
Systems biology

Identification of disease modules using higher-order

network structure
Pramesh Singh 1,2, Hannah Kuder3, Anna Ritz 1,*
1Biology Department, Reed College, Portland, OR 97202, United States
2Data Intensive Studies Center, Tufts University, Medford, MA 02155, United States
3Physics Department, Reed College, Portland, OR 97202, United States

*Corresponding author. Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, United States. E-mail: aritz@reed.edu

Associate Editor: Sofia Forslund

Abstract

Motivation: Higher-order interaction patterns among proteins have the potential to reveal mechanisms behind molecular processes and
diseases. While clustering methods are used to identify functional groups within molecular interaction networks, these methods largely focus on
edge density and do not explicitly take into consideration higher-order interactions. Disease genes in these networks have been shown to exhibit
rich higher-order structure in their vicinity, and considering these higher-order interaction patterns in network clustering have the potential to
reveal new disease-associated modules.

Results: We propose a higher-order community detection method which identifies community structure in networks with respect to specific
higher-order connectivity patterns beyond edges. Higher-order community detection on four different protein–protein interaction networks
identifies biologically significant modules and disease modules that conventional edge-based clustering methods fail to discover. Higher-order
clusters also identify disease modules from genome-wide association study data, including new modules that were not discovered by
top-performing approaches in a Disease Module DREAM Challenge. Our approach provides a more comprehensive view of community structure
that enables us to predict new disease–gene associations.

Availability and implementation: https://github.com/Reed-CompBio/graphlet-clustering.

1 Introduction

Understanding how genes and proteins interact with each
other is a fundamental problem in molecular biology. Recent
advancements in high-throughput experiments and computa-

tional techniques have enabled accurate inference of the un-
derlying molecular interaction networks. Many complex

diseases are caused by a number of genes or proteins interact-
ing with one another (Oti et al. 2006), yet identifying such a
group (also called a disease module) in a molecular interac-

tion network such as a protein–protein interaction (PPI) net-
work (an interactome) is computationally challenging. A
common way to find these groups is to use community detec-

tion (or clustering) methods that aim to find densely con-
nected subsets of nodes in a given network. There is another

class of methods to discover these groups which takes as input
the PPI network and a known set of disease genes and builds
these groups (Ghiassian et al. 2015, Levi et al. 2021).

However, in this article we focus on the former. A number of
different community detection algorithms have been devel-

oped and used extensively over the years for this task
(Fortunato 2010, Choobdar et al. 2019). Recently, the
DREAM Disease Module Identification Challenge systemati-

cally assessed 75 community detection algorithms to detect
modules across six different PPI networks that are enriched in
genome-wide association study (GWAS) data from 180

diseases (Choobdar et al. 2019). While these methods have
been useful in detecting disease groups in biological networks,
they differ significantly from each other and show varying
performance (e.g. number of significant modules and their
sizes), suggesting that optimal detection of these disease mod-
ules remains a challenging task.
Despite their differences, nearly all community detection

algorithms focus on identifying groups of nodes that are
densely connected by edges. Thus, these methods rely on pair-
wise relationships between nodes while neglecting higher-
order interaction patterns among more than two nodes. The
importance of higher-order structure within biological net-
works has been emphasized by many recent studies (Benson
et al. 2016, Agrawal et al. 2018, Rubel et al. 2022).
Therefore, it is worthwhile to extend the idea of communities
to higher-order communities that are groups of nodes con-
nected by pattern involving more than two nodes. However,
besides a few methods (Arenas et al. 2008, Benson et al.
2016) which define communities of motifs (Milo et al. 2002),
not much attention has been paid to investigating higher-
order communities within networks.
Graphlets (Fig. 1) are small induced subgraphs and have

been used to characterize the higher-order topology of biolog-
ical networks (Pr�zulj et al. 2004, Ho�cevar and Dem�sar 2017,
Agrawal et al. 2018, Rubel et al. 2022). A recent paper
defines graphlet-induced networks (Windels et al. 2019), in
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which, all nodes that comprise a graphlet in an PPI network

are connected into a clique, resulting in a network with dense

subregions. However, the density of the resulting network can

negatively affect the quality of network-based clustering (or

partition).
In this article, we develop a new graphlet-based community

detection method that generalizes the conventional edge-
based communities and identifies groups of nodes that are

connected through specific graphlets. In contrast to Windels

et al. (2019), our approach involves transforming a given net-

work to retain edges that participate in a particular graphlet

and subsequently applying a random-walk based clustering

algorithm to this transformed network which is computation-

ally more advantageous. This way, by restricting the random-
walk to edges of interest we can distinguish the parts of the

network with a high concentration of a particular graphlet.

We show that different graphlets admit quantifiably different

clusterings, and comparing these clusters from four different

interactomes with expert curated pathway databases, we find

that higher-order graphlets detect biologically relevant func-

tional groups that are missed by the edge-based, classic clus-
tering algorithm. Further, using GWAS trait datasets and

disease association datasets, we show that specific graphlets

admit clusters that are enriched for specific trait and disease-

associated genes that edge-based clustering algorithms do not

capture. Thus, leveraging the higher-order connectivity of net-

works in community detection applications can reveal rela-
tionships among disease genes that were previously unknown.

2 Methods

2.1 Graphlets

Graphlets are defined as connected, induced, non-isomorphic

subgraphs of a specific size (Pr�zulj et al. 2004). Graphlets de-

scribe the structure of a network without requiring the specifi-
cation of a null model and thus differ from motifs (Milo et al.

2002). The edges of every graphlet are partitioned into a set

of automorphism groups called orbits such that two edges be-

long to the same orbit if they map to each other in some iso-

morphic projection of the graphlet onto itself (Ho�cevar and

Dem�sar 2017) (Fig. 1). There are 30 graphlets up to five nodes

that have 67 edge orbits (see Supplementary Fig. S1). Existing
software such as ORCA (Ho�cevar and Dem�sar 2017) can

count, for every edge, the number of edge orbits of each type.

2.2 Graphlet-induced community structure

To identify communities that are enriched for specific graph-

lets (graphlet-induced clusters or modules), we make use of

the Markov Clustering algorithm (MCL) (Van Dongen 2000)

with a modified initial transition matrix.

2.2.1 Markov clustering algorithm

Given an adjacency matrix A, a random walk on a network

can be defined by a transition matrix P where the probability
of transitioning from node i to node j is pij ¼ aij=

P

j aij. To

find groups of densely connected nodes (i.e. clusters) in a net-

work, the standard MCL simulates a random walk and suc-

cessively applies expansion and inflation operators on the
transition matrix P (Van Dongen 2000). The expansion oper-

ation spreads random flow while the inflation operation

makes strong links stronger and weak links weaker which

reduces the flow between clusters. As the algorithm pro-

gresses, the network gets divided into disconnected subnet-
works. The procedure is repeated until the transition matrix

converges, i.e. it does not change with further expansion or

inflation operations (Van Dongen 2000). Finally, connected

subgraphs that remain after convergence are extracted as clus-

ters. The granularity of clusters can be tuned by varying the
inflation parameter. In general, a larger inflation parameter

results in more fine-grained clusters.
We used an existing implementation of MCL (Van Dongen

2008). For large networks, this algorithm does not follow the

MCL procedure exactly and uses approximations for speed

thus we sometimes find isolated nodes in clusters. As a final
step, we identify and eliminate any such nodes and retain only

the connected component within the cluster.

2.2.2 Modified transition matrix

We modify the transition matrix P to feed graphlet-specific

transition matrices into MCL. For a given graphlet Gk, the

probability to transition from node i to node j is nonzero only

when the edge from i to j participates in graphlet Gk. Let Ok

be the set of edge orbits that define graphlet Gk (e.g. Ok ¼
f2; 3g for graphlet G3 in Fig. 1). Given an undirected network

G with adjacency matrix A, we first count, for every edge, the

number of edge orbits of each type using ORCA (Ho�cevar

and Dem�sar 2017). We then make a modified adjacency ma-
trix AðkÞ, where

a
ðkÞ
ij ¼

aij if edge ði; jÞ has at least one orbit in Ok

0 otherwise:

�

As a consequence of this edge selection, a subgraph of the
original network is retained. Further, the graphlet-specific ma-

trix for G0 is simply the original adjacency matrix A. The

graphlet-specific transition matrix PðkÞ for graphlet Gk is then

p
ðkÞ
ij ¼ a

ðkÞ
ij =

X

j

a
ðkÞ
ij :

For nodes i that have no incident edges we set p
ðkÞ
ii ¼ 1, im-

plying that a walker starting at node i stays at node i. The

idea is illustrated in Fig. 2 for graphlet G2 (triangle).
MCL is then used to find communities using the graphlet-

specific transition matrices, which finds the communities that

are connected through Gk. We only keep clusters of size 3 or

larger for further analysis. For the remainder of this article,
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Figure 1. All graphlets of size 3 and 4 (G1–G8). The distinct edge positions
(0–11) (edge orbits) are shown with a different line style and color.
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we will refer to the transformed network obtained by a modi-
fied transition network as a graphlet-induced network.

2.3 Retaining nonredundant graphlet-induced
networks

Our approach returns 30 different clusterings of the same PPI
network, one for each of the graphlets up to five nodes
(G0–G29). However, some of graphlet-specific transition ma-
trices PðkÞ are in fact not very different from the original tran-
sition matrix P. As a result, some of the MCL clusterings are
similar not because they clustered different networks in the
same way, but because they are essentially clustering the same
network. We identify and ignore these redundant graphlets
that do not alter the network. For each network, we retain
graphlets Gk where the graphlet-induced adjacency matrix is
<95% similar, indicating that more than 5% of the edges are
dropped because they do not participate in the same graphlet
(Supplementary Fig. S4). The numbers of retained graphlets
for each network are shown in Table 1.

2.4 Methods for comparison

We note that there are many available clustering algorithms,
and many of them can be adapted to use graphlet-induced
networks as described above. Running MCL withG0 is equiv-
alent to the original MCL algorithm, since the G0-induced
subnetwork of G is simply G. Thus, we use the G0 MCL as a
comparison to traditional MCL.
We also compare our results to six additional methods

from two bodies of work. In the first method we consider a
different way of constructing the graphlet-induced network
described in Windels et al. (2019), which has similar goals to
our work. In contrast to our approach, the approach of
Windels et al. (2019) defines two nodes to be adjacent in a

graphlet-induced network if they share a graphlet regardless
of whether or not they are connected in the original network.
Thus, the main difference between the two approaches is that
Windels et al. (2019) transforms the network by turning a
graphlet into a fully connected clique which makes the in-
duced networks denser than the original whereas we remove
edges in a targeted manner which results in a sparser induced
network than the original. The approach of Windels et al.
(2019) introduces a large number of new edges in sparse net-
works [that contain large number of sparse graphlets (e.g. G3,
G9, G10, etc.)] since it adds the missing links in the graphlets
under consideration. To evaluate the influence of the
graphlet-transformed networks, we run MCL on the trans-
formed networks for both approaches. Due to the density of
the transformed network using the graphlet-induced network
of Windels et al. (2019), we limited our comparison to graph-
lets up to four nodes.
Next, we compare our approach to the five top-performing

DREAM challenge algorithms (Choobdar et al. 2019), which
include a kernel clustering approach (method K1), a random-
walk based method (method R1), a local agglomerative clus-
tering (method L1), and two methods optimizing modularity
(methods M1 and M2). When comparing using the DREAM
challenge algorithms, we evaluate the communities based on
the DREAM Challenge inputs of 180 GWAS datasets. Besides
the known limitations of GWAS (Tam et al. 2019), we also
note that we have not optimized our graphlet-induced MCL
to perform well for the DREAM Challenge inputs, but this
provides a nice baseline compared to the state-of-the-art.

2.5 Data sources
2.5.1 Interactomes

We applied our method to four interactomes (Table 1):
InWeb (Li et al. 2017), an interactome from the Stanford
Network Analysis Project (SNAP) (Agrawal et al. 2018),
HuRI (Luck et al. 2020), which include aggregated physical
PPIs, and a subset of the STRING (Szklarczyk et al. 2021) net-
work of edges weighted 0.8 or larger on a scale from 0 to 1,
which includes both direct physical interactions as well as
functional associations. These interactomes range in size from
63 000 edges to nearly 400 000 edges and contain widely dif-
ferent number of graphlets within them (Supplementary Fig.
S2). Given such variability in network structure, a single
choice of inflation parameter may not be appropriate for all
the interactomes. Thus, we performed a parameter sweep for
each interactome by running MCL with varying inflation
parameters (between 1.0 and 8.0) and plotted both the num-
ber of clusters returned as well as the number of nodes in the
largest cluster for each network and inflation parameter
(Supplementary Fig. S3). The inflation parameter was chosen
such that the size of the largest cluster is of the order of hun-
dreds of nodes (Table 1).

2.5.2 Biological process and disease gene sets

To assess the performance of different graphlet-induced mod-
ules, we compare them to pathways (represented as gene sets)
from the Human Molecular Signatures Database (MSigDB)
(Subramanian et al. 2005). Specifically, we considered a col-
lection of 292 pathway gene sets from BioCarta (Nishimura
2001), 186 pathway gene sets from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto 2000),
and 196 pathway gene sets from the Pathway Interaction
Database (PID) (Schaefer et al. 2009). Curated by domain
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Figure 2. An illustration of graphlet-induced network for G2. Under the
standard MCL, transition all edges are allowed and are shown by black
lines (top). For graphlet G2 (triangle), red dashed edges represent
transitions that are no longer allowed for G2 (bottom).
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experts, these gene sets are canonical representations of a
biological process.
We also compared the graphlet-induced modules with dis-

ease gene sets. We used 519 annotated disease gene sets
(Agrawal et al. 2018) from DisGeNET (Pi~nero et al. 2015)
which integrates expert-curated databases that cover informa-
tion on Mendelian and complex diseases and 34 gene-level
cancer datasets from The Cancer Genome Atlas (TCGA)
mutations, curated by OncoVar (Wang et al. 2021).

2.5.3 GWAS trait datasets

We also evaluated disease–gene associations using GWAS
data, which offer a complementary perspective to the disease
gene sets. We used a collection of 180 GWASs Datasets of
disease-related human phenotypes from the DREAM chal-
lenge (Choobdar et al. 2019), which cover a wide range of
molecular processes.

2.6 Module assessment
2.6.1 Evaluating clustering similarity

We first evaluate the similarity of MCL clusterings from the
same PPI network using different graphlet-induced networks.
To compare clusterings from different graphlet-induced MCL
runs, as well as compare graphlet-induced MCL to the other
approaches, we use the Adjusted Rand index (ARI) which
controls for cluster matching due to random chance. In com-
puting the ARI, we only include the clusters that have at least
three nodes.

2.6.2 Hypergeometric P-value-based enrichment

To evaluate the enrichment of the pathway and disease gene
sets, we use measures based on the hypergeometric P-value.
For every module/gene set pair, we calculate the hypergeomet-
ric P-value adjusted by the Benjamini–Hochberg method
(Benjamini and Hochberg 1995) for multiple hypothesis test-
ing. We then calculate the following measures using a P-value
cutoff of < 0:05:

• The gene set coverage is the number of gene sets for which
a significant module was found. We also calculate the
gene set percentage as the fraction of genes (out of all
genes in the gene sets) in the significant gene sets.

• The module coverage is the number of modules that are
significantly enriched for some gene set. We also calculate
the module percentage as the fraction of genes in the sig-
nificantly enriched modules (out of genes in all modules
within the specified size).

2.6.3 DREAM challenge enrichment

To evaluate the enrichment of GWASs datasets, we use the
DREAM Challenge’s framework of using Pascal (Lamparter
et al. 2016). Pascal first obtains gene scores by aggregating
single nucleotide polymorphism P-values from GWAS, while
correcting for linkage disequilibrium structure. It then com-
bines the scores of genes that belong to the same pathways to
obtain pathway scores (P-values) using the chi-squared
method described in Lamparter et al. (2016). These pathway
level P-values are further adjusted for multiple testing using
the Benjamini–Hochberg correction (Choobdar et al. 2019).
Finally, these adjusted P-values are used to determine the
number of significant modules for a given method. Note that
the DREAM Challenge’s criteria of number of significant
modules is equivalent to our measure of module coverage de-
scribed above. In the DREAM challenge methods are ranked
according to the number of significant modules that they dis-
cover. Since each significant module can be associated with
more than one GWAS, we also report the number of signifi-
cant GWAS datasets (trait coverage, similar to gene set cover-
age in the previous section).

3 Results

3.1 Graphlets admit different clusters

We first quantify the similarity in the community structure
found by clustering different nonredundant graphlet-induced
networks with MCL. The variability in the ARI scores be-
tween different MCL clusterings for each of the four PPI net-
works shows that a number of these clusterings are
substantially different from the original G0-based clustering
and thus contain distinct information within them [Fig. 3 (see
Supplementary Fig. S5 for all 30 graphlets)]. Specifically,
about 57% pairs of community structures in STRING, 44%
in InWeb, 26% in SNAP, and 58% in HuRI have an ARI
score of <0.8. For each nonredundant graphlet, we also char-
acterize the topological structure within clusters in terms of
network transitivity. Generally, clusters obtained by denser
graphlets exhibit higher transitivity (Supplementary Fig. S6).

3.2 Pathway enrichment of clusters

We next assess the biological relevance of clusters obtained by
higher-order graphlets. Since we expect genes within path-
ways to be near each other in PPI networks, we focus on the
gene set percentage of the three pathway databases (BioCarta,
KEGG, and PID).

Table 1. PPI networks used in this study.a

Interactome Network statistics Retained Graphlet-MCL clustering

Nodes Edges Avg. Deg. Weighted Graphlets Inflation Largest

cluster

No. of

clusters

STRING (Szklarczyk et al. 2021)
(weights > 0:8)

10 375 213 996 41.2 Yes 1,3,4,5,7,9,10,11,12,15,
16,17,19,20,21,22,24,25,27,28,29

8.0 798 917

InWeb (Li et al. 2017) 12 420 397 309 64.0 Yes 5,8,20,22,24,26,27,28,29 3.0 99 1354
SNAP (Agrawal et al. 2018) 21 557 338 636 31.4 No 2,7,8,18,22,24,26,27,28,29 3.0 572 1735
HuRI (Luck et al. 2020) 9094 63 242 14.0 No 2,5,7,8,18,20,21,22,23,24,25,

26,27,28,29
3.0 131 1013

a Retained graphlets are those whose graphlet-induced transition matrices are sufficiently different from the original (G0) network. For each network, the
selected inflation parameter, the size of the largest cluster, and the total number of clusters that contain at least three nodes is shown (see Supplementary Table
S1 for runtime of the algorithm).
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In all combinations of PPI network and pathway database,
the gene set percentage is larger for higher-order graphlet-in-
duced clusterings (Gk ¼ G1 � G29) than clustering based on
G0 (Fig. 4). This is even true for the HuRI PPI network, which

also identifies a good number of pathway-enriched modules
using G0 that are not found in the higher-order clusterings
(red bars). Importantly, this analysis shows that higher-order
graphlets can find unique pathway associations (orange bars)
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that are not detected by G0. In general, a module can be asso-
ciated with more than one pathway and not all modules find
a significant association (see Supplementary Fig. S7 for frac-
tion of enriched clusters).

3.3 Disease gene enrichment

We then moved on to assessing the graphlet-enriched clusters
with respect to identifying disease modules. We do not expect
genes from each disease to be near each other in the PPI net-
works, especially for complex diseases—thus, we considered
the total number of diseases that are enriched (gene set cover-
age) rather than the percentage of diseases found for each
dataset. We find the number of significant disease modules
for G0 and higher-order Gk-based clusterings (Fig. 5). Each of
these sets of clusterings finds unique disease associations and
with the exception of HuRI, the number of unique associa-
tions in higher-order clusterings is consistently higher across
all interactomes and disease databases. These results indicate
that modules found by other graphlet-based methods can pro-
vide a large number of new disease associations that the tradi-
tional approach does not find.
To show that these modules can provide functional predic-

tions for un-annotated genes, we examined four modules that
are enriched in distinct diseases from DisGeNET in the SNAP
PPI network (Fig. 6). Notably, none of these diseases are
revealed in the G0-based clustering. Even the best correspond-
ing modules in the G0-based clustering have adjusted P-values
that do not cross the significance threshold (Supplementary
Table S2). These networks show the edges that participate in
the corresponding graphlet in the SNAP PPI network.
Figure 6a is associated with thrombosis—a condition char-

acterized by formation of clots inside blood vessels. The genes
colored blue are already associated with thrombosis accord-
ing to DisGeNet. Five of the gray genes (GGCX, F2RL3, F11,
F7, and GP5) are known to play a role in blood coagulation
(Megy et al. 2019). However, the gene SERPINB6 does not
have a known link to thrombosis and it may be a promising
candidate for further investigation. Similarly, the association
of the blue nodes with Chronic Myeloid Leukemia (Fig. 6b) is
already known (Sheng-Fung et al. 2004, Hanoun et al. 2012),
while the gray genes are potentially new. In Fig. 6c, genes C5
and CPN1 are our predicted associations for age related mac-
ular degeneration besides the known involvement of the blue

genes (Lu et al. 2018). Figure 6d shows the disease module as-
sociated with Glioblastoma. Deregulation of NOTCH recep-
tors and their ligands (nodes NOTCH1, NOTCH2,
NOTCH3, JAG1, JAG 2, DLL1, DLL3, and DLL4) are
known to play a role in Glioblastoma (Fiaschetti et al. 2014);
but the role ofMFNG is not established.
We also compared the graphlet-induced clusters from the

SNAP PPI network to those using the approach of Windels
et al. (2019) for graphlets up to four nodes. For the disease
gene sets from DisGeNET (Pi~nero et al. 2015), we find that
our approach results in a larger number of enriched disease
modules for each graphlet G1 � G7 (Supplementary Fig. S8).
Running the clustering algorithm was prohibitively slow for
the other graphlet-induced networks constructed according to
Windels et al. (2019), limiting our ability to compare across
all four networks.

3.4 GWAS enrichment

We evaluate the performance of our method to find disease/
trait associated modules in the InWeb interactome using 180
GWAS datasets from the DREAM Challenge (Choobdar
et al. 2019). We chose to use InWeb for this analysis since it
was also used in the DREAM Challenge. InWeb is also sparse
enough and can be efficiently analyzed without the need to
discard the low weight edges for speed as we did in STRING
(Table 1).
Our method is able to capture a number of trait-associated

modules in InWeb (Fig. 7). While none of the graphlet-based
methods outperform K1, M1, and M2, five of these methods
are at least as good as L2 and R1 (Fig. 7, top). We observe a
similar trend when comparing the number of GWAS associa-
tions discovered by each of these methods. DREAM challenge
methods K1 and M2 still find more GWAS associations,
which is not necessarily surprising since the DREAM chal-
lenge methods are customized to perform well on the chal-
lenge datasets. Nevertheless, all graphlet-based methods are
at least as good as the L2 (showing lowest performance of the
top five methods) (Fig. 7, bottom). Interestingly, the modules
found by each higher-order graphlet reveal 17 significant
associations that are not found by G0 (shown in green in
Fig. 7). In addition, we also find that there are five unique
associations that higher-order graphlets identify but are not
found by G0 or any of the five top-performing DREAM
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Figure 5. Number of significantly associated unique diseases from different disease association databases discovered by higher-order clustering. Like in
Fig. 4, although each disease can be associated with more than one module, it is counted only once.
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methods (Table 2). These five datasets represent four distinct
disease classes, including anthropometric, cardiovascular, gly-
cemic, and neurodegenerative diseases (Supplementary Table
S3).
Two notable examples of a module uniquely identified by

graphlet-based method are shown in Fig. 8 (the other three
modules are visualized in Supplementary Fig. S9). First, the
module of size 13 associated with body mass index (BMI)
contains genes with statistically significant Pascal gene scores
(adjusted P < .05). The involvement of genes in obesity/BMI
is supported by other studies. A recent study links variants in
TAOK2 to human obesity (Agrawal et al. 2021). Genes

MAP2K3 and MAPKAPK3 are found to play a role in BMI
(Bian et al. 2013, Shao et al. 2022). Other genes in MAPK sig-
naling that are not significant according to the gene scores
(RPS6KA4, DUSP4, MAPKAPK5) have also been associated
with obesity (Ow and Kuznetsov 2015). EEF2K is also

Figure 6. Disease modules discovered by graphlet-aware community detection using specific graphlets for Thrombosis (a, graphlet G18), Chronic Myeloid
Leukemia (b, graphlet G29), Age related macular degeneration (c, graphlet G7), and Glioblastoma (d, graphlet G26). Blue nodes indicate genes present in
the DisGeNet disease set and gray nodes are not annotated to the disease. The hypergeometric P-value is indicated below each module.
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Figure 7. Number of modules significantly associated a GWAS trait (top)
and the number of significantly associated GWAS traits found (bottom) in
the InWeb interactome using different (nonredundant) graphlet-based
clustering. Results obtained by different (nonredundant) graphlet-based
clustering are shown in blue and top five methods from DREAM
challenge submission are shown in orange whereas green indicates the
set of unique associations identified by higher-order graphlets that are not
found by any of the G0-based clusters.

Table 2. GWAS traits identified by different higher-order graphlet-based

clusterings that are not identified either by our G0-based method or any of

the top five DREAM challenge methods.

GWAS trait Graphlet Module Adj.

MCL Size P-value

Coronary artery disease
(Nikpay et al. 2015)

22 3 9.78e�6

Body mass index
(Horikoshi et al. 2015)

29 13 1.01e�4

Type 2 diabetes
(Morris et al. 2012)

27 6 7.86e�5

Overweight (Berndt et al. 2013) 24 5 4.02e�5
Alzheimer’s disease
(Lambert et al. 2013)

5 3 9.41e�6

Figure 8. Modules detected by G29-based and G27-based community
detection which are associated with the traits BMI (top) and type 2
diabetes (bottom) with module P-values 1.01e�4 and 7.86e�5,
respectively, computed by Pascal (Lamparter et al. 2016) (see
Supplementary Table S3). The gene P-values in each module are indicated
by different colors. The lighter shades represent smaller gene P-values.
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predicted to be a novel target for obesity (Joshi et al. 2021).
However, this module also contains genes (e.g. ELK1,
MAPKAPK2) with no gene score that could potentially be
associated with BMI.
The module related to type 2 diabetes contains three genes

with significant P-values (THADA, PTPLA, HSD17B12) and
three with P < .05 (Fig. 8). The genes THADA and HSD17B12
have previously been implicated in type 2 diabetes (Zeggini et al.
2008, Hachim et al. 2020). The other genes in the module are
potentially new and could be good candidates for further investi-
gations. This includes the genes PTPLA with a statistically
significant gene score and FTSJwith no assigned gene score.

4 Discussion

Well-established community detection methods for disease
module prediction often neglect the higher-order connectivity
patterns among genes or proteins of interest and focus only
on their pairwise relationships, even though, studies have
demonstrated that higher-order structure is biologically rele-
vant. In this article, we have presented a generalized commu-
nity detection method that incorporates higher-order
structures in the form of graphlets. While one can focus on
partition with respect to a particular graphlet that may be rel-
evant for a given problem, by providing an ensemble of parti-
tions, each corresponding to a different graphlet (including
G0), our approach provides a comprehensive view of network
communities. Each of the nonredundant graphlet-based clus-
terings offers a unique perspective and thus, compliments the
traditional (G0) clustering method. Using a collection of di-
verse expert-curated association datasets (pathways, diseases,
and GWAS), we further demonstrated usefulness of our ap-
proach in identifying disease modules in four different interac-
tomes. Our analysis shows strong evidence that the higher-
order graphlet-based clusters can reveal unique biological
associations that traditional methods cannot. We note that
for both pathway and disease gene enrichment, the clustering
methods do not perform well on HuRI. This can potentially
be attributed to the fact that the HuRI network is much
sparser and has a very different local structure compared to
the other three interactomes as it uses yeast two-hybrid (Y2H)
screens to detect pairwise protein interactions and is likely
free from ascertainment bias. Another reason is that HuRI
contains fewer nodes and fewer annotated genes for enrich-
ment which affects the statistical significance when perform-
ing the hypergeometric test. For pathway enrichment, we
could only map about 49% of BioCarta, 44% of KEGG, and
50% of PID genes onto HuRI. These fractions are roughly
(99%, 91%, 99%) for SNAP, (91%, 85%, 91%) for STRING,
and (89%, 74%, 88%) for InWeb, respectively.
A limitation of our study is that although it can find poten-

tially novel associations using an ensemble of graphlet-based
clusters, it does not determine the role or provide an interpre-
tation of a graphlet structure in a specific biological context.
While some network motifs (e.g. feed forward loop) and their
functions are well-studied, and some others such as paths of
length 3, are found to be important in the context of PPI net-
works (Kovács et al. 2019), a clear biological interpretation
of a general graphlet structure is still lacking and presents a
promising direction for future research. Sometimes dense
communities are functionally relevant. For this purpose, com-
munity detection with respect to a dense graphlet like G29 can
provide useful insights. In many of our benchmarks, we

observe that G29-based clustering finds more significant asso-

ciations (Figs 6–8). One way to systematically assess the im-
portance of graphlets in a given interactome can be to look at

their over and under-representation in it (Rubel et al. 2022).
Our graphlet-based clustering framework uses undirected

graphlets and thus works with undirected networks.
However, many gene/protein interactions are inherently di-

rected. If we ignore the edge directions, we can still apply our
framework to find relevant modules in these networks.

However, by neglecting the directionality of edges, we may be

missing important context about these interactions. An inter-
esting future research direction will be extend this framework

to directed networks by incorporating directed graphlets

(Sarajli�c et al. 2016, Trpevski et al. 2016) into our module de-
tection approach.
Complex diseases likely have multiple factors in play, and

while the same disease might appear in multiple modules, in

some cases, it is possible that one graphlet is insufficient to
capture the heterogeneity of disease genes. Prior work has

suggested that multiple graphlets are over-represented in the

same disease module or pathway (Agrawal et al. 2018, Rubel
et al. 2022). Thus, extending our framework to identify mod-

ules with respect to a combination of different graphlets, or

identifying and taking a weighted consensus across partitions
found by most relevant graphlets may reveal more accurate

disease associations.
Finally, it will be interesting to investigate higher-order or-

ganization in problems beyond network clustering, for exam-
ple, pathway reconstruction where the goal is to find a

subnetwork that connects genes of interest (Ritz et al. 2016)

or the problem of detecting active modules given a set of ac-
tive/seed genes (Levi et al. 2021). Even though these networks

contain higher-order structure within them (Rubel et al.

2022), to our knowledge no method explicitly focuses on op-
timizing the higher-order structure in these networks. Thus, it

may be worthwhile to develop new methods that aim to iden-

tify subnetworks that exhibit a desired graphlet profile.
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