

1 **An Eoarchean continental nucleus for the**
2 **Fennoscandian Shield, and a link to the North Atlantic**
3 **Craton**

4
5 Andreas Petersson^{1,2,*}, Tod Waight¹, Anthony. I. Kemp³, Martin. J. Whitehouse², John. W. Valley⁴

6
7 ¹ Department of Geoscience and Natural Resource Management, University of Copenhagen, Denmark

8 ² Swedish Museum of Natural History, Stockholm, Sweden

9 ³ School of Earth Sciences, The University of Western Australia, Crawley, Australia

10 ⁴ Department of Geoscience University of Wisconsin, Madison, 53706, Wisconsin, USA

11
12 Final published paper is available at:

13 **Petersson A, Waight T, Kemp AI, Whitehouse MJ, Valley, JW (2024) An Eoarchean**
14 **continental nucleus for the Fennoscandian Shield, and a link to the North Atlantic**
15 **Craton. Geology. 52: 171-175.**

16 **ABSTRACT**

17 Enabling the build-up of continental crust is a vital step in the stabilisation of cratonic
18 lithosphere. However, these initial crustal nuclei are often either destroyed by recycling or
19 buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca.
20 3.7 Ga inherited and detrital zircons indicate the presence of an older, unexposed crustal
21 substrate. We present U-Pb, O and Hf isotope data from detrital zircons of three major
22 Finnish rivers, as well as zircon O and Hf isotope data from previously dated rocks of the
23 Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data
24 indicate a previously un-identified ca. 3.75 Ga felsic crustal nucleus in the Fennoscandian
25 Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes

26 around the globe, highlighting the importance of such nuclei in enabling the growth of
27 continental crust. The isotopic signatures of the Fennoscandian nucleus correlate with
28 equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for
29 Fennoscandia and the North Atlantic Craton (NAC).

30 **INTRODUCTION**

31 The earliest evolution of Archean cratons, and the controls on crustal growth and
32 preservation, are still poorly understood. It is debated whether primordial crust formed from
33 mantle plume activity (Smithies et al., 2005), due to density-driven convective overturn of
34 proto-crust (Johnson et al., 2014) or bolide impacts (Hansen, 2015). It is also unclear if a pre-
35 existing nucleus of sialic continental crust is needed to facilitate larger scale continental
36 growth, or if the initial growth phase of Archean terranes were purely juvenile crustal
37 contributions (Reimink et al., 2014). An oceanic plateau setting with thickened mafic crust,
38 analogous to modern day Iceland has been suggested as a possible way of generating these
39 ancient nuclei, as they are relatively sialic (Jakobsson et al., 2008; Reimink et al., 2014). The
40 Fennoscandian Shield is thought to have formed through repeated episodes of subduction-
41 related magmatism around the margins of an Archean core (e.g. Stephens and Bergman,
42 2020). Whether these episodes record growth of new continental crust or mainly record
43 reworking of pre-existing crustal blocks is, however, a matter of debate (Rutanen et al., 2011;
44 Petersson et al., 2015a, 2017). This debate focuses on the isotopic composition of the
45 Fennoscandian mantle, and its degree of depletion (Andersen et al., 2009; Rutanen et al.,
46 2011; Petersson et al., 2017). The majority of the zircon Hf isotope data from Fennoscandia
47 yield model crust formation ages that are coeval with known orogenic events, such as the
48 2.8–2.6 Ga Lopian/Karelian, and the 2.0–1.8 Ga Svecokarelian orogenies. However, the
49 oldest rocks in Fennoscandia, the Siurua gneiss in Pudasjärvi, dates to 3.5 Ga (zircon U-Pb;
50 Mutanen and Huhma, 2003), predating known orogenies. Inherited zircon from rocks of the

51 Siurua region have negative ϵ_{Hf} signatures that are consistent with derivation from an ancient
52 protolith (Lauri et al., 2011).

53

54 To trace an ancient crustal component within Fennoscandia, we report detrital zircon U-Pb, O
55 and Lu-Hf isotope data from three major rivers draining central and NW Finland, and zircon
56 O and Lu-Hf isotope data from three gneisses, a quartzite and a metagabbro (Evins et al.,
57 2002) from the ca. 2.8 Ga Suomujärvi Complex, just north of the 3.5–2.7 Ga Pudasjärvi
58 Gneiss Complex (Fig. 1). River samples were targeted to increase the sample area and the
59 chances of identifying hereto unknown components within Fennoscandia. The Suomujärvi
60 and Pudasjärvi complexes were targeted due to the evidence for ancient crustal components.
61 We find that ca. 3.4 Ga detrital zircon within a ca. 2.75 Ga sillimanite-bearing meta-arkose
62 have Hf isotope signatures that matches those of the least radiogenic zircon signatures from
63 the Siurua gneiss. These signatures are significantly less radiogenic than other known crust in
64 Fennoscandia requiring a source that is substantially older than the oldest known rocks in the
65 area. Based on this, we infer that the Fennoscandian Shield grew from an ca. 3.75 Ga
66 Eoarchean felsic crustal nucleus. Due to similar trends in their earliest zircon U-Pb and Lu-Hf
67 isotope signatures, we explore the possibility of a linked Eoarchean evolution with that of the
68 NAC.

69

70 **SAMPLES AND ANALYTICAL METHODS**

71 U-Pb, O and Lu-Hf isotopes were analyzed in detrital zircon from three major rivers (the
72 Torne, Iil and Oulu rivers) draining central and NW Finland. Additionally, zircon O and Hf
73 isotopes of five previously dated rocks, three TTG gneisses (Samples 3, 4, and 47), a
74 quartzite (TVSED) and a metagabbro (Sample 888) of the Suomujärvi Complex (Evins et al.,
75 2002, Fig. 1) were obtained, as well as complementary zircon U-Pb analyses on the

76 previously dated Siurua gneiss (Mutanen and Huhma, 2003, A1602). U-Pb and O isotopes in
77 zircon were measured using a CAMECA IMS1280 ion microprobe at the Swedish Museum
78 of Natural History (Stockholm, Sweden) and zircon Lu-Hf isotopes were analyzed using a
79 Cetac Analyte G2 laser and a Thermo Scientific Neptune Plus multicollector–inductively
80 coupled plasma–mass spectrometer (MC-ICP-MS) at the University of Western Australia.
81 Zircon from the Suomujärvi rock samples, were analyzed for O and Lu-Hf isotopes on the
82 same zircon separates investigated for U-Pb age determinations by Evins et al. (2002).
83 Oxygen isotope analyses were performed at the WiscSIMS Lab., University of Wisconsin-
84 Madison, (USA) using a CAMECA IMS1280 and Hf analyses at the University of Bristol
85 using a Thermo Finnigan Neptune MC-ICP-MS attached to a New Wave 193 nm laser
86 system. All analytical data are found in DR Tables 3-7. Full analytical procedures are
87 described in Appendix DR 1, and zircon BSE images with analysis spot locations, as well as
88 U-Pb concordia and probability density plots for the detrital zircon, are in Appendix DR 2.

89

90 **AGE CONSTRAINTS ON THE OLDEST COMPONENTS IN FENNOSCANDIA**

91 Zircon U-Pb age data from the Siurua gneisses (samples A1602 and A1813) are complex
92 (Fig. 2). A1602, the oldest rock so far identified in Fennoscandia, has been interpreted to
93 have a 3.5 Ga crystallisation age (Mutanen and Huhma, 2003), but contains a significant
94 portion of >3.5 Ga zircon. A combined data set of Mutanen and Huhma (2003) and our new
95 data shows <5% discordant $^{207}\text{Pb}/^{206}\text{Pb}$ dates between 3.73 Ga and 3.08 Ga, with our new
96 data identifying 15 >3.5 Ga grains. The main age group spreads between ca. 3.5 Ga and ca.
97 3.0 Ga. A second data cluster has $^{207}\text{Pb}/^{206}\text{Pb}$ dates between 3.66 Ga and 3.58 Ga, and one
98 concordant analysis gives a $^{207}\text{Pb}/^{206}\text{Pb}$ date of ca. 3.73 Ga (Fig. 2A). There is a positive
99 correlation between Th/U and $^{207}\text{Pb}/^{206}\text{Pb}$ dates, where older grains generally have higher

100 Th/U (Fig. 2). Zircon with the highest Th/U in their respective rock give >3.5 Ga $^{207}\text{Pb}/^{206}\text{Pb}$
101 dates (Fig. 2), and are compatible with >3.5 Ga crystallisation and subsequent Pb-loss. These
102 zircon grains are interpreted as relicts of eroded or buried (meta)igneous rocks that attest to
103 the existence of Eoarchean crust within the Fennoscandian Shield. These zircon define a
104 near-horizontal array for $^{176}\text{Hf}/^{177}\text{Hf}$ versus $^{207}\text{Pb}/^{206}\text{Pb}$ date (Fig. 3B), which is typically
105 produced in Archean rocks by Pb-loss or age resetting of a single magmatic zircon
106 component (e.g., Zeh and Gerdes, 2009; Vervoort and Kemp, 2016). In ϵ_{Hf} versus age space,
107 this steep trend ($^{176}\text{Lu}/^{177}\text{Hf} \approx 0$) projects back to a chondritic composition at ca. 3.75 Ga
108 (Fig. 3A–B), compatible with derivation from an Eoarchean crustal nucleus. Similarly-aged
109 (ca. 3.7–3.3 Ga) inherited zircon grains are found in a 2.7 Ga leucogranite (A1813) of the
110 Siurua region (Lauri et al., 2011). These data plot along two discordia lines with upper
111 intercepts at ca. 3.65 Ga and 2.7 Ga, with grains in the older (inherited) group having
112 generally higher Th/U (Fig. 2C–D), strengthening the interpretation of a 3.5 Ga
113 crystallisation age of the neighboring gneiss A1602 and the inherited nature of the high Th/U
114 grains in both these samples. It also noteworthy that the >3.5 Ga detrital zircon in the TVSED
115 quartzite have Th/U >1.3. Zircon with > 3.2 Ga dates are, however, absent from the detrital
116 river populations in this study, possibly reflecting incomplete sampling of the catchment,
117 and/or changing drainage patterns due to post-glacial isostatic rebound.

118

119 ZIRCON ISOTOPE SIGNATURES

120 The Hf isotope data from the detrital river zircon and the Suomujärvi Complex give
121 predominantly juvenile signatures at around 2.7 Ga (majority of data with ϵ_{Hf} between ca. +5
122 and -1) and unradiogenic signatures at ca. 1.8 Ga (ϵ_{Hf} between -0.5 and -13). The two oldest
123 detrital river zircons (ca. 3.2 and 3.1 Ga) have near chondritic Hf, while the ca. 3.6–3.2 Ga
124 inherited grains in Pudasjärvi (A1602 and A1813) and the oldest grains in the Suomujärvi

125 TVSED quartzite have Hf isotope compositions that define a Pb-loss trend from near
126 chondritic at around 3.75–3.60 Ga to strongly un-radiogenic at 3.4 Ga ($\epsilon_{\text{Hf}} = \text{ca. -9}$: Fig. 3A–
127 B). Excluding the inherited zircon from Pudasjärvi and the oldest TVSED zircon, remaining
128 zircon Hf data in this study largely overlap with published Fennoscandian zircon Hf isotope
129 data (Fig. 3A). As shown in figure 3B, the $^{176}\text{Hf}/^{177}\text{Hf}$ of the inherited zircon in sample
130 A1602 are virtually identical, while $^{207}\text{Pb}/^{206}\text{Pb}$ dates range from ca. 3.45 Ga to ca. 3.22 Ga,
131 attesting to variable degrees of Pb-loss, with a poorly defined lower intercept (Fig. 2A). The
132 Hf isotope composition of the ca. 3.4 Ga TVSED zircon are virtually identical to A1602, and
133 all these zircon have high Th/U, consistent with a common source (Fig. 3A–B). It should,
134 however, be noted that some of the zircon analyzed by Mutanen and Huhma, (2003) yielded
135 both slightly normally and reversely discordant data, so interpretations of Pb-loss, possibly
136 combined with zircon recrystallisation, are not straightforward, even if $^{207}\text{Pb}/^{206}\text{Pb}$ dates are
137 used. Mutanen and Huhma (2003) suggest that the reversely discordant data are an analytical
138 artifact.

139

140 Hf isotope data from the oldest Fennoscandian zircon, from the Pudasjärvi Complex (Lauri et
141 al., 2011) and the previously dated (Evins et al., 2002) detrital zircon in the TVSED quartzite
142 in this study, yield strongly negative ϵ_{Hf} that, taken out of context, could be interpreted as
143 evidence for very old (Hadean) evolved crust of unknown origin. However, the homogeneous
144 $^{176}\text{Hf}/^{177}\text{Hf}$ define a Pb-loss trend, in ϵ_{Hf} versus age space, that traces back to a ca. 3.75 Ga
145 chondritic source. This Pb-loss trend projects to strongly unradiogenic signatures ($\epsilon_{\text{Hf}} \approx -20$)
146 at 2.75 Ga (Fig. 3A), which is coeval with the Lopian/Karelian Orogeny, the age of
147 surrounding bedrock in both Pudasjärvi and Suomujärvi, and the maximum depositional age
148 of the TVSED quartzite (2731±8 Ma, Evins et al., 2002). These observations point to a
149 previously un-identified Eoarchean nucleus within the Fennoscandian Shield. We speculate

150 that this 3.75 Ga sialic nucleus facilitated the preservation of the 3.5 Ga Siurua suite within
151 the Pudasjärvi complex. This crustal nucleus does not appear to have been a major source of
152 subsequent magmatism within the Fennoscandian Shield, as strongly sub-chondritic Hf
153 isotope signatures are virtually absent in Mesoarchean and younger crust (Fig. 3).

154

155 **A GROWING NUMBER OF IDENTIFIED EOARCHEAN NUCLEI**

156 Similarly-aged >3.7 Ga nuclei have been inferred for several other major Archean cratons,
157 including the West African and São Francisco Cratons (see Santos-Pinto, 2012); North China
158 Craton (Nutman et al., 2009); the Muzidian complex (Wang et al., 2023); the Kaapvaal
159 Craton (Schneider et al., 2018); the Slave Craton (Reimink et al., 2014); the Wyoming Craton
160 (Frost et al., 2017); the Tarim Craton (Ge et al., 2018); the Napier complex (Guitreau et al.,
161 2019); the Superior Craton (Stevenson et al., 2006); and the Pilbara and Yilgarn Cratons
162 (Petersson et al., 2019). Several different processes have been suggested for the formation of
163 these ancient crustal nuclei, including radiogenic heating of thickened hydrated basalt
164 (Kamber et al., 2005), mantle upwellings (Reimink et al., 2014), bolide impacts (Hansen,
165 2015) and some version of subduction leading to reworking of a stagnant lid (Kamber et al.,
166 2003). The growing number of Archean cratons for which an Eoarchean crustal component
167 has been recognized highlights the importance of these nuclei for stabilization of cratonic
168 lithosphere and enabling the subsequent accretion of continental material in the early Earth.
169 This work, for the first time, identifies such an Eoarchean nuclei to the Fennoscandian Shield,
170 and emphasizes the value of inherited zircon for deciphering the enigmatic early evolution of
171 Archean cratons.

172

173 **A COMMON EOARCHEAN EVOLUTION FOR THE FENNOSCANDIAN SHIELD**

174 **AND THE NORTH ATLANTIC CRATON**

175 The Meso- to Paleoproterozoic zircon Hf isotope record of the North Atlantic Craton and the
176 Fennoscandian Shield are very similar, with periods of growth, reworking and magmatic lulls
177 more or less overlapping (Fig. 3A). In both the NAC and Fennoscandia, the formation of
178 gneisses with sub-chondritic ϵ_{Hf} , coincided with the onset of juvenile (slightly supra-
179 chondritic) crustal additions at 3.2 Ga. The ca. 3.2 Ga gneisses of these terranes have very
180 similar zircon Hf isotope signatures with a majority of the data clustering between $\epsilon_{\text{Hf}} = +2$
181 and -2 (see Whitehouse et al., 2022), and a connection between Fennoscandia and NAC has
182 been proposed as far back as the earliest Mesoarchean, based on similarities in zircon Hf
183 isotope data (Whitehouse et al., 2022). A Proterozoic connection between these cratons has
184 been inferred based on both isotopic, metamorphic and petrographic similarities (e.g. Park,
185 1994; Whitehouse et al., 2022). Now this Fennoscandia–NAC connection can be traced back
186 to the Eoarchean, with a shared crustal nucleus.

187

188 The tightly clustered zircon Hf isotope signatures from the ca. 3.8–3.6 Ga gneisses of NAC
189 suggest a near chondritic source for the initial crustal nucleus. The least radiogenic zircon Hf
190 isotope signatures of NAC between ca. 3.6 and 2.7 Ga plot along a Pb-loss trend in ϵ_{Hf} vs.
191 time space (Fig. 3A–B). In Fennoscandia, the 2.7 Ga event corresponds to the
192 Lopian/Karelian Orogeny, and is evident as growth and Pb-loss in zircon of the Pudasjärvi
193 gneisses (Fig. 2A and C) as well as the appearance of Fennoscandian zircon with $\delta^{18}\text{O}$
194 signatures above mantle values, attesting to the onset of reworking of supracrustal materials
195 (Appendix DR 1). In the Pudasjärvi Gneiss Complex, inherited zircon cores with $^{207}\text{Pb}/^{206}\text{Pb}$
196 dates between 3.73 and 3.6 Ga (Mutanen and Huhma, 2003, this study) support the existence
197 of a ≥ 3.7 Ga source. Additionally, the oldest remnants of the Fennoscandian Shield, inherited
198 zircon from the Pudasjärvi Gneiss Complex and detrital zircon from the Suomujärvi Complex
199 (TVSED), give Hf isotope signatures that suggest a ca. 3.75 Ga protolith, similar to some of

200 the oldest crust in NAC (Fig. 3A). Zircon Hf isotope signatures from NAC (e.g.
201 Godthåbsfjord, Kemp et al., 2019) and samples TVSED and A1602 Finnish Karelia
202 (Pudasjärvi and Suomujärvi) define a Pb-loss array extending back to a ca. 3.75 Ga near-
203 chondritic source (green arrow in Fig. 3A). We propose that these above-listed isotopic
204 similarities between these two regions are evidence for a common Eoarchean origin and that
205 the oldest (3.75 Ga) felsic crust of the Fennoscandian Shield originated from a precursor
206 reservoir similar to that of the NAC.

207 **ACKNOWLEDGMENTS**

208 Financial support by the Danish Independent Research Fund, DFF-Research Project 2 – (grant
209 number: 9040-0374B to T. Waight) is gratefully acknowledged. AK acknowledges an
210 Australian Research Council Future Fellowship (FT10010059). Hf isotope analysis at UWA
211 was conducted with instrumentation funded by the Australian Research Council
212 (LE100100203 and LE150100013). Matti Kurhila at GTK is thanked for providing the
213 Pudasjärvi samples. Bin Fu is thanked for assistance during zircon O isotope analyses of
214 igneous zircon. JV has received funding from the European Research Council under the
215 European Union’s Horizon 2020 research and innovation program (grant agreement No
216 856555). WiscSIMS is supported by the US National Science Foundation (EAR-2004618) and
217 the University of Wisconsin-Madison. The NordSIMS ion microprobe facility operates as
218 Swedish-Icelandic infrastructure, partly funded by the Swedish Research Council (grant no.
219 2021-00276). This is NordSIMS contribution #7XX.

220

221 **REFERENCES**

222
223 Andersen, T., Andersson, U.B., Graham, S., Åberg, G. and Simonsen, S.L., 2009, Granitic
224 magmatism by melting of juvenile continental crust: new constraints on the source of

225 Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon: Journal of the
226 Geological Society, v. 166(2), p. 233–247, <https://doi.org/10.1144/0016-76492007-166>

227

228 Evins, P.M., Mansfeld, J., and Laajoki, K., 2002, Geology and geochronology of the
229 Suomujärvi Complex: a new Archaean gneiss region in the NE Baltic Shield,
230 Finland: Precambrian Research, v. 116(3–4), p. 285–306, <https://doi.org/10.1016/S0301->
231 9268(02)00025-6

232

233 Frost, C.D., McLaughlin, J.F., Frost, B.R., Fanning, C.M., Swapp, S.M., Kruckenberg, S.C.
234 and Gonzalez, J., 2017, Hadean origins of Paleoarchean continental crust in the central
235 Wyoming Province: Bulletin, v. 129(3–4), p. 259-280, <https://doi.org/10.1130/B31555.1>

236

237 Guitreau, M., Boyet, M., Paquette, J.L., Gannoun, A., Konc, Z., Benbakkar, M., Suchorski, K. and
238 Hénot, J.M., 2019, Hadean protocrust reworking at the origin of the Archean Napier Complex
239 (Antarctica). Geochem. Perspect. Lett. v. 12, p. 7–11. <http://doi.org/10.7185/geochemlet.1927>

240

241 Ge, R., Zhu, W., Wilde, S.A. and Wu, H., 2018, Remnants of Eoarchean continental crust
242 derived from a subducted proto-arc: Science advances, v. 4, p. eaao3159,
243 <https://doi.org/10.1126/sciadv.aa03159>.

244

245 Hansen, V.L., 2015, Impact origin of Archean cratons: Lithosphere, v. 7, p. 563–578,
246 <https://doi.org/10.1130/L371.1>.

247

248 Jakobsson, S.P., Jónasson, K. and Sigurdsson, I.A., 2008, The three igneous rock series of
249 Iceland. Jökull, v. 58, p. 117–138. <http://dx.doi.org/10.33799/jokull2008.58.117>

250

251 Johnson, T.E., Brown, M., Kaus, B.J., and VanTongeren, J.A., 2014, Delamination and
252 recycling of Archaean crust caused by gravitational instabilities: *Nature Geoscience*, v. 7, p.
253 47–52, <https://doi.org/10.1038/ngeo2019>.

254

255 Kamber, B.S., Collerson, K.D., Moorbath, S., and Whitehouse, M.J., 2003, Inheritance of
256 early Archaean Pb-isotope variability from long-lived Hadean protocrust: Contributions to
257 *Mineralogy and Petrology*, v. 145, p. 25–46, <https://doi.org/10.1007/s00410-002-0429-7>.

258

259 Kamber, B.S., Whitehouse, M.J., Bolhar, R., and Moorbath, S., 2005, Volcanic resurfacing
260 and the early terrestrial crust: zircon U-Pb and REE constraints from the Isua Greenstone
261 Belt, southern West Greenland: *Earth and Planetary Science Letters*, v. 240, p. 276–290,
262 <https://doi.org/10.1016/j.epsl.2005.09.037>.

263

264 Kemp, A.I., Whitehouse, M.J. and Vervoort, J.D., 2019, Deciphering the zircon Hf isotope
265 systematics of Eoarchean gneisses from Greenland: implications for ancient crust-mantle
266 differentiation and Pb isotope controversies: *Geochimica et Cosmochimica Acta*, v. 250, p.
267 76–97, <https://doi.org/10.1016/j.chemgeo.2019.06.025>

268

269 Lauri, L.S., Andersen, T., Hölttä, P., Huhma, H., and Graham, S., 2011, Evolution of the
270 Archaean Karelian Province in the Fennoscandian Shield in the light of U–Pb zircon ages and
271 Sm–Nd and Lu–Hf isotope systematics: *Journal of the Geological Society*, v. 168(1), p. 201–
272 218, <https://doi.org/10.1144/0016-76492009-159>

273

274 Mutanen, T., and Huhma, H., 2003, The 3.5 Ga Siurua trondhjemite gneiss in the Archaean
275 Pudasjarvi granulite belt, northern Finland: *Bulletin-geological society of Finland*, v. 75(1/2),
276 p. 51–68.

277

278 Naeraa, T., Scherstén, A., Rosing, M. T., Kemp, A. I. S., Hoffmann, J. E., Kokfelt, T. F., and
279 Whitehouse, M. J., 2012, Hafnium isotope evidence for a transition in the dynamics of
280 continental growth 3.2 Gyr ago: *Nature*, v. 485(7400), p. 627–630,
281 <https://doi.org/10.1038/nature11140>

282

283 Nutman, A.P., Wan, Y., and Liu, D., 2009, Integrated field geological and zircon morphology
284 evidence for ca. 3.8 Ga rocks at Anshan: Comment on “Zircon U-Pb and Hf isotopic
285 constraints on the Early Archean crustal evolution in Anshan of the North China Craton” by
286 Wu et al. [Precambrian Research, v. 167 p. 339–362]: *Precambrian Research*, v. 172, p. 357–
287 360, <https://doi.org/10.1016/j.precamres.2009.03.020>.

288

289 Park, R. G., 1994, Early Proterozoic tectonic overview of the northern British Isles and
290 neighbouring terrains in Laurentia and Baltica: *Precambrian Research*, v. 68(1–2), p. 65–79,
291 [https://doi.org/10.1016/0301-9268\(94\)90065-5](https://doi.org/10.1016/0301-9268(94)90065-5)

292

293 Petersson, A., Scherstén, A., Andersson, J., and Möller, C., 2015a, Zircon U–Pb and Hf-
294 isotopes from the eastern part of the Sveconorwegian Orogen, SW Sweden: implications for
295 the growth of Fennoscandia. In: Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirey,
296 S., and Clift, P.D. (Eds.), *Continent Formation Through Time*. London: Geological Society
297 [London] Special Publication, v. 389, p. 281–303, <https://doi.org/10.1144/SP389.2>

298

299 Petersson, A., Scherstén, A., Bingen, B., Gerdes, A. and Whitehouse, M.J., 2015b,
300 Mesoproterozoic continental growth: U–Pb–Hf–O zircon record in the Idefjorden terrane,
301 Sveconorwegian orogen:
302 Precambrian Research, v. 261, p.75–95, <https://doi.org/10.1016/j.precamres.2015.02.006>
303

304 Petersson, A., Bjärnborg, K., Scherstén, A., Gerdes, A., and Næraa, T., 2017, Tracing
305 Proterozoic arc mantle Hf isotope depletion of southern Fennoscandia through coupled zircon
306 U–Pb and Lu–Hf isotopes: Lithos, v. 284, p. 122–131,
307 <https://doi.org/10.1016/j.lithos.2017.04.010>
308

309 Petersson, A., Kemp, A.I.S., and Whitehouse, M.J., 2019, A Yilgarn seed to the Pilbara
310 Craton (Australia)? Evidence from inherited zircons: Geology, v. 47(11), p. 1098–1102,
311 <https://doi.org/10.1130/G46696.1>
312

313 Reimink, J.R., Chacko, T., Stern, R.A., and Heaman, L.M., 2014, Earth's earliest evolved
314 crust generated in an Iceland-like setting: Nature Geoscience, v. 7, p. 529–533,
315 <https://doi.org/10.1038/ngeo2170>.
316

317 Rutanen, H., Andersson, U.B., Väisänen, M., Johansson, Å., Fröjdö, S., Lahaye, Y., and
318 Eklund, O., 2011, 1.8 Ga magmatism in southern Finland: strongly enriched mantle and
319 juvenile crustal sources in a post-collisional setting: International Geology Review, v. 53, p.
320 1622–1683, <https://doi.org/10.1080/00206814.2010.496241>
321

322 Santos-Pinto, M., Peucat, J.J., Martin, H., Barbosa, J.S., Fanning, C.M., Cocherie, A. and
323 Paquette, J.L., 2012, Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block

324 (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil: a 3.5–3.8 Ga proto-
325 crust in the Gavião block?: *Journal of South American Earth Sciences*, v. 40, p. 129–142,
326 <https://doi.org/10.1016/j.jsames.2012.09.004>

327

328 Schneider, K.P., Hoffmann, J.E., Boyet, M., Münker, C., and Kröner, A., 2018, Coexistence
329 of enriched and modern-like ^{142}Nd signatures in Archean igneous rocks of the eastern
330 Kaapvaal Craton, southern Africa: *Earth and Planetary Science Letters*, v. 487, p. 54–66,
331 <https://doi.org/10.1016/j.epsl.2018.01.022>.

332

333 Smithies, R.H., Van Kranendonk, M.J., and Champion, D.C., 2005, It started with a plume—
334 Early Archaean basaltic proto-continental crust: *Earth and Planetary Science Letters*, v. 238,
335 p. 284–297, <https://doi.org/10.1016/j.epsl.2005.07.023>.

336

337 Stephens, M.B., and Bergman, S., 2020, Regional context and lithotectonic framework of the
338 2.0–1.8 Ga Svecokarelian orogen, eastern Sweden: *Geological Society, London, Memoirs*,
339 v. 50(1), p. 19–26, <https://doi.org/10.1144/M50-2017-2>

340

341 Stevenson, R.K., David, J., and Parent, M., 2006, Crustal evolution of the western Minto
342 Block, northern Superior Province, Canada: *Precambrian Research*, v. 145, p. 229–242,
343 <https://doi.org/10.1016/j.precamres.2005.12.004>.

344

345 Valley, J. W., Lackey, J. S., Cavosie, A. J., Clechenko, C. C., Spicuzza, M. J., Basei, M. A.
346 S., Bindeman, I. N., Ferreira, V. P., Sial, A. N., King, E. M., Peck, W. H., Sinha, A. K., and
347 Wei, C. S., 2005, 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic

348 zircon: Contributions to Mineralogy and Petrology, v. 150, p. 561–580,
349 <https://doi.org/10.1007/s00410-005-0025-8>

350

351 Wang, D., Qiu, X. F. and Carlson, R. W., 2023, The Eoarchean Muzidian gneiss complex:
352 Long-lived Hadean crustal components in the building of Archean continents: Earth and
353 Planetary Science Letters v. 605, p.118037. <https://doi.org/10.1016/j.epsl.2023.118037>

354

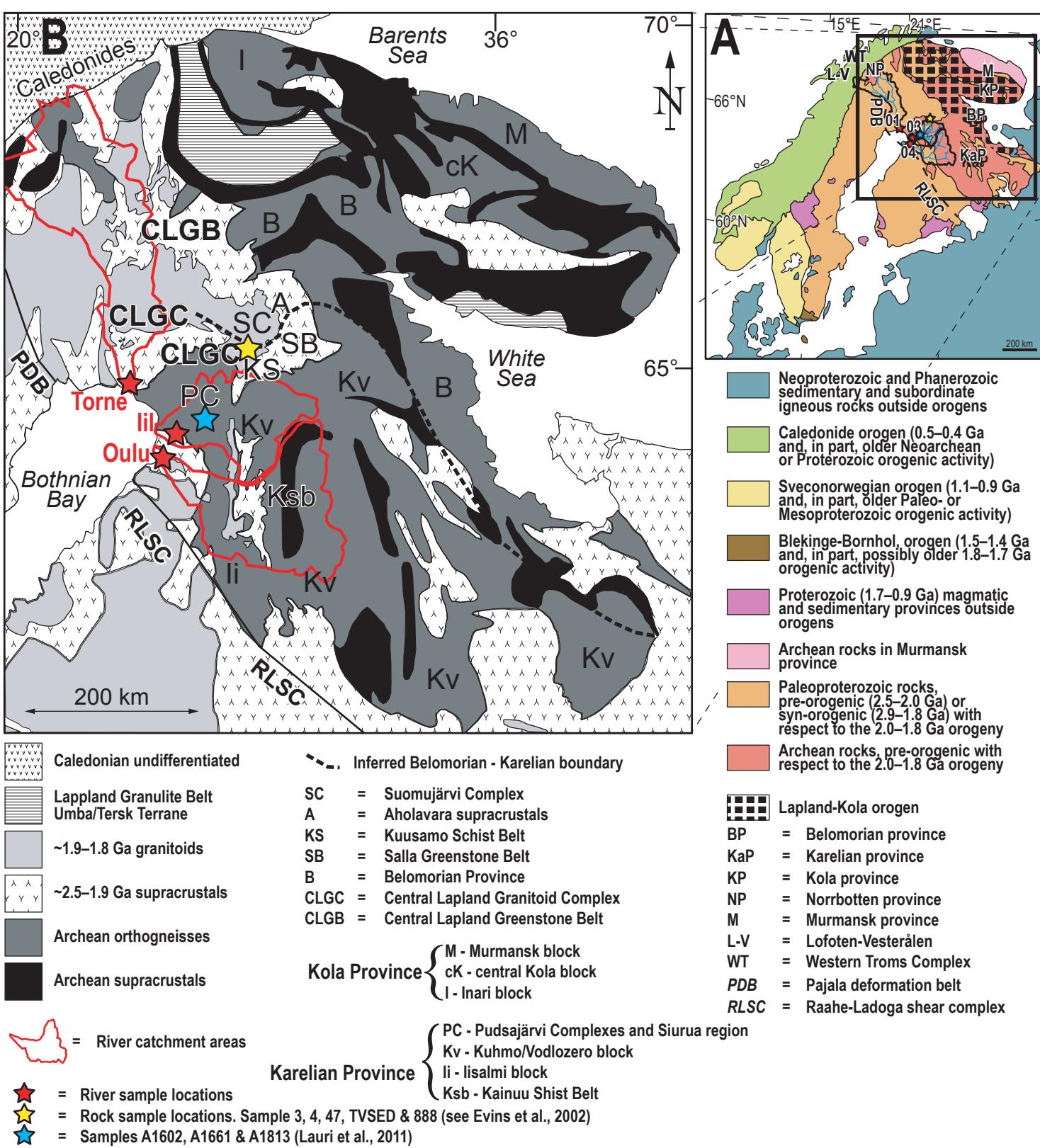
355 Whitehouse, M. J., Kemp, A. I., and Petersson, A., 2022, Persistent mildly supra-chondritic
356 initial Hf in the Lewisian Complex, NW Scotland: Implications for Neoarchean crust-mantle
357 differentiation: Chemical Geology, v. 606, p. 121001,
358 <https://doi.org/10.1016/j.chemgeo.2022.121001>

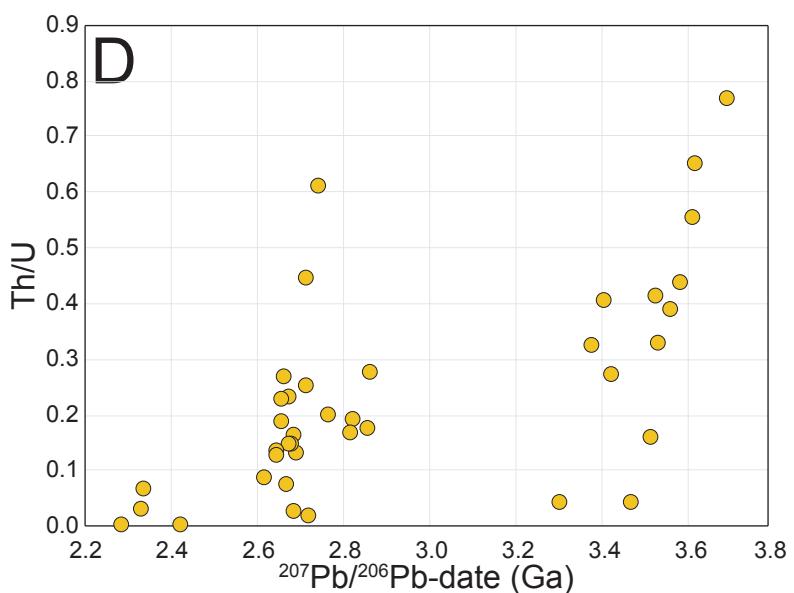
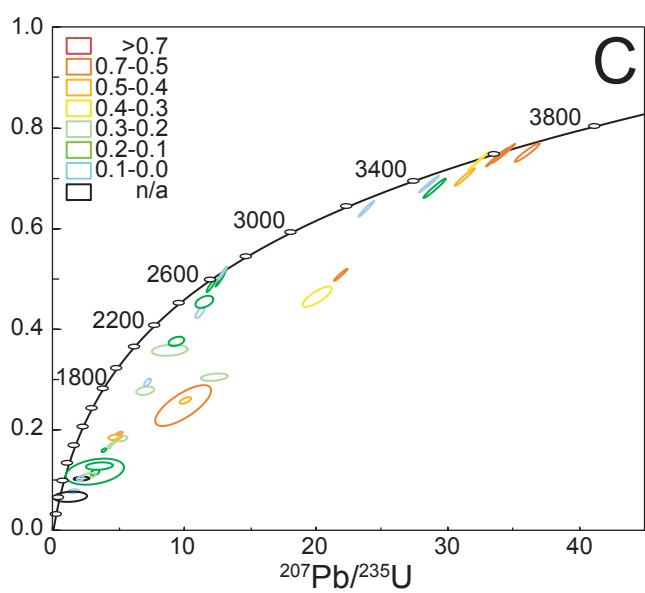
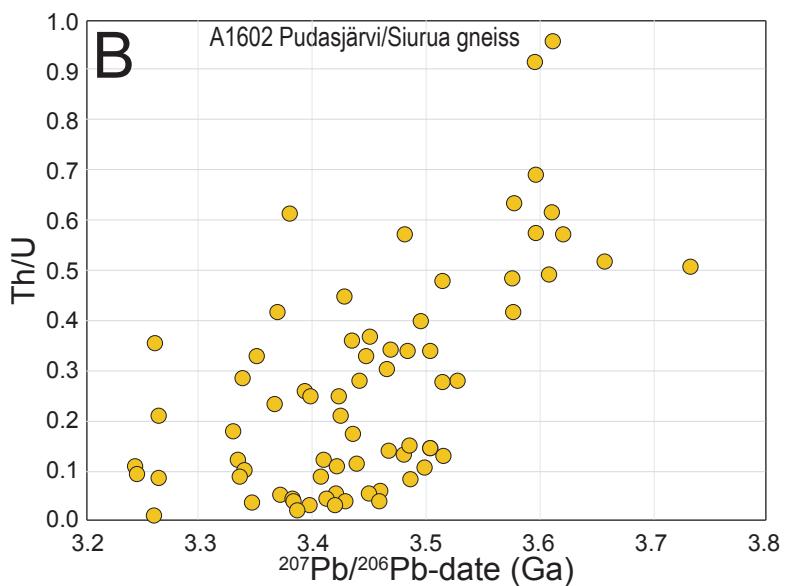
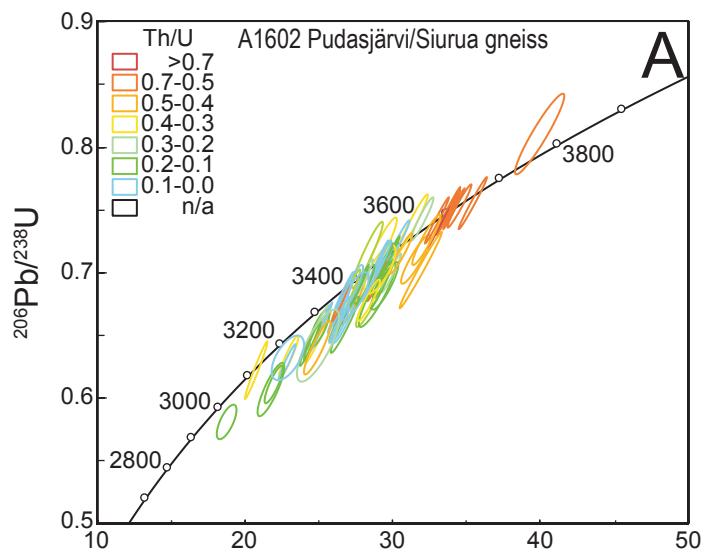
359

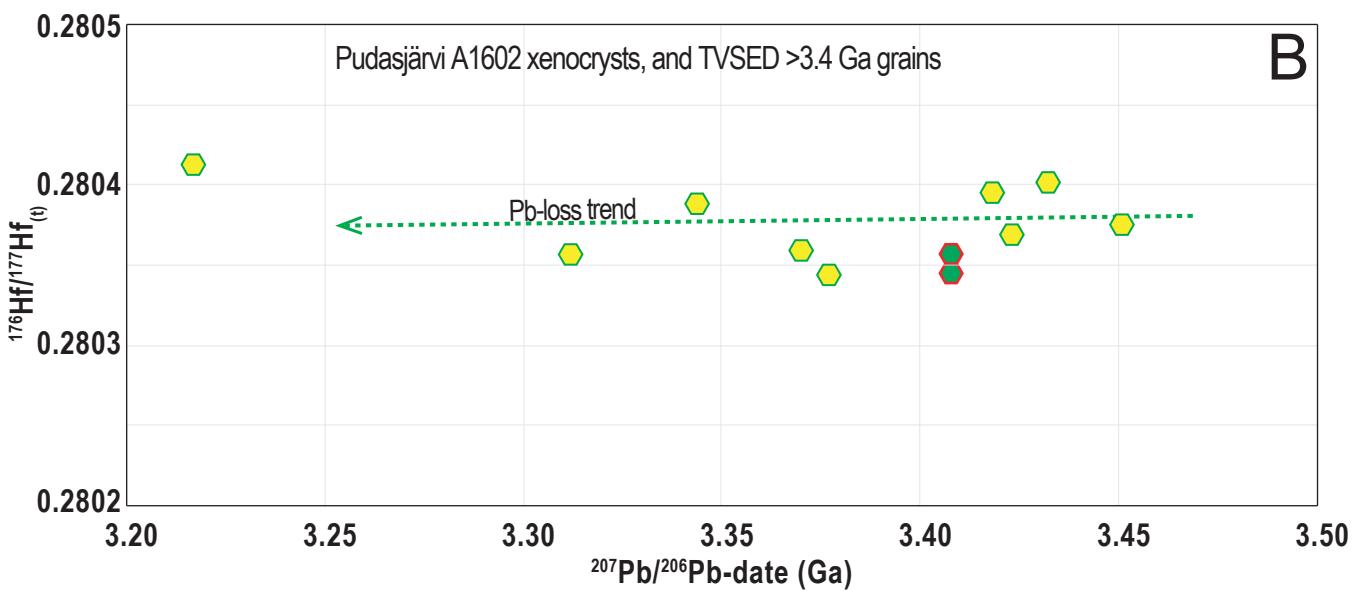
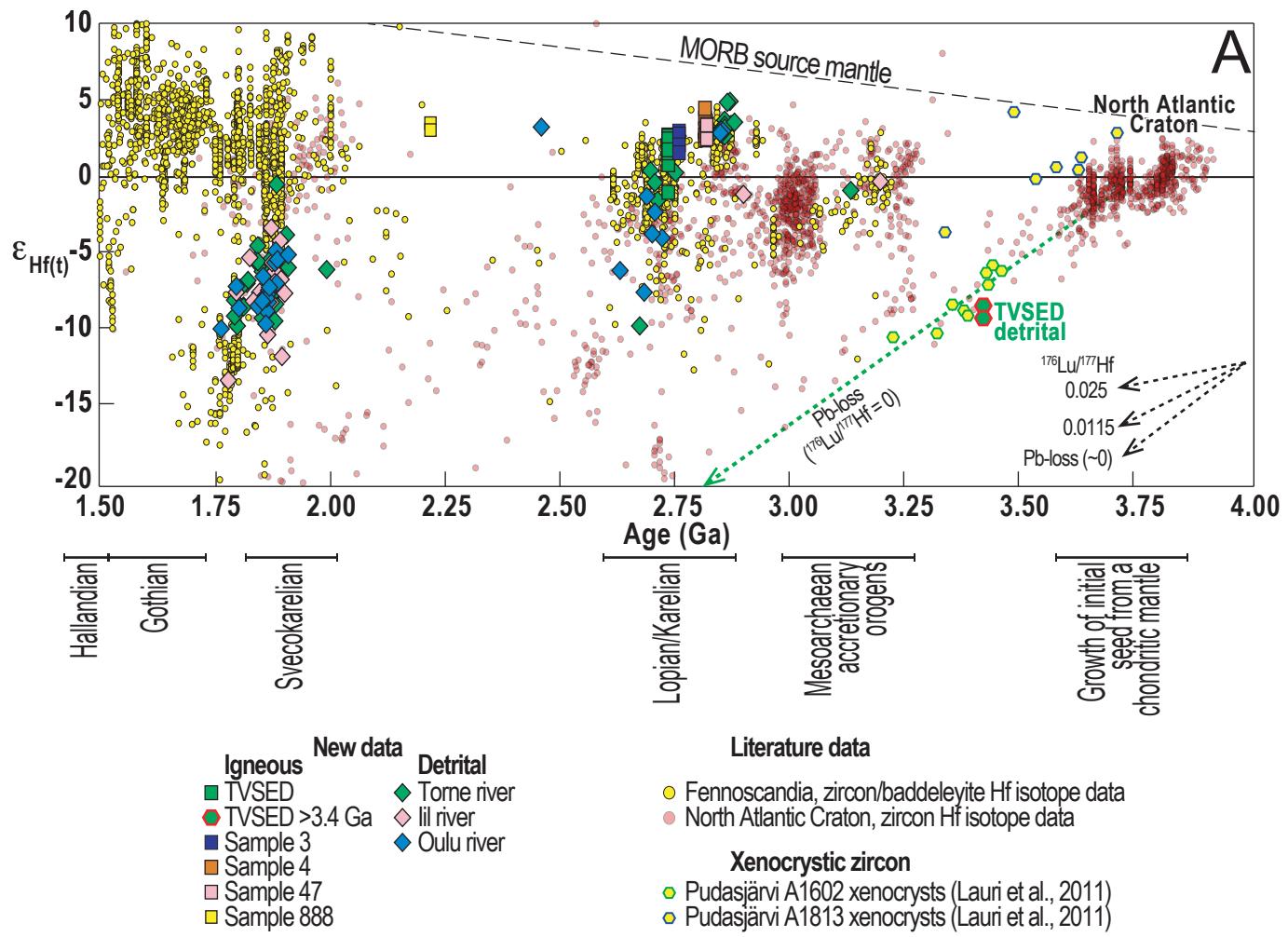
360 [Captions](#)

361

362 Figure 1. (A) Simplified geological map of the Fennoscandia showing the main geological
363 units, based on Stephens and Bergman (2020). (B) Simplified geological map of the northern
364 Fennoscandia showing individual blocks and complexes, based on Evins et al. (2002).


365





366 Figure 2. (A and C) Concordia plot of zircon U-Pb data from sample A1602 (A) and A1813
367 (C) including our new data (n = 61) and published data (Mutanen and Huhma, 2003, n = 8).
368 Colours denote different Th/U ratios. (B and D) Th/U versus $^{207}\text{Pb}/^{206}\text{Pb}$ dates of the same
369 analyses showing the positive correlation between Th/U and age. Reversely discordant data
370 from Mutanen and Huhma (2003) have been omitted.



371

372 Figure 3. (A) Zircon $\epsilon_{\text{Hf(t)}}$ versus date (Ga). Squares denote rock samples (this study) and
373 diamonds denote river samples (this study). Circles represent literature data. Yellow circles:
374 3733 Fennoscandian zircon/baddeleyite Hf isotope data. Red circles: 2477 zircon Hf isotope
375 data from southern W Greenland. Hexagons depict inherited zircon. Green arrow defines a
376 Pb-loss trend ($^{176}\text{Lu}/^{177}\text{Hf} = 0$) from ca. 3.75 Ga to ca. 2.7 Ga. References to data found in
377 Appendix DR 1. (B) $^{176}\text{Hf}/^{177}\text{Hf}_{\text{(t)}}$ versus $^{207}\text{Pb}/^{206}\text{Pb}$ dates (Ga) of the Siurua gneiss A1602
378 and TVSED showing a horizontal trend indicative of Pb-loss, with unchanged Hf isotope
379 composition.

380

