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Efficient and Robust Classification
for Sparse Attacks

Mark Beliaev

Abstract—Over the past two decades, the rise in adoption of
neural networks has surged in parallel with their performance.
Concurrently, we have observed the inherent fragility of these
prediction models: small changes to the inputs can induce
classification errors across entire datasets. In the following study,
we examine perturbations constrained by the £yp—norm, a potent
attack model in the domains of computer vision, malware
detection, and natural language processing. To combat this
adversary, we introduce a novel defense technique comprised
of two components: ‘“truncation” and “adversarial training”.
Subsequently, we conduct a theoretical analysis of the Gaussian
mixture setting and establish the asymptotic optimality of our
proposed defense. Based on this obtained insight, we broaden
the application of our technique to neural networks. Lastly,
we empirically validate our results in the domain of computer
vision, demonstrating substantial enhancements in the robust
classification error of neural networks.

Index Terms—Robust classification, sparse attack, adversarial
training, neural networks.

I. INTRODUCTION

RESENTLY, machine learning tackles an array of appli-
Pcations with significant safety implications, such as
computer vision, autonomous vehicle navigation, and virtual
assistance. This trend aligns with the rise in popularity of
deep neural networks, which have demonstrated nearly human-
equivalent proficiency in the realm of image recognition [2],
alongside notable achievements in game playing [3], [4], and
natural language processing [5]. However, the unexpected
frailty of these neural networks when exposed to adversarial
attacks presents a paradoxical contrast to their otherwise
impressive performance.
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Adpversarial attacks represent techniques designed to deceive
predictive models, corrupting their inputs with small pertur-
bations. The potency of such attacks in causing prediction
errors across diverse machine learning models was ini-
tially exhibited in various studies [6], [7], [8]. Subsequent
to these findings, significant effort has been expended to
formulate progressively intricate adversaries that can lever-
age a minimal quantity of semantic-retaining alterations
while maintaining the capacity to mislead a classifier [9],
[10], [11], [12]. In the realm of image classification, this
is typically accomplished by constraining the perturba-
tions using an {,—norm, with the majority of applications
employing either £ [7], [9], [10], [13], [14], [15], [16],
£, [10], [17], [18], [19], [20], or £; [21], [22]. As of
now, the most empirically effective defense against such
attacks involves iterative retraining with adaptively gener-
ated adversarial examples [9]. Despite adversarial training’s
potential to enhance robustness, there exists a fundamental
tradeoff between clean accuracy and robustness, in addi-
tion to a lack of generalization across diverse attacks
[23], [24], [25], [26], [27], [28], [29].

This study is primarily concerned with adversaries con-
strained using the fp—norm, a scenario that has captured
substantial interest [10], [22], [30], [31], [32], [33] due to
its relevance in NLP [34] and object detection [35], [36].
Within these settings, robust guarantees against £p—attacks are
particularly vital due to the implied limit on the quantity of
input features allowed to be altered. In the aforementioned
settings, the adversary could alter all input elements while
complying with the specified constraint. In contrast, when
using the £p—norm, the adversary has a fixed budget k which
restricts them to modifying a maximum of k coordinates
within the input. Put simply, the adversary can perturb the
input within the £op-ball of radius k, where k is typically
small compared to the input dimension, hence the term sparse
attacks. Additionally, in contrast to £,-balls (p > 1), the £o—
ball exhibits a complex geometry: it is unbounded, highly
non-smooth, and non-convex.

Concurrently, the intrinsic discrete structure of the fo—ball
introduces fundamental challenges missing in other adversar-
ial settings explored in existing literature, rendering many
techniques from previous studies non-applicable. Importantly,
piece-wise linear classifiers, such as neural networks with
ReLU activations, have been demonstrated to fail in this
context [37], and empirical studies have shown the efficacy of
Lo—attacks on images [10], [11], [30], [31], [38]. Therefore,
it becomes imperative to reassess our current architectural
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Fig. 1. We illustrate the two key components of our framework: truncation
and adversarial training. The bottom diagram depicts truncation - given an
input X and a weight w, we truncate the input by deleting the top and bottom k
coordinates of the element-wise product between w and X. Given any classifier
f(x; ) = y parameterized by 6, we can replace its input X with this k—truncated
counterpart [W O X] forming the k—truncated classifier f° &) The top diagram
depicts adversarial training - using an £p—attack append adversarial examples
X to the training data. This procedure is used as a proxy for deriving the
weights w and 6 that solve the minimax problem of finding a classifier f (®)
that attains the minimum robust classification error.

designs and learning methodologies in light of the unique
geometry of the £p—norm.

Building upon our previous work [39], we design an algo-
rithm that directly addresses the £g—adversary and demonstrate
that in the Gaussian mixture scenario, asymptotic optimality
can be attained. Inspired by these theoretical insights, we
extend our methodology to the realm of image classifica-
tion. Our proposed framework, depicted in Figure 1, can be
used in conjunction with any neural network classifier to
improve its robustness against the {p—adversary. Leveraging
sparse-rs [32], a state-of-the-art sparse attack, in addition
to the widely employed Pointwise Attack [31], our
findings indicate that while standalone adversarial training
may prove insufficient in bolstering against fp—attacks, our
approach exhibits substantial performance with regard to
robustness and computational efficiency when evaluated using
the MNIST [40] and CIFAR [41] datasets.

Our main contributions are outlined below:

e We propose a novel defense algorithm against
£o—bounded attacks that is based on two key components:
truncation and adversarial training. Essentially, we
leverage truncation to mitigate adversarial perturbations,
and combine it with adversarial training to identify the
best classifier in the set of truncated classifiers.

o« We formalize the efficacy of our proposed method in
the theoretical setting of binary Gaussian mixtures. More
specifically, we prove that the optimal truncated classifier
is near optimal in the class of all classifiers, and is
indeed asymptotically optimal as the input dimension
grows large.
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« We provide extensive experiments that demonstrate the
strength and efficiency of our proposed defense on the
MNIST [40] and CIFAR [41] datasets. To the best of our
knowledge, our proposed algorithm is the first to provide
meaningful empirical results on the CIFAR dataset.

Before continuing, we outline the organization of this paper.
First, Section II reviews two related works which also consider
defense methods for classifiers in the £p—setting. Following
this, Section III sets up our problem by introducing relevant
notation and describing the robust classification setting. The
proposed algorithm is generalized in Section IV, where the
theoretical results specific to the Gaussian mixture setting are
stated after in Section V. Finally, Section VI presents our
numerical results derived by performing experiments using
the MNIST [40] and CIFAR [41] datasets. We conclude the
work by discussing our findings in Section VII, and provide
an Appendix for proofs.!

II. RELATED WORK

Aside from the general framework of adversarial training,
which will be detailed in Section IV, there are two partic-
ularly significant studies that have proposed methodologies
for defending against sparse attacks: Analysis by Synthesis
(ABS) [31] and randomized ablation [33]. In the following,
we describe these methods in brief and subsequently compare
them to our proposed defense strategy.

Relying on optimization-based inference, the ABS model
employs variational autoencoders (VAEs) to learn a generative
distribution for a given input sample under each class. These
generative distributions allow one to estimate a lower bound on
the log-likelihood of a given sample belonging to a particular
class. The method used for computing this lower bound is
computationally expensive, requiring one to repeat 50 steps of
gradient descent 1000 times for a single prediction. Although
the authors show promising results on the MNIST dataset, they
state that their implementation of the ABS model with one
VAE per class neither scales efficiently to more classes nor to
more complex datasets such as CIFAR-10.

Defenses based on randomized ablation take a different
approach by adapting the technique of randomized smoothing
to the ¢p—setting. Unlike the ¢; and ¢, settings where additive
noise is used, the authors propose a certifiably robust defense
against sparse adversarial attacks that relies on randomly
ablating input features. Specifically, their method trains a
smoothed classifier that takes as input 10,000 randomly
ablated versions of the original input, each with a small
subset of unchanged coordinates. After this, a majority vote is
taken over all 10, 000 ablated samples to determine the most
probable class. Although this smoothed classifier is certifiably
robust to £g-attacks of a certain magnitude, its reliance on large
numbers of ablated samples is computationally impractical for
complex datasets like CIFAR-10.

In contrast to both of the aforementioned defense methods,
truncation provides a more efficient solution for defending
against sparse attacks, and scales well to more complicated

IThe code and implementation details used for our experiments can be
found at https://github.com/mbeliaev1/robust-10 [42].
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datasets like CIFAR-10. The added computational complexity
of incorporating truncation into a classifier is equivalent to
adding a single layer in a deep neural network. We also note
that our method is theoretically motivated by the pure £o—
threat model, while both ABS and randomized ablation are
designed to address the weaker £g 4 £~—adversary. Similar to
the £o—setting, this adversary is still limited in the number of
coordinates it can alter, but these alterations can no longer be
arbitrarily large due to the additional boundary set by the £,,—
norm. We realize that having this bound is a practical choice
in the image domain, and hence test our algorithm under the
same conditions. However, we note that when the £,,—norm
is relaxed, our method can generalize its performance unlike
the prior defense methods.

III. PROBLEM SETUP

In this study, we examine the M-class classification
problem, where we strive to build a model that accurately
predicts the label y € {1, ..., M} from the corresponding input
¥ € R%. We can conceptualize the input and labels as samples
generated by the distribution (X, y)~D, and the classifier as a
member of the function family F : RY — {1,...,M}. For a
classifier C, we employ the 0—1 loss £(C; X, y) = 1[C(X) # y]
as a measure of the discrepancy between the label and the
classifier’s prediction for a specific input X.

With this configuration, we introduce the f¢p—adversary,
which perturbs the input X within the £o—ball of radius k:

BoGi, k) = {¥ e R : |¥ - ¥, <k} (1)

where we define ||X||o == Zle 1[x; # 0] for X = (x1, ..., X4),
and refer to k as the budget of the adversary. This states that
the adversary is permitted to arbitrarily modify a maximum of
k coordinates of X to generate X', which is then inputted into
the classifier. With this setup, the robust classification error
of a classifier C is defined by:

Lp(C, k) =Eg,) ~p |:~ max £(C;X,y) i| )
X eBy(x,k)

where our goal is to design classifiers which attain the

minimum robust classification error. With this objective in

mind, we define the optimal robust classification error as the

result of minimizing (2) over all possible classifiers:

L (k) = igf Lp(C, k). 3)

The intricate geometry of the £p—ball makes this a challenging
problem. Indeed, we have already observed that all piecewise
linear classifiers fail in this context [37]. To address this
issue, the present architectural designs and learning procedures
must be reevaluated, taking into account the geometry of the
perturbation set. In this regard, it is important to mention
that directly solving the optimization problem in (2) and
determining the optimal robust error is intractable. Instead,
drawing inspiration from robust statistics [43], we introduce
truncation as the primary component of our classifier. Our
objective is then to identify the most robust classifier within the
set of truncated classifiers. This optimization can be analyzed
in the Gaussian mixture scenario, and addressed through

adversarial training in the broader deep learning context. As
we demonstrate in Section V, the theoretical investigation
of the Gaussian mixture model enables us to establish the
optimality of our approach.

IV. THE PROPOSED ALGORITHM

In this section we describe our proposed algorithm, begin-
ning with the definition of truncation, followed by its
extension to neural networks. Subsequently, we detail how
adversarial training is used in our framework. Foreshadowing
our theoretical and empirical results outlined in Section V
and Section VI respectively, the coupling of truncation and
adversarial training is integral to constructing robust classifiers
resistant to {g—attacks

A. Truncation

We define truncation as an operation that acts on two vectors
by computing their truncated inner product. Given vectors
w,X € R? and an integer 0 < k < d/2, we define the
k—truncated inner product of w and X as the summation of the
element-wise product between w and x after deleting the top
and bottom k elements, denoting it by (w, X);. Defining the
element-wise product of w and X as i ;== w O X € R?, we let
Ugiy < ... < ugq represent the sorted elements of u under
permutation s. This allows us to denote the k—truncated inner
product by:

d—k
(W, X)k = Z Us(i)- “4)
i=k+1
It is worth mentioning that when k& = O, the truncation

operation in (4) simplifies to the standard inner product,
represented by (w, X).

Truncation naturally facilitates the removal of “outliers” in
the data, which may have been manipulated by an adversary
affecting specific coordinates. Given that an £p—adversary with
a budget of k can arbitrarily alter a maximum of k coordinates
of the input, we anticipate the k—truncated inner product to
exhibit resilience against this £p—adversary. We formalize this
concept in Section V, demonstrating that truncation can be
directly employed to construct the optimally robust classifier
in the context of Gaussian mixture models subjected to an £o—
adversary. In the meantime, our discussion will focus on how
we use truncation to design robust neural networks.

B. Robust Neural Networks

Our goal is to design robust classifiers that deal with high
dimensional and complex data domains, such as images. In the
Gaussian mixture setting, the optimal Bayes classifier is known
to be the linear classifier sgn((w, ?c)),2 and our theoretical
results show that in the presence of an {p—adversary, the
optimal classifier takes the form sgn({w, X')x). We use this
intuition to extend truncation for the general classification task
where neural networks are typically employed.

Recall that we defined truncation in Eq. (4) as a composition
of three operations: (1) an element wise product between

2see, for instance, [44, Section 9.2.2].
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the input X and weight vector w (2) the removal of the
top k and bottom k elements of this product, and (3) the
summation of the remaining d — 2k elements. Since neural
networks already contain layers that sum weighted subsets
of their inputs, the third operation of truncation is redundant
in this setting. Furthermore, we may want to preserve the
spatial information provided by the input since our classifier
may include convolutional layers. Because of this, we only
utilize the first two operations of truncation by excluding the
summation. More precisely, given w,x¥ € R? and integer k
such that 2k < d, we define

wix; ifk+1<s7'0) <d—k
0  otherwise

3

[w @?c]k := u, where u; = {
)

where s(.) is the permutation derived by sorting the elements
of w@®X in increasing order. As an example, ford = 3, k =1,
x=(1,-1,27, and w = (3, =2, —1)T, we have [w, X]x =
0,2,0)7.

Using the configuration defined in Section III, we consider
the family of classifiers F : RY — {1,..., M} that can be
represented by any neural network architecture, e.g., fully
connected, convolutional, and recurrent. We define aﬂneural
network as a function f(x; 5) =y, parameterized by 6. This
function accepts an input X € R? and returns the predicted
label y € {1, ..., M}. Without loss of generality, we assume
that the input x has been flattened to one vector, and that the
classifier f transforms the input back to its original shape if
needed.

Given any classifier f € C : RY — {1,..., M}, we define
its k—truncated counterpart as:

O (% 3.8) =£([# ©5,: 6),

where w is a set of learnable weights that scales the input
coordinates, and 6 is the set of parameters corresponding to
classifier f. By implementing truncation in the initial layer,
the impact of the adversary is counteracted in the early stages
of the network and is prevented from propagating through the
subsequent layers.

(6)

C. Adversarial Training

While truncation alone is anticipated to improve a clas-
sifier’s robustness, we propose extending our approach
by integrating our framework with adversarial training.
Adversarial training is a common technique for improving the
robust accuracy of neural network classifiers [9] - by training
classifiers on adversarially perturbed samples from the original
data, one aims to minimize the robust classification error. In
the Gaussian mixture setting examined in Section V, we prove
that the asymptotically optimal classifier necessitates both
truncation and an optimization step resembling adversarial
training to identify the optimal weights w. We hypothesize that
the extension of these theoretical findings to neural networks
will help contribute to enhancing their robustness, and to this
end we formalize the adversarial training procedure we utilize
in our work when testing our claim.
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We express our training algorithm generally for any classi-
fier f, where we consider an £p—adversary that attacks some
classifier f by using an £p—budget of k and a time budget of
t. We define this attack as a function g(X;f, k, 1) : X — X’
where X = {X1, ..., fc‘ x|} is a set of unperturbed data samples,
and X' = {¥|,. ..,?c" X’I} is the derived set of adversarial
examples which are all misclassified by f. Note that we use
| X'| to denote the cardinality of the set X'. Using this attack, we
train on the appended dataset X UX’, emptying the adversarial
set every epoch and recalculating it again X' = g(X;f, k, 1).
Consequently, the adversarial examples are selected according
to a process that is adaptive with respect to our model f. This
procedure is utilized as a means to solve the minimax problem
articulated in (3). The specific implementation details of the
training framework used in our experiments is described in
Section VI as they are problem specific and should be chosen
accordingly.

V. THEORETICAL FRAMEWORK

In this section, within the framework established in
Section III, we consider a Gaussian mixture setting and
demonstrate that our algorithm achieves near optimal robust
classification error, i.e., we show that the deviation from
optimality is asymptotically vanishing. Our theoretical analysis
provides a key insight: both truncation and adversarial training
are essential components for providing provable robustness
against £p—attacks.

To elaborate, we consider a binary classification setting
where the distribution D is defined as follows. We have y €
{£1} with P(y=+1) = P(y=—1) = 1/2, and X = yji +
Z conditional on y, where # € R? and Z ~ N(0, ) is
a Gaussian vector with zero mean and diagonal covariance
matrix X. For ease of discussion, we assume that X has strictly
positive diagonal entries 012, e, 03.3 It is well known that
when the adversary is absent, the linear classifier sgn({, X))
with w = 714 is the optimal Bayes classifier. This optimal
standard error in this setting is ®(||X~"/2/i||2), where ®(.)
denotes the complementary CDF of the standard normal
distribution. Therefore, to establish a baseline, we assume
without loss of generality that I==12%), = 1 so that the
optimal standard error is ®(1).

Given that the optimal Bayes classifier in this context is lin-
ear, and building on our discussion from Section IV, we focus
our analysis on single layer neural networks. Specifically, we
consider the family of k—truncated linear classifiers:

Cf{():?c/ > sgn((w, X')x).

Using our notation in (2), we denote the robust classification
error of a classifier C (a general classifier, not necessarily a
truncated linear classifier) by:

where k denotes both the truncation parameter and the adver-
sary’s budget. Furthermore, as in (3), we denote the optimal

Lis(C k) =Eg, ~p| max £(C¥,
i3 ) ®y) DL’GBO(}J‘) ( y)

3Although we make the diagonal assumption in this section, we discuss a
more general setting in Appendix A.
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robust classification error by minimizing over all possible
classifiers under a fixed k:

L5 5 k) = igfﬁﬁ,z(c, k). (7)

Note that here, minimization is taken over all possible classi-
fiers C, not necessarily truncated linear classifiers.

For the sake of brevity, we may omit the problem parameters
it and ¥ from the aforementioned notations and use £(C§Vk), k)
and L*(k) instead, provided that the context makes them
unambiguous.

A. Asymptotic Optimality of Our Algorithm

To demonstrate that k—truncated linear classifiers are asymp-
totically optimal, we first revisit a result from our previous
work [39]. Specifically, we recall the lower bound on the
optimal robust classification error, which was established by
developing an attack strategy for the adversary and proving
that no classifier can achieve better performance.

Theorem 1 (Theorem 2 in [39]): Assume that ¥ is diago-
nal and let v = /21, Then for any A C {1,...,d}, we
have

- . 1
L¥(Ivallilogd) = ®([Ivacll2) — ——.
logd
where V4 and V4c denote the coordinates of v in the sets A
and A€, respectively.

The main difference between the current work and [39]
is that here, we use adversarial training in order to choose
the model parameters within the class of truncated linear
classifiers defined above. However, in [39], we start with the
optimal model parameters when there is no adversary, and use
truncation as well as another component called “filteration”.
Filtration refers to the procedure of removing some of the
data coordinates that are most susceptible to adversarial
perturbations. Even though this approach is proven to be
asymptotically optimal in [39], from a practical point of view,
filteration requires a complex discrete optimization which can
be intractable in practice. However, in this work, we show
that employing adversarial training together with truncation is
sufficient and eliminates the need to apply filteration.

Recall from Section IV that adversarial training is used to
identify the model weights. This is a proxy for optimizing w
in the class of k-linear classifiers Cg( . More precisely, let

(k) € arg minv—v,c<c§f), k). (8)
In the following, we demonstrate that when an adversary
with £p—budget k is present, the performance of Cgi)(k) is
comparable to the optimal robust classification error, with an
asymptotically vanishing deviation.
In order to do this, given an error threshold CTD(I) <e<1/2,
we define

KT (e) = max{k 1 £(CW) k) <e, )

which is the maximum adversarial budget that the class of
truncated linear classifiers can tolerate to achieve a robust error
of at most &, when the truncation parameter is chosen to equal
the adversary’s budget. Here, ¢ is chosen to range between the

standard error ®(1) and the error corresponding to a random
guess. Moreover, let

k*(e) :== max{k : L*(k) < &}, (10)

be the maximum adversarial budget that an optimal classifier
can tolerate constrained on having a robust error of at most &.
By definition, we know k*(g) > k1T (g).

As we formally demonstrate below, kTrune and k* are close
to each other up to multiplicative factors that are sublinear
in d. As a results, to have a first order analysis and to focus
on the behavior of the adversary’s budget as a power of the
dimension d, we define

O[Trunc(g) — 10gd kTrunc(g)’

(11)
and

a®(e) = log, k*(¢). (12)

The following theorem shows that o™ is close to a*,

modulo some vanishing terms in d. More clearly, the class
of linear truncation classifiers are asymptotically optimal for
the above mixture Gaussian setting. Proof of Theorem 2 is
provided in Appendix A.

Theorem 2: Given ®(1) + 1/logd + /2/Togd < & < %,
there are constants ¢; = cij(e,d), i € {1,2}, which do not
depend on the parameters of the problem (i.e., it and ¥) such
that limg— ~ ci(e,d) =0 for i € {1, 2} and

a*(e) = o« (e) > a*(e —c1) — 2.

The essence of Theorem 2 is that, disregarding asymptoti-
cally negligible terms, the truncated classifier can endure an
equivalent amount of adversarial budget as an optimal robust
classifier. To substantiate this claim, we rely on Theorem 1,
which certifies that no other classifier can attain superior
asymptotic performance. As a consequence, our algorithm is
asymptotically optimal.

VI. EXPERIMENTS

Now that we established our theoretical results derived
for the Gaussian mixture setting, we proceed to evaluate the
practicality of our approach on the more complex image
domain. This is accomplished by conducting experiments on
the MNIST and CIFAR datasets using our proposed algorithm
from Section IV. Since these datasets are in the image domain,
it is natural to consider an £( adversary which is restricted to
keep the perturbed pixels within the permissible RGB range.
We call this the £y + € adversary. Note that the £g + fo
adversary is weaker as compared to a pure ¢y adversary.
In fact, we can recover the ¢y setting by relaxing the £
constraint. This can be done by setting the £, constraint bound
to oo. Motivated by our theoretical study in this paper, we also
consider the pure £ setting in our experiments by relaxing the
{0 constraint.

In both settings, we directly compare our algorithm with
two well known defense methods against the sparse adversary:
adversarial training [9] and the ABS model [31]. We omit
comparisons against the randomized ablation defense [33] due
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to the lack of computational resources.* Before going over
the results of our experiments, we briefly summarize the two
attack methods used.

A. Sparse Attacks

The experimental results in this paper primarily rely on
spare-rs [32], a sparse black-box attack framework. Given
a time budget ¢ and pixel budget k, the spare-rs attack
performs a random search to identify and modify a set of k
pixels in the input image X in such a way that the resulting
adversarial image X' is misclassified by the model f. In this
framework, the attacker can only access the predicted scores
of the classifier f, as opposed to white-box methods where
gradient information can be utilized by the attacker. The
authors of sparse-rs have demonstrated the superiority
of their framework over other existing black-box and white-
box attacks. Therefore, we employ this attack to evaluate the
robust accuracy of our classifier, and use it as the adversarial
training component in our defense framework. In the scope of
our notation from Section IV-C, when training is finished we
run the £g—attack g(X;f,k,f) = X’ on the entire testset X,
deriving a set of incorrectly classified samples X’. We then
calculate the robust accuracy as the portion of samples that
are still correctly classified: 1 —|X’|/|X|, where |X’| includes
unperturbed samples x € X’ that were originally misclassified.

In addition, to compare our results with prior literature
and test the transferability of our model’s performance to
an unseen adversary, we utilize the Pointwise Attack
[31]. This type of attack aims to minimize the £p—norm in
a greedy manner, first introducing salt-and-pepper noise, and
then iteratively resetting perturbed pixels while maintaining
the image misclassified. In contrast to the sparse-rs
framework, we have no direct control over the number of
allowed perturbations k, and hence cannot use it to evaluate the
robust accuracy. Instead, we follow prior work and measure the
median adversarial attack magnitude, denoting this value with
p. Given a set of images X, p is defined as the median value
of pixels that need to be perturbed in order to misclassify an
image X € X, where originally misclassified images get a value
of 0 and perturbed images that are still correctly classified get
a value of oo.

B. Results

In total, we conducted four sets of experiments to evaluate
the robustness of our proposed method, reporting:

(1) the impact of increasing the £p—budget of an adversary
on robust accuracy,

(2) the effects of relaxing the £.,—constraint of an adversary,

(3) the robust accuracy of different defense methods under
a strong adversarial attack, and

4Using the implementation provided by the authors, we could not evaluate
their CIFAR model since performing a forward pass with a batch size of one
needed over 40GB of VRAM. For their MNIST model, using the pointwiwse
attack on one image took 35 hours. Although we could utilize their models
by decreasing the number of ablated samples, this negatively impacted the
model’s performance and hence we chose to not report such results.
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Fig. 2. We plot the robust accuracy of various classifiers when evaluated
against the sparse-rs attack using 100 images from both MNIST (top) and
CIFAR (bottom) datasets. In this experiment we use the original sparse-rs
attack which bounds its pixel perturbations to the domain [0, 1], where the
x—axis shows the £p—budget of the attack.

(4) the generalization performance of our method to an
unseen attack. In all experiment except for the second one, we
consider the £y + ¢, adversarial setting.

As suggested by our theoretical results, when training our
k—truncated classifier f®), we employ an adversarial training
strategy that uses a sparse-adversary with an identical £o—
budget of k. Since our experiments ablate both the truncation
and adversarial training components of our algorithm, we
introduce additional notation for clarity. Specifically, we refer
to f&7 as the k—truncated classifier f©) adversarially trained
against a sparse-adversary with an £p—budget of r. This way,
fON refers to adversarial training without truncation, f*0
refers to truncation without adversarial training, and f(0,0)
refers to no adversarial training and no truncation. For our
experiments, we treat k as a hyper parameter, and study
how different choices of k affect the performance of our
classifier on various attacks. In all experiments we set the
time budget of the adversary to 500 queries when training. For
CIFAR we used the VGG-16 [45] architecture without dropout
layers, while for MNIST we used a similar but smaller CNN
architecture. We provide the remaining implementation details
online [42].

1) Varying the £o—Budget: We first test how varying the
fo—budget of our attack impacted the robust accuracy of
different classifiers. Here, we consider an £y + £, adversary
where the f,, budget of the adversary is set to be the
permissible pixel range. We visualize these results in Figure 2
for both MNIST and CIFAR, where we used the sparse-rs
adversary with a time budget of 500 queries and varied the £¢-
budget from O to 100 in increments of 2. The results showed
that truncation and adversarial training improved the robust
accuracy of the classifiers.
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Fig. 3.  We repeat the experiments shown in Figure 3, this time relaxing the
£so—constraint by letting the attack perturb pixels beyond the domain [0, 1].
Note that the results for f©:9) and the ABS model are plotted on top of each
other since they all show the same trivial performance - their robust accuracy
drops to zero when the ¢y—budget increases to 1.

On MNIST, we see that the clean classifier without adver-
sarial training f©9 fails once the £o—-budget is increased. We
also see that the ABS model performs similarly to f©30
which only employs adversarial training without truncation.
Finally, we note that although our truncated classifier f1%-1)
does not show improvement over the ABS model, when
we increase the truncation parameter to k = 50, we see
£50.50) outperforms all other baselines. For CIFAR, we note
that the plot for ABS is not shown because their method
does not scale to the more complex dataset. We can see
again that truncation and adversarial training improved the
robust accuracy of our classifiers Notably, we can see in both
settings that although using truncation f©%9 or adversarial
training (39 independently enhances the original classifier
FO9 applying both components in fO%39 shows significant
improvement. This underscores that combining truncation and
adversarial training is essential for providing defense against
£o—attacks, as proposed by our theoretical analysis.

2) Relaxing the {o—Constraint: In our previous experi-
ment we used the original implementation of sparse-rs,
which acts as an £g + £-—adversary because the pixel pertur-
bations are bounded to the original image domain of [0, 1].
We realize that having this bound is a practical choice, but
because our theoretical results assumed a pure £g—adversary,
we tested if our method could maintain performance when
the ¢.,—constraint was relaxed. We did this by modifying the
sparse-rs algorithm to allow perturbations in the expanded
domain of [—50, 50]. We visualize these results in Figure 3
for both MNIST and CIFAR. We see that ABS, adversarial
training alone f(39 as well as the original classifier f©:0
show trivial performance - a few perturbed pixel cause misclas-
sification in all 100 samples. On the other hand, our truncated

classifiers f1212) and £©5%39 maintain robust accuracy until
the attack budget becomes much higher than the truncation
parameter.

Before moving on, we point out that the robust accuracy
of both the k = 50 truncated classifiers with and without
adversarial training, £©%39 and fO%9 respectively, are higher
under the less restrictive £o—threat model compared to the £o+
{o—threat model. We note that under the same time budget,
the less restrictive £o—threat model has a harder time finding
adversarial examples due to the larger (unbounded) search
space, which inherently favors the truncation component of our
classifiers. Due to the heuristic nature of the attacks employed,
we believe that the results of the two threat models should be
viewed independently, as they are portrayed in the paper.

3) Measuring the Robust Accuracy: Although our previous
experiments measured robust accuracy using sparse-rs,
the time budget was kept small so we could run many
evaluations using various £p—budgets. To accurately evaluate
the performance of different defense methods, we setup
sparse-rs as done in the original study [32]: using 5
restarts, with a time budget of 10,000 queries, and an £g
budget of 12. Note that this refers to the aforementioned ¢¢ +
{0 setting. Using this attack, we compared the performance
of ABS, the original classifier f(>:0), adversarial training alone

FO12) and £©O39  ag well as our truncated classifiers f(1212)

and 0939 We list these results in Table .

We can see from the results on MNIST that our truncated
classifier 0039 outperformed ABS and all other models.
Although we slightly sacrifice clean accuracy, utilizing trun-
cation only decreased the base classifier’s accuracy by 0.2%.
As we used a small CNN consisting of only 4 convolutional
layers, we believe the gap in clean accuracy compared to the
ABS model is negligible. For both MNIST and CIFAR, we
see our truncated classifiers f!>12) and f6%39 outperformed
adversarial training alone, with a larger gap for the CIFAR
experiments. We again note that the ABS model was not
trained on the CIFAR dataset since the authors claimed
preliminary experiments provided only a clean accuracy
of 54%.

4) Generalizing to Unseen Attacks: Since our algorithm
relies on adversarial training, we expect our final model
to perform better against adversaries that were used during
training. Hence for our final experiment we tested our model
against an unseen attack, measuring the median adversarial
attack magnitude p by using the Pointwise Attack over
100 image samples and 10 restarts. We show this result in
Table I, where for MNIST we note that although both our trun-
cated classifier 1212 and adversarial training alone f(0-39
outperformed ABS on this unseen attack, using truncation
gave no improvement over adversarial training alone. On the
other hand, for CIFAR we see that our truncated classifiers
were able to generalize their performance to the unseen
attack, outperforming adversarial training alone. As we will
further discuss in the concluding section, we believe that the
observed discrepancy in performance between the MNIST and
CIFAR datasets can be attributed to the bimodal distribution of
pixels present in the MNIST dataset. This distribution makes
it challenging to eliminate outliers through truncation, as a
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TABLE I

PERFORMANCE OF ABS [31], THE CLEAN CLASSIFIERf(O‘O),

ADVERSARIAL TRAINING f(0-12) Anp £(0:50)  AND OUR TRUNCATED
CLASSIFIERS f(12:12) ANp £(30-50) AGAINST BOTH THE SPARSE-RS AND

POINTWISE ATTACKS. NOTE THAT WHILE sPARSE-RS MEASURES

ROBUST ACCURACY, POINTWISE MEASURES THE MEDIAN

ADVERSARIAL ATTACK MAGNITUDE p. FOR BOTH DATASETS WE
UTILIZE 100 SAMPLES WHEN EVALUATING AGAINST ATTACKS

Setup Attack Model
Model Data Acc. sparse-rs [32] Pointwise [31]
(%) (%) (# of pixels)

ABS MNIST  99.0 37.0 19
F0.0)  MNIST 98.3 0.0 4
F©12)  MNIST 98.6 23.0 16
f(0:50)  MNIST 98.5 47 27
F(2.12)  MNIST 98.3 29.0 22
F(50,50)  MNIST 98.1 50.0 14
F(0.0) CIFAR 879 0.0 2
f©12)  CIFAR 875 27.0 16
f(0:50)  CIFAR  86.9 32.0 16
F(2.12)  CIFAR  84.8 44.0 25
F(50:50)  CIFAR  84.2 64.0 51

significant number of pixels already lie at the limit of their
respective domain.

VII. DISCUSSION AND CONCLUSION

In this paper we introduced a novel defense method against
sparse attacks, investigated its efficacy in the theoretical setting
of Gaussian mixtures, and tested its application in the image
domain. We conclude by discussing our results as well as
potential avenues for future work.

Firstly, we observe that while our theoretical analysis is
focused on binary classification, the insights gained from this
theoretical discussion has enabled us to design an architecture
that shows robustness in practical multiclass classification set-
tings. We believe that in order to bridge this gap, extending our
theoretical analysis to multiclass classification is an interesting
direction for future research.

Also, it is important to mention that while only two black-
box attacks were utilized for evaluating our method, the chosen
sparse-rs framework demonstrated superior performance
to all black- and white-box attacks. Furthermore, we did not
design adaptive attacks for evaluating the robustness of our
algorithm as suggested by prior works [46]. We believe that
additional experiments with adaptive attacks will not improve
our results as the general purpose sparse-rs framework
utilized in our work was adept in causing misclassifications
throughout our empirical analysis. As we showed in Table I,
when using the sparse-rs framework with an £p—budget of
12 pixels, the robust accuracy was below 50% for 9 out of 11
evaluated models, with the highest being 50% and 64%, for
MNIST and CIFAR respectively. Due to the strength of the £(—
adversary, providing theoretical results and showing robustness
against simple attack models is a significant first step in
this line of research. Furthermore, we argue that without
knowledge of the weights w used to perform our truncation
operation, a true £p—attack provides the worst-case guarantees.
However, we note that an adaptive attack that has access to the
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weights w can be more discreet when applying perturbations
to the input, targeting coordinates without triggering the
truncation operation.

Additionally, we add that while some prior works have
considered the generalization properties between different £,—
attacks [47], [48], [49] for p > 1, there is no theoretical
justification for utilizing £; or £;—adversaries when training
classifiers (with or without truncation) to be robust against
an {op—adversary. As demonstrated by our theoretical result,
adversarial training wrt £o is required for identifying the
model weights W in our truncation operation. Hence we choose
to only include the current attack model when training our
truncated classifiers due to its relevance to the £o—threat model
being studied in this paper. Furthermore, solely applying
adversarial training together with ¢; or £;—norms (without
truncation) results in a classifier that belongs to the family
of linear classifiers. However, we know from prior work [37]
that linear classifiers do not behave well in the presence of £y
adversarial perturbations.

We also want to discuss our results displayed in
Figures 2 and 3, which indicate a rapid decline in robust
accuracy as the £o—budget increases, even for our k—truncated
classifiers. Although there is an inherent limit to how much
we can mitigate this, we showed that setting our truncation
parameter to higher values could allow one to maintain
performance without damaging clean accuracy. On top of this,
additional truncation layers with decreasing k can be added
beyond the first layer, as this would help prevent perturbed
coordinates from propagating further into the network. Finally,
a larger adversarial time budget can be used when performing
training.

Additionally, we want to emphasize the efficiency of uti-
lizing truncation as a defense against fp—attacks. For our
truncated classifier f(SO’SO), we measured the increase of
preforming a forward pass to be less than 25% compared to
the base classifier, meanwhile the ABS model was more than
1000 times slower, and randomized ablation was not feasible
to run on a cluster of 4-GPUs. Since truncation is a functional
improvement that can be efficiently implemented alongside
any classifier, we believe it to be a powerful tool against
adversarial perturbations in the £p—setting.

Finally, we point out that truncation is not limited to the
image domain, and may be more effective in the NLP domain.
Since truncation is theoretically motivated by the £p—setting,
it will scale better in domains where the adversary is less
constrained by the {,,—norm bounding the perturbations. We
showed in Figure 2 and Table I that truncation was relatively
more effective on CIFAR than on MNIST. Since the MNIST
dataset contains many black and white pixels whose values
are close to the boundaries of the domain, perturbed pixels
are harder to detect when performing the sorting operation
of truncation. Images in CIFAR do not share this property,
making it easier for truncation to detect outliers as the o—
constraint is less prevalent. In the NLP domain, adversaries
are typically allowed to change a fixed number of words
by performing character operations or replacing words with
synonyms [50]. Since there is no inherent limit on the
perturbations, the adversary closely resembles an £p—attack.
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For these reasons, we hypothesize that using truncation in the
NLP domain may be an effective strategy against adversarial
attacks.

APPENDIX A
PROOF OF THEOREM 2

Before giving the proof of Theorem 2, we need to make
some definitions and state some lemmas. The proofs of the
lemmas are provided at the end of this section.

We first study the effect of truncation on the inner product.
Lemma 1 below from [39] provides an upper bound on the
deviation of the truncated inner product from the original inner
product.

Lemma 1 (Lemma 1 in [39]): Given X, ¥,w € R4, for
integer k satisfying ||Xx — X'|lo < k < d/2, we have

(W, X ) — (W, X)] < 8k[IW O Xlloo-

Recall that in Section V, to simplify the discussion, we
restrict ourselves to diagonal covariance matrices. However, in
order to have a general setup, here we begin by proving an
upper bound for the robust classification error of the family
of truncated linear classifiers. In this case, we assume that the
covariance matrix X is positive definite, but does not need to
be diagonal. Lemma 2 below shows an upper bound for the
robust classification error of the k—truncated linear classifier
e,

Lemma 2: We have

1
Li (cﬂ"),k <
AN >_«/210gd
_ (G, i) — 8KIEV2W)lo (1 + /2Tog d)
+ o — ,
=12

where ¥ is the diagonal part of X.

As a direct consequence, this lemma implies the following
bound for the diagonal regime.

Corollary 1: When the covariance matrix ¥ is diagonal, we
have

() < i

. i((%, D) — 8k[|Wlloo (1 + v/2Togd logd)>

Wll2

where w = £1/23 and v = 2121

From this point forward, in order to prove Theorem 2, we
assume that the covariance matrix X is diagonal with positive
diagonal entries 012, R 03. We define

v=x"12p, (13)

so that v; = u;/o; is the signal to noise ratio associated to
coordinate i. Without loss of generality, we may assume that

il = [va| = -+ = |vgl. (14)

For ®(1) < & < 1/2, let c(e) be the unique solution of
®(+/1 —c?) = . Note that c(¢) € (0,1). Moreover, given
c € (0,1), we define

de ;= min{A ¢ [[Vpragll2 > ¢, 15)

where 17[1;” corresponds to the vector containing the first A
elements of V.

Note that since ¢ > 0, we have A, > 1. Moreover, since
¢ < land |[V]2 =1, we have

Ae < d. (16)

Using Lemma 2 and in particular Corollary 1 in the
diagonal regime, we can show the following bound on the
robust classification error of the optimal k—truncated linear
classifier C gi)(k).

Lemma 3: Assume that the covariance matrix ¥ is diag-
onal. Given ®(1) < & < 1/2, for k = a||\7[1;xc(5)]||1,
we have

8(1 4 /2logd) L]
V2 /1 —c(e)?  2logd
Furthermore, we can show the following lower bound on k*

which involves the_class of all classifiers.
Lemma 4: For ®(1) + @ <& <1 we have

£(c®y k) =e+a

2°

1 -
k*(e - logd> = V[1:20 ] 11 log d.

We are finally ready to prove Theorem 2.
Proof of Theorem 2: Using Lemma 3 for (1) <e < 1/2
and k = al|vy1 ; s/l with

1
=1 —c(e)? ,
“ c(e) 16logd

we get
1+ 2logd 1
£(C®yy k) <o+ LA L
22w logd ~ +/2logd
=< .
<et\iogd

This means that

e (o [ 20} V1 —=c@)? W11 h
logd | — 16 logd

2
logd’

for

- 1
O(l) <e < 3~ (17

On the other hand, from Lemma 4 we know that

1 -
k*(g - IOgd) = V111 logd

- 1 1
o)+ — —.
()+logd<8<2

for

Comparing this with (33), we realize that
/ 2
kTrunc e+ 2 > 1 —c(e) le — 1
logd ] — logd

161og? d
d(1) + !
— <
logd

1 2
< == [—.
2 logd

for
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Equivalently, taking log; from both sides, we realize that for

®(1)+1/logd < & < 1/2 — /2] Togd,

C(Trunc (8 + 2 )
logd
210g logd N 10g<\/ 1— C(8)2/16)

>ao*|e— LYo
- ( logd> logd logd

By shifting ¢, we realize that for ®(1)+1/logd++/2/Togd <
g < 1/2, we have

aTrunC(é‘) Z ot*(a — (] (87 d)) - CZ(S’ d)7 (18)
where
(e, d) = 19
8, p—t 9
‘1 logd logd
and
1—c(e—y/2/Togd)’
2loglogd o I
or(e.d) = ogloga . (20)

logd logd

Observe that for i € {1, 2}, c¢j(e,d) does not depend on the
parameters of the problem and limy_, » ci(¢,d) = 0. On the
other hand, since a*(¢) is obtained by optimizing over all
classifiers while «T™"(¢) is obtained by optimizing over the
class of linear truncated classifiers, we always have o*(g) >

o (¢) This completes the proof. ]
Finally, we give the proofs for Lemmas 2, 3, and 4.
Proof of Lemma 2: We may write
Liix (cvﬁv"), k)
_Eey - o(c®:7.3)
o o], (0
_ IP’(EI}’ € By, b:CPE #) )
=P(I € Bo(x, k):sgn((w, X )x) # y)
© p(IX € By, k):sgn((iw, ¥)i) # 1y = 1)
= IP(EI?C’ € Bo(x, k):(w, X' )¢ < 0|y = 1) (21)

where (%) uses the symmetry in distribution D. Using
Lemma 1, for all X' € By(x, k), we have

(W, X )k = (W, x) — 8[| © Xl oo
Using this in (21), we get
Liix (céf% k)

Note that conditioned on y = 1, we have X = ji + Z where
7~ N(0, X). Let ¥ be the diagonal matrix consisting of the
diagonal entries in ¥. Since X is diagonal, we may write

=P((w, X) < 8kIWw O Xllecly =1). (22)

WO Xloo = WO L+ WO Zlloo
<|WO ftlloo + WO Zllso

< I(E7%5) 0 (57127 I
+1(E172%) © (£77%2) o

=< IS 2o (17 2illoo + 157 %21 ). @3)
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We now bound the infinity norm of the vector @ := %~ 1/2/i.
With 012, - 03 denoting the diagonal entries in X, we
have a; = u;/o;. Note that ®(|u;i|/o;) is the optimal Bayes
classification error of y given x; only, which cannot be smaller
than the optimal Bayes classifier of y given the whole vector X,
which is in turn equal to (|- 125 wll) = ®(1). This means

that |a;| = |uil/o; < 1, and in particular

lalloo = 172 lloo (24)

Next, we bound the infinity norm of the random vector b=
> ~1/2Z. Note that b; ~ N(0, 1). Therefore, using the union
bound, we may write

P(IE7" 20 = V210gd) = db(y/210gd)

1

V2 \/2logd
1

< —.
~ J2logd

Using this together with (24) back into (23), we realize that

P(11i © Floo < 1520l (1 + y210gd))

1
J2logd
This together with (22) implies that
1
L:s(c®, k) -
M’E( w ~ J2logd
+ (9, %) < 8K E 2o+ 2logd) [y = 1). 26)

Again, using the fact that X =
have

<d e—logd

(25)

> 1 —

i1 +7 conditioned on y = 1, we

P((VV %) < 8KV 200]| 0o (1 + /2 Tog )(y = 1)

(W Z) < 8k E" %00 (1 + y/2l0gd) —
(#.2)  _ 8KIE' 2o (1 + v2Tog ‘)
e, =

)

=)

I=172w]l
_% (W, i) — 8k EV2Wloo (1 + /2Togd )
B =121
Substituting this into (26) completes the proof of
Lemma 2. ]

Proof of Lemma 3: We define w e R as follows

- |

With this, let w = X~ 123 and note that since w*(k) is
obtained by optimizing for E(CVV , k), we have

0i< )Lc(g)
Vi 1> Ae(e)

(k) (k)
£(c® k) = £(c k). @7)
with w defined above. From Corollary 1, we have
1
L C(k) k —_—
( ) 2logd
_ [ (0, D) — 8k|[Wlleo(1 + +/2Togd
LV ”W””;"l’l( o8 )). (28)
wii2
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Note that
N d
o, B) = Y v = Va3 (29)
i=Ae(e)
Likewise,
N d
Wiz = | > vZ =V qle- (30)

=he(e)

Recall that A.e) by definition is the smallest A such that

[IV(1:21ll2 > c(e). This implies that ||\7[1:)\[,-<5)—1]”2 < c(¢) and
IWpallla = 19115 = 1910, —17113 = 1 = c(@)*. (31

Comparing this with (29) and (31), we realize that

(w,9)
= = Va2 = Y1 = c(e)”.

wll2

On the other hand, since we have assumed in (14), we have
[Wlloo = V3., |- Furthermore, using (14), we have

(32)

Ac(e)

19010 [N Vi | = D Wil v |
i=1

)Lc(s)

<> P =Ip=1
i=1
This together with (29) and (30) implies that
8kl Wlloo (1 + v/2Tog d)

Wil
 8(1+ v2Togd)allifis,, 1 l11vae|
||lj[kc(5)2d] ”2

S 8a(1 + +/2Togd)

V1—=c(e)?

Using this and (32) back into (28) and using the fact that @)
is decreasing and 1/+/27-Lipschitz, we realize that

£(c®, k)
1 - 8a(1 + +/2Togd)
<— 4O JI—c(e) - — =)
V2logd «® V1 —c(e)?

IA

_ 8(1 + +/2Togd) 1
D(vV1—ce)?)+ +
(Vi—eer) 1 —ce) | J2Tlogd

N 8(1 + /2Togd) N 1
a .
V21 —c(e)?  +2logd

This together with (27) completes the proof. |
Proof of Lemma 4: From Theorem 1, we have

R -/ 1
£ (151,111 108d) = S(11F145,0 a1 12) = oga @

We have

- 2 =012 = 2
V(1420 a2 = V12 = IV 15,1112
- 2
=1 =115 1l2
<1-—c(e)?

where the last inequality uses the definition of A.) in (15).
Using this back into (33), we get

(i1l logd) = &(V1=c(e)?)
1 1
—— = - —.
logd logd

Note L£*(k) is nondecreasing in k, therefore this implies that
L*(k) > e —1/logd for k > ||T)[1-AC(€)]||1 logd and completes

the proof. |
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