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Abstract—Over the past two decades, the rise in adoption of
neural networks has surged in parallel with their performance.
Concurrently, we have observed the inherent fragility of these
prediction models: small changes to the inputs can induce
classification errors across entire datasets. In the following study,
we examine perturbations constrained by the �0–norm, a potent
attack model in the domains of computer vision, malware
detection, and natural language processing. To combat this
adversary, we introduce a novel defense technique comprised
of two components: “truncation” and “adversarial training”.
Subsequently, we conduct a theoretical analysis of the Gaussian
mixture setting and establish the asymptotic optimality of our
proposed defense. Based on this obtained insight, we broaden
the application of our technique to neural networks. Lastly,
we empirically validate our results in the domain of computer
vision, demonstrating substantial enhancements in the robust
classification error of neural networks.

Index Terms—Robust classification, sparse attack, adversarial
training, neural networks.

I. INTRODUCTION

P
RESENTLY, machine learning tackles an array of appli-

cations with significant safety implications, such as

computer vision, autonomous vehicle navigation, and virtual

assistance. This trend aligns with the rise in popularity of

deep neural networks, which have demonstrated nearly human-

equivalent proficiency in the realm of image recognition [2],

alongside notable achievements in game playing [3], [4], and

natural language processing [5]. However, the unexpected

frailty of these neural networks when exposed to adversarial

attacks presents a paradoxical contrast to their otherwise

impressive performance.
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Adversarial attacks represent techniques designed to deceive

predictive models, corrupting their inputs with small pertur-

bations. The potency of such attacks in causing prediction

errors across diverse machine learning models was ini-

tially exhibited in various studies [6], [7], [8]. Subsequent

to these findings, significant effort has been expended to

formulate progressively intricate adversaries that can lever-

age a minimal quantity of semantic-retaining alterations

while maintaining the capacity to mislead a classifier [9],

[10], [11], [12]. In the realm of image classification, this

is typically accomplished by constraining the perturba-

tions using an �p–norm, with the majority of applications

employing either �∞ [7], [9], [10], [13], [14], [15], [16],

�2 [10], [17], [18], [19], [20], or �1 [21], [22]. As of

now, the most empirically effective defense against such

attacks involves iterative retraining with adaptively gener-

ated adversarial examples [9]. Despite adversarial training’s

potential to enhance robustness, there exists a fundamental

tradeoff between clean accuracy and robustness, in addi-

tion to a lack of generalization across diverse attacks

[23], [24], [25], [26], [27], [28], [29].

This study is primarily concerned with adversaries con-

strained using the �0–norm, a scenario that has captured

substantial interest [10], [22], [30], [31], [32], [33] due to

its relevance in NLP [34] and object detection [35], [36].

Within these settings, robust guarantees against �0–attacks are

particularly vital due to the implied limit on the quantity of

input features allowed to be altered. In the aforementioned

settings, the adversary could alter all input elements while

complying with the specified constraint. In contrast, when

using the �0–norm, the adversary has a fixed budget k which

restricts them to modifying a maximum of k coordinates

within the input. Put simply, the adversary can perturb the

input within the �0–ball of radius k, where k is typically

small compared to the input dimension, hence the term sparse

attacks. Additionally, in contrast to �p–balls (p ≥ 1), the �0–

ball exhibits a complex geometry: it is unbounded, highly

non-smooth, and non-convex.

Concurrently, the intrinsic discrete structure of the �0–ball

introduces fundamental challenges missing in other adversar-

ial settings explored in existing literature, rendering many

techniques from previous studies non-applicable. Importantly,

piece-wise linear classifiers, such as neural networks with

ReLU activations, have been demonstrated to fail in this

context [37], and empirical studies have shown the efficacy of

�0–attacks on images [10], [11], [30], [31], [38]. Therefore,

it becomes imperative to reassess our current architectural
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Fig. 1. We illustrate the two key components of our framework: truncation
and adversarial training. The bottom diagram depicts truncation - given an
input �x and a weight �w, we truncate the input by deleting the top and bottom k

coordinates of the element-wise product between �w and �x. Given any classifier

f (�x; �θ) = y parameterized by �θ , we can replace its input �x with this k–truncated

counterpart [�w � �x]k forming the k–truncated classifier f (k). The top diagram
depicts adversarial training - using an �0–attack append adversarial examples
�x′ to the training data. This procedure is used as a proxy for deriving the

weights �w and �θ that solve the minimax problem of finding a classifier f (k)

that attains the minimum robust classification error.

designs and learning methodologies in light of the unique

geometry of the �0–norm.

Building upon our previous work [39], we design an algo-

rithm that directly addresses the �0–adversary and demonstrate

that in the Gaussian mixture scenario, asymptotic optimality

can be attained. Inspired by these theoretical insights, we

extend our methodology to the realm of image classifica-

tion. Our proposed framework, depicted in Figure 1, can be

used in conjunction with any neural network classifier to

improve its robustness against the �0–adversary. Leveraging

sparse-rs [32], a state-of-the-art sparse attack, in addition

to the widely employed Pointwise Attack [31], our

findings indicate that while standalone adversarial training

may prove insufficient in bolstering against �0–attacks, our

approach exhibits substantial performance with regard to

robustness and computational efficiency when evaluated using

the MNIST [40] and CIFAR [41] datasets.

Our main contributions are outlined below:

• We propose a novel defense algorithm against

�0–bounded attacks that is based on two key components:

truncation and adversarial training. Essentially, we

leverage truncation to mitigate adversarial perturbations,

and combine it with adversarial training to identify the

best classifier in the set of truncated classifiers.

• We formalize the efficacy of our proposed method in

the theoretical setting of binary Gaussian mixtures. More

specifically, we prove that the optimal truncated classifier

is near optimal in the class of all classifiers, and is

indeed asymptotically optimal as the input dimension

grows large.

• We provide extensive experiments that demonstrate the

strength and efficiency of our proposed defense on the

MNIST [40] and CIFAR [41] datasets. To the best of our

knowledge, our proposed algorithm is the first to provide

meaningful empirical results on the CIFAR dataset.

Before continuing, we outline the organization of this paper.

First, Section II reviews two related works which also consider

defense methods for classifiers in the �0–setting. Following

this, Section III sets up our problem by introducing relevant

notation and describing the robust classification setting. The

proposed algorithm is generalized in Section IV, where the

theoretical results specific to the Gaussian mixture setting are

stated after in Section V. Finally, Section VI presents our

numerical results derived by performing experiments using

the MNIST [40] and CIFAR [41] datasets. We conclude the

work by discussing our findings in Section VII, and provide

an Appendix for proofs.1

II. RELATED WORK

Aside from the general framework of adversarial training,

which will be detailed in Section IV, there are two partic-

ularly significant studies that have proposed methodologies

for defending against sparse attacks: Analysis by Synthesis

(ABS) [31] and randomized ablation [33]. In the following,

we describe these methods in brief and subsequently compare

them to our proposed defense strategy.

Relying on optimization-based inference, the ABS model

employs variational autoencoders (VAEs) to learn a generative

distribution for a given input sample under each class. These

generative distributions allow one to estimate a lower bound on

the log-likelihood of a given sample belonging to a particular

class. The method used for computing this lower bound is

computationally expensive, requiring one to repeat 50 steps of

gradient descent 1000 times for a single prediction. Although

the authors show promising results on the MNIST dataset, they

state that their implementation of the ABS model with one

VAE per class neither scales efficiently to more classes nor to

more complex datasets such as CIFAR-10.

Defenses based on randomized ablation take a different

approach by adapting the technique of randomized smoothing

to the �0–setting. Unlike the �1 and �2 settings where additive

noise is used, the authors propose a certifiably robust defense

against sparse adversarial attacks that relies on randomly

ablating input features. Specifically, their method trains a

smoothed classifier that takes as input 10, 000 randomly

ablated versions of the original input, each with a small

subset of unchanged coordinates. After this, a majority vote is

taken over all 10, 000 ablated samples to determine the most

probable class. Although this smoothed classifier is certifiably

robust to �0-attacks of a certain magnitude, its reliance on large

numbers of ablated samples is computationally impractical for

complex datasets like CIFAR-10.

In contrast to both of the aforementioned defense methods,

truncation provides a more efficient solution for defending

against sparse attacks, and scales well to more complicated

1The code and implementation details used for our experiments can be
found at https://github.com/mbeliaev1/robust-l0 [42].
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datasets like CIFAR-10. The added computational complexity

of incorporating truncation into a classifier is equivalent to

adding a single layer in a deep neural network. We also note

that our method is theoretically motivated by the pure �0–

threat model, while both ABS and randomized ablation are

designed to address the weaker �0 + �∞–adversary. Similar to

the �0–setting, this adversary is still limited in the number of

coordinates it can alter, but these alterations can no longer be

arbitrarily large due to the additional boundary set by the �∞–

norm. We realize that having this bound is a practical choice

in the image domain, and hence test our algorithm under the

same conditions. However, we note that when the �∞–norm

is relaxed, our method can generalize its performance unlike

the prior defense methods.

III. PROBLEM SETUP

In this study, we examine the M–class classification

problem, where we strive to build a model that accurately

predicts the label y ∈ {1, . . . , M} from the corresponding input

�x ∈ R
d. We can conceptualize the input and labels as samples

generated by the distribution (�x, y)∼D, and the classifier as a

member of the function family F : Rd → {1, . . . , M}. For a

classifier C, we employ the 0−1 loss �(C; �x, y) = 1[C(�x) �= y]

as a measure of the discrepancy between the label and the

classifier’s prediction for a specific input �x.

With this configuration, we introduce the �0–adversary,

which perturbs the input �x within the �0–ball of radius k:

B0(�x, k) := {�x′ ∈ R
d :

∥∥�x − �x′∥∥
0

≤ k}, (1)

where we define ‖�x‖0 := ∑d
i=1 1[xi �= 0] for �x = (x1, . . . , xd),

and refer to k as the budget of the adversary. This states that

the adversary is permitted to arbitrarily modify a maximum of

k coordinates of �x to generate �x′, which is then inputted into

the classifier. With this setup, the robust classification error

of a classifier C is defined by:

LD(C, k) = E(�x,y) ∼D

[
max

�x′∈B0(�x,k)
�
(
C; �x′, y

) ]
, (2)

where our goal is to design classifiers which attain the

minimum robust classification error. With this objective in

mind, we define the optimal robust classification error as the

result of minimizing (2) over all possible classifiers:

L
∗
D

(k) := inf
C
LD(C, k). (3)

The intricate geometry of the �0–ball makes this a challenging

problem. Indeed, we have already observed that all piecewise

linear classifiers fail in this context [37]. To address this

issue, the present architectural designs and learning procedures

must be reevaluated, taking into account the geometry of the

perturbation set. In this regard, it is important to mention

that directly solving the optimization problem in (2) and

determining the optimal robust error is intractable. Instead,

drawing inspiration from robust statistics [43], we introduce

truncation as the primary component of our classifier. Our

objective is then to identify the most robust classifier within the

set of truncated classifiers. This optimization can be analyzed

in the Gaussian mixture scenario, and addressed through

adversarial training in the broader deep learning context. As

we demonstrate in Section V, the theoretical investigation

of the Gaussian mixture model enables us to establish the

optimality of our approach.

IV. THE PROPOSED ALGORITHM

In this section we describe our proposed algorithm, begin-

ning with the definition of truncation, followed by its

extension to neural networks. Subsequently, we detail how

adversarial training is used in our framework. Foreshadowing

our theoretical and empirical results outlined in Section V

and Section VI respectively, the coupling of truncation and

adversarial training is integral to constructing robust classifiers

resistant to �0–attacks

A. Truncation

We define truncation as an operation that acts on two vectors

by computing their truncated inner product. Given vectors

�w, �x ∈ R
d and an integer 0 ≤ k ≤ d/2, we define the

k–truncated inner product of �w and �x as the summation of the

element-wise product between �w and �x after deleting the top

and bottom k elements, denoting it by 〈�w, �x〉k. Defining the

element-wise product of �w and �x as �u := �w � �x ∈ R
d, we let

us(1) ≤ . . . ≤ us(d) represent the sorted elements of �u under

permutation s. This allows us to denote the k–truncated inner

product by:

〈�w, �x〉k :=
d−k∑

i=k+1

us(i). (4)

It is worth mentioning that when k = 0, the truncation

operation in (4) simplifies to the standard inner product,

represented by 〈�w, �x〉.
Truncation naturally facilitates the removal of “outliers” in

the data, which may have been manipulated by an adversary

affecting specific coordinates. Given that an �0–adversary with

a budget of k can arbitrarily alter a maximum of k coordinates

of the input, we anticipate the k–truncated inner product to

exhibit resilience against this �0–adversary. We formalize this

concept in Section V, demonstrating that truncation can be

directly employed to construct the optimally robust classifier

in the context of Gaussian mixture models subjected to an �0–

adversary. In the meantime, our discussion will focus on how

we use truncation to design robust neural networks.

B. Robust Neural Networks

Our goal is to design robust classifiers that deal with high

dimensional and complex data domains, such as images. In the

Gaussian mixture setting, the optimal Bayes classifier is known

to be the linear classifier sgn(〈�w, �x〉),2 and our theoretical

results show that in the presence of an �0–adversary, the

optimal classifier takes the form sgn(〈�w, �x′〉k). We use this

intuition to extend truncation for the general classification task

where neural networks are typically employed.

Recall that we defined truncation in Eq. (4) as a composition

of three operations: (1) an element wise product between

2see, for instance, [44, Section 9.2.2].
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the input �x and weight vector �w (2) the removal of the

top k and bottom k elements of this product, and (3) the

summation of the remaining d − 2k elements. Since neural

networks already contain layers that sum weighted subsets

of their inputs, the third operation of truncation is redundant

in this setting. Furthermore, we may want to preserve the

spatial information provided by the input since our classifier

may include convolutional layers. Because of this, we only

utilize the first two operations of truncation by excluding the

summation. More precisely, given �w, �x ∈ R
d and integer k

such that 2k < d, we define

[
�w � �x

]
k

:= �u, where ui :=
{

wixi if k + 1 ≤ s−1(i) ≤ d − k

0 otherwise
,

(5)

where s(.) is the permutation derived by sorting the elements

of �w��x in increasing order. As an example, for d = 3, k = 1,

�x = (1,−1, 2)T , and �w = (3,−2,−1)T , we have [�w, �x]k =
(0, 2, 0)T .

Using the configuration defined in Section III, we consider

the family of classifiers F : R
d → {1, . . . , M} that can be

represented by any neural network architecture, e.g., fully

connected, convolutional, and recurrent. We define a neural

network as a function f (�x; �θ) = y, parameterized by �θ . This

function accepts an input �x ∈ R
d and returns the predicted

label y ∈ {1, . . . , M}. Without loss of generality, we assume

that the input �x has been flattened to one vector, and that the

classifier f transforms the input back to its original shape if

needed.

Given any classifier f ∈ C : Rd → {1, . . . , M}, we define

its k–truncated counterpart as:

f (k)
(
�x; �w, �θ

)
= f

([
�w � �x

]
k
; �θ

)
, (6)

where �w is a set of learnable weights that scales the input

coordinates, and �θ is the set of parameters corresponding to

classifier f . By implementing truncation in the initial layer,

the impact of the adversary is counteracted in the early stages

of the network and is prevented from propagating through the

subsequent layers.

C. Adversarial Training

While truncation alone is anticipated to improve a clas-

sifier’s robustness, we propose extending our approach

by integrating our framework with adversarial training.

Adversarial training is a common technique for improving the

robust accuracy of neural network classifiers [9] - by training

classifiers on adversarially perturbed samples from the original

data, one aims to minimize the robust classification error. In

the Gaussian mixture setting examined in Section V, we prove

that the asymptotically optimal classifier necessitates both

truncation and an optimization step resembling adversarial

training to identify the optimal weights �w. We hypothesize that

the extension of these theoretical findings to neural networks

will help contribute to enhancing their robustness, and to this

end we formalize the adversarial training procedure we utilize

in our work when testing our claim.

We express our training algorithm generally for any classi-

fier f , where we consider an �0–adversary that attacks some

classifier f by using an �0–budget of k and a time budget of

t. We define this attack as a function g(X ; f , k, t) : X → X ′

where X = {�x1, . . . , �x|X |} is a set of unperturbed data samples,

and X ′ = {�x′
1, . . . , �x′

|X ′|} is the derived set of adversarial

examples which are all misclassified by f . Note that we use

|X | to denote the cardinality of the set X . Using this attack, we

train on the appended dataset X ∪X ′, emptying the adversarial

set every epoch and recalculating it again X ′ = g(X ; f , k, t).

Consequently, the adversarial examples are selected according

to a process that is adaptive with respect to our model f . This

procedure is utilized as a means to solve the minimax problem

articulated in (3). The specific implementation details of the

training framework used in our experiments is described in

Section VI as they are problem specific and should be chosen

accordingly.

V. THEORETICAL FRAMEWORK

In this section, within the framework established in

Section III, we consider a Gaussian mixture setting and

demonstrate that our algorithm achieves near optimal robust

classification error, i.e., we show that the deviation from

optimality is asymptotically vanishing. Our theoretical analysis

provides a key insight: both truncation and adversarial training

are essential components for providing provable robustness

against �0–attacks.

To elaborate, we consider a binary classification setting

where the distribution D is defined as follows. We have y ∈
{±1} with P(y = +1) = P(y = −1) = 1/2, and �x = y �µ +
�z conditional on y, where �µ ∈ R

d and �z ∼ N (0, �) is

a Gaussian vector with zero mean and diagonal covariance

matrix �. For ease of discussion, we assume that � has strictly

positive diagonal entries σ 2
1 , . . . , σ 2

d .3 It is well known that

when the adversary is absent, the linear classifier sgn(〈�w, �x〉)
with �w = �−1µ is the optimal Bayes classifier. This optimal

standard error in this setting is �̄(‖�−1/2 �µ‖2), where �̄(.)

denotes the complementary CDF of the standard normal

distribution. Therefore, to establish a baseline, we assume

without loss of generality that ‖�−1/2 �µ‖2 = 1 so that the

optimal standard error is �̄(1).

Given that the optimal Bayes classifier in this context is lin-

ear, and building on our discussion from Section IV, we focus

our analysis on single layer neural networks. Specifically, we

consider the family of k–truncated linear classifiers:

C
(k)

�w :�x′ �→ sgn
(
〈�w, �x′〉k

)
.

Using our notation in (2), we denote the robust classification

error of a classifier C (a general classifier, not necessarily a

truncated linear classifier) by:

L �µ,�(C, k) = E(�x,y) ∼D

[
max

�x′∈B0(�x,k)
�
(
C; �x′, y

) ]
,

where k denotes both the truncation parameter and the adver-

sary’s budget. Furthermore, as in (3), we denote the optimal

3Although we make the diagonal assumption in this section, we discuss a
more general setting in Appendix A.
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robust classification error by minimizing over all possible

classifiers under a fixed k:

L
∗
�µ,�(k) := inf

C
L �µ,�(C, k). (7)

Note that here, minimization is taken over all possible classi-

fiers C, not necessarily truncated linear classifiers.

For the sake of brevity, we may omit the problem parameters

�µ and � from the aforementioned notations and use L(C
(k)

�w , k)

and L∗(k) instead, provided that the context makes them

unambiguous.

A. Asymptotic Optimality of Our Algorithm

To demonstrate that k–truncated linear classifiers are asymp-

totically optimal, we first revisit a result from our previous

work [39]. Specifically, we recall the lower bound on the

optimal robust classification error, which was established by

developing an attack strategy for the adversary and proving

that no classifier can achieve better performance.

Theorem 1 (Theorem 2 in [39]): Assume that � is diago-

nal and let �ν = �−1/2 �µ. Then for any A ⊆ {1, . . . , d}, we

have

L
∗(‖�νA‖1 log d) ≥ �̄(‖�νAc‖2) − 1

log d
,

where �νA and �νAc denote the coordinates of �ν in the sets A

and Ac, respectively.

The main difference between the current work and [39]

is that here, we use adversarial training in order to choose

the model parameters within the class of truncated linear

classifiers defined above. However, in [39], we start with the

optimal model parameters when there is no adversary, and use

truncation as well as another component called “filteration”.

Filtration refers to the procedure of removing some of the

data coordinates that are most susceptible to adversarial

perturbations. Even though this approach is proven to be

asymptotically optimal in [39], from a practical point of view,

filteration requires a complex discrete optimization which can

be intractable in practice. However, in this work, we show

that employing adversarial training together with truncation is

sufficient and eliminates the need to apply filteration.

Recall from Section IV that adversarial training is used to

identify the model weights. This is a proxy for optimizing �w
in the class of k–linear classifiers C

(k)

�w . More precisely, let

�w∗(k) ∈ arg min�wL
(
C

(k)

�w , k
)
. (8)

In the following, we demonstrate that when an adversary

with �0–budget k is present, the performance of C
(k)

�w∗(k) is

comparable to the optimal robust classification error, with an

asymptotically vanishing deviation.

In order to do this, given an error threshold �̄(1) ≤ ε ≤ 1/2,

we define

kTrunc(ε) := max
{

k : L
(
C

(k)

�w∗(k), k
)

≤ ε

}
, (9)

which is the maximum adversarial budget that the class of

truncated linear classifiers can tolerate to achieve a robust error

of at most ε, when the truncation parameter is chosen to equal

the adversary’s budget. Here, ε is chosen to range between the

standard error �̄(1) and the error corresponding to a random

guess. Moreover, let

k∗(ε) := max{k : L∗(k) ≤ ε}, (10)

be the maximum adversarial budget that an optimal classifier

can tolerate constrained on having a robust error of at most ε.

By definition, we know k∗(ε) ≥ kTrunc(ε).

As we formally demonstrate below, kTrunc and k∗ are close

to each other up to multiplicative factors that are sublinear

in d. As a results, to have a first order analysis and to focus

on the behavior of the adversary’s budget as a power of the

dimension d, we define

αTrunc(ε) := logd kTrunc(ε), (11)

and

α∗(ε) := logd k∗(ε). (12)

The following theorem shows that αTrunc is close to α∗,

modulo some vanishing terms in d. More clearly, the class

of linear truncation classifiers are asymptotically optimal for

the above mixture Gaussian setting. Proof of Theorem 2 is

provided in Appendix A.

Theorem 2: Given �̄(1) + 1/ log d + √
2/ log d < ε < 1

2
,

there are constants ci = ci(ε, d), i ∈ {1, 2}, which do not

depend on the parameters of the problem (i.e., �µ and �) such

that limd→∞ ci(ε, d) = 0 for i ∈ {1, 2} and

α∗(ε) ≥ αTrunc(ε) ≥ α∗(ε − c1) − c2.

The essence of Theorem 2 is that, disregarding asymptoti-

cally negligible terms, the truncated classifier can endure an

equivalent amount of adversarial budget as an optimal robust

classifier. To substantiate this claim, we rely on Theorem 1,

which certifies that no other classifier can attain superior

asymptotic performance. As a consequence, our algorithm is

asymptotically optimal.

VI. EXPERIMENTS

Now that we established our theoretical results derived

for the Gaussian mixture setting, we proceed to evaluate the

practicality of our approach on the more complex image

domain. This is accomplished by conducting experiments on

the MNIST and CIFAR datasets using our proposed algorithm

from Section IV. Since these datasets are in the image domain,

it is natural to consider an �0 adversary which is restricted to

keep the perturbed pixels within the permissible RGB range.

We call this the �0 + �∞ adversary. Note that the �0 + �∞
adversary is weaker as compared to a pure �0 adversary.

In fact, we can recover the �0 setting by relaxing the �∞
constraint. This can be done by setting the �∞ constraint bound

to ∞. Motivated by our theoretical study in this paper, we also

consider the pure �0 setting in our experiments by relaxing the

�∞ constraint.

In both settings, we directly compare our algorithm with

two well known defense methods against the sparse adversary:

adversarial training [9] and the ABS model [31]. We omit

comparisons against the randomized ablation defense [33] due
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to the lack of computational resources.4 Before going over

the results of our experiments, we briefly summarize the two

attack methods used.

A. Sparse Attacks

The experimental results in this paper primarily rely on

spare-rs [32], a sparse black-box attack framework. Given

a time budget t and pixel budget k, the spare-rs attack

performs a random search to identify and modify a set of k

pixels in the input image �x in such a way that the resulting

adversarial image �x′ is misclassified by the model f . In this

framework, the attacker can only access the predicted scores

of the classifier f , as opposed to white-box methods where

gradient information can be utilized by the attacker. The

authors of sparse-rs have demonstrated the superiority

of their framework over other existing black-box and white-

box attacks. Therefore, we employ this attack to evaluate the

robust accuracy of our classifier, and use it as the adversarial

training component in our defense framework. In the scope of

our notation from Section IV-C, when training is finished we

run the �0–attack g(X ; f , k, t) = X ′ on the entire testset X ,

deriving a set of incorrectly classified samples X ′. We then

calculate the robust accuracy as the portion of samples that

are still correctly classified: 1−|X ′|/|X |, where |X ′| includes

unperturbed samples �x ∈ X that were originally misclassified.

In addition, to compare our results with prior literature

and test the transferability of our model’s performance to

an unseen adversary, we utilize the Pointwise Attack

[31]. This type of attack aims to minimize the �0–norm in

a greedy manner, first introducing salt-and-pepper noise, and

then iteratively resetting perturbed pixels while maintaining

the image misclassified. In contrast to the sparse-rs

framework, we have no direct control over the number of

allowed perturbations k, and hence cannot use it to evaluate the

robust accuracy. Instead, we follow prior work and measure the

median adversarial attack magnitude, denoting this value with

ρ. Given a set of images X , ρ is defined as the median value

of pixels that need to be perturbed in order to misclassify an

image �x ∈ X , where originally misclassified images get a value

of 0 and perturbed images that are still correctly classified get

a value of ∞.

B. Results

In total, we conducted four sets of experiments to evaluate

the robustness of our proposed method, reporting:

(1) the impact of increasing the �0–budget of an adversary

on robust accuracy,

(2) the effects of relaxing the �∞–constraint of an adversary,

(3) the robust accuracy of different defense methods under

a strong adversarial attack, and

4Using the implementation provided by the authors, we could not evaluate
their CIFAR model since performing a forward pass with a batch size of one
needed over 40GB of VRAM. For their MNIST model, using the pointwiwse
attack on one image took 35 hours. Although we could utilize their models
by decreasing the number of ablated samples, this negatively impacted the
model’s performance and hence we chose to not report such results.

Fig. 2. We plot the robust accuracy of various classifiers when evaluated
against the sparse-rs attack using 100 images from both MNIST (top) and
CIFAR (bottom) datasets. In this experiment we use the original sparse-rs
attack which bounds its pixel perturbations to the domain [0, 1], where the
x–axis shows the �0–budget of the attack.

(4) the generalization performance of our method to an

unseen attack. In all experiment except for the second one, we

consider the �0 + �∞ adversarial setting.

As suggested by our theoretical results, when training our

k–truncated classifier f (k), we employ an adversarial training

strategy that uses a sparse-adversary with an identical �0–

budget of k. Since our experiments ablate both the truncation

and adversarial training components of our algorithm, we

introduce additional notation for clarity. Specifically, we refer

to f (k,r) as the k–truncated classifier f (k) adversarially trained

against a sparse-adversary with an �0–budget of r. This way,

f (0,r) refers to adversarial training without truncation, f (k,0)

refers to truncation without adversarial training, and f (0,0)

refers to no adversarial training and no truncation. For our

experiments, we treat k as a hyper parameter, and study

how different choices of k affect the performance of our

classifier on various attacks. In all experiments we set the

time budget of the adversary to 500 queries when training. For

CIFAR we used the VGG-16 [45] architecture without dropout

layers, while for MNIST we used a similar but smaller CNN

architecture. We provide the remaining implementation details

online [42].

1) Varying the �0–Budget: We first test how varying the

�0–budget of our attack impacted the robust accuracy of

different classifiers. Here, we consider an �0 + �∞ adversary

where the �∞ budget of the adversary is set to be the

permissible pixel range. We visualize these results in Figure 2

for both MNIST and CIFAR, where we used the sparse-rs

adversary with a time budget of 500 queries and varied the �0-

budget from 0 to 100 in increments of 2. The results showed

that truncation and adversarial training improved the robust

accuracy of the classifiers.
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Fig. 3. We repeat the experiments shown in Figure 3, this time relaxing the
�∞–constraint by letting the attack perturb pixels beyond the domain [0, 1].

Note that the results for f (0,0) and the ABS model are plotted on top of each
other since they all show the same trivial performance - their robust accuracy
drops to zero when the �0–budget increases to 1.

On MNIST, we see that the clean classifier without adver-

sarial training f (0,0) fails once the �0–budget is increased. We

also see that the ABS model performs similarly to f (0,50),

which only employs adversarial training without truncation.

Finally, we note that although our truncated classifier f (12,12)

does not show improvement over the ABS model, when

we increase the truncation parameter to k = 50, we see

f (50,50) outperforms all other baselines. For CIFAR, we note

that the plot for ABS is not shown because their method

does not scale to the more complex dataset. We can see

again that truncation and adversarial training improved the

robust accuracy of our classifiers Notably, we can see in both

settings that although using truncation f (50,0) or adversarial

training f (0,50) independently enhances the original classifier

f (0,0), applying both components in f (50,50) shows significant

improvement. This underscores that combining truncation and

adversarial training is essential for providing defense against

�0–attacks, as proposed by our theoretical analysis.

2) Relaxing the �∞–Constraint: In our previous experi-

ment we used the original implementation of sparse-rs,

which acts as an �0 + �∞–adversary because the pixel pertur-

bations are bounded to the original image domain of [0, 1].

We realize that having this bound is a practical choice, but

because our theoretical results assumed a pure �0–adversary,

we tested if our method could maintain performance when

the �∞–constraint was relaxed. We did this by modifying the

sparse-rs algorithm to allow perturbations in the expanded

domain of [−50, 50]. We visualize these results in Figure 3

for both MNIST and CIFAR. We see that ABS, adversarial

training alone f (0,50), as well as the original classifier f (0,0)

show trivial performance - a few perturbed pixel cause misclas-

sification in all 100 samples. On the other hand, our truncated

classifiers f (12,12) and f (50,50) maintain robust accuracy until

the attack budget becomes much higher than the truncation

parameter.

Before moving on, we point out that the robust accuracy

of both the k = 50 truncated classifiers with and without

adversarial training, f (50,50) and f (50,0) respectively, are higher

under the less restrictive �0–threat model compared to the �0+
�∞–threat model. We note that under the same time budget,

the less restrictive �0–threat model has a harder time finding

adversarial examples due to the larger (unbounded) search

space, which inherently favors the truncation component of our

classifiers. Due to the heuristic nature of the attacks employed,

we believe that the results of the two threat models should be

viewed independently, as they are portrayed in the paper.

3) Measuring the Robust Accuracy: Although our previous

experiments measured robust accuracy using sparse-rs,

the time budget was kept small so we could run many

evaluations using various �0–budgets. To accurately evaluate

the performance of different defense methods, we setup

sparse-rs as done in the original study [32]: using 5

restarts, with a time budget of 10, 000 queries, and an �0

budget of 12. Note that this refers to the aforementioned �0 +
�∞ setting. Using this attack, we compared the performance

of ABS, the original classifier f (0,0), adversarial training alone

f (0,12) and f (0,50), as well as our truncated classifiers f (12,12)

and f (50,50). We list these results in Table I.

We can see from the results on MNIST that our truncated

classifier f (50,50) outperformed ABS and all other models.

Although we slightly sacrifice clean accuracy, utilizing trun-

cation only decreased the base classifier’s accuracy by 0.2%.

As we used a small CNN consisting of only 4 convolutional

layers, we believe the gap in clean accuracy compared to the

ABS model is negligible. For both MNIST and CIFAR, we

see our truncated classifiers f (12,12) and f (50,50) outperformed

adversarial training alone, with a larger gap for the CIFAR

experiments. We again note that the ABS model was not

trained on the CIFAR dataset since the authors claimed

preliminary experiments provided only a clean accuracy

of 54%.

4) Generalizing to Unseen Attacks: Since our algorithm

relies on adversarial training, we expect our final model

to perform better against adversaries that were used during

training. Hence for our final experiment we tested our model

against an unseen attack, measuring the median adversarial

attack magnitude ρ by using the Pointwise Attack over

100 image samples and 10 restarts. We show this result in

Table I, where for MNIST we note that although both our trun-

cated classifier f (12,12) and adversarial training alone f (0,50)

outperformed ABS on this unseen attack, using truncation

gave no improvement over adversarial training alone. On the

other hand, for CIFAR we see that our truncated classifiers

were able to generalize their performance to the unseen

attack, outperforming adversarial training alone. As we will

further discuss in the concluding section, we believe that the

observed discrepancy in performance between the MNIST and

CIFAR datasets can be attributed to the bimodal distribution of

pixels present in the MNIST dataset. This distribution makes

it challenging to eliminate outliers through truncation, as a
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TABLE I
PERFORMANCE OF ABS [31], THE CLEAN CLASSIFIER f (0,0) ,

ADVERSARIAL TRAINING f (0,12)
AND f (0,50) , AND OUR TRUNCATED

CLASSIFIERS f (12,12)
AND f (50,50) AGAINST BOTH THE SPARSE-RS AND

POINTWISE ATTACKS. NOTE THAT WHILE SPARSE-RS MEASURES

ROBUST ACCURACY, POINTWISE MEASURES THE MEDIAN

ADVERSARIAL ATTACK MAGNITUDE ρ . FOR BOTH DATASETS WE

UTILIZE 100 SAMPLES WHEN EVALUATING AGAINST ATTACKS

significant number of pixels already lie at the limit of their

respective domain.

VII. DISCUSSION AND CONCLUSION

In this paper we introduced a novel defense method against

sparse attacks, investigated its efficacy in the theoretical setting

of Gaussian mixtures, and tested its application in the image

domain. We conclude by discussing our results as well as

potential avenues for future work.

Firstly, we observe that while our theoretical analysis is

focused on binary classification, the insights gained from this

theoretical discussion has enabled us to design an architecture

that shows robustness in practical multiclass classification set-

tings. We believe that in order to bridge this gap, extending our

theoretical analysis to multiclass classification is an interesting

direction for future research.

Also, it is important to mention that while only two black-

box attacks were utilized for evaluating our method, the chosen

sparse-rs framework demonstrated superior performance

to all black- and white-box attacks. Furthermore, we did not

design adaptive attacks for evaluating the robustness of our

algorithm as suggested by prior works [46]. We believe that

additional experiments with adaptive attacks will not improve

our results as the general purpose sparse-rs framework

utilized in our work was adept in causing misclassifications

throughout our empirical analysis. As we showed in Table I,

when using the sparse-rs framework with an �0–budget of

12 pixels, the robust accuracy was below 50% for 9 out of 11

evaluated models, with the highest being 50% and 64%, for

MNIST and CIFAR respectively. Due to the strength of the �0–

adversary, providing theoretical results and showing robustness

against simple attack models is a significant first step in

this line of research. Furthermore, we argue that without

knowledge of the weights �w used to perform our truncation

operation, a true �0–attack provides the worst-case guarantees.

However, we note that an adaptive attack that has access to the

weights �w can be more discreet when applying perturbations

to the input, targeting coordinates without triggering the

truncation operation.

Additionally, we add that while some prior works have

considered the generalization properties between different �p–

attacks [47], [48], [49] for p ≥ 1, there is no theoretical

justification for utilizing �1 or �2–adversaries when training

classifiers (with or without truncation) to be robust against

an �0–adversary. As demonstrated by our theoretical result,

adversarial training wrt �0 is required for identifying the

model weights �w in our truncation operation. Hence we choose

to only include the current attack model when training our

truncated classifiers due to its relevance to the �0–threat model

being studied in this paper. Furthermore, solely applying

adversarial training together with �1 or �2–norms (without

truncation) results in a classifier that belongs to the family

of linear classifiers. However, we know from prior work [37]

that linear classifiers do not behave well in the presence of �0

adversarial perturbations.

We also want to discuss our results displayed in

Figures 2 and 3, which indicate a rapid decline in robust

accuracy as the �0–budget increases, even for our k–truncated

classifiers. Although there is an inherent limit to how much

we can mitigate this, we showed that setting our truncation

parameter to higher values could allow one to maintain

performance without damaging clean accuracy. On top of this,

additional truncation layers with decreasing k can be added

beyond the first layer, as this would help prevent perturbed

coordinates from propagating further into the network. Finally,

a larger adversarial time budget can be used when performing

training.

Additionally, we want to emphasize the efficiency of uti-

lizing truncation as a defense against �0–attacks. For our

truncated classifier f (50,50), we measured the increase of

preforming a forward pass to be less than 25% compared to

the base classifier, meanwhile the ABS model was more than

1000 times slower, and randomized ablation was not feasible

to run on a cluster of 4–GPUs. Since truncation is a functional

improvement that can be efficiently implemented alongside

any classifier, we believe it to be a powerful tool against

adversarial perturbations in the �0–setting.

Finally, we point out that truncation is not limited to the

image domain, and may be more effective in the NLP domain.

Since truncation is theoretically motivated by the �0–setting,

it will scale better in domains where the adversary is less

constrained by the �∞–norm bounding the perturbations. We

showed in Figure 2 and Table I that truncation was relatively

more effective on CIFAR than on MNIST. Since the MNIST

dataset contains many black and white pixels whose values

are close to the boundaries of the domain, perturbed pixels

are harder to detect when performing the sorting operation

of truncation. Images in CIFAR do not share this property,

making it easier for truncation to detect outliers as the �∞–

constraint is less prevalent. In the NLP domain, adversaries

are typically allowed to change a fixed number of words

by performing character operations or replacing words with

synonyms [50]. Since there is no inherent limit on the

perturbations, the adversary closely resembles an �0–attack.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 18,2024 at 16:08:34 UTC from IEEE Xplore.  Restrictions apply. 



BELIAEV et al.: EFFICIENT AND ROBUST CLASSIFICATION FOR SPARSE ATTACKS 269

For these reasons, we hypothesize that using truncation in the

NLP domain may be an effective strategy against adversarial

attacks.

APPENDIX A

PROOF OF THEOREM 2

Before giving the proof of Theorem 2, we need to make

some definitions and state some lemmas. The proofs of the

lemmas are provided at the end of this section.

We first study the effect of truncation on the inner product.

Lemma 1 below from [39] provides an upper bound on the

deviation of the truncated inner product from the original inner

product.

Lemma 1 (Lemma 1 in [39]): Given �x, �x′, �w ∈ R
d, for

integer k satisfying ‖�x − �x′‖0 ≤ k < d/2, we have

|〈�w, �x′〉k − 〈�w, �x〉| ≤ 8k‖�w � �x‖∞.

Recall that in Section V, to simplify the discussion, we

restrict ourselves to diagonal covariance matrices. However, in

order to have a general setup, here we begin by proving an

upper bound for the robust classification error of the family

of truncated linear classifiers. In this case, we assume that the

covariance matrix � is positive definite, but does not need to

be diagonal. Lemma 2 below shows an upper bound for the

robust classification error of the k–truncated linear classifier

C
(k)

�w .

Lemma 2: We have

L �µ,�

(
C

(k)

�w , k
)

≤ 1√
2 log d

+ �̄

(
〈�w, �µ〉 − 8k‖�̃1/2 �w‖∞

(
1 + √

2 log d
)

‖�1/2 �w‖2

)
,

where �̃ is the diagonal part of �.

As a direct consequence, this lemma implies the following

bound for the diagonal regime.

Corollary 1: When the covariance matrix � is diagonal, we

have

L �µ,�

(
C

(k)

�w , k
)

≤ 1√
2 log d

+ �̄

(
〈 �̃w, �ν〉 − 8k‖�̃w‖∞

(
1 + √

2 log d
)

‖�̃w‖2

)
,

where �̃w = �1/2 �w and �ν = �−1/2 �µ.

From this point forward, in order to prove Theorem 2, we

assume that the covariance matrix � is diagonal with positive

diagonal entries σ 2
1 , . . . , σ 2

d . We define

�ν := �−1/2 �µ, (13)

so that νi = µi/σi is the signal to noise ratio associated to

coordinate i. Without loss of generality, we may assume that

|ν1| ≥ |ν2| ≥ · · · ≥ |νd|. (14)

For �̄(1) < ε < 1/2, let c(ε) be the unique solution of

�̄(
√

1 − c2) = ε. Note that c(ε) ∈ (0, 1). Moreover, given

c ∈ (0, 1), we define

λc := min{λ : ‖�ν[1:λ]‖2 ≥ c}, (15)

where �ν[1:λ] corresponds to the vector containing the first λ

elements of �ν.

Note that since c > 0, we have λc ≥ 1. Moreover, since

c < 1 and ‖�ν‖2 = 1, we have

λc < d. (16)

Using Lemma 2 and in particular Corollary 1 in the

diagonal regime, we can show the following bound on the

robust classification error of the optimal k–truncated linear

classifier C
(k)

�w∗(k).

Lemma 3: Assume that the covariance matrix � is diag-

onal. Given �̄(1) < ε < 1/2, for k = a‖�ν[1:λc(ε)]‖1,

we have

L

(
C

(k)

�w∗(k), k
)

≤ ε + a
8
(
1 + √

2 log d
)

√
2π

√
1 − c(ε)2

+ 1√
2 log d

.

Furthermore, we can show the following lower bound on k∗

which involves the class of all classifiers.

Lemma 4: For �̄(1) + 1
log d

< ε < 1
2

, we have

k∗
(

ε − 1

log d

)
≤ ‖�ν[1:λc(ε)]‖1 log d.

We are finally ready to prove Theorem 2.

Proof of Theorem 2: Using Lemma 3 for �̄(1) ≤ ε < 1/2

and k = a‖�ν[1 : λc(ε)]‖1 with

a =
√

1 − c(ε)2 1

16 log d
,

we get

L

(
C

(k)

�w∗(k), k
)

≤ ε + 1 + √
2 log d

2
√

2π log d
+ 1√

2 log d

≤ ε +
√

2

log d
.

This means that

kTrunc

(
ε +

√
2

log d

)
≥

√
1 − c(ε)2

16

‖�ν[1:λc(ε)]‖1

log d

for �̄(1) < ε <
1

2
−

√
2

log d
. (17)

On the other hand, from Lemma 4 we know that

k∗
(

ε − 1

log d

)
≤ ‖�ν[1:λc(ε)]‖1 log d

for �̄(1) + 1

log d
< ε <

1

2
.

Comparing this with (33), we realize that

kTrunc

(
ε +

√
2

log d

)
≥

√
1 − c(ε)2

16 log2 d
k∗

(
ε − 1

log d

)

for �̄(1) + 1

log d
< ε <

1

2
−

√
2

log d
.
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Equivalently, taking logd from both sides, we realize that for

�̄(1) + 1/ log d < ε < 1/2 − √
2/ log d,

αTrunc

(
ε +

√
2

log d

)

≥ α∗
(

ε − 1

log d

)
− 2 log log d

log d
+

log
(√

1 − c(ε)2/16
)

log d
.

By shifting ε, we realize that for �̄(1)+1/ log d+√
2/ log d <

ε < 1/2, we have

αTrunc(ε) ≥ α∗(ε − c1(ε, d)) − c2(ε, d), (18)

where

c1(ε, d) := 1

log d
+

√
2

log d
, (19)

and

c2(ε, d) := 2 log log d

log d
−

log

(√
1−c(ε−

√
2/ log d)

2

16

)

log d
. (20)

Observe that for i ∈ {1, 2}, ci(ε, d) does not depend on the

parameters of the problem and limd→∞ ci(ε, d) = 0. On the

other hand, since α∗(ε) is obtained by optimizing over all

classifiers while αTrunc(ε) is obtained by optimizing over the

class of linear truncated classifiers, we always have α∗(ε) ≥
αTrunc(ε). This completes the proof.

Finally, we give the proofs for Lemmas 2, 3, and 4.

Proof of Lemma 2: We may write

L �µ,�

(
C

(k)

�w , k
)

= E(�x,y) ∼D

[
max

�x′∈B0(�x,k)
�

(
C

(k)

�w ; �x′, y
) ]

= P

(
∃�x′ ∈ B0(�x, k):C

(k)

�w (�x′ �= y)
)

= P
(
∃�x′ ∈ B0(�x, k):sgn(〈�w, �x′〉k) �= y

)

(∗)= P
(
∃�x′ ∈ B0(�x, k):sgn(〈�w, �x′〉k) �= 1|y = 1

)

= P
(
∃�x′ ∈ B0(�x, k):〈�w, �x′〉k ≤ 0|y = 1

)
(21)

where (∗) uses the symmetry in distribution D. Using

Lemma 1, for all �x′ ∈ B0(�x, k), we have

〈�w, �x′〉k ≥ 〈�w, x〉 − 8k‖�w � �x‖∞.

Using this in (21), we get

L �µ,�

(
C

(k)

�w , k
)

= P(〈�w, �x〉 ≤ 8k‖�w � �x‖∞|y = 1). (22)

Note that conditioned on y = 1, we have �x = �µ + �z where

�z ∼ N (0, �). Let �̃ be the diagonal matrix consisting of the

diagonal entries in �. Since �̃ is diagonal, we may write

‖�w � �x‖∞ = ‖�w � �µ + �w � �z‖∞
≤ ‖�w � �µ‖∞ + ‖�w � �z‖∞
≤ ‖

(
�̃1/2 �w

)
�

(
�̃−1/2 �µ

)
‖∞

+‖
(
�̃1/2 �w

)
�

(
�̃−1/2�z

)
‖∞

≤ ‖�̃1/2 �w‖∞
(
‖�̃−1/2 �µ‖∞ + ‖�̃−1/2�z‖∞

)
. (23)

We now bound the infinity norm of the vector �a := �̃−1/2 �µ.

With σ 2
1 , . . . , σ 2

d denoting the diagonal entries in �, we

have ai = µi/σi. Note that �̄(|µi|/σi) is the optimal Bayes

classification error of y given xi only, which cannot be smaller

than the optimal Bayes classifier of y given the whole vector �x,

which is in turn equal to �̄(‖�−1/2 �µ‖2) = �̄(1). This means

that |ai| = |µi|/σi ≤ 1, and in particular

‖�a‖∞ = ‖�̃−1/2 �µ‖∞ ≤ 1. (24)

Next, we bound the infinity norm of the random vector �b :=
�̃−1/2�z. Note that bi ∼ N (0, 1). Therefore, using the union

bound, we may write

P

(
‖�̃−1/2�z‖∞ ≥

√
2 log d

)
≤ d�̄

(√
2 log d

)

≤ d
1√

2π
√

2 log d
e− log d

≤ 1√
2 log d

. (25)

Using this together with (24) back into (23), we realize that

P

(
‖�w � �x‖∞ ≤ ‖�̃1/2 �w‖∞(1 +

√
2 log d)

)

≥ 1 − 1√
2 log d

.

This together with (22) implies that

L �µ,�

(
C

(k)

�w , k
)

≤ 1√
2 log d

+ P

(
〈�w, �x〉 ≤ 8k‖�̃1/2 �w‖∞(1 +

√
2 log d)

∣∣∣ y = 1
)
. (26)

Again, using the fact that �x = �µ+�z conditioned on y = 1, we

have

P

(
〈�w, �x〉 ≤ 8k‖�̃1/2 �w‖∞(1 +

√
2 log d)

∣∣∣ y = 1
)

= P

(
〈�w,�z〉 ≤ 8k‖�̃1/2 �w‖∞(1 +

√
2 log d) − 〈�w, �µ〉

)

= P

( 〈�w,�z〉
‖�1/2 �w‖2

≤ 8k‖�̃1/2 �w‖∞(1 + √
2 log d) − 〈�w, �µ〉

‖�1/2 �w‖2

)

= �̄

(
〈�w, �µ〉 − 8k‖�̃1/2 �w‖∞

(
1 + √

2 log d
)

‖�1/2 �w‖2

)
.

Substituting this into (26) completes the proof of

Lemma 2.

Proof of Lemma 3: We define �̃w ∈ R
d as follows

w̃i =
{

0 i < λc(ε)

νi i ≥ λc(ε)

With this, let �w = �−1/2 �̃w and note that since �w∗(k) is

obtained by optimizing for L(C
(k)

�w , k), we have

L

(
C

(k)

�w∗(k), k
)

≤ L

(
C

(k)

�w , k
)
, (27)

with �w defined above. From Corollary 1, we have

L

(
C

(k)

�w , k
)

≤ 1√
2 log d

+ �̄

(
〈 �̃w, �ν〉 − 8k‖�̃w‖∞

(
1 + √

2 log d
)

‖�̃w‖2

)
. (28)
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Note that

〈 �̃w, �ν〉 =
d∑

i=λc(ε)

ν2
i = ‖�ν[λc(ε):d]‖2

2. (29)

Likewise,

‖�̃w‖2 =

√√√√√
d∑

i=λc(ε)

ν2
i = ‖�ν[λc(ε):d]‖2. (30)

Recall that λc(ε) by definition is the smallest λ such that

‖�ν[1:λ]‖2 ≥ c(ε). This implies that ‖�ν[1:λc(ε)−1]‖2 < c(ε) and

‖�ν[λc(ε):d]‖2
2 = ‖�ν‖2

2 − ‖�ν[1:λc(ε)−1]‖2
2 ≥ 1 − c(ε)2. (31)

Comparing this with (29) and (31), we realize that

〈 �̃w, �ν〉
‖ �̃w‖2

= ‖�ν[λc(ε):d]‖2 ≥
√

1 − c(ε)2. (32)

On the other hand, since we have assumed in (14), we have

‖�̃w‖∞ = |�νλc(ε)
|. Furthermore, using (14), we have

‖�ν[1:λc(ε)]‖1|νλc(ε)
| =

λc(ε)∑

i=1

|νi||νλc(ε)
|

≤
λc(ε)∑

i=1

|νi|2 ≤ ‖�ν‖2
2 = 1.

This together with (29) and (30) implies that

8k‖�̃w‖∞
(
1 + √

2 log d
)

‖�w‖2

=
8
(
1 + √

2 log d
)
a‖�ν[1:λc(ε)]‖1|νλc(ε)

|
‖�ν[λc(ε):d]‖2

≤ 8a
(
1 + √

2 log d
)

√
1 − c(ε)2

.

Using this and (32) back into (28) and using the fact that �̄(.)

is decreasing and 1/
√

2π -Lipschitz, we realize that

L

(
C

(k)

�w , k
)

≤ 1√
2 log d

+ �̄

(√
1 − c(ε)2 − 8a

(
1 + √

2 log d
)

√
1 − c(ε)2

)

≤ �̄

(√
1 − c(ε)2

)
+ a

8
(
1 + √

2 log d
)

√
2π

√
1 − c(ε)2

+ 1√
2 log d

= ε + a
8
(
1 + √

2 log d
)

√
2π

√
1 − c(ε)2

+ 1√
2 log d

.

This together with (27) completes the proof.

Proof of Lemma 4: From Theorem 1, we have

L
∗
(
‖�ν[1:λc(ε)]‖1 log d

)
≥ �̄

(
‖�ν[1+λc(ε):d]‖2

)
− 1

log d
. (33)

We have

‖�ν[1+λc(ε):d]‖2
2 = ‖�ν‖2

2 − ‖�ν[1:λc(ε)]‖2
2

= 1 − ‖�ν[1:λc(ε)]‖2
2

≤ 1 − c(ε)2.

where the last inequality uses the definition of λc(ε) in (15).

Using this back into (33), we get

L
∗
(
‖�ν[1:λc(ε)]‖1 log d

)
≥ �̄

(√
1 − c(ε)2

)

− 1

log d
= ε − 1

log d
.

Note L∗(k) is nondecreasing in k, therefore this implies that

L∗(k) ≥ ε − 1/ log d for k ≥ ‖�ν[1:λc(ε)]‖1 log d and completes

the proof.
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