2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton) | 979-8-3503-2814-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/Allerton58177.2023.10313359

Theoretical Analysis of Binary Masks in Snapshot
Compressive Imaging Systems

Mengyu Zhao

Abstract—Snapshot compressive imaging (SCI) systems have
gained significant attention in recent years. While previous
theoretical studies have primarily focused on the performance
analysis of Gaussian masks, practical SCI systems often employ
binary-valued masks. Furthermore, recent research has demon-
strated that optimized binary masks can significantly enhance
system performance. In this paper, we present a comprehensive
theoretical characterization of binary masks and their impact
on SCI system performance. Initially, we investigate the scenario
where the masks are binary and independently identically dis-
tributed (iid), revealing a noteworthy finding that aligns with
prior numerical results. Specifically, we show that the optimal
probability of non-zero elements in the masks is smaller than
0.5. This result provides valuable insights into the design and
optimization of binary masks for SCI systems, facilitating further
advancements in the field. Additionally, we extend our analysis
to characterize the performance of SCI systems where the
mask entries are not independent but are generated based on
a stationary first-order Markov process. Overall, our theoretical
framework offers a comprehensive understanding of the perfor-
mance implications associated with binary masks in SCI systems.

I. INTRODUCTION

Snapshot compressive imaging (SCI) refers to imaging
systems that are designed to map a high-dimensional (HD) 3D
data cube into a 2D image through hardware. (Refer to Fig. 1
for a schematic model of SCI systems encoding function.)
The desired HD 3D data cube is then recovered from the
2D projection using proper algorithms. The motivation behind
developing SCI solutions is to make the data acquisition phase
more efficient. For instance, a key application of SCI is in
hyperspectral imaging (HSI). HSI is an emerging technology
with a wide range of applications, from medicine to astronomy,
see e.g. [1]-[5]. The key challenge with classic HSI solutions
is that they rely on scanning the image either in space or along
the wavelengths. This makes the HSI process slow and costly.
To address this challenge, a snapshot compressive hyperspec-
tral imaging solution has been proposed that can dramatically
speed up the process by capturing all the information in a
single snapshot [6].

In recent years, numerous hardware solutions for SCI have
been proposed for various applications (for an overview, refer
to [7]). As shown in Fig. 1, the encoding operation of SCI sys-
tems can be modeled as highly under-determined linear inverse
problems with specialized sensing matrices. Various methods
have been proposed in the literature for solving such inverse
problems., e.g. see [8]-[12]. While SCI systems are under-
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Fig. 1. SCI encoding function: For b = 1,...,B, frame b and mask
b are represented by X(:,:,b) and C(:,:,b), respectively. The single 2D
measurement frame is generated as Zszl X(:,:50) ©C(:, 5 b).

determined linear inverse problems, the specialized structure of
their sensing matrices on one hand, and the complex structure
of the input data on the other hand, prevents results from
compressed sensing to be directly applicable to such systems.
Therefore, for theoretical analysis of such systems new tools
and techniques are required. Such a theoretical analysis is
performed in [13], for the case where the corresponding linear
mapping can be modeled as a highly sparse matrix with its
non-zero entries distributed as i.i.d. Gaussian. The analysis
of [13] theoretically shows that recovery of the signal from
SCI measurements is indeed feasible. However, practical SCI
systems often employ binary-valued (or finite-valued) masks.
Also, in many practical cases, the masks corresponding to dif-
ferent frames are not independent and are instead (sometimes
randomly [14]) shifted versions of each other. These raise the
following questions.

Question 1. For binary-valued masks, can we theoretically
characterize the performance of the SCI system in terms of
the statistical properties of the masks, e.g., the probability
of non-zero entries, or the correlation between adjacent (in-
frame or out-of-frame) values? If the answer is positive, can
we use these theoretical results to theoretically optimize the
performance of the system?

Question 2. How does the dependency between the masks
used for different frames affect the achievable SCI perfor-
mance? For a specified type of dependence between the masks,
e.g., randomly shifted masks, can we optimize the initial mask,
such that the achievable performance is optimized?

The goal of this paper is to address these questions. To
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achieve this goal we adopt the compression-based optimiza-
tion, compressible signal pursuit (CSP), initially proposed in
[15] and later utilized in [13] for the theoretical analysis of
SCI systems. Within this framework, we make the following
main contributions:

1) Theoretical characterization of CSP optimization perfor-
mance for SCI recovery under i.i.d. binary masks. Our
analysis reveals that the probability of non-zero entries
minimizing the achieved distortion is less than 0.5.

2) Theoretical characterization of CSP optimization per-
formance for scenarios where non-zero entries in each
frame exhibit dependence, following a binary first-order
Markov process. In this case, we assume that the non-
zero entries of different masks are independent.

3) Investigation of the impact of dependency across frames
by studying cases where entries across frames are depen-
dent, aiming to model the effect of mask dependence.

A. Related work

Recent research has focused on optimizing masks to en-
hance the performance of SCI systems. Trained sensing bi-
nary masks have been explored, demonstrating notable im-
provements over random mask designs [16]. These optimized
binary masks have a nonzero element probability of around
40 percent and exhibit smooth variations. Deep unfolding
networks have also been employed to simultaneously re-
construct hyperspectral images and optimize mask designs,
resulting in preserved image structure and optimal sampling
[17]. Furthermore, a comparison between random masks and
optimized masks, validated with hardware prototypes, supports
the benefits of optimization [18]. Other approaches include
incorporating apertures for mask multiplexing [19] and using
end-to-end networks to jointly optimize masks and networks,
leading to improved loss function and peak signal-to-noise
ratio (PSNR) performance [20]. Collectively, these studies
highlight the impact of mask optimization in enhancing SCI
system performance.

B. Notations

Vectors are denoted by bold letters, such as x and y. For
a matrix X € R™*"2, Vec(X) denotes the vector in R”,
n = ni X no, formed by concatenating the columns of X.
® denotes the Hadamard matrix product operator defined as
follows. For A, B € R"*"2 Y = A ©®B is defined such that
Yij = A;;B;j, for all 7, 5. Sets are denoted by calligraphic
letters, such as A, B. For a finite set .4, |.A| denotes the size
of A

C. Outline

The mathematical models of SCI systems encoding and
decoding operations are described in Section II. Section III
reviews the idea of compression-based methods for solving
SCI inverse problems. The main theoretical results of the paper
are presented in Section IV and the proofs are presented in
Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

The goal of an SCI system is to recover a 3D data cube from
its 2D projection, while knowing the mapping. More precisely,
let X € R"**"2*XB denote the desired 3D data cube. An SCI
system maps X to a single measurement frame Y € R™1*"2,
In many SCI systems, such as HS SCI [6] and video SCI [14],
the mapping from X to Y can be modeled as a linear system
such that [14], [21], Y = Zszl Cy, ® Xy + Z, where C €
Rmxn2xB and Z € R™*"2 denote the sensing kernel (mask)
and the additive noise, respectively. Here, C, = C(:,:,b) and
Xp = X(:,:,b) € R™*™ represent the b-th sensing kernel
(mask) and the corresponding signal frame, respectively; Here,
® denotes the Hadamard or element-wise product.

To simplify the mathematical representation of the system,
we vectorize each frame as x;, = Vec(X;) € R™ with n =
nine. Then, we vectorize the data cube X by concatenating
the B vectorized frames into a column vector x € R"P as

X1
x=1 1 |. (1)
XB

Similarly, we define y = Vec(Y) € R™ and z = Vec(Z) € R™.
Using these definitions, the measurement process defined in
Fig. 1 can also be expressed as

y=Hx+z. 2)

The sensing matrix H € R™"*"Z is a highly sparse matrix that
is formed by the concatenation of B diagonal matrices as

H=[D4,..,Dg], 3)

where, for b = 1,... B, D, = diag(Vec(Cyp)) € R™*™. The
goal of a SCI recovery algorithm is to recover the data cube
x from undersampled measurements y, while having access
to the sensing matrix (or mask) H.

III. COMPRESSION-BASED SCI RECOVERY

One of the key challenges in theoretical analysis of SCI
systems is developing a mathematical model for the structure
of 3D data cubes, such as videos or HS images. On approach
to address this issue is to use the idea of compression-based
recovery, which was initially proposed in [15] in the context
of compressed sensing. In that case, it can be shown that at
least in cases where the minimum achievable sample rate is
known, compression-based methods are able to achieve it [22].
Inspired by this idea, in [13], the first theoretical analysis of
SCI systems was performed using data compression codes for
capturing the source structure.

Compression codes designed for a class of signals are
designed to take advantage of the structure of the signals in
that class to represent it as efficiently as possible. The key
idea of using compression codes for solving inverse problems
is to use the compression code as a black-box that implicitly
takes advantage of signal structure. In the following we briefly
review some key definitions related to compression codes
defined for a given class of HD data cubes.
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Consider a compact set Q C R"B. Each signal x € Q,
consists of B vectors (frames) {x1...xp} in R™. A lossy
compression code of rate r for Q is characterized by its
encoding mapping f, where f : @ — {1,2,...,25"}, and
g:{1,2...28"} - R"P. For x € Q, x = g(f(x)) denotes
the reconstruction corresponding to x. The distortion between
x and its reconstruction X is defined as

d(x, %) 2 ||x — x[3. 4)

The compression code (f, g) is characterized by its rate  and
distortion § defined as

§ = sup d(x, g(f(x)))-
x€Q
Moreover, the defined encoder and decoder pair, (f, g), corre-
spond to a codebook C defined as

C={g(f(x)):

Note that |C| < 257,

Consider the problems of SCI defined in Section III. To
recover x from underdetermined measurements y, we need to
take advantage of the structure of x. However, as explained
earlier, the desired mathematical model of the structure needs
to capture both intra- on inter-frame dependencies, which
makes designing such models inherently very complex. One
approach to address this issue and provide a theoretical anal-
ysis is SCI systems is to adopt the idea of compression-based
recovery. The key advantage of this approach is that instead of
explicitly expressing the structure, it will be captured through
a compression code, and the performance is determined by
the key parameters of the compression code, i.e., its rate r
and distortion §.

Given a class of signal denoted by a Q C R"B, and a
rate-r distortion-0 compression code (f,g), the compressible
signal pursuit (CSP) optimization recovers x € Q from
measurements y € R™ defined in (2), as follows

x € Q}. %)

B

X = infly — Y Dici3. 6

X argrglelélﬂy Zl cill3 (6)
The performance of (6) is theoretically characterized in [13]
for the case where the diagonal entries of Dy,... , Dp are
i.i.d. Gaussian. In this paper, inspired by used in practical
SCI systems, we focus on the case of binary-valued masks,

and under various distributions characterize the performance
of (6).

IV. CHARACTERIZATION OF EFFECT OF MASKS

In this section, we present our main theoretical results on
the performance of SCI systems under different settings of
binary masks. Our goal is to address the questions we raised
before on how the statistical properties and dependencies of
binary masks impact the performance of SCI systems, and
whether it is possible to optimize the masks to achieve better
performance. We discuss our findings in three distinct settings,
each corresponding to different mask characteristics and their
effects on the system’s performance.

A. ii.d. Bernoulli masks

As the first scenario, we focus on the masks entries are
ii.d. and binary-valued. There are two key questions we
want to address in this setting: Is recovery still feasible? If
so, what is the optimal value of p, p = P(D;; = 1), that
minimizes the achieved distortion between the signal and its
SCI reconstruction?

Theorem 1. Consider Q@ C R"B, where for all x € Q,
[X|loo < §. Let C denote the codebook corresponding to a
rate-r distortion-§ lossy compression code for signals in Q.
Assume that Dy ... Dp are such that D; = diag(D;1 ... Dip),
i =1,..., B, where the diagonal entries of the matrices drawn
independently i.i.d. Bern(p). Forx € Qandy = Zf;l D;x;
let X denote the solution of (6). Choose free parameter € > .
Then,

p°Be
(p—p%)’
with a probability larger than 1 — 2571 exp(—ne?/2). More-

over, for fixed parameters (n,B,¢,p), the bound in (7) is
minimized at some p*, where p* < %

Byp §

1 112
—lx=-%[2< 1+ —)(— 7
gl <0 ) ™

)+

Note that as p — 0 or p — 1, the bound in (7) grows
without bound. This is consistent with the fact that we cannot
expect recovery from all-zero or all-one masks. On the other
hand, for p = 0.5, Theorem 1 guarantees that

1 o 5 )
 lx = < _
—lx— %13 < (14 B)(- ) + 4%,

with probability larger than 1 —257+1 exp(—%). Moreover,
it states that the optimal p* is smaller than 0.5, which means
that the optimal bound is tighter than this result. This is
consistent with the results from the literature, e.g. [16], that
show through various types of algorithmic optimizations that
in the learned optimized binary masks P(D;; = 1) is strictly
smaller than 0.5.

One distinctive property of the studied masks compared to
i.i.d. Gaussian masks studied in the prior art is that D; ; >
0, w.p. 1. To further highlight this difference and show its
potential impact on optimizing the masks, in the following
corollary of Theorem 1, we consider the case where instead
of binary-valued, the masks take values in {—1,41}. In that
case, we see that unlike the case of binary masks, the optimal
bound on the distortion is achieved for the case where p = 0.5
and E[Di,j} =0.

Corollary 1. Consider the same setup as in Theorem 1, where
instead of binary masks, Dij € {—1,+1} and {{Di;}}_,} 2,
are i.id. such that P(D;; = 1) = 1—P(D;; = —1) = p.
Then
Ap-p)Q-B)+B 5 o
A(p - p?) nB’  4(p—p?)’
2

with a probability larger than 1 — 2B7+1 exp(—g5z ). More-
over, the upper bound is minimized at p* = L, which leads to

2)
x — x[|3 < 0+ p2e

(

1 112
—x - <
—llx— I3 <

75|
nB
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B. Binary Markov masks: in-frame dependence

As the first model of masks with dependent components,
we consider a setting where masks corresponding to different
frames are independent, but the entries of each mask are
dependent and follow a first-order Markov process. More
precisely, we assume that Dq,...,Dp are independent. For
i=1,..., B, the diagonal entries of D, are generated accord-
ing to a stationary Markov process such that, for j =2,...,n,

pDiy\Di,lz(j—l)("') = pDijIDi,j—l(.|.)'

Moreover, for any ¢ = 1,..., B, and j = 2,...,n, we define
the transition kernel of the (asymmetric) Markov chain as
follows

P(D;; = 1|D;¢j—1y) = 0) = qo,
P(Dij =0|Dij_1y =1) = q1. ®)

To characterize the performance under the described
Markov model for the masks, we use the concentration of
measure results developed in [23]. For using that result, we
define the contraction coefficient corresponding to the defined
Markov process as

= sup |[jp(|d") = p(-|d")|lrv
d’,d”eSB

= |pi(-]d" = 0p) — pi(:|[d” = 1)V
1
=5l = (1= a)”]

+ (f) (1—qo)gy " —aq(L—q1)P 7

B
#(5 )10 - w2 - -
+o (1= q0)” — 4P [l ©)

In (9), for d,d’ € SB, p(d’'|d) = Hf;l p(d}|d;) denotes the
transition kernel of the defined Markov process. Fig. 2 shows
the value of #; as a function of ¢q, for a couple of different
values of ¢y and B.
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Fig. 2. 67 as a function of qj.

Theorem 2. Assume that Dq...Dp are such that D; =
diag(D;1 ... Dip), i = 1,..., B, where D;; € {0,1}. Assume

that (D;1,...,Dipn), i = 1,..., B, are independently gener-
ated as stationary first order Markov processes with transition
probabilities described in (8). Forx € Q andy = Zil D;x;
let X denote the solution of (6). Then

Bp 1) p2e

ix—f{2 —I)N(—=)+ ——
gl < (L ) +

10
1—-p " 'nB (10)

with a probability larger than

_ /oBr 7”762 2
1—(2°" 4+ 1) exp( 39 (1-161)7),

where 01 is defined in (9).

Comparing the bound in (10) and the one in (7) shows that
they are indeed equivalent. Therefore, similar to Theorem 1,

the bound is minimized for some p* = q*qﬁq* < 0.5. On the
0] 1

other hand, to minimize exp(f%(l — 61)?) which controls
how many frames can be decoupled from each other, we need
to minimize 6; defined in (9). But we can set #; = 0, by
setting g5 = p* and ¢f = 1 — p*. It is straightforward to see
that setting the parameters go and g; as such corresponds to
making the Markov process an independent process. This is
intuitively not surprising as using this setting the convergence
speed of the random variables is maximized.

C. Binary Markov masks: Out-of-frame dependence

Next we consider the case where the entries of each mask
are generated independently, but the mask entries correspond-
ing to element ¢ of each frame are dependent. This is closely
related to real masks used in practice where each mask can
be a shifted version of the previous mask. Mathematically,
we assume that Dyj,...,Dp; are generated according to
a stationary first order Markov process such that for any
j=1,...,nand i =2,..., B,

pDij‘Dlz(ifl),j(.‘.) = pDij|Di,1,j('|'>7
and
P(Dij = 1|D;—1,; =0) = qo
P(Dlj = O|Di_17j = ].) =4dq1. (11)
Assume that gp,q; < 0.5 and let
a=1-q —q-

Note that since qg, g1 < 0.5, @ > 0. Define B x B matrix A
as follows

1 o aB-1
a 1 B—2
A= ) (12)
a}é—l aB-2 1

Let Apax(A) and Apin (A) denote the maximum and minimum
eigenvalues of matrix A, respectively.

Theorem 3. Assume that Dy ...Dp are such that D; =
diag(D;1 ... Dip), i = 1,..., B, where D;j € {0,1}. Assume
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that (D+j,...,Dg;), j =1,...,n, are independently gener-
ated as stationary first order Markov processes according to
(11). Forx € Qandy = Zil D;x; let x denote the solution
of (6). Then, if Apin(A) >0,

)\max( )(l_p)+pB 0

niBHX_X”2 mm(A)( ) (’I’LB)
p’e
Ty oo
)\min(A)p(l - p)
with a probability larger than 1 — 2871 exp(— ”5; ).

Note that in the case where all the entries of the sensing
matrix are independent, i.e., the case where ¢y + ¢; = 1 and
a =0, Amax(A) = Amin(A) = 1. Therefore, in that case the
upper bound in Theorem 3 simplifies to the result of Theorem
1.

We can use Gershgorin circle theorem [24] to derive upper
and lower bounds on Apax(A) and A (A), respectively, and
find the following corollary.

Corollary 2. Consider the same setup as in Theorem 3. Then,

for a < &,
gl - xig <UD ERE 2
p*(1—¢
(1 =3a)p(l—p)’
with a probability larger than 1 — 287+ exp(— 2”52 ).

V. PROOFS
A. Proof of Theorem 1
Let x = g¢(f(x)). By assumption, the code operates at
distortion §. Hence, [|x — x||3 < 4. On the other hand, since
X = argmineec || y — Yo Dicil|3, and x € C, ||y —
Sl Dixills < ly = £ Dixille. Buty = 327, Do
Therefore,

B
IS D — )]z < ||ZD %)l (13)
i=1
Note that, for a fixed ¢ € C,
B B
[ ZDz( x:)|l5 = Z ZDU Tij — Cij )? (14)
=1 j=1 i=1
Given a fixed x and c, for j =1,...,n, let
B
2
Uj = <Zi:1 Dij(wij — ciz))”
Ui, ...,U, are independent random variables and
B B
=E > DiDij(wi; — cij)(wir; — cirj)]
i=14'=1
B B B
=y Z P (w55 — ciy)(wary — cog) + Y (s — ci5)°
i=14'=1i'# =1

=p°() (ij — cij))

Mm

B
p°)> (wij — cij)”. (15)
=1

i=1

Given €; > 0 and €3 > 0, x; € R” and x € RP”, define
events £ and & as

B
p? .
&1 = {*IIZD i —%)ll3 < i Z(Xi = %)I3

I
—

+ 228 %13+ BPer) (16)
and
1 B p B
=1 > Di(xi —c)3 > i > (xi—c)l3
i=1 =1
2
+I%”X—C||§—Bp2€2 :Ve e C}, (17)

respectively. Then, conditioned on & N &, since x € C and
x € C, it follows from 13 that

2 2
p—p - bp—p -
I — |3 < I — |13 + *H Z i —%)|13
n n
+ Bp®e1 + Bpes
+ (B - 1)p? N
< ZMHX —%||3 4 Bp*e1 + Bp?es, (18)

n

where the last line follows because || Zil(xi -x)[3 <
Bl|x — x]|3. In the rest of the proof, we focus on bounding
P(EFUES).

Note that since by assumption the ¢,,-norm of all signals
in Q are upper-bounded by p/2, U;’s are also bounded as

U; <ZD Z a:,j—cij)Q
- i=1
<> 1
i=1

Therefore, applying the Hoeffding’s inequality,

_ BQPQ.

Mm

P P2
(5 + 5) (19)

i=1

(20)

Similarly,

21

Therefore,

P(&F) < exp(— ) (22)

and, by the union bound, since |C| < 287,

2ne3
B2 )

P(E5) < 257 exp(— (23)
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Again by the union bound, P(£1NEy) > 1— P(EF) — P(E5).
Given 0 < € < 3%, the desired result follows by letting ¢; =
€3 = €¢/2. Plug thls into (7), and we have

2 2
- . +(B-1 .

T LR LB 213 4 Boter + Bes

B —1)p?

<PHB-r s g
(24)
Also, from 22 and 23, for €; = ¢o = Be/2,
2ne3 . 2ne€3
P& Né&)>1— exp(—B—Ql) — 287 exp(— B22)

=1— (28" + 1) exp(—ne?/2).
Finally, to finish the proof, define

1)
p’nB’

[

Using this definition, minimizing the right hand side of (7)
as a function of p, is equivalent to minimizing (1 4 Bp =)8 +

(pi;z)’ which in turn is equivalent to minimizing
€
fp) = (=)0"+ :
(p—p?)

Note that f(0) = f(1) = oo, which is consistent with our
intuition that all-1 or an all-0 masks are not effective. Let p*
denote the value of p € (0,1) that minimizes f(p), note that

P
1-p

1 1-2p
f(p) = — €. (25)
D=0 " -y
Note that on one hand lim,_,o f'(p) = —oo and on the other

hand f'(%) =46’ > 0, which implies that p* where f'(p*) =
0 belongs to (0, 3).
B. Proof of Corollary 1

The proof follows similar to the proof of Theorem 1. The
only difference is that, here,

B B
E[U;] = E)_ ) DijDirj(wij — cig)(wir — cij)]
i=14d'=1
B B
= (2p = 1)) _(wij — ci))* +4p — p*) Y _(wij — ¢i3)?
i=1 =1

(26)
C. Proof of Theorem 2

Following the same steps as the initial steps of proof of
Theorem 1, we have

n B n B
20 Digle = )" < 33 Digloss = 7))
7j=1 1=1

Define d; = [Dyj,...,Dp;]. Note that dy,...,d, is a
stationary first Markov process with state space S = {0,1}7
such that

B

=[] »@

j=1

p(d;ldy, ... di—1) = p(d;|di—1) iildi—1)5),

where p(d;j|d(;—1);) agrees with the transition probability of
the Markov chain used for generating the masks. Given x and
c, for j = 1,...,n, let (p(dj) = (Zf;l Dij(l‘ij — Cij))Q.
Unlike in the proof of Theorem 1, ¢(d;),...,»(d,) are no
longer independent. However, the expected values of ¢(d;)’s
are the same as those of Uj;’s, because the dependencies are
in-frame. Therefore,

B B
E[@(dj)] = pQ(Z(xlj - clj Z mlj ng .
i=1 i=1
Similar to the proof of Theorem 1, define events £; and &, as
(16) and (17), respectively. To bound P((&; N &2)¢), we need
to show the concentration of " —1(d;) around its expected
value. To achieve this goal, we use a result from [23], which
is explained in Appendix A of the extended version of the
paper [25]. To employ Theorem 5 in Appendix A , note that
since the Markov chain is assumed to be stationary, §; = 6 =
. = 0,,_1. Therefore,

M, = max (140;+ 0011+ - +0;-0,1)
1<i<n—1
=1+6;+67+67+---+677"
1— 07
= . 27
10, 27)

To use theorem stated in Appendix A of [25], let ¢ denote
the Lipschitz coefficient of function ¢ : & — R, defined
earlier. Then, we have

1
Z > LE[p(D))] + Bo'er)
- 2B2 1
< exp( 2nc? M2
2 462
< exp(— g g (1= 01)%), @8)
and
1 n
(=Dl [p(D;)] = Bp*e2)
j=1
2B2 4 2
ple
<en(-5 o)
BQ 462
< exp(— 5 52 (1= 01)%) 29)

where in denving both bounds we have used the fact that
M, 1179 < 1=5;- To bound the Lipschitz constant c, note

that for and d],d € {0,1}5, we have

p(dy) — @(d))]
B B
= I(Z Dyj(wij — ¢iz))* — (Z Djj(wi; — ¢iy))?|
szl 1=1 5
= | Z(Dij + Di) (i — cij)] - | Z(Dij — Di;) (w5 — cij)|

(a)
< 2By (d;,d)), (30)
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. This

where (a) follows because for all x € Q, [X[loc < §
= ¢/2, and

implies that ¢ > 2Bp?. Finally, setting €; = €
noting that |C| < 287 yields the desired result.

D. Proof of Theorem 3

Again we follow the same steps as the initial steps of
proof of Theorem 1 to derive >’ " (R Dij(xji—#4))% <
ZJ 1(21 1 Dij(z;j — %;5))*. As in the proof of Theorem 2,
define d; = [Dyj,..., Dp;]. Unlike the proof of Theorem 2,
here dy,...,d, are independent and identically distributed.
Again similar to the proof of Theorem 1, given x and c, for
j=1,...,n, define

c) = (Zil Dij(wij — ei3))*.

Note that Uy (x, ¢), . .., U, (x, ) are independent random vari-
ables. Moreover, they are positive and bounded with the same
upper bound as the one derived in (19). Therefore, we can
still apply the Hoeffding’s inequality and derive (20) and (21).
The key difference now is that computing E[U;(x, c)] is more
complex as the entries of d; are not independent.
To compute E[U; (x, c)], define p;; = x;j — ¢ij.
that as before, E[D};] = E[D;;] = p. Moreover,

Also, note

B
E[U;(x,¢)] = B[(D_ Dij(i; — cij))’]
1

B ZZB
Z Z E[D i1j Disj Mzuﬂlw (31)

Without loss of generality, assume that ¢y < 4o. Then,
E[D;,;Di,;] = P(Diy; = Diyj = 1) = P(Dy; =
1) P(D’LQj = 1|D1'1j = 1) To compute P(Digj = ]~|Di1j =
1), we need to compute (i —1i1)-th order transition probability
of the Markov chain. The transition kernel of the Markov chain
can be written as

P:|:1_qo 4o :|
Q1 1-q

Let Q = E _q(fo}, and let « =1 — g9 — q1. Then,

M= B g} Q! (32)

Using this representation, the k-th order transition probability
of this Markov chain can be written as

s = 1 {fh QO] n ot [ q0 QO] . (33)
Qo +q1 |91 9o Qo+tqg [0 @1
Therefore, for k=1,...,n —1
+ kg %
P(D(itr); = 1|Ds; =1 07:;04— 1—p)a”.
(D 1D )= o + q1 ( )

Thus,

ZZE i1 127 lelhzj

’Ll 12

B B
=3 pp+(1-pa

i1 2

B
= pQ(Z :u”ij
Zuu

where p; = [p1j,. -
Therefore, E[U; (x,

\i1*i2\)

Hiyjlisg

Bip(l—p

Z Z al= mﬂzuﬂlzj

i1 2

+p(1 —p)pj Ay, (34)
. upj)t and A is defined in (12).
c)] can be upper- and lower-bounded as

B
E[U;(x,¢)] < pZ(Z 1) 4 p(1 = p)Amax (M| [13, (35)
1=1
and
B
E[U;(x,¢)] > p*(O_ 1ij)* + p(1 = p)Amin (D) 13- (36)
=1
Define,
& ={> _ Uj(x,c) > Y E[Uj(x,¢)] - Bp’e1, Ve € C},
j=1 j=1
and
& ={)_Uj(x,%) <Y E[U;(x,%)] + Bp’es, },
j=1 j=1

respectively. As explained earlier, we the bounds in (20) and
(21) still hold here too. Therefore, the lower bound on £ N&,y
is the same as before. But conditioned on & N &;, employing
the bounds in (35) and (36), it follows that

p(l— ) mm( )H

%3
(1 —p)A (A) P =
S E Rl DY S
+Bp2€1 +Bp262

p(1 = p)Amax(A) + p*B

5 + Bp?e
n

where the last line follows by setting €; = €3 = 5

E. Proof of Corollary 2

According to the Gershgorin circle theorem [24], since all
the diagonal entries of A are equal to one, every eigenvalue
of A lies within at least one of the Gershgorin discs. These
discs are all centered at one and have radii equal to

Ty = Z Aijv
J#i

for ¢ =1,..., B. Therefore,

1 —max7; < Apin(A) < Apax(A) < 14 maxr;.
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But

2
maxr; < 2(a+a?+...) = a
11—«
Therefore,
1—3a 14+«
7<AIIHHA <)\mxA < —
l—a & () = aL()_1—oz

Inserting these bounds in the result of Theorem 3 yields the
desired result.

VI. CONCLUSION

In this paper, we have theoretically studied the performance
of SCI systems under different types of binary masks. Prior
art had characterized the theoretical performance of SCI sys-
tems under i.i.d. Gaussian masks. However, in practice the
masks are rarely i.i.d. Gaussian. In many applications, the
masks are binary-valued. Moreover, there have been results
in the literature on optimizing binary masks such that the
performance of SCI system is optimized. In this paper, we
have characterized the performance of SCI systems under three
different models for binary masks. Our results theoretically
confirm the observations in the literature that for i.i.d. binary
masks to optimize the performance the probability of 1s should
be smaller than 0.5.
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