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ABSTRACT 16 

Enabling the build-up of continental crust is a vital step in the stabilisation of cratonic 17 

lithosphere. However, these initial crustal nuclei are often either destroyed by recycling or 18 

buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca. 19 

3.7 Ga inherited and detrital zircons indicate the presence of an older, unexposed crustal 20 

substrate. We present U-Pb, O and Hf isotope data from detrital zircons of three major 21 

Finnish rivers, as well as zircon O and Hf isotope data from previously dated rocks of the 22 

Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data 23 

indicate a previously un-identified ca. 3.75 Ga felsic crustal nucleus in the Fennoscandian 24 

Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes 25 



around the globe, highlighting the importance of such nuclei in enabling the growth of 26 

continental crust. The isotopic signatures of the Fennoscandian nucleus correlate with 27 

equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for 28 

Fennoscandia and the North Atlantic Craton (NAC).  29 

INTRODUCTION 30 

The earliest evolution of Archean cratons, and the controls on crustal growth and 31 

preservation, are still poorly understood. It is debated whether primordial crust formed from 32 

mantle plume activity (Smithies et al., 2005), due to density-driven convective overturn of 33 

proto-crust (Johnson et al., 2014) or bolide impacts (Hansen, 2015). It is also unclear if a pre-34 

existing nucleus of sialic continental crust is needed to facilitate larger scale continental 35 

growth, or if the initial growth phase of Archean terranes were purely juvenile crustal 36 

contributions (Reimink et al., 2014). An oceanic plateau setting with thickened mafic crust, 37 

analogous to modern day Iceland has been suggested as a possible way of generating these 38 

ancient nuclei, as they are relatively sialic (Jakobsson et al., 2008; Reimink et al., 2014). The 39 

Fennoscandian Shield is thought to have formed through repeated episodes of subduction-40 

related magmatism around the margins of an Archean core (e.g. Stephens and Bergman, 41 

2020). Whether these episodes record growth of new continental crust or mainly record 42 

reworking of pre-existing crustal blocks is, however, a matter of debate (Rutanen et al., 2011; 43 

Petersson et al., 2015a, 2017). This debate focuses on the isotopic composition of the 44 

Fennoscandian mantle, and its degree of depletion (Andersen et al., 2009; Rutanen et al., 45 

2011; Petersson et al., 2017). The majority of the zircon Hf isotope data from Fennoscandia 46 

yield model crust formation ages that are coeval with known orogenic events, such as the 47 

2.8–2.6 Ga Lopian/Karelian, and the 2.0–1.8 Ga Svecokarelian orogenies. However, the 48 

oldest rocks in Fennoscandia, the Siurua gneiss in Pudasjärvi, dates to 3.5 Ga (zircon U-Pb; 49 

Mutanen and Huhma, 2003), predating known orogenies. Inherited zircon from rocks of the 50 



Siurua region have negative eHf signatures that are consistent with derivation from an ancient 51 

protolith (Lauri et al., 2011). 52 

 53 

To trace an ancient crustal component within Fennoscandia, we report detrital zircon U-Pb, O 54 

and Lu-Hf isotope data from three major rivers draining central and NW Finland, and zircon 55 

O and Lu-Hf isotope data from three gneisses, a quartzite and a metagabbro (Evins et al., 56 

2002) from the ca. 2.8 Ga Suomujärvi Complex, just north of the 3.5–2.7 Ga Pudasjärvi 57 

Gneiss Complex (Fig. 1). River samples were targeted to increase the sample area and the 58 

chances of identifying hereto unknown components within Fennoscandia. The Suomujärvi 59 

and Pudasjärvi complexes were targeted due to the evidence for ancient crustal components. 60 

We find that ca. 3.4 Ga detrital zircon within a ca. 2.75 Ga sillimanite-bearing meta-arkose 61 

have Hf isotope signatures that matches those of the least radiogenic zircon signatures from 62 

the Siurua gneiss. These signatures are significantly less radiogenic than other known crust in 63 

Fennoscandia requiring a source that is substantially older than the oldest known rocks in the 64 

area. Based on this, we infer that the Fennoscandian Shield grew from an ca. 3.75 Ga 65 

Eoarchean felsic crustal nucleus. Due to similar trends in their earliest zircon U-Pb and Lu-Hf 66 

isotope signatures, we explore the possibility of a linked Eoarchean evolution with that of the 67 

NAC. 68 

 69 

SAMPLES AND ANALYTICAL METHODS 70 

U-Pb, O and Lu-Hf isotopes were analyzed in detrital zircon from three major rivers (the 71 

Torne, Iil and Oulu rivers) draining central and NW Finland. Additionally, zircon O and Hf 72 

isotopes of five previously dated rocks, three TTG gneisses (Samples 3, 4, and 47), a 73 

quartzite (TVSED) and a metagabbro (Sample 888) of the Suomujärvi Complex (Evins et al., 74 

2002, Fig. 1) were obtained, as well as complementary zircon U-Pb analyses on the 75 



previously dated Siurua gneiss (Mutanen and Huhma, 2003, A1602). U-Pb and O isotopes in 76 

zircon were measured using a CAMECA IMS1280 ion microprobe at the Swedish Museum 77 

of Natural History (Stockholm, Sweden) and zircon Lu-Hf isotopes were analyzed using a 78 

Cetac Analyte G2 laser and a Thermo Scientific Neptune Plus multicollector–inductively 79 

coupled plasma–mass spectrometer (MC-ICP-MS) at the University of Western Australia. 80 

Zircon from the Suomujärvi rock samples, were analyzed for O and Lu-Hf isotopes on the 81 

same zircon separates investigated for U-Pb age determinations by Evins et al. (2002). 82 

Oxygen isotope analyses were performed at the WiscSIMS Lab., University of Wisconsin-83 

Madison, (USA) using a CAMECA IMS1280 and Hf analyses at the University of Bristol 84 

using a Thermo Finnigan Neptune MC-ICP-MS attached to a New Wave 193 nm laser 85 

system. All analytical data are found in DR Tables 3-7. Full analytical procedures are 86 

described in Appendix DR 1, and zircon BSE images with analysis spot locations, as well as 87 

U-Pb concordia and probability density plots for the detrital zircon, are in Appendix DR 2. 88 

 89 

AGE CONSTRAINTS ON THE OLDEST COMPONENTS IN FENNOSCANDIA 90 

Zircon U-Pb age data from the Siurua gneisses (samples A1602 and A1813) are complex 91 

(Fig. 2). A1602, the oldest rock so far identified in Fennoscandia, has been interpreted to 92 

have a 3.5 Ga crystallisation age (Mutanen and Huhma, 2003), but contains a significant 93 

portion of >3.5 Ga zircon. A combined data set of Mutanen and Huhma (2003) and our new 94 

data shows <5% discordant 207Pb/206Pb dates between 3.73 Ga and 3.08 Ga, with our new 95 

data identifying 15 >3.5 Ga grains. The main age group spreads between ca. 3.5 Ga and ca. 96 

3.0 Ga. A second data cluster has 207Pb/206Pb dates between 3.66 Ga and 3.58 Ga, and one 97 

concordant analysis gives a 207Pb/206Pb date of ca. 3.73 Ga (Fig. 2A). There is a positive 98 

correlation between Th/U and 207Pb/206Pb dates, where older grains generally have higher 99 



Th/U (Fig. 2). Zircon with the highest Th/U in their respective rock give >3.5 Ga 207Pb/206Pb 100 

dates (Fig. 2), and are compatible with >3.5 Ga crystallisation and subsequent Pb-loss. These 101 

zircon grains are interpreted as relicts of eroded or buried (meta)igneous rocks that attest to 102 

the existence of Eoarchean crust within the Fennoscandian Shield. These zircon define a 103 

near-horizontal array for 176Hf/177Hf versus 207Pb/206Pb date (Fig. 3B), which is typically 104 

produced in Archean rocks by Pb-loss or age resetting of a single magmatic zircon 105 

component (e.g., Zeh and Gerdes, 2009; Vervoort and Kemp, 2016).  In eHf versus age space, 106 

this steep trend (176Lu/177Hf ≈ 0) projects back to a chondritic composition at ca. 3.75 Ga 107 

(Fig. 3A–B), compatible with derivation from an Eoarchean crustal nucleus. Similarly-aged 108 

(ca. 3.7–3.3 Ga) inherited zircon grains are found in a 2.7 Ga leucogranite (A1813) of the 109 

Siurua region (Lauri et al., 2011). These data plot along two discordia lines with upper 110 

intercepts at ca. 3.65 Ga and 2.7 Ga, with grains in the older (inherited) group having 111 

generally higher Th/U (Fig. 2C–D), strengthening the interpretation of a 3.5 Ga 112 

crystallisation age of the neighboring gneiss A1602 and the inherited nature of the high Th/U 113 

grains in both these samples. It also noteworthy that the >3.5 Ga detrital zircon in the TVSED 114 

quartzite have Th/U >1.3. Zircon with > 3.2 Ga dates are, however, absent from the detrital 115 

river populations in this study, possibly reflecting incomplete sampling of the catchment, 116 

and/or changing drainage patterns due to post-glacial isostatic rebound.  117 

 118 

ZIRCON ISOTOPE SIGNATURES 119 

The Hf isotope data from the detrital river zircon and the Suomujärvi Complex give 120 

predominantly juvenile signatures at around 2.7 Ga (majority of data with eHf between ca. +5 121 

and -1) and unradiogenic signatures at ca. 1.8 Ga (eHf between -0.5 and -13). The two oldest 122 

detrital river zircons (ca. 3.2 and 3.1 Ga) have near chondritic Hf, while the ca. 3.6–3.2 Ga 123 

inherited grains in Pudasjärvi (A1602 and A1813) and the oldest grains in the Suomujärvi 124 



TVSED quartzite have Hf isotope compositions that define a Pb-loss trend from near 125 

chondritic at around 3.75–3.60 Ga to strongly un-radiogenic at 3.4 Ga (eHf = ca. -9: Fig. 3A–126 

B). Excluding the inherited zircon from Pudasjärvi and the oldest TVSED zircon, remaining 127 

zircon Hf data in this study largely overlap with published Fennoscandian zircon Hf isotope 128 

data (Fig. 3A). As shown in figure 3B, the 176Hf/177Hf of the inherited zircon in sample 129 

A1602 are virtually identical, while 207Pb/206Pb dates range from ca. 3.45 Ga to ca. 3.22 Ga, 130 

attesting to variable degrees of Pb-loss, with a poorly defined lower intercept (Fig. 2A). The 131 

Hf isotope composition of the ca. 3.4 Ga TVSED zircon are virtually identical to A1602, and 132 

all these zircon have high Th/U, consistent with a common source (Fig. 3A–B). It should, 133 

however, be noted that some of the zircon analyzed by Mutanen and Huhma, (2003) yielded 134 

both slightly normally and reversely discordant data, so interpretations of Pb-loss, possibly 135 

combined with zircon recrystallisation, are not straightforward, even if 207Pb/206Pb dates are 136 

used. Mutanen and Huhma (2003) suggest that the reversely discordant data are an analytical 137 

artifact.  138 

 139 

Hf isotope data from the oldest Fennoscandian zircon, from the Pudasjärvi Complex (Lauri et 140 

al., 2011) and the previously dated (Evins et al., 2002) detrital zircon in the TVSED quartzite 141 

in this study, yield strongly negative eHf that, taken out of context, could be interpreted as 142 

evidence for very old (Hadean) evolved crust of unknown origin. However, the homogeneous 143 

176Hf/177Hf define a Pb-loss trend, in eHf versus age space, that traces back to a ca. 3.75 Ga 144 

chondritic source. This Pb-loss trend projects to strongly unradiogenic signatures (eHf ≈ -20) 145 

at 2.75 Ga (Fig. 3A), which is coeval with the Lopian/Karelian Orogeny, the age of 146 

surrounding bedrock in both Pudasjärvi and Suomujärvi, and the maximum depositional age 147 

of the TVSED quartzite (2731±8 Ma, Evins et al., 2002). These observations point to a 148 

previously un-identified Eoarchean nucleus within the Fennoscandian Shield. We speculate 149 



that this 3.75 Ga sialic nucleus facilitated the preservation of the 3.5 Ga Siurua suite within 150 

the Pudasjärvi complex. This crustal nucleus does not appear to have been a major source of 151 

subsequent magmatism within the Fennoscandian Shield, as strongly sub-chondritic Hf 152 

isotope signatures are virtually absent in Mesoarchean and younger crust (Fig. 3). 153 

 154 

A GROWING NUMBER OF IDENTIFIED EOARCHEAN NUCLEI 155 

Similarly-aged >3.7 Ga nuclei have been inferred for several other major Archean cratons, 156 

including the West African and São Francisco Cratons (see Santos-Pinto, 2012); North China 157 

Craton (Nutman et al., 2009); the Muzidian complex (Wang et al., 2023); the Kaapvaal 158 

Craton (Schneider et al., 2018); the Slave Craton (Reimink et al., 2014); the Wyoming Craton 159 

(Frost et al., 2017); the Tarim Craton (Ge et al., 2018); the Napier complex (Guitreau et al., 160 

2019); the Superior Craton (Stevenson et al., 2006); and the Pilbara and Yilgarn Cratons 161 

(Petersson et al., 2019). Several different processes have been suggested for the formation of 162 

these ancient crustal nuclei, including radiogenic heating of thickened hydrated basalt 163 

(Kamber et al., 2005), mantle upwellings (Reimink et al., 2014), bolide impacts (Hansen, 164 

2015) and some version of subduction leading to reworking of a stagnant lid (Kamber et al., 165 

2003). The growing number of Archean cratons for which an Eoarchean crustal component 166 

has been recognized highlights the importance of these nuclei for stabilization of cratonic 167 

lithosphere and enabling the subsequent accretion of continental material in the early Earth. 168 

This work, for the first time, identifies such an Eoarchean nuclei to the Fennoscandian Shield, 169 

and emphasizes the value of inherited zircon for deciphering the enigmatic early evolution of 170 

Archean cratons. 171 

 172 

A COMMON EOARCHEAN EVOLUTION FOR THE FENNOSCANDIAN SHIELD 173 

AND THE NORTH ATLANTIC CRATON 174 



The Meso- to Paleoproterozoic zircon Hf isotope record of the North Atlantic Craton and the 175 

Fennoscandian Shield are very similar, with periods of growth, reworking and magmatic lulls 176 

more or less overlapping (Fig. 3A). In both the NAC and Fennoscandia, the formation of 177 

gneisses with sub-chondritic eHf, coincided with the onset of juvenile (slightly supra-178 

chondritic) crustal additions at 3.2 Ga. The ca. 3.2 Ga gneisses of these terranes have very 179 

similar zircon Hf isotope signatures with a majority of the data clustering between eHf = +2 180 

and -2 (see Whitehouse et al., 2022), and a connection between Fennoscandia and NAC has 181 

been proposed as far back as the earliest Mesoarchean, based on similarities in zircon Hf 182 

isotope data (Whitehouse et al., 2022). A Proterozoic connection between these cratons has 183 

been inferred based on both isotopic, metamorphic and petrographic similarities (e.g. Park, 184 

1994; Whitehouse et al., 2022). Now this Fennoscandia–NAC connection can be traced back 185 

to the Eoarchean, with a shared crustal nucleus.  186 

 187 

The tightly clustered zircon Hf isotope signatures from the ca. 3.8–3.6 Ga gneisses of NAC 188 

suggest a near chondritic source for the initial crustal nucleus. The least radiogenic zircon Hf 189 

isotope signatures of NAC between ca. 3.6 and 2.7 Ga plot along a Pb-loss trend in eHf vs. 190 

time space (Fig. 3A–B). In Fennoscandia, the 2.7 Ga event corresponds to the 191 

Lopian/Karelian Orogeny, and is evident as growth and Pb-loss in zircon of the Pudasjärvi 192 

gneisses (Fig. 2A and C) as well as the appearance of Fennoscandian zircon with d18O 193 

signatures above mantle values, attesting to the onset of reworking of supracrustal materials 194 

(Appendix DR 1). In the Pudasjärvi Gneiss Complex, inherited zircon cores with 207Pb/206Pb 195 

dates between 3.73 and 3.6 Ga (Mutanen and Huhma, 2003, this study) support the existence 196 

of a ≥3.7 Ga source. Additionally, the oldest remnants of the Fennoscandian Shield, inherited 197 

zircon from the Pudasjärvi Gneiss Complex and detrital zircon from the Suomujärvi Complex 198 

(TVSED), give Hf isotope signatures that suggest a ca. 3.75 Ga protolith, similar to some of 199 



the oldest crust in NAC (Fig. 3A). Zircon Hf isotope signatures from NAC (e.g. 200 

Godthåbsfjord, Kemp et al., 2019) and samples TVSED and A1602 Finnish Karelia 201 

(Pudasjärvi and Suomujärvi) define a Pb-loss array extending back to a ca. 3.75 Ga near-202 

chondritic source (green arrow in Fig. 3A). We propose that these above-listed isotopic 203 

similarities between these two regions are evidence for a common Eoarchean origin and that 204 

the oldest (3.75 Ga) felsic crust of the Fennoscandian Shield originated from a precursor 205 

reservoir similar to that of the NAC.  206 
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Captions 360 

 361 

Figure 1. (A) Simplified geological map of the Fennoscandia showing the main geological 362 

units, based on Stephens and Bergman (2020). (B) Simplified geological map of the northern 363 

Fennoscandia showing individual blocks and complexes, based on Evins et al. (2002). 364 

 365 

Figure 2. (A and C) Concordia plot of zircon U-Pb data from sample A1602 (A) and A1813 366 

(C) including our new data (n = 61) and published data (Mutanen and Huhma, 2003, n = 8). 367 

Colours denote different Th/U ratios. (B and D) Th/U versus 207Pb/206Pb dates of the same 368 

analyses showing the positive correlation between Th/U and age. Reversely discordant data 369 

from Mutanen and Huhma (2003) have been omitted.  370 

 371 



 Figure 3. (A) Zircon eHf(t) versus date (Ga). Squares denote rock samples (this study) and 372 

diamonds denote river samples (this study). Circles represent literature data. Yellow circles: 373 

3733 Fennoscandian zircon/baddeleyite Hf isotope data. Red circles: 2477 zircon Hf isotope 374 

data from southern W Greenland. Hexagons depict inherited zircon. Green arrow defines a 375 

Pb-loss trend (176Lu/177Hf = 0) from ca. 3.75 Ga to ca. 2.7 Ga. References to data found in 376 

Appendix DR 1. (B) 176Hf/177Hf(t) versus 207Pb/206Pb dates (Ga) of the Siurua gneiss A1602 377 

and TVSED showing a horizontal trend indicative of Pb-loss, with unchanged Hf isotope 378 

composition.  379 

 380 
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