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ABSTRACT

Enabling the build-up of continental crust is a vital step in the stabilisation of cratonic
lithosphere. However, these initial crustal nuclei are often either destroyed by recycling or
buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca.
3.7 Ga inherited and detrital zircons indicate the presence of an older, unexposed crustal
substrate. We present U-Pb, O and Hf isotope data from detrital zircons of three major
Finnish rivers, as well as zircon O and Hf isotope data from previously dated rocks of the
Archean Suomujérvi and Pudasjirvi complexes, central Finland. Combined, these data
indicate a previously un-identified ca. 3.75 Ga felsic crustal nucleus in the Fennoscandian

Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

around the globe, highlighting the importance of such nuclei in enabling the growth of
continental crust. The isotopic signatures of the Fennoscandian nucleus correlate with
equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for

Fennoscandia and the North Atlantic Craton (NAC).

INTRODUCTION

The earliest evolution of Archean cratons, and the controls on crustal growth and
preservation, are still poorly understood. It is debated whether primordial crust formed from
mantle plume activity (Smithies et al., 2005), due to density-driven convective overturn of
proto-crust (Johnson et al., 2014) or bolide impacts (Hansen, 2015). It is also unclear if a pre-
existing nucleus of sialic continental crust is needed to facilitate larger scale continental
growth, or if the initial growth phase of Archean terranes were purely juvenile crustal
contributions (Reimink et al., 2014). An oceanic plateau setting with thickened mafic crust,
analogous to modern day Iceland has been suggested as a possible way of generating these
ancient nuclei, as they are relatively sialic (Jakobsson et al., 2008; Reimink et al., 2014). The
Fennoscandian Shield is thought to have formed through repeated episodes of subduction-
related magmatism around the margins of an Archean core (e.g. Stephens and Bergman,
2020). Whether these episodes record growth of new continental crust or mainly record
reworking of pre-existing crustal blocks is, however, a matter of debate (Rutanen et al., 2011;
Petersson et al., 2015a, 2017). This debate focuses on the isotopic composition of the
Fennoscandian mantle, and its degree of depletion (Andersen et al., 2009; Rutanen et al.,
2011; Petersson et al., 2017). The majority of the zircon Hf isotope data from Fennoscandia
yield model crust formation ages that are coeval with known orogenic events, such as the
2.8-2.6 Ga Lopian/Karelian, and the 2.0-1.8 Ga Svecokarelian orogenies. However, the
oldest rocks in Fennoscandia, the Siurua gneiss in Pudasjirvi, dates to 3.5 Ga (zircon U-Pb;

Mutanen and Huhma, 2003), predating known orogenies. Inherited zircon from rocks of the
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Siurua region have negative enr signatures that are consistent with derivation from an ancient

protolith (Lauri et al., 2011).

To trace an ancient crustal component within Fennoscandia, we report detrital zircon U-Pb, O
and Lu-Hf isotope data from three major rivers draining central and NW Finland, and zircon
O and Lu-Hf isotope data from three gneisses, a quartzite and a metagabbro (Evins et al.,
2002) from the ca. 2.8 Ga Suomujirvi Complex, just north of the 3.5-2.7 Ga Pudasjérvi
Gneiss Complex (Fig. 1). River samples were targeted to increase the sample area and the
chances of identifying hereto unknown components within Fennoscandia. The Suomujarvi
and Pudasjérvi complexes were targeted due to the evidence for ancient crustal components.
We find that ca. 3.4 Ga detrital zircon within a ca. 2.75 Ga sillimanite-bearing meta-arkose
have Hf isotope signatures that matches those of the least radiogenic zircon signatures from
the Siurua gneiss. These signatures are significantly less radiogenic than other known crust in
Fennoscandia requiring a source that is substantially older than the oldest known rocks in the
area. Based on this, we infer that the Fennoscandian Shield grew from an ca. 3.75 Ga
Eoarchean felsic crustal nucleus. Due to similar trends in their earliest zircon U-Pb and Lu-Hf
isotope signatures, we explore the possibility of a linked Eoarchean evolution with that of the

NAC.

SAMPLES AND ANALYTICAL METHODS

U-Pb, O and Lu-Hf isotopes were analyzed in detrital zircon from three major rivers (the
Torne, Iil and Oulu rivers) draining central and NW Finland. Additionally, zircon O and Hf
isotopes of five previously dated rocks, three TTG gneisses (Samples 3, 4, and 47), a
quartzite (TVSED) and a metagabbro (Sample 888) of the Suomujarvi Complex (Evins et al.,

2002, Fig. 1) were obtained, as well as complementary zircon U-Pb analyses on the
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previously dated Siurua gneiss (Mutanen and Huhma, 2003, A1602). U-Pb and O isotopes in
zircon were measured using a CAMECA IMS1280 ion microprobe at the Swedish Museum
of Natural History (Stockholm, Sweden) and zircon Lu-Hf isotopes were analyzed using a
Cetac Analyte G2 laser and a Thermo Scientific Neptune Plus multicollector—inductively
coupled plasma—mass spectrometer (MC-ICP-MS) at the University of Western Australia.
Zircon from the Suomujirvi rock samples, were analyzed for O and Lu-Hf isotopes on the
same zircon separates investigated for U-Pb age determinations by Evins et al. (2002).
Oxygen isotope analyses were performed at the WiscSIMS Lab., University of Wisconsin-
Madison, (USA) using a CAMECA IMS1280 and Hf analyses at the University of Bristol
using a Thermo Finnigan Neptune MC-ICP-MS attached to a New Wave 193 nm laser
system. All analytical data are found in DR Tables 3-7. Full analytical procedures are
described in Appendix DR 1, and zircon BSE images with analysis spot locations, as well as

U-PDb concordia and probability density plots for the detrital zircon, are in Appendix DR 2.

AGE CONSTRAINTS ON THE OLDEST COMPONENTS IN FENNOSCANDIA
Zircon U-Pb age data from the Siurua gneisses (samples A1602 and A1813) are complex
(Fig. 2). A1602, the oldest rock so far identified in Fennoscandia, has been interpreted to
have a 3.5 Ga crystallisation age (Mutanen and Huhma, 2003), but contains a significant
portion of >3.5 Ga zircon. A combined data set of Mutanen and Huhma (2003) and our new
data shows <5% discordant 2°’Pb/?°°Pb dates between 3.73 Ga and 3.08 Ga, with our new
data identifying 15 >3.5 Ga grains. The main age group spreads between ca. 3.5 Ga and ca.
3.0 Ga. A second data cluster has 2°’Pb/?°Pb dates between 3.66 Ga and 3.58 Ga, and one
concordant analysis gives a 2’Pb/?%Pb date of ca. 3.73 Ga (Fig. 2A). There is a positive

correlation between Th/U and 2"Pb/?%°Pb dates, where older grains generally have higher
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Th/U (Fig. 2). Zircon with the highest Th/U in their respective rock give >3.5 Ga 2°’Pb/>*Pb
dates (Fig. 2), and are compatible with >3.5 Ga crystallisation and subsequent Pb-loss. These
zircon grains are interpreted as relicts of eroded or buried (meta)igneous rocks that attest to
the existence of Eoarchean crust within the Fennoscandian Shield. These zircon define a
near-horizontal array for '7Hf/!""Hf versus 2°’Pb/?%°Pb date (Fig. 3B), which is typically
produced in Archean rocks by Pb-loss or age resetting of a single magmatic zircon
component (e.g., Zeh and Gerdes, 2009; Vervoort and Kemp, 2016). In enr versus age space,
this steep trend (’°Lu/!"’Hf = 0) projects back to a chondritic composition at ca. 3.75 Ga
(Fig. 3A-B), compatible with derivation from an Eoarchean crustal nucleus. Similarly-aged
(ca. 3.7-3.3 Ga) inherited zircon grains are found in a 2.7 Ga leucogranite (A1813) of the
Siurua region (Lauri et al., 2011). These data plot along two discordia lines with upper
intercepts at ca. 3.65 Ga and 2.7 Ga, with grains in the older (inherited) group having
generally higher Th/U (Fig. 2C-D), strengthening the interpretation of a 3.5 Ga
crystallisation age of the neighboring gneiss A1602 and the inherited nature of the high Th/U
grains in both these samples. It also noteworthy that the >3.5 Ga detrital zircon in the TVSED
quartzite have Th/U >1.3. Zircon with > 3.2 Ga dates are, however, absent from the detrital
river populations in this study, possibly reflecting incomplete sampling of the catchment,

and/or changing drainage patterns due to post-glacial isostatic rebound.

ZIRCON ISOTOPE SIGNATURES

The Hf isotope data from the detrital river zircon and the Suomujirvi Complex give
predominantly juvenile signatures at around 2.7 Ga (majority of data with eur between ca. +5
and -1) and unradiogenic signatures at ca. 1.8 Ga (eur between -0.5 and -13). The two oldest
detrital river zircons (ca. 3.2 and 3.1 Ga) have near chondritic Hf, while the ca. 3.6-3.2 Ga

inherited grains in Pudasjdrvi (A1602 and A1813) and the oldest grains in the Suomujérvi
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TVSED quartzite have Hf isotope compositions that define a Pb-loss trend from near
chondritic at around 3.75-3.60 Ga to strongly un-radiogenic at 3.4 Ga (enr = ca. -9: Fig. 3A—
B). Excluding the inherited zircon from Pudasjérvi and the oldest TVSED zircon, remaining
zircon Hf data in this study largely overlap with published Fennoscandian zircon Hf isotope
data (Fig. 3A). As shown in figure 3B, the "Hf/!"Hf of the inherited zircon in sample
A1602 are virtually identical, while 2°’Pb/2%Pb dates range from ca. 3.45 Ga to ca. 3.22 Ga,
attesting to variable degrees of Pb-loss, with a poorly defined lower intercept (Fig. 2A). The
Hf isotope composition of the ca. 3.4 Ga TVSED zircon are virtually identical to A1602, and
all these zircon have high Th/U, consistent with a common source (Fig. 3A—B). It should,
however, be noted that some of the zircon analyzed by Mutanen and Huhma, (2003) yielded
both slightly normally and reversely discordant data, so interpretations of Pb-loss, possibly
combined with zircon recrystallisation, are not straightforward, even if 27Pb/2%Pb dates are
used. Mutanen and Huhma (2003) suggest that the reversely discordant data are an analytical

artifact.

Hf isotope data from the oldest Fennoscandian zircon, from the Pudasjdrvi Complex (Lauri et
al., 2011) and the previously dated (Evins et al., 2002) detrital zircon in the TVSED quartzite
in this study, yield strongly negative enr that, taken out of context, could be interpreted as
evidence for very old (Hadean) evolved crust of unknown origin. However, the homogeneous
76Hf/"""Hf define a Pb-loss trend, in enr versus age space, that traces back to a ca. 3.75 Ga
chondritic source. This Pb-loss trend projects to strongly unradiogenic signatures (eufr~ -20)
at 2.75 Ga (Fig. 3A), which is coeval with the Lopian/Karelian Orogeny, the age of
surrounding bedrock in both Pudasjirvi and Suomujarvi, and the maximum depositional age
of the TVSED quartzite (2731+8 Ma, Evins et al., 2002). These observations point to a

previously un-identified Eoarchean nucleus within the Fennoscandian Shield. We speculate
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that this 3.75 Ga sialic nucleus facilitated the preservation of the 3.5 Ga Siurua suite within
the Pudasjarvi complex. This crustal nucleus does not appear to have been a major source of
subsequent magmatism within the Fennoscandian Shield, as strongly sub-chondritic Hf

isotope signatures are virtually absent in Mesoarchean and younger crust (Fig. 3).

A GROWING NUMBER OF IDENTIFIED EOARCHEAN NUCLEI

Similarly-aged >3.7 Ga nuclei have been inferred for several other major Archean cratons,
including the West African and Sao Francisco Cratons (see Santos-Pinto, 2012); North China
Craton (Nutman et al., 2009); the Muzidian complex (Wang et al., 2023); the Kaapvaal
Craton (Schneider et al., 2018); the Slave Craton (Reimink et al., 2014); the Wyoming Craton
(Frost et al., 2017); the Tarim Craton (Ge et al., 2018); the Napier complex (Guitreau et al.,
2019); the Superior Craton (Stevenson et al., 2006); and the Pilbara and Yilgarn Cratons
(Petersson et al., 2019). Several different processes have been suggested for the formation of
these ancient crustal nuclei, including radiogenic heating of thickened hydrated basalt
(Kamber et al., 2005), mantle upwellings (Reimink et al., 2014), bolide impacts (Hansen,
2015) and some version of subduction leading to reworking of a stagnant lid (Kamber et al.,
2003). The growing number of Archean cratons for which an Eoarchean crustal component
has been recognized highlights the importance of these nuclei for stabilization of cratonic
lithosphere and enabling the subsequent accretion of continental material in the early Earth.
This work, for the first time, identifies such an Eoarchean nuclei to the Fennoscandian Shield,
and emphasizes the value of inherited zircon for deciphering the enigmatic early evolution of

Archean cratons.

A COMMON EOARCHEAN EVOLUTION FOR THE FENNOSCANDIAN SHIELD

AND THE NORTH ATLANTIC CRATON
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The Meso- to Paleoproterozoic zircon Hf isotope record of the North Atlantic Craton and the
Fennoscandian Shield are very similar, with periods of growth, reworking and magmatic lulls
more or less overlapping (Fig. 3A). In both the NAC and Fennoscandia, the formation of
gneisses with sub-chondritic ens, coincided with the onset of juvenile (slightly supra-
chondritic) crustal additions at 3.2 Ga. The ca. 3.2 Ga gneisses of these terranes have very
similar zircon Hf isotope signatures with a majority of the data clustering between enr = +2
and -2 (see Whitehouse et al., 2022), and a connection between Fennoscandia and NAC has
been proposed as far back as the earliest Mesoarchean, based on similarities in zircon Hf
isotope data (Whitehouse et al., 2022). A Proterozoic connection between these cratons has
been inferred based on both isotopic, metamorphic and petrographic similarities (e.g. Park,
1994; Whitehouse et al., 2022). Now this Fennoscandia—NAC connection can be traced back

to the Eoarchean, with a shared crustal nucleus.

The tightly clustered zircon Hf isotope signatures from the ca. 3.8-3.6 Ga gneisses of NAC
suggest a near chondritic source for the initial crustal nucleus. The least radiogenic zircon Hf
isotope signatures of NAC between ca. 3.6 and 2.7 Ga plot along a Pb-loss trend in enr vs.
time space (Fig. 3A-B). In Fennoscandia, the 2.7 Ga event corresponds to the
Lopian/Karelian Orogeny, and is evident as growth and Pb-loss in zircon of the Pudasjarvi
gneisses (Fig. 2A and C) as well as the appearance of Fennoscandian zircon with §'%0
signatures above mantle values, attesting to the onset of reworking of supracrustal materials
(Appendix DR 1). In the Pudasjarvi Gneiss Complex, inherited zircon cores with 20’Pb/2%Pb
dates between 3.73 and 3.6 Ga (Mutanen and Huhma, 2003, this study) support the existence
of'a >3.7 Ga source. Additionally, the oldest remnants of the Fennoscandian Shield, inherited
zircon from the Pudasjdrvi Gneiss Complex and detrital zircon from the Suomujarvi Complex

(TVSED), give Hf isotope signatures that suggest a ca. 3.75 Ga protolith, similar to some of
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the oldest crust in NAC (Fig. 3A). Zircon Hf isotope signatures from NAC (e.g.
Godthabsfjord, Kemp et al., 2019) and samples TVSED and A1602 Finnish Karelia
(Pudasjérvi and Suomujérvi) define a Pb-loss array extending back to a ca. 3.75 Ga near-
chondritic source (green arrow in Fig. 3A). We propose that these above-listed isotopic
similarities between these two regions are evidence for a common Eoarchean origin and that
the oldest (3.75 Ga) felsic crust of the Fennoscandian Shield originated from a precursor

reservoir similar to that of the NAC.
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Captions

Figure 1. (A) Simplified geological map of the Fennoscandia showing the main geological
units, based on Stephens and Bergman (2020). (B) Simplified geological map of the northern

Fennoscandia showing individual blocks and complexes, based on Evins et al. (2002).

Figure 2. (A and C) Concordia plot of zircon U-Pb data from sample A1602 (A) and A1813
(C) including our new data (n = 61) and published data (Mutanen and Huhma, 2003, n = 8).
Colours denote different Th/U ratios. (B and D) Th/U versus 2*’Pb/?°Pb dates of the same

analyses showing the positive correlation between Th/U and age. Reversely discordant data

from Mutanen and Huhma (2003) have been omitted.
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Figure 3. (A) Zircon enf) versus date (Ga). Squares denote rock samples (this study) and
diamonds denote river samples (this study). Circles represent literature data. Yellow circles:
3733 Fennoscandian zircon/baddeleyite Hf isotope data. Red circles: 2477 zircon Hf isotope
data from southern W Greenland. Hexagons depict inherited zircon. Green arrow defines a
Pb-loss trend (""Lu/!""’Hf = 0) from ca. 3.75 Ga to ca. 2.7 Ga. References to data found in
Appendix DR 1. (B) ""*Hf/'7"Hf{y versus 2°’Pb/?°Pb dates (Ga) of the Siurua gneiss A1602
and TVSED showing a horizontal trend indicative of Pb-loss, with unchanged Hf isotope

composition.
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