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ABSTRACT

Physical sensing is increasingly implemented in modern industries to improve information visibil-
ity, which generates real-time signals that are spatially distributed and temporally varying. These
signals are often nonlinear and nonstationary in the high-dimensional space, which pose signifi-
cant challenges to monitoring and control of complex systems. Therefore, this article presents a
new “virtual sensing” approach that places imaginary sensors at different locations in signaling tra-
jectories to monitor evolving dynamics within the signal space. First, we propose self-organizing prin-
ciples to investigate distributional and topological features of nonlinear signals for optimal placement
of imaginary sensors. Second, we design and develop the network model to represent real-time flux
dynamics among these virtual sensors, in which each node represents a virtual sensor, while edges
signify signal flux among sensors. Third, the establishment of a network model as well as the notion
of transition uncertainty enable a fine-grained view into system dynamics and then extend a new
Flux Rank (FR) algorithm for process monitoring. Experimental results show that the network FR meth-
odology not only delineate real-time flux patterns in nonlinear signals, but also effectively monitor
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spatiotemporal changes in the dynamics of nonlinear dynamical systems.

1. Introduction

Physical sensors are increasingly deployed in modern indus-
tries to improve information visibility for monitoring and
control of complex systems. As a result, multidimensional
sensor signals are accumulated at high velocity, resulting in
a high data volume. There is an urgent need to process and
analyze these signals for a myriad of purposes, such as con-
dition monitoring, anomaly detection, and quality improve-
ments. However, these signals are different from traditional
quality features (e.g., geometric measurements or defect
quantities of products) that can directly apply Statistical
Process Control (SPC) methods. Rather, it is common that
sensor signals are nonlinear and nonstationary in the high-
dimensional space, which pose significant challenges to con-
ventional statistical monitoring techniques.

Virtual sensing entails the processing and transformation
of nonlinear signals using a model or transfer function.
This, in turn, enables a fine-grained examination into system
dynamics and further extracts useful information for change
detection in the undercurrents of nonlinear dynamical sys-
tems. Virtual Sensors (VSs) can be used alongside or in lieu
of physical sensors to mitigate practical or analytical con-
straints in the real world. Nonetheless, the notion of virtual
sensing is rather broad, because the scope of transformation
modeling is large. In this investigation, we focus on virtual

sensing within the context of placing sensors at different
locations of signaling trajectories to monitor evolving
dynamics within the signal space. In this regard, VS can be
treated as imaginary sensors that sense the flux dynamics of
signals, also referred to as virtual flux sensing.

As illustrated in Figure 1, physical sensing places “real”
sensors at different locations of a complex system and then
records operational dynamics or physical activity as time-
varying signals. For example, ElectroCardioGram (ECG) sig-
nals are observed with electrical sensors attached to the
body surface, which capture operational dynamics of the
human heart from different perspectives. A traditional 12-
lead ECG examines electrical activity from 12 different angles
around the heart, whereas a three-lead Vector Cardio Gram
(VCG) is from three orthogonal directions. See more details
about ECG sensing systems in Yang et al. (2012). Real-time
sensor signals are often spatiotemporally varying in the high-
dimensional space. On the other hand, virtual sensing places
“imaginary” sensors at different locations of signaling trajec-
tories that focus more on the influx and outflux dynamics in
a small neighborhood of a VS. In fact, there are practical con-
straints in the use of physical sensors to directly observe such
minute details. Virtual sensing offers an unparalleled advan-
tage to take a closer look into operational dynamics of a com-
plex system.
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SPC techniques are widely used in the manufacturing
industry for quality control applications. However, very little
has been done to investigate virtual sensing and pertinent
applications for sensor-based process monitoring and con-
trol. The current article presents a virtual sensing approach
for monitoring real-time flux dynamics in nonlinear signals
and detecting the changes in the dynamics of nonlinear sys-
tems. VSs are treated as nodes to transform the signals into
a network, which necessitates an effective way of relating
constituent components to one another. Network theory
provides a promising avenue to characterize and model sig-
nal streams obtained from nonlinear dynamical systems. To
this end, a collection of VSs can be converted into a net-
work structure by representing sensors as nodes and flux
dynamics as the weights of edges. Statistical process moni-
toring can then focus on the networking behaviors of both
nodes and edges, which reveal individual and interactive
characteristics in the underlying operations, respectively.
Specifically, our contributions are summarized as follows:

1.  Self-organizing virtual sensing: Placement of VSs within
the signal space is the first problem that needs to be
solved. We propose to leverage self-organizing principles
to investigate distributional and topological features of
nonlinear signals for optimal placement of anchoring sen-
sors. As such, virtual sensors will learn topological struc-
tures and then self-organize within the signal space. Each
sensor will sense the flux dynamics in a spatiotemporal
neighborhood along the signaling trajectory.

2. VS network modeling and flux rank: Further, we
develop a network model to represent and model real-
time flux dynamics among these VSs, in which each
node represents a VS, while edges are signal flux among
sensors. A new Flux Rank (FR) algorithm is also
designed to characterize and quantify influx and outflux
transition dynamics around each sensor.

3. FR SPC: It is worth noting that FR statistics are com-
positional, where constituent elements sum to one.
Hence, we designed new FR control charts, namely FR
x>, Hotelling T?, and General Likelihood Ratio charts,
for detecting the changes in the flux dynamics of non-
linear signals, thereby monitoring nonlinear dynam-
ical systems.

The proposed virtual sensing approach is evaluated and
validated with case studies on nonlinear Lorenz systems, as
well as physiological signals. Experimental results show that a
VS network and FR SPC algorithms not only delineate real-
time flux patterns in nonlinear signals, but also effectively
monitor spatiotemporal changes in the dynamics of nonlinear
systems. The proposed VS-based monitoring approach shows
great potential as a SPC technique for monitoring multidimen-
sional nonlinear signals from complex systems.

The remainder of this article is organized as follows:
Section 2 provides a review of virtual measurement, network
modeling and representation, as well as SPC and network
monitoring. Section 3 presents the research methodology of
virtual sensing networks and the FR monitoring. Section 4

Virtual Sensing
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Figure 1. A physical sensing system (left) where physical sensors are distribu-
tionally placed on the human body. The physical sensing system is compared
against a virtual flux sensing system (right) where VSs placed in the signal space
generate influx and outflux readings based on nearby signals.
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introduces case studies and the design of benchmark experi-
ments. Section 5 presents experimental results and discusses
broader implications of virtual sensing approaches. Section 6
includes the conclusions from this investigation and summa-
rizes the niches filled by virtual sensing.

2. Research background
2.1. Virtual measurement

Generation of virtual measurements has ambiguous conno-
tations. Various techniques bear the moniker “virtual”. For
example, virtual metrology typically refers to a set of meth-
ods employed to predict the surface properties of a silicon
wafer without direct measurements (e.g., atomic force
microscope, X-ray), but rather through predicted conjectures
from machine parameters, process information, and in-situ
sensor signals (Cheng et al., 2012; Hsieh et al, 2019; Yang,
Blue, Roussy, Pinaton and Reis, 2020). On the other hand,
soft sensing generally refers to an estimation model that
integrates available measurements and system knowledge to
predict a quantity that cannot or need not be measured (Lin
et al., 2007). Examples of soft sensing implementations
include the well-known Kalman filter or neural network.
Soft sensors have also been deployed to monitor chemical
processes through the utilization of statistical tools such as
feature extraction methods and SPC principles (Fortuna
et al., 2007; Masuda et al., 2014; Funatsu, 2018). In the lit-
erature, either virtual metrology or soft sensing refers to the
use of signals (i.e., can be readily measured) or knowledge
(e.g., existing models or domain-specific information) to
predict measurement quantities that are difficult to be dir-
ectly measured.

Placement of “imaginary” sensors in the signal space
(what we refer to as VSs) should conform to a signal’s top-
ology. More sensors should be deployed in spatial regions
where signals are denser to provide higher sensing reso-
lution. Likewise, regions where signal presence is sparse
would require less virtual sensing capability. Spatial indexing
techniques may offer one solution to the problem of VS
placement. Typically, these indexing techniques utilize
hypercube geometries to represent their regions (Kim and
Patel, 2010). Chen and Yang (2016) develop quadtree parti-
tioning to represent a spatiotemporal signal as a discrete



state timeseries. Analyzing the heterogeneous recurrence
dynamics of this discrete state timeseries with fractal analysis
allowed for the monitoring of nonlinear dynamic systems
including autoregressive processes, Lorenz processes, ultra-
precision machining signals, and VCG signals. Similarly,
Cheng et al. (2016) cultivate heterogeneous recurrence
methods to assist in the identification of patients suffering
from obstructive sleep apnea utilizing ECG signals. Self-
organizing methods may also be employed in the determin-
ation of network topology and, therefore, inform VS spatial
placement. Liu and Yang (2018) employ a “charged-particle”
self-organization scheme for the purposes of variable cluster-
ing. Input variables are grouped via nonlinear coupling,
which leverages cross recurrences between two variables.
Reducing the amount of redundant information yields
higher-quality predictive analytics. Similarly, Yang, Liu and
Kumara (2020) designed a self-organization approach to
reconstruct the topologies of voxelized 3D objects from the
network adjacency matrix. Simply storing the adjacency
matrix aids in the search and reuse of engineering designs
as this network feature is vastly less complex than the
CAD models.

Given the literature surveyed, we have identified the fol-
lowing gaps:

1. There is little mention of placing VSs within the signal
space. Measurements derived from VSs placed within
the signal space provides an unprecedented opportunity
for the extraction of a unique set of patterns in a non-
linear signal. Nonetheless, the optimal way to handle
VS placement is a pertinent gap to this investigation.

2. The existing practice of spatial indexing does not take
full advantage of the nonlinear geometry of signal space
and is often limited in representing the regions of VSs.
The hypercubic shape of the partitioning scheme may
generate sensing regions for signal outliers, even where
signals are dense.

3. Self-organization has yet to be explored to sufficient
capacity in the domain of VS placement. Signal top-
ology plays a critical role in statistical monitoring of
system dynamics.

2.2. Network science

Once VSs are placed, they will produce new sets of inflow
and outflow signals. Network science offers the ability to
study the output of the VSs. Representing a system as a net-
work is a crucial first step in this domain. One must deter-
mine which features in a system are analogous to network
nodes and edges. For example, Sadreazami et al. (2018) rep-
resent each sensor in their blind intrusion detection system
as a node. Nodes are connected by edges if they are within
a certain geographic radius to one another. Once the repre-
sentation is established, the system may be converted into a
network. Nonetheless, there are cases where a network’s top-
ology is unknown. Zhang et al. (2021) develop a structure
identification methodology. The method can determine a
temporally evolving network topology in situations where
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sparse and noisy signals are present. Such structure identifi-
cation allows for the monitoring of complex industrial
cyber-physical systems.

Papadimitriou et al. (2010) developed a set of network
similarity-based approaches to detect anomalies in web
graphs over time. In addition to vertices and edges, each
graph considers the PageRank as a critical feature. Potential
anomalies in a web graph are defined to be changes in con-
nectivity, absence of connected subgraphs, and absence of
nodes. Given a time series of web graphs, similarity scores
between consecutive web graphs are produced. Should the
similarity fall beneath some threshold, an anomaly is pre-
sent. Various scoring methods are evaluated including ver-
tex/edge overlap, vertex ranking, vertex/edge vector
similarity, sequence similarity, and signature similarity. Of
these, signature and vector similarity perform the best.
Furthermore, Zou and Li (2017) expound upon a change
detection model for dynamic network data. The natural evo-
lution of the network is characterized through the utilization
of a tailored state space equation alongside an expectation
propagation algorithm that approximates the observation
equation. An integration of expectation-maximization and
Bayesian optimal smoothing are used to estimate model
parameters. Next, singular value decomposition is leveraged
to evaluate the network state space model according to
SPC principles.

Despite recent advances in network science, the following
gaps have been identified:

1. Network modeling has rarely been considered in the
realm of virtual sensing. A new VS network framework
is urgently needed for sensor-based process monitoring.

2. The network state space model utilizes a linear transfer
function to augment the current state over each discrete
time instance. Therefore, this type of model tends to be
limited in the ability to handle nonlinear dynamics of
the network.

3. PageRank presents a promising baseline for further
development. Nonetheless, PageRank is calculated based
on the presence of links between nodes. Network struc-
tures are often more complex; in addition to accounting
for adjacency, graph edges and uncertainty will pos-
sess weights.

4. Little has been done to investigate the flux dynamics
among VS network nodes. Flux is a product of the
inflows and outflows between nodes via their net-
work edges.

2.3. SPC

Once a network model is designed and developed, the next
step is network monitoring. Statistical methods offer an
opportunity to determine whether the network process is in
control. Over the years, SPC has undergone a significant
evolution. As shown in Figure 2, the inception of SPC con-
cerned itself with single-feature, or univariate processes.
However, there are various situations where multiple fea-
tures are present. Monitoring each feature independently
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(a) Single Feature (b) Multiple Features
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Figure 2. SPC has evolved from univariate monitoring of a single feature to joint monitoring of multiple features. Monitoring of linear and then nonlinear profiles
has been the natural development. However, there is a limitation in the ability to monitor nonlinear signals in three or more dimensions.

may be insufficient when considering the possibility of cova-
riances. Thus, multivariate feature monitoring was developed
(Montgomery, 2020). Nonetheless, some processes may be
characterized by a profile or function. To this end, Kang
and Albin (2000) establish a method to monitor linear pro-
files. Although linear profiles are common, there is the pos-
sibility that some profiles are nonlinear. One proposed
technique by Zhou et al. (2006) for nonlinear profile moni-
toring integrates SPC with the Haar wavelet transform.
Wavelet SPC allows for the detection of process shifts, as
well as their location and magnitude within the evaluated
signal. Zhang et al. (2018a) propose a multi-tier approach to
the nonlinear profile monitoring endeavor. Signals are first
preprocessed to align the profiles and remove noise. Sensors
are then clustered based on their cross-correlation matrix.
After clustering, multichannel principal component analysis
is employed to extract sensor cluster features. Derived local
monitoring statistics are then fused to create global monitor-
ing statistics according to the top-R rule. The aforemen-
tioned profile monitoring scheme was eventually adapted to
handle weak correlations and sparse out-of-control patterns
(Zhang et al., 2018b). This feat was achieved by incorporat-
ing lasso penalties into the determination of the monitoring
statistics. Rather than using the top-R rule, an exponential
moving average-based likelihood ratio statistic was devel-
oped to handle SPC. Also, real-world sensor signals may
contain a large degree of irregularity or have chaotic
features. To solve this issue, Chen et al. (2019) deal with
nonlinear signal dynamics through the creation of the
pattern-frequency tree approach. Application of this pattern-
frequency tree demonstrates promise in detecting anomalies
within nonlinear dynamical systems.

The progression of SPC methods has greatly propelled
quality improvements in the realm of smart manufacturing.
Traditional quality measurements can be metrics (e.g., geo-
metric dimensionality) or profiles (linear or nonlinear).
However, sensor signals are indirect observations of quality
characteristics in the underlying process. When these signals
are nonlinear, nonstationary, and have many dimensions,
traditional SPC methods tend to be limited. Standard uni-
variate or multivariate monitoring cannot handle the behav-
ior of a process that can be represented as a profile or
function. Likewise, profile monitoring is more applicable for
calibration measures or sensor profiles that are cyclical in
nature and display high degrees of repeatability. Nonlinear
signals pose significant challenges to profile-based techni-
ques. There is an urgent need to investigate flux dynamics

for statistical monitoring of nonlinear dynamical processes.
Flux dynamical analysis produced through VS network
models have received little attention in the field of SPC.
Further development of network flux monitoring is needed
to fill existent gaps.

3. Research methodology

The flow diagram of a VS network model for sensor-based
process monitoring is given in Figure 3. Physical sensors
collect time-varying signals pertinent to operational dynam-
ics of a complex system. These signals contain implicit
dynamical information about the system that is conducive
to process monitoring and control. Further, we proposed to
deploy a network of VSs to extract and monitor flux dynam-
ics in the signal space. These VSs conform to the signal’s
trajectory and topology in many dimensions using self-
organizing principles.

Then, we develop a network model to characterize and
represent real-time flux-dynamics among these VSs, in
which each node represents a VS, while edges are signal flux
among sensors. A new FR algorithm is also designed to
characterize and quantify influx and outflux transition
dynamics around each sensor. However, the FR is compos-
itional and cannot be adequately monitored with traditional
multivariate control charts. Therefore, we propose an iso-
metric log-ratio transform to design and develop new FR
statistics and pertinent control charts to perform virtual
sensing and monitoring of complex systems. Insights from
the special FR control charts can be further used to drive
decision support and process improvements.

3.1. Self-organizing virtual sensing

To drive the creation of a generalized VS networking frame-
work, we propose to leverage self-organizing principles to
optimize the placement of anchoring VSs within the multi-
dimensional signal space. By the name “self-organizing,” we
are referring to a competitive mechanism where VSs will
compete with one another for the right to sense and parti-
tion the signal space according to its distribution and topo-
logical features. VSs are allocated for the purpose of space
coverage as follows:

e Within the signal space: There will be i=1,...,1—1
VSs deployed to form a collection of coverage regions on
the multidimensional signal trajectory. Self-organization
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Figure 3. VS network model for sensor-based process monitoring. Physical sensors produce time-varying signals. Virtual sensors (shown in red) are placed within
the signal space to produce a set of dynamic network profiles. These network profiles have their FR extracted and monitored for decision support.
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Figure 4. lllustration of self-organizing VS featuring VCG signals given two initial VS configurations (a & b) after (i) 0, (i) 50, (iii) 100, (iv) 150, and (v) 200 iterations,
as well as the performance convergence curve (vi). Here, the performance metric is computed as the sum of squared distances from the signals to the nearest VS

when the number of iterations increases.

is, therefore, referring to the learning of geometric char-
acteristics of signal trajectory for optimal placement of
these I — 1 VSs within the signal space.

o Outer signal space: Although nonlinear signals dynamically
evolve in the space, it is not uncommon that system dynam-
ics are confined to the signal trajectory with certain degrees
of uncertainty. Thus, the outer signal space represents a
counterpart of the signal space and describes the general
outer space (i.e., out-of-control regions) in which the signal
does not reside. Hence, an extra VS, ie., the I'" VS, is neces-
sary to represent the coverage of the outer signal space and
sense the underlying out-of-control behaviors.

The process of self-organizing VSs within the signal space
can be seen in Figure 4 and is given by Algorithm 1. As
shown, the self-organizing methodology converges to the
signal’s topological features regardless of the initial place-
ment of the VSs. Topological convergence curves shown in
the figure confirm the optimal placement of the VSs. Let

/
x) = (xgt),...,xﬁﬁ)) be a signal vector, where m is the

dimensionality of the signal vector and t=1,...,T is the
length of the multidimensional signal. The distance of x*) to
a VS r; is given by d; = ||r; — x"||,i = 1,...,] — 1, where i is
the VS index and r; is the VS location in the signal space.
The I™ VS, being located in the outer signal space, repre-
sents the outer signal space in general. The distance vector
d=(dy,....d; ;)" is fed into a competitive function where
each VS excites itself and inhibits all others. This competi-
tive function ® is given by,

%

1, i=i
D, = ~ where di <d;,Viand i <i,Vd; =d;
0, i# i

(1)

The self-organizing procedure will reward the VS that wins
the competition as well as its neighboring VSs using the
Kohonen rule,
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AR 0 l//(xo) B rj(k)))

1

vie Aq(d) (2)

where k = 1,...,K is the training iteration,  is the learning
rate, and A;(d) is the neighborhood that captures the indi-

ces of neighboring VSs that lie within a radius d of the win-
ning VS r;,

A @ = {illr - el < d} (3)

When x(*) is presented to the network, the winning VS
and its neighbors will all move towards x(*). Each time a
new signal vector is presented, the closest VS will win the
competition. The winning VS and its neighbors will move
closer to the input signal and, by extension, to each other.
The VSs have two existent behaviors: First, they will distrib-
ute themselves over the signal space in the learning process.
Second, they will move towards the locations of neighboring
VSs. These behaviors cause the VSs to self-organize so that
they partition the signal space according to its distribution
and topological features. This competitive process will con-
tinue until reaching the maximum number of iterations K,
or until the VS locations converge.

Our proposed self-organization of the VS network within
the signal space is different from minimum energy design
(Joseph et al, 2015) in the field of Design Of Experiments
(DOE) and spring-electrical model in the domain of variable
clustering (Liu and Yang, 2018). In the DOE setting of min-
imum energy design, the spatial location of a design point will
not change during the experiment. The algorithm will optimize
the spatial location of the next design point given that spatial
locations of previous design points are fixed. By contrast, vari-
able clustering seeks to self-organize the dataspace of variables.
Variables are represented as charged particle nodes that repel
one another. To counteract this force, edges between the nodes
are represented as springs that pull the nodes back together.
The optimization objective in the case of variable clustering is
to minimize the total energy of the network.

Algorithm 1: Self-Organizing Virtual Sensor Placement

Input: Sensor Signals x(),t =1, ..., T,
Radius d, Learning rate i,
Maximum Iterations K,, Tolerance ¢,
Output: Optimal Virtual Sensor Locations r;,i =1,...,]1 — 1
1: Set k=0
2: Initialize r\*, Vi =1,..,1 — 1
3: do
fort=1,..,T do
Calculate d = (dy,....d;_1)’
Compute ® = (®y,..., &;_;)’
i* = arg max(®y, ..., D)
Find A (d)

PRt — rfk) + lﬁ(x(t) — rgk)), vie Ax(d)

D AN A

1

10:  end for
11: k=k+1
12: while [|r* — r* V| > ¢, Vi=1,..,]—1and k < K,

13: return rlgk),i =1..,I—-1

However, this investigation drives VSs iteratively to compete
for the right to represent input signals. Winners of each com-
petition and their neighboring VSs are rewarded by being
drawn closer to these input signals. After a competition is held
for all input signals, the process repeats until a maximum
number of iterations are reached, or until convergence. The
resulting layout of VSs after the self-organizing process cap-
tures the distribution and topological features of the signal
space. The competitive mechanism makes VSs move and com-
pete for the right to sense signals in this self-organizing design.

3.2. VS network modeling and FR

The self-organized VSs will be responsible for sensing the
inflows and outflows within the signal space. Thus, a VS will
become excited when its coverage region is entered by an
incoming signal. Likewise, the VS will cease being excited as the
signal departs its coverage region. To determine which VS is
excited at a given time, we assign a categorical identifier to each
VS. As nonlinear signals pass by the closest VS in the signal
space, a time series of categorical values will be generated to
record the path of transversed VSs. By tracking the order and
duration of VS excitation, we can extract the dynamical infor-
mation present within the input signal. Nonetheless, only con-
sidering the “closest” VS within the signal space is limited in its
handling of the outer signal space and, by extension, of uncer-
tainty. Signal vectors may be at a great distance away from all
VSs in the signal space, but still technically “closer” to one VS
over another. To account for the outer signal space, one may
consider truncating the VS coverage regions such that they
have strictly defined boundaries. Signals falling outside these
strictly defined regions would be sensed by the I"™ VS, which
exists in the outer signal space. Unfortunately, there is no
granularity in uncertainty to this truncation approach. The sig-
nal is either fully attributed to one of the I — 1 VSs in the sig-
nal space or fully attributed to the I™ VS placed in the outer
signal space. Thus, the “closest” VS at a given time would either
be fully known or fully uncertain. This uncertainty disparity is
especially problematic near coverage region boundaries, due to
oversensitivity causing the outer signal space to become overre-
presented in the observed signal dynamics. The overrepresenta-
tion of the outer signal space consequently produces many false
positives during process monitoring. Therefore, there is an
urgent need to account for the outer signal space (and by
extension signal uncertainty) with finer granularity.

To mitigate the issues presented regarding the outer sig-
nal space, we introduce an affinity measure (), where 0 <
7) <1. We assume that each VS region within the signal
space has a Gaussian coverage, each with mean r; and band-
width matrix B;. Assuming there are I — 1 VSs in the signal
space, suppose that each Gaussian has weight @; = N;/T,
where N; is the number of signals closest to VS r;. The dis-
tribution of each signal would then follow,

-1
Pr{x(t)} = ZwiN(x(t>|ri,Bi) (4)
p

where N(-) describes a multivariate normal distribution. The
affinity y; can be calculated for all the VS coverage regions as,



wlN(X(t)ri) Bl)
S myNxOry, By)

7, x1) = i=12-,1-1 (5

where Y- ly,( ) =1. The I"™ sensor in the outer signal
space captures out-of-control behaviors (anomalies) present in
the signals as they dynamically evolve over time and transverse
the virtual sensors. Thus, anomalies are captured around each
coverage region in the signal space, o(x) =1, — y(x(t)).

Further, there is a pressing need to optimize the weight
and bandwidth of each coverage region of VS r;. The sensi-
tivity can be controlled by adjusting the bandwidth matrix
B;, which alters the size and shape of the sensing region.
The bandwidth matrix B; may be designed to form full,
diagonal, or spherical coverage regions. Therefore, we pro-
pose a new procedure to estimate the optimal bandwidth
matrix Bf,i=1,...,] — 1 (and consequently the correspond-
ing optimal weights @}), as shown in Algorithm 2.

Algorithm 2: Estimation of Weight and Bandwidth Matrices

Input: VS Locations r;,i=1,..,] — 1, Sensor Signals x(*)
t=1,.., T,
Maximum Iterations Kz, Tolerance ep
Output: Optimal Bandwidth Matrices and Gaussian Weights
Bf,w}, i=1,..,1—1
1: Set k=0

2: Initialize B\”),

3: do
. (k) _ NGO, BY)
4 Calealate 577 (6Y) = S o N (xOly, BY )

Vi=1,...,]-1t=1,..,T

o Vi=1,.,1-1

5 k=k-+1
6: for i =1,..,1—-1do
7: z Zt 1 k 1( (t>)
!
8: B,(k I‘“‘ Zt LY ,k D(x M) (x® — ri) (x0) — r,-)
*)
5. o L
10:  end for
11: while || £® V|| > e and k < Kp
12: return Bfk),wgk),i =1,..,1—1

The inputs to the proposed Algorithm 2 are the VS loca-
tions r;,Vi=1,...,] — 1, the signal xD,t=1,..,T, conver-
gence tolerance €, and the maximum iteration K. First the
iteration counter k is set to zero. Next, the values BE()) and
w§0>,Vi =1,..,1 —1 are initialized based on the present sig-
nals. Next, the method enters an iterative process of learn-
ing. In each iteration, the affinity yi(x(”),w: 1,..,I1—1,
t=1,...,T is determined. Then, the iteration counter k is
incremented. Afterwards, for each VS r;, we calculate the

=7 9% (%) that are used to
update both ng) and wfk),Vi =1,...,I — 1. This process con-
tinues until the maximum number of iterations Kp is

reached or if the log likelihood of all signals L converges to
tolerance €, where,

total signal affinity I’ (o
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T
Z log (prix®}) (6)
=1

As a result, Algorithm 2 provides the estimate of optimal
Bf and @},Vi=1,...,] — 1 for each coverage region.

Given bandwidths B;,i = 1,...,] — 1 and VS affinity func-
tions y,-(~),i =1,..,I — 1, we can formulate a representation

of the signal’s state as x'*) dynamically evolves over time t.

Let us denote the state of the system at time t as s(*) =

argmax; («/i(x(t))) s

ity of the signal be () = max; (yi(x(t))> while in state s().

€ {1,..,I — 1}. Likewise, let the affin-

The corresponding anomalies while in state s(¥) are calcu-
lated as oY) =1 — .
[s. 7 0](t) for each signal vector when system dynamics pass
through the network of VSs in the multidimensional space.
Algorithms 1 and 2 are performed utilizing a large quan-
tity of in-control signals for the initialization of the VS net-
work. Once the VS network is established, it can be
leveraged for monitoring. Now, the question becomes: “How
to construct the VS network and derive the probability tran-
sition matrix P accounting for uncertainty?” The probability
transition matrix P should capture the stochastic behaviors
of VS inflows and outflows when the signal is evolving over
time. Therefore, we propose Algorithm 3 to generate the
probability transition matrix P, which takes the state and

Therefore, we obtain the triplet

uncertainty pair [s.7.0]",t =1,..., T as its input. The transi-
tions will be among the I VS regions in both the signal trajec-
tory and the outer signal space, leading to a I x I matrix P.
For example, a state transition from a current state s) =i can
go to either the next state s!*!) = i’ in the signal space or the
state I in the outer signal space. Therefore, the transition Py is
computed as f (y(®), y(+1)), where f(-) is an interpolating func-
tion that accounts for the affinity levels in both states. Here,
we use an average function f(-) = (50 4 9t1) /2,

Algorithm 3: Probability Transition Matrix Generation

Input: 5,70/t =1,.., T
Output: Probability Transition Matrix P
1: P = 0;;, where I is the total number of states

2:fort=1,2, ..,T—1do
3 i=sl), i =D
4 Py =Py +f(“/<t Y ZH))
5 PII - lI +f( t+1))
6: end for
7:fori=1,...,1do
8: if .)_, Py = 0 then
9: Py=1, Vi=1,.,1I
10:  else
11: Py =—t— Vi'=1,..,1
! Zf”:l Py v
12:  end if
13: end for
14: return P
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As shown in Algorithm 3, we start by initializing P to
07,5, which is a I x I matrix of zeros. For the entire signal
from t =0 to T — 1, the transition P;y will be increased by
F(®,9(D), while P; will be increased by f(o®,0(+D).
Next, we regularize each row of the transition matrix P;.,i =
1,...,I and convert its entries into a probability. Should the
sum of a row P;. be equal to zero, each entry of the row is
set to 1/I. Otherwise, each entry in the row is divided by
the row sum ZII.,:] Piy. The new Algorithm 3 provides a
way to transform VS flux dynamics into a probability transi-
tion matrix while accounting for signal noises and system
uncertainty. Analyzing the inflows and outflows associated
with each VS provides a new sensor-based approach to
monitor a spatiotemporal process. In this regard, each VS
acts a quality inspection station that studies the passage of
signals into and out of the VS network.

The relative flux between VSs is consolidated into a sin-
gle rank measure, known as the FR. Algorithm 4 transforms
a probability transition matrix P into a corresponding FR ¢
that is compositional in nature. Determining the FR first
entails performing an adjustment on P to obtain an irredu-
cible matrix P. Certain subgraph structures present in P
result in @ having zero entries. Should ¢ have any zero
entries, it will fail to capture the flux dynamics surrounding
the corresponding VSs. Thus, for a I x I transition matrix
P, this adjustment is performed by computing P =
(1—q)P+11; ;. Note that 1;; is an I x I matrix of ones,
the parameter q is an adjustment factor, where 0 < g < 1.
Typically, g is set to be closer to zero so that transition
dynamics are not overly obfuscated by the matrix adjust-
ment. Let ¢ =11; be an initial FR value, where 1; is a

I-length vector of all ones. The flux rank @**!) is updated
by left multiplying P with @) in each iteration. The process
continues until convergence or reaching a maximum num-

ber of iterations K.

Algorithm 4: Flux Rank

Input: Probability Transition Matrix P, Adjustment Factor g,
Tolerance €,, Maximum Iterations K,

Output: Flux rank ¢

l:Let P = (1—q)P+11;;

2: Let o =1l;and k=0

3: do

4 g*) = o

5 k=k+1

6: while [|o¥) — o*~V|| > ¢, and k < K,
7: return o(¥)

Granularity in the outer signal space is captured through
the VS affinity measure associated with a signal’s current
state. Taking this affinity-based granularity into account
when generating the VS network’s probability transition
matrix is reflected in VS inflows and outflows. Therefore,
the FR generated under this affinity framework gives a more
accurate representation of the relative flux between all VSs.
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Figure 5. lllustration of compositional data constrained to §°. The simplex is
shown in a blue plane, whereas datapoints are depicted in red.

3.3. FR statistical monitoring

Note that FR features are always compositional in nature. A
vector is considered compositional if its elements sum to
one. For example, the vector X = (0.25, 0.60,0.15)" is com-
positional. Compositional data are embedded within the
simplex space. A simplex represents a generalization of the
triangle to an arbitrary number of dimensions. Thus, FR fea-
tures are constrained to the I-dimensional simplex $'. Due
to this constraint, the FR features cannot be evaluated under
standard SPC frameworks. Figure 5 shows an example of
compositional data constrained to the 8> simplex in the R?
space, but they are also embedded into a two-dimensional
plane that takes a triangular shape.

Multinomial data represents a certain variety of compos-
itional data. The Pearson y? statistic is used to monitor
multinomial data (and in some cases, Dirichlet data, which
is also compositional). However, this statistic is not generally
applicable to all forms of compositional data, due to issues
involving the upper control limit. Oftentimes with non-
multinomial data, the upper control limit is too small.
Boyles et al. (1997) encounter a similar issue when designing
SPC principles to non-multinomial data. An adjustment of
the Degrees Of Freedom (DOF) was proposed to remedy
this issue. Therefore, we develop a FR version of this general
compositional y* statistic to monitor the FR with the
adjusted DOF,

1 —\2
m oS —a)
2
e~ ()
where E(-) is the expected value function, and v are the
effective DOF. The effective DOF can be found by calculat-

ing,
2[E(m2))
v { Var(T1?) —‘ ®

where [-] is the ceiling function, and Var(-) is the variance

2

function. Hence, the upper control limit of the FR y* statis-

tic can be obtained as y7 .-



Multivariate monitoring schemes typically involve the
Hotelling T? statistic in its design. Vives-Mestres et al.
(2014) shows that the Hotelling T? statistic is inadequate to
handle compositional data. Compositional data comes with
a major pain point: multicollinearity is always encountered
due to the restrictions imposed by the simplex.
Furthermore, simply removing one of the variables involved
in the multicollinearity or restructuring the covariance
matrix with spectral analysis does not address the peculiar-
ities specific to compositions; either approach produces a
hyper-ellipsoid confidence region that may easily exceed the
bounds of the simplex. These techniques also fail to address
the unique types of in-control patterns that may occur
within the simplex space.

Hence, we propose to leverage the isometric log-ratio
(ilr) transform (Egozcue et al., 2003) to tackle this dilemma.
Transforming our FR composition ¢ with ilr yields coordi-
nates ¢.

ilr

0e—{= (Clw--’glfl)/
{=U" " loge ©)

Note that U = (uy,...,ur—1) is a I x (I — 1) matrix that rep-
resents an orthonormal basis with respect to any I-dimen-
sional composition. The FR feature ¢ can be recovered from
{ with the inverse ilr transform,

ilr1

(= 0= (010
e = C(exp (UY))

The function €(-) is the closure of the input vector, which
functions according to Definition 1.

(10)

Definition 1. Let C(-) be the closure operation,

!

G(C) _ Cl C[*l

= =1, " Il

Zi:lCi Zi:l i
The principle of working on coordinates accommodates the
translation of standard statistics into any sample space with
a structure of Euclidean vector space; to do so, we must be
working on a coordinate representation that is held with
respect to an orthonormal basis. Therefore, transformation
of ¢ into coordinates { with the orthonormal basis U will
preserve its statistical properties.

(11)

Definition 2. Let u; € R%,i=1,2,..,] —1 be orthonormal
with respect to the ordinary Euclidean inner product in R’

and constitute a basis of a (I — 1)-dimensional linear sub-

space,
i 1 1 '
u = B . e 0o —1,0,...,0
i+1 i i

where the —1 element occurs as the (i + 1)™ position of the
vector. See the proof of the structure of U and statistical
properties of ilr transform of FR features in the Appendix.

Suppose there are ] segments of in-control sensor signals,
we can obtain FR features ¢U) for the j'™ segment, where j =

IISE TRANSACTIONS @ 1111

1,...,J. After ilr transform from ¢ to {, we estimate isomet-
ric FR coordinate mean { and covariance matrix S;. We
then derive the FR Hotelling T2 statistic,

0] I P
(1) = (€ -7)'s; (¢ - ) (12)
The upper control limit of the Tg chart is computed as,
I-1)J+1)(J—-1
UCLy: - ) ) ) (o I-1,]—I+1) (13)

JF—JI-1)

The value of F, ;1,11 is the upper 1 —a percentile of
the F distribution with J segments of sensor signals with iso-
metric FR coordinates of dimensionality I — 1.

In addition, we propose to design and develop the General
Likelihood Ratio (GLR) test in order to handle compositional
data. Kan and Yang (2017) used GLR statistics to monitor the
image profiles from a biomanufacturing process, however, this
is not applicable to compositional data. As discussed, dealing
with compositions comes with a whole host of unique chal-
lenges. Here, we leverage the ilr transform to develop new
GLR statistics for monitoring the FR features generated from
virtual sensing of nonlinear signals.

Suppose that { follows a multivariate normal distribution
with mean p,, and covariance X;. Should a process shift
occur at the 7™ network profile, the mean will shift to By

We therefore have the following hypothesis test,

Ho:E[(V]., = E[g;(/)}}’,:r+1 = Moy (14)
H, : E[C(j)];:1 7 E[C(j)L]':rH =My

We can then derive the following likelihood function for the
in-control data,

”OL H

/2|Z |1/2

<<> (00 )

Should the process shift at =,
becomes,

]
1
Lmop ) = ((2n)<11)/2|2z|1/2>

(15)

the likelihood function

j=t+1
(16)
The mean shift after t can be estimated with,
i’],fsl - (17)

] T+1

The maximum log likelihood ratio statistic can be derived as
follows,
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Figure 6. Lorenz (left) and VCG (right) study cause and effect diagram.

Figure 7. VCG for a healthy control (blue) and myocardial infarction (red).

L(”O;C’ nul;C)

Ry = log
maxo<e<s L(Mo.c» iy, 1)
Ry = log L
(”O:C)
The FR GLR statistic can be calculated with,
Ry = maX]_T(ft - v)/271(ﬁ ¢~ H ) (19)
3¢ 0<i<) 2 T, 7l 0;¢ { T, t¢ 0;¢

We can now replace p), and X with { and S, giving us,

— !

R = gmax 5 (-0 )5 (i T ) 00
To reduce the computational complexity, online monitoring
can be considered with sliding windows when ] is large. A
sliding window  is used to prune some historical data dur-
ing the computation. The upper control limit is established
with the estimated distribution of the FR GLR statistic from
in-control data.

]_T ~ - 171 A -
R = max o (e =8 ) 8 (i -T)

4. Experimental design and materials

The proposed methodology is evaluated and validated with
nonlinear Lorenz systems and physiological signal case stud-
ies. In all experimental cases, we utilize a statistical signifi-
cance level of o = 0.01, FR adjustment factor 4 = 0.001, FR
convergence criteria €, = 107, and maximum number of
FR iterations K, =1000. All bandwidth parameters are
designed to be spherical upon initialization. Experimental
design and materials are detailed for each scenario as in the
following sections.

Scaling Shearing

4.1. Nonlinear Lorenz signals

The Lorenz attractor is a well-known chaotic system whose
signal vector is represented by (x.y.z)". The system changes
according to x =a(y —x), y =x(p—2)—y, z=xy— Pz
where o,p, and f are model parameters. We assume that
the system is in control for the set of parameters ¢ =
10,p =20, = 1. Shifts in these model parameters will
cause the system to become out of control. We vary parame-
ters according to Figure 6 to test the performance of the
proposed VS monitoring framework.

Each Lorenz process is represented by a signal gener-
ated according to its input parameters. Each scenario
generates 1000 independent realizations of the process.
To evaluate the monitoring performance of each statis-
tical method, we compute detection power, which is the
proportion of out-of-control processes correctly detected.
Additionally, we determine the average run length
(ARL;) before out-of-control behavior is detected by
each technique.

4.2. VCG signals

The human heart generates nonlinear and nonstationary
physiological signals. When this electrical activity is moni-
tored along orthogonal planes of the body, a three-dimen-
sional signal known as the VCG is obtained. Yang et al
(2013) showed that spatiotemporal aberrations in the VCG
are pertinent to the presence of disease occurring in differ-
ent sectors of the heart. As shown in Figure 7, different seg-
ments of the VCG experience affine distortions in the
presence of diseases, such as like Myocardial Infarctions
(MI). These distortions take the form of affine rotation, scal-
ing, and shearing.

The experiments performed in the VCG signal study are
conducted by employing affine transformations for out-of-
control signal generation, also see the cause-and-effect
diagram in Figure 6. It is assumed that various degrees of
rotation, scaling, and shearing occur when the heart is mov-
ing away from the in-control state. The degree of these per-
turbations can be seen in Figure 6. We join multiple affine
transformations together to generate the out-of-control sig-
nals with the combinational effects of scaling, rotation and
shearing, according to,



Scaling: X-Axis Rotation: Y-Axis Rotation:
& 00 1 0 0 cosfy, 0 sinf,
M, = [0 G 0} My, = [0 cosfy —sin HX} My, = { 0 1 0 :|
0 0 ¢ 0 sinO, cosly —sing, 0 cosf,
Z-Axis Rotation: Shearing:
cosf, —sinf, 0 1 hy by
My, = | sin0, cosf, O My=|hyx 1 hy,
0 0o 1 [

Note that 0 describes an angle of rotation (in radians)
about a particular axis, ¢ describes scaling with respect to a
particular axis, and h refers to various forms of shearing.
For the purposes of this investigation, process shifts are held
with respect to a transformation’s mean. Rotation and scal-
ing case studies are shifted with respect to the z-axis, thus
only 0, and ¢, are perturbed. Shearing is only perturbed
with respect to h,.

Each VCG realization is represented by a time series of
heartbeats, which are generated according to the pertinent
affine shifts. Each case evaluated generates 1000 heartbeats.
Detection power is, once again, employed to evaluate the
performance of the statistical methods previously discussed.
Likewise, we also determine the ARL; performance for the
VCG study.

5. Experimental results
5.1. Flux Rank

The multidimensional nonlinear signals may be transformed
into a corresponding FR when exposed to a network of VSs.
An intermediate step in the FR calculation is the production
of a timeseries of state and affinity pairs. Recall that the
state timeseries represent the dynamic path traversed VSs
taken by the signal trajectory. Each state record in the times-
eries has its own associated affinity value, which is also
evolving with time. A case study of this FR computation,
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Figure 8. (a) VCG signal for a single beat.
composition.
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showing the intermediate step, is shown in Figure 8. Since
the FR is compositional, it is represented as a pie chart. The
FR element associated with the outer signal space is repre-
sented in exploded view.

The FR can reveal out-of-control behavior in a signal. As
a result, there is an observable shift in both the VCG signal
and its corresponding FR when a patient suffers from a ML
Such a shift is from healthy to MI is shown in Figure 9
where the shift in the VCG signal is visually noticeable. As
expected, the FR exhibits a similarly noticeable shift. The FR
element corresponding to the outer signal space has a much
larger value for the MI signal than for the healthy signal. In
particular, the healthy FR outer signal space value is 3.90%
of the FR composition whereas the MI outer signal space
value is 11.52% of the FR composition.

5.2. Statistical monitoring of nonlinear dynamic
systems - Lorenz

An online monitoring case study of the Lorenz study was
performed with 10,000 in-control signal points being gener-
ated with parameters ¢ = 10, p = 20, f = 1. The subsequent
5000 out-of-control signal points were generated with
parameters ¢ = 10, p = 20, # = 1.1. As shown in Figure 10,
it is very difficult to visually detect the process shift. Thus, a
sliding window of size 1000 with a step size of 50 is utilized
to generate relevant monitoring statistics. Eight VSs are
deployed and self-organized in the signal space alongside a
ninth VS placed in the outer signal space. Control charts for
these statistics are depicted in Figure 10. The purple dashed
line on each chart represents the control limit. It may be
noted that the FR y? chart is unable to detect the process
shift. The FR Hotelling 7% and GLR charts are both able to
detect the shift with equal amounts of competence. A win-
dow size of w =10 is used for the creation of the FR
GLR chart.

1.00 A
(c)
0.75 A
0.50 A
0.25 A
0.00 T
0 500
Time (ms)

Corresponding (b) state time series and (c) affinity time series as well as (d) a pie chart showing the associated FR

(©) v,

Figure 9. (a) Healthy VCG signals with the corresponding (b) healthy signal FR compared against (c) MI VCG signals with the corresponding (d) MI signal FR.
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Figure 11 shows the performance comparison among the
evaluated statistical methods for all Lorenz model configura-
tions based on the experimental design in Figure 6. For each
scenario, 1000 in-control samples and 1000 out-of-control sam-
ples were generated. Each sample had 500 points in its signal.
The results show that the FR GLR chart is able to correctly
detect all out-of-control networks once ¢ reaches 11, as p
reaches 20.25, and as [ reaches 1.05. Likewise, the FR
Hotelling T? chart demonstrates full detection power as o
reaches 13, as p reaches 20.75, and as f§ reaches 1.15. The FR
%> chart achieves 100% detection power as o reaches 20, as p
reaches 21.75, and as f§ reaches 1.4. Thus, the FR GLR method
demonstrates superior detection capabilities for all parameter
shifts in comparison to the FR T? and %* methods. FR GLR
can detect very minute changes to the control parameters.
Additionally, for all parameter shifts, the FR T2 procedure
shows better detection capability than the FR y? technique.

5.3. Statistical monitoring of multidimensional
physiological signals - VCG

An online case study of the VCG study was performed with
100 generated in-control beats. Cardiac activity is not

0 5000 10000
Time Index
Figure 10. (a) Lorenz system signal parameters shifting from o =10,p =

20, =1 (blue dots) to ¢ =10, p = 20, f = 1.1 (red lines), and the time evo-
lution of (b) 12, (0) Tf and (d) R;.

deterministic. Therefore, there is assumed to be some level
of baseline distortion in the signal, in the form of rotation,
shearing and scaling. We apply in-control affine distortions
with normally distributed parameters, according to,

x 12
0 ~ N(O, [256} , Le{xyz}

e ~N(1, [0.01%),¢ € {x,y,2}
he ~N(0, 0.01),6,¢ € {x,y,2}

(22)

After the 100 in-control beats are generated, the subse-
quent 50 out-of-control beats were generated with a mean
shift in h,, of 0.03, giving h, ~ N(0, [0.01]%). This shift
represents a miniscule change to the expected amount of
affine shearing in the signal. The difference between the in-
control and out-of-control signals is difficult to detect
visually in Figure 12. Eight VSs were deployed and self-
organized in the signal space alongside a ninth VS placed in
the outer signal space. When assessing the control charts
shown in Figure 12, one will notice that neither the FR >
chart nor the FR Hotelling T? chart is capable of detecting
the process shift. By contrast, the FR GLR chart can detect

o

0 50 100
Beat Index

150

Figure 12. (a) Healthy VCG signal (blue dots) experiencing a mean shift in
shearing parameter h,, of 0.03 (red lines), and the time evolution of (b) Xf], (c)
Tf and (d) R;.
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Figure 11. Performance comparison of the detection power of FR %2, T2, and GLR methods with varying parameters (a) o, (b) p, and (c) 8.



IISE TRANSACTIONS ‘ 1115

1.0 1.0
0.8 0.8
+ 0.6 0.6
[
3
)
Qo4 0.4
0.2 0.2
0.0 ¢ 0.0
0.00 0.05 0.10 0.15 0.20 1.00 1.05 1.10 1.15 1.20 0.00 0.05 0.10 0.15 0.20
0, Cz hy

Figure 13. Performance comparison of the detection power of FR 12, 72, and GLR methods with varying parameters (a) 0,, (b) ¢;, and (c) hgy.

the process shift. A window size of @ = 10 is utilized for
the creation of the FR GLR chart.

Figure 13 portrays the comparison between three bench-
mark statistical methods for all VCG model configurations
based on the design in Figure 6. For each scenario, 1000 in-
control beats and 1000 out-of-control beats were generated.
The results show that the FR GLR chart is able to correctly
detect all out-of-control networks once 0, reaches 0.050, as
c, reaches 1.25, and as h;, reaches 0.050. Likewise, the FR
Hotelling T? chart demonstrates full detection power as 0,
reaches 1.125, as ¢, reaches 1.075, and as h,, reaches 0.100.
The FR y? chart achieves 100% detection power as 0,
reaches 0.150, as ¢, reaches 1.15, and as h;, reaches 0.175.
Once again, like with the Lorenz study, the FR GLR proced-
ure demonstrated the best detection power when compared
with the other methods. The next most sensitive method
was the FR T? procedure. The FR y? chart performed the
worst across the board.

We evaluated and benchmarked three control charts on
their strengths and limitations for monitoring system
dynamics. In both Lorenz and VCG cases, it is shown that
the FR GLR statistic outperforms both FR Hotelling 7% and
FR j? statistics. The FR GLR can detect the process shift for
both the online Lorenz and VCG studies. The FR Hotelling
T? can detect the process shift for the online Lorenz study,
but is unable to detect the shift present in the online VCG
study. The FR y? chart was unable to detect the process shift
in both online Lorenz and VCG cases. In addition, power
analysis demonstrates the sensitivity of each FR chart.
Across the board, for both Lorenz and VCG studies, it is
shown that the FR GLR chart has higher sensitivity to para-
metric distortions than the FR Hotelling T2 and FR »?
charts. Experimental results show that the FR GLR chart
achieves better performance for VS-based process monitor-
ing than the FR Hotelling T2 chart and the FR y? chart.

6. Conclusions

Sensor technologies generate time-varying signals, which encap-
sulate the dynamics of a complex system. Effective monitoring
of these dynamics is imperative to fostering decision support
and, therefore, maintaining system control. Nonetheless, these
signals are often nonstationary and nonlinear, thus posing a

challenge for traditional quality monitoring praxis. As a result,
there is an urgent need to design and develop new sensor-based
monitoring techniques. In this investigation, we propose a new
VS network for sensor-based process monitoring. Self-organiza-
tion allows a network of VSs to be placed within the signal
space according to topological features. The VS network then
captures flux dynamics by sensing both the signal’s state and its
VS affinity. These flux dynamics are consolidated into a single
FR measure. Signal distortions ultimately have implication on
the FR vector, meaning that monitoring FR can reveal out-of-
control behavior. To this end, ilr statistical techniques are lever-
aged to handle the compositional nature of the FR. New control
charts, such as the new FR GLR, Hotelling T? and y* charts,
are designed to monitor the FR.

These new FR monitoring methods display varying
degrees of sensitivity. According to Lorenz and VCG online
case studies, the FR GLR chart outperforms the other two
FR charts. Power analyses corroborate these findings. Thus,
the FR GLR chart is the preferred method when compared
to the FR »* and T? charts. Ultimately, the VS network
model and FR statistics provide a new sensor-based moni-
toring framework for scrutinizing multidimensional signals
that are nonlinear and nonstationary. Nonlinear and chaotic
dynamics have posed significant challenges on statistical
process control and data analytics. The proposed VS
Network (VSN) methodology is promised to be generally
applicable for sensor-based monitoring of nonlinear dynam-
ical systems.

Finally, the proposed VSN can be alternatively formulated
as nonlinear signal fitting or feature extraction problems.
However, it should be noted that this article is not focused on
placing virtual sensors for signal reconstruction. In contrast,
this article focuses more on the utilization of virtual sensors to
monitor the evolving influx and outflux dynamics of nonlinear
signals, also called flux dynamical analysis. In future, nonlinear
signal fitting with the network placement of VSs should be
investigated. As such, this new idea can be further studied to
treat VSN as the model and the nonlinear signal as the pro-
cess. In addition, nonlinear feature extraction is an umbrella
term for a large plurality of methods that extract features from
nonlinear data, but the VSN approach is aimed at the place-
ment of virtual sensors for flux dynamical analysis. In future
work, another new idea is to investigate nonlinear manifold
learning for the flux dynamical analysis, and then investigate
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the general applicability for sensor-based monitoring of nonlin-
ear dynamical systems.

Funding

The authors of this work would like to acknowledge the NSF grant
MCB-1856132 and CMMI-1617148 for funding this research. Any
opinions, findings, or conclusions found in this paper are those of the
authors and do not necessarily reflect the views of the sponsors.

Notes on contributors

Alexander Krall is a PhD student in the Complex System Monitoring,
Modeling and Analysis laboratory at the Harold and Inge Marcus
Department of Industrial and Manufacturing Engineering,
Pennsylvania State University. He received both his Bachelor of Science
(2016) and Master of Science (2018) degrees in Industrial & Systems
Engineering at the Rochester Institute of Technology. Alexander’s pri-
mary research areas are distributed security, differential privacy, and
quality-driven data analytics pertinent to complex manufacturing and
healthcare systems.

Dr. Daniel Finke is an Associate Research Professor in the Materials
and Manufacturing Office at the Applied Research Laboratory, The
Pennsylvania State University and the director of the Center for e-
Design. Much of Dr. Finke’s experience in applied research and devel-
opment is within the US Navy shipbuilding domain collaborating on
projects in Advanced Manufacturing Enterprise with a focus on pro-
duction and capacity planning, Industrial Internet of Things (IIoT),
and manufacturing system modeling and analysis. Dr. Finke received
his PhD in Industrial Engineering (2010) and MS in Industrial
Engineering and Operations Research (2002) from the Pennsylvania
State University and a BS in Industrial Engineering from New Mexico
State University (2000). His current research interests include simula-
tion-based decision support, planning and scheduling, heuristic algo-
rithm development and implementation, agent-based simulation and
modeling, and process improvement.

Dr. Hui Yang is a Professor in the Harold and Inge Marcus
Department of Industrial and Manufacturing Engineering at The
Pennsylvania State University, University Park, PA. His research inter-
ests are sensor-based modeling and analysis of complex systems for
process monitoring, process control, system diagnostics, condition
prognostics, quality improvement, and performance optimization. He
received the NSF CAREER award in 2015, and multiple best paper
awards from the international IEEE, IISE and INFORMS conferences.
Dr. Yang is the president (2017-2018) of IISE Data Analytics and
Information Systems Society, the president (2015-2016) of INFORMS
Quality, Statistics and Reliability (QSR) society, and the program chair
of 2016 Industrial and Systems Engineering Research Conference
(ISERC). He is also the department editor for IISE Transactions
Healthcare Systems Engineering, as well as associate editors for IISE
Transactions, IEEE Journal of Biomedical and Health Informatics
(JBHI), IEEE Transactions on Automation Science and Engineering.

ORCID

Alexander Krall
Daniel Finke
Hui Yang

http://orcid.org/0000-0002-9753-1523
http://orcid.org/0000-0001-5370-0412
http://orcid.org/0000-0001-5997-6823

References

Boyles, R.A. (1997) Using the chi-square statistic to monitor com-
positional process data. Journal of Applied Statistics, 24(5),
589-602.

Chen, C.-B.,, Yang, H. and Kumara, S. (2019) A novel pattern-fre-
quency tree for multisensor signal fusion and transition analysis of
nonlinear dynamics. IEEE Sensors Letters, 3, 1-4.

Chen, Y. and Yang, H. (2016) Heterogeneous recurrence representation
and quantification of dynamic transitions in continuous nonlinear
processes. The European Physical Journal B, 89(6), 155.

Cheng, C., Kan, C. and Yang, H. (2016) Heterogeneous recurrence ana-
lysis of heartbeat dynamics for the identification of sleep apnea
events. Computers in Biology and Medicine, 75, 10-18.

Cheng, F.-T., Huang, H.-C. and Kao, C.-A. (2012) Developing an auto-
matic virtual metrology system. IEEE Transactions on Automation
Science and Engineering, 9(1), 181-188.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barcel6-
Vidal, C. (2003) Isometric logratio transformations for compos-
itional data analysis. Mathematical Geology, 35(3), 279-300.

Fortuna, L., Graziani, S., Rizzo, A. and Xibilia, M.G. (2007) Soft Sensors for
Monitoring and Control of Industrial Processes, Springer, London.

Funatsu, K. (2018) Process control and soft sensors, in Applied
Chemoinformatics, John Wiley & Sons, Ltd., Weinheim, Germany,
pp. 571-584.

Hsieh, Y.-M,, Lin, C.-Y., Yang, Y.-R,, Hung, M.-H. and Cheng, F.-T.
(2019) Automatic virtual metrology for carbon fiber manufacturing.
IEEE Robotics and Automation Letters, 4(3), 2730-2737.

Joseph, V.R., Dasgupta, T., Tuo, R. and Wu, C.F.J. (2015) Sequential
exploration of complex surfaces using minimum energy designs.
Technometrics, 57(1), 64-74.

Kan, C. and Yang, H. (2017) Dynamic network monitoring and control
of in situ image profiles from ultraprecision machining and bioma-
nufacturing  processes. Quality —and  Reliability — Engineering
International, 33(8), 2003-2022.

Kang, L. and Albin, S.L. (2000) On-line monitoring when the process
yields a linear profile. Journal of Quality Technology, 32(4), 418-426.

Kim, Y. and Patel, J. (2010) Performance comparison of the R*-tree
and the quadtree for kNN and distance join queries. IEEE
Transactions on Knowledge and Data Engineering, 22(7), 1014-1027.

Lin, B., Recke, B., Knudsen, J.K.H. and Jergensen, S.B. (2007) A sys-
tematic approach for soft sensor development. ESCAPE-15, 31(5),
419-425.

Liu, G. and Yang, H. (2018) Self-organizing network for variable clus-
tering. Annals of Operations Research, 263(1), 119-140.

Masuda, Y., Kaneko, H. and Funatsu, K. (2014) Multivariate statistical
process control method including soft sensors for both early and
accurate fault detection. Industrial & Engineering Chemistry
Research, 53(20), 8553-8564.

Montgomery, D.C. (2020) Introduction to Statistical Quality Control,
8th ed. Wiley, Hoboken, New Jersey.

Papadimitriou, P., Dasdan, A. and Garcia-Molina, H. (2010) Web
graph similarity for anomaly detection. Journal of Internet Services
and Applications, 1(1), 19-30.

Sadreazami, H., Mohammadi, A., Asif, A. and Plataniotis, K.N. (2018)
Distributed-graph-based statistical approach for intrusion detection
in cyber-physical systems. IEEE Transactions on Signal and
Information Processing over Networks, 4(1), 137-147.

Vives-Mestres, M., Daunis-I-Estadella, J. and Martin-Fernandez, J.-A.
(2014) Individual T2 control chart for compositional data. Journal of
Quality Technology, 46(2), 127-139.

Yang, H., Bukkapatnam, S.T. and Komanduri, R. (2012)
Spatiotemporal representation of cardiac vectorcardiogram (VCG)
signals. BioMedical Engineering OnLine, 11(1), 16.

Yang, H,, Kan, C,, Liu, G. and Chen, Y. (2013) Spatiotemporal differ-
entiation of myocardial infarctions. IEEE Transactions on
Automation Science and Engineering, 10(4), 938-947.

Yang, H., Liu, R. and Kumara, S. (2020) Self-organizing network mod-
elling of 3D objects. CIRP Annals, 69(1), 409-412.

Yang, W.-T., Blue, J., Roussy, A., Pinaton, J. and Reis, M.S. (2020) A
structure data-driven framework for virtual metrology modeling.
IEEE Transactions on Automation Science and Engineering, 17(3),
1297-1306.



Zhang, C., Yan, H., Lee, S. and Shi, J. (2018a) Multiple profiles sensor-
based monitoring and anomaly detection. Journal of Quality
Technology, 50(4), 344-362.

Zhang, C., Yan, H., Lee, S. and Shi, J. (2018b) Weakly correlated pro-
file monitoring based on sparse multi-channel functional principal
component analysis. IISE Transactions, 50(10), 878-891.

Zhang, Y., Yang, C., Huang, K., Zhou, C. and Li, Y. (2021) Robust
structure identification of industrial cyber-physical system from

IISE TRANSACTIONS ‘ 1117

sparse data: A network science perspective. IEEE Transactions on
Automation Science and Engineering, 1-15.

Zhou, S., Sun, B. and Shi, J. (2006) An SPC monitoring system for
cycle-based waveform signals wusing Haar transform. IEEE
Transactions on Automation Science and Engineering, 3(1), 60-72.

Zou, N. and Li, J. (2017) Modeling and change detection of dynamic
network data by a network state space model. IISE Transactions,
49(1), 45-57.



	Abstract
	Introduction
	Research background
	Virtual measurement
	Network science
	SPC

	Research methodology
	Self-organizing virtual sensing
	VS network modeling and FR
	FR statistical monitoring

	Experimental design and materials
	Nonlinear Lorenz signals
	VCG signals

	Experimental results
	Flux Rank
	Statistical monitoring of nonlinear dynamic systems– Lorenz
	Statistical monitoring of multidimensional physiological signals – VCG

	Conclusions
	Funding
	Orcid
	References




