

1

2 **Comet 81P/Wild 2 dust impactors of Stardust turnip-like tracks**
3 **analogous to cluster IDPs**

4

5 Mingming Zhang^{a*}, Noël Chaumard^{a†}, Céline Defouilloy^{a†}, William O. Nachlas^b,
6 Donald E. Brownlee^c, David J. Joswiak^c, Andrew J. Westphal^d, Zack Gainsforth^d,
7 Kouki Kitajima^a, Noriko T. Kita^a

8 ^a *WiscSIMS, Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706,
9 USA*

10 ^b *Eugene Cameron Electron Microprobe Laboratory, Department of Geoscience, University of
11 Wisconsin–Madison, Madison, WI 53706, USA*

12 ^c *Department of Astronomy, University of Washington, Seattle, WA 98195, USA*

13 ^d *Space Sciences Laboratory, University of California, Berkeley, California 94720, USA*

14

15 [†]*Present address: Fi Group, Direction scientifique, 14 terrasse Bellini, 92800 Puteaux, France*

16 [†]*Present address: CAMECA, 29 quai des Grésillons, 92633 Gennevilliers Cedex, France*

17 ^{*}*Corresponding address: mzhang467@wisc.edu*

18

19 **ABSTRACT**

20 We measured oxygen isotope ratios of 16 silicate fragments from seven aerogel
21 tracks (turnip-like type B tracks 77, 149, 172, 191, and 220; carrot-like type A tracks 22
22 and 175) of the comet 81P/Wild 2 collector from NASA's Stardust mission using secondary
23 ion mass spectrometry. Thirteen were prepared by ultramicrotomy; three from track 220
24 were prepared by sputtering resin blocks using a SIMS Kohler beam, a new procedure
25 aiming to mine as many cometary particles encased in aerogel/resin as possible.
26 Combining new and literature results, we recognized that most silicate fragments of
27 individual type B tracks have diverse mineralogy but consistent mass-independent
28 fractionation of oxygen isotopes ($\Delta^{17}\text{O} = \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$) or display negative $\Delta^{17}\text{O}-\text{Mg}\#$
29 relationship like CR chondrules. These observations suggest that their impactors are
30 loosely bound aggregates of unequilibrated materials originating mainly from similar
31 protoplanetary disk regions, resembling the cluster IDP U2-20-GCA. Furthermore, silicate
32 fragments from type A track 22 have almost identical mineralogy and $\Delta^{17}\text{O}$ values,
33 confirming that its impactor is a single chondrule-like fragment. The terminal particle of
34 type A track 175 is pure forsterite with $\Delta^{17}\text{O}$ of $\sim -23\text{\textperthousand}$.

35 Six iron-rich fragments of this study have positive oxygen isotope ratios
36 ($\Delta^{17}\text{O} \sim +2\text{\textperthousand}$) and ordinary chondrite chondrule-like olivine compositions. Together with
37 five similar fragments in the literature, a unique population ($\text{Mg}\# \leq 86$) of Wild 2 fragments
38 that resemble chondrules from the inner solar system (O-E-R) chondrites or the outer solar
39 system CH-CB chondrites was identified. The remaining ^{16}O -poor Wild 2 fragments are
40 $\text{Mg}\# \geq 79$ silicates with $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ and a small amount of $\text{Mg}\# \leq 79$ silicates with
41 $\Delta^{17}\text{O} \sim 0\text{\textperthousand}$, which are most consistent with CR chondrite chondrules. Thus, we conclude

42 that in addition to the possible major source of CR chondrite chondrule-like materials, the
43 inner solar system or CH-CB chondrule-like materials are a minor component of comet
44 Wild 2, like the cluster IDP U2-20-GCA.

45 **Keywords:** silicate fragments; comet Wild 2; inner solar system materials; CR chondrite
46 chondrules; aerogel tracks.

47 **1. Introduction**

48 Thousands of particles from comet 81P/Wild 2 were successfully captured by the
49 silica aerogel collector on the Stardust spacecraft during a 6.1 km/s flyby in 2004 and were
50 returned to Earth for laboratory analysis in 2006 (Brownlee et al., 2006). Two major types
51 of aerogel tracks were identified: (i) carrot-like (type A) tracks, characterized by long,
52 slender, and continuously tapering walls; their impactors are likely single minerals or
53 competent assemblages of a few minerals without adhering fine-grained materials, analog
54 to coarse-grained interplanetary dust particle (IDP) or chondrule fragments; (ii) turnip-like
55 (type B) tracks, characterized by bulbous cavities attached with one or a small number of
56 slender tracks; their impactors are possibly weakly bonded mixtures of unequilibrated
57 coarse- and fine-grained materials, analog to cluster IDP or chondrite matrix (+clast) (e.g.,
58 Hörz et al., 2006; Kearsley et al., 2006; Burchell et al., 2008; Joswiak et al., 2012). After
59 extracting individual tracks as keystones from the cometary collector and preparing them
60 by ultramicrotomy (e.g., Westphal et al., 2004; Matrajt and Brownlee, 2006), a significant
61 fraction of high-temperature crystalline silicates (mainly olivine and pyroxene) was
62 identified and found to be similar to chondritic materials, such as chondrules, calcium-
63 aluminum-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs) (e.g., Zolensky et
64 al., 2006; Nakamura et al., 2008; Simon et al., 2008; Westphal et al., 2009; Nakamura-
65 Messenger et al., 2011; Bridges et al., 2012; Joswiak et al., 2012, 2017; Gainsforth et al.,
66 2015).

67 Wild 2 olivine fragments exhibit a flat distribution of forsterite contents [mol% Mg/
68 (Fe + Mg), 100 to 52] and a wide range of MnO/FeO ratios, implying diverse sources of
69 carbonaceous (CC, mainly CR and CH) and noncarbonaceous (NC, like ordinary chondrite)

70 chondrites-forming regions (Frank et al., 2014; Brownlee and Joswiak, 2017). The olivine
71 and pyroxene fragments (N=25, at precision <2-3‰) display a bimodal oxygen isotope
72 distribution that is mostly along the primitive chondrule mineral (PCM) line with mass-
73 independent fractionation of oxygen isotopes, $\Delta^{17}\text{O}$ ($= \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$), ranging from −
74 23‰ to +2‰ (Nakamura et al., 2008; Nakashima et al., 2012; Ogliore et al., 2012, 2015;
75 Gainsforth et al., 2015; Defouilloy et al., 2017). Five fragments of pure forsterite, LIME
76 (low-iron, manganese-enriched) olivine, and enstatite are ^{16}O -rich ($\Delta^{17}\text{O} \sim -23\text{\textperthousand}$),
77 resembling AOAs; the remaining are ^{16}O -poor with those having Mg# [mol% Mg/ (Fe +
78 Mg)] >97 have $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ and Mg# <97 ones have $\Delta^{17}\text{O}$ varying between −4‰ and 2‰
79 (Nakashima et al., 2012; Defouilloy et al., 2017). This $\Delta^{17}\text{O}$ -Mg# relationship is most
80 consistent with CR chondrite chondrules, i.e., $\Delta^{17}\text{O}$ gradually increases from −6‰ to +1‰
81 as Mg# decreases from 99 to 94 and then varies between −2‰ to +1‰ in Mg# <90 ones
82 (Connolly and Huss, 2010; Schrader et al., 2013, 2014; Tenner et al., 2015). Furthermore,
83 the ^{26}Al - ^{26}Mg analyses of plagioclase/mesostasis-bearing fragments did not detect
84 resolvable ^{26}Mg excess and suggest crystallization ages of >1.7-3.0 Ma after CAI (Matzel et
85 al., 2010; Ogliore et al., 2012; Nakashima et al., 2015), as late as the formation of the
86 majority of chondrules in CR chondrites (Nagashima et al., 2014; Schrader et al., 2017;
87 Tenner et al., 2019).

88 Cluster IDPs collected from the stratosphere are uncompacted, loosely bonded
89 aggregates composed of coarse monomineralic grains (mainly olivine and low-Ca
90 pyroxene), mineral assemblages (Kool grains, chondrules, AOAs, and CAIs), and chondritic
91 fine-grained materials (enstatite whiskers, organics, presolar grains, and GEMS = glass with
92 embedded metal and sulfide,), representing a heterogeneous breccia physically combined

93 in the early solar nebula or the regolith of parent comets/asteroids (Thomas et al., 1995;
94 Messenger, 2000; Joswiak et al., 2009, 2017; Ogliore et al., 2019; Zhang et al., 2021; Utt et
95 al., 2023). Their physical and mineralogical characteristics match well with the properties
96 of impactors that produced type B aerogel tracks (e.g., Joswiak et al., 2012), except that the
97 fine materials might have largely been destroyed during the high-speed capture process
98 (Ishii et al., 2008; Floss et al., 2013; Stodolna et al., 2014; Gainsforth et al., 2019). Al-Mg
99 chronology of an amorphous fragment ("Manchanito") from a cluster IDP L2071 indicates a
100 late formation age of >3.2 Ma after CAIs, similar to Wild 2 fragments (Ogliore et al., 2019).
101 The giant cluster (GC) IDP U2-20-GCP (~ 350 μm in diameter), collected by a U2 aircraft in
102 1980 as part of the University of Washington high-altitude stratospheric dust collector
103 projects, contains thousands of submicron to ~ 40 μm particles with extreme diverse
104 mineralogy (Joswiak et al., 2017). Its iron-rich olivine displays wide ranges of Fe and Mn
105 contents, indicating diverse sources of various chondrule-forming environments,
106 resembling Wild 2 fragments (Brownlee and Joswiak, 2017). Oxygen isotope systematics of
107 20 silicate fragments (mono/polymineralic olivine and pyroxene, and chondrule-like
108 fragments) from this cluster IDP show limited oxygen isotope range with $\Delta^{17}\text{O}$ increasing
109 from $-3\text{\textperthousand}$ to 0\textperthousand with decreasing Mg# (99 to 75), comparable to Wild 2 fragments and CR
110 chondrule-like materials; minor fragments have positive oxygen isotope ratios that were
111 likely derived from NC-like or CH-CB chondrule-like materials (Zhang et al., 2021). The
112 oxygen isotope study demonstrated that most silicate fragments in cluster IDPs could be
113 derived from similar protoplanetary disk regions where they aggregated as clusters before
114 being transported to and then accreted into parental comets.

115 Since there are many similarities between Wild 2 fragments and cluster IDPs, we
116 studied the mineralogy and oxygen isotopes of 16 large ($>2 \mu\text{m}$) silicate fragments from
117 seven Stardust aerogel tracks to explore the potential genetic relationships between the
118 dust impactors of aerogel tracks and cluster IDPs, and further constrain the source of Wild
119 2 silicates. In addition to the conventional ultramicrotomy method, we developed an
120 analytical procedure of exposing the fully embedded Wild 2 fragments in the subsurface of
121 acrylic/epoxy resin blocks using the Kohler beam of secondary ion mass spectrometry
122 (SIMS). The procedure aims to mine as many silicate fragments embedded in the resin
123 during sample preparation as possible, which is typical for fragment clusters in the bulb
124 regions of type B tracks.

125 **2. Analytical Methods**

126 **2.1 Sample descriptions and preparation**

127 Silicate fragments from seven aerogel tracks were investigated in this study,
128 including additional fragments from five tracks (T22, T77, T149, T172, and T191) that have
129 been previously studied (Joswiak et al., 2012; Nakashima et al., 2012; Defouilloy et al., 2017;
130 Gainsforth et al., 2019), and new fragments from two tracks (T175 and T220) that have
131 been recently extracted. Five (T77, T149, T172, T191, and T220) are type B tracks. T77
132 (named "Puki") is a >1.2 mm-long track containing >54 discrete fragments distributed
133 throughout the bulb region, along the main track, and in the three short sidetracks (Joswiak
134 et al., 2012). T149 is a ~ 4 mm-long track composed of the main track, two short sidetracks,
135 and a broad cavity (Defouilloy et al., 2017). T172 is a ~ 0.9 mm-long track with a distinct
136 narrow root (Defouilloy et al., 2017). T191 is a ~ 11 mm-long track whose terminal particle
137 is a large pyrrhotite crystal associated with fine-grained materials of equilibrated

138 aggregates, possible GEMS, and altered objects (named "Andromeda" as a whole)
139 (Gainsforth et al., 2019). T220 is a ~5.3 mm-long track consisting of at least six terminal
140 particles, numerous small particles within the bulb, and large areas of melt. Tracks 22 and
141 175 are type A with a length of ~3.9 mm and ~1.3 mm, respectively. T22 (named "Aton")
142 contains at least five visible short sidetracks extending off the main branch (Joswiak et al.,
143 2012).

144 Aerogel keystones containing entire tracks were prepared at the University of
145 California, Berkeley (UCB) or the Johnson Space Center curatorial facility (Westphal et al.,
146 2004). Keystones of T22, T77, T149, T172, and T175 were compressed and embedded into
147 acrylic resin at the University of Washington following the procedure described in Matrajt
148 and Brownlee (2006). The acrylic resin was cut into individual slabs based on the
149 distribution of large (>2 μ m, suitable for SIMS oxygen isotope analysis) transparent
150 fragments (mainly crystalline silicates). Each acrylic slab was then glued on top of an
151 acrylic cylinder with 7 mm diameter and 10 mm height and trimmed for ultramicrotomy.
152 The T191 keystone was embedded in an EMBED 812 epoxy bullet for ultramicrotomy at
153 the UCB, as described in Gainsforth et al. (2019). The T220 keystone was processed at both
154 institutions as part of a consortium study. ~70-100 nm-thick microtome sections of silicate
155 fragments were made by ultramicrotomy. These sections were transferred onto
156 commercially prepared 200-mesh Cu or Au TEM grids coated with 10 nm-thick carbon
157 films for transmission electron microscope (TEM) observations (Joswiak et al., 2009, 2012;
158 Gainsforth et al., 2015, 2019). The remaining portion ("potted butt") was removed from the
159 acrylic cylinder or epoxy bullet and pressed into 1.4 mm diameter indium metal located at
160 the center of a 25 mm or 8 mm aluminum disk for SIMS analysis (Nakashima et al., 2012;

161 Defouilloy et al., 2017; Zhang et al., 2021). A polished San Carlos olivine (SC-OI) grain used
162 as a SIMS running standard was pressed within 500 μm of the potted butt.

163 The ultramicrotomy method exposes the upmost-level fragment(s) of the resin
164 block for mining the terminal particles and other fragments dispersed in most aerogel
165 tracks of this study. However, for track 220 which has clustered fragments in its bulb
166 region at different depths in resin blocks, ultramicrotomy cannot separate and expose them
167 individually. In this case, we developed an analytical procedure of exposing subsurface
168 fragments by SIMS Kohler beam sputtering the resin blocks, followed by Electron Probe
169 Micro-Analyzer (EPMA) major element measurement and SIMS oxygen isotope analysis
170 (section 2.3).

171 **2.2 Analytical procedures for Wild 2 fragments exposed by**
172 **ultramicrotomy**

173 The Wild 2 fragments exposed by ultramicrotomy were analyzed following the
174 procedure described in Nakashima et al. (2012), Defouilloy et al. (2017), and Zhang et al.
175 (2021). They were first imaged with field-emission-gun (FEG) scanning electron
176 microscopes (FEG-SEMs; JEOL JSM 7000F at the University of Washington; Zeiss Auriga and
177 Zeiss Gemini 450 at the University of Wisconsin-Madison, UW-Madison) and a conventional
178 tungsten-sourced SEM (Hitachi S3400, UW-Madison). Images were taken with low beam
179 currents (≤ 200 pA) for a short acquisition time (<30 s). Under this condition, the electron
180 beam damage and shrinkage of resins were minor (<0.2 μm depression), as inspected by a
181 Zygo NewView™ 9000 interferometer at the Nanoscale Imaging and Analysis Center (NIAC),
182 UW-Madison. Their mineral chemistries were determined from their microtome sections
183 using a FEG transmission electron microscope (Tecnai TF20 STEM, 200 keV) at the

184 University of Washington, following the method described in Joswiak et al. (2009).
185 Quantitative energy dispersive X-ray (EDX) spectra were obtained using a light element X-
186 ray detector and quantified using an EDAX Genesis analysis system by the k-factor element
187 ratio technique (Cliff and Lorimer, 1975). Typical detection limits were ~0.01 wt%.
188 Estimated relative errors are <5% for major elements and ~30% for minor elements.

189 Before SIMS analysis, the Wild 2 fragments were marked by removing $1 \times 1 \mu\text{m}$
190 square(s) of carbon coating (20-30 nm thick) on the sample surface using a focused ion
191 beam (FIB) SEM (Zeiss Auriga) at NIAC, UW-Madison. The Ga^+ FIB with an acceleration
192 voltage of 30 keV and a beam current of 5 pA was used to sputter target regions for 90 s,
193 which was proven to be effective for removing this thickness of carbon coating with
194 minimal alteration of the underlying samples (Nakashima et al., 2012; Defouilloy et al.,
195 2017; Zhang et al., 2021).

196 The oxygen isotope ratios of Wild 2 fragments were determined using the CAMECA
197 IMS-1280 at the WiscSIMS laboratory of UW-Madison. Three sessions of similar analytical
198 conditions were performed (Feb. 2017, Oct. 2017, and Oct. 2021), with the first two also
199 analyzing silicate fragments from the cluster IDP U2-20-GCA (Zhang et al., 2021). A typical
200 primary Cs^+ beam with a size of $\sim 2 \times 1.5 \mu\text{m}$ and an intensity of 2.5-3 pA was used. A
201 normal incident electron gun (NEG) was used for charge compensation. Precise aiming of
202 target locations was enabled by the FIB marks, which appeared as bright spots on a $^{16}\text{O}^-$ ion
203 image generated by rastering the primary beam over a $10 \times 10 \mu\text{m}$ square of the nearest
204 region (Nakashima et al., 2012), and the "Nanodeflector," which can deflect the primary
205 beam by $\geq 0.1 \mu\text{m}$ steps (Defouilloy et al., 2017). Secondary ions $^{16}\text{O}^-$ ($2-3 \times 10^6$ cps = counts
206 per second), $^{17}\text{O}^-$, and $^{18}\text{O}^-$ were detected simultaneously using a Faraday cup with an

207 amplifier of 10^{11} Ω resistance and two electron amplifiers (EMs) on the multicollection
208 system, respectively. The contribution of $^{16}\text{O}^1\text{H}^-$ tailing on the counts of $^{17}\text{O}^-$ was ≤ 20 ppm
209 under a mass resolving power (MRP) of ~ 6000 at mass 17, which was corrected using the
210 $^{16}\text{O}^1\text{H}^-$ intensity monitored at the end of each analysis following the method described in
211 Heck et al. (2010). Each measurement took ~ 25 min that included 20 cycles of acquisition
212 of 60 s each, with typical internal uncertainty (2SE) of 1.5 ‰, 2.0 ‰, and 2.0 ‰ for $\delta^{18}\text{O}$,
213 $\delta^{17}\text{O}$, and $\Delta^{17}\text{O}$, respectively. The uncertainty assigned to the unknowns is represented by
214 twice the standard deviation (2SD) of the bracketing six analyses on the SC-01 of the same
215 disk (Kita et al., 2009), which is similar to the 2SE of individual analysis. The instrumental
216 biases of unknown analysis were estimated from the multiple matrix-matching olivine and
217 pyroxene standards analyzed in the same SIMS sessions (Table S1). The locations and
218 morphology of SIMS pits on Wild 2 fragments were inspected using the SEMs Zeiss Auriga
219 and Hitachi S3400 mentioned above (Supplementary material 4).

220 **2.3 Analytical procedures for subsurface Wild 2 fragments in resin
221 blocks**

222 ***2.3.1 Expose silicate fragments using SIMS Kohler beam***

223 Subsurface Wild 2 fragments (associated with a small amount of silica aerogel) in
224 two acrylic resin blocks of T220 were first located by the navigational QGIS program,
225 where the transmitted (taken before embedding into the indium metal of an aluminum disk)
226 and reflected light microscope images of the resin blocks were aligned with the sample
227 stage using the coordinates of reference points. Then, the in-house QGIS plugins enable the
228 operation of the SIMS XY stage in the QGIS program with an accuracy of 2 μm (Linzmeier et
229 al., 2018). The aiming accuracy would be confirmed by live images of the UV light-

230 illuminated microscope camera (optical resolution \sim 1.3 μm) (Kita et al., 2015), where the
231 exposed fragments could be readily identified from the substrate.

232 Hereafter, they were exposed using a SIMS Cs^+ primary beam under the Kohler
233 illumination mode ("Kohler beam"), which provides relatively fast and homogeneous
234 sputtering. The primary ion beam was tuned to be \sim 22 \times 22 μm (near circle) using a beam
235 aperture of 100 μm in diameter (a larger aperture produces a larger beam). The beam
236 intensity was adjusted to be 0.5-1.0 nA, and the field aperture was set to 6000 μm . Charge
237 compensation was achieved using a NEG. Secondary ion of major oxides in olivine and
238 pyroxene, i.e., $^{18}\text{O}^-$, $^{24}\text{Mg}^{16}\text{O}^-$, $^{27}\text{Al}^{16}\text{O}^-$, $^{28}\text{Si}^-$, $^{40}\text{Ca}^-$, $^{52}\text{Cr}^-$, $^{55}\text{Mn}^-$, and $^{56}\text{Fe}^-$, were counted using
239 a Faraday cup and an EM on the monocollect (mono-) system under peak-jumping mode.
240 The MRP was set to be \sim 5000 to separate interferences of $^{28}\text{Si}^{28}\text{Si}^-$ on $^{56}\text{Fe}^-$. Each cycle took
241 \sim 38 s, and cycle-by-cycle count rates for each ion species were monitored. Depending on
242 the mineral species, the count rates of some ion species (except for $^{28}\text{Si}^-$, signals also
243 generated from silica aerogel) would dramatically increase if reaching the subsurface
244 silicate fragments. To evaluate the exposed size, a focused (gaussian) beam of \sim 1 μm in
245 diameter (\sim 7-8 pA) was used to generate ion images over a 10 \times 10 μm square using the
246 monoEM. We repeatedly switched between the Kohler and Gaussian beam conditions until
247 the silicate fragment was almost fully exposed or the exposed area was roughly $>2\times 2$ μm .
248 Zhang et al. (2022) found that the SIMS sputter rates of epoxy (\sim 0.88 $\mu\text{m}^3/\text{s/nA}$) and
249 acrylic resins (\sim 1.03 $\mu\text{m}^3/\text{s/nA}$) are significantly faster than olivine and pyroxene (0.26-
250 0.43 $\mu\text{m}^3/\text{s/nA}$). Thus, it was never required to expose the maximum dimension of the
251 subsurface silicate fragment, making it stand out from the substrate resin and increasing
252 the possibility of sample charging under NEG. Furthermore, because of the incident angle of

253 the primary beam ($\sim 21^\circ$) column, we limited the depth to 6 μm for a $\sim 22 \mu\text{m}$ Kohler beam
254 to minimize the shadow effect of the crater wall.

255 After being exposed by Kohler beam sputtering, the Wild 2 fragments were recoated
256 with ~ 20 nm carbon. If no coating was applied, the built-up charge around the analysis
257 location would reduce the secondary ion yield (defined as the secondary ion count
258 rate/primary ion intensity) by $\sim 50\%$ and induce significant mass-dependent fractionation
259 of oxygen isotopes during a Gaussian-beam analysis. For example, we found the $\delta^{18}\text{O}_{\text{Raw}}$ and
260 $\delta^{17}\text{O}_{\text{Raw}}$ values determined by a Gaussian beam from the bottom of craters made by Kohler
261 beam sputtering on SC-OI are constantly 9-10% higher than those from the polished
262 surface; in contrast, their $\Delta^{17}\text{O}_{\text{Raw}}$ values are indistinguishable and independent of the
263 crater depth (Fig. 1a-b, Supplementary material 1, Table S2). If a new coating was applied,
264 the measured $\delta^{18}\text{O}_{\text{Raw}}$ and $\delta^{17}\text{O}_{\text{Raw}}$ values from the crater bottom and polished surface were
265 almost identical (Fig. 1c-d).

266 **2.3.2 Major element analysis using EPMA at very low beam current**

267 A FEG-EPMA (CAMECA SX-Five FE) equipped with a horizontal silicon drift energy
268 dispersive spectroscopy detector (EDS) and five wavelength-dispersive spectrometers
269 (WDS) at the Eugene Cameron Electron Microprobe Laboratory, UW-Madison, was used for
270 determining the major and minor element compositions of the exposed fragments. To
271 avoid shifting of beam spot location when switching beam apertures, we used the same
272 electron beam setting for point analysis and scanning, which is necessary to precisely
273 locate the μm -sized Wild 2 fragments at the crater bottoms. Thus, an optimal beam setting
274 must be selected to balance the high-quality quantitative analysis and electron beam
275 damage to the surrounding resin or aerogel. After tests to investigate beam damage and

276 count rates, it was determined that the optimal beam conditions included a 500 pA beam
277 current, an accelerating voltage of 12 kV, and a beam diameter of 1 μm (set by the
278 software). Each element was measured for 200 s and background subtraction was
279 performed using the Mean Atomic Number (MAN) technique (Donovan et al., 2016). The
280 elements were calibrated using natural standards of Springwater olivine (USNM 2566)
281 (Mg), wollastonite (Ca), jadeite (Na), microcline (K), and synthetic standards of MgO (Mg),
282 Al₂O₃ (Al), Cr₂O₃ (Cr), TiO₂ (Ti), MnSiO₄ (Mn), and Fe₂SiO₄ (Si). Typical detection limits
283 were 0.01 wt% for MgO, 0.02 wt% for Na₂O, Al₂O₃, SiO₂, and Cr₂O₃, 0.04 wt% for CaO, 0.05
284 wt% for TiO₂, and 0.08 wt% for FeO and MnO.

285 The interaction volume (energy >10%) simulated by the CASINO software (Demers
286 et al., 2011) is \sim 1.2 (X) \times 1.2 (Y) \times 2.0 (Z) μm . Under the selected beam conditions, the
287 electron beam damage on the acrylic resin was $<0.4 \mu\text{m}$ deep after \sim 10 s of test scanning
288 (the time needed for locating analysis positions was considerably shorter than this) and no
289 damage was observed to the C coating. The measured Fo mol% values in olivine reference
290 materials (RMs) and En mol% and Wo mol% values in pyroxene RMs are consistent with
291 their reference values (Fig. 2; EA3; Fukuda et al., 2020; Zhang et al., 2022). Relative
292 standard deviations (RSD) are typically $<5\%$ for major elements (>1 wt%), $<10\%$ for Cr₂O₃
293 (>0.4 wt%), and $<20\%$ for Al₂O₃ (>0.6 wt%). The MnO contents in olivine and pyroxene
294 RMs measured under these conditions were systematically higher than their reference
295 values but follow a linear trend. The overestimation of MnO content may be related to (i)
296 the low acceleration voltage used, which is less than twice the Mn K α absorption edge (6.54
297 kV), and (ii) the low beam current at which measurement were performed, which can be
298 affected by non-linearity in the accuracy of picoammeter measurements that are especially

299 problematic at very low count rates (Donovan et al., 2023). The MnO contents were
300 corrected using the empirical functions fitting from these olivine and pyroxene RMs (Figs.
301 2b and 2d).

302 **2.3.3 SIMS oxygen isotope analysis**

303 The oxygen isotopes of the exposed T220 fragments were determined using a $1.5 \times$
304 $1.0 \mu\text{m}$ -sized primary ion beam with an intensity of $\sim 1.5 \text{ pA}$. The other settings were
305 identical to those used for the $2.0 \times 1.5 \mu\text{m}$ beam described in section 2.2. The typical count
306 rate for $^{16}\text{O}^-$ was $1.5\text{-}2.0 \times 10^6 \text{ cps}$ ($\sim 60\%$ of that under $2.0 \times 1.5 \mu\text{m}$ beam). The spot-to-
307 spot reproducibility (2SD) on SC-OI was $1\text{-}3\%$ for $\delta^{18}\text{O}$ and $2\text{-}3\%$ for $\delta^{17}\text{O}$ and $\Delta^{17}\text{O}$.

308 **2.3.4 Evaluation of the analytical procedure using a simulant mount**

309 Before applying the analytical procedure to the actual Wild 2 samples, a simulant
310 epoxy mount (without silica aerogel) of augite standard "7244-Aug" (Zhang et al., 2022)
311 powders (10s to 100s of μm -sized fragments) was prepared to evaluate its reliability.
312 Micrometer-sized fragments within $6 \mu\text{m}$ below the surface were searched under an optical
313 microscope, and six ($3\text{-}10 \mu\text{m}$) were selected for Kohler beam sputtering (Supplementary
314 material 3). Depending on the shape and burial condition of these fragments, their exposed
315 surfaces are highly variable. Two are tilted shards, and the other four are flat plates, as
316 inspected using the Zygo interferometer and an SEM. EPMA analysis on the tilted fragment
317 A3-R1 ($\sim 2 \times 1 \mu\text{m}$, $3.4 \mu\text{m}$ deep) shows major element compositions consistent with the
318 reference values (RSD<10%, Supplementary material 2). Oxygen isotope analyses on the
319 four flat fragments using a Gaussian beam of $2 \times 1.5 \mu\text{m}^2$ show similar oxygen isotope
320 ratios to the nearby large grains on the polished surface (Table S4), except for two analyses
321 that could have experienced slight arcing due to thin coatings (SEM imaged multiple times).

322 **3. Results**

323 **3.1 Wild 2 fragments exposed by ultramicrotomy**

324 **3.1.1 Mineralogy**

325 Thirteen fragments ranging in size from $2 \times 2 \mu\text{m}$ to $7 \times 2 \mu\text{m}$ were extracted from
326 the seven aerogel tracks and prepared by ultramicrotomy (Table 1, Fig. 3). Nine are
327 monomineralic, of which four are iron-rich olivines (T77/F7, T149/F11a, F11b, and
328 T191/B1/F6; Mg# = 60-85), two are magnesian olivines (T191/B1/F2, F3; Mg#~98), one
329 is near pure forsterite (T175/F1, Fo_{99.8}, ~0.1 wt% MnO, not LIME), and two are low-Ca
330 pyroxenes (T172/F100 and T191/B1/F1; En₉₄₋₉₆Wo₁₋₃). T220/TP10b/F10 is polymineralic
331 fragment dominated by low-Ca pyroxene (En₉₅Wo_{3.4}) with an Mn-rich olivine (Fo₈₇, ~2.5 wt%
332 MnO) inclusion. T22/F7, F8, and F12 are chondrule-like, dominated by chemically zoned
333 olivine (Fo₆₇₋₉₂) with minor silicate glass, like the TP (Fo₆₄₋₉₁) and F7 (Fo₆₇₋₉₁) of this track
334 (Tomeoka et al., 2008; Joswiak et al., 2012).

335 Olivine contains minor amounts of MnO (0.1-0.7 wt%), Cr₂O₃ (\leq 0.8 wt%), Al₂O₃
336 (<0.6 wt%), and CaO (\leq 0.4 wt%). On the diagram of Fe (afu) vs. Mn (afu) in olivine (Fig. 4),
337 T22/F8, F12 fall into the "forbidden triangle" that is unique to olivines in Wild 2,
338 anhydrous IDPs, and OC chondrules (Brownlee and Joswiak, 2017; Zhang et al., 2021;
339 Schrader and Davidson, 2022); other iron-rich olivines (except for the Mn-rich olivine
340 inclusion in T220/TP10b/F10) plot close to the trendline of OC chondrules and also within
341 the range of CR chondrules; and magnesian olivine fragments (T191/B1/F2, F3, and
342 T175/F1) have low MnO content (0.1-0.3 wt%) like typical iron-poor chondrules.
343 Furthermore, the three low-Ca pyroxene fragments contain up to 2.9 wt% Al₂O₃
344 (T220/TP10a/F10), 0.2-1.2 wt% Cr₂O₃, and 0.6-1.3 wt% MnO.

345 **3.1.2 Oxygen isotopes**

346 The thirteen fragments were analyzed only once each due to their small sizes (Table
347 2, Supplementary Material 4, Table S5). Three analyses penetrated thin fragments T22/F12,
348 T77/F7, and T191B1/F6, and their oxygen isotope ratios were recalculated from ratios of
349 cycles prior to contact with the underlying aerogel or resin beneath (identified by an
350 abrupt decrease in the $^{16}\text{O}^-$ signal intensity), without applying the correction of $^{16}\text{O}^{1\text{H}}^-$ to
351 $^{17}\text{O}^-$. The pure forsterite fragment T175/F1 is ^{16}O -rich ($\delta^{18,17}\text{O} \sim -50\text{\textperthousand}$, Fig. 5a), like AOAs
352 and Wild 2 LIME olivines (Nakashima et al., 2012; Ushikubo et al., 2017; Marrocchi et al.,
353 2019; Fukuda et al., 2021). The remaining fragments are ^{16}O -poor with $\delta^{18}\text{O}$, $\delta^{17}\text{O}$, and $\Delta^{17}\text{O}$
354 ranging from $-3.1 \pm 1.7\text{\textperthousand}$ to $6.9 \pm 2.4\text{\textperthousand}$, $-5.9 \pm 3.3\text{\textperthousand}$ to $6.7 \pm 4.0\text{\textperthousand}$, and $-4.3 \pm 2.9\text{\textperthousand}$ to
355 $3.1 \pm 2.9\text{\textperthousand}$, respectively (Table 2, Fig. 5b), greatly overlapping with the ^{16}O -poor Wild 2
356 fragments in the literature (Nakamura et al., 2008; Nakashima et al., 2012; Ogliore et al.,
357 2012, 2015; Gainsforth et al., 2015; Defouilloy et al., 2017).

358 Unlike most fragments that are distributed on or close to the PCM line, five (F22/F8,
359 F10, and F12, T77/F7, and T191/B1/F6) are plotted on/above the terrestrial fractionation
360 (TF) line (Fig. 5c), including the three that were penetrated during analysis. For the three
361 (F8, F10, and F12) fragments analyzed in track 22, they have indistinguishable $\Delta^{17}\text{O}$ values
362 ($2.4 \pm 1.9\text{\textperthousand}$ to $3.2 \pm 2.9\text{\textperthousand}$), while F10 ($1.6 \pm 1.9\text{\textperthousand}$) has a lower $\delta^{18}\text{O}$ compared to the
363 other two ($6.9 \pm 2.4\text{\textperthousand}$ for F8 and $5.5 \pm 2.0\text{\textperthousand}$ for F12, Fig. 5c). For the four fragments
364 analyzed in track 191, three (F1, F2, and F3) have almost identical $\Delta^{17}\text{O}$ ($\sim -2\text{\textperthousand}$) and $\delta^{18}\text{O}$
365 ($\sim -2\text{\textperthousand}$), while F6 has significantly positive $\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$ of $1.8 \pm 2.5\text{\textperthousand}$ and $4.7 \pm 1.7\text{\textperthousand}$,
366 respectively (Table 2).

367 **3.2 Wild 2 fragments exposed by SIMS Kohler beam sputtering**

368 **3.2.1 Mineralogy**

369 Five fragments (TP10a/F3, F4, and F5; TP10b/F11 and F12) with an estimated size
370 of \sim 2-3 μm and depth of 2-8 μm within the two acrylic blocks (TP10a and TP10b) of track
371 220 were exposed by SIMS Kohler beam sputtering. After being exposed, SEM and
372 profilometer inspections determined their sizes to be $1.8 \times 1.8 \mu\text{m}$ to $3.0 \times 2.3 \mu\text{m}$ and
373 depths to be $2.3 \mu\text{m}$ to $7.8 \mu\text{m}$ (Fig. 6). EPMA analyses identified an iron-rich olivine (Fo₆₈,
374 TP10a/F3) with \sim 0.52 wt% MnO, plotted close to the OC chondrule trendline in the Fe vs.
375 Mn diagram (Fig. 4). The other four are low-Ca pyroxene (En₈₀₋₉₆Wo_{1.2-5}) containing
376 varying amounts of Al₂O₃ (0.4-4.0 wt%), Cr₂O₃ (0.6-1.3 wt%), and MnO (0.5-1.6 wt%), with
377 those from the same acrylic block having similar compositions (En₉₄₋₉₆Wo_{1.5-3} for TP10a/
378 F4 and F5; En₈₀₋₈₄Wo_{1.2-5} for TP10b/F11 and F12). The EPMA analysis total for TP10a/F5
379 is lower than others (\sim 74 wt% vs. 88-96 wt%) because it is hollow, as revealed during FIB
380 marking (Table 1, Supplementary material 4).

381 **3.3.2 Oxygen isotopes**

382 Except for TP10a/F5, the remaining four exposed fragments were measured for
383 oxygen isotopes, of which TP10b/F12 was penetrated within five analysis cycles (data
384 discarded). The valid analyses on TP10a/F3, F4 and TP10b/F11 show ¹⁶O-poor signatures,
385 with $\delta^{18}\text{O}$ of $2.9 \pm 1.6\text{\textperthousand}$, $4.7 \pm 1.6\text{\textperthousand}$, and $2.7 \pm 2.8\text{\textperthousand}$, and $\Delta^{17}\text{O}$ of $1.6 \pm 2.7\text{\textperthousand}$, $-1.3 \pm 2.7\text{\textperthousand}$,
386 and $-2.4 \pm 3.1\text{\textperthousand}$, respectively. TP10b/F3 (Fo₆₈) has oxygen isotope ratios plotted
387 on/above the TF line, like the other five fragments mentioned in section 3.1.2 (Fig. 5c).
388 TP10b/F11 shows similar oxygen isotopes to TP10b/F10 ($\delta^{18}\text{O}$: $3.5 \pm 0.8\text{\textperthousand}$; $\Delta^{17}\text{O}$: $-1.3 \pm$
389 $1.7\text{\textperthousand}$), a grain exposed by ultramicrotomy on the same acrylic block.

390 **4. Discussion**

391 **4.1 Mining techniques for silicate fragments in aerogel tracks**

392 Ultramicrotomy has been proven to be a very reliable technique for exposing Wild 2
393 fragments at the track roots or dispersed along the main track, sidetracks, or within its
394 bulbous region (Westphal et al., 2004; Matrajt and Brownlee, 2006; Zolensky et al., 2006;
395 Nakamura-Messenger et al., 2011). However, with numerous fragments dispersed at
396 different depths within the acrylic/epoxy resin, ultramicrotomy only exposes the
397 fragment(s) located at the upmost levels and leaves the others embedded. In this study, we
398 developed a three-step analytical procedure for mining subsurface Wild 2 fragments in
399 acrylic/epoxy resin blocks. Step I: Expose fragments using a SIMS Kohler beam and monitor
400 the sputtering process via the count rate change of major element ions. Step II: Apply a new
401 carbon coating and determine their major and minor element compositions using a 500-pA
402 electron beam on an FE-EPMA. Step III: Determine their oxygen isotope ratios using a SIMS
403 with a primary ion beam size of $1.5 \times 1.0 \mu\text{m}$ or $2.0 \times 1.5 \mu\text{m}$ (if $\geq 3 \mu\text{m}$), with aiming guided
404 by FIB marks. The procedure was set up through parallel tests on an SC-Ol grain and the
405 simulant mount of 7244-Aug, which has been successfully applied to silicate fragments
406 embedded in the two acrylic blocks of track 220.

407 The procedure has three merits: (i) the mineral species of each fragment and its
408 chemical composition can be well characterized. Melted aerogel associated with fine-
409 grained Mg-/Fe-bearing phase can be easily distinguished and avoided; (ii) oxygen isotope
410 ratios of each fragment can be determined with significantly improved precision (2-3‰
411 levels); and (iii) the instrumental bias of target fragments can be properly corrected by
412 standards with matching compositions since there is no instrumental bias difference

413 between fragments on the surface and those several μm below the surface after applying a
414 new carbon coating. Additionally, the spot-to-spot reproducibility of the instrument can be
415 monitored by the nearby running standard, SC-OI, on the polished surface. However, this
416 procedure has two obvious limitations. First, the exposed area of a fragment (preferably
417 flat) is highly dependent on its shape and orientation in the acrylic/epoxy resin. Only the
418 top surface could be exposed for further analyses due to the differential sputtering rates
419 between silicates and resin. Second, the maximum depth of target fragments is limited by
420 the SIMS Kohler beam size, i.e., $\sim 6 \mu\text{m}$ for $\sim 22 \times 22 \mu\text{m}$, due to the shadow effect of the
421 beam crater ($\sim 21^\circ$ inclination angle of the primary ion column). Still, we believe this
422 procedure could greatly improve the efficiency of mining Wild 2 fragments in aerogel
423 tracks supplementary to traditional ultramicrotomy techniques and is particularly useful
424 for small grains.

425 Ogliore et al. (2015) studied fine-grained materials in the bulb of track 74 by (i)
426 extracting a 1 mm^2 section from the wall of this track using glass needles and then
427 compressing it into indium; (ii) mounting it into an Au-coated Si_3N_4 window with a ~ 400
428 μm ion-milled hole; (iii) mapping major elements using an EPMA and then (iv) mapping
429 oxygen isotopes and other ion species of major elements by SIMS using a $\sim 500 \text{ nm}$ primary
430 ion beam, and then calculating the oxygen isotope ratios of Mg-Al, or Fe-rich regions
431 (assumed to be fine-grained silicate fragments, typically $1\text{-}3 \mu\text{m}$). This procedure efficiently
432 obtained the chemistry and oxygen isotope information of tens to hundreds of potential
433 silicate fragments down to $1 \mu\text{m}$ in size within a single SIMS session. However, compared to
434 the EPMA and SIMS point analyses employed in the procedure developed in this study, ion

435 imaging cannot reliability determine the mineral species and compositions, nor can it
436 determine the oxygen isotope ratios at high precision (2-3‰ levels).

437 **4.2 Impactor properties of aerogel tracks**

438 Based on the wide ranges of chemical compositions (Mg#: 100 to 60) and oxygen
439 isotope ratios (~-23‰ to ~+1‰) of six fragments, Nakashima et al. (2012) suggested that
440 the impactor of the type B track 77 is an aggregate of silicate fragments formed in
441 environments of refractory inclusions and outer solar system chondrules. For T77/F7
442 (olivine, Fo₆₀, $\Delta^{17}\text{O} = 3.0 \pm 2.5\text{\textperthousand}$, $\delta^{18}\text{O} = 5.1 \pm 1.8\text{\textperthousand}$) analyzed in this study, we found its
443 oxygen isotope ratios are similar to other iron-rich fragments (T77/F1, F4, and F5, Mg#=
444 60-78, $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ to $\sim 2\text{\textperthousand}$, $\delta^{18}\text{O} \sim 6\text{-}7\text{\textperthousand}$; Nakashima et al., 2012), but are more ¹⁶O-poor
445 than those magnesian-rich ones of the same track (T77/F9, Mg#=96, $\Delta^{17}\text{O} \sim -3\text{\textperthousand}$;
446 $\delta^{18}\text{O} \sim 0\text{\textperthousand}$, Nakashima et al., 2012; the "butterfly," Mg#=88, $\Delta^{17}\text{O} \sim -3\text{\textperthousand}$, $\delta^{18}\text{O} \sim -6\text{\textperthousand}$,
447 Ogliore et al., 2015). This increase of $\Delta^{17}\text{O}$ with decreasing Mg# appears to be consistent
448 with CR chondrules (Tenner et al., 2015), but T77/F7 and the other three iron-rich
449 fragments plot on/above the TF line and overlap with inner solar system O-E-R chondrules
450 or porphyritic chondrules in CH-CB chondrites, suggesting they are genetically related
451 (Figs. 7a, b). Their possible inner solar system origin is supported by their OC chondrule-
452 like Fe-Mn systematics (Fig. 4). Thus, we confirmed that the dust impactor of T77 is
453 composed of silicate fragments formed in multiple regions, i.e., refractory inclusions, CR
454 chondrules, and O-E-R chondrules or CH/CB chondrites.

455 To explore whether the impactor properties of T77 can be generalized to all type B
456 tracks, we compiled the oxygen isotopes of silicate fragments from other five type B tracks
457 determined in this study and the literature (Table S6). For tracks 191 and 220 (Figs. 7c, d),

458 we found that Mg# >88 fragments have nearly constant $\Delta^{17}\text{O}$ of $-2\text{\textperthousand}$. T191/F2 and F3
459 ($\text{Fo}_{\sim 98}$, $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$), as well as T220/TP10b/F10 and F11 ($\text{En}_{95}\text{Wo}_3$, $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$), have
460 almost identical mineralogy and $\Delta^{17}\text{O}$ values that likely be parts of single large grains that
461 fragmented during aerogel capture. On the other hand, the two iron-rich ones
462 (T191/B1/F3 and T220/TP10a/F3, Mg# = 75 and 68) have similar $\Delta^{17}\text{O}$ of $\sim 2\text{\textperthousand}$ with δ^{18} ,
463 ^{17}O plotting on/above the TF line. Their Fe-Mn contents are plotted close to the OC
464 chondrule trend line (Fig. 4). Thus, the two fragments could also be derived from regions
465 like O-E-R chondrules or CH/CB chondrules.

466 For the seven fragments analyzed in track149 (Figs. 7e, f), an enstatite fragment (F2,
467 Mg# = 99.5, $\Delta^{17}\text{O} \sim -7\text{\textperthousand}$) displays more ^{16}O -rich signatures compared to the remaining
468 fragments (F1, F3, F6, F7, F11a, and F11b, Mg#=98-85, $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ to 1\textperthousand ; Defouilloy et al.,
469 2017 and this study), similar to chondrules in CR chondrites (Connolly and Huss, 2010;
470 Schrader et al., 2013, 2014; Tenner et al., 2015). Among them, relatively large ($\sim 20\text{ }\mu\text{m}$)
471 fragment T149/F1 and two other small fragments T149/F11a and F11b have almost
472 identical mineralogy (olivine, Mg# ~ 85) and $\Delta^{17}\text{O}$ values ($\Delta^{17}\text{O} \sim 0\text{\textperthousand}$), which are likely
473 parts of a single large grain that fragmented during aerogel capture. For tracks 108 and 74
474 (Figs. 7g, h), “Gozen-sama” and “Gen-chan” from T108 have different mineralogy (olivine +
475 low-Ca pyroxene vs. low-Ca pyroxene + high-Ca pyroxene + glass; Mg#=95 vs. 96), “Iris”
476 and “Calie” from T74 have different $\delta^{18}\text{O}$ values ($\sim 6\text{\textperthousand}$ vs. $\sim 2\text{\textperthousand}$; Mg#=64), but their $\Delta^{17}\text{O}$
477 values are almost identical ($\sim -2\text{\textperthousand}$ and $\sim 0\text{\textperthousand}$, respectively) (Nakamura et al., 2008;
478 Ogliore et al., 2012, 2015; Gainsforth et al., 2015). Thus, we conclude that, except for minor
479 fragments showing oxygen isotopes and Fe-Mn systematics of O-E-R chondrules or CH-CB
480 chondrules, most fragments within individual type B tracks have similar $\Delta^{17}\text{O}$ values or

481 display negative $\Delta^{17}\text{O}$ -Mg# correlation like CR chondrules, suggesting that they could be
482 derived from similar regions of the protoplanetary disk. These fragments of similar origins
483 could show different mineralogy (including Mg#) and/or $\delta^{18,17}\text{O}$ values, indicating that
484 they are not from equilibrated parent bodies. These characteristics for impactors of type B
485 tracks are comparable to the silicate fragments in the giant cluster IDP U2-20 GCA (Figs. 7 k,
486 l), displaying complex mineralogy (Mg# = 99-75) and variable $\delta^{18,17}\text{O}$ ($\sim -6\text{\textperthousand}$ to 6\textperthousand) but
487 a small range of $\Delta^{17}\text{O}$ ($\sim -3\text{\textperthousand}$ to 3\textperthousand) that suggest a major source of CR chondrule-like
488 materials and a minor source of the inner solar system/CH-CB chondrule-like materials
489 (Brownlee and Joswiak, 2017; Zhang et al., 2021). Therefore, the impactors of type B tracks
490 are analogous to cluster IDPs.

491 In contrast to type B tracks, a comprehensive mineralogy study of multiple type A
492 tracks indicated that their impactors were composed of single mineral grains, possible
493 chondrule fragments, and other polymineralic assemblages (Joswiak et al., 2012). The track
494 22 is unusual type A track having multiple relatively coarse fragments (Joswiak et al., 2012),
495 which gave us an opportunity to test the nature of the impactor from oxygen 3-isotope
496 analyses. Three fragments T22/F8, F10, and F12 f analyzed in this study are type II
497 chondrule-like materials composed of unequilibrated olivine (Fo₆₇₋₉₃) and silicate glass,
498 also identical to the terminal particle F1 and fragment F7 previously studied in the same
499 track (Tomeoka et al., 2008; Joswiak et al., 2012). The analyses of three fragments from this
500 study and one of the two analyses in F7 (Nakashima et al., 2012) show indistinguishable
501 positive $\Delta^{17}\text{O}$ values ($\sim 2\text{\textperthousand}$) with $\delta^{18,17}\text{O}$ plotted above the TF line, except second analysis
502 on F7 that show slightly ¹⁶O-rich isotope signatures (Nakashima et al., 2012). Thus, we
503 conclude that silicate fragments in the type A track 22 were disintegrated from single large

504 minerals/assemblages during the capture, strongly support the origin of type A impactors
505 to be single high strength “rocky” materials (Joswiak et al., 2012).

506 **4.3 Sources of silicate fragments in comet Wild 2**

507 It is known that the ^{16}O -rich ($\Delta^{17}\text{O} \sim -23\text{\textperthousand}$, N=8) Wild 2 fragments, such as Inti
508 (CAI), LIME olivine, and pure forsterite and enstatite, were most likely transported from
509 the refractory inclusion factory at the disk’s innermost region to the comet accretion region
510 (>10 AU) by turbulent diffusion during disk expansion (McKeegan et al., 2006; Ciesla, 2007;
511 Nakamura-Messenger et al., 2011; Nakashima et al., 2012; Defouilloy et al., 2017). However,
512 the sources of ^{16}O -poor Wild 2 fragments are less clear. Oxygen and Al-Mg isotope
513 systematics of Wild 2 fragments show close affinities to CR chondrules (Matzel et al., 2010;
514 Nakashima et al., 2012, 2015; Ogliore et al., 2012, 2015; Defouilloy et al., 2017), while Fe-
515 Mn systematics of iron-rich olivines suggest sources of both carbonaceous (CC, mainly CR
516 and CH) and noncarbonaceous (NC, like ordinary chondrite) chondrite regions (Frank et al.,
517 2014; Brownlee and Joswiak, 2017).

518 As discussed in section 4.2, six (T22/F8, F10, F12, T77/F7, T191/B1/F6, and
519 T220/TP10a/F3; Fo_{60-86}) iron-rich fragments analyzed in this study have positive $\Delta^{17}\text{O}$
520 ($\sim 2\text{\textperthousand}$) with $\delta^{18,17}\text{O}$ plotting on/above the TF line and overlapping with O-E-R chondrules
521 or CH-CB porphyritic chondrules (Figs. 5c, 8). On the Fe vs. Mn diagram (Fig. 4), two falls in
522 the “forbidden triangle” that is only consistent with OC chondrules (Schrader and Davidson,
523 2022), and four plot close to the trendline of OC chondrules. Similar fragments in the
524 literature are T77/F1, F4, and F5, T22/F7, and “Cecil (TP of T162) (Nakashima et al., 2012;
525 Ogliore et al., 2015). On the $\Delta^{17}\text{O}-\text{Mg\#}$ diagram of all Wild 2 fragments analyzed in this
526 study and the literature (Fig. 8), the 11 fragments compose a unique population with

527 Mg#≤86 and positive $\Delta^{17}\text{O}$ of $\sim+2\text{\textperthousand}$, likely derived from the inner solar system O-E-R
528 chondrules or the outer solar system CH-CB chondrules. The remaining 21 fragments
529 having Mg# ≥ 79 and negative $\Delta^{17}\text{O}$ of $\sim-2\text{\textperthousand}$, likely derived from a CR chondrule-like
530 environment. The two population overlap at Mg# = 79 to 86 ($\Delta^{17}\text{O}$: $\sim-2\text{\textperthousand}$ to $\sim+2\text{\textperthousand}$). As
531 exceptions, "Iris" and "Callie" from T74 have Mg# ~ 64 and $\Delta^{17}\text{O} \sim 0\text{\textperthousand}$, of which "Iris" is free
532 of live ^{26}Al ("Iris," >3 Ma after CAI), which are most consistent with CR chondrules (Ogliore
533 et al., 2012; Gainsforth et al., 2015). The proportion of iron-rich fragments with a CR-like
534 source among Wild 2 fragments (2/21, $\sim 10\%$) is comparable to the abundance of iron-rich
535 chondrules in CR chondrites (~ 4 vol%) (Schrader et al., 2015). Thus, we conclude that O-E-
536 R- or CH-CB-like materials (11/42, $\sim 26\%$) contributed to comet Wild 2 as a minor source
537 compared to CR chondrule-like materials (23/42, $\sim 55\%$) and dominated the iron-rich
538 population with Mg# ≤ 86 .

539 While minor Wild 2 fragments could have been derived from the inner solar system
540 O-E-R chondrule-forming regions, the astrophysical mechanism that accounts for their
541 outward transportation to the comet accretion region remains uncertain. If the initial
542 formation of chondrules started contemporary with CAIs, as indicated by the bulk ^{207}Pb -
543 ^{206}Pb chronology (Bolland et al., 2017), turbulent diffusion could readily transport them
544 outward around the midplane of the protoplanetary disk (Ciesla, 2007). However, in-situ
545 ^{26}Al - ^{26}Mg chronology studies indicate ordinary chondrite chondrules formed ~ 2 Ma after
546 CAIs (Kita et al., 2000; Villeneuve et al., 2009; Kita and Ushikubo, 2012; Pape et al., 2019;
547 Siron et al., 2021, 2022), when a physical barrier (like proto-Jupiter or snowline) had been
548 built up (<1 Ma after CAIs) to limit mixing between inner solar system NC materials and
549 outer solar system CC materials (Kruijer et al., 2017; Lichtenberg et al., 2021). To bypass

550 the physical barrier, Haugbølle et al. (2019) modeled the inward drift of grains in a
551 circumstellar disk with an embedded planet and found that $<300\text{ }\mu\text{m}$ particles could pass
552 through the Jupiter gap, which matches the observed sizes of CAIs in OCs. Based on this
553 result, Schrader et al. (2020) and Schrader and Davidson (2022) argued that small
554 fragments of OC chondrules could permeable the gap and migrate outward through the gap
555 to explain the occurrence of OC-like ($\Delta^{17}\text{O}\sim0\text{\textperthousand}$) relict olivines and individual chondrules
556 found in carbonaceous chondrites (e.g., Ushikubo et al., 2012; Tenner et al., 2017; Hertwig
557 et al., 2018; Schrader et al., 2020; Williams et al., 2020; Chaumard et al., 2021). It is unclear
558 if this outward-to-inward drift analogy is reasonable because the pressure bump (dust pile-
559 up) was at the outer edge of the gap in an accretion disk (Weber et al., 2018). On the other
560 hand, recent 3D hydrodynamic simulations by Szulágyi et al. (2022) suggest the spiral
561 waves of an embedding planet (>Saturn mass) can drive strong vertical flow and lift the
562 dust onto the circumplanetary region, efficiently bridging over the gap. This meridional
563 circulation of dust and gas around planets has been directly observed around a young star
564 HD 163296 with ALMA (Teague et al., 2019). Thus, the planetary gap is not physically
565 impermeable and could allow both inward and outward dust transportation when the gap
566 is bridged. Furthermore, the Wild 2 fragments that likely came from the inner solar system
567 are micron-sized ($<10\text{ }\mu\text{m}$) that should be well coupled with gas motions, and therefore,
568 can be transported more easily outward and inward without filtering or blocking by any or
569 most barriers.

570 **5. Conclusions**

571 We determined the mineralogy and oxygen isotope ratios of 16 silicate fragments
572 from five type B (T77, T149, T172, T191, and T220) and two type A (T22 and T175)

573 Stardust tracks. Thirteen fragments were exposed by ultramicrotomy. Three subsurface
574 fragments in the resin blocks of T220 were exposed by SIMS Kohler beam ($\sim 22 \times 22 \mu\text{m}$,
575 0.5-1.0 nA) sputtering and then measured for major and minor elements using an FE-EPMA
576 (12 kV, 500 pA) and oxygen isotopes using SIMS (1.5-2.0 μm primary ion beam). The
577 analytical procedure was set up through parallel tests on an SC-Ol grain and a simulant
578 mount of augite standard 7244-Aug, demonstrating its reliability and efficiency of mining
579 subsurface tiny fragments in resin blocks for further mineralogy and oxygen isotope
580 characterizations.

581 Of the 16 silicate fragments, one is a ^{16}O -rich forsterite ($\Delta^{17}\text{O} \sim -23\text{\textperthousand}$), ten are ^{16}O -
582 poor mono-/polymineralic olivine and low-Ca pyroxene, and three are ^{16}O -poor chondrule-
583 like. The ^{16}O -poor fragments have Mg# ranging from 99 to 60, with six Mg# = 86-60 ones
584 having $\Delta^{17}\text{O} \sim 2\text{\textperthousand}$ and positive $\delta^{18,17}\text{O}$ that plotted one/above the TF line overlapping with
585 O-E-R chondrules or CH-CB chondrules. Their Fe-Mn systematics are consistent with OC
586 chondrules. Together with five similar fragments from the literature, the 11 fragments
587 compose a unique population characterized by $\Delta^{17}\text{O} \sim 2\text{\textperthousand}$ and Mg#<86, likely genetically
588 related to inner solar system O-E-R chondrules or outer solar system CH-CB chondrules. On
589 the other hand, the remaining nine fragments (Mg# = 95-85) analyzed in this study have
590 $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ with $\delta^{18,17}\text{O}$ plotted on/close to the PCM line. Together with similar fragments
591 in the literature, another population (N=21) characterized by $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ and Mg#>79 was
592 identified in contrast to the Mg# <86 population. Minor (N=2, Iris and Calie from T74) iron-
593 rich fragments with $\Delta^{17}\text{O} \sim 0\text{\textperthousand}$ could also belong to this population. Thus, we conclude that
594 O-E-R or CH-CB-like materials (11/42, ~26%) contributed to comet Wild 2 as a minor
595 source compared to CR chondrule-like materials (23/42, ~55%) and dominated the iron-

596 rich population with Mg# \leq 86. The outward migration of the inner solar system chondrule-
597 like materials to the comet regions could be possible if there were meridional circulation
598 around giant planets to bridge the gap.

599 For silicate fragments within individual type B tracks, most have consistent $\Delta^{17}\text{O}$
600 values (Mg# and/or $\delta^{18, 17}\text{O}$ values may be different) or display negative $\Delta^{17}\text{O}$ -Mg#
601 correlation like CR chondrules, while minor show O-E-R or CH-CB chondrule-like
602 signatures. These observations suggest that the impactors of type B tracks are aggregates
603 of unequilibrated fragments derived mostly from similar protoplanetary disk regions with
604 minor exotic, comparable to the cluster IDP U2-20 GCA. Furthermore, four fragments from
605 the type A track 22 have almost identical mineralogy and oxygen isotope ratios, confirming
606 that its impactor is a single chondrule-like fragment.

607

608

609

610 **Acknowledgments**

611 The authors appreciate the assistance with carbon coating by Bil Schneider and with
612 SIMS operation by Michael Spicuzza. We are grateful to Noriyuki Kawasaki, Philipp Heck,
613 and an anonymous reviewer for their very helpful comments and Rhian Jones for editorial
614 handling. This work is supported by the NASA program (NNX16AG80G, N.K.). The
615 WiscSIMS laboratory is supported by NSF (EAR-1658823, -2004618) and UW-Madison.
616 Support for FIB instrumentation was provided by the University of Wisconsin-Madison
617 Office of the Vice-Chancellor for Research and Graduate Education with funding from the
618 Wisconsin Alumni Research Foundation, the College of Engineering, and the NSF Materials
619 Research and Engineering Center (NSF DMR-1121288).

620

621 **Appendix A. Supplementary material**

622 These supplementary materials are (1) Kohler beam sputtering tests on a SC-OI
623 grain; (2) Application of the analytical procedure developed for subsurface cometary
624 samples to a simulant mount of 7244-Aug; (3) Low beam current FE-EPMA measurements
625 of olivine and pyroxene reference materials; (4) BSE and SE images of Wild 2 silicate
626 fragments analyzed; and (5) EPMA and oxygen isotope data produced in this study.

627

628 **Data availability**

629 Data are available through Mendeley Data at <https://doi.org/10.17632/j95hc7bm7m.4>

630 **References**

631 Berlin J., Jones R. H. and Brearley A. J. (2011) Fe-Mn systematics of type IIA chondrules in
632 unequilibrated CO, CR, and ordinary chondrites. *Meteorit. Planet. Sci* **46**, 513-533.

633 Bollard J., Connelly J. N., Whitehouse M. J., Pringle E. A., Bonal L., Jørgensen J. K., Nordlund Å.,
634 Moynier F. and Bizzarro M. (2017) Early formation of planetary building blocks
635 inferred from Pb isotopic ages of chondrules. *Science Advances* **3**, e1700407.

636 Bridges J. C., Changela H. G., Nayakshin S., Starkey N. A. and Franchi I. A. (2012) Chondrule
637 fragments from Comet Wild2: Evidence for high temperature processing in the outer
638 Solar System. *Earth Planet. Sci Lett* **341-344**, 186-194.

639 Brownlee D., Tsou P., Aléon J., Alexander C. M. O. D., Araki T., Bajt S., Baratta G. A., Bastien R.,
640 Bland P., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J. C.,
641 Browning N. D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A.,
642 Chaussidon M., Chevront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G.,
643 Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D'Hendecourt L., Djouadi Z.,
644 Dominguez G., Duxbury T., Dworkin J. P., Ebel D. S., Economou T. E., Fakra S., Fairey S.
645 A. J., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A.,
646 Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet P., Gilmour J., Glavin D.
647 P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F.,
648 Grossman L., Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck P., Herzog G. F., Hoppe
649 P., Hörz F., Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen C.,
650 Jacobsen S., Jones S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H.,
651 Kilcoyne A. L. D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A.,
652 Leitner J., Lemelle L., Leroux H., Liu M.-C., Luening K., Lyon I., MacPherson G., Marcus M.
653 A., Marhas K., Marty B., Matrajt G., McKeegan K., Meibom A., Mennella V., Messenger K.,
654 Messenger S., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler
655 L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E.,
656 Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F. J. M., Robert F.,
657 Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D.,
658 Sheffield-Parker J., Simionovici A., Simon S., Svitnitsky I., Snead C. J., Spencer M. K.,
659 Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Suzuki Y., Taheri
660 M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., Trigo-Rodríguez J. M.,
661 Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., Uesugi K., Velbel M., Vellenga
662 J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S.,
663 Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D.,
664 Zare R. N., Zega T., Ziegler K., Zimmerman L., Zinner E. and Zolensky M. (2006) Comet
665 81P/Wild 2 under a microscope. *Science* **314**, 1711-1716.

666 Brownlee D. E. and Joswiak D. J. (2017) Diversity of the initial rocky planetary building
667 materials at the edge of the solar system. *Meteorit. Planet. Sci* **52**, 471-478.

668 Burchell M. J., Fairey S. A. J., Wozniakiewicz P., Brownlee D. E., Hörz F., Kearsley A. T., See T.
669 H., Tsou P., Westphal A., Green S. F., Trigo-Rodríguez J. M. and Dominguez G. (2008)
670 Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations.
671 *Meteorit. Planet. Sci* **43**, 23-40.

672 Chaumard N., Defouilloy C. and Kita N. T. (2018) Oxygen isotope systematics of chondrules
673 in the Murchison CM2 chondrite and implications for the CO-CM relationship. *Geochim. Cosmochim. Acta* **228**, 220-242.

675 Chaumard N., Defouilloy C., Hertwig A. T. and Kita N. T. (2021) Oxygen isotope systematics
676 of chondrules in the Paris CM2 chondrite: Indication for a single large formation
677 region across snow line. *Geochim. Cosmochim. Acta* **299**, 199-218.

678 Ciesla F. J. (2007) Outward transport of high-temperature materials around the midplane
679 of the solar nebula. *Science* **318**, 613-615.

680 Connolly J. H. C. and Huss G. R. (2010) Compositional evolution of the protoplanetary disk:
681 Oxygen isotopes of type-II chondrules from CR2 chondrites. *Geochim. Cosmochim. Acta*
682 **74**, 2473-2483.

683 Defouilloy C., Nakashima D., Joswiak D. J., Brownlee D. E., Tenner T. J. and Kita N. T. (2017)
684 Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen
685 isotopes and mineral chemistry. *Earth Planet. Sci. Lett.* **465**, 145-154.

686 Demers H., Poirier-Demers N., Couture A. R., Joly D., Guilmain M., de Jonge N., and Drouin D.
687 (2011) Three-dimensional electron microscopy simulation with the CASINO Monte
688 Carlo software. *Scanning* **33**: 135-146.

689 Donovan J. J., Singer J. W., Armstrong, J. T. (2016) A new EPMA method for fast trace
690 element analysis in simple matrices. *Am. Mineral.* **101**: 1839-1853.

691 Donovan J. J., Moy A., von der Handt A., Gainsforth Z., Maner J. L., Nachlas W. and Fournelle J.
692 (2023) A New Method for Dead Time Calibration and a New Expression for Correction
693 of WDS Intensities for Microanalysis. *Microscopy and Microanalysis* **29**, 1096-1110.

694 Floss C., Stadermann F. J., Kearsley A. T., Burchell M. J. and Ong W. (2013) The abundance of
695 presolar grains in comet 81P/Wild 2. *Astrophys. J.* **763**, 140.

696 Frank D. R., Zolensky M. E. and Le L. (2014) Olivine in terminal particles of Stardust aerogel
697 tracks and analogous grains in chondrite matrix. *Geochim. Cosmochim. Acta* **142**, 240-
698 259.

699 Fukuda K., Beard B. L., Dunlap D. R., Spicuzza M. J., Fournelle J. H., Wadhwa M. and Kita N. T.
700 (2020) Magnesium isotope analysis of olivine and pyroxene by SIMS: Evaluation of
701 matrix effects. *Chem. Geol.* **540**, 119482.

702 Fukuda K., Brownlee D. E., Joswiak D. J., Tenner T. J., Kimura M. and Kita N. T. (2021)
703 Correlated isotopic and chemical evidence for condensation origins of olivine in comet
704 81P/Wild 2 and in AOAs from CV and CO chondrites. *Geochim. Cosmochim. Acta* **293**,
705 544-574.

706 Fukuda, K., Tenner T. J., Kimura M., Tomioka N., Siron G., Ushikubo T., Chaumard N.,
707 Hertwig A. T., and Kita N. T. (2022) A temporal shift of chondrule generation from the
708 inner to outer Solar System inferred from oxygen isotopes and Al-Mg chronology of
709 chondrules from primitive CM and CO chondrites. *Geochim. Cosmochim. Acta* **322**, 194-
710 226.

711 Gainsforth Z., Butterworth A. L., Stodolna J., Westphal A. J., Huss G. R., Nagashima K., Ogliore
712 R., Brownlee D. E., Joswiak D., Tyliszczak T. and Simionovici A. S. (2015) Constraints on
713 the formation environment of two chondrule-like igneous particles from comet
714 81P/Wild 2. *Meteorit. Planet. Sci.* **50**, 976-1004.

715 Gainsforth Z., Westphal A. J., Butterworth A. L., Jilly-Rehak C. E., Brownlee D. E., Joswiak D. J.,
716 Ogliore R. C., Zolensky M. E., Bechtel H. A., Ebel D. S., Huss G. R., Sandford S. A. and
717 White A. J. (2019) Fine-grained material associated with a large sulfide returned from
718 Comet 81P/Wild 2. *Meteorit. Planet. Sci* **54**, 1069-1091.

719 Gauvin R., Lifshin E., Demers H., Horny P. and Campbell H. (2006) Win X-ray: A new Monte
720 Carlo program that computes X-ray spectra obtained with a scanning electron
721 microscope. *Microscopy and Microanalysis* **12**, 49-64.

722 Haugbølle T., Weber P., Wielandt D. P., Benítez-Llambay P., Bizzarro M., Gressel O. and
723 Pessah M. E. (2019) Probing the Protosolar Disk Using Dust Filtering at Gaps in the
724 Early Solar System. *Astrophys. J.* **158**, 55.

725 Heck P. R., Ushikubo T., Schmitz B., Kita N. T., Spicuzza M. J. and Valley J. W. (2010) A single
726 asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and
727 China: High-precision oxygen three-isotope SIMS analysis. *Geochim. Cosmochim. Acta*
728 **74**, 497-509.

729 Hertwig A. T., Defouilloy C. and Kita N. T. (2018) Formation of chondrules in a moderately
730 high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba
731 CV3 chondrite. *Geochim. Cosmochim. Acta* **224**, 116-131.

732 Hertwig A. T., Kimura M., Defouilloy C. and Kita N. T. (2019) Oxygen isotope systematics of
733 chondrule olivine, pyroxene, and plagioclase in one of the most pristine CV3Red
734 chondrites (Northwest Africa 8613). *Meteorit. Planet. Sci* **54**, 2666-2685.

735 Hörz F., Bastien R., Borg J., Bradley J. P., Bridges J. C., Brownlee D. E., Burchell M. J., Chi M.,
736 Cintala M. J., Dai Z. R., Djouadi Z., Dominguez G., Economou T. E., Fairey S. A. J., Floss C.,
737 Franchi I. A., Graham G. A., Green S. F., Heck P., Hoppe P., Huth J., Ishii H., Kearsley A. T.,
738 Kissel J., Leitner J., Leroux H., Marhas K., Messenger K., Schwandt C. S., See T. H., Snead
739 C., Stadermann F. J., Stephan T., Stroud R., Teslich N., Trigo-Rodríguez J. M., Tuzzolino
740 A. J., Troadec D., Tsou P., Warren J., Westphal A., Wozniakiewicz P., Wright I. and
741 Zinner E. (2006) Impact features on stardust: Implications for comet 81P/Wild 2 dust.
742 *Science* **314**, 1716-1719.

743 Ishii H. A., Bradley J. P., Dai Z. R., Chi M., Kearsley A. T., Burchell M. J., Browning N. D. and
744 Molster F. (2008) Comparison of comet 81P/Wild 2 dust with interplanetary dust
745 from comets. *Science* **319**, 447-450.

746 Joswiak D. J., Brownlee D. E., Matrajt G., Westphal A. J. and Snead C. J. (2009) Kosmochloric
747 Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in
748 Stardust tracks and chondritic porous interplanetary dust particles: Possible
749 precursors to FeO-rich type II chondrules in ordinary chondrites. *Meteorit. Planet. Sci*
750 **44**, 1561-1588.

751 Joswiak D. J., Brownlee D. E., Matrajt G., Westphal A. J., Snead C. J. and Gainsforth Z. (2012)
752 Comprehensive examination of large mineral and rock fragments in Stardust tracks:
753 Mineralogy, analogous extraterrestrial materials, and source regions. *Meteorit. Planet.*
754 *Sci* **47**, 471-524.

755 Joswiak D. J., Nakashima D., Brownlee D. E., Matrajt G., Ushikubo T., Kita N. T., Messenger S.
756 and Ito M. (2014) Terminal particle from Stardust track 130: Probable Al-rich
757 chondrule fragment from comet Wild 2. *Geochim. Cosmochim. Acta* **144**, 277-298.

758 Joswiak D. J., Brownlee D. E., Nguyen A. N. and Messenger S. (2017) Refractory materials in
759 comet samples. *Meteorit. Planet. Sci* **52**, 1612-1648.

760 Kearsley A. T., Burchell M. J., Hörl F., Cole M. J. and Schwandt C. S. (2006) Laboratory
761 simulation of impacts on aluminum foils of the Stardust spacecraft: Calibration of dust
762 particle size from comet Wild-2. *Meteorit. Planet. Sci* **41**, 167-180.

763 Kita N. T., Nagahara H., Togashi S. and Morishita Y. (2000) A short duration of chondrule
764 formation in the solar nebula: evidence from ^{26}Al in Semarkona ferromagnesian
765 chondrules. *Geochim. Cosmochim. Acta* **64**, 3913-3922.

766 Kita N. T., Ushikubo T., Fu B. and Valley J. W. (2009) High precision SIMS oxygen isotope
767 analysis and the effect of sample topography. *Chem. Geol* **264**, 43-57.

768 Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H. and Valley
769 J. W. (2010) High precision SIMS oxygen three isotope study of chondrules in LL3
770 chondrites: Role of ambient gas during chondrule formation. *Geochim. Cosmochim. Acta* **74**, 6610-6635.

772 Kita N. T. and Ushikubo T. (2012) Evolution of protoplanetary disk inferred from ^{26}Al
773 chronology of individual chondrules. *Meteorit. Planet. Sci* **47**, 1108-1119.

774 Kita N. T., Sobol P. E., Kern J. R., Lord N. E. and Valley J. W. (2015) UV-light microscope:
775 improvements in optical imaging for a secondary ion mass spectrometer. *J. Anal. At.
776 Spectrom.* **30**, 1207-1213.

777 Krot A. N., Nagashima K., Yoshitake M. and Yurimoto H. (2010) Oxygen isotopic
778 compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC
779 02675 (CBb) and QUE 94627 (CBb). *Geochim. Cosmochim. Acta* **74**, 2190-2211.

780 Kruijer T. S., Burkhardt C., Budde G. and Kleine T. (2017) Age of Jupiter inferred from the
781 distinct genetics and formation times of meteorites. *Proc. Natl. Acad. Sci.* **114**, 6712-
782 6716.

783 Lichtenberg T., Drażkowska J., Schönbächler M., Golabek G. J. and Hands T. O. (2021)
784 Bifurcation of planetary building blocks during Solar System formation. *Science* **371**,
785 365-370.

786 Linzmeier B., Kitajima K., Denny A. and Cammack J. (2018) Making maps on a micrometer
787 scale. *Eos* **99**.

788 Marrocchi Y., Villeneuve J., Jacquet E., Piralla M. and Chaussidon M. (2019) Rapid
789 condensation of the first Solar System solids. *Proc. Natl. Acad. Sci.*, 201912479.

790 Matrajt G. and Brownlee D. E. (2006) Acrylic embedding of Stardust particles encased in
791 aerogel. *Meteorit. Planet. Sci* **41**, 1715-1720.

792 Matzel J. E. P., Ishii H. A., Joswiak D., Hutcheon I. D., Bradley J. P., Brownlee D., Weber P. K.,
793 Teslich N., Matrajt G., McKeegan K. D. and MacPherson G. J. (2010) Constraints on the
794 Formation Age of Cometary Material from the NASA Stardust Mission. *Science* **328**,
795 483-486.

796 McKeegan K. D., Aléon J., Bradley J., Brownlee D., Busemann H., Butterworth A., Chaussidon
797 M., Fallon S., Floss C. and Gilmour J. (2006) Isotopic compositions of cometary matter
798 returned by Stardust. *Science* **314**, 1724-1728.

799 Messenger S. (2000) Identification of molecular-cloud material in interplanetary dust
800 particles. *Nature* **404**, 968-971.

801 Miller K. E., Lauretta D. S., Connolly H. C., Berger E. L., Nagashima K. and Domanik K. (2017)
802 Formation of unequilibrated R chondrite chondrules and opaque phases. *Geochim.
803 Cosmochim. Acta* **209**, 24-50.

804 Nagashima K., Krot A. N. and Huss G. R. (2014) ^{26}Al in chondrules from CR2 chondrites.
805 *Geochem. J.* **48**, 561-570.

806 Nakamura-Messenger K., Keller L. P., Clemett S. J., Messenger S. and Ito M. (2011)
807 Nanometer-scale anatomy of entire Stardust tracks. *Meteorit. Planet. Sci* **46**, 1033-
808 1051.

809 Nakamura T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N. T., Valley J. W., Zolensky M. E.,
810 Kakazu Y., Sakamoto K., Mashio E., Uesugi K. and Nakano T. (2008) Chondrulelike
811 objects in short-period comet 81P/Wild 2. *Science* **321**, 1664-1667.

812 Nakashima D., Ushikubo T., Joswiak D. J., Brownlee D. E., Matrajt G., Weisberg M. K.,
813 Zolensky M. E. and Kita N. T. (2012) Oxygen isotopes in crystalline silicates of comet
814 Wild 2: A comparison of oxygen isotope systematics between Wild 2 particles and
815 chondritic materials. *Earth Planet. Sci Lett.* **357-358**, 355-365.

816 Nakashima D., Ushikubo T., Kita N. T., Weisberg M. K., Zolensky M. E. and Ebel D. S. (2015)
817 Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al-
818 Mg chronology of plagioclase. *Earth Planet. Sci Lett.* **410**, 54-61.

819 Ogliore R. C., Huss G. R., Nagashima K., Butterworth A. L., Gainsforth Z., Stodolna J.,
820 Westphal A. J., Joswiak D. and Tyliszczak T. (2012) Incorporation of a late-forming
821 chondrule into comet Wild 2. *Astrophys. J.* **745**, L19.

822 Ogliore R. C., Nagashima K., Huss G. R., Westphal A. J., Gainsforth Z. and Butterworth A. L.
823 (2015) Oxygen isotopic composition of coarse- and fine-grained material from comet
824 81P/Wild 2. *Geochim. Cosmochim. Acta* **166**, 74-91.

825 Ogliore R. C., Palma R. L., Stodolna J., Nagashima K., Pepin R. O., Schlutter D. J., Gainsforth Z.,
826 Westphal A. J. and Huss G. R. (2019) Q-Gases in a Late-Forming Refractory
827 Interplanetary Dust Particle: A Link to Comet Wild 2. *Geochim. Cosmochim. Acta* **271**,
828 116-131.

829 Pape J., Mezger K., Bouvier A. S. and Baumgartner L. P. (2019) Time and duration of
830 chondrule formation: Constraints from ^{26}Al - ^{26}Mg ages of individual chondrules.
831 *Geochim. Cosmochim. Acta* **244**, 416-436.

832 Schrader D. L., Connolly H. C., Lauretta D. S., Nagashima K., Huss G. R., Davidson J. and
833 Domanik K. J. (2013) The formation and alteration of the Renazzo-like carbonaceous
834 chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine.
835 *Geochim. Cosmochim. Acta* **101**, 302-327.

836 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C. and Hellebrand E. (2014) Variations in
837 the O-isotope composition of gas during the formation of chondrules from the CR
838 chondrites. *Geochim. Cosmochim. Acta* **132**, 50-74.

839 Schrader D. L., Connolly Jr. H. C., Lauretta D. S., Zega T. J., Davidson J. and Domanik K. J.
840 (2015) The formation and alteration of the Renazzo-like carbonaceous chondrites III:

841 Toward understanding the genesis of ferromagnesian chondrules. *Meteorit. Planet. Sci*
842 **50**, 15-50.

843 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., Yin Q.-Z., Amelin Y., Stirling C. H. and
844 Kaltenbach A. (2017) Distribution of ^{26}Al in the CR chondrite chondrule-forming
845 region of the protoplanetary disk. *Geochim. Cosmochim. Acta* **201**, 275-302.

846 Schrader D. L., Nagashima K., Davidson J., McCoy T. J., Ogliore R. C. and Fu R. R. (2020)
847 Outward migration of chondrule fragments in the Early Solar System: O-isotopic
848 evidence for rocky material crossing the Jupiter Gap? *Geochim. Cosmochim. Acta* **282**,
849 133-155.

850 Schrader D. L. and Davidson J. (2022) Prolonged early migration of dust from the inner
851 Solar System to the comet-forming region. *Earth Planet. Sci Lett.* **589**, 117552.

852 Simon S. B., Joswiak D. J., Ishii H. A., Bradley J. P., Chi M., Grossman L., Aleon J., Brownlee D.
853 E., Fallon S., Hutcheon I. D., Matrajt G. and McKeegan K. D. (2008) A refractory
854 inclusion returned by Stardust from comet 81P/Wild 2. *Meteorit. Planet. Sci* **43**, 1861-
855 1877.

856 Siron G., Fukuda K., Kimura M. and Kita N. T. (2021) New constraints from ^{26}Al - ^{26}Mg
857 chronology of anorthite bearing chondrules in unequilibrated ordinary chondrites.
858 *Geochim. Cosmochim. Acta* **293**, 103-126.

859 Siron G., Fukuda K., Kimura M. and Kita N. T. (2022) High precision ^{26}Al - ^{26}Mg chronology of
860 chondrules in unequilibrated ordinary chondrites: Evidence for restricted formation
861 ages. *Geochim. Cosmochim. Acta* **324**, 312-345.

862 Stodolna J., Gainsforth Z., Butterworth A. L. and Westphal A. J. (2014) Characterization of
863 preserved primitive fine-grained material from the Jupiter family comet 81P/Wild 2 –
864 A new link between comets and CP-IDPs. *Earth Planet. Sci Lett.* **388**, 367-373.

865 Szulágyi J., Binkert F. and Surville C. (2022) Meridional circulation of dust and gas in the
866 circumstellar disk: Delivery of solids onto the circumplanetary region. *Astrophys. J.*
867 **924**, 1.

868 Teague R., Bae J. and Bergin E. A. (2019) Meridional flows in the disk around a young star.
869 *Nature* **574**, 378-381.

870 Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T. and Nagahara H. (2013) Oxygen isotope
871 systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020:
872 Evidence for two distinct oxygen isotope reservoirs. *Geochim. Cosmochim. Acta* **102**,
873 226-245.

874 Tenner T. J., Nakashima D., Ushikubo T., Kita N. T. and Weisberg M. K. (2015) Oxygen
875 isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment
876 and H₂O during chondrule formation. *Geochim. Cosmochim. Acta* **148**, 228-250.

877 Tenner T. J., Kimura M. and Kita N. T. (2017) Oxygen isotope characteristics of chondrules
878 from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for
879 common O-isotope environments sampled among carbonaceous chondrites. *Meteorit.*
880 *Planet. Sci* **52**, 268-294.

881 Tenner T. J., Nakashima D., Ushikubo T., Tomioka N., Kimura M., Weisberg M. K. and Kita N.
882 T. (2019) Extended chondrule formation intervals in distinct physicochemical

environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. *Geochim. Cosmochim. Acta* **260**, 133-160.

Thomas K. L., Blanford G. E., Clemett S. J., Flynn G. J., Keller L. P., Klöck W., Maechling C. R., Mc Kay D. S., Messenger S., Nier A. O., Schlutter D. J., Sutton S. R., Warren J. L. and Zare R. N. (1995) An asteroidal breccia: The anatomy of a cluster IDP. *Geochim. Cosmochim. Acta* **59**, 2797-2815.

Tomeoka K., Tomioka N. and Ohnishi I. (2008) Silicate minerals and Si-O glass in comet Wild 2 samples: Transmission electron microscopy. *Meteorit. Planet. Sci* **43**, 273-284.

Ushikubo T., Kimura M., Kita N. T. and Valley J. W. (2012) Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. *Geochim. Cosmochim. Acta* **90**, 242-264.

Ushikubo T., Tenner T. J., Hiyagon H. and Kita N. T. (2017) A long duration of the ^{16}O -rich reservoir in the solar nebula, as recorded in fine-grained refractory inclusions from the least metamorphosed carbonaceous chondrites. *Geochim. Cosmochim. Acta* **201**, 103-122.

Ushikubo T. and Kimura M. (2021) Oxygen-isotope systematics of chondrules and olivine fragments from Tagish Lake C2 chondrite: Implications of chondrule-forming regions in protoplanetary disk. *Geochim. Cosmochim. Acta* **293**, 328-343.

Utt K. L., Ogliore R. C., Liu N., Krot A. N., Bradley J. P., Brownlee D. E. and Joswiak D. J. (2023) Diverse oxygen isotopic compositions among cometary vapor-phase condensates. *Geochim. Cosmochim. Acta* **343**, 250-263.

Villeneuve J., Chaussidon M. and Libourel G. (2009) Homogeneous distribution of ^{26}Al in the solar system from the Mg isotopic composition of chondrules. *Science* **325**, 985-988.

Weber P., Benítez-Llambay P., Gressel O., Krapp L. and Pessah M. E. (2018) Characterizing the variable dust permeability of planet-induced gaps. *Astrophys. J.* **854**, 153.

Weisberg M. K., Ebel D. S., Connolly H. C., Kita N. T. and Ushikubo T. (2011) Petrology and oxygen isotope compositions of chondrules in E3 chondrites. *Geochim. Cosmochim. Acta* **75**, 6556-6569.

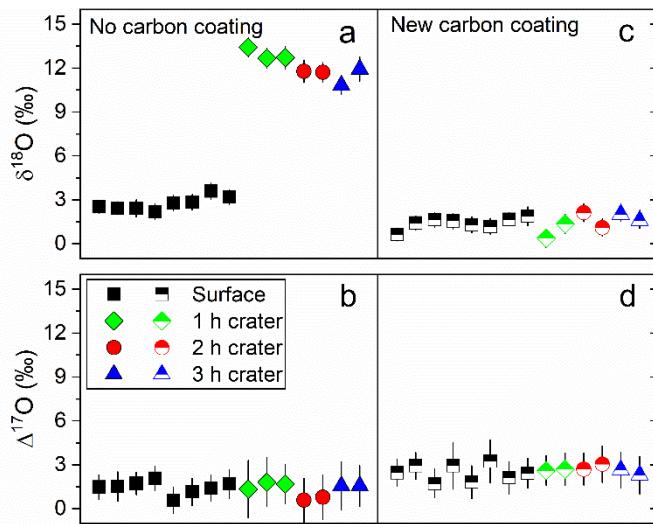
Weisberg M. K., Kita N. T., Fukuda K., Siron G. and Ebel D. S. (2021) Micro-distribution of oxygen isotopes in unequilibrated enstatite chondrites. *Geochim. Cosmochim. Acta* **300**, 279-295.

Westphal A. J., Snead C., Butterworth A., Graham G. A., Bradley J. P., Bajt S., Grant P. G., Bench G., Brennan S. and Pianetta P. (2004) Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors. *Meteorit. Planet. Sci* **39**, 1375-1386.

Westphal A. J., Fakra S. C., Gainsforth Z., Marcus M. A., Ogliore R. C. and Butterworth A. L. (2009) Mixing fraction of inner solar system material in Comet 81P/Wild2. *Astrophys. J.* **694**, 18.

Williams C. D., Sanborn M. E., Defouilloy C., Yin Q.-Z., Kita N. T., Ebel D. S., Yamakawa A. and Yamashita K. (2020) Chondrules reveal large-scale outward transport of inner solar system materials in the protoplanetary disk. *Proc. Natl. Acad. Sci.* **117**, 23426-23435.

Zhang M., Defouilloy C., Joswiak D. J., Brownlee D. E., Nakashima D., Siron G., Kitajima K. and Kita N. T. (2021) Oxygen isotope systematics of crystalline silicates in a giant cluster

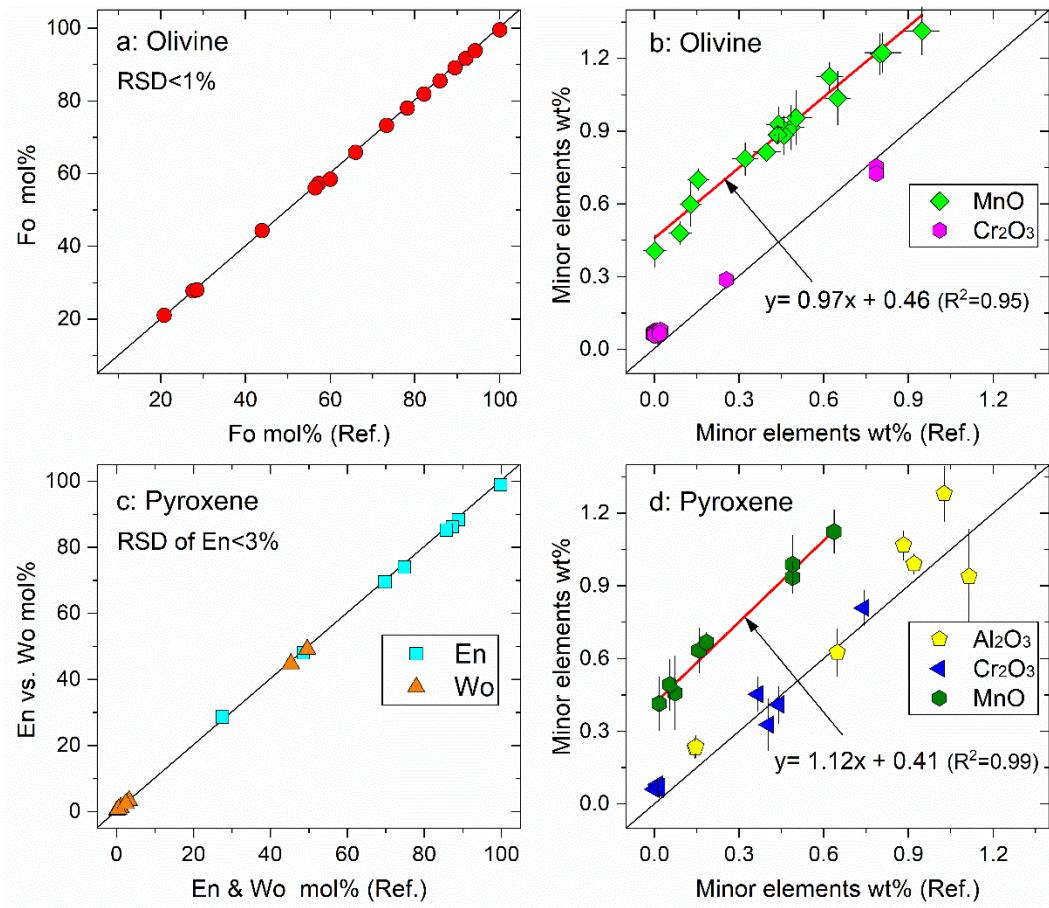

926 IDP: A genetic link to Wild 2 particles and primitive chondrite chondrules. *Earth*
927 *Planet. Sci Lett.* **564**, 116928.

928 Zhang M., Fukuda K., Spicuzza M. J., Siron G., Heimann A., Hammerstrom A. J., Kita N. T.,
929 Ushikubo T. and Valley J. W. (2022) SIMS matrix effects in oxygen isotope analysis of
930 olivine and pyroxene: Application to Acfer 094 chondrite chondrules and
931 reconsideration of the primitive chondrule minerals (PCM) line. *Chem. Geol.* **608**,
932 121016.

933 Zolensky M. E., Zega T. J., Yano H., Wirick S., Westphal A. J., Weisberg M. K., Weber I., Warren
934 J. L., Velbel M. A., Tsuchiyama A., Tsou P., Toppiani A., Tomioka N., Tomeoka K., Teslich
935 N., Taheri M., Susini J., Stroud R., Stephan T., Stadermann F. J., Snead C. J., Simon S. B.,
936 Simionovici A., See T. H., Robert F., Rietmeijer F. J. M., Rao W., Perronnet M. C.,
937 Papanastassiou D. A., Okudaira K., Ohsumi K., Ohnishi I., Nakamura-Messenger K.,
938 Nakamura T., Mostefaoui S., Mikouchi T., Meibom A., Matrajt G., Marcus M. A., Leroux
939 H., Lemelle L., Le L., Lanzirotti A., Langenhorst F., Krot A. N., Keller L. P., Kearsley A. T.,
940 Joswiak D., Jacob D., Ishii H., Harvey R., Hagiya K., Grossman L., Grossman J. N., Graham
941 G. A., Gounelle M., Gillet P., Genge M. J., Flynn G., Ferroir T., Fallon S., Ebel D. S., Dai Z. R.,
942 Cordier P., Clark B., Chi M., Butterworth A. L., Brownlee D. E., Bridges J. C., Brennan S.,
943 Bearley A., Bradley J. P., Bleuet P., Bland P. A. and Bastien R. (2006) Mineralogy and
944 petrology of comet 81P/Wild 2 nucleus samples. *Science* **314**, 1735-1739.

945

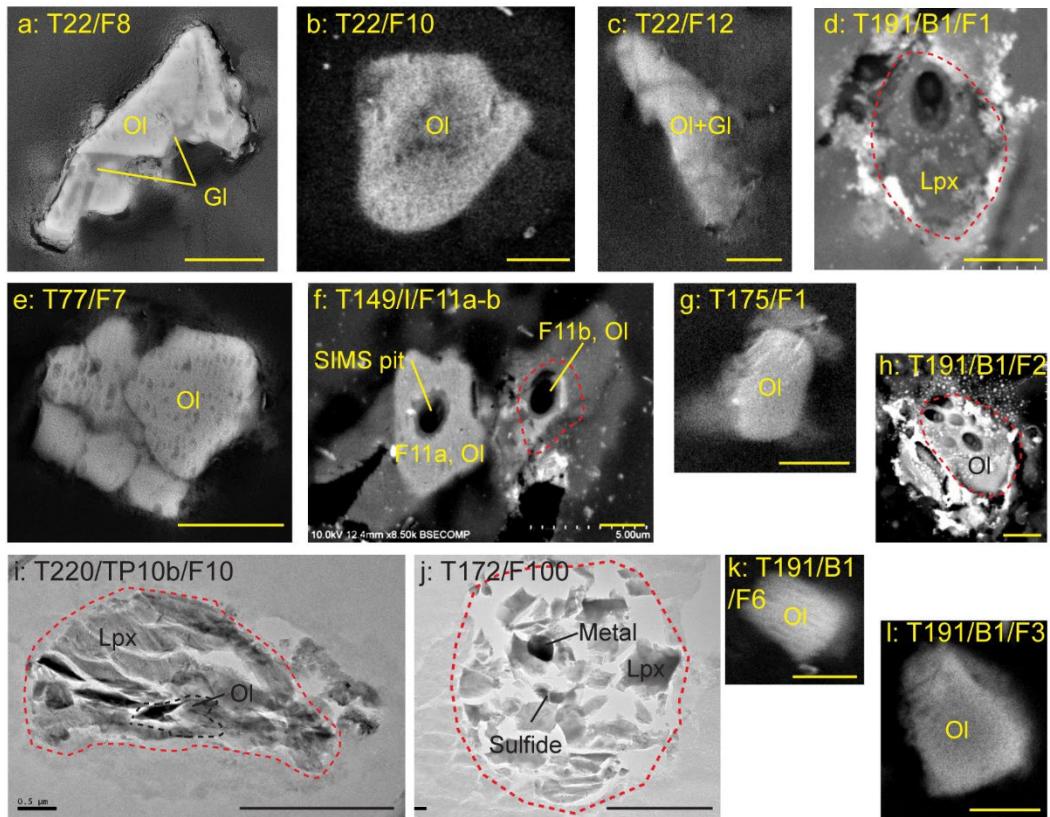
946


947 **Figure Captions**

948

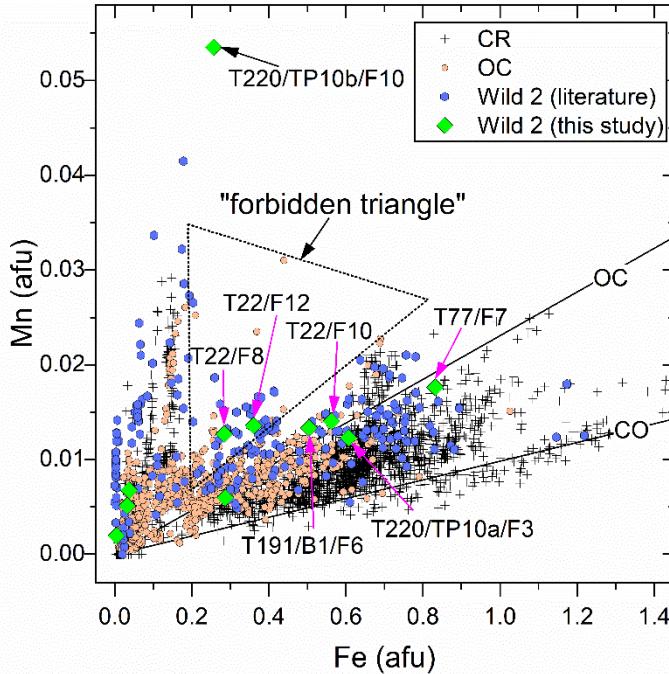
949 Fig. 1. Oxygen isotope analyses on the flat bottom of SIMS Kohler beam craters
 950 with/without a new carbon coating and on the polished surface of an SC-Ol grain. The
 951 craters were made by 1-, 2-, and 3-hour Kohler beam ($\sim 1 \text{ nA}$, $\sim 22 \times 22 \mu\text{m}^2$) sputtering,
 952 which have depths of $\sim 2.3 \mu\text{m}$, $\sim 4.6 \mu\text{m}$, and $\sim 6 \mu\text{m}$, respectively. Error bars for $\delta^{18}\text{O}$ and
 953 $\Delta^{17}\text{O}$ are internal errors (2SE) of individual analysis, typically 0.5 ‰ and 1.0 ‰,
 954 respectively. The analytical condition, $\sim 3 \mu\text{m}$ Gaussian beam with an intensity of $\sim 20 \text{ pA}$,
 955 was similar to that described in Ushikubo et al. (2012). No oxygen isotope fractionation
 956 difference between the crater bottom and the polished surface after applying a new carbon
 957 coating, regardless of the crater depth ($\leq 6 \mu\text{m}$ deep for a $\sim 22 \times 22 \mu\text{m}$ Kohler beam to
 958 avoid the shadow effect of the beam crater due to the $\sim 21^\circ$ inclination angle of the primary
 959 ion column).

960

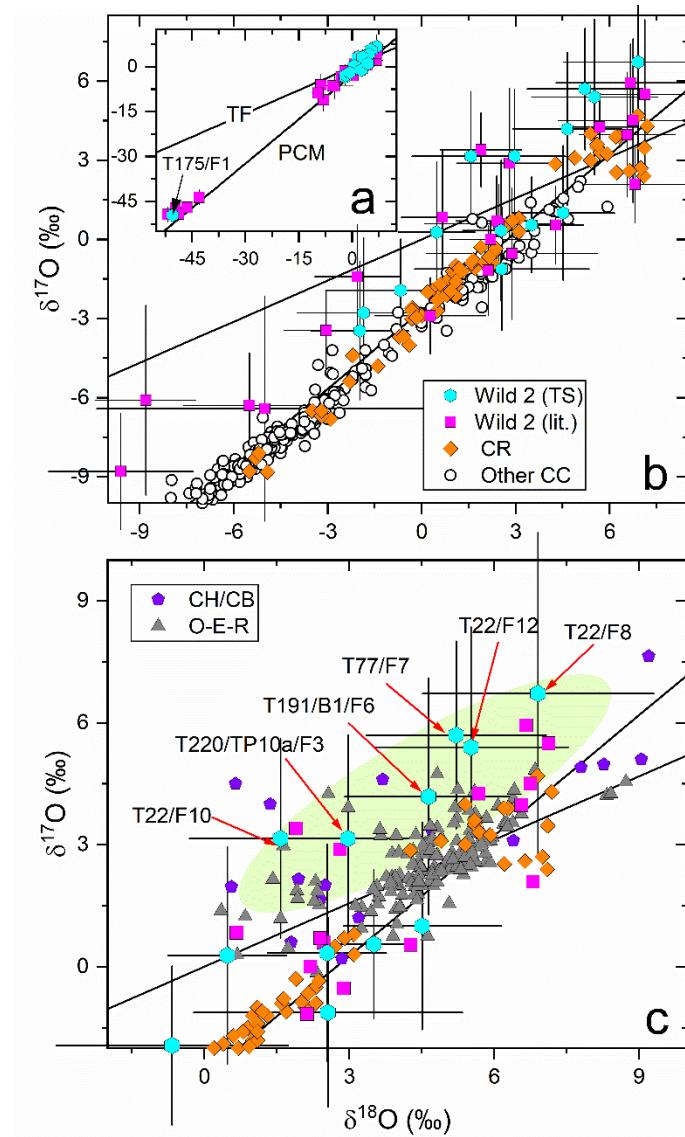

961

962

963 Fig. 2. Evaluation of analytical precision of an FE-EPMA under 12 kV, 500 pA condition
 964 using a series of olivine and pyroxene standards. The reference values for these olivine and
 965 pyroxene standards were reported by Fukuda et al. (2020) and Zhang et al. (2022). RSD =
 966 relative standard deviation. Regression lines were drawn for MnO contents in olivine and
 967 pyroxene, which are systematically higher than their reference values.

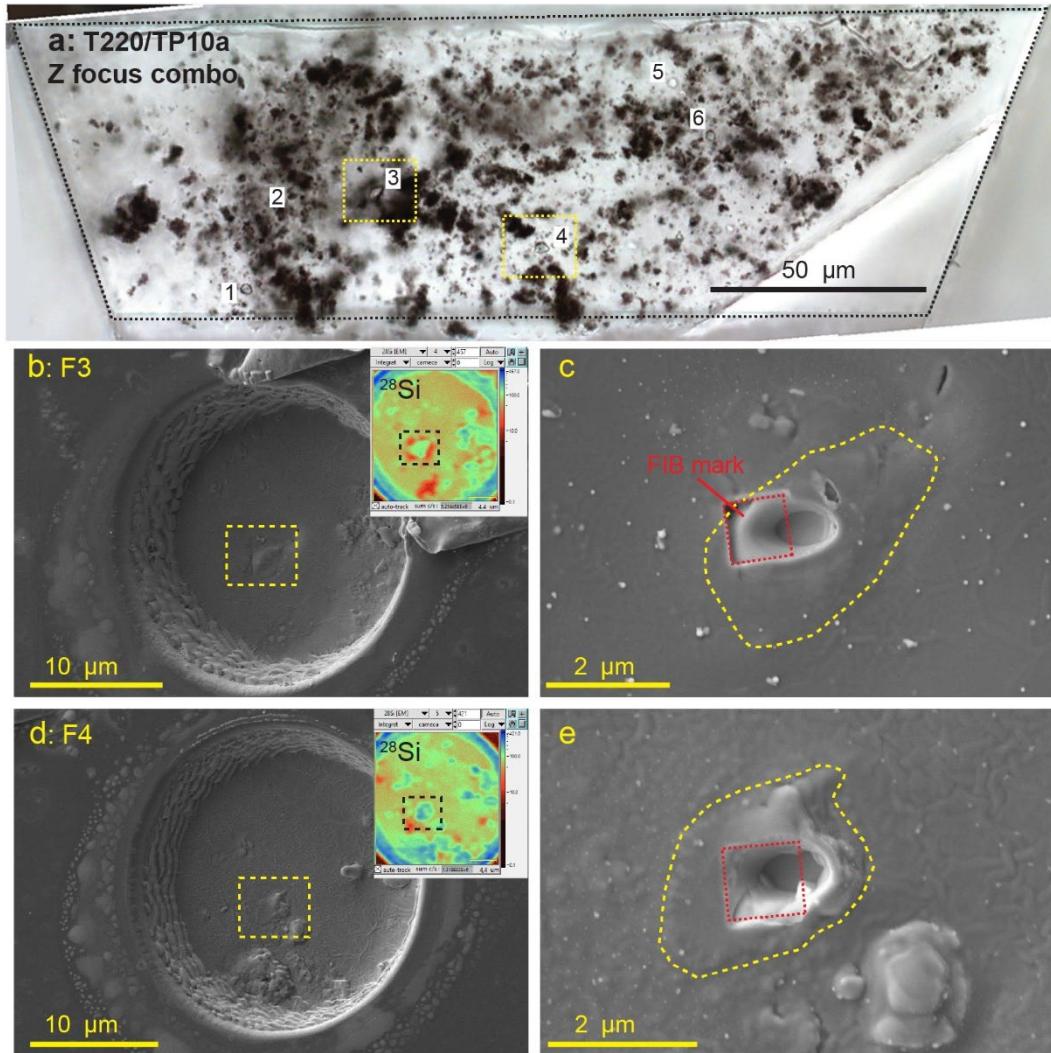

968

969

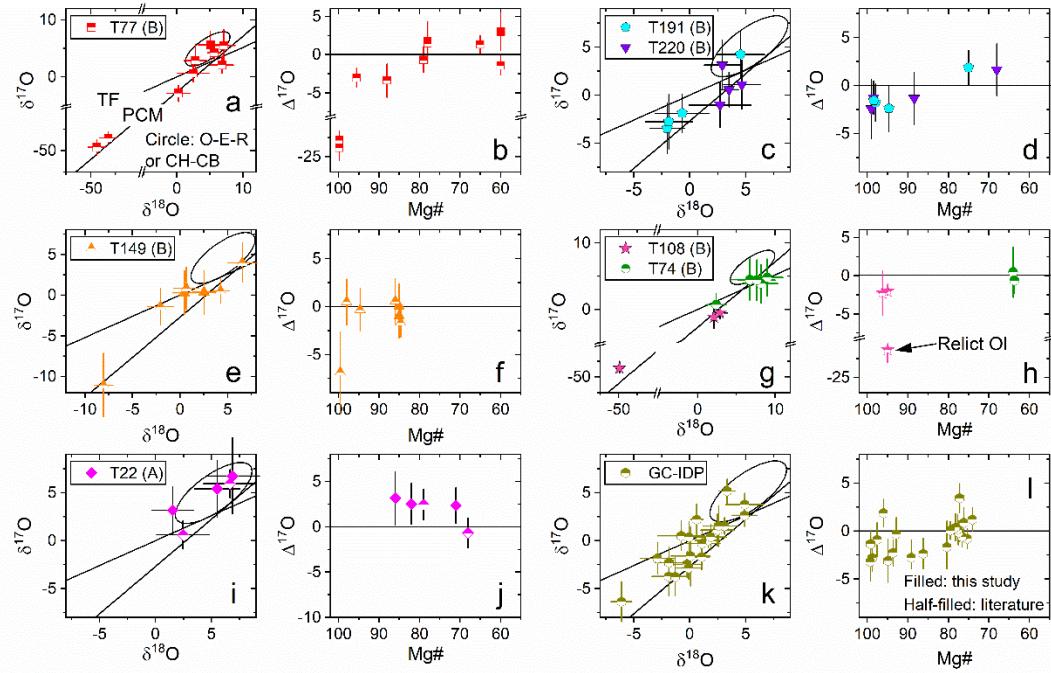

970 Fig. 3. Backscattered (BSE, a-h, k-l) and TEM bright field (i-j) images of Wild 2 fragments
 971 exposed by ultramicrotomy. The scale bar is 2 μ m. Oval craters in panels d, f, and h are
 972 SIMS analysis pits. Abbreviation: OI = olivine; Lpx = low-Ca pyroxene; Gl = glassy
 973 mesostasis.

974

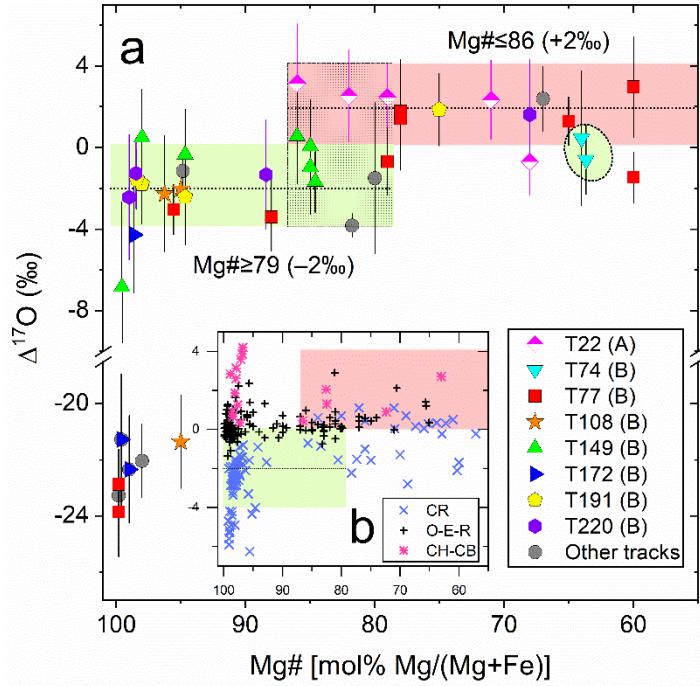
975


976 Fig. 4. Mn versus Fe (afu = atomic formula units based on four oxygen atoms) for Wild 2
 977 olivines in this study. The OC and CO chondrules trend lines are adopted from Berlin et al.
 978 (2011). Data for CR chondrules (Schrader et al., 2015), OC chondrules (Schrader and
 979 Davidson, 2022), other Wild 2 fragments, and anhydrous IDPs (Brownlee and Joswiak,
 980 2017; Zhang et al., 2021) are plotted for comparison. The "forbidden triangle" is adopted
 981 from Brownlee and Joswiak (2017) and Schrader and Davidson (2022). The magenta
 982 arrows indicate those particles with positive oxygen isotope ratios that plot on/above the
 983 terrestrial fractionation (TF) line (as shown in Fig. 5c). The dark arrow indicates the olivine
 984 inclusion in T220/TP10B/F10, which has distinctly Mn-rich compared to other Wild 2
 985 olivines except for the fayalite in the terminal particles (named "Ada") of track 26 (Joswiak
 986 et al., 2012).

987


988 Fig. 5. Oxygen isotope ratios of Wild 2 silicate fragments (TS = this study; Lit. = literature)
 989 compared with primitive chondrite chondrules. Data source: Wild 2 (Nakamura et al., 2008;
 990 Nakashima et al., 2012; Ogliore et al., 2012, 2015; Joswiak et al., 2014; Gainsforth et al.,
 991 2015; Defouilloy et al., 2017), CV (Hertwig et al., 2018, 2019), CO (Tenner et al., 2013;
 992 Fukuda et al., 2022), CM (Chaumard et al., 2018, 2021), CA (Tenner et al., 2017), Acfer 094
 993 (Ushikubo et al., 2012), Tagish Lake (Ushikubo and Kimura, 2021), ordinary (O) (Kita et al.,
 994 2010; Siron et al., 2021, 2022), enstatite (E) (Weisberg et al., 2011, 2021), Rumuruti (R)

995 (Miller et al., 2017), CH-CB (Krot et al., 2010), and CR chondrites (Connolly and Huss, 2010;
996 Schrader et al., 2013, 2014; Tenner et al., 2015). The red arrows indicate the six Wild 2
997 fragments that show positive oxygen isotope ratios overlapping with some chondrules in
998 O-E-R and CH-CB chondrites (the green region in c). TF = terrestrial fractionation line. PCM
999 = primitive chondrule minerals (PCM) line (Ushikubo et al., 2012).


1000 Fig. 6. Analytical procedure demo for subsurface Wild 2 fragments in an acrylic block of
 1001 T220. (a) Z focus-combined transmitted light image of the resin block before mounting into
 1002 indium. Fragments 3, 4, and 5 are estimated to be $>2\text{ }\mu\text{m}$ in size and $2\text{--}8\text{ }\mu\text{m}$ deep under an
 1003 optical microscope. (b, d) SE images of Kohler beam pits where F3 (exposed size is 3×1.5
 1004 μm , depth is $7.8\text{ }\mu\text{m}$) and F4 (exposed size is $2.5 \times 1.8\text{ }\mu\text{m}$, depth is $4.5\text{ }\mu\text{m}$) are located.
 1005 Insets show the Ion images of $^{28}\text{Si}^-$, from which the exposed sizes of F3 and F4 were
 1006 estimated. (c, e) SE images of SIMS pit on F3 and F4. The pits are $\sim 1.5 \times 1\text{ }\mu\text{m}$ in size with a
 1007 flat bottom. The red rectangles show the locations of the FIB marks, which were used as
 1008

1009 references to locate the target fragments during SIMS oxygen isotope analysis. EPMA
1010 analyses on these fragments were done before FIB marking.

1011

1012 Fig. 7. Oxygen isotope systematics of Wild 2 silicate fragments in individual tracks,
 1013 compared to silicate fragments from the giant cluster (GC)-IDP U2-20-GCA (Brownlee and
 1014 Joswiak, 2017; Zhang et al., 2021). Wild 2 fragments analyzed in this study are shown in
 1015 filled symbols, while those from the literature are shown in half-filled symbols. The oxygen
 1016 isotope region for those O-E-R and CH-CB chondrules above the TF line is outlined by a
 1017 black circle. The track type (A/B) is shown in the bracket after the track number. Data
 1018 source: this study, Nakamura et al. (2008), Nakashima et al. (2012), Ogliore et al. (2012,
 1019 2015), Gainsforth et al. (2015), and Defouilloy et al. (2017). The relict olivine ($\Delta^{17}\text{O} \sim -23\text{\textperthousand}$)
 1020 in T108 "Gozen-sama" was indicated. Multiple analyses on "Iris" (N=3) from track 74 and
 1021 F7 (N=2) of track 22 were plotted because of their resolvable oxygen isotope differences,
 1022 while other fragments were denoted as single data spots. TF = terrestrial fractionation line.
 1023 PCM = primitive chondrule minerals (PCM) line (Ushikubo et al., 2012).

1024

1025 Fig. 8. Mg#- $\Delta^{17}\text{O}$ relationship for Wild 2 silicate fragments analyzed in this study and the
 1026 literature (Nakamura et al., 2008; Nakashima et al., 2012; Ogliore et al., 2012, 2015;
 1027 Joswiak et al., 2014; Gainsforth et al., 2015; Defouilloy et al., 2017). Aerogel tracks with
 1028 multiple fragments analyzed are shown in different symbols, and tracks with only one
 1029 fragment studied are grouped as "other tracks." Two groups of Wild 2 fragments can be
 1030 identified; one (pink) has Mg# ≤ 86 and $\Delta^{17}\text{O} \sim +2\text{\textperthousand}$ that could be related to inner solar
 1031 system O-E-R chondrules or out solar system CH-CB chondrules, including the six
 1032 fragments marked in Fig. 5c of this study, and five fragments (T22/F7, T77/F1, F4, and F5,
 1033 T162 "Cecil") in the literature; the other (yellow-green) has Mg# ≥ 79 and $\Delta^{17}\text{O} \sim -2\text{\textperthousand}$ that
 1034 are most consistent with CR chondrite chondrules. Noteworthy, the two iron-rich
 1035 fragments ("Iris" and "Callie" from T74, emerald green) with $\sim 0\text{\textperthousand}$ $\Delta^{17}\text{O}$ and no resolvable
 1036 ^{26}Mg excess (Iris, Ogliore et al., 2012) are also CR chondrule-like. In panel b, O-E-R, CR, and
 1037 CH-CB chondrules are plotted for comparison (Connolly and Huss, 2010; Krot et al., 2010;

1038 Weisberg et al., 2011, 2021; Schrader et al., 2013, 2014; Tenner et al., 2015; Miller et al.,
1039 2017; Siron et al., 2021, 2022).

Table 1. Major and minor element compositions of Wild 2 fragments determined by TEM-EDS and EPMA in this study

Track	Type	Fragment	Size (μm)	Depth (μm)	Target	Composition	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	P ₂ O ₅	Na ₂ O	Total
T77	B	F7	4 × 3	Surface	Ol	Fo ₆₀	33.5	—	0.58	0.04	35.3	0.74	29.6	0.20	—	—	100.0
T149	B	I/F11a	5 × 3	Surface	Ol	Fo ₈₅	40.6	—	—	0.21	13.7	0.28	45.0	0.21	—	—	100.0
		I/F11b	2 × 2	Surface	Ol												
T172	B	F100	5 × 5	Surface	Lpx	En _{95.9} Wo _{2.8}	58.3	—	0.61	0.21	0.91	1.33	36.2	1.46	—	—	100.0
T191	B	B1/F1	4 × 3	Surface	Lpx	En ₉₄ Wo _{0.7}	59.6	—	0.22	1.17	3.11	1.20	34.4	0.35	—	—	100.0
T191	B	B1/F2	4 × 2	Surface	Ol	Fo ₉₈	43.5	—	0.62	0.75	1.88	0.34	52.9	—	—	—	100.0
T191	B	B1/F3	3 × 3	Surface	Ol	Fo _{98.4}	40.7	—	—	0.51	1.63	0.26	56.9	—	—	—	100.0
T191	B	B1/F6	2 × 2	Surface	Ol	Fo ₇₅	38.2	—	—	—	23.0	0.60	38.0	0.11	—	—	100.0
T220	B	TP10b/F10	4 × 2	Surface	Lpx	En _{95.1} Wo _{3.4}	59.4	0.19	2.86	0.81	0.94	0.56	33.6	1.66	—	—	100.0
				Surface	Ol	Fo _{86.6}	40.5	—	—	0.30	12.2	2.52	44.3	0.17	—	—	100.0
T220	B	TP10b/F11*	3.0 × 2.3	2.3	Lpx	En ₉₆ Wo ₃	54.2	0.09	1.34	0.88	1.32	0.45	35.0	1.78	—	0.85	95.9
T220	B	TP10b/F12*	2.2 × 2.0	2.8	Lpx	En ₉₄ Wo _{1.5}	51.3	0.09	0.40	1.13	2.52	0.76	30.0	0.58	—	0.57	88.2
T220	B	TP10a/F3*	3.0 × 1.5	7.8	Ol	Fo ₆₈	37.0	—	0.15	0.14	26.0	0.52	31.1	0.36	—	0.21	95.5
T220	B	TP10a/F4*	2.5 × 1.8	4.5	Lpx	En ₈₄ Wo ₅	51.4	0.56	4.00	1.28	6.01	1.48	25.7	2.06	—	0.34	92.9
T220	B	TP10a/F5*	1.8 × 1.8	2.3	Lpx	En ₈₀ Wo _{1.2}	35.4	0.09	0.41	0.61	10.1	1.61	23.9	0.51	—	0.18	73.7
T22	A	F8	7 × 2	Surface	Ol	Fo ₈₆	40.0	—	—	—	13.6	0.60	45.5	0.37	—	—	100.0
T22	A	F10	5 × 4	Surface	Ol	Fo ₇₁	38.8	—	—	—	25.5	0.63	34.3	0.42	0.32	—	100.0
T22	A	F12	6 × 3	Surface	Ol	Fo ₈₂	36.8	—	—	—	16.9	0.63	44.8	0.29	0.56	—	100.0
T175	A	F1	4 × 2	Surface	Ol	Fo _{99.8}	41.2	—	—	—	0.20	0.10	58.5	—	—	—	100.0

*Fragments exposed by SIMS Kohler beam and analyzed by an FE-PMA (12 kV, 500 pA). Due to the low electron beam current, MnO, TiO₂, and Na₂O contents were overdetermined, and MnO was corrected using functions derived from a number of olivine and pyroxene standards with known compositions, while the TiO₂ and Na₂O contents were uncorrected due to lack of standards with varying compositions. Other fragments were exposed by ultramicrotomy, and their major and minor element compositions were determined from their microtome slices using EDS installed on TEM, which were quantified using an EDAX Genesis analysis system by the k-factor element ratio technique (Cliff and Lorimer, 1975). Fragments T22/F8, F10, and F12 are chondrule-like fragments of olivine and glassy mesostasis. Fragment T220/TP10b/F10 comprises low-Ca pyroxene with an olivine inclusion.

Table 2. Oxygen isotope ratios of 16 Wild 2 fragments determined in this study

Track	Fragment	Mineral	Mg#	Cycle	$\delta^{18}\text{O}$	2σ	$\delta^{17}\text{O}$	2σ	$\Delta^{17}\text{O}$	2σ
T77	F7	Ol	60.0	10	5.1	1.8	5.6	2.4	3.0	2.5
T149	I/F11a	Ol	85.0	20	2.5	1.2	0.4	2.7	-1.0	2.3
T149	I/F11b	Ol	85.0	20	0.5	1.2	0.3	2.7	0.0	2.3
T172	F100	Lpx	98.6	20	-3.1	1.7	-5.9	3.3	-4.3	2.9
T191	B1/F1	Lpx	94.7	20	-2.0	1.6	-3.5	2.6	-2.4	2.3
T191	B1/F2	Ol	98.0	20	-1.9	2.1	-2.8	2.8	-1.8	2.0
T191	B1/F3	Ol	98.4	20	-0.7	2.4	-1.9	2.0	-1.6	1.5
T191	B1/F6	Ol	75.0	16	4.5	2.1	4.2	2.5	1.9	1.8
T220	TP10b/F10	Lpx	98.4	20	3.5	0.8	0.6	1.8	-1.3	1.7
T220	TP10b/F11*	Lpx	99.0	20	2.7	2.8	-1.0	2.3	-2.4	3.1
T220	TP10a/F3*	Ol	68.0	20	2.9	1.6	3.1	2.6	1.6	2.7
T220	TP10a/F4*	Lpx	88.4	20	4.7	1.6	1.1	2.6	-1.3	2.7
T22	F8	Ol	86.0	20	6.9	2.4	6.7	4.0	3.1	2.9
T22	F10	Ol	71.0	20	1.6	1.9	3.2	2.4	2.3	1.9
T22	F12	Ol	82.0	17	5.5	2.0	5.4	3.0	2.5	2.2
T175	F1	Ol	99.8	20	-50.4	2.4	-49.5	2.4	-23.3	1.4

*Fragments exposed by a 22×22 μm SIMS Kohler beam and analyzed using a 1.5×1.0 μm Gaussian beam; Others were analyzed using a typical 2.0 × 1.5 μm Gaussian beam. Each fragment was analyzed once. The total cycle for each analysis is 20.