0.09 mm and 0.5 — 5 mm; Scott and Krot, 2003). Nakashima et al. (2020) reported that A'’O values
of the non-porphyritic chondrules negatively correlate with the Mg#, similar to chondrules in other
carbonaceous chondrites. Porphyritic chondrules, which are minor in CH and CB chondrites (<
20%; Scott and Krot, 2003), have a variation in the A’O values from ~ —4%o to +4%o (excluding
internally heterogeneous chondrules containing relict minerals; Krot et al., 2010), though the
relationship with Mg# has not been discussed.

Lithic fragments, which are olivine and pyroxene fragments and olivine-pyroxene-normative
fragments, occur around chondrules and Fe-Ni metal in CH chondrites mstead of fine-grained
matrix in pristine chondrites (Scott, 1988; Grossman et al., 1988). Nakashima et al. (2020)
suggested that the olivine-pyroxene-normative fragments are fragments of CC chondrules in CH
chondrites based on the similarity in oxygen isotope ratios. The possibility that olivine and

pyroxene fragments are fragments of the porphyritic chondrules in CH chondrites (Scott, 1988)
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can also be tested based on the oxygen isotope ratios.

In this study, oxygen isotope ratios and elemental compositions of porphyritic chondrules and
olivine and pyroxene fragments in the Asuka (A) -881020 CH chondrite (Noguchi et al., 2004;
Nakamura et al., 2006) were analyzed to understand oxygen isotope reservoirs and redox
conditions in the formation environments of the porphyritic chondrules. As a result, a unique A'’O-
Mg# trend is observed for the type-I chondrules and FeO-poor fragments; the A0 values
positively correlate with Mg#. We propose that the unique trend is caused by an addition of °O-
poor carbon-rich organics as a reducing agent to the °O-rich precursors. The hypothesis is tested
based on the mineralogy and chemistry including observation with transmission electron

microscopy of the porphyritic chondrules and olivine and pyroxene fragments.

2. Analytical procedures

2.1. Electron microscopy

We used a polished thin section of the A-881020 CH chondrite (51-1; National Institute of
Polar Research). Chondrules and olivine and pyroxene fragments in the section were examined
using a scanning electron microscope (SEM; Hitachi S3400) at the University of Wisconsin-
Madison and a field emission SEM (FE-SEM; JEOL JSM7001F) at Tohoku University.
Backscattered electron (BSE) images were obtained. Elemental compositions of the chondrules
and olivine and pyroxene fragments were measured using electron probe microanalyzers (EPMAs)
at Ibaraki University (JEOL JXA-733), at National Institute of Polar Research (NIPR; JEOL JXA-
8200), and at the University of Wisconsin-Madison (CAMECA SX-51) equipped with wavelength-
dispersive X-ray spectrometers (WDSs). At Ibaraki University, WDS quantitative chemical
analyses of bulk chondrules were performed at 15 kV accelerating voltage and 6 nA beam current
with a defocused beam of 5 - 40 um. After correction by the Bence-Albee method, the chondrule

data were recalculated by the method of Ikeda (1980) to reduce the polyphase effect. Quantitative
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chemical analyses of olivine and pyroxene fragments and individual silicate phases in chondrules
were performed with a focused beam (10 nA) at Ibaraki University, NIPR, and University of
Wisconsin-Madison (other analytical settings are the same as those for bulk chondrule analyses).
Natural and synthetic standards were chosen based on the compositions of the minerals being
analyzed (e.g., Tenner et al., 2015). Detection limits of oxide concentrations are shown in the

Supplementary Tables Al.

2.2. Raman spectroscopy

The structural nature of chondrule silica was determined by laser micro-Raman spectroscopy,
using a JASCO NRS-3100 spectrometer at Kyushu University. A microscope was used to focus
the excitation laser beam (532 nm). The acquisition time was 30 s. For each region analyzed a
Raman spectrum was acquired in the spectral region of 240 to 1340 cm™. Raman spectra were also
acquired on the regions where tiny vesicles are dispersed in olivine phenocrysts of chondrules for
the 1dentification of gaseous compounds that may be trapped in the vesicles. The spectral region

is from 1200 to 2200 cm™. Other analytical conditions are the same as those for chondrule silica.

2.3. Oxygen isotope analyses

Oxygen isotope ratios of porphyritic chondrules and olivine and pyroxene fragments in A-
881020 were analyzed with the CAMECA IMS-1280 1on microprobe at the WiscSIMS laboratory
(Kita et al., 2009). For the oxygen three-isotope analyses, two sizes of focused Cs™ primary beam
(10 x 15 pm at the intensity of ~ 3 nA and 2 x 4 pm at ~ 30 pA) were applied. The analytical
conditions and measurement procedures were similar to those in Kita et al. (2010) and Nakashima
et al. (2011). The secondary '°0~, 7O, and ®O™ ions were detected simultaneously by Faraday
cups (FC) or electron multipliers (EM) on the multicollection system; three FCs for 1°0™, 1’0", and

30~ for 15 pm spot analyses and a FC for 0~ and two EMs for ’O~, and 'O~ for 4 um spot

e |
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analyses. Intensities of %0~ were ~ 3 x 10 cps and ~ 2 x 107 cps with 15 pm and 4 pm primary
beams, respectively. The baselines of the FCs were measured during the presputtering (100 s for
15 pm spots and 360 s for 4 pm spots) in respective analyses and used for data correction. The
contribution of the tailing of O'H™ interference to ’O~ signal was corrected by the method
described in Heck et al. (2010), though the contribution was negligibly small (typically < 0.1%eo).
One to six analyses were performed for individual chondrules and olivine and pyroxene
fragments, bracketed by eight to nine analyses (four or five analyses before and after the unknown

sample analyses) on the San Carlos olivine standard grain in a separated mount (Supplementary

Table A2). The external reproducibility of the running standard was 0.19 — 0.54%o for 520, 0.35
— 0.66%o for 570, and 0.21 — 0.68%o for A0 for 15 pm spot analyses, and that for 4 pm spot
analyses was 0.73 — 1.18%o for 5'0, 0.97 — 1.82%o for 8'70, and 1.09 — 2.04%. for A’O (2SD;
standard deviation). The external reproducibility was assigned as analytical uncertainties of
unknown samples (see Kita et al., 2009, 2010 for detailed explanations). We used two olivine
(Fo100 and Foeo), three low-Ca pyroxene (Ene7, Engo, and Engs), diopside, plagioclase (Anos), quartz,
and four glass (50.9 — 76.0 wt% Si0-) standards (Valley and Kita, 2009; Kita et al., 2010) in the
same sessions for correction of instrumental bias of olivine, pyroxene, plagioclase, silica, and glass

(Supplementary Table A3).

Porphyritic chondrules and mineral fragments of olivine and pyroxene were selected for
oxygen isotope analysis are located within the radius of 5 mm of the center of the 1-inch round
thin section of A-881020 in the same manner as that for the non-porphyritic chondrules
(Nakashima et al., 2020) to avoid instrumental mass fractionation due to the X-Y effect (Kita et
al., 2009). In each porphyritic chondrule, 1 to 6 spot analyses were made. The 15 pm beam was
used for olivine and low-Ca pyroxene phenocrysts larger than 15 pm, and the 4 pm beam was used

for those smaller than 15 pm, high-Ca pyroxene, glass, plagioclase, and silica (Supplementary Fig.

Al).
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2.4. Sample sectioning using focused ion beam and transmitted electron microscopy

For the observation of Fe-particles smaller than 1 pm in olivine phenocrysts in chondrules
using a transmitted electron microscope (TEM), thin sections (~ 180 nm) of olivine phenocrysts
containing Fe-particles were cut out using a focused ion beam (FIB) on a JEOL JIB-4501 FIB-
SEM at Kyushu University. A 30 kV Ga* ion beam set to 50 pA— 100 nA was used. The FIB marks
of 1 pm x 1 pm were made at both ends of the FIB sectioning area by removing carbon coating on
the sample surface (e.g., Nakashima et al., 2012), as the Fe-particles are tiny and hidden from view
after deposition of a W-layer. NanoMill TEM specimen preparation system (Model 1050) was used
for removing amorphous layers on the surfaces of the thin sections formed during FIB sectioning.
Two settings of Ar* ion beam (900 V and 500 V; intensity of 35 pA) were used. The FIB sections
with a thickness of ~ 80 nm were observed using JEOL JEM-3200FSK TEM equipped with the
JED-2200 energy-dispersive X-ray spectrometer (EDS) at Kyushu University. The accelerating
voltage was 300 kV. Quantitative analysis was performed using the Cliff-Lorimer correction with
the TEM-EDS, and the element concentrations were corrected using k factors obtained by

measuring mineral standards (Noguchi et al., 2015).

3. Results
Search for porphyritic chondrules and olivine and pyroxene fragments large enough for 15
um and 4 pm spot SIMS analysis and electron microprobe and SIMS analyses were conducted
along with those of the non-porphyritic chondrules and lithic fragments in the same meteorite in
the same sessions (Nakashima et al., 2020). In Nakashima et al. (2020), the non-porphyritic
chondrules and lithic fragments are numbered as C1 — C37 and F1 — F40. In the present paper, the
porphyritic chondrules and olivine and pyroxene fragments are sequentially numbered as C38 —

C59 (n=22) and F41 —F61 (n = 21), respectively (Supplementary Table A1).
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3.1. Petrology and mineralogy of porphyritic chondrules
Porphyritic chondrules in A-881020 are 50 — 380 pum in size (170 pm on average; Fig. 1:

Supplementary Fig. A1) and smaller than (or as small as) those in other chondrite groups (Friedrich

et al., 2014). The porphyritic chondrules consist mainly of olivine and low-Ca pyroxene
phenocrysts, Fe-Ni metal, and glass. The porphyritic chondrules contain accessory phases of high-
Ca pyroxene with Wo# from 21.5 to 43.5, pyroxene with intermediate compositions (En7g 1 -

937Wo0s0 — 185), plagioclase with An# from 75.6 to 91.7, and silica (Supplementary Table Al).

Pyroxene with intermediate compositions is called as intermediate pyroxene (Tenner et al., 2015).
Nepheline or sodalite, a product of metasomatism (e.g., Kimura and Ikeda, 1995; Krot et al., 1998),
1s not observed in glass and plagioclase in the porphyritic chondrules. Electron microprobe

analyses of glass and plagioclase show totals higher than 98 wt% (Supplementary Table Al),

indicating no replacement by phyllosilicates.

Most of the porphyritic chondrules are porphyritic olivine (PO), porphyritic olivine-pyroxene
(POP), and porphyritic pyroxene (PP) types. There are two chondrules with unique textures. C46
consists of a low-Ca pyroxene core surrounded by a glassy rim. C58 consists of an olivine core
surrounded by a rim composed of low-Ca pyroxene, silica, and microcrystalline mesostasis

(Supplementary Fig. Al). Silica in C58 is cristobalite, as the Raman spectra showed a peak around

420 cm™. Sub-pm sized Cr-spinel particles (detected by FE-SEM-EDS) occur between the olivine

core and surrounding low-Ca pyroxene (Supplementary Fig. Al).

In each chondrule, olivine and low-Ca pyroxene compositions are homogeneous with small
variations in Fo#, En#, and Wo# of less than 2.6, 2.1, and 1.8 (1SD). The averaged olivine Fo#
range from 73.2 to 99.1, and averaged low-Ca pyroxene En# and Wo# range from 89.8 to 97.4,
and from 0.5 to 4.2, respectively. The Fo# of 73.2 is from a PO chondrule (C59; Fig. 1j), which 1s

a type II chondrule with no Fe-Mg zoning in olivine phenocrysts. Others are type I chondrules

10



with Mg# of olivine and low-Ca pyroxene phenocrysts higher than 91. Mg# of individual

chondrules in Table 1 are average values of Mg# of olivine and low-Ca pyroxene in the chondrules.

3.2. Bulk elemental compositions of porphyritic chondrules

Bulk elemental compositions of porphyritic chondrules were obtained by broad-beam EPMA
analyses, though they may not reflect true compositions of individual chondrules (Jones, 2005).
Refractory element abundances in the porphyritic chondrules in A-881020 are systematically
higher than those in CC chondrules in CH and CB chondrites (Krot et al., 2010; Nakashima et al.,

2011, 2020) and as high as those in chondrules in other carbonaceous chondrites (Hezel and Palme,
2010) (Fig. 2).

3.3. Fe-particles and vesicles in olivine phenocrysts in porphyritic chondrules
Olivine phenocrysts in more than a half of porphyritic chondrules contain sub-pm sized Fe-
particles (detected by FE-SEM-EDS) and vesicles, which are linearly aligned (Fig. 3;

Supplementary Fig. Al). No Fe-Mg zoning is observed in the olivine phenocrysts. The Fe-particles

and vesicles are also observed in plagioclase in the chondrule C47 (Fig. 3d). Raman spectra were
obtained in the regions where the vesicles occur, but any peak suggesting the presence of gaseous
species in vesicles 1s not observed. Instead, the observed Raman spectra are similar to those of
epoxy (e.g., Hardis et al., 2013), which 1s underneath the thin section.

The BSE images show Fe-particles and vesicles distribute on the cut surface of the FIB
sections (Figs. 4a. 4d), which were cut out along the aligned Fe-particles and vesicles from the
olivine phenocrysts. Therefore, the Fe-particles and vesicles distribute on a plane almost
perpendicular to the polished surface of the chondrule olivine phenocrysts. The HAADF-STEM
images of the FIB section from the chondrule C40 (grid-1) show that the Fe-particles smaller than

0.5 pm are surrounded by silica-rich glass in the host olivine (Figs. 4b. 4¢). Tiny Fe-particles

11



surrounded by silica-rich glass are also observed in dusty olivine (Leroux et al., 2003). In the FIB
section from the chondrule C41 (grid-2), vesicles occur along with Fe-particles in the host olivine
with dislocations (Fig. 4e). An electron diffraction pattern of the largest Fe-particle (~ 2 pm in
size) in the grid-2 shows that it is a bece Fe-metal, 1.e., kamacite (Fig. 4f). The same may be true
for other tiny Fe-particles. The Fe-particles are Ni-free or contain small concentrations of Ni (Table
3). The average Ni concentration is 2.5 + 2.3 wt% (n = 7; 1o). Silica-rich glass surrounding the
Ni-poor Fe-metal particles shows similar elemental composition to those in the Bishunpur LL3.1

chondrite (Leroux et al., 2003) and contain CaO and Al,Oz of ~ 19 wt% and 24 wt% (Fig. 5: Table

4).

3.4. Petrology and mineralogy of olivine and pyroxene fragments

Lithic fragments that present in interstitial spaces between chondrules and Fe-Ni metal are
olivine, low- and high-Ca pyroxene, and olivine-pyroxene-normative CC fragments (including
silica-bearing fragments: Fig. 6; see also Nakashima et al., 2020). Except for the olivine-pyroxene-
normative CC fragments, chemical compositions of the lithic fragments are close to stoichiometric

olivine and low- and high-Ca pyroxene (Supplementary Table A1). Thirteen of the 21 olivine and

pyroxene fragments are FeO-poor with Mg# of 90.7 — 99.3, and others are FeO-rich with Mg# of

50.5—80.0 (Table 2). FeO-rich olivine fragments do not show Fe-Mg zoning (Supplementary Fig.
Al).

3.5. Oxygen isotope ratios
We made a total of 110 spot analyses in 22 porphyritic chondrules and 21 olivine and
pyroxene fragments. After inspection of the SIMS analysis spots by SEM, one analysis was

rejected because it overlapped with an adjacent lithic fragment (F55; Supplementary Fig. Al). A

summary of the 109 spot analyses taken from 22 chondrules and 20 lithic fragments is shown in

12
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Tables 1 — 2; a more complete table i1s given in the Supplementary Table A4.

3.5.1. Oxygen isotope ratios of porphyritic chondrules
Oxygen isotope ratios of individual spot analyses in the porphyritic chondrules are distributed
along and above the PCM line (Ushikubo et al., 2012; Zhang et al., 2022) and the Carbonaceous

Chondrite Anhydrous Mineral (CCAM) line (Clayton et al., 1977) (Figs. 1b. le. 1h, 1k:

Supplementary Fig. Al). The individual chondrules are isotopically uniform within the uncertainty,

except for four chondrules with isotopically distinct relict grains and one chondrule (C43)

containing olivine phenocrysts with heterogeneous oxygen isotope ratios (Fig. 1; Supplementary

Fig. Al). The homogeneous oxygen isotope ratios represent those of the final chondrule melt and
are referred as “host” chondrule oxygen isotope ratios, and especially chondrule glass in pristine
chondrites preserves the oxygen isotope ratios of the chondrule-forming melts (Ushikubo et al.,
2012). The isotopically distinct relict grains, which are mostly olivine, survived the final chondrule
formation event and do not reflect oxygen isotope ratios of the final chondrule melt (e.g., Ushikubo
et al., 2012). In C43, any olivine phenocryst analyzed for oxygen isotopes is possibly relict.

The relict grains are defined as the grains of which A0 values are different from the host
AY0 values by more than 3SD of individual analyses in the chondrules (e.g., Ushikubo et al.,
2012). The relict grains are excluded from the calculation of average oxygen isotope ratios of the
individual chondrules. The oxygen isotope ratios in the individual chondrules were measured with

two different beam settings, which have different uncertainties (Supplementary Table A2).

Therefore, the error-weighted average oxygen isotope ratios of individual chondrules are
calculated. The uncertainties of the average values in the individual chondrules were estimated
from the 2 standard error (2SE) of chondrule analyses (2SD/v number of chondrule analyses),
unless it is smaller than the 2SE of bracketing standard analyses (2SD/v number of chondrule

analyses). The average oxygen isotope ratios of individual chondrules are distributed along and

13
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above the PCM line with 5'®0 values from —1.3%o to +11%o (Fig. 7a).
In the two chondrules (C41 and C44), isotopically distinct low-Ca pyroxene grains are

observed (Supplementary Fig. A1). In C44, four spot data from olivine and low-Ca pyroxene have

an average A'70 value of —6.4 = 0.9%o (25), and two spot data from glass and low-Ca pyroxene

have an average A'’O value of 0.3 = 1.2%o (Figs. 1h and 1i: Table 1). Therefore, the host A0

value of C44 is ~ —0.3%o, and olivine and low-Ca pyroxene with A0 of ~ —6%o are relict.

3.5.2. Oxygen isotope ratios of olivine and pyroxene fragments
Most of the olivine and pyroxene fragments were analyzed with a 15 pm beam (Fig. 6;

Supplementary Fig. Al). The oxygen isotope ratios show a variation from —3.9%o to +11.8%eo in

880 along and above the CCAM and PCM lines (Fig. 7b: Supplementary Fig. Al). The §'%0

ranges for the FeO-poor fragments and FeO-rich ones overlap each other; —3.9%o to +9.9%. and
+3.8%o to +11.9%o. There is no systematic difference in '®0 ranges between FeO-poor olivine and

pyroxene and between FeO-rich olivine and pyroxene.

4. Discussion

For carbonaceous chondrites, chondrules with lower Mg# tend to have higher A0 values,
which is attributed to an addition of ®O-poor water ice as an oxidant to relatively %O-rich
precursor dust (e.g., Ushikubo et al., 2012; Tenner et al., 2015) or an addition of %0O-poor CI-like
dust (Marrocchi et al., 2022). However, there appears to be no systematic difference in the A0
values between type I and II chondrules in CH and CB chondrites (Krot et al., 2010). In the present
study, oxygen isotope ratios of porphyritic chondrules from the A-881020 CH chondrites are
obtained to see if there is a systematic trend between the A’O values and Mg#. But, only one type
II chondrule 1s available (C59; Mg# = 73.2). Instead, FeO-rich olivine and pyroxene fragments,

which may be fragments of the type II porphyritic chondrules (e.g., Scott, 1988), are analyzed for
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the oxygen isotope ratios. Before discussing the A”O-Mg# relationship of the porphyritic
chondrules, we test if the olivine and pyroxene fragments are fragments of the porphyritic

chondrules based on the chemistry and oxygen isotope ratios.

4.1. Genetic link between the olivine and pyroxene fragments and porphyritic chondrules

Inter-chondrule spaces in CH chondrites are filled with lithic fragments, which comprise ~
70 vol% (e.g., Scott, 1988; Scott and Krot, 2003). The remaining ~ 30 vol% is composed mostly
of chondrules (5 vol%), Fe-Ni metal (20 vol%), and hydrous matrix lumps (5 vol%) (e.g., Scott,
1988). The lithic fragments are olivine, pyroxene, and olivine-pyroxene normative materials like
CC chondrules (e.g., Scott, 1988). Nakashima et al. (2020) suggested that the CC-like lithic
fragments are fragments of CC chondrules, based on their indistinguishable A0 values and
depletion in refractory elements such as Ca and Al (Fig. 2).

For the FeO-poor lithic fragments (Mg# of 90.7-99.3) with A0 of —5.0%o to +3.0%o (Fig.
8a), there are two possible candidates for their origin, namely porphyritic or SO chondrules from
CH and CB chondrites. The SO chondrules, which have FeO-poor compositions, contain pyroxene
and olivine (e.g., Krot et al., 2007). The A0 variation of the SO chondrules is very limited (2.4
+ 1.3%o on average; 2SD; Krot and Nagashima, 2017). On the other hand, the A’O variation of
the type I porphyritic chondrules (—4.7%o to +4.1%o; Fig. 8a) is as large as those of the FeO-poor
fragments. FeO-poor fragments analyzed for oxygen isotopes are larger than olivine and pyroxene
in SO chondrules (Krot et al., 2007; Nakashima et al., 2020) and as large as those in the porphyritic

chondrules (Figs. 1 and 6; Supplementary Fig. Al). For the FeO-rich fragments (Mg# of 50.5 —

80.0) with A0 of —3.2%o to +1.5%o (Fig. 8a), there are two possible candidates for their origin,
porphyritic or silica-bearing chondrules with immiscibility textures (SB-I chondrules; Mg# of 66.3
— 92.3; Nakashima et al., 2020) in CH and CB chondrites. The latter contains pyroxene but no

olivine (e.g., Nakashima et al., 2020). The A'’O variation of the SB-I chondrules is very limited
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(+1.5 £ 1.1%o on average; Nakashima et al., 2020). On the other hand, the A’O variation of the
type II porphyritic chondrules (—2.1%o to +2.7%o; Krot et al., 2010; Fig. 8a) is as large as those of
the FeO-poor fragments. Thus, it is likely that the olivine and pyroxene fragments analyzed for
oxygen isotopes are fragments of porphyritic chondrules, though there may be olivine and
pyroxene fragments from SO chondrules and SB-I chondrules.

In conjunction with the suggestion that the CC-like lithic fragments are fragments of CC
chondrules (Nakashima et al., 2020), it is considered that the silicate fraction that comprises 75
vol% of CH chondrites (excluding hydrous matrix lumps) 1s composed mostly of chondrules and
their fragments. As suggested in Nakashima et al. (2020), fragmentation of chondrules may have
occurred during the accretion to the parent body and/or brecciation on the surface of the parent

body. Thus, the inter-chondrule spaces in CH chondrites are filled with chondrule fragments.

4.2. Comparison of the A'7O-Mg# trends

Chondrules in carbonaceous chondrites are known to show a systematic increase of A’O
values with decreasing Mg# (Figs. 8b-d; Connolly and Huss, 2010; Krot et al., 2010; Russell et al.,
2010; Ushikubo et al., 2012; Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017,
2018; Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi et al., 2018,
2019, 2021, 2022; Yamanobe et al., 2018; Nakashima et al., 2020; Ushikubo and Kimura, 2021;
Fukuda et al., 2022; Pinto et al., 2024). The A'’O-Mg# trends have been explained by an addition
of 1*O-poor water ice as an oxidant to the %0-rich anhydrous solid precursors (e.g., Tenner et al.,
2015; Hertwig et al., 2018), an addition of ®*O-poor CI-like dust (Marrocchi et al., 2022), or
isotopically heterogeneous vapor plume resulting from a high temperature mixing of the ®O-rich
and '®O-poor reservoirs (Libourel et al., 2023). The AO-Mg# trends are specific to the individual
carbonaceous chondrite groups (Figs. 8b-d) and are briefly described below.

For CO3.0, CV3, CM (-related), Acfer 094, and Yamato-82094 (ungrouped C3.2) chondrites,
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there is mainly a bimodal distribution of A0 at ~ —5%o and ~ —2%o for chondrules with Mg# > 97

and < 97 (including type II chondrules Fig. 8c; Ushikubo et al., 2012; Tenner et al., 2013, 2017;

Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019b; Marrocchi et al., 2018, 2019; Hertwig
et al., 2019a; Fukuda et al., 2022; Pinto et al., 2024).

Type I chondrules in CR chondrites show a monotonic increase in A0 from —6%o to —1%o
with decreasing Mg# from 99.2 to ~96 (Fig. 8d; Tenner et al., 2015), whereas those of type II
chondrules vary from —2%o to +1%o (Connolly and Huss, 2010; see also Schrader et al., 2013, 2014,
2017; Marrocchi et al., 2022; Pinto et al., 2024). The A'’O-Mg# trend of chondrules and chondrule
fragments in the Tagish Lake-type carbonaceous chondrites is similar to that of the CR chondrite
chondrules, but differ in the limited number of type I chondrules with Mg# < 98 and A0 ~ —2%o
(Russell et al., 2010; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Marrocchi et al., 2021).

For non-porphyritic chondrules and lithic fragments with various textures in CH and CB
chondrites, the A'’O values increase from —21%o to +5%o with decreasing Mg# from 99 to 60 (Fig.
8b; Nakashima et al., 2020; Krot et al., 2001, 2010, 2012, 2021). The non-porphyritic chondrules
and lithic fragments are classified into three groups based on the A'’O values and Mg#. The first
group, which 1s composed of SO and CC chondrules and their fragments, has indistinguishable
AY0 values with an average of —2.3 = 0.7%o (2SD) and Mg# ranging from 91.7 to 99.6 (Table 3
in Nakashima et al., 2020). The second group, which is composed of an Al-rich chondrule, CC
chondrules = silica = FeNi metal, and CC chondrule fragments, has positive A’O values with an
average of +1.4 = 1.2%o and Mg# ranging from 58.5 to 95.4. The third group, which is composed
of Al-rich and CC chondrules and silica-bearing chondrules, has A0 values with an average of —
6.3 £ 0.7%0 and Mg# ranging from 91.1 to 99.3. Nakashima et al. (2020) suggested that the non-
porphyritic chondrules and lithic fragments require multiple chondrule-forming environments with
different redox states generated by multiple heating events, though Krot et al. (2021) suggest that

FeO-poor and -rich non-porphyritic chondrules formed in an impact plume under different redox
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conditions.

Most chondrules from the non-carbonaceous chondrites (LL3, E3, G, Kakangari, and R3)
show fairly constant A’O values (~ —1%o to ~ +2%o) regardless of Mg# (Fig. 8e; Kita et al., 2010,
2015; Weisberg et al., 2011, 2015, 2021; Nagashima et al., 2015; Piralla et al., 2021; Siron et al.,
2021, 2022), though recently Marrocchi et al. (2024) showed that ordinary chondrite chondrules
smaller than 300 pm in diameter have negative A'’O values down to ~ —10%o. The constant A'’O
values with a range of Mg# are explained by chondrule formation from precursors without large
variations in A'’O values and a small amount of water ice under environments with variable
dust/gas ratios (up to 10,000 times solar; Kita et al., 2010).

Unlike the chondrules in other chondrites and non-porphyritic chondrules in CH and CB
chondrites, the porphyritic chondrules and fragments in CH and CB chondrites show a different
AY0O-Mg# trend. Fig. 8a compiles Mg# and A'’O values of the porphyritic chondrules and olivine
and pyroxene fragments in A-881020 and other CH and CB chondrites (Krot et al., 2010). For the
type I porphyritic chondrules and their fragments with Mg# > 96, the A’O values increase from —
4.7%o to +4.1%o with increasing Mg#. For the chondrules and their fragments with Mg# < 96, the
AYO values increase up to +3.2%o. Similarly, type II chondrules in CR and Tagish Lake-type
chondrites have high A'’O values up to +2%o (Fig. 8d). Their low Mg# and relatively high A’O
values are explained by an addition of 0-poor water ice to the %0O-rich anhydrous precursors
(e.g., Tenner et al., 2015). Therefore, the porphyritic chondrules and their fragments Mg# < 96
may have formed in the same manner. However, the positive A'7O-Mg# correlation for the
porphyritic chondrules and fragments with Mg# > 96 cannot be explained within this framework
and can also not be linked to the formation conditions of non-carbonaceous chondrites (Fig. 8e).
Instead, the positive A’O-Mg# correlation requires a different formation environment. There are
two possible explanations for the positive A?O-Mg# correlation. The case (1) is the addition of a

180-rich oxidizing agent to the *O-poor precursors, and the case (2) is the addition of a *O-poor
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reducing agent to the '°O-rich precursors. Hereafter, we discuss these two possible cases.

4.3. Case (1): addition of °0O-rich oxidizing agent to the °*O-poor precursors

For case (1), chondrules with Mg# of ~ 99 and A'O of ~ +4%o, which are the higher end of
the positive A’O-Mg# correlation (Fig. 8a), may correspond to the ®O-poor precursors. But such
chondrule has not been observed in any other chondrites (Figs. 8b-e). On the other hand, water ice
may correspond to the oxidizing agent, as is the case of chondrules in other carbonaceous
chondrites (e.g., Tenner et al., 2015). Since the A'’O value at the lower end of the positive A”O-
Mg# correlation is ~ —4%o, water ice is required to have the A'’O value lower than —4%o. Nuth et
al. (2012) suggested that '®O-rich water ice can be produced by the Fischer-Tropsch reaction that
converts CO into hydrocarbons by releasing the enriched %0 back into the gas phase as water in
the protoplanetary disk. However, water reaction products with °O-rich isotope ratios have not
been found, while those with ®O-poor isotope ratios have been observed; magnetite with A0 of
~ +5%o in ordinary chondrites (e.g., Choi et al., 1998) and cosmic symplectites with A0 of ~
+80%o in Acfer 094 (Sakamoto et al., 2007). Thus, the addition of %0O-rich water ice to the %0-

poor precursors is less likely as a cause of the positive A'’O-Mg# correlation (Fig. 8a).

4.4. Case (2): addition of 1°O-poor reducing agent to the 10O-rich precursors

For case (2), chondrules with Mg# of ~ 96 and A’O of ~ —4%o, which are the lower end of
the positive AO-Mg# correlation (Fig. 8a), may correspond to the ®O-rich precursors. Such
chondrules are observed in Acfer 094 and CR chondrites (Ushikubo et al., 2012; Schrader et al.,
2013). In the oxygen isotope mass balance model of Tenner et al. (2015), insoluble organic material
(IOM) was included and considered to be an ®O-poor reducing agent. In fact, Connolly et al.
(1994) showed by heating experiments that forsteritic olivine with Foge could be produced from

olivine with Foes and graphite or diamond, and Hashizume et al. (2011) showed IOM from a CR
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chondrite had °O-poor isotope ratios (A0 up to ~ +250%o).

What 1s envisioned during the heating of chondrule precursors along with carbon-rich
organics are oxidation of carbon and reduction of chondrule melts. In the chondrule melts, carbon
1s oxidized and lost as CO or CO;, which may result in mass-dependent oxygen isotope
fractionation between the chondrules and oxidized carbon. Ash et al. (1998) reported that heating
experiments of chondrule analogues with 8'%0 of +6.5%o and +7.5%o and 5 wt% graphite produced
reduced chondrule analogues with 8'%0 of +5.6%o and +6.3%o, indicating mass-dependent oxygen
isotope fractionation of ~ 1%o in 5'%0 during reduction. Kita et al. (2010) calculated fractionation
of 3'®0 values between olivine plus pyroxene and CO. The difference in the 5'®0 values of the
two components (58 Oor:px — 8'®0co) increase from ~—2%o to ~—7%o with decreasing temperature
from 1900 °C to 800 °C. Likewise, lowered &'®0 values due to mass-dependent isotope
fractionation are observed for the type I chondrules and FeO-poor fragments with high A'”O values

of ~ +4%o (Fig. 9). In Fig. 9, the deviation of 5'®0 values from the PCM line (A'®Opcm) for the

type I chondrules and their fragments in CH and CB chondrites are plotted along with the A0
values. While many of the chondrules and the fragments have A'®Opcy values distributing near the
PCM line, those with high A0 values have A®*Opcym values deviated from the PCM line towards
the low-8'®0 side exceeding the uncertainty. Similarly, chondrules with dusty olivine in CM
chondrites show the 8'30 shifts from the PCM line (Schrader et al., 2020), which might also be
due to mass-dependent oxygen isotope fractionation during reduction. Zhang et al. (2022)
suggested that chondrules with oxygen isotope ratios plotting on or above the PCM line (i.e.,
negative A®Opcy values) are likely linked to ordinary chondrite-like materials. However,
chondrules with negative A'®Opcv values in CH and CB chondrites have higher A0 values than
the ordinary chondrite chondrules (Figs. 8 and 9) and are unlikely linked to ordinary chondrites.
Thus, oxygen isotope ratios of the °0O-poor chondrules and fragments are deviated from the PCM

line towards low 5'%0, which are likely to be the result of the mass-dependent oxygen isotope
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fractionation between the chondrule melts and CO or CO,. Estimation of 3'%0 fractionation from
the PCM line for the chondrules is described in the section 4.6.

During reduction of chondrule melts, metal-silicate segregation may have occurred.
Chondrules with positive A'’O values contain Fe-particles in the olivine phenocrysts (Fig. 3),
though abundances of the Fe-particles are lower than those in experimentally reduced olivine and
dusty olivine in chondrules (e.g., Connolly et al., 1994; Leroux et al., 2003). TEM observations
suggest that the Fe-particles are kamacite (Fig. 4f). The Ni concentrations in the Fe-particles are
2.5 £ 2.3 wt% on average, which are lower than those in isolated Fe-N1 metal grains in the inter-
chondrule spaces of CH and CB chondrites (~ 4 — 14 wt%; e.g., Krot et al., 2002) and as low as
those in Fe-particles embedded in olivine phenocrysts in chondrules from an ordinary chondrite
(0.2 — 2.1 wt%; e.g., Leroux et al., 2003). It is therefore considered that the Fe-particles are Ni-
poor Fe-metal. The Ni-poor Fe-metal (kamacite) is surrounded by silica-rich glass (Figs. 4b. 4c),
of which occurrence is explained by reduction of FeO-bearing olivine according to the following

reactions:

2(Mg,Fe)2S104+Cin organics — Mg>S104 + 2Fe in Ni-poor metal T S1021in glass T CO2 in gas

2(Mg,Fe)ZSIO4 + 2C i_norga_nics = Mg28104 + 2Fe i_nNi_poor metal + S].OZ m glass + 2C0 n gas

Although it was expected that the CO or CO; was trapped in the vesicles, the Raman spectra on
the regions with numerous vesicles showed no peak derived from CO or CO; vibration. Amounts
of CO or CO7 in vesicles might be too small to show the Raman peaks.

The high concentrations of CaO and Al;Os in the silica-rich glass may be explained by a
supply from the olivine phenocrysts (Table 4; Leroux et al., 2003). Unlike the grid-1 (Figs. 4b. 4¢),
silica-rich glass is not observed in the grid-2 though with vesicles and olivine dislocations (Fig.

4e), which 1s explained by short-circuit diffusion of silicon and oxygen through the dislocations
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(Leroux et al., 2003).

The Fe-particle abundances in the olivine phenocrysts (Fig. 3; Supplementary Fig. Al) are

lower than those in experimentally reduced olivine (Connolly et al., 1994; Leroux et al., 2003).
Nevertheless, it is important that the hypothesis of an addition of carbon-rich organics as a %0-
poor reducing agent can explain qualitatively multiple features observed in the porphyritic

chondrules.

4.5. Approximate estimation of oxygen isotope ratios of the 1°*0O-poor organics

As discussed in the previous sections, the positive A’O-Mg# correlation of the chondrules
and fragments with Mg# > 96 in CH and CB chondrites (Fig. 8a) is likely to be explained by
addition of *O-poor carbon-rich organics to the %O-rich precursors with Mg# of ~ 96 and A0
of ~ —4%o. According to the mass balance model of Tenner et al. (2015), oxygen is also supplied
from water ice with positive A’O values and from ambient gas of solar composition with A'’O of
—28.4%o. Water ice facilitates an increase of the A'’O values but serves as an oxidizing agent, and
therefore the anhydrous precursor is preferable. The ambient gas facilitates reduction of the
chondrule melt due to the high H/O ratio of ~ 2000 (Tenner et al., 2015) but suppresses an increase
of the A0 values, and therefore the low density of the ambient solar gas is preferable. In order to
explain the positive A'’O-Mg# correlation, an ice-free environment with the thin ambient solar gas
1s required. Such a unique environment might be available in the regions with large disk heights
where the gas density is low and gas temperature is high (exceeding H,O sublimation temperature)
compared to the midplane in the protoplanetary disk (e.g., Walsh et al., 2012). Chondrule formation
at the large disk heights may be possible by, for instance, clumpy accretion (Boss and Graham,
1993) and magnetic winds (Salmeron and Ireland, 2012).

Assuming that the 1*0-poor Mg-rich chondrules with Mg# of ~ 99 and A0 of ~ +4%o formed

from the anhydrous precursors composed of 'O-rich silicate with Mg# of ~ 96 and A0 of ~ —

o
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4%o and '®O-poor carbon-rich organics, we briefly estimate the A'’O value of the organics based
on the oxygen isotope mass balance model (Tenner et al., 2015) and results of reduction
experiments of olivine (Connolly et al., 1994). Details of the estimation is described in the

Supplementary text. When changing chondrule Mg# from 94 to 99, 5 — 10 wt% of carbon (graphite

or diamond) may be required (Connolly et al., 1994), which corresponds to the organic fraction of
7 — 14 wt% assuming chondritic IOM with the elemental composition of ~ Ci00H750175N35S25
(Alexander et al., 2017). The organic fraction amounts to 6 — 11% of oxygen in the anhydrous
precursors. The remaining fraction of 86 — 93 wt% is silicate, which amounts to 89 — 94% of
oxygen in the anhydrous precursors. Using the fractions of oxygen from the two components, the
equation (5) in Tenner et al. (2015), and the A0 values of silicate (—4%o) and produced chondrules
(+4%o), the A0 values of organics are estimated as from ~ +90%o to ~ +190%o (Fig._10a). The
estimated A!’O values of organics are higher than those of IOM in CI and CM chondrites (0%o to
+10%o; Tartése et al., 2018) but within the range of ®*O-poor IOM in a primitive CR chondrite (up
to ~ +250%o; Hashizume et al., 2011) and therefore not impossibly high. The carbon fraction of 5
— 10 wt% from organics is higher than that from IOMs in carbonaceous chondrites (< 2 wt%:;
Alexander et al., 2017) and would be lower than that in cosmic dust such as ultracarbonaceous
Antarctic micrometeorites (e.g., Dartois et al., 2013). Similar calculations with changing the
elemental compositions of IOMs are carried out, and the AYO values of organics are almost lower
than the A0 upper limit of the *0O-poor IOM in a primitive CR chondrite (Hashizume et al.,

2011) (Supplementary Figs. A3-4).

Without carbon-rich organics with high A”O values like IOM in a primitive CR chondrite,
the observed positive A’O-Mg# correlation cannot be formed even if enrichment of carbon-rich
organics occurred. If *O-poor IOM in a primitive CR chondrite (Hashizume et al., 2011)
represents the oxygen isotopic compositions of carbon-rich organics in the outer and colder part

of the protoplanetary disk, the occurrence of '°O-poor Mg-rich porphyritic chondrules (Mg# ~ 99,
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AY0 ~ +4%o) in CH and CB chondrites suggests that these chondrules formed farther than where

typical Mg-rich chondrules in carbonaceous chondrites formed.

4.6. Approximate estimation of 5'%0 fractionation of the 1°0O-poor chondrules

As discussed above, 7 — 14 wt% organics with A0 of ~ +90%o to +190%o is required to form
Mg-rich porphyritic chondrules with A0 values of ~ +4%o (Fig. 10a), which has A™®Opcy values
of ~ —4%o as a result of mass-dependent oxygen isotope fractionation between chondrules and
oxidized carbon (CO or COy) (Fig. 9). Here we estimate how much §'®0 fractionation from the
PCM line occurs when adding '®O-poor organics of 7 — 14 wt% (i.e., 5 — 10 wt% carbon) to °O-
rich silicate.

Four assumptions are given for the estimation. (A) A'®Opcm value before segregation between
chondrules and oxidized carbon is 0%o. (B) 8'®0 fractionation between chondrules and oxidized
carbon (gas) (8'®0cnd — 5'®0cas) is —4%o. (C) Carriers of oxygen in chondrules are olivine and
pyroxene. (D) 50% of oxygen in chondrules resides in olivine (i.e., 50% oxygen in pyroxene). As
for the assumption (B), the 3'®0 fractionation of —4%o corresponds to that at temperatures of 1100
— 1200 °C (Kita et al., 2010). As for the assumption (C), reduced partition functions of olivine and

pyroxene as well as CO are given in Kita et al. (2010) (Supplementary Table AS). Reduced

partition functions of CO are also calculated using the B factors in Richet et al. (1977) and
procedure in Kita et al. (2010), so that 8'®*Ocnd — 8'*0co and 5®Ocna — 8'*0co2 are estimated.

Details of assumptions and calculations are described in the Supplementary text.

With increasing the amount of ®0O-poor organics added to '%O-rich silicate, the C/O atomic
ratio increases (Fig. 10a). The C/O ratio is 0.24 — 0.49 in the range of 7 — 14 wt% organics (5 — 10
wt% carbon). Carbon combines with oxygen in chondrule melts and form CO and/or CO, which
1s 1solated from chondrules or remains in vesicles. Fig. 10b estimates atomic ratios of remaining

oxygen in chondrules to magnesium with variable C/O ratios in cases of CO and CO;. In case of
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oxygen loss by CO, the remaining-O/Mg ratios in the C/O range of 0.24 — 0.49 are within the range
of O/Mg ratios of the bulk porphyritic chondrules in A-881020 obtained by defocused EPMA
analyses. This indicates that %0O-poor Mg-rich chondrules can be formed by adding ®O-poor
organics of 7 — 14 wt%. However, the remaining-O/Mg ratios in the C/O range of 0.24 — 0.49 are
below the O/Mg range of the bulk porphyritic chondrules in case of oxygen loss by CO», which
means chondrules may not be formed.

Oxygen isotope fractionation between chondrules and CO is shown in Fig. 10c, in which
5'80cna — 8'®0co is constantly —4%o based on the assumption (B). With increasing C/O ratio,
amount of oxygen residing in chondrules decreases and that in CO increases. Therefore, the
A¥®QOcnd co value shifts in a negative direction from 0%o and A®Oco cna value shifts towards 0%o
with increasing C/O ratio. The A*®Ochd.co values in the C/O range of 0.24 — 0.49 are ~ —1%o to ~
—2%o, which is smaller than the observed A'®Opcy values of ~—4%o (Fig. 9). In case of fractionation
between chondrules and CO-, the slopes are steeper than those in case of CO (Fig. 10c¢). Even with
the same C/O ratio, amount of oxygen residing in CO; is twice larger than that in CO, and amount
of oxygen residing in chondrules is lower. The shift of A'®Ocnd.coz is about twice larger than that
in case of CO. The A®Ocnd.coz values in the C/O range of 0.24 — 0.49 are ~ —2%o to ~ —4%o. The
lower end is comparable to the observed A®Opcym values (Fig. 9). However, chondrules may not
be formed due to the low remaining-O/Mg ratios (Fig. 10b). Thus, %0-poor Mg-rich chondrules
with negative A¥Opcy values can be formed by oxygen isotope fractionation with CO, though the
A¥®Ocnd co values are smaller than the observed A¥Opcy values (Fig. 9). Additional fractionation
could be caused by kinetic fractionation during chondrule formation (e.g., Richter, 2004). Similar
results are obtained with changing the elemental compositions of IOMs (Supplementary Figs. A3-
4).

In summary, the porphyritic chondrules in CH and CB chondrites are characterized by smaller

sizes (Fig. 1) than those in other chondrite chondrules and similar bulk chemistry (Fig. 2) and
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textures to those in other chondrite chondrules. In terms of oxygen isotope systematics, the Mg-
rich porphyritic chondrules in CH and CB chondrites require a unique formation environment. The
Mg-rich porphyritic chondrules formed from anhydrous precursors composed of °0O-rich silicate
and '%0-poor carbon-rich organics in the regions with large disk heights where the gas density is
low and gas temperature is high. This is a new environment for chondrule formation and cannot
be applicable to chondrules in other chondrites and even to non-porphyritic chondrules in CH and
CB chondrites, as the chondrules show negative A'’O-Mg# trends (Fig. 8). Thus, CH and CB

chondrites sampled chondrules that formed in entirely different formation environments.

4.7. Non-porphyritic chondrules and lithic fragments that may have formed along with the
porphyritic chondrules

In CH and CB chondrites, there are non-porphyritic chondrules and lithic fragments that are
not classified into the three groups in A0 values (+1.4%o, —2.3%o, and —6.3%o), and Nakashima
et al. (2020) suggested that several of the ungrouped objects formed along with the porphyritic
chondrules. The magnesian CC chondrule (ChO1; Nakashima et al., 2011) has the A’O value of
+2.2 £ 0.1%0, Mg# of 98.7 (Fig. 8a), and the negative A®Opcym value (Fig. 9). The silica-bearing
lithic fragment (F37; Nakashima et al., 2020) has the A0 value of —3.4 £ 0.2%o, Mg# of 95.1,

and the A¥®Opcym value close to 0%o (Figs. 8a and 9). Therefore, it is likely that the two FeO-poor

objects formed along with the type I porphyritic chondrules in the same event. The FeO-rich radial
pyroxene chondrule (C32; Nakashima et al., 2020) has the A0 value of —1.1 + 0.3%o, which is
within the A0 range of type II chondrules and FeO-rich fragments (Fig. 8a). On the other hand,
two FeO-rich silica-bearing lithic fragments (F38 and F39; Nakashima et al., 2020) have the A0
values outside of the A'’O range of type II chondrules and FeO-rich fragments (Fig. 8a). Therefore,
it 1s likely that the FeO-rich radial pyroxene chondrule formed along with type II porphyritic

chondrules, but the two FeO-rich silica-bearing lithic fragments may have formed in distinct
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environments.

S. Conclusions

We analyzed oxygen isotope ratios and elemental compositions of porphyritic chondrules and
olivine and pyroxene fragments in the A-881020 CH chondrite to investigate the oxygen isotope
systematics of the porphyritic chondrules in CH and CB chondrites. The oxygen isotope ratios are
homogeneous within the uncertainty inside the porphyritic chondrules, except for relict grains of
olivine and low-Ca pyroxene with distinct oxygen isotope ratios. The average oxygen isotope
ratios of the individual chondrules plot along and above the PCM line with A0 values from —
4.7%o to +4.1%o. The olivine and pyroxene fragments, of which A0 values range from —2.1%o to
+3.2%o, are likely to be fragments of the porphyritic chondrules.

Type I and II chondrules including FeO-poor and -rich fragments do not show a systematic
difference in the A'’O values, unlike the non-porphyritic chondrules in CH and CB chondrites and
chondrules in other carbonaceous chondrites. For the chondrules and their fragments with Mg# <
96, the A0 values increase with decreasing Mg#, similarly to the type II chondrules in CR and
Tagish Lake-type chondrites. The type II chondrules in CH and CB chondrites may have formed
in a similar environment to that for type II chondrules in CR and Tagish Lake-type chondrites (e.g.,
Tenner et al., 2015). The A0 values of the type I chondrules and fragments increase from —4.7%o
to +4.1%o with increasing Mg# from 96 to 99. The positive A}’O-Mg# correlation may be explained
by an addition of ®*O-poor organics as a reducing agent to the relatively %O-rich silicate in the
regions with large disk heights where the gas density is low and gas temperature is high. This is a
new environment for chondrule formation. This hypothesis is supported by the two lines of
evidence. (1) Oxygen isotope ratios of the %0O-poor chondrules and fragments deviate from the
PCM line towards low 5'%0, while those of the relatively *O-rich chondrules and fragments are

distributed around the PCM line. The 5'®0 deviations are likely to be the result of the oxygen
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1sotope mass fractionation between the chondrules and CO or CO-. (2) The porphyritic chondrules
contain Ni-poor Fe-metal particles surrounded by silica-rich glass in the olivine phenocrysts,
which are likely to be reduction products during the chondrule formation. Thus, the Mg-rich
porphyritic chondrules in CH and CB chondrites may have formed in the different formation
environment from any other chondrite chondrules including non-porphyritic chondrules in CH and

CB chondrites.
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Appendix A. Supplementary material
This supplementary material consists of an excel file and two PDF files. The excel file
contains table Al (elemental compositions of porphyritic chondrules and olivine and pyroxene
fragments), table A2 (raw SIMS measured oxygen isotope data), table A3 (instrumental bias of
SIMS analysis), and table A4 (oxygen isotope ratios and Mg# of individual spots in porphyritic

chondrules). One of the two PDF files contains figure A1 (oxygen isotope ratios of individual spots
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in porphyritic chondrules and BSE images of porphyritic chondrules and olivine and pyroxene
fragments). Another PDF file contains a text describing details of estimations of A0 values in
organics and §'%0 fractionation of *O-poor chondrules, table A5 (oxygen isotope fractionation
between chondrules and CO, and CO), figure A2 (comparison of 8'30 values between olivine,
low-Ca pyroxene, and glass in the same chondrules), figure A3 (A0 values of organics,
remaining-O/Mg ratios, and A'®*Opcyr values of chondrules in case of Orgueil IOM), and figure A4
(AY0 values of organics, remaining-O/Mg ratios, and A'®*Opcy values of chondrules in case of

CHON particles).
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Abstract

Oxygen 1sotope ratios and elemental compositions of porphyritic chondrules and olivine and
pyroxene fragments in the Asuka-881020 CH chondrite were analyzed. The oxygen isotope ratios
inside individual porphyritic chondrules are homogeneous within the uncertainty, except for relict
grains of olivine and low-Ca pyroxene that have distinct oxygen isotope ratios. The average
oxygen isotope ratios of the individual chondrules plot along and above the primitive chondrule
mineral (PCM) line with A0 (= 870 — 0.52 x &'%0) values from —4.7%o to +4.1%o. The olivine
and pyroxene fragments, which have A0 values ranging from —2.1%o to +3.2%o, are likely to be
fragments of the porphyritic chondrules.

Unlike the non-porphyritic chondrules in CH and CB chondrites and chondrules in other
carbonaceous chondrites, the type I and II chondrules do not show a systematic difference in the
A0 values. Furthermore, the A'’O values of the type I chondrules increase from —4.7%o to +4.1%o
with increasing Mg# (= molar [MgO]/[MgO+FeO]x100) from 96 to 99. We argue that the positive
AY0O-Mg# trend is explained by an addition of '®O-poor carbon-rich organics as a reducing agent
to the relatively ®O-rich precursor silicate, which is a new environment for chondrule formation.
This hypothesis is supported by the two lines of evidence observed in the present study. (1) The
chondrules and fragments with higher A'’O values show larger deviations from the PCM line
towards low 8'®0, suggesting oxygen isotope mass fractionation between the chondrule melt and
CO or CO:s. (2) Olivine phenocrysts in the chondrules with high A’O values contain Ni-poor Fe-
metal particles surrounded by silica-rich glass, which may be reduction products during the
chondrule formation. Thus, it is suggested that the porphyritic chondrules in CH and CB chondrites
have different origins from chondrules in any other chondrite types, even from the non-porphyritic

chondrules in CH and CB chondrites.
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1. Introduction

Chondrules are igneous spherules composed mainly of olivine, pyroxene, glass, and Fe-Ni
metal and are observed in most chondritic meteorites (e.g., Gooding and Keil, 1981; Scott and
Krot, 2003). Chondrules have formed by transient heating and rapid cooling (e.g., Jones et al.,
2005), ~ 1 — 5 Myr after the oldest Ca-Al-rich inclusions (CAIs) (e.g., Kita et al., 2000; Kurahashi
et al., 2008; Hutcheon et al., 2009; Villeneuve et al., 2009; Kita and Ushikubo, 2012; Ushikubo et
al., 2013; Nagashima et al., 2014, 2017, 2018; Schrader et al., 2017; Hertwig et al., 2019a; Tenner
etal., 2019; Siron etal., 2021, 2022; Fukuda et al., 2022; Piralla et al., 2023). Based on the textures,
chondrules are classified into porphyritic and non-porphyritic types (Gooding and Keil, 1981).
Porphyritic chondrules have been heated to near-liquidus temperatures, and nucleation sites
resulting from incomplete melting of precursor materials persist: growth of crystals can occur on
multiple nucleation sites as the chondrule cools. Non-porphyritic chondrules have been heated
above the liquidus, and most nucleation sites have been destroyed during the melting interval
(Jones, 2012). Based on the Mg# (= molar [MgO]/[MgO+FeO]x100), chondrules are classified
into type I (FeO-poor; Mg# > 90) and type II (FeO-rich; Mg# < 90) (e.g., Jones et al., 2005). The
Mg# of chondrules is controlled by the oxygen fugacity of the chondrule-forming environment
(Ebel and Grossmann, 2000; Zanda et al., 1994), and type I chondrules formed under more
reducing conditions than type II chondrules (e.g., Tenner et al., 2015; Hertwig et al., 2018), though
precursor compositions of individual chondrules can also affect the Mg# of chondrules (Connolly
et al., 1994). Since chondrule-like objects were observed in cometary samples such as particles
returned from comet Wild 2 (Nakamura et al., 2008; Ogliore et al., 2012; Joswiak et al., 2014), it
1s considered that chondrules were widely distributed in the protoplanetary disk even in the Kuiper
belt region. Thus, chondrules are essential for understanding of the material evolution in the early
Solar System.

In-situ analyses of chondrules in Acfer 094 (ungrouped C3.0) using secondary ion mass
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spectrometry (SIMS) revealed that oxygen isotope ratios of the chondrules are distributed along

the slope ~ 1 line of 870 = (0.978 £ 0.013) x 80 — (2.70 £ 0.11) in the oxygen three-isotope

diagram, which is called as the primitive chondrule mineral (PCM) line (Ushikubo et al., 2012).

Oxygen isotope ratios of individual mineral phases in chondrules from pristine carbonaceous

chondrites plot along and above the PCM line (Connolly and Huss, 2010; Russell et al., 2010;

Rudraswami et al., 2011; Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017, 2018;

Davidson et al., 2014; Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi

etal., 2018, 2019, 2021, 2022; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Fukuda et al_,

2022; Zhang et al., 2022; Pinto et al., 2024). Since the PCM line represents the primary trend of
the major oxygen isotope reservoirs (1°O-rich CAIs and °O-poor cosmic symplectites) in the

protoplanetary disk, chondrules that plot around the PCM line originated from the reservoirs

(Ushikubo et al., 2012). Recent high precision analyses of chondrules further revealed that there

are two groups of chondrules among carbonaceous chondrites that plot slightly below and above

the PCM line, some of which show correlation to nucleosynthetic anomalies of Cr and Ti (Williams

et al., 2020; Zhang et al., 2022). The chondrules with Cr and Ti isotope anomalies may have come

from formation regions of ordinary chondrite chondrules (Williams et al., 2020). On the other hand,
Schneider et al. (2020) found no carbonaceous chondrite chondrules related to ordinary chondrite
chondrules from the Cr-Ti-O isotope analyses.

Oxygen isotope ratios of the Acfer 094 chondrules are internally homogeneous, except for
relict grains that have distinct oxygen isotope ratios (Ushikubo et al., 2012). The Acfer 094
chondrules show bimodal A0 (= &0 — 0.52 x §'%0) values of ~ —5%o and —2%o that negatively
correlate with the Mg# values of chondrule phenocrysts, suggesting the former presence of two
separate 1sotope reservoirs with different redox states in the protoplanetary disk and that the
homogeneous oxygen isotope ratios represent localized oxygen isotope reservoirs in the disk

(Ushikubo et al., 2012). Other primitive carbonaceous chondrites also show similar systematic
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trends between Mg# and A!’O values, though the detailed trends are specific to individual
chondrite groups (Connolly and Huss, 2010; Russell et al., 2010; Rudraswami et al., 2011;
Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017, 2018; Davidson et al., 2014;
Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi et al., 2018, 2019,
2021, 2022; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Fukuda et al., 2022; Pinto et al.,
2024). Continuous negative A’O-Mg# trends have been observed from chondrules in CR
chondrules that are explained by an addition of '*0O-poor water ice as an oxidant to the ®O-rich
anhydrous solid precursors (Tenner et al., 2015). An addition of '*0-poor CI-like dust is also
suggested, which is supported by the peculiar **Cr signature of CR chondrules (Marrocchi et al.,
2022).

In metal-rich carbonaceous CH and CB chondrites, non-porphyritic chondrules such as
cryptocrystalline (CC) and skeletal olivine (SO) chondrules dominate the chondrule inventory (>
80%), though with their huge size difference between CH chondrules and CB chondrules (0.02 —
0.09 mm and 0.5 — 5 mm; Scott and Krot, 2003). Nakashima et al. (2020) reported that A'’O values
of the non-porphyritic chondrules negatively correlate with the Mg#, similar to chondrules in other
carbonaceous chondrites. Porphyritic chondrules, which are minor in CH and CB chondrites (<
20%; Scott and Krot, 2003), have a variation in the A’O values from ~ —4%o to +4%o (excluding
internally heterogeneous chondrules containing relict minerals; Krot et al., 2010), though the
relationship with Mg# has not been discussed.

Lithic fragments, which are olivine and pyroxene fragments and olivine-pyroxene-normative
fragments, occur around chondrules and Fe-Ni metal in CH chondrites mstead of fine-grained
matrix in pristine chondrites (Scott, 1988; Grossman et al., 1988). Nakashima et al. (2020)
suggested that the olivine-pyroxene-normative fragments are fragments of CC chondrules in CH
chondrites based on the similarity in oxygen isotope ratios. The possibility that olivine and

pyroxene fragments are fragments of the porphyritic chondrules in CH chondrites (Scott, 1988)
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can also be tested based on the oxygen isotope ratios.

In this study, oxygen isotope ratios and elemental compositions of porphyritic chondrules and
olivine and pyroxene fragments in the Asuka (A) -881020 CH chondrite (Noguchi et al., 2004;
Nakamura et al., 2006) were analyzed to understand oxygen isotope reservoirs and redox
conditions in the formation environments of the porphyritic chondrules. As a result, a unique A'’O-
Mg# trend is observed for the type-I chondrules and FeO-poor fragments; the A0 values
positively correlate with Mg#. We propose that the unique trend is caused by an addition of °O-
poor carbon-rich organics as a reducing agent to the °O-rich precursors. The hypothesis is tested
based on the mineralogy and chemistry including observation with transmission electron

microscopy of the porphyritic chondrules and olivine and pyroxene fragments.

2. Analytical procedures

2.1. Electron microscopy

We used a polished thin section of the A-881020 CH chondrite (51-1; National Institute of
Polar Research). Chondrules and olivine and pyroxene fragments in the section were examined
using a scanning electron microscope (SEM; Hitachi S3400) at the University of Wisconsin-
Madison and a field emission SEM (FE-SEM; JEOL JSM7001F) at Tohoku University.
Backscattered electron (BSE) images were obtained. Elemental compositions of the chondrules
and olivine and pyroxene fragments were measured using electron probe microanalyzers (EPMAs)
at Ibaraki University (JEOL JXA-733), at National Institute of Polar Research (NIPR; JEOL JXA-
8200), and at the University of Wisconsin-Madison (CAMECA SX-51) equipped with wavelength-
dispersive X-ray spectrometers (WDSs). At Ibaraki University, WDS quantitative chemical
analyses of bulk chondrules were performed at 15 kV accelerating voltage and 6 nA beam current
with a defocused beam of 5 - 40 um. After correction by the Bence-Albee method, the chondrule

data were recalculated by the method of Tkeda (1980) to reduce the polyphase effect. Quantitative
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chemical analyses of olivine and pyroxene fragments and individual silicate phases in chondrules
were performed with a focused beam (10 nA) at Ibaraki University, NIPR, and University of
Wisconsin-Madison (other analytical settings are the same as those for bulk chondrule analyses).
Natural and synthetic standards were chosen based on the compositions of the minerals being
analyzed (e.g., Tenner et al., 2015). Detection limits of oxide concentrations are shown in the

Supplementary Tables Al.

2.2. Raman spectroscopy

The structural nature of chondrule silica was determined by laser micro-Raman spectroscopy,
using a JASCO NRS-3100 spectrometer at Kyushu University. A microscope was used to focus
the excitation laser beam (532 nm). The acquisition time was 30 s. For each region analyzed a
Raman spectrum was acquired in the spectral region of 240 to 1340 cm™. Raman spectra were also
acquired on the regions where tiny vesicles are dispersed in olivine phenocrysts of chondrules for
the 1dentification of gaseous compounds that may be trapped in the vesicles. The spectral region

is from 1200 to 2200 cm™. Other analytical conditions are the same as those for chondrule silica.

2.3. Oxygen isotope analyses

Oxygen isotope ratios of porphyritic chondrules and olivine and pyroxene fragments in A-
881020 were analyzed with the CAMECA IMS-1280 1on microprobe at the WiscSIMS laboratory
(Kita et al., 2009). For the oxygen three-isotope analyses, two sizes of focused Cs™ primary beam
(10 x 15 pm at the intensity of ~ 3 nA and 2 x 4 pm at ~ 30 pA) were applied. The analytical
conditions and measurement procedures were similar to those in Kita et al. (2010) and Nakashima
et al. (2011). The secondary '°0~, 7O, and ®O™ ions were detected simultaneously by Faraday
cups (FC) or electron multipliers (EM) on the multicollection system; three FCs for 1°0™, 1’0", and

30~ for 15 pm spot analyses and a FC for 0~ and two EMs for ’O~, and 'O~ for 4 um spot

e |



173

174

175

176

177

178

179

180

183

184

185

186

187

188

189

190

191

193

194

195

196

197

analyses. Intensities of %0~ were ~ 3 x 10 cps and ~ 2 x 107 cps with 15 pm and 4 pm primary
beams, respectively. The baselines of the FCs were measured during the presputtering (100 s for
15 pm spots and 360 s for 4 pm spots) in respective analyses and used for data correction. The
contribution of the tailing of O'H™ interference to ’O~ signal was corrected by the method
described in Heck et al. (2010), though the contribution was negligibly small (typically < 0.1%eo).
One to six analyses were performed for individual chondrules and olivine and pyroxene
fragments, bracketed by eight to nine analyses (four or five analyses before and after the unknown

sample analyses) on the San Carlos olivine standard grain in a separated mount (Supplementary

Table A2). The external reproducibility of the running standard was 0.19 — 0.54%o for 520, 0.35
— 0.66%o for 570, and 0.21 — 0.68%o for A0 for 15 pm spot analyses, and that for 4 pm spot
analyses was 0.73 — 1.18%o for 5'0, 0.97 — 1.82%o for 8'70, and 1.09 — 2.04%. for A’O (2SD;
standard deviation). The external reproducibility was assigned as analytical uncertainties of
unknown samples (see Kita et al., 2009, 2010 for detailed explanations). We used two olivine
(Fo100 and Foeo), three low-Ca pyroxene (Ene7, Engo, and Engs), diopside, plagioclase (Anos), quartz,
and four glass (50.9 — 76.0 wt% Si0-) standards (Valley and Kita, 2009; Kita et al., 2010) in the
same sessions for correction of instrumental bias of olivine, pyroxene, plagioclase, silica, and glass

(Supplementary Table A3).

Porphyritic chondrules and mineral fragments of olivine and pyroxene were selected for
oxygen isotope analysis are located within the radius of 5 mm of the center of the 1-inch round
thin section of A-881020 in the same manner as that for the non-porphyritic chondrules
(Nakashima et al., 2020) to avoid instrumental mass fractionation due to the X-Y effect (Kita et
al., 2009). In each porphyritic chondrule, 1 to 6 spot analyses were made. The 15 pm beam was
used for olivine and low-Ca pyroxene phenocrysts larger than 15 pm, and the 4 pm beam was used

for those smaller than 15 pm, high-Ca pyroxene, glass, plagioclase, and silica (Supplementary Fig.

Al).
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2.4. Sample sectioning using focused ion beam and transmitted electron microscopy

For the observation of Fe-particles smaller than 1 pm in olivine phenocrysts in chondrules
using a transmitted electron microscope (TEM), thin sections (~ 180 nm) of olivine phenocrysts
containing Fe-particles were cut out using a focused ion beam (FIB) on a JEOL JIB-4501 FIB-
SEM at Kyushu University. A 30 kV Ga* ion beam set to 50 pA— 100 nA was used. The FIB marks
of 1 pm x 1 pm were made at both ends of the FIB sectioning area by removing carbon coating on
the sample surface (e.g., Nakashima et al., 2012), as the Fe-particles are tiny and hidden from view
after deposition of a W-layer. NanoMill TEM specimen preparation system (Model 1050) was used
for removing amorphous layers on the surfaces of the thin sections formed during FIB sectioning.
Two settings of Ar* ion beam (900 V and 500 V; intensity of 35 pA) were used. The FIB sections
with a thickness of ~ 80 nm were observed using JEOL JEM-3200FSK TEM equipped with the
JED-2200 energy-dispersive X-ray spectrometer (EDS) at Kyushu University. The accelerating
voltage was 300 kV. Quantitative analysis was performed using the Cliff-Lorimer correction with
the TEM-EDS, and the element concentrations were corrected using k factors obtained by

measuring mineral standards (Noguchi et al., 2015).

3. Results
Search for porphyritic chondrules and olivine and pyroxene fragments large enough for 15
um and 4 pm spot SIMS analysis and electron microprobe and SIMS analyses were conducted
along with those of the non-porphyritic chondrules and lithic fragments in the same meteorite in
the same sessions (Nakashima et al., 2020). In Nakashima et al. (2020), the non-porphyritic
chondrules and lithic fragments are numbered as C1 — C37 and F1 — F40. In the present paper, the
porphyritic chondrules and olivine and pyroxene fragments are sequentially numbered as C38 —

C59 (n=22) and F41 —F61 (n = 21), respectively (Supplementary Table A1).
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3.1. Petrology and mineralogy of porphyritic chondrules
Porphyritic chondrules in A-881020 are 50 — 380 pum in size (170 pm on average; Fig. 1:

Supplementary Fig. A1) and smaller than (or as small as) those in other chondrite groups (Friedrich

et al., 2014). The porphyritic chondrules consist mainly of olivine and low-Ca pyroxene
phenocrysts, Fe-Ni metal, and glass. The porphyritic chondrules contain accessory phases of high-
Ca pyroxene with Wo# from 21.5 to 43.5, pyroxene with intermediate compositions (En7g 1 -

937Wo0s0 — 185), plagioclase with An# from 75.6 to 91.7, and silica (Supplementary Table Al).

Pyroxene with intermediate compositions is called as intermediate pyroxene (Tenner et al., 2015).
Nepheline or sodalite, a product of metasomatism (e.g., Kimura and Ikeda, 1995; Krot et al., 1998),
1s not observed in glass and plagioclase in the porphyritic chondrules. Electron microprobe

analyses of glass and plagioclase show totals higher than 98 wt% (Supplementary Table Al),

indicating no replacement by phyllosilicates.

Most of the porphyritic chondrules are porphyritic olivine (PO), porphyritic olivine-pyroxene
(POP), and porphyritic pyroxene (PP) types. There are two chondrules with unique textures. C46
consists of a low-Ca pyroxene core surrounded by a glassy rim. C58 consists of an olivine core
surrounded by a rim composed of low-Ca pyroxene, silica, and microcrystalline mesostasis

(Supplementary Fig. Al). Silica in C58 is cristobalite, as the Raman spectra showed a peak around

420 cm™. Sub-pm sized Cr-spinel particles (detected by FE-SEM-EDS) occur between the olivine

core and surrounding low-Ca pyroxene (Supplementary Fig. Al).

In each chondrule, olivine and low-Ca pyroxene compositions are homogeneous with small
variations in Fo#, En#, and Wo# of less than 2.6, 2.1, and 1.8 (1SD). The averaged olivine Fo#
range from 73.2 to 99.1, and averaged low-Ca pyroxene En# and Wo# range from 89.8 to 97.4,
and from 0.5 to 4.2, respectively. The Fo# of 73.2 is from a PO chondrule (C59; Fig. 1j), which 1s

a type II chondrule with no Fe-Mg zoning in olivine phenocrysts. Others are type I chondrules

10



with Mg# of olivine and low-Ca pyroxene phenocrysts higher than 91. Mg# of individual

chondrules in Table 1 are average values of Mg# of olivine and low-Ca pyroxene in the chondrules.

3.2. Bulk elemental compositions of porphyritic chondrules

Bulk elemental compositions of porphyritic chondrules were obtained by broad-beam EPMA
analyses, though they may not reflect true compositions of individual chondrules (Jones, 2005).
Refractory element abundances in the porphyritic chondrules in A-881020 are systematically
higher than those in CC chondrules in CH and CB chondrites (Krot et al., 2010; Nakashima et al.,

2011, 2020) and as high as those in chondrules in other carbonaceous chondrites (Hezel and Palme,

2010) (Fig. 2).

3.3. Fe-particles and vesicles in olivine phenocrysts in porphyritic chondrules
Olivine phenocrysts in more than a half of porphyritic chondrules contain sub-pm sized Fe-
particles (detected by FE-SEM-EDS) and vesicles, which are linearly aligned (Fig. 3;

Supplementary Fig. Al). No Fe-Mg zoning is observed in the olivine phenocrysts. The Fe-particles

and vesicles are also observed in plagioclase in the chondrule C47 (Fig. 3d). Raman spectra were
obtained in the regions where the vesicles occur, but any peak suggesting the presence of gaseous
species in vesicles 1s not observed. Instead, the observed Raman spectra are similar to those of
epoxy (e.g., Hardis et al., 2013), which 1s underneath the thin section.

The BSE images show Fe-particles and vesicles distribute on the cut surface of the FIB
sections (Figs. 4a. 4d), which were cut out along the aligned Fe-particles and vesicles from the
olivine phenocrysts. Therefore, the Fe-particles and vesicles distribute on a plane almost
perpendicular to the polished surface of the chondrule olivine phenocrysts. The HAADF-STEM
images of the FIB section from the chondrule C40 (grid-1) show that the Fe-particles smaller than

0.5 pm are surrounded by silica-rich glass in the host olivine (Figs. 4b. 4¢). Tiny Fe-particles
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surrounded by silica-rich glass are also observed in dusty olivine (Leroux et al., 2003). In the FIB
section from the chondrule C41 (grid-2), vesicles occur along with Fe-particles in the host olivine
with dislocations (Fig. 4e). An electron diffraction pattern of the largest Fe-particle (~ 2 pm in
size) in the grid-2 shows that it is a bece Fe-metal, 1.e., kamacite (Fig. 4f). The same may be true
for other tiny Fe-particles. The Fe-particles are Ni-free or contain small concentrations of Ni (Table
3). The average Ni concentration is 2.5 £ 2.3 wt% (n = 7; 1o). Silica-rich glass surrounding the
Ni-poor Fe-metal particles shows similar elemental composition to those in the Bishunpur LL3.1

chondrite (Leroux et al., 2003) and contain CaO and Al,Oz of ~ 19 wt% and 24 wt% (Fig. 5: Table

4).

3.4. Petrology and mineralogy of olivine and pyroxene fragments

Lithic fragments that present in interstitial spaces between chondrules and Fe-Ni metal are
olivine, low- and high-Ca pyroxene, and olivine-pyroxene-normative CC fragments (including
silica-bearing fragments: Fig. 6; see also Nakashima et al., 2020). Except for the olivine-pyroxene-
normative CC fragments, chemical compositions of the lithic fragments are close to stoichiometric

olivine and low- and high-Ca pyroxene (Supplementary Table A1). Thirteen of the 21 olivine and

pyroxene fragments are FeO-poor with Mg# of 90.7 — 99.3, and others are FeO-rich with Mg# of

50.5—80.0 (Table 2). FeO-rich olivine fragments do not show Fe-Mg zoning (Supplementary Fig.
Al).

3.5. Oxygen isotope ratios
We made a total of 110 spot analyses in 22 porphyritic chondrules and 21 olivine and
pyroxene fragments. After inspection of the SIMS analysis spots by SEM, one analysis was

rejected because it overlapped with an adjacent lithic fragment (F55; Supplementary Fig. Al). A

summary of the 109 spot analyses taken from 22 chondrules and 20 lithic fragments is shown in
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Tables 1 — 2; a more complete table i1s given in the Supplementary Table A4.

3.5.1. Oxygen isotope ratios of porphyritic chondrules
Oxygen isotope ratios of individual spot analyses in the porphyritic chondrules are distributed
along and above the PCM line (Ushikubo et al., 2012; Zhang et al., 2022) and the Carbonaceous

Chondrite Anhydrous Mineral (CCAM) line (Clayton et al., 1977) (Figs. 1b. le. 1h, 1k:

Supplementary Fig. Al). The individual chondrules are isotopically uniform within the uncertainty,

except for four chondrules with isotopically distinct relict grains and one chondrule (C43)

containing olivine phenocrysts with heterogeneous oxygen isotope ratios (Fig. 1; Supplementary

Fig. Al). The homogeneous oxygen isotope ratios represent those of the final chondrule melt and
are referred as “host” chondrule oxygen isotope ratios, and especially chondrule glass in pristine
chondrites preserves the oxygen isotope ratios of the chondrule-forming melts (Ushikubo et al.,
2012). The isotopically distinct relict grains, which are mostly olivine, survived the final chondrule
formation event and do not reflect oxygen isotope ratios of the final chondrule melt (e.g., Ushikubo
et al., 2012). In C43, any olivine phenocryst analyzed for oxygen isotopes is possibly relict.

The relict grains are defined as the grains of which A0 values are different from the host
AY0 values by more than 3SD of individual analyses in the chondrules (e.g., Ushikubo et al.,
2012). The relict grains are excluded from the calculation of average oxygen isotope ratios of the
individual chondrules. The oxygen isotope ratios in the individual chondrules were measured with

two different beam settings, which have different uncertainties (Supplementary Table A2).

Therefore, the error-weighted average oxygen isotope ratios of individual chondrules are
calculated. The uncertainties of the average values in the individual chondrules were estimated
from the 2 standard error (2SE) of chondrule analyses (2SD/v number of chondrule analyses),
unless it is smaller than the 2SE of bracketing standard analyses (2SD/v number of chondrule

analyses). The average oxygen isotope ratios of individual chondrules are distributed along and
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above the PCM line with 5'®0 values from —1.3%o to +11%o (Fig. 7a).
In the two chondrules (C41 and C44), isotopically distinct low-Ca pyroxene grains are

observed (Supplementary Fig. A1). In C44, four spot data from olivine and low-Ca pyroxene have

an average A'70 value of —6.4 = 0.9%o (25), and two spot data from glass and low-Ca pyroxene

have an average A'’O value of 0.3 = 1.2%o (Figs. 1h and 1i: Table 1). Therefore, the host A0

value of C44 is ~ —0.3%o, and olivine and low-Ca pyroxene with A0 of ~ —6%o are relict.

3.5.2. Oxygen isotope ratios of olivine and pyroxene fragments
Most of the olivine and pyroxene fragments were analyzed with a 15 pm beam (Fig. 6;

Supplementary Fig. Al). The oxygen isotope ratios show a variation from —3.9%o to +11.8%eo in

880 along and above the CCAM and PCM lines (Fig. 7b: Supplementary Fig. Al). The §'%0

ranges for the FeO-poor fragments and FeO-rich ones overlap each other; —3.9%o to +9.9%. and
+3.8%o to +11.9%o. There is no systematic difference in '®0 ranges between FeO-poor olivine and

pyroxene and between FeO-rich olivine and pyroxene.

4. Discussion

For carbonaceous chondrites, chondrules with lower Mg# tend to have higher A0 values,
which is attributed to an addition of ®O-poor water ice as an oxidant to relatively %O-rich
precursor dust (e.g., Ushikubo et al., 2012; Tenner et al., 2015) or an addition of %0O-poor CI-like
dust (Marrocchi et al., 2022). However, there appears to be no systematic difference in the A0
values between type I and II chondrules in CH and CB chondrites (Krot et al., 2010). In the present
study, oxygen isotope ratios of porphyritic chondrules from the A-881020 CH chondrites are
obtained to see if there is a systematic trend between the A’O values and Mg#. But, only one type
II chondrule 1s available (C59; Mg# = 73.2). Instead, FeO-rich olivine and pyroxene fragments,

which may be fragments of the type II porphyritic chondrules (e.g., Scott, 1988), are analyzed for
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the oxygen isotope ratios. Before discussing the A”O-Mg# relationship of the porphyritic
chondrules, we test if the olivine and pyroxene fragments are fragments of the porphyritic

chondrules based on the chemistry and oxygen isotope ratios.

4.1. Genetic link between the olivine and pyroxene fragments and porphyritic chondrules

Inter-chondrule spaces in CH chondrites are filled with lithic fragments, which comprise ~
70 vol% (e.g., Scott, 1988; Scott and Krot, 2003). The remaining ~ 30 vol% is composed mostly
of chondrules (5 vol%), Fe-Ni metal (20 vol%), and hydrous matrix lumps (5 vol%) (e.g., Scott,
1988). The lithic fragments are olivine, pyroxene, and olivine-pyroxene normative materials like
CC chondrules (e.g., Scott, 1988). Nakashima et al. (2020) suggested that the CC-like lithic
fragments are fragments of CC chondrules, based on their indistinguishable A0 values and
depletion in refractory elements such as Ca and Al (Fig. 2).

For the FeO-poor lithic fragments (Mg# of 90.7-99.3) with A0 of —5.0%o to +3.0%o (Fig.
8a), there are two possible candidates for their origin, namely porphyritic or SO chondrules from
CH and CB chondrites. The SO chondrules, which have FeO-poor compositions, contain pyroxene
and olivine (e.g., Krot et al., 2007). The A0 variation of the SO chondrules is very limited (2.4
+ 1.3%o on average; 2SD; Krot and Nagashima, 2017). On the other hand, the A’O variation of
the type I porphyritic chondrules (—4.7%o to +4.1%o; Fig. 8a) is as large as those of the FeO-poor
fragments. FeO-poor fragments analyzed for oxygen isotopes are larger than olivine and pyroxene
in SO chondrules (Krot et al., 2007; Nakashima et al., 2020) and as large as those in the porphyritic

chondrules (Figs. 1 and 6; Supplementary Fig. Al). For the FeO-rich fragments (Mg# of 50.5 —

80.0) with A0 of —3.2%o to +1.5%o (Fig. 8a), there are two possible candidates for their origin,
porphyritic or silica-bearing chondrules with immiscibility textures (SB-I chondrules; Mg# of 66.3
— 92.3; Nakashima et al., 2020) in CH and CB chondrites. The latter contains pyroxene but no

olivine (e.g., Nakashima et al., 2020). The A'’O variation of the SB-I chondrules is very limited
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(+1.5 £ 1.1%o on average; Nakashima et al., 2020). On the other hand, the A’O variation of the
type II porphyritic chondrules (—2.1%o to +2.7%o; Krot et al., 2010; Fig. 8a) is as large as those of
the FeO-poor fragments. Thus, it is likely that the olivine and pyroxene fragments analyzed for
oxygen isotopes are fragments of porphyritic chondrules, though there may be olivine and
pyroxene fragments from SO chondrules and SB-I chondrules.

In conjunction with the suggestion that the CC-like lithic fragments are fragments of CC
chondrules (Nakashima et al., 2020), it is considered that the silicate fraction that comprises 75
vol% of CH chondrites (excluding hydrous matrix lumps) 1s composed mostly of chondrules and
their fragments. As suggested in Nakashima et al. (2020), fragmentation of chondrules may have
occurred during the accretion to the parent body and/or brecciation on the surface of the parent

body. Thus, the inter-chondrule spaces in CH chondrites are filled with chondrule fragments.

4.2. Comparison of the A'7O-Mg# trends

Chondrules in carbonaceous chondrites are known to show a systematic increase of A’O
values with decreasing Mg# (Figs. 8b-d; Connolly and Huss, 2010; Krot et al., 2010; Russell et al.,
2010; Ushikubo et al., 2012; Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015, 2017,
2018; Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019a, 2019b; Marrocchi et al., 2018,
2019, 2021, 2022; Yamanobe et al., 2018; Nakashima et al., 2020; Ushikubo and Kimura, 2021;
Fukuda et al., 2022; Pinto et al., 2024). The A'7O-Mg# trends have been explained by an addition
of 1*O-poor water ice as an oxidant to the %0-rich anhydrous solid precursors (e.g., Tenner et al.,
2015; Hertwig et al., 2018), an addition of ®*O-poor CI-like dust (Marrocchi et al., 2022), or
isotopically heterogeneous vapor plume resulting from a high temperature mixing of the ®O-rich
and '®O-poor reservoirs (Libourel et al., 2023). The AO-Mg# trends are specific to the individual
carbonaceous chondrite groups (Figs. 8b-d) and are briefly described below.

For CO3.0, CV3, CM (-related), Acfer 094, and Yamato-82094 (ungrouped C3.2) chondrites,
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there is mainly a bimodal distribution of A0 at ~ —5%o and ~ —2%o for chondrules with Mg# > 97

and < 97 (including type II chondrules Fig. 8c; Ushikubo et al., 2012; Tenner et al., 2013, 2017;

Chaumard et al., 2018, 2021; Hertwig et al., 2018, 2019b; Marrocchi et al., 2018, 2019; Hertwig
et al., 2019a; Fukuda et al., 2022; Pinto et al., 2024).

Type I chondrules in CR chondrites show a monotonic increase in A0 from —6%o to —1%o
with decreasing Mg# from 99.2 to ~96 (Fig. 8d; Tenner et al., 2015), whereas those of type II
chondrules vary from —2%o to +1%o (Connolly and Huss, 2010; see also Schrader et al., 2013, 2014,
2017; Marrocchi et al., 2022; Pinto et al., 2024). The A'’O-Mg# trend of chondrules and chondrule
fragments in the Tagish Lake-type carbonaceous chondrites is similar to that of the CR chondrite
chondrules, but differ in the limited number of type I chondrules with Mg# < 98 and A0 ~ —2%o
(Russell et al., 2010; Yamanobe et al., 2018; Ushikubo and Kimura, 2021; Marrocchi et al., 2021).

For non-porphyritic chondrules and lithic fragments with various textures in CH and CB
chondrites, the A'’O values increase from —21%o to +5%o with decreasing Mg# from 99 to 60 (Fig.
8b; Nakashima et al., 2020; Krot et al., 2001, 2010, 2012, 2021). The non-porphyritic chondrules
and lithic fragments are classified into three groups based on the A'’O values and Mg#. The first
group, which 1s composed of SO and CC chondrules and their fragments, has indistinguishable
AY0 values with an average of —2.3 = 0.7%o (2SD) and Mg# ranging from 91.7 to 99.6 (Table 3
in Nakashima et al., 2020). The second group, which is composed of an Al-rich chondrule, CC
chondrules = silica = FeNi metal, and CC chondrule fragments, has positive A’O values with an
average of +1.4 = 1.2%o and Mg# ranging from 58.5 to 95.4. The third group, which is composed
of Al-rich and CC chondrules and silica-bearing chondrules, has A0 values with an average of —
6.3 £ 0.7%0 and Mg# ranging from 91.1 to 99.3. Nakashima et al. (2020) suggested that the non-
porphyritic chondrules and lithic fragments require multiple chondrule-forming environments with
different redox states generated by multiple heating events, though Krot et al. (2021) suggest that

FeO-poor and -rich non-porphyritic chondrules formed in an impact plume under different redox
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conditions.

Most chondrules from the non-carbonaceous chondrites (LL3, E3, G, Kakangari, and R3)
show fairly constant A’O values (~ —1%o to ~ +2%o) regardless of Mg# (Fig. 8e; Kita et al., 2010,
2015; Weisberg et al., 2011, 2015, 2021; Nagashima et al., 2015; Piralla et al., 2021; Siron et al.,
2021, 2022), though recently Marrocchi et al. (2024) showed that ordinary chondrite chondrules
smaller than 300 pm in diameter have negative A'’O values down to ~ —10%o. The constant A'’O
values with a range of Mg# are explained by chondrule formation from precursors without large
variations in A'’O values and a small amount of water ice under environments with variable
dust/gas ratios (up to 10,000 times solar; Kita et al., 2010).

Unlike the chondrules in other chondrites and non-porphyritic chondrules in CH and CB
chondrites, the porphyritic chondrules and fragments in CH and CB chondrites show a different
AY0O-Mg# trend. Fig. 8a compiles Mg# and A'’O values of the porphyritic chondrules and olivine
and pyroxene fragments in A-881020 and other CH and CB chondrites (Krot et al., 2010). For the
type I porphyritic chondrules and their fragments with Mg# > 96, the A’O values increase from —
4.7%o to +4.1%o with increasing Mg#. For the chondrules and their fragments with Mg# < 96, the
AYO values increase up to +3.2%o. Similarly, type II chondrules in CR and Tagish Lake-type
chondrites have high A'’O values up to +2%o (Fig. 8d). Their low Mg# and relatively high A’O
values are explained by an addition of 0-poor water ice to the %0O-rich anhydrous precursors
(e.g., Tenner et al., 2015). Therefore, the porphyritic chondrules and their fragments Mg# < 96
may have formed in the same manner. However, the positive A'7O-Mg# correlation for the
porphyritic chondrules and fragments with Mg# > 96 cannot be explained within this framework
and can also not be linked to the formation conditions of non-carbonaceous chondrites (Fig. 8e).
Instead, the positive A’O-Mg# correlation requires a different formation environment. There are
two possible explanations for the positive A?O-Mg# correlation. The case (1) is the addition of a

180-rich oxidizing agent to the *O-poor precursors, and the case (2) is the addition of a *O-poor

18



448

449

450

455

456

457

458

459

464

465

466

467

468

469

470

471

reducing agent to the '°O-rich precursors. Hereafter, we discuss these two possible cases.

4.3. Case (1): addition of °0O-rich oxidizing agent to the °*O-poor precursors

For case (1), chondrules with Mg# of ~ 99 and A'O of ~ +4%o, which are the higher end of
the positive A’O-Mg# correlation (Fig. 8a), may correspond to the ®O-poor precursors. But such
chondrule has not been observed in any other chondrites (Figs. 8b-e). On the other hand, water ice
may correspond to the oxidizing agent, as is the case of chondrules in other carbonaceous
chondrites (e.g., Tenner et al., 2015). Since the A'’O value at the lower end of the positive A”O-
Mg# correlation is ~ —4%o, water ice is required to have the A'’O value lower than —4%o. Nuth et
al. (2012) suggested that '®O-rich water ice can be produced by the Fischer-Tropsch reaction that
converts CO into hydrocarbons by releasing the enriched %0 back into the gas phase as water in
the protoplanetary disk. However, water reaction products with °O-rich isotope ratios have not
been found, while those with ®O-poor isotope ratios have been observed; magnetite with A0 of
~ +5%o in ordinary chondrites (e.g., Choi et al., 1998) and cosmic symplectites with A0 of ~
+80%o in Acfer 094 (Sakamoto et al., 2007). Thus, the addition of %0O-rich water ice to the %0-

poor precursors is less likely as a cause of the positive A'’O-Mg# correlation (Fig. 8a).

4.4. Case (2): addition of 1°O-poor reducing agent to the 10O-rich precursors

For case (2), chondrules with Mg# of ~ 96 and A’O of ~ —4%o, which are the lower end of
the positive AO-Mg# correlation (Fig. 8a), may correspond to the ®O-rich precursors. Such
chondrules are observed in Acfer 094 and CR chondrites (Ushikubo et al., 2012; Schrader et al.,
2013). In the oxygen isotope mass balance model of Tenner et al. (2015), insoluble organic material
(IOM) was included and considered to be an ®O-poor reducing agent. In fact, Connolly et al.
(1994) showed by heating experiments that forsteritic olivine with Foge could be produced from

olivine with Foes and graphite or diamond, and Hashizume et al. (2011) showed IOM from a CR
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chondrite had °O-poor isotope ratios (A0 up to ~ +250%o).

What 1s envisioned during the heating of chondrule precursors along with carbon-rich
organics are oxidation of carbon and reduction of chondrule melts. In the chondrule melts, carbon
1s oxidized and lost as CO or CO;, which may result in mass-dependent oxygen isotope
fractionation between the chondrules and oxidized carbon. Ash et al. (1998) reported that heating
experiments of chondrule analogues with 8'%0 of +6.5%o and +7.5%o and 5 wt% graphite produced
reduced chondrule analogues with 8'%0 of +5.6%o and +6.3%o, indicating mass-dependent oxygen
isotope fractionation of ~ 1%o in 5'%0 during reduction. Kita et al. (2010) calculated fractionation
of 3'®0 values between olivine plus pyroxene and CO. The difference in the 5'®0 values of the
two components (58 Oor:px — 8'®0co) increase from ~—2%o to ~—7%o with decreasing temperature
from 1900 °C to 800 °C. Likewise, lowered &'®0 values due to mass-dependent isotope
fractionation are observed for the type I chondrules and FeO-poor fragments with high A'”O values

of ~ +4%o (Fig. 9). In Fig. 9, the deviation of 5'®0 values from the PCM line (A'®Opcm) for the

type I chondrules and their fragments in CH and CB chondrites are plotted along with the A0
values. While many of the chondrules and the fragments have A'®Opcy values distributing near the
PCM line, those with high A0 values have A®*Opcym values deviated from the PCM line towards
the low-8'®0 side exceeding the uncertainty. Similarly, chondrules with dusty olivine in CM
chondrites show the 8'30 shifts from the PCM line (Schrader et al., 2020), which might also be
due to mass-dependent oxygen isotope fractionation during reduction. Zhang et al. (2022)
suggested that chondrules with oxygen isotope ratios plotting on or above the PCM line (i.e.,
negative A®Opcy values) are likely linked to ordinary chondrite-like materials. However,
chondrules with negative A'®Opcv values in CH and CB chondrites have higher A0 values than
the ordinary chondrite chondrules (Figs. 8 and 9) and are unlikely linked to ordinary chondrites.
Thus, oxygen isotope ratios of the °0O-poor chondrules and fragments are deviated from the PCM

line towards low 5'%0, which are likely to be the result of the mass-dependent oxygen isotope
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fractionation between the chondrule melts and CO or CO,. Estimation of 3'%0 fractionation from
the PCM line for the chondrules is described in the section 4.6.

During reduction of chondrule melts, metal-silicate segregation may have occurred.
Chondrules with positive A'’O values contain Fe-particles in the olivine phenocrysts (Fig. 3),
though abundances of the Fe-particles are lower than those in experimentally reduced olivine and
dusty olivine in chondrules (e.g., Connolly et al., 1994; Leroux et al., 2003). TEM observations
suggest that the Fe-particles are kamacite (Fig. 4f). The Ni concentrations in the Fe-particles are
2.5 £ 2.3 wt% on average, which are lower than those in isolated Fe-N1 metal grains in the inter-
chondrule spaces of CH and CB chondrites (~ 4 — 14 wt%; e.g., Krot et al., 2002) and as low as
those in Fe-particles embedded in olivine phenocrysts in chondrules from an ordinary chondrite
(0.2 — 2.1 wt%; e.g., Leroux et al., 2003). It is therefore considered that the Fe-particles are Ni-
poor Fe-metal. The Ni-poor Fe-metal (kamacite) is surrounded by silica-rich glass (Figs. 4b. 4c),
of which occurrence is explained by reduction of FeO-bearing olivine according to the following

reactions:

2(Mg,Fe)2S104+Cin organics — Mg>S104 + 2Fe in Ni-poor metal T S1021in glass T CO2 in gas

2(Mg,Fe)ZSIO4 + 2C i_norga_nics = Mg28104 + 2Fe i_nNi_poor metal + S].OZ m glass + 2C0 n gas

Although it was expected that the CO or CO; was trapped in the vesicles, the Raman spectra on
the regions with numerous vesicles showed no peak derived from CO or CO; vibration. Amounts
of CO or CO7 in vesicles might be too small to show the Raman peaks.

The high concentrations of CaO and Al;Os in the silica-rich glass may be explained by a
supply from the olivine phenocrysts (Table 4; Leroux et al., 2003). Unlike the grid-1 (Figs. 4b. 4¢),
silica-rich glass is not observed in the grid-2 though with vesicles and olivine dislocations (Fig.

4e), which 1s explained by short-circuit diffusion of silicon and oxygen through the dislocations
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(Leroux et al., 2003).

The Fe-particle abundances in the olivine phenocrysts (Fig. 3; Supplementary Fig. Al) are

lower than those in experimentally reduced olivine (Connolly et al., 1994; Leroux et al., 2003).
Nevertheless, it is important that the hypothesis of an addition of carbon-rich organics as a %0-
poor reducing agent can explain qualitatively multiple features observed in the porphyritic

chondrules.

4.5. Approximate estimation of oxygen isotope ratios of the 1°*0O-poor organics

As discussed in the previous sections, the positive A’O-Mg# correlation of the chondrules
and fragments with Mg# > 96 in CH and CB chondrites (Fig. 8a) is likely to be explained by
addition of *O-poor carbon-rich organics to the %O-rich precursors with Mg# of ~ 96 and A0
of ~ —4%o. According to the mass balance model of Tenner et al. (2015), oxygen is also supplied
from water ice with positive A’O values and from ambient gas of solar composition with A'’O of
—28.4%o. Water ice facilitates an increase of the A'’O values but serves as an oxidizing agent, and
therefore the anhydrous precursor is preferable. The ambient gas facilitates reduction of the
chondrule melt due to the high H/O ratio of ~ 2000 (Tenner et al., 2015) but suppresses an increase
of the A0 values, and therefore the low density of the ambient solar gas is preferable. In order to
explain the positive A'’O-Mg# correlation, an ice-free environment with the thin ambient solar gas
1s required. Such a unique environment might be available in the regions with large disk heights
where the gas density is low and gas temperature is high (exceeding H,O sublimation temperature)
compared to the midplane in the protoplanetary disk (e.g., Walsh et al., 2012). Chondrule formation
at the large disk heights may be possible by, for instance, clumpy accretion (Boss and Graham,
1993) and magnetic winds (Salmeron and Ireland, 2012).

Assuming that the 1*0-poor Mg-rich chondrules with Mg# of ~ 99 and A0 of ~ +4%o formed

from the anhydrous precursors composed of 'O-rich silicate with Mg# of ~ 96 and A0 of ~ —

o
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4%o and '®O-poor carbon-rich organics, we briefly estimate the A'’O value of the organics based
on the oxygen isotope mass balance model (Tenner et al., 2015) and results of reduction
experiments of olivine (Connolly et al., 1994). Details of the estimation is described in the

Supplementary text. When changing chondrule Mg# from 94 to 99, 5 — 10 wt% of carbon (graphite

or diamond) may be required (Connolly et al., 1994), which corresponds to the organic fraction of
7 — 14 wt% assuming chondritic IOM with the elemental composition of ~ Ci00H750175N35S25
(Alexander et al., 2017). The organic fraction amounts to 6 — 11% of oxygen in the anhydrous
precursors. The remaining fraction of 86 — 93 wt% is silicate, which amounts to 89 — 94% of
oxygen in the anhydrous precursors. Using the fractions of oxygen from the two components, the
equation (5) in Tenner et al. (2015), and the A0 values of silicate (—4%o) and produced chondrules
(+4%o), the A0 values of organics are estimated as from ~ +90%o to ~ +190%o (Fig._10a). The
estimated A!’O values of organics are higher than those of IOM in CI and CM chondrites (0%o to
+10%o; Tartése et al., 2018) but within the range of ®*O-poor IOM in a primitive CR chondrite (up
to ~ +250%o; Hashizume et al., 2011) and therefore not impossibly high. The carbon fraction of 5
— 10 wt% from organics is higher than that from IOMs in carbonaceous chondrites (< 2 wt%:;
Alexander et al., 2017) and would be lower than that in cosmic dust such as ultracarbonaceous
Antarctic micrometeorites (e.g., Dartois et al., 2013). Similar calculations with changing the
elemental compositions of IOMs are carried out, and the AYO values of organics are almost lower
than the A0 upper limit of the *0O-poor IOM in a primitive CR chondrite (Hashizume et al.,

2011) (Supplementary Figs. A3-4).

Without carbon-rich organics with high A”O values like IOM in a primitive CR chondrite,
the observed positive A’O-Mg# correlation cannot be formed even if enrichment of carbon-rich
organics occurred. If *O-poor IOM in a primitive CR chondrite (Hashizume et al., 2011)
represents the oxygen isotopic compositions of carbon-rich organics in the outer and colder part

of the protoplanetary disk, the occurrence of '°O-poor Mg-rich porphyritic chondrules (Mg# ~ 99,
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AY0 ~ +4%o) in CH and CB chondrites suggests that these chondrules formed farther than where

typical Mg-rich chondrules in carbonaceous chondrites formed.

4.6. Approximate estimation of 5'%0 fractionation of the 1°0O-poor chondrules

As discussed above, 7 — 14 wt% organics with A0 of ~ +90%o to +190%o is required to form
Mg-rich porphyritic chondrules with A0 values of ~ +4%o (Fig. 10a), which has A™®Opcy values
of ~ —4%o as a result of mass-dependent oxygen isotope fractionation between chondrules and
oxidized carbon (CO or COy) (Fig. 9). Here we estimate how much §'®0 fractionation from the
PCM line occurs when adding '®O-poor organics of 7 — 14 wt% (i.e., 5 — 10 wt% carbon) to °O-
rich silicate.

Four assumptions are given for the estimation. (A) A'®Opcm value before segregation between
chondrules and oxidized carbon is 0%o. (B) 8'®0 fractionation between chondrules and oxidized
carbon (gas) (8'®0cnd — 5'®0cas) is —4%o. (C) Carriers of oxygen in chondrules are olivine and
pyroxene. (D) 50% of oxygen in chondrules resides in olivine (i.e., 50% oxygen in pyroxene). As
for the assumption (B), the 3'®0 fractionation of —4%o corresponds to that at temperatures of 1100
— 1200 °C (Kita et al., 2010). As for the assumption (C), reduced partition functions of olivine and

pyroxene as well as CO are given in Kita et al. (2010) (Supplementary Table AS). Reduced

partition functions of CO are also calculated using the B factors in Richet et al. (1977) and
procedure in Kita et al. (2010), so that 8'®*Ocnd — 8'*0co and 5®Ocna — 8'*0co2 are estimated.

Details of assumptions and calculations are described in the Supplementary text.

With increasing the amount of ®0O-poor organics added to '%O-rich silicate, the C/O atomic
ratio increases (Fig. 10a). The C/O ratio is 0.24 — 0.49 in the range of 7 — 14 wt% organics (5 — 10
wt% carbon). Carbon combines with oxygen in chondrule melts and form CO and/or CO, which
1s 1solated from chondrules or remains in vesicles. Fig. 10b estimates atomic ratios of remaining

oxygen in chondrules to magnesium with variable C/O ratios in cases of CO and CO;. In case of
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oxygen loss by CO, the remaining-O/Mg ratios in the C/O range of 0.24 — 0.49 are within the range
of O/Mg ratios of the bulk porphyritic chondrules in A-881020 obtained by defocused EPMA
analyses. This indicates that %0O-poor Mg-rich chondrules can be formed by adding ®O-poor
organics of 7 — 14 wt%. However, the remaining-O/Mg ratios in the C/O range of 0.24 — 0.49 are
below the O/Mg range of the bulk porphyritic chondrules in case of oxygen loss by CO», which
means chondrules may not be formed.

Oxygen isotope fractionation between chondrules and CO is shown in Fig. 10c, in which
5'80cna — 8'®0co is constantly —4%o based on the assumption (B). With increasing C/O ratio,
amount of oxygen residing in chondrules decreases and that in CO increases. Therefore, the
A¥®QOcnd co value shifts in a negative direction from 0%o and A®Oco cna value shifts towards 0%o
with increasing C/O ratio. The A*®Ochd.co values in the C/O range of 0.24 — 0.49 are ~ —1%o to ~
—2%o, which is smaller than the observed A'®Opcy values of ~—4%o (Fig. 9). In case of fractionation
between chondrules and CO-, the slopes are steeper than those in case of CO (Fig. 10c¢). Even with
the same C/O ratio, amount of oxygen residing in CO; is twice larger than that in CO, and amount
of oxygen residing in chondrules is lower. The shift of A'®Ocnd.coz is about twice larger than that
in case of CO. The A®Ocnd.coz values in the C/O range of 0.24 — 0.49 are ~ —2%o to ~ —4%o. The
lower end is comparable to the observed A®Opcym values (Fig. 9). However, chondrules may not
be formed due to the low remaining-O/Mg ratios (Fig. 10b). Thus, %0-poor Mg-rich chondrules
with negative A¥Opcy values can be formed by oxygen isotope fractionation with CO, though the
A¥®Ocnd co values are smaller than the observed A¥Opcy values (Fig. 9). Additional fractionation
could be caused by kinetic fractionation during chondrule formation (e.g., Richter, 2004). Similar
results are obtained with changing the elemental compositions of IOMs (Supplementary Figs. A3-
4).

In summary, the porphyritic chondrules in CH and CB chondrites are characterized by smaller

sizes (Fig. 1) than those in other chondrite chondrules and similar bulk chemistry (Fig. 2) and
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textures to those in other chondrite chondrules. In terms of oxygen isotope systematics, the Mg-
rich porphyritic chondrules in CH and CB chondrites require a unique formation environment. The
Mg-rich porphyritic chondrules formed from anhydrous precursors composed of °0O-rich silicate
and '%0-poor carbon-rich organics in the regions with large disk heights where the gas density is
low and gas temperature is high. This is a new environment for chondrule formation and cannot
be applicable to chondrules in other chondrites and even to non-porphyritic chondrules in CH and
CB chondrites, as the chondrules show negative A'’O-Mg# trends (Fig. 8). Thus, CH and CB

chondrites sampled chondrules that formed in entirely different formation environments.

4.7. Non-porphyritic chondrules and lithic fragments that may have formed along with the
porphyritic chondrules

In CH and CB chondrites, there are non-porphyritic chondrules and lithic fragments that are
not classified into the three groups in A0 values (+1.4%o, —2.3%o, and —6.3%o), and Nakashima
et al. (2020) suggested that several of the ungrouped objects formed along with the porphyritic
chondrules. The magnesian CC chondrule (ChO1; Nakashima et al., 2011) has the A’O value of
+2.2 £ 0.1%0, Mg# of 98.7 (Fig. 8a), and the negative A®Opcym value (Fig. 9). The silica-bearing
lithic fragment (F37; Nakashima et al., 2020) has the A0 value of —3.4 £ 0.2%o, Mg# of 95.1,

and the A¥®Opcym value close to 0%o (Figs. 8a and 9). Therefore, it is likely that the two FeO-poor

objects formed along with the type I porphyritic chondrules in the same event. The FeO-rich radial
pyroxene chondrule (C32; Nakashima et al., 2020) has the A0 value of —1.1 + 0.3%o, which is
within the A0 range of type II chondrules and FeO-rich fragments (Fig. 8a). On the other hand,
two FeO-rich silica-bearing lithic fragments (F38 and F39; Nakashima et al., 2020) have the A0
values outside of the A'’O range of type II chondrules and FeO-rich fragments (Fig. 8a). Therefore,
it 1s likely that the FeO-rich radial pyroxene chondrule formed along with type II porphyritic

chondrules, but the two FeO-rich silica-bearing lithic fragments may have formed in distinct
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environments.

S. Conclusions

We analyzed oxygen isotope ratios and elemental compositions of porphyritic chondrules and
olivine and pyroxene fragments in the A-881020 CH chondrite to investigate the oxygen isotope
systematics of the porphyritic chondrules in CH and CB chondrites. The oxygen isotope ratios are
homogeneous within the uncertainty inside the porphyritic chondrules, except for relict grains of
olivine and low-Ca pyroxene with distinct oxygen isotope ratios. The average oxygen isotope
ratios of the individual chondrules plot along and above the PCM line with A0 values from —
4.7%o to +4.1%o. The olivine and pyroxene fragments, of which A0 values range from —2.1%o to
+3.2%o, are likely to be fragments of the porphyritic chondrules.

Type I and II chondrules including FeO-poor and -rich fragments do not show a systematic
difference in the A'’O values, unlike the non-porphyritic chondrules in CH and CB chondrites and
chondrules in other carbonaceous chondrites. For the chondrules and their fragments with Mg# <
96, the A0 values increase with decreasing Mg#, similarly to the type II chondrules in CR and
Tagish Lake-type chondrites. The type II chondrules in CH and CB chondrites may have formed
in a similar environment to that for type II chondrules in CR and Tagish Lake-type chondrites (e.g.,
Tenner et al., 2015). The A0 values of the type I chondrules and fragments increase from —4.7%o
to +4.1%o with increasing Mg# from 96 to 99. The positive A}’O-Mg# correlation may be explained
by an addition of ®*O-poor organics as a reducing agent to the relatively %O-rich silicate in the
regions with large disk heights where the gas density is low and gas temperature is high. This is a
new environment for chondrule formation. This hypothesis is supported by the two lines of
evidence. (1) Oxygen isotope ratios of the %0O-poor chondrules and fragments deviate from the
PCM line towards low 5'%0, while those of the relatively *O-rich chondrules and fragments are

distributed around the PCM line. The 5'®0 deviations are likely to be the result of the oxygen
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1sotope mass fractionation between the chondrules and CO or CO-. (2) The porphyritic chondrules
contain Ni-poor Fe-metal particles surrounded by silica-rich glass in the olivine phenocrysts,
which are likely to be reduction products during the chondrule formation. Thus, the Mg-rich
porphyritic chondrules in CH and CB chondrites may have formed in the different formation
environment from any other chondrite chondrules including non-porphyritic chondrules in CH and

CB chondrites.
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Appendix A. Supplementary material
This supplementary material consists of an excel file and two PDF files. The excel file
contains table Al (elemental compositions of porphyritic chondrules and olivine and pyroxene
fragments), table A2 (raw SIMS measured oxygen isotope data), table A3 (instrumental bias of
SIMS analysis), and table A4 (oxygen isotope ratios and Mg# of individual spots in porphyritic

chondrules). One of the two PDF files contains figure A1 (oxygen isotope ratios of individual spots
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in porphyritic chondrules and BSE images of porphyritic chondrules and olivine and pyroxene
fragments). Another PDF file contains a text describing details of estimations of A0 values in
organics and §'%0 fractionation of *O-poor chondrules, table A5 (oxygen isotope fractionation
between chondrules and CO, and CO), figure A2 (comparison of 8'30 values between olivine,
low-Ca pyroxene, and glass in the same chondrules), figure A3 (A0 values of organics,
remaining-O/Mg ratios, and A'®*Opcyr values of chondrules in case of Orgueil IOM), and figure A4
(AY0 values of organics, remaining-O/Mg ratios, and A'®*Opcy values of chondrules in case of

CHON particles).
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Table 1. Average oxygen isotope ratios of individual porphyritic chondrules in Asuka-881020.

Chondrule OF Ipx Imtpx Hpx Pl Sil Gl 15pm® 4pm 8'%0 % 20 (%) 80 % 20 (%o) A0 £ 20 (%o) Mg# £ 1SD A¥Opey £ 20
(%60)

C38 3 0 0 0 0 0 1 3 1 997 047 841 0.51 323 0.54 97.7 1.6 -2.72 1.33

C39 2 3 0 0 0 0 0 2 3 9.66 1.59 7.51 1.51 2.52 0.78 974 1.7 -1.51 234

C40 1 2 0 0 0 0 1 2 2 10.95 0.75 9.73 0.57 411 0.54 984 02 -3.64 1.46
Relict 1 0 0 0 0 0 0 1 0 1.57 0.19 -1.43 0.35 -2.25 031 985

C41 2 1 0 0 0 0 0 3 0 10.43 0.55 8.96 0.54 354 0.28 982 03 -2.92 092
Relict 1 1 0 0 0 0 0 2 0 712 0.49 5.19 0.29 1.49 030 9738

C42 2 0 1 1 1 0 0 2 3 392 0.50 1.51 0.73 -0.52 0.78 935 04 -0.75 1.77

C43 4 0 0 0 0 0 0 4 0 Heterogeneous 98.7 01

C44 0 1 0 0 0 0 1 0 2 425 0.69 193 1.14 -0.28 1.24 9738 21 -0.93 276
Relict 2 0 2 0 0 0 0 2 2 -7.46 0.68 -10.28 0.81 -6.42 0.88 98.7

C45 2 0 0 1 0 0 1 2 2 10.36 1.29 8.49 0.96 31 1.02 985 02 -2.09 257

C46 0 1 0 0 0 0 0 1 0 0.68 037 -2.08 0.36 -2.43 0.41 96.7 0.0 0.09 099

C47 1 4 0 0 0 0 0 3 2 -1.27 0.54 -3.48 0.80 -2.82 091 96.2 18 -1.00 2.04
Relict 1 0 0 0 0 0 0 0 1 -16.06 095 -17.17 1.75 -8.82 2.04 963

C48 2 2 0 0 0 0 0 2 2 11.39 0.71 9.46 0.89 353 1.02 983 03 -1.94 233

C49 2 0 0 0 0 0 1 1 2 8.46 0.52 5.55 0.58 1.07 0.63 991 01 0.38 1.48

C50 2 2 0 0 0 0 0 2 2 6.23 0.56 2.7 0.89 -0.46 1.02 98.7 02 1.44 227

C51 2 2 0 0 0 0 1 3 2 9.09 0.50 596 0.46 1.26 0.49 9738 03 0.61 1.20

C52 3 2 0 0 0 0 0 3 2 8.84 0.80 6.02 0.80 1.44 091 984 0.5 -0.02 213

C53 1 2 0 0 0 0 0 2 1 0.70 0.62 -1.97 1.02 -2.36 1.18 975 04 -0.03 2.60

C54 2 2 0 0 0 0 1 2 3 752 0.74 494 0.69 0.96 0.49 98.7 03 -0.33 1.32

C55 2 2 0 0 0 0 0 1 3 1.67 0.59 -0.41 0.81 -1.29 0.88 974 01 -1.35 1.98

C56 0 2 0 0 0 0 0 0 2 -0.87 0.65 -3.85 1.07 -3.40 1.07 956 1.0 0.62 239

C57 0 3 0 0 0 0 0 0 3 753 0.62 441 1.02 0.49 1.18 97.6 04 0.69 2.61

C58 1 1 0 0 0 1 1 1 2 1.38 0.74 -1.14 1.06 -2.12 1.14 945 1.1 0.64 256

C59 2 0 0 0 0 0 1 0 3 8.50 0.53 441 0.58 -0.01 0.63 732 04

® Number of spots analyzed on mndividual phases.
* Number of spots analyzed with 15 pm beam and 4 pm beam.

|14
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8]

Table 2. Oxygen 1sotope ratios of olivine and pyroxene fragments mn Asuka-881020.

Fragment  Phase 5120 + 2SD (%) 870 + 2SD (%) A0 + 2SD (%o) Mg# A¥Opcys £ 26 (%o)
F41 ol 6.59 029 475 0.66 133 0.68 98.6 2.04 152
F42 Lpx 829 029 731 0.66 3.00 0.68 973 391 153
F43 ol 3.00 029 1.68 0.66 0.12 0.68 99.1 3.03 151
F44 ol 0.66 029 -1.73 0.66 -2.08 0.68 96.8 -0.67 150
F45 ol 761 029 6.84 0.66 2.38 0.68 983 434 153
F46 Lpx 418 017 224 0.63 0.06 0.65 993 -1.74 142
F47 Lpx 9.86 017 7.79 0.63 267 0.65 98.0 -1.63 145
F48 Lpx 3.82 017 1.05 0.63 -0.93 0.65 95.9 0.04 142
F49 ol 452 0.44 195 037 -0.40 021 90.7 041 0.69
F50 Lpx 393 019 -6.64 038 -4.60 034 98.9 014 0.79
F51 Lpx 286 019 638 038 -4.89 034 98.8 184 0.79
F52 ol 371 0382 -6.94 1.49 -5.02 151 96.3 125 335
F53 ol 3.16 0382 548 1.49 -3.83 151 96.7 -0.74 335
F54 ol 5.56 017 4383 0.63 1.94 0.65 64.0

F56 Int. px 919 029 3.95 0.66 -0.83 0.68 80.0

F57 Hpx 495 029 1.08 0.66 -1.49 0.68 50.5

F58 Lpx 377 029 2.03 0.66 0.07 0.68 74.8

F59 ol 4383 017 355 0.63 1.04 0.65 747

F60 ol 436 017 1.90 0.63 -0.62 0.65 75.7

F61 ol 11.75 030 927 052 3.16 042 68.0

8]



o

Table 3. Element compositions of Fe-
particles in FIB sections of olivine

phenocrysts (EDS-TEM, data in wt%)

Fe Ni

grid-1 97.7 23
100.0 b.d.

942 5.8

100.0 b.d.

96.3 3.6

99.1 0.9

grid-2 954 4.6
Average 2.5
+lo 23

b.d.: below detection limit.

Table 4. Element compositions of olivine and silica-rich glass in FIB sections of olivine phenocrysts (EDS-TEM, data in wt%o)

Si0; TiO;, Al;O4 FeO MnO MgO CaO Na,O K:0 Cr204
olivine grid-1 40.34 b.d. b.d. b.d. b.d. 59.66 b.d. b.d. b.d. b.d.
grid-2 42.22 b.d. b.d. 1.30 b.d. 56.48 b.d. b.d. b.d. b.d.
silica-rich glass  grid-1 58.24 b.d. 23.47 b.d. b.d. b.d. 18.29 b.d. b.d. b.d.
grid-1 54.80 b.d. 25.36 b.d. b.d. b.d. 19.84 b.d. b.d. b.d.

b.d.: below detection limit.
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Fig. 1. BSE images after oxygen isotope analyses, oxygen three-isotope plots, and A0 value
plots of representative porphyritic chondrules in A-881020; (a, d, g, and j) BSE images of C40,
C43, C44, and C59. Analysis points are shown by the vertex of a filled triangle for 15 pm spot
and that of an open triangle for 4 pm spot. Colors of the symbols are the same as those of
oxygen-three isotope plots. (b, e, h, and k) Oxygen three-isotope plots of data from C40, C43,
C44, and C59. TF, PCM, and CCAM represent the terrestrial fractionation line, the Primitive
Chondrule Mineral line, and the Carbonaceous Chondrite Anhydrous Mineral line. Numbers near
the SIMS pits in the BSE images and those near the data points in the oxygen three-isotope plots
indicate spot numbers of SIMS analysis, which correspond to spot numbers in Supplementary
Table A4. (c, £, i, and 1) The A'O value of data from C40, C43, C44, and C59. Data are shown in
ascending sequence. Symbols are the same as those in oxygen three-isotope plots. Abbreviations:
Hpx, high-Ca pyroxene; Mt, Fe-Ni metal; Ol, olivine; Lpx, low-Ca pyroxene; Gl, glass; Int. px,
intermediate pyroxene; Sul, Fe-sulfide.
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Fig. 2. Bulk refractory element compositions of chondrules normalized by Si and elemental
abundance of CI chondrites (Anders and Grevesse, 1989) in a log scale; (a) porphyritic
chondrules in A-881020, (b) CC chondrules and CC-like fragments in CH and CB chondrites
(A-881020; Sayh al Uhaymir 290; Isheyevo; MacAlpine Hills 02675; Queen Alexandra Range

94627, Krot et al., 2010; Nakashima et al., 2011, 2020), and (c) chondrules in CV, CR, CO, and

0.1

CM chondrites (Hezel and Palme, 2010).
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Fig. 3. BSE images of olivine phenocrysts and plagioclase with sub-um sized Fe-particles and
vesicles in porphyritic chondrules in A-881020; (a-c) olivine phenocrysts in C39, C40, and C41
and (d) plagioclase in C47. Rectangle areas surrounded by dashed lines in panels b and ¢ were

cut out using FIB for TEM observations. Abbreviations: Ol, olivine; PI, plagioclase.
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W-depos

Fig. 4. Electron micrographs of the two FIB sections from olivine phenocrysts in C40 (grid-1)
and C41 (grid-2); (a and d) BSE images of the two FIB sections of grid-1 and -2, (b and e)
HAADF-STEM 1mages of Fe-particles and vesicles in grid-1 and -2, (¢) The Enlarged
HAADF-STEM 1mage showing Fe-particle with silica-rich glass in grid-1, and (f) The
bright-field TEM image of the largest Fe-particle in grid-2 with the selected area electron
diffraction pattern consistent with the bee structure of kamacite. Fe-particles in grid-1 (panel b)
are surrounded by silica-rich glass. Abbreviations: Ol, olivine; Fe, Fe-particle; Gl, glass; Ve,

vesicle.
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Fig. 5. Compositions of silica-rich glass i olivine phenocrysts in the C40 chondrule.
Compositions of silica-rich glass in olivine phenocrysts in the Bishunpur (LL3.1) chondrules are

shown for comparison (Leroux et al., 2003).



Fig. 6. BSE images of olivine and pyroxene fragments after oxygen isotope analyses; (a) F41, an
olivine fragment, (b) F48, a low-Ca pyroxene fragment, and (c¢) F57, a high-Ca pyroxene
fragment. Analysis points are shown by the vertex of a filled triangle for 15 pum spot.

Abbreviations: Ol, olivine; Lpx, low-Ca pyroxene; Hpx, high-Ca pyroxene.
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Fig. 8. Comparison between A0 values
and Mg# of the porphyritic chondrules and
olivine and pyroxene fragments (a),
non-porphyritic chondrules from CH and
CB chondrites (b), chondrules from Acfer
094 (ungrouped C3.0), CO, CV, CM,
CM-related, and Yamato-82094
(ungrouped C3.2) (c¢), chondrules from CR
chondrites and Tagish Lake-type chondrites
(d), and chondrules from L3, LL3, E3, G,
Kakangari, and R3 chondrites (e).
Literature data are from Krot et al. (2001,
2010, 2012, 2021), Connolly and Huss
(2010), Kita et al. (2010, 2015), Russell et
al. (2010), Nakashima et al. (2011, 2020),
Weisberg et al. (2011, 2015, 2021),
Ushikubo et al. (2012), Schrader et al.
(2013, 2014, 2017), Tenner et al. (2013,
2015, 2017), Nagashima et al. (2015),
Chaumard et al. (2018, 2021), Hertwig et al.
(2018, 2019a, 2019b), Marrocchi et al
(2018, 2019, 2021, 2022), Yamanobe et al.
(2018), Piralla et al. (2021), Siron et al.
(2021, 2022), Ushikubo and Kimura (2021),
Fukuda et al. (2022), and Pmto et al. (2024).
Abbreviations: CC, cryptocrystalline; SB,
silica-bearing; MB, Fe-Ni metal-bearing;
SO, skeletal olivine; RP, radial pyroxene.
CH, CH/CB, and CB chondrites used in the
plots are Acfer 182, Acfer 214, A-881020,

Sayh al Uhaymir 290, Isheyevo,
MacAlpine Hills 02675, and Queen
Alexandra Range 94627.
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CH/CB chondrites used in the plot are A-881020, Sayh al Uhaymir 290, and Isheyevo.
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