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Abstract
We construct an injective map from the set of holomorphic equivalence classes of
neighborhoods M of a compact complex manifold C into C

m for some m < ∞
when (T M)|C is fixed and the normal bundle of C in M is either weakly negative or
2-positive.
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1 Introduction

Let C be a compact complex manifold. We say that two holomorphic embeddings
f : C ↪→ M and f̃ : C ↪→ M̃ are holomorphic equivalent if there is a biholomorphic
mapping F from a neighborhood of f (C) in M into a neighborhood of f̃ (C) in M̃
such that F f = f̃ . To classify such neighborhoods M , we identifyC with f (C) via f .
We also fix the normal bundle NC of C in M and the restriction TCM of T M on C . To
determine the holomorphic equivalence of twoneighborhoods,Grauert [10] introduced
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the formal principle that asserts two neighborhoods of C are holomorphic equivalent
if they are formally equivalent. The formal principle holds for neighborhoods when
NC has nice curvature properties. By definitions in [10, Def. 1, p. 342] and [6, Def. 1,
p. 108], NC is weakly negative (resp. q-positive) if the zero section of NC admits a
tubular neighborhood Tub(C) in NC whose boundary is strictly pseudoconvex (resp.
of at least q negative Levi eigenvalues). When NC is weakly negative, Grauert [10]
proved that the formal principle holds when C has codimension one. Hironaka and
Rossi [15] extended Grauert’s result to arbitrary positive codimension as well as to the
reduced complex spaces C that are exceptional in the sense of Grauert. Griffiths [13]
showed that the formal principle holds when NC is sufficiently positive and dimC ≥ 3.
This result was improved by Hirschowitz [16] including dimC ≥ 2 with weakly
positive NC and then by Commichau-Grauert [6] for 1-positive normal bundle NC for
dimC ≥ 1.

Despite all these positive results on the formal principle, it remains unknown until
now if the equivalence classes of neighborhoods of C with a fixed TCM form a finite-
dimensional space when the formal principle holds. The main result of this paper
provides a structure for the neighborhoods of C as follows.

Theorem 1.1 Let C be a compact complex manifold. Assume that NC is either weakly
negative or 2-positive. There is an injective mapping from the set of holomorphic
equivalence classes of neighborhoods of C into the finite-dimensional space

H1(TCM) :=
⊕

�≥2

H1(C, TCM ⊗ S�N∗
C ),

where S�N∗
C is the �-th symmetric power of the dual bundle N∗

C of NC .

Note that dimH1(TCM) < ∞ follows from the assumption on NC . Indeed, it is
known that dimH1(TCM) is finite, when the zero section of NC admits a relatively
compact neighborhood W in NC that is either weakly negative or 2-positive; see
Lemma 5.1.

The formal principle does not rule out the existence of an infinite-dimensional
moduli space for equivalence classes. In fact, given a (compact and smooth) Riemann
surface C and a positive line bundle NC , Morrow-Rossi [26, p. 323] constructed a
complete set of the equivalence classes of holomorphic transverse foliations of neigh-
borhoods of such C , under the smaller group that preserves the foliations, showing
that the moduli space for the equivalence classes is infinite dimensional. See Proposi-
tion 6.1 for details.

For other closely related results, we mention that when C is the Riemann sphere
and rank NC = 1, Hurtubise-Kamran [17] showed that the space of neighborhoods
with 1-positive NC is infinite dimensional, and Mishustin [25] constructed a normal
form with infinitely many invariants. See Ilyashenko [19] when C is elliptic curve
and NC is a positive line bundle and recent results of Falla Luza and Loray [7] on the
Riemann sphere.

On the other hand, when C is an elliptic curve embedded in a complex surface with
a topologically trivial NC , Arnol’d [4] showed that the formal principle holds under
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an extra Diophantine condition on TCM when it splits as the direct sum TC ⊕ NC .
Furthermore, Arnol’d showed for the first time that the formal principle fails when
NC is topologically trivial for an elliptic curve C and a certain Diophantine condition
is violated (see [9, sect. 5.4] for construction of counter-examples). Arnold’s theorem
was extended by Ilyashenko and Pjartli [20] to the case when C is the product of
finitely many elliptic curves and NC is the direct sum of line bundles, and by the
authors [8] for a complex torus with a Hermitian flat NC satisfying a Diophantine
condition. Of course, the study of holomorphic neighborhoods of embedded compact
complex manifolds has a long history. The reader is referred to [9] and references
therein on neighborhoods of compact manifolds. See also recent work of Hwang [18],
Koike [22], and Loray-Thom-Touzet [23].

The paper is organized as follows.
In Sect. 2, we construct a formal normal form for holomorphic neighborhoods of

C that is realized as a subset of H1(TCM). Our injectivity assertion in Theorem 1.1
remains true if NC is merely 1-positive and H0(C, TCM ⊗ S�N∗

C ) = 0 for all � > 1.
In Sect. 3, we find a formal normal form for tangential foliations of neighborhoods
of C that contain C as a leaf. In Sect. 4, we find a formal normal form for transverse
foliations of neighborhoods of C . In Sect. 5, we apply the theorems in [6, 10] to show
Theorem 1.1 and analogous classification for transverse foliations. In Sect. 6, we use
a theorem of Camacho-Movasati-Sad [5] to show that when the genus of the compact
Riemann surface C is bigger than one, there are neighborhoods of C that are not
linearizable. Therefore, the equivalence classes contain at least two elements.

2 A Formal Normal Form to Classify Neighborhoods

We have mentioned Grauert’s formal principle asserting that two neighborhoods are
holomorphic equivalent if they are formally equivalent. To furthermotivate our results,
let us describe the following problems about the classifications of neighborhoods. We
recall the Kuranishi problem mentioned in 1982 by Morrow-Rossi [26] for the study
of neighborhoods of C , which is to construct a moduli space or a parametrization
that classifies neighborhoods of C completely and describes the structures of the
moduli space. This paper provides partial answers to this problem.However, we should
mention that a deformation theory for a family of neighborhoods of reduced complex
spaces with isolated singularity was achieved in 1972 by Grauert [11] and it is evident
that such a deformation theory for the family does not provide a complete classification
for an individual member in the family, as shown by the finite dimensionality of
the Mather-Yau classification [24] for complex hypersurfaces in C

n with isolated
singularity. An interested reader can consult the book of Greuel, Loosen, and Shustin
[12] for deformation theory of neighborhoods of germsof complex spaceswith isolated
singularity and other important results.

With the above introduction, we now turn to the construction of a formal normal
form for formal equivalence classes of holomorphic neighborhoods.Wewill also study
the analogous problems for the tangential and transversal foliations of neighborhoods
of C . Certain features of the normal forms will be described in details as they will be
useful in the convergent proof.
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To study classifications, we will use transition functions for various vector bundles
in coordinate charts. Let C be a compact complex manifold embedded in a com-
plex manifold M . We cover a neighborhood of C in M by open sets Vj and choose
coordinate charts (z j , w j ) on Vj for M such that

Uj := C ∩ Vj = {w j = 0}.

To have Leray coverings, we may assume for instance that Uj , Vj are biholomorphic
to polydiscs. Indeed, the existence of such covering {Vj } with a prescribed covering
{Uj } of C is ensured by the triviality of holomorphic vector bundle on the unit ball
and a result of Siu [27, Cor. 1] saying that a Stein manifold in a complex manifold M
admits a neighborhood that is biholomorphic to a neighborhood of the zero section of
the normal bundle of C in M .

Let U = {U1, . . . ,Um} be a finite open covering of C with coordinate charts zi =
ϕi (p) = (z1i , . . . , z

n
i ) defined onUi . Furthermore,wemay assume thatU1, . . . ,Um are

in general position (see [9, Def. A.15]); in particular, the intersection of any number
of U1, . . . ,Um has finitely many connected components. For the existence of such
covering {U1, . . . ,Um}, see [9, Prop. A.19 (a)]. Let

zk = ϕk j (z j ) = ϕkϕ
−1
j (z j ) (2.1)

be the transition function of C on Ukj := Uk ∩ Uj . Thus the neighborhood M has
transition functions on Vkj := Vj ∩ Vk

�k j : zk = �τ
k j (z j , w j ) := ϕk j (z j ) + lk j (z j )w j + φτ

k j (z j , w j ),

wk = �ν
k j (z j , w j ) := tk j (z j )w j + φν

k j (z j , w j ).
(2.2)

Here and in what follows, hτ (resp. hν) stands for n-tuple (resp. d-tuple) of holomor-
phic functions (h1, . . . , hn) (resp. (hn+1, . . . , hn+d)). Also, φτ

k j , φ
ν
k j vanish to order

≥ 2 along w j = 0:

φτ
k j (z j , w j ) = O(|w j |2), φν

k j (z j , w j ) = O(|w j |2).

For abbreviation, we also call � := {�k j } a neighborhood of C and O(2) denotes
such a φk j . Throughout the paper, we identify the restrictions z j |Uj , ϕk j (z j )|Uj of
z j , ϕk j (z j ) in (2.2) with z j , ϕk j (z j ) in (2.1), respectively.

Note that the transition functions of NC are

Nkj (z j , v j ) = (ϕk j (z j ), tk j (z j )v j ) (2.3)

and the transition matrices of TCM := (T M)|C are

gkj :=
(
sk j lk j
0 tk j

)
(z j ) on Uj ∩Uk (2.4)
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for some n × d matrix lk j , while sk j is the Jacobian matrix of ϕk j . When lk j = 0,
TCM splits as TC ⊕ NC (see [26, Prop. 2.9]). With gkj , TCM has a basis {ẽμ

k ;μ =
1, . . . , n + d}. Set

ẽτ
k = {ẽik : i = 1, . . . , n}, ẽν

k = {ẽn+ j
k : j = 1, . . . , d} (2.5)

with ẽν
k being the basis of NC on Uk . To study the foliations, we will choose ẽν

k to be
a flat basis when NC is flat, i.e., its transition functions are locally constant.

Throughout the paper, we fix

N 0
k j (z j , w j ) = (ϕk j (z j ) + lk j (z j )w j , tk j (z j )w j ).

We emphasize that {N 0
k j } does not necessarily define a neighborhood of C as it may

not be a cocycle. Thus, we introduce the following.

Definition 2.1 Fix TCM . Fix a holomorphic neighborhood N 1 = {N 1
k j } ofC such that

N 1
k j = N 0

k j + O(2). If TCM splits, we always take N 0
k j = Nkj defined by (2.3). Let

M be the set of germs of holomorphic neighborhoods � of C in complex manifolds
M̃ such that TCM = TC M̃ and � = N 1 + O(2).

Throughout the paper, we assume that M is non-empty. Therefore the existence of
N 1 is ensured.

For the holomorphic (resp. formal) equivalence of two neighborhoods of C , we
restrict to biholomorphic (resp. formal) mappings F transforming � into �̃ fixing
C pointwise. We now express F in local coordinates. Suppose that {�k j } and {�̃k j }
are transition functions for neighborhoods M, M̃ of C . They have local coordinates
(zk, wk) and (z̃k, w̃k) on Vk, Ṽk , respectively, where {Vk} and {Ṽk} are open coverings
of M, M̃ . We may assume that Vk ∩C = Ṽk ∩C = Uk are mapped onto polydiscs in
C
n via zk, z̃k , respectively. Thus {Uk} is a Leray covering of C such that Hq(U ,F) =

Hq(C,F) for any coherent analytic sheaf F on C .
For convenience, we also assume that coordinates mappings (zk, wk), (z̃k, w̃k) are

biholomorphic in neighborhoods of the closures of Vk, Ṽk . Since F fixes C pointwise,
then F can be expressed as

Fk : z̃k = Fτ
k (zk, vk) := zk + f τ

k (zk, wk),

w̃k = Fν
k (zk, wk) := wk + f ν

k (zk, vk)
(2.6)

with fk(zk, 0) = 0 such that Fk�k j F
−1
j = �̃k j or F�F−1 = �̃ for short. By formal

equivalence, we mean that fk(zk, wk) is a formal power series in the variables wk

with holomorphic coefficients in the variables zk ∈ Ûk , where the latter is zk(Uk).
In components, we have Fτ

k = (F1
k , . . . , Fn

k ) and Fν
k = (Fn+1

k , . . . , Fn+d
k ). We will

apply the notation to components of �τ
k j ,�

ν
k j and �k j .

Definition 2.2 We say that F = {Fj } defined by (2.6) is tangent to the identity along
C and write F = I+ f with f = O(2), where the latter means that f τ

k (zk, wk) and
f ν
k (zk, wk) are holomorphic functions vanishing to order ≥ 2 at wk = 0 and the
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identity mapping is denoted by I. Let M/∼ (resp. M/
f∼) be the set of equivalence

classes of holomorphic neighborhoods of C under all such biholomorphisms (resp.
formal) F .

Next, we identify sections in symmetric powers of N∗
C with coordinate changes.

We will associate

[ fk]m(zk, wk) :=
⎧
⎨

⎩

⎛

⎝
∑

|Q|=m

f τ
k,Q(zk)w

Q
k ,

∑

|Q|=m

f ν
k,Q(zk)w

Q
k

⎞

⎠

⎫
⎬

⎭ (2.7)

with a 0-th cochain [ f̃ ]m ∈ C0(U , TCM ⊗ SmN∗
C ) defined by

[ f̃k]m(p) :=
n+d∑

μ=1

∑

|Q|=m

f μ
k,Q(zk(p), vk(p))ẽ

μ
k (p) ⊗ (w∗

k (p))
⊗Q . (2.8)

Here and in what follow, Q ∈ N
d . We will also associate

[φk j ]m(z j , w j ) :=
∑

|Q|=m

φk j;Q(z j )w
Q
j (2.9)

with the 1-cochain {[φ̃k j ]m} ∈ C1({Uj },O(TCM ⊗ Sm(N∗
C ))) defined by

[φ̃k j ]m(p) =
n+d∑

μ=1

∑

|Q|=m

φ
μ

k j;Q(zk(p), vk(p))ẽ
μ
k (p) ⊗ (w∗

j (p))
⊗Q, (2.10)

where {w∗
j,μ(p)}μ denotes the basis of N∗

C that is dual to ẽν
j (p) and (w∗

j (p))
⊗Q =

w∗
j,1(p)

⊗q1 ⊗ · · ·⊗w∗
j,n(p)

⊗qn . Both associations are C-linear, one-to-one and onto.

By abuse of notation, we drop tildes in φ̃k j , f̃k and we interchange (2.7) and (2.8)
(resp. (2.9) and (2.10)) for computation as we wish.

We also need to identify the standard Čech coboundary operator δ for cochain (2.10)
with a coboundary operator for (2.9). By Lemma 2.7 in [9], applied to E = TCM , we

have δ̃[ f ]m = [φ̃]m being equivalent to δ[ f ]m = [φ]m . Writing in a column vector
[ fi ]m := ([ f 1i ]m, . . . , [ f n+d

i ]m)t and recalling (2.4), this reads

(δ[ f ]m)i j (z j , w j ) := gi j [ f j ]m − [ f mi ] ◦ Ni j = [φi j ]m(z j , w j ). (2.11)

To construct a formal normal form for M, recall that dim Hq(C, V ) < ∞ for
q > 0 and any holomorphic vector bundle V on C ; see [21, Thm. 3.20 and Cor.,
p. 161].

Note that δ defined by (2.11) is not the standard Čech coboundary operator. We will
denote by Zq(U , TCM⊗ SmN∗

C ) the kernel of the standard Čech coboundary operator
from Cq(U , TCM ⊗ SmN∗

C ) to Cq+1(U , TCM ⊗ SmN∗
C ).
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Definition 2.3 Let C be a compact complex manifold and fix a holomorphic vector
bundle NC on C . Fix a basis [em] = ([em1 ], . . . , [emkm ]) for H1(C, TCM ⊗ SmN∗

C ) that

is not zero. We also fix a representative emi ∈ Z1(U , TCM ⊗ SmN∗
C ) for [emi ]. Define

cm · em := ∑
cmi e

m
i for cmi ∈ C and

(c2, . . . , cm) · (e2, . . . , em) =
m∑

j=2

c j · e j .

For convenience, if H1(C, TCM ⊗ SmN∗
C ) = 0, set cm = 0 and cm · em = 0.

Lemma 2.4 Fix m > 1. Let �, �̃ ∈ M and let F = I+ f be a formal mapping
satisfying f = O(m).

(a) If �̃ − � = O(m), then [�̃]m − [�]m ∈ Z1(U , TCM ⊗ SmN∗
C ); in particular,

[� − N 1]2 ∈ Z1(U , TCM ⊗ S2N∗
C ), ∀� ∈ M.

(b) F�F−1 = �̃ + O(m) holds if and only if δ[ f ]m = [�]m − [�̃]m .

(c) If �̃ = � + O(m), there exist a unique cm · em and some F̃ = I+O(m) such that
F̃�̃F̃−1 = � + cm · em + O(m + 1).

Proof (a) Recall that N 0
k j (z j , v j ) = (ϕk j (z j ) + lk j (z j )v j , tk j (z j )v j ) and

�k j (z j , w j ) = N 0
k j (z j , w j ) +

m∑

�=2

[φk j ]�(z j , w j ) + O(m + 1).

The Jacobian of N 0
k j at (z j , v j ) applied to functions (z̃ j , ṽ j ) is given by

DN 0
k j (z j , v j )(z̃ j , ṽ j ) = (sk j (z j )z̃ j + lk j (z j )ṽ j

+ ∂z j lk j (z j )z̃ jv j , tk j (z j )ṽ j + ∂z j tk j (z j )z̃ jv j ).

If functions (z̃ j , ṽ j ) = O(|v j |), we simplify it as

DN 0
k j (z j , v j )(z̃ j , ṽ j ) = DN 0

k j (z j , 0)(z̃ j , ṽ j ) + O(|v j |2).

Let us use transition functions gkj of TCM to write

DN 0
k j (z j , 0)(z̃ j , ṽ j ) = gkj (z j )(z̃ j , ṽ j ) = (sk j (z j )z̃ j + lk j (z j )ṽ j , tk j (z j )ṽ j ).
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Then for [φk j ]≤m = ∑m
�=2[φk j ]�, we have

�k j� j i (zi , wi ) − N0
k j N

0
j i (zi , wi ) = [φk j ]≤m(ϕ j i (zi ) + l j i (zi )wi , t j i (zi )wi )

+ DN0
k j (N

0
j i (zi , wi ))[φ j i ]≤m + O(m + 1)

= [φk j ]m(N ji (zi , wi )) + gk j (ϕ j i (zi ))[φ j i ]m(zi , wi )

+ Rkji (zi , wi , [φ•]2, . . . , [φ•]m−1) + O(m + 1)

= �ki (zi , wi ) − N0
k j N

0
j i (zi , wi )

where function Rkji is independent of [φ•]� for � ≥ m. Applying the same computation
to �̃ = � + O(m) and subtracting them, we obtain for ψk j := φk j − φ̃k j ,

[ψk j ]m(N ji (zi , wi )) + gkj (ϕ j i (zi ))[ψ j i ]m(zi , wi ) − [ψki ]m(zi , wi ) = 0.

According to [9, Lemma 2.7], this is equivalent to

{[φk j − φ̃k j ]m}k j ∈ Z1(U , TCM ⊗ SmN∗
C ).

(b) Note that when f = O(m) and �̃ = F�F−1, we have �̃ = � + O(m). Then
[�̃]m = [F�F−1]m is equivalent to δ[ f ]m = [φ]m − [φ̃]m according to [9, Lemma
2.16 (2.34)].

(c) By (a), we have δ([�̃]m − [�]m) = 0. By the definition of the basis e�, we can
find [ f ]m such that [�]m + cm · em − [�̃]m = δ[ f ]m for some [ f ]m = {[ fk]m}. Set
Fk = I + [ fk]m . We get F−1�̃F = � + cm · em + O(m + 1) by (b). ��

To construct normal forms, we must refine the above order-by-order normalization.
Define the groups of formal approximate automorphisms

Autm(�) = {F = I+O(2) : F−1�F = � + O(m + 1)}, m = 2, 3, . . . .

Here it is important that we allow F admits lower-order terms. Since

F(� + O(m + 1)) = F(�) + O(m + 1),

then F ∈ Autm(�) if and only if

F� − �F = O(m + 1).

The latter implies that�F−1 = F−1�+O(m + 1).Thus, Autm(�) is indeed a group.
The group structure implies that the conjugacy by elements in Autm(�) induces an
equivalence relation on

Mm(�) := {�̃ ∈ M : �̃ = � + cm · em + O(m + 1)}.
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Namely, if �, �̃ ∈ Mm(�), define the equivalence relation ∼Autm (�) such that

� ∼Autm (�) �̃

if and only if there is an F ∈ Autm(�) such that F�F−1 = �̃ + O(m + 1). Let
Mm(�)/Autm(�) be the set of equivalence classes. For each equivalence class, fix a
representative.

Define Ĉm(�) to be the set of elements cm · em such that �(cm) := � + cm · em +
O(m + 1) are among the (chosen) representatives. It will be clear from the context
that �(cm), determined by � and cm , does not stand for the evaluation of � at cm .
Also, we have used the identification via (2.9) and (2.10). Thus, we can express the
set Nm(�) of representatives as

{�(cm) := � + cm · em + O(m + 1) : cm · em ∈ Ĉm(�)}.

Obviously, Nm(�) is a subset of Mm(�). To ensure stability, � is always a repre-
sentative, i.e.,

0 · em ∈ Ĉm(�), �(0) = �.

Using this equivalence relation, we define convergent partial normal forms Nm and
formal normal forms N∞ as follows.

Definition 2.5 Fix transition functions N 1 = {N 1
k j } for all neighborhoods of C with a

given TCM as in Definition 2.1.

(i) DefineN 1 = {N 1}, which has one element. LetN 2(N 1) be the set of representa-
tives N 2(c2) = N 1 + c2 · e2 + O(3) for elements inM2(N 1)/Aut2(N 1), which
are determined by

c2 · e2 ∈ Ĉ2(N 1).

Inductively, let Nm(Nm−1(c2, . . . , cm−1)) be the set of representatives

Nm(c2, . . . , em) := Nm−1(c2, . . . , cm−1)(cm)

for elements inMm(Nm−1(c2, . . . , cm−1))/Autm(Nm−1(c2, . . . , cm−1)), which
are determined by

cm · em ∈ Ĉm(Nm−1(c2, . . . , cm−1)).

(ii) Define N∞(c2, c3, . . . ) to be the formal transition functions such that

N∞(c2, c3, . . . ) = Nm(c2, c3, . . . , cm) + O(m + 1), ∀m.

Let N∞ be the set of all such formal transition functions.
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By definition, Nm−1(c2, . . . , cm−1)(0) = Nm−1(c2, . . . , cm−1). Thus, we have

Proposition 2.6 Assume that H1(C, TCM ⊗ SmN∗
C ) = 0 for all m > m0 and m0

is finite. Then all N∞ = Nm0 defines convergent neighborhoods and N∞ is finite
dimensional.

Recall that

Hq(TCM) :=
⊕

�≥2

Hq(C, TCM ⊗ S�N∗
C ).

We now prove a formal version of Theorem 1.1.

Theorem 2.7 There exists a mapping C f from M/
f∼ into H1(TCM). Furthermore,

the constructed mapping C f is injective and there are formal mappings transforming
� ∈ M into N∞(�) ∈ N∞, provided

dimH1(TCM) < ∞, or (2.12)

H0(TCM) = 0. (2.13)

Proof Recall thatwefix a representant basis e� for a basis [e�]of H1(C, TCM⊗S�N∗
C ).

Let � = N 1 + φ as in Definition 2.1 define a neighborhood. We have δ[φ]2 = 0.
Applying Lemma 2.4, there is a unique constant vector c20(�) such that for some
f 2 =: { f 2j } ∈ C0(U , TCM ⊗ S2N∗

C ),

[� − N 1]2 = c20(�) · e2 + δ f 2.

Set F2
j = I+ f 2j and F2 = {F2

j }. Then F2�F−1
2 = N 1 + c20(�) · e2 + O(3). Recall

the definition

M2(N 1) := {�̃ ∈ M : �̃k j = N 1
k j + c2 · e2 + O(3)}.

In other words, we have achieved F2�F−1
2 ∈ M2(N 1). We now apply the refinement.

We find a unique element c2 · e2 ∈ Ĉ2(N 1) and F̃2 ∈ Aut2(N 1) such that

�2 := F̃2F2�F−1
2 F̃−1

2 = N 2(c2)+O(3).

We denote this c2 by c2(�) and we will show that c2(�) is a formal invariant. We
need to normalize the third-order term in �2 by the above two-step normalization in
higher orders.

Therefore, we repeat the above two-step normalization.
Inductively, using Lemma 2.4, we find F� = I+ f � for � > 2 with f � =: { f �

j } ∈
C0(U , TCM ⊗ S�N∗

C ) such that

F���−1F
−1
� ∈ M�(N �−1(c2, . . . , c�−1)).
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We then find F̃� ∈ Aut�(N �−1(c2, . . . , c�−1)) such that

�� := F̃�F���−1F
−1
�

F̃−1
�

= N�(c2, . . . , c�) + O(� + 1), c� ∈ Ĉ�(N
�−1(c2, . . . , c�−1)).

Again, we denote c� by c�(�). Let � → ∞. Since

N �+1(c2, . . . , c�+1) = N �(c2, . . . , c�) + O(� + 1)

it is clear that the sequence defines formal transition functions N∞(c2(�), c2(�), . . . ),
denoted by N∞(�), by an abuse of notation.

We have constructed a normal form N∞(�)without using (2.12) or (2.13).We now
use the latter to show that N∞(�) is achieved by a formal mapping F = I+O(2).

We know that F� = I+O(�). Since a subsequence of F̃� may contain terms of
the same order, we need to verify that the sequence F̂� := F̃�F� · · · F̃2F2 still defines
a formal change of coordinates as � → ∞. When H1(TCM ⊗ S�N∗

C ) = 0 for
all � > �0, we have N∞(c2, . . . ) = N �0(c2, . . . , c�0). Note that all neighborhoods
N �0(c2, . . . , c�0) + O(�0 + 1) are formally equivalent to N �0(c2, . . . , c�0). In our
two-step normalization, we have F� = I+O(�) by definition and F̃� = I (since
H1(TCM ⊗ S�N∗

C ) = 0). Hence, F̂� converges to a formal transformation.
When H0(TCM) = 0, we can show inductively that F̃� = I+O(� + 1) for all

� ≥ 2. Indeed, assume that F̃� = I+ f̃ and f̃ = O(�′) with 2 ≤ �′ ≤ �. Then we
have

F̃�N
�′
(c2, . . . , c�′

) = N �′
(c2, . . . , c�′

)F̃� + O(�′ + 1).

Collecting terms of order �′, we conclude δ[ f̃ ]�′ = 0. Then H0(C, TCM⊗S�′
N∗
C ) = 0

implies that [ f̃ ]�′ = 0. This shows that the sequence of coordinate changes define a
formal transformation F and F�F−1 = N∞(�).

We observe that (2.12) or (2.13) is only needed to show that there is a formal
mapping F = I+O(2) that transforms � into the normal form N∞(�). Once we
achieve the latter, (2.12) or (2.13) is not required to finish the proof, including the
assertion that the mapping C f is well defined. This observation will also apply to the
proofs of Theorems 3.6 and 4.5 below.

Next we want to show that C f is well defined, that is that c2(�), . . . , c�(�) are
uniquely determinedby the equivalence class of�under formal changes of coordinates
that are tangent to the identity. Suppose that �̃ = G�G−1 with G = I+O(2). We
have c2(�) = c2(�̃) immediately. Suppose that c�(�) = c�(�̃) = c� for � < m.
Then we can find F, F̃ so that

F�F−1 = Nm−1(c′) + cm · em + O(m + 1),

F̃�̃F̃−1 = Nm−1(c′) + c̃m · em + O(m + 1)

with c′ = (c2, . . . , cm−1). Then K := F̃GF−1 satisfies

Nm−1(c′) + c̃m · em + O(m + 1) = K (Nm−1(c′) + cm · em + O(m + 1))K−1 ∈ M.
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Thus K ∈ Autm(Nm−1(c′)). In summary, c̃m, cm are in Cm(Nm−1(c′)) and

Nm−1(c′) + c̃m · em + O(m + 1), Nm−1(c′) + c̃m · em + O(m + 1)

are equivalent module O(m + 1) by K ∈ Autm(Nm−1(c′)). The equivalence class
under the conjugacy of Autm(Nm−1(c′)) can only be represented by a unique ele-
ment in Ĉm(Nm−1(c′)). We obtain cm(�) = c̃m(�̃). This shows that N∞(�) =
N∞(c2(�), . . . ) is well defined on M/

f∼. Define N∞(�) to be the image under C f

for the equivalence class � mod
f∼ of � inM/

f∼.
Finally, we show that if c�(�) = c�(�̃) for all �, then �̃ and � are equivalent.

Indeed, we have F�F−1 = N∞(c2(�), . . . ) = F̃�̃F̃−1. This shows that �̃ =
F̃−1F�F−1 F̃ . ��

Remark 2.8 We remark that there exist second-order obstructions to realize an element
in H1(C, TCM⊗S2N∗

C ) by a neighborhood ofC . SeeGriffiths [13] andMorrow-Rossi
[26, Prop. 3.4].

Our classification is achieved under a group of biholomorphisms F that is smaller
that the whole group of biholomorphisms, by restricting F to be tangent to the identity
alongC . Therefore, the equivalence classes under unrestricted biholomorphismsmight
be a smaller set; in fact by a simple dilation,we can further reduce the set of equivalence
classes to be a compact but possibly a non-Hausdorff set as the case of dim M = 2 in
[26, p. 323]. For instance, let us consider the case of NC is a line bundle. Let tk j be the
transition functions of NC . An isomorphism of NC is given by g−1

k tk j g j = tk j . Thus
g j defines a global holomorphic function on C without zero. Since C is compact, then
the function must be constant. Now it is easy to see that the transition function for the
neighborhood �k j (z j , v j ) is transformed into (�τ

k j (z j , cv j ), c−1�ν
k j (cv j )).

We will give examples in Sect. 6 for (2.12) and (2.13).

3 A Formal Normal Form for Tangential Foliations

In this section, we study tangential foliations of neighborhoods of C . A neighborhood
M of C admits a tangential foliation, denoted by (T , M,C), if on each Vk , there are
d holomorphic functions v1k , . . . , v

d
k such that dv1k ∧ · · · ∧ dvdk �= 0 while vk = ck

and v j = c j define the same foliation T on Vk ∩ Vj and vk = 0 defines Uk . The
set of tangential foliations of C will be denoted by Mτ . A biholomorphism F sends
(T , M,C) into (T̃ , M̃,C), if it sends leaves ofT into leaves of T̃ andfixesC pointwise
and consequently it sends M into M̃ . By an abuse of notation, we write (T , M,C) as
Mτ . The set of such transformations F that are tangent to the identity is denoted by
T (Mτ , M̃τ ), which depends on Mτ , M̃τ .

Clearly, the equivalence of foliations of neighborhoods of C implies the equiva-
lence of the neighborhoods. Therefore, the classification of tangential foliations is a
refinement to that of neighborhoods. This should be reflected in the construction of
our normal forms for tangential foliations.
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Definition 3.1 Let Mτ be a tangential foliation. Coordinate system {(z j , w j )} is said
to tangential ifw j = cst define the foliation and consequently the transition functions
satisfy�ν

k j (z j , w j ) = �ν
k j (w j ). Such transition functions if they exist forMτ , denoted

by �τ , are called tangential transition functions.

Lemma 3.2 (a) A tangential foliation Mτ admits tangential (or foliated) coordinates
{(z j , w j )}. That {(z j , w j )} are tangential coordinates for Mτ if and only if the
transverse components �ν

k j of their transition functions �k j depend only on w j .
(b) Suppose F = I+O(2). Then F sends a tangential foliation �τ into another

tangential foliation �̃τ if and only if F�τ F−1 = �̃τ and Fν
j (z j , w j ) = Fν

j (w j )

depends only on w j , in which case

(�̃τ,k j )
ν = Fν

k (�τ,k j )
ν(Fν

j )
−1, (�̃τ,k j )

τ = Fτ
k �τ,k j F

−1
j .

With (a) of the lemma, we denote a tangential foliation by �τ .

Proof (a) Suppose that Mτ is defined on each Vj by v j = cst such that v j = 0
defines Uj and dv1j ∧ · · · ∧ dvdj �= 0 on C . By assumption, we have v�

j (z j , w j ) =
∑d

�′=1 a
�
j,�′(z)w�′

j +O(2). Since det(a�
j,�′)1≤�,�′≤d is non-singular, then (z j , v j ) form

new coordinates. Consequently, for� j (z j , w j ) := (z j , v j ), we get�k�
−1
j (z j , v j ) =

(�τ
k j (z j , v j ),�

ν
k j (v j )). Rename v j as w j . Then (z j , w j ) are tangential coordinates

w.r.t. Mτ .
(b) Suppose that (z j , w j ), (z̃ j , w̃ j ) are tangential coordinates for tangential foli-

ations Mτ , M̃τ with transition functions �τ , �̃τ , respectively. Suppose that F sends
Mτ into M̃τ . Write Fj = (Fτ

j , F
ν
j ). Then Fν

j (z j , w j ) must be constant if w j is con-

stant, i.e., w̃ j = Fν
j (z j , w j ) = Fν

j (w j ). Combining it with w̃k = (�̃τ,k j )
ν(w̃ j ) and

wk = (�τ,k j )
ν(w j ), we obtain (�̃τ,k j )

ν = Fν
k (�τ,k j )

ν(Fν
j )

−1. Of course, we still

have (�̃τ,k j )
τ = Fτ

k �τ,k j F
−1
j . ��

Definition 3.3 (a) The set of transformations F = I+O(2) from a neighborhood of
C into another neighborhood of C satisfying Fν(z j , v j ) = Fν

j (v j ) is denoted by
Tτ . The set of transformations satisfying additional condition F = I+O(m) is
denoted by T m

τ .
(b) Two tangential foliations defined by �τ and �̃τ are equivalent holomorphically

(resp. formally) if there is a biholomorphism (resp. formal biholomorphism) F =
I+O(2) such that F�τ F−1 = �̃τ and in tangent coordinates Fν

j (z j , w j ) =
Fν
j (w j ) depends only on w j for all j .

It is known that if a tangential foliation exists, then NC is flat (see for instance [9,
Prop. 2.6] where such foliations are said to be “horizontal”). We fix a flat basis êk
for NC over Uk . Recall that when we choose the basis (ẽτ

k , ẽ
ν
k ) in (2.5) for TCM on

Uk ⊂ C , we have decided ẽν
k to be a flat basis of NC when NC is flat. Let w∗

k be the
dual of ẽν

k . When ω is a subset of Uk , denote by C�
cst (ω) the (continuous) sections of
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TCM ⊗ S�N∗
C of the form

n∑

i=1

∑

|Q|=�

aiQ(zk)e
τ
k,i ⊗ (w∗

k )
⊗Q +

d∑

α=1

∑

|Q|=�

bαQe
ν
k,α ⊗ (w∗

k )
⊗Q

where aiQ are holomorphic functions and bαQ are locally constant functions on ω.
Notice that the germs in the first sum define a sheafF over C that is coherent and ana-
lytic, whereas the germs in the second sum define a sheaf G that is not an analytic sheaf
of modules of holomorphic functions onC . Then δ defined by (2.11) is still a cobound-
ary operator mapping Cq

cst , the q-cochains over U with value in
⊕

�>1 C�
cst (ω) into its

image Bq+1
cst . Denote by Ȟq(U , C�

cst ) the Čech cohomology groups for the covering U
and we have a natural homomorphism from Ȟq(U , C�

cst ) into Ȟq(U , TCM ⊗ S�N∗
C )

and it is an injective when q = 1.
Here, Ȟq(C, C�

cst ) is the standard q-th Čech cohomology group.
Define

Ȟq
τ (TCM) :=

⊕

�>1

Ȟq(C, C�
cst ). (3.1)

Recall thatwe always take a coveringU = {Uj } such that eachUj is biholomorphic to a
polydisc or ball, which are convex. Then NC⊗S�N∗

C is trivial onUj and Ȟ1(Uj , NC⊗
S�N∗

C ) = 0. Therefore, by [21, Thm. 3.5, p. 121], we have a useful formula for the
Čech cohomology group

Ȟ1(C, NC ⊗ S�N∗
C ) = Ȟ1(U , NC ⊗ S�N∗

C ). (3.2)

As previously mentioned, the sheaf F of sections of F := TC ⊗ S�N∗
C is coherent

and analytic. By Dolbeault’s theorem, Ȟq(ω, F) = H (0,q)

∂
(ω, F) for any open set ω

in C . Since all Ui are Stein, then Ȟq(Ui1 ∩ · · · ∩ Uip , F) = 0 for q > 0 by Cartan’s
theorem B. Therefore, we have

Ȟq(C, TC ⊗ S�N∗
C ) = Ȟq(U , TC ⊗ S�N∗

C ) (3.3)

for all q. Using the splitting TCM = TC ⊕ NC , (3.3) for q = 1, and (3.2), we obtain

Ȟ1
τ (TCM) =

⊕

�>1

Ȟ1(U , C�
cst ), dim Ȟ1(U , C�

cst ) < ∞. (3.4)

Here, we see the finiteness as follows: First, dim Ȟq(C, NC ⊗ S�N∗
C ) is clearly finite

since U = {U0, . . . ,Um} is a finite covering such that all Ui0 ∩ · · · ∩ Uiq have only
finitely many components, which follows from the existence of covering by generic
polyhedrons in the general position (see for instance Def. A. 15 and Prop. A. 19 in [9]),
and the sections of the (flat) sheaf NC ⊗ S�N∗

C as C module are finite dimensional.

Second, we already showed that Ȟq(U , NC ⊗ S�N∗
C ) = H (0,q)

∂
(C, NC ⊗ S�N∗

C ). The
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latter is finite dimensional sinceC is compact, by a theorem of Kodaira [21, Thm. 3.20
and Cor., p. 161].

We now start to adapt the normal forms of neighborhoods of C for the tangential
foliations of neighborhoods of C . This will require us to specify a sequence of partial
norm forms Nm

τ (c2τ , . . . , c
m
τ ) = Nm−1

τ (c2τ , . . . , c
m−1
τ )(cmτ ) for m = 2, 3, . . . . Let us

first define N 1
τ by choosing a representative:

Definition 3.4 Fix TCM with flat NC . Fix a tangential foliation N 1
τ = {N 1

τ,k j } of C
such that N 1

τ,k j = N 0
k j + O(2). If TCM additionally splits, we take N 1

τ = N defined
by (2.3).

Throughout the paper, we assume that Mτ is non-empty. Each element in Mτ is
given by tangential transitions functions. Therefore the existence of N 1

τ is ensured
regardless if TCM splits or not.

Definition 3.5 Let Mτ be the set of holomorphic tangential foliations containing C

as a leaf. Let Mτ /
f∼ the set of equivalence classes under formal tangential foliation

mappings in Tτ .

We now state a formal classification for tangential foliations.

Theorem 3.6 Let NC be flat. There is a mapping C
f
τ from Mτ /

f∼ into Ȟ1
τ (TCM).

Furthermore, if

dim Ȟ1
τ (TCM) < ∞, or

Ȟ0
τ (TCM) = 0,

then the constructed mapping C
f
τ is injective and there are formal mappings in Tτ

transforming � ∈ Mτ into N∞
τ (�). In particular, if Ȟ1

τ (TCM) = 0, all tangential
foliations are formally equivalent.

We fix a basis e�
τ for Ȟ1(U , C�

cst ) since the latter is finite dimensional by (3.4). The
proof is almost identical to the proof for the general case. We will only give an outline
below.

Lemma 3.7 Fix m > 1. Consider transformations F = I+ f ∈ Tτ with f = O(m).
Suppose that �τ , �̃τ ∈ Mτ and

�̃τ = �τ + O(m), �τ = N 1
τ + O(2), �̃τ = N 1

τ + O(2).

Then we have the following.

(a) [�̃τ ]m − [�τ ]m ∈ Z1(U , Cmcst ); in particular,

[� − N 1
τ ]2 ∈ Z1(U , C2cst ), ∀� ∈ Mτ .

(b) F�τ F−1 = �̃τ + O(m) holds if and only if δ[ f ]m = [�̃τ ]m − [�τ ]m.
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(c) There exist a unique cmτ · emτ ∈ Ȟ1(U , Cmcst ) and some f = O(m) such that
�̂ := F−1�̃τ F satisfies

�̂ = �τ + cmτ · emτ + O(m + 1), �̂ ∈ Mτ .

For � ∈ Mτ , define

Mm
τ (�) := {�̃ ∈ Mτ : �̃ = � + cmτ · emτ + O(m + 1)},

Autmτ (�) = {F ∈ Tτ : F−1�F = � + O(m + 1)}.

ThenAutmτ (�) is a group inducing an equivalence relation onMm
τ (�). Fix an element

in each equivalence class. Thus the set

Nm
τ (�) := Mm

τ (�)/Autmτ (�)

of equivalence classes can be written as

�(cmτ ) = � + cmτ · emτ + O(m + 1) ∈ Mτ

with cmτ · emτ ∈ Ȟ1(U , Cmcst ). The set of all such cmτ · emτ will be denoted by Ĉmτ (�).
Thus Nm

τ (�) is identified with Ĉmτ (�). For stability, we always choose �(0) = �.
We now construct two sequences of coordinate changes Fm, F̃m , and define the

mapping C
f
τ in Theorem 3.6. Let � ∈ Mτ . Then we proceed as following.

(i) By Lemma 3.7, we find F2 = I+O(2) ∈ Tτ such that F2�F−1
2 = N 1

τ + c̃2τ ·
e2τ + O(3), i.e.,

F2�F−1
2 ∈ M2

τ (N
1
τ ).

Take F̃2 ∈ Autτ2(N
1
τ ) such that

�2 := F̃2F2�F−1
2 F̃−1

2 = N 1
τ (c2τ ) + O(3), c2τ · e2τ ∈ Ĉ2τ (N 1

τ ).

(ii) Let m > 2. Find Fm = I+O(m) ∈ Tτ such that

Fm�m−1F
−1
m ∈ Mm

τ (Nm−1
τ (c2τ , . . . , c

m−1
τ )).

Choose F̃m ∈ Autmτ (Nm−1
τ (cτ

2 , . . . , c
m−1
τ )) such that

F̃m Fm�m−1F
−1
m F̃−1

m = Nm−1
τ (c2τ , . . . , c

m−1
τ )(cmτ ) + O(m + 1),

cmτ · emτ ∈ Ĉmτ (Nm−1
τ (c2τ , . . . , c

m−1
τ )).
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(iii) Set Nm
τ (c2τ , . . . , c

m
τ ) = Nm−1

τ (c2τ , . . . , c
m−1
τ )(cmτ ). The formal normal form of

� is N∞
τ with

N∞
τ = Nm

τ (c2τ , . . . , c
m
τ ) + O(m + 1), m = 1, 2, . . . .

Define (c2τ · e2τ , . . . ) ∈ Ȟ1
τ (TCM) to be C f

τ (�) for the equivalence class of �

under Tτ .

We can check that themappingC f
τ iswell defined.As in the proof ofTheorem2.7, by

the conditions on cohomology groups, we can verify that the sequence F̃m Fm · · · F̃2F2
converges to a formal mapping F that transforms � into C f

τ (�). We leave the rest of
details for the proof of Theorem 3.6 to the reader.

We refer to [9] for a different approach to the existence of holomorphic tangential
foliation when the formal obstructions are absent in a stronger sense that the normal
component of � is formally linearizable. Under a small divisor condition on coho-
mology groups depending only on a (flat) unitary NC , a convergence for linearizing
the normal components is achieved in [9].

4 A Formal Normal Form of Transverse Foliations

In this section, we will use normal forms in Sect. 2 to describe neighborhoods that
admit transverse foliations.

By a holomorphic transverse foliation (V, M,C) of (M,C), we mean that on a
neighborhood of C in M there a smooth holomorphic foliation V with all leaves
are holomorphic submanifolds of dimension d that intersect C transversely. First-
order obstructions to transverse foliations for (M,C) in higher dimensions or higher
codimension were considered in [13, 26]; however, they did not settle the existence of
transverse foliationswhen formal obstructions vanish except for the case of dim M = 2
mentioned earlier. In this section, we will obtain an existence result on transverse
foliations and the classification on them under suitable conditions on TCM .

One can see that a neighborhood admits a transverse foliation, if and only if in
coordinates (zk, wk) there are n holomorphic functions z̃1k , . . . , z̃

n
k such that

dz̃1k ∧ · · · ∧ dz̃nk ∧ dw1
k ∧ · · · ∧ dwd

k �= 0

while z̃k = ck and z̃ j = c j define the same foliation on Vk ∩ Vj on C . By an abuse
of notation, we still denote the transverse foliation on a neighborhood (M,C) by Mν .
In the previous section, we have seen that for a neighborhood to admit tangential
foliation, NC must be flat. A transverse foliation does not impose conditions on NC as
NC as a holomorphic vector bundle is already foliation by the fibers (of the bundle). It,
however, imposes a useful condition that TCM must split [26]. The formal obstructions
for transverse foliations were obtained in [13, 26]. In this section, we obtain a normal
form for transverse foliations.

Definition 4.1 Let Mν = (V, M,C) be a transverse foliation. We say that (z j , w j )

are transverse (or foliated) coordinates for Mν if z j = cst defines the foliation and
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consequently the transition functions satisfy �τ
k j (z j , w j ) = �τ

k j (z j ), in which case
� is denoted by �ν and we call �ν = {�ν,k j } a transverse foliation for abbreviation.

Definition 4.2 Two transverse foliations (V, M,C), (Ṽ, M̃,C) are equivalent by a
biholomorphic mapping F if F = I + O(2) and it sends each leave of (V, M,C) into
a leaf of (Ṽ, M̃,C); consequently, F sends the neighborhood (M,C) into (M̃,C).

Lemma 4.3 (a) Let Mν = (V, M,C) be a transverse foliation. Then the foliation
admits transverse coordinates {(z j , w j )}, of which the transition functions are
denoted by �ν and (�ν,k j )

τ (z j , w j ) = ϕk j (z j ) as in (4.1).
(b) There is a biholomorphic mapping F = I+O(2) sending a transverse folia-

tion �ν,k j (z j , w j ) into another transverse foliation �̃ν,k j (z̃ j , w̃ j ) if and only if
F−1�νF = �̃ν and Fτ

j (z j , w j ) = z j , in which case

(�̃ν,k j )
τ = Fτ

k �ν,k j F
−1
j .

The set of all transformations F = I + O(2) with Fτ
j (z j , w j ) = z j is denoted by

Tν .

Proof The proof is almost verbatim to Lemma 3.2, which is leave to the reader. ��
Motivated by Lemma 4.3, we now define the following.

Definition 4.4 Two transverse foliations �̃ν,�ν , are formally equivalent by a formal
biholomorphic mapping F if F = I+O(2) and in the transverse coordinates of the
two foliations, Fτ

j (z j , w j ) = z j �̃ν = F�νF−1.

Note that the transformations Fj = I+ f j with f j = O(2) that preserve transverse
foliations are rather restrictive as f τ

j = 0. This is quite different from the study of
tangential foliations in the previous section whereas transformations that preserve the
tangential foliations can be higher-order perturbations in both tangential and normal
components. The advantage is that the formal classification of transverse foliations is
almost identical to the formal classification of the neighborhoods.

Define

Hq
ν (TCM) :=

⊕

�>1

Hq(C, NC ⊗ S�N∗
C ).

Note that NC = TCM/TC , which justifies that the right-hand side depends on TCM .
Using Lemma 4.3, we can obtain the following formal normal form.

Theorem 4.5 LetMν be the set of holomorphic transverse foliations of C. There is a

mapping C
f
ν from Mν/

f∼ intoH1
ν(TCM). Furthermore, if

dimH1
ν(TCM) < ∞, or

H0
ν(TCM) = 0,
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then the constructed mapping C
f
ν is injective and there are formal mappings in Tν

transforming � ∈ Mν into N∞
ν (�). In particular, if H1

ν(TCM) = 0, all transverse
foliations are formally equivalent.

Proof Given a transverse foliation, we know that TCM splits. Let � ∈ Mν . Define

Autmν (�) = {F ∈ Tν : F�F−1 = � + O(m + 1)}.

By conjugacy, the group yields an equivalence relation on

Mm
ν (�) := {� + cmν · emν + O(m + 1)} ∩ Mν .

Select representatives for the equivalence classes and denote the set of corresponding
elements cmν · emν by Hm

ν (�). Thus the set of equivalence classes is given by

Nm
ν (�) = {�(cmν ) = � + cmν · emν + O(m + 1) : cmν

·emν ∈ H1(U , NC ⊗ SmN∗
C )} ⊂ Mν .

The set of all such cmν · emν will be identified with Ĉmν (�).
By Lemma 4.3, we find F2 = I+O(2) ∈ Tν such that F2�F−1

2 = N 1
ν + c2ν · e2ν +

O(3) with N 1
ν = N 1. Thus

F2�F−1
2 ∈ M2

ν(N
1
ν ).

Take F̃2 ∈ Aut2ν(N
1) such that

�2 := F̃2F2�F−1
2 F̃−1

2 = N 1
ν (c2ν) + O(3), c2ν · e2ν ∈ Ĉ2ν (N 1

ν ).

Set N 2
ν (c2ν · e2ν) := N 1

ν (c2ν · e2ν).
Let m > 2. Find Fm = I + O(m) ∈ Tν(Mν) such that

Fm�m−1F
−1
m ∈ Mm

ν (Nm−1
ν (c2ν, . . . , c

m−1
ν )).

Choose F̃m ∈ Autmν (Nm−1
ν (cν

2, . . . , c
m−1
ν )) such that

F̃m Fm�m−1F
−1
m F̃−1

m = Nm−1
ν (c2ν, . . . , c

m−1
ν )(cmν ) + O(m + 1),

cmν · emν ∈ Ĉmν (Nm−1(c2ν, . . . , c
m−1
ν )).

Set Nm
ν (c2ν, . . . , c

m
ν ) = Nm−1

ν (c2ν, . . . , c
m−1
ν )(cmν ). The formal normal form of � is

N∞
ν with

N∞
ν = Nm

ν (c2ν, . . . , c
m
ν ) + O(m + 1), m = 1, 2, . . . .

Define C f
ν (�) to be (c2ν · e2ν, . . . ) ∈ H1

ν(TCM) for equivalence class of � under Tν .
We have defined the normal forms N∞

ν (c2ν, . . . ) for � ∈ Mν . The rest is similar
to the proof of Theorem 2.7. We leave the details to the reader. ��
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For the rest of the section, we deal with the existence of transverse foliations using
the normal form for the neighborhoods in Sect. 2. Let us first improve Definition 2.5
as follows.

Definition 4.6 In Definition 2.5, we select N �(c2, . . . , c�) satisfying

(N �
k j )

τ (c2, . . . , c�) = ϕk j (z j ),

if the set of neighborhoods � satisfies

� = FN �−1(c2, . . . , c�−1)F−1 + O(�)

for some F ∈ Aut�−1(N �−1(c2, . . . , c�−1)) has a neighborhood that admits a holo-
morphic transverse foliation.

Proposition 4.7 Let �0 > 1 be an integer. Assume that

H1(C, TCM ⊗ S�N∗
C ) = 0, ∀� > �0.

Then�admits a formal transverse foliation if andonly if there is a formalmapping F ∈
T such that F�F−1 = N �0(c2, . . . , c�0) + O(�0 + 1) with (N �0(c2, . . . , c�0))τk j =
ϕk j (z j ).

Proposition 4.8 Assume that H0(C, TC ⊗ S�N∗
C ) = 0 for all � > 1. Then two trans-

verse foliations of neighborhoods ofC are equivalent if (and only if) the neighborhoods
are equivalent.

Proof One implication is trivial. Suppose that F = I+ f with f = O(2) sends
a neighborhood M that admits a transverse foliation � into a neighborhood M̃ that
admits a transverse foliation �̃.Wemust show that f τ = 0.We have �̃k j Fj = Fk�k j .
Suppose that Fτ

j = I+[ f τ
j ]m + O(m + 1). We want to show that [ f τ

j ]m = 0. We

know that �τ
k j (z j , v j ) = φk j (z j ) and �̃τ

k j (z̃ j , ṽ j ) = ϕk j (z̃ j ). We have

ϕk j (I+[ f τ
j ]m + O(m + 1)) = ϕk j (z j ) + [ f τ

k (�k j )]m + O(m + 1).

Collecting terms of order m in v j , we obtain δτ {[ f τ ]m} = 0. Thus [ f τ ]m is a global
section of TC ⊗ SmN∗

C . We conclude [ f τ ]m = 0. ��

When C is a compact Riemann surface with genus g, H0(C, TC ⊗ S�N∗
C ) = 0 if

deg NC > max{0, g − 1} and � > 1; see Section 6.
We mentioned that a necessary condition for the existence of transverse foliation

is the splitting of TCM into TC ⊕ NC . There are generalizations for splitting of TCM
(as 2-splitting) to k-splitting by Abate-Bracci-Torven [1]; see for instance Thm. 2.1,
Cor. 3.4 and Thm. 4.1 therein.
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5 Convergence for Two Classifications and Criteria for Transverse
Foliations

In this section, we establish the convergence results for normalizations of full neigh-
borhoods and transverse foliations by applying convergent results of Grauert [10],
Griffiths [13], and Commichau-Grauert [6]. We also obtain a criteria for the existence
of transverse foliations using our normal forms.

The first-order obstructions for the existence of transverse foliations were studied
in [13], Morrow-Rossi [26], where the convergence of transverse foliations are not
addressed except for the case dim M = 2 in [26] for which the classification of the
foliations was also addressed.

According to Grauert [10, Def. 1, p. 342], we say that E is weakly negative if its
zero section has a relatively compact strictly pseudoconvex neighborhood.We say that
E is weakly positive if E∗ is weakly negative [10, Def. 2, p. 342].

Grauert [10, Satz 1, p. 341] proved that if the zero section of a vector bundle E is
exceptional, then E is weakly negative. According to Grauert [10, Def. 3, p. 339], a
connected compact complex manifold C of positive dimension in M is called excep-
tional, if there is a complex manifold M ′ and a proper surjective holomorphic map
φ : M → M ′ such that φ(C) is a point p, φ : X\C → M ′\{p} is biholomorphic. In
[10, Thm. 5, p. 340], Grauert proved that C is exceptional, if C has a basis of strongly
pseudoconvex neighborhoods. It was proved by Grauert for codimension one com-
pact complex manifold C and by Hironaka and Rossi for higher codimension that the
formal principle holds for exceptional sets.

Throughout the paper if a domain W is defined by a C2 function r < 0, we
say that ∂W has (at least) q positive Levi eigenvalues if the Levi-form Lr , which
is the restriction of complex hessian Hr to the complex tangent space T (1,0)∂W , is
positive definite on aq-dimensional subspace of T (1,0)

x ∂W for each x ∈ ∂W . Following
Commichau-Grauert [6], we say that a vector bundle V on C is 1-positive, if there is
a tube neighborhood W of the zero section C of V such that the Levi-form of ∂W
has at least 1-negative eigenvalue and W ∩ Vx is star-shaped for each x ∈ C and Vx

intersects ∂W transversely. We say that V is q-positive, if the ∂W has q negative Levi
eigenvalues. We recall a lemma mentioned by Griffiths [13].

Lemma 5.1 ([13], Lemma 2.1) Let π : NC → C be the normal bundle of C. Let W
be a neighborhood of C in NC. Let F be any holomorphic vector bundle on C and let
π∗F |W be the pull-back bundle on W. Then

∑

�≥0

dim Hq(C, F ⊗ S�N∗
C ) ≤ dim Hq(W , π∗F |W ). (5.1)

Proof Weprovide a proof using our notation forq = 1only. LetU be a covering ofC by
open sets Uj . We may assume that there are open sets Vj in W so that Uj = Vj ∩ C .
Using additional open subset of W , we assume that {Vj } is a covering V for W .
Furthermore, we may assume that Uj and Vk are Stein, E and F holomorphically
trivial on Uj .
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The vector bundles F and NC play different roles. For F , we simply pull it back
as π∗F as vector bundle on NC . This turns sections of F ⊗ S�N∗

C into π∗F valued
homogeneous polynomials on themanifold NC . To be specific, let us identify a section
of F ⊗ S�N∗

C by a C-linear injection

ι : Cq(U , F ⊗ S�N∗
C ) → Cq(V,O(π∗F |W )).

Recall that π−1(Uj ) has coordinates (z j , v j ). Let {ẽμ
j } (resp. {eμ

j }) be a basis of F|Uj

(resp. NC ). Let { fk j } ∈ C1(U , F ⊗ SmN∗
C ). Then by (2.10),

fk j (p) =
n+d∑

μ=1

∑

|Q|=m

f μ
k j,Q(zk(p), vk(p))ẽ

μ
k (p) ⊗ (w∗

j (p))
⊗Q .

Let p̃ ∈ π−1(p) and p ∈ Uj ∩ Uk . In coordinates, we have p̃ = (p, e j (p) · v j (p)).
Define

(ι f )k j ( p̃) =
n+d∑

μ=1

∑

|Q|=m

f μ
k j,Q(zk(p), vk(p))v

Q
j (p)ẽμ

k (p).

Now {π−1(Uj )} is an open covering V̂ of F as a complex manifold and ι f ∈
C1(V̂,O(F)). Let Ṽ be the covering of W defined by {Vi ∩ π−1Uj }. Note that
Vi ∩ π−1Uj are still Stein. Analogously, if {u j } ∈ C0(U , F ⊗ SmN∗

C ), then

uk(p) =
n+d∑

μ=1

∑

|Q|=m

uμ
k,Q(zk(p), vk(p))ẽ

μ
k (p) ⊗ (w∗

k (p))
⊗Q .

Define (ιu)k( p̃) := ∑n+d
μ=1

∑
|Q|=m uμ

k,Q(zk(p), vk(p))v
Q
k (p)ẽμ

k (p). In the other way

around, to such an expressionUk(q), we associate a 0-cochain Ũ = {Ũ j } ∈ C0(U , F⊗
SmN∗

C ). Then δι = ιδ.
We want to show that ι induces an injection

ι : Ȟ1(U , F ⊗ S�N∗
C ) → Ȟ1(Ṽ,O(π∗F |W )).

Suppose that f ∈ Z1(U , F ⊗ S�N∗
C ) and ι f = δu with u ∈ C0(Ṽ,O(π∗F |W )). If

Vj ∩C is non-empty, we have Vj ∩C = Uj and we can expand u = ∑
um,where um

is a homogeneous polynomial in v j of degree m. Then f = δũ�. This gives us (5.1).
��

It is known from the Andreotti-Grauert theory [2] that if ∂W has (q + 1) negative
Levi eigenvalue or (n+d−q) positive Levi eigenvalues at each boundary point, then

dim Hq(W ,F) < ∞
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for any coherent analytic sheaf F on W . Our convergent classifications are based on
the following theorems, which can be regarded as a strong form of the formal principle.

Theorem 5.2 ([10], Satz 7, p. 363) Let NC be negative. Then there exists an integer �0
such that H1(C, TCM ⊗ S�N∗

C ) = 0 for � > �0. Furthermore, if F̂j are holomorphic

mappings such that �̃k j = F̂−1
k �k j F̂ j + O(�0 + 1), then there are holomorphic

mappings Fj such that Fj = F̂j + O(� + 1) and F−1
k �k j Fj = �̃k j .

Remark 5.3 Let C be a compact Riemann surface and let NC be a line bundle with
deg NC < 0, By Riemann-Roch (see (6.1)–(6.2) below), we have

lim
�→∞ �−1 dim H0(C, TCM ⊗ S�N∗

C ) = − deg NC .

Using this, one can prove that there are divergent formal mappings that preserve the
germs of neighborhoods of the zero section of NC ; see Proposition 6.2 below.

On the other hand, with 1-positivity, we have the following strong formal principle.

Theorem 5.4 ([6], Satz 4, p. 119) Let NC be 1-positive. Let Fj be formal biholomor-
phic mappings such that �̃k j = F−1

k �k j Fj . Then Fj must converge.

Commichau-Grauert [6] proved the theorem for codimension 1 case first. Their
proof for the higher codimensions follows from a blow-up [6, p. 115 and p. 126] along
C . Indeed, one can verify easily as follows. By blowing up a neighborhood M along
C , we obtain M̃ and C̃ such that C̃ has codimension 1 while ∂ M̃ is biholomorphic
to ∂M . If F : (M,C) → (M ′,C) is a formal mapping that is tangent to the identity
along C , then the blow-up induces a formal mapping F̃ from (M̃, C̃) to (M̃ ′, C̃) (that
may not be tangent to the identity along C̃). However, the theorem for codimension
1 case, which is proved for any formal mapping that preserves C , implies that F̃ is
convergent. Consequently, F is also convergent. We leave the reader to verify this
outline.

We now prove the convergence classification for the neighborhoods.

Corollary 5.5 Let NC be weakly negative or 2-positive. Then the set of holomorphic
equivalence classes of neighborhoods of C is identified with a subset of finite-
dimensional space H1(TCM) < ∞. Furthermore, a neighborhood � admits a
transverse foliation if and only if its normal form N∞(�) satisfies (N∞

k j (�))τ = ϕk j .

Proof Let us summarize the proof of Theorem 2.7. Let � be a holomorphic (conver-
gent) neighborhood M of C such that � = N 1 + O(2), where N 1 is a convergent
neighborhood. Then we find a (convergent) biholomorphism G2 = F̃2F2 such that
G2�G−1

2 = N 1 + c2(�) · e2 + O(3) ∈ N 2(N 1). By selection, G2�G−1
2 =

N 1(c2(�)) + O(3). Inductively, we find biholomorphism G�0 = F̃�0F�0 · · · F̃2F2
such that

G−1
�0

�G�0 = N �0(c2(�), . . . , c�0(�)) + O(�0 + 1)

∈ N �0(N �0−1(c2(�), . . . , c�0−1(�)).
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Since H1(C, TCM ⊗ S�N∗
C ) = 0 for � > �0, then we find (F� = I and)

F̃� = I+O(�) such that the formal mapping G̃�0 = lim�→∞ F̃� · · · F̃�0+1 satisfies
G̃�0G�0�G−1

�0
G̃�0 = N �0(c2(�), . . . , c�0(�)). When NC is weakly negative, Theo-

rem 5.2 says that there exists a convergent G�0+1 = G̃�0 + O(�0 + 1) such that

G�0+1G�0�G−1
�0

G−1
�0+1 = N �0(c2(�), . . . , c�0(�)).

When NC is 1-positive, Theorem 5.4 says that G�0+1 = G̃�0 converges. Since
F�, F̃�,G�0+1 are tangent to the identity, then G�0+1, j G�0, j is a biholomorphism that
is well defined in a neighborhood of Ũ j in M , where each Ũ j is relatively compact in
Uj and their union covers C .

By our selection, c2(�) · e2 + · · · + c�0(�) · e�0 and hence the normal form
N �0(c2(�), . . . , c�0(�)) of � is identified with an element inH1(TCM).

Finally, when � admits a transverse foliation, we can start with the transition
functions �k j such that �ν

k j = ϕk j . By the stability in our choice of normal forms,
(N∞

k j (�))τ = ϕk j still holds. ��
Note that the above proof of Corollary 5.5 remains true provided that NC is 1-

positivity and H1(C, TCM ⊗ S�N∗
C ) = 0 for � > �0. We obtain the classification for

transverse foliations.

Corollary 5.6 Let C be a compact complex manifold.

(i) Suppose that NC is 1-positive. If two transverse foliations of neighborhoods are
equivalent by a formal biholomorphic mapping F preserving the foliations, then
F is actually convergent.

(ii) Suppose that NC is 1-positive. Assume further that dimH1
ν(TCM) < ∞. There is

an injective mapping from the set Mν/∼ of holomorphic equivalence classes of
the transverse foliations into the finite-dimensional spaceH1

ν(TCM).

Proof Assertion (i) is a consequence of Theorem 5.4. Assertion (i i) follows from (i)
and the formal classification by Theorem 4.5. ��

When C is a compact Riemann surface and NC is a positive line bundle, Morrow-
Rossi, using the theorem of Commichau-Grauert, showed that the equivalence classes
of transverse foliations under foliation-preserving transformations are actually infinite
dimensional.

We conclude this section by considering the classification of neighborhoods of C
under biholomorphicmappings that are not necessarily tangent to the identity.Wewill,
however, use coordinate changes that fix C pointwise and preserve NC . We consider
the case of a line bundle NC . Let tk j be the transition functions of NC . An isomorphism
of NC is given by g−1

k tk j g j = tk j . Thus g j define a global holomorphic function on C
without zero. SinceC is compact, then the function must be constant. Now it is easy to
see that the transition functions for the neighborhood�k j (z j , v j ) are transformed into
(�τ

k j (z j , cv j ), c−1�ν
k j (cv j )). Note this non-homogenous dilation is used byMorrow-

Rossi [26] to get a complete set of moduli spaces when dimC and codimC are 1, and
NC is negative.
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6 Riemann Surfaces in Complex Surfaces

We illustrate Grauert’s result by showing that the obstructions exist for a neighborhood
with negative normal line bundle being not holomorphically equivalent to a neighbor-
hood of its zero section; compare [3, p. 211] on Grauert’s work. We also prove the
assertion in Remark 5.3. This explains why we cannot apply Grauert’s formal princi-
ple for weakly negative NC to the classification of transverse foliations, and it seems
to the authors that an application of a formal principle to the transverse foliations
needs a statement stronger than Theorem 5.2. An interested reader should consult
Morrow-Rossi [26, p. 323, line 3, and Thm. 6.3] for negative NC , as Corollary 5.6
(i i) addresses only the case of 1-positive normal bundle.

Let us first recall some facts on the dimensions of the zero-th and first cohomology
groups of line bundles. Note that a line bundle on a compact Riemann surface is
positive if and only if its degree is positive. Let C be a compact Riemann surface with
genus g. When L → C is a line bundle with degree νL < 0, L has no global section.
Recall the duality

Hq(C,�p(E)) = H1−q(C,�1−p(E∗))∗, q = 0, 1.

We have deg TC = 2 − 2 g and deg KC = 2 g − 2, where KC is the canonical
line bundle of C . The Riemann-Roch theorem says that if h0(L) is the dimension of
H0(C,O(L)) then

h0(L) − h0(KC ⊗ L−1) = deg L + 1 − g.

Thus

h0(L) ≥ deg L − g + 1.

This provides the following useful estimates for positive NC :

dim H1(C, NC ⊗ S�N∗
C ) ≥ g − 1 + (� − 1) deg NC , (6.1)

dim H1(C, TC ⊗ S�N∗
C ) ≥ 3g − 3 + � deg NC . (6.2)

6.1 Normal forms on neighborhoods

6.1.1 Negative NC

In this case, the formal principle and (2.12) hold. We have

H1(C, (TC ⊕ NC ) ⊗ S�N∗
C ) = (H0(C, KC ⊗ (KC ⊗ S�NC + N∗

C ⊗ S�NC ))∗.
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Now dτ
� := deg KC ⊗ (KC ⊗ S�NC ) = 4(g − 1) + � deg NC and dν

� := deg KC ⊗
(N∗

C ⊗ S�NC ) = 2(g − 1) + (� − 1) deg NC . Thus

dim H1(C, TC ⊗ S2N∗
C ) ≥ 3g − 3 + 2 deg NC ,

dim H1(C, NC ⊗ S2N∗
C ) ≥ dν

2 − g + 1 = g − 1 + 2 deg NC .

ByMorrow-Rossi [26, Thm. 6.3], each element in H1(C, NC ⊗S2N∗
C ) can be realized

by transverse foliations. See Camacho-Movasati-Sad [5] and Abate-Bracci-Tovena
[1] for different approaches. This shows that an element corresponding to a non-zero
element in H1(C, NC ⊗ S2N∗

C ) is not equivalent to a neighborhood of the zero section
of NC .

6.1.2 Positive NC and Negative TCM ⊗ S2N∗
C

This occurs if and only if deg NC > max{0, g − 1}, in which case (2.13) holds. Then
the formal principle holds. Also, both

⊕�>1H
1(TC ⊗ S�N∗

C ), ⊕�>1H
1(C, NC ⊗ S�N∗

C )

are infinite dimensional.

Proposition 6.1 Let C be a compact Riemann surface with genus g. Suppose NC is a
line bundle. For any finite r , the following hold:

⊕r
m=2H

1(C, TCM ⊗ SmN∗
C ) ⊂ C(M/ ∼) ⊂ ⊕∞

m=2H
1(C, TCM ⊗ SmN∗

C ) (6.3)

if deg NC > max{0, g − 1}; if deg NC > 0 and TCM splits then

⊕r
m=2 H1(C, NC ⊗ SmN∗

C ) ⊂ Cν(Mν/ ∼) ⊂ ⊕∞
m=2H

1(C, NC ⊗ SmN∗
C ). (6.4)

Proof Our proof is based on a construction in [26] to realize⊕�>1H1(C, NC ⊗S�N∗
C )

for transverse foliations. Thus (6.4) is essentially in [26]. As indicated in [26], the
construction applies to

⊕�>1H
1(C, TCM ⊗ S�N∗

C )

as well, which we show below. We will need

H0(C, TCM ⊗ S�N∗
C ) = 0, ∀� > 0

which holds for deg NC > max{0, g − 1}. Thus Autm(Nm(c2, . . . , cm)), defined as

{F = I+O(2) : FNm(c2, . . . , cm) = Nm(c2, . . . , cm)F + O(m + 1)},

consists of mappings of the form F = I+O(m + 1).

123



A Structure Theorem for Neighborhoods… Page 27 of 30 133

Take a holomorphic diskU0 inC and letU ′
0 be a smaller disk inU0. ThenU0,U1 :=

C\U ′
0 form a Leray covering of C as both U0,U1 are Stein. U0 ∩ U1 is an annulus

biholomorphic to {z ∈ C : r < |z| < 1/r}. Since C is covered by two sets, then

Z1(U , L) = C1(U0 ∩U1, L).

Since a line bundle on an open Riemann surface is holomorphically trivial [14, p. 52],
then NC is completely determined by

(ϕ10(z0), t10(z0)v0)

where t10(z) is a non-vanishing holomorphic function onU0 ∩U1 and ϕ10 is holomor-
phic and injective on U0 ∩ U1. Also deg NC is the winding number of t10 on the unit
circle. A neighborhood of C with NC |U1 being trivial is precisely given by

�10(z0, v0) := (ϕ10(z0) + l10(z0)v0, t10(z0)v0) +
∑

�>1

�10,�(z0)v
�
0

by patching (U0 �U1)×�ε/∼ with (z1, v1) ∼ �10(z0, v0). Here �10,� are holomor-
phic functions on U01 × �ε subject to the only condition that

∑

�>1

sup
K

|�10,�| < CK < ∞ (6.5)

for any compact subset K of U01 × �ε .
When l10 = 0, TCM splits. When�τ

10,� = 0, the neighborhood admits a transverse
foliation. When t10, l10 and �ν

10,� are constant, the neighborhood admits tangential
foliations. The degree of NC is the winding number of t10 on the unit circle.

To realize each element in (6.3), we recall briefly the construction in Theorem 2.7.
Since C is covered by two sets, we can take

N 1 = (ϕ10(z0) + l10(z0)v0, t10(z0)v0).

We now take the advantage that �01,� need only to satisfy (6.5) and are otherwise
arbitrary. Fix a finite basis e2 for H1(U , TCM × S2N∗

C ). Let e2j be represented by

C1(U , TCM × S2N∗
C ), still denoted by e2j . We also use the identification via (2.9) and

(2.10). Thus each element c2 · e2 ∈ H1(U , TCM × S2N∗
C ) is associated with

N 2(c2) = (ϕ10(z0) + l10(z0)v0, t10(z0)v0) + c2v20 .

SinceC is covered by two open sets, N 2(c2) is indeed a cocycle for transition functions
of a neighborhood of C .

For finitely many c2, . . . , cr ,
∑r

�=2 c
� ·e� is associated to Nr (c2, . . . , cr ) satisfying

the convergence constrain (6.5). ��
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6.2 Verifying Remark 5.3

Proposition 6.2 Assume that TCM splits. Assume that H1(C, TCM ⊗ S�N∗
C ) = 0 for

� ≥ κ for a finite κ .

(a) Suppose H0(C, TCM ⊗ S�N∗
C ) �= 0 for a sequence � = � j → ∞. Then there are

divergent formal mappings that preserve the germs of neighborhoods of the zero
section of NC .

(b) Suppose H0(C, NC ⊗ S�N∗
C ) �= 0 for some � > 1. Then there is a possibly

divergent mapping F preserving the germ of the zero section of NC while F does
not preserve the transverse foliation of NC .

Proof If TCM has locally constant transition functions, the proof is straightforward
as each global section [φ]m of TCM ⊗ SmN∗

C gives us an automorphism of TCM of
the form F = I+ f where f is homogeneous of degree m. Then F = I+∑

�>1 fm
diverges for suitable choices of coefficients of the global sections of TCM ⊗ N �

c for
� > 1.

When TCM is not flat,we verify the assertion by a reversing linearization procedure.
Take j such that � j ≥ κ . Using a global section f ∗

� j
of TCM ⊗ S� j N∗

C , we find
F� j = I+ f� j where fk,� j is homogeneous of degree � j in vk variables. Then

F� j N
1F−1

� j
= N 1 + O(� j + 1). (6.6)

By condition on H1 and (6.6), we find a formal mapping F̃� j+1 = I+O(� j + 1) such

that F̃� j+1F� j N
1F−1

� j
F̃−1

� j+1 = N 1. We repeat this and find F�i , F̃�i+1 for i > j such

that F̃�i+1F�i and N 1 commute. Then

F∞ = lim
i→∞ F̃�i+1F�i ◦ · · · ◦ F̃� j+1F� j

commutes with N 1. We have

F∞ = F�i · · · F̃� j+1F� j + O(�i + 2), F∞ = F̃�i+1F�i · · · F̃� j+1F� j + O(�i + 2).

In other words,

[F∞]�i = f�i + R( f� j , . . . , f�i−1).

When the coefficients of f ∗
�i
grow sufficiently fast as j → ∞, we get a divergent F∞.

This proves the first assertion.
The second assertion can be proved by a similar argument. ��
As an example, the condition in Proposition 6.2 (a) is satisfied when C is the

Riemann sphere and NC is a negative line bundle.
In closing, the main purpose of this paper is to show that the holomorphic equiv-

alence classes of neighborhoods can be realized as a subset of a finitely dimensional
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space H1(TCM). An interesting question is if there is a fine structure on a possible
subset in H1(TCM) that describes the moduli space of the manifolds completely.
However, this theory remains to be further developed.
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