
Compiling Loop-Based Nested Parallelism for
Irregular Workloads

Yian Su
Northwestern University

Evanston, IL, USA

Mike Rainey
Carnegie Mellon University

Pittsburgh, PA, USA

Nick Wanninger
Northwestern University

Evanston, IL, USA

Nadharm Dhiantravan
Northwestern University

Evanston, IL, USA

Jasper Liang
Northwestern University

Evanston, IL, USA

Umut A. Acar
Carnegie Mellon University

Pittsburgh, PA, USA

Peter Dinda
Northwestern University

Evanston, IL, USA

Simone Campanoni
Northwestern University

Evanston, IL, USA

Abstract
Modern programming languages o�er special syntax and
semantics for logical fork-join parallelism in the form of par-
allel loops, allowing them to be nested, e.g., a parallel loop
within another parallel loop. This expressiveness comes at a
price, however: on modern multicore systems, realizing logi-
cal parallelism results in overheads due to the creation and
management of parallel tasks, which can wipe out the bene-
�ts of parallelism. Today, we expect application programmers
to cope with it by manually tuning and optimizing their code.
Such tuning requires programmers to reason about architec-
tural factors hidden behind layers of software abstractions,
such as task scheduling and load balancing. Managing these
factors is particularly challenging when workloads are irreg-
ular because their performance is input-sensitive. This paper
presents HBC, the �rst compiler that translates C/C++ pro-
grams with high-level, fork-join constructs (e.g., OpenMP)
to binaries capable of automatically controlling the cost of
parallelism and dealing with irregular, input-sensitive work-
loads. The basis of our approach is Heartbeat Scheduling, a
recent proposal for automatic granularity control, which is
backed by formal guarantees on performance. HBC binaries
outperform OpenMP binaries for workloads for which even
entirely manual solutions struggle to �nd the right balance
between parallelism and its costs.

ACM Reference Format:
Yian Su, Mike Rainey, Nick Wanninger, Nadharm Dhiantravan,
Jasper Liang, Umut A. Acar, Peter Dinda, and Simone Campanoni.
2024. Compiling Loop-Based Nested Parallelism for Irregular Work-
loads. In 29th ACM International Conference on Architectural Support

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
h�ps://doi.org/10.1145/3620665.3640405

for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,
NY, USA, 19 pages. h�ps://doi.org/10.1145/3620665.3640405

1 Introduction
Parallel programming continues to be hampered by the in-
ability of compilers to translate fork-join nested parallelism
in client programs into binaries that perform close to the
limits of modern multicore hardware. One reason is that a
binary that actually executes all possible parallel tasks de-
scribed by high-level fork-join constructs (e.g., the parallel
for of OpenMP) immediately encounters a massive overhead
that results in slowdowns measured in orders of magnitude,
thereby squashing all bene�ts of parallelism. Just spawning
a parallel task/thread requires a few thousand cycles (even in
a customized OS and even for the latest OS solutions), with
context-switch costs being similar [21, 23]. Unfortunately, ir-
regular workloads like sparse tensor computation and graph
analytics tend to have many independent loop iterations
that only take a few tens of clock cycles [6]. Spawning one
parallel task per loop iteration in these workloads easily
leads to slowing down execution rather than speeding it up,
both due to task-spawning overheads and the barrage of
context switches due to having many more tasks (e.g., loop
iterations) than cores. In a run-time environment without
preemption, the context-switch problem may be diminished,
but the potential for excessive task-related costs remains.

On the other hand, coarsening loop iterations (known as
chunking) to generate fewer tasks can easily degrade per-
formance by starving cores of tasks. This is the old problem
of parallelism granularity control [11, 13, 22]1. For example,
consider a loop where each iteration processes an element of
an input vector, and the amount of computation performed
depends on whether the element is non-zero. If the vector’s
non-zeros are not uniformly distributed, then static chunking
leads to an unbalanced computation. Because the fork-join
model requires a barrier at the end, the slowest task (the
unlucky one with the most non-zeros, say) dictates the la-
tency of the entire loop. The cores running the faster tasks
(processing fewer non-zeros) are now idle for a substantial

1Our results in Section 6.7 corroborate this prior work.
1

https://doi.org/10.1145/3620665.3640405
https://doi.org/10.1145/3620665.3640405

period of time. The appropriate chunking to avoid this is
input-dependent. Clearly, we need a dynamic solution.
The status quo places the burden on the application pro-

grammer’s shoulders. Accordingly, programmers sidestep
compilers by expressing a speci�c parallelism granularity
in their code, with the hope of achieving the right balance
between fork-join overhead and maximizing the program’s
performance on their multi-core CPU. But this decision is
typically not transferable between platforms, as it depends
on architecture-speci�c aspects related to its out-of-order
capabilities (e.g., instruction-issue widths) and inter-core
communication costs, as well as OS-speci�c aspects like
thread-creation and thread-switching costs [48]. Such com-
plications are most noticeable and di�cult to manage in
a certain, increasingly important class of applications that
is characterized by its workload being irregular, its perfor-
mance characteristics being signi�cantly in�uenced by the
input, and its input being drawn from a large range of pos-
sible shapes. Recent applications of this kind include those
that perform signi�cant amounts of sparse-matrix compu-
tation, e.g., in machine-learning algorithms [19], those that
use a domain-speci�c language, e.g., for tensor algebra [29],
or those that analyze large graphs [55]. For applications
featuring such irregular parallelism, the granularity-control
problem threatens to result in either a platform-speci�c, hard-
to-maintain, and costly codebase, or binaries that do not
leverage the full potential of the underlying architecture.

Recent research produced an alternative approach to gran-
ularity control, known as heartbeat scheduling [1]. It is the
�rst approach that provably controls the overheads of par-
allelism automatically, without embedding platform-speci�c
aspects into the program’s code. At a high level, the prop-
erties proven for heartbeat scheduling are twofold: task-
related costs are well amortized and the asymptotic amount
of parallelism in the source program is preserved. Heartbeat
scheduling works by postponing the decision of generating
additional parallelism to run-time and makes that decision
online, at a regularly occurring event, called the heartbeat. A
heartbeat happens at a �xed rate while the program executes,
and enables the program to continuously adapt to chang-
ing parallelism. The essential takeaway is that heartbeat
scheduling lets programmers express all possible fork-join
parallelism in their algorithm while allowing the runtime to
decide which portion to materialize and when.
Heartbeat scheduling implementations currently require

programmers to write their code, at least in part, in assembly.
The reason is that the implementations require the code to
be structured in an unconventional style, even though the
program’s code does not make granularity control decisions
itself. A mapping to such a bespoke program structure from
high-level fork-join programs is not supported by today’s
compilers. This gap leaves heartbeat scheduling in the hands
of a few highly capable programmers with signi�cant time
to invest in restructuring their code. We seek to democratize

heartbeat scheduling, allowing all programmers to reap its
bene�ts. This requires a compiler that can automatically
translate high-level fork-join constructs into a binary that is
amenable to heartbeat scheduling at runtime.

This paper describes the �rst compiler capable of automat-
ically generating binaries that are compatible with heartbeat
scheduling. The heartbeat compiler (HBC) consumes an or-
dinary C/C++ program with high-level fork-join constructs,
like those available in OpenMP or Cilk. HBC then automati-
cally deconstructs the code into tasks that can be further split
when driven by heartbeat events. The heartbeat linker (also
introduced by this paper) modi�es the generated assembly
both to link a signaling mechanism to generate heartbeats
and to link with the heartbeat runtime. Binaries generated
by HBC from programs with irregular workloads have sig-
ni�cantly better performance than binaries generated by
a more conventional OpenMP compiler. Compared to se-
quential execution, HBC boosts the performance of irregular
workloads from 14.2⇥ (OpenMP) to 21.7⇥ (Heartbeat) on a
64-core Intel-based machine (Fig. 4). Finally, the performance
of binaries generated with HBC, which compiles them in
just a few seconds, is comparable to what was previously
obtained by manually writing heartbeat scheduling binaries
over several months [42].

The contributions of this paper are:

• We introduce the �rst compiler capable of realizing heart-
beat scheduling in a fully automated manner, generating a
binary from given C/C++ programs with loops, which are
written using conventional high-level fork-join constructs.

• We introduce the �rst linker capable of automatically
embedding into a binary the rollforwarding mechanism,
which prior work proposed for heartbeat scheduling.

• We introduce a new algorithm for automatically generat-
ing all possible parallel tasks from nested loops that can be
parallelized by heartbeat scheduling. This improvement
includes the generation of what we call the leftover tasks
that were not generated before.

• We design, implement, and evaluate the �rst compilation
pipeline to automatically generate binaries that are capable
of performing heartbeat software polling (i.e., continuous
checking if an event happened) with little overhead.

• We design, implement, and evaluate the �rst interrupt-
based mechanism to deliver heartbeats on Linux with a
custom kernel module to reduce the latency of delivering
heartbeats.

• We compare for the �rst time two signaling mechanisms
that are both able to deliver heartbeats. This comparison
suggests a counter-intuitive result: software polling is as
good as interrupt-based mechanisms.

2 Background
To summarize key background concepts, we use the fol-
lowing running example: the sparse-matrix by dense-vector

2

�

�

�

�

�

�

�

�

�E��7DVN�VWDWH�DIWHU�WKH�ILUVW
KHDUWEHDW

�F��7DVN�VWDWH�DIWHU�WKH�VHFRQG
KHDUWEHDW

QRQ�]HUR
�XQSURFHVV�
HG�

KHDUWEHDW

KHDUWEHDW
WDVN

QRQ�]HUR
�SURFHVVHG�

���������ſ�����ř�����������Ƌ���ř������ŵŵ�����������������������Ş�����
��������������Ƌ���ɏ���ř�����Ƌ���ɏ���ř�ŵŵ����Ş������������������������
�����������������Ƌ��ř��������Ƌ���ƀ�Ƈ��ŵŵ�������������������
������ſ������ʰ�ɥŚ���ʳ��Ś��ʫʫƀ�Ƈ�ŵŵ���������
������������������ʰ�ɥŜɥŚ
��������ſ������ʰ����ɏ���ƃ�ƄŚ���ʳ����ɏ���ƃ�ʫɨƄŚ��ʫʫƀ�Ƈ�ŵŵ���������
�������������ʫʰ����ƃ�Ƅ�Ƌ���ƃ���ɏ���ƃ�ƄƄŚ
����ƈ
�������ƃ�Ƅ�ʰ�������Ś
��ƈ
ƈ �D��VSPY�VHULDO�LPSOHPHQWDWLRQ�LQ�&�&��

Figure 1. spmv and the heartbeat execution model.

product (spmv, shown in Fig. 1(a)). We use the implementa-
tion of spmv that expects its input matrix to be represented in
compressed sparse-row format. The inner and outer loops are
parallelized by annotating them as DOALL loops (and treat-
ing the reduction variable result appropriately). A DOALL
loop is a loop where all iterations can run in parallel, in a
fork-join execution model, without communication between
them. The DOALL decoration can be done using, e.g., the
OpenMP parallel for construct.
Iterations of a DOALL loop run in parallel by creating

and executing tasks. First, tasks are created by partitioning
the loop iterations (one task per iteration at the �nest gran-
ularity). Then, tasks are dispatched at run-time to parallel
threads (via thread-speci�c queues) that run on the parallel
cores of the underlying architecture (one thread per core).
Notice that the number of tasks can safely (and typically
does) exceed the total number of threads or cores.

The parallelism granularity-control problem. If spmv’s
DOALL loops were to maximize parallelism and spawn a
task for each iteration, spmv would risk losing its parallel
speedup to the overhead costs of creating and managing
tasks. Task overheads can be amortized by assigning multi-
ple subsequent loop iterations (called chunk) to a task. This
operation is called chunking and the number of iterations
assigned to a task is called the chunk size. OpenMP (like
other languages) allows programmers to manually specify
the chunk size of a loop. But tuning the chunk size risks
pruning away too much parallelism, and even if the program
is well-tuned, there is a risk of over�tting [47]. Achieving
consistent granularity control is further challenged by irreg-
ularity in workloads. For example, our spmv is highly input
dependent, and consequently, based on the sparsity pattern
of the matrix, the concentration of parallelism may �uctuate
between its two loops.

Heartbeat scheduling. Heartbeat scheduling achieves
granularity control for nested fork-join constructs in an adap-
tive manner by ensuring that each task is amortized against
a speci�ed amount of useful work in the program. That
amount is determined by the heartbeat rate, a system-wide
parameter that controls the rate at which tasks are spawned.
Let us see it in action by stepping through spmv when called
on a well-known challenge input, the arrowhead matrix,
whose diagonal, �rst row, and �rst column are �lled with
non-zero elements. Suppose, for explanatory purposes, the
heartbeat rate takes as much time as is needed to process 3
non-zero elements. Now, after (serially) processing up to the
3rd element of the �rst row, our initial task has been running
for enough time to be interrupted by a heartbeat. When it
arrives, the interrupt kickstarts a promotion. Promotion is
the process used by heartbeat scheduling to activate latent
parallelism (in our case, the remaining loop iterations) held
by a running task.
Under the hood, this two-step process of interrupt, fol-

lowed by promotion, is implemented by the coordination
of two mechanisms. The interrupt is driven by a hardware-
based timer interrupt. Promotion happens downstream of
an interrupt, where it rei�es the loop context, divides up
loop iterations, and parcels out the pieces to new tasks. This
latter mechanism is called the promotion-ready program point
(PRPPT) [42]. These two mechanisms are linked together by
the application of a classic technique for synchronizing in
the presence of interrupts known as rollforwarding [36] (see
§4 for details).

To ensure parallel scalability, heartbeat scheduling assigns
the highest priority to outermost parallelism, a policy we
call the outer-loop-�rst policy. Let us see the policy in
action in our running spmv, where we left o�. As it enters its
promotion handler, our running task sees latent parallelism
in the outer loop, making that loop the target for promotion.
The result is depicted in Fig. 1(b), where we see an even
division of the remaining iteration space split into two sub-
tasks. This process continues in a recursive fashion. The
diagram in Fig. 1(c) shows a future program state after two
more heartbeats, treated by each of the previous two tasks.

Current heartbeat scheduling implementation. Re-
cent work proposed TPAL, the state-of-the-art, low-level
model for heartbeat scheduling, but TPAL does not address
automation: each TPAL benchmark started as a C++ source
program and was manually modi�ed by inserting PRPPTs,
as needed. Further manual intervention was needed to miti-
gate performance issues related to PRPPTs, which required
loop chunking by hand. De�nitions of the PRPPT handler
functions themselves require custom logic, which had to
be written by hand. The back-end of TPAL used a semi-
automatic rollforward compiler, which required signi�cant
human intervention. Finally, although crucial for practical
performance, TPAL provided no comprehensive solution for

3

+HDUWEHDW�/LQNHU

+HDUWEHDW�5XQWLPH0LGGOH�HQG

7DVN�/LQNLQJ�������

/RRS�1HVWHG�7UHH
2XWOLQLQJ������� /RRS�6OLFH�7DVN�*HQHUDWLRQ�������

,QWHUSURFHGXUDO
ORRS�KLHUDUFK\
LGHQWLILFDWLRQ /RRS

FORVXUH
JHQHUDWLRQ

/RRS�LWHUDWLRQV
VOLFH
SDUDPHWHUL]DWLRQ

/RRS
FKXQNLQJ
WUDQVIRUPDWLRQ

3URPRWLRQ
SRLQW
LQVHUWLRQ 7DVN

6FKHGXOHU

$GDSWLYH
&KXQNLQJ
������

+HDUWEHDW�&RPSLOHU��+%&�
+HDUWEHDW
0HFKDQLVP
(PEHGGLQJ�����

&RGH
OLQNHU

/LQX[�.HUQHO
0RGXOH�������

&�&��
VRXUFHV
ZLWK
H[SOLFLW
'2$//
ORRSV

%LQDU\

/HIWRYHU�WDVN
JHQHUDWLRQ�
������

/RRS�RXWOLQLQJ 7DVNV�/LQNHU0DNLQJ�WKH�WDVNV
LQYRFDEOH�E\�WKH�UXQWLPH

)URQW�HQG %DFN�HQG

3URPRWLRQ
+DQGOHU

$

% &

)

*

'

(

Figure 2. Compilation pipeline of HBC including a custom linker and runtime.

driving interrupts. Its approach was based on special sup-
port in a research kernel. A similarly e�ective solution for a
commodity OS is lacking.

3 The Heartbeat Compiler (HBC)
The HBC pipeline (Fig. 2) takes C/C++ source �les, where
parallelism is speci�ed by DOALL annotations, and lowers
the program via a series of passes, resulting in a binary that
implements heartbeat scheduling. The front-end of our HBC
pipeline is an extension to the compiler clang that identi�es
all DOALL annotations in the program and emits them in
the form of custom LLVM IR metadata terms. Our metadata-
enhanced LLVM IR is consumed by a series of passes we
implemented as extensions of LLVM’s middle end. These
lowering passes isolate DOALL loops by outlining them into
separate functions and building a representation of their
nesting structure (§3.1). This nesting structure is used by our
middle-end passes to automate the generation of PRPPTs.

To do so, the middle-end computes the closure of each out-
lined loop such that the generated function can be invoked to
execute a speci�c set of subsequent loop iterations (e.g., from
5C⌘ to 9C⌘ iteration) while being able to promote parallelism
at runtime (§3.2). The result is a set of functions (one per
DOALL loop) that can be invoked as parallel tasks, called
loop-slice tasks. After generating the loop-slice tasks, the
HBC middle-end generates the leftover tasks (§3.3). Accord-
ing to the outer-loop-�rst policy of heartbeat scheduling,
the decision of splitting the parallel task)> related to an
outer loop !> while running its IC⌘ iteration can be made
during the execution of the 9C⌘ iteration of one of its inner
loops !8 . To maximize parallelism, our work splits)> into
three parallel tasks whose code is generated at compile time.
The �rst one is the execution of the loop-slice task of !> to
execute the �rst half of the iterations left of !> . The second
one invokes the same loop-slice task but executes the second
half of the iterations left of !> . The last task will execute the
remaining computation of the IC⌘ iteration of !> , which in-
cludes the remaining computation of the current invocation

of !8 (from its 9 + 1C⌘ iteration to the end) as well as the code
from the end of !8 to the end of the IC⌘ iteration of !> . We call
this last task a leftover task. As shown in Fig. 1(b), the �rst
two loop-slice tasks generated by HBC cover the remaining
iterations of the row loop from 1 to 7. And a third leftover
task covers the rest of the iterations of col loop from 3 to 7,
and the remaining computation after invoking the col loop
of row 0. That is, out[i] = result.
After generating both loop-slice tasks and leftover tasks,

the HBC middle-end links them into the original code (§3.4).
This is done by �rst modifying the above tasks to make
them controllable and invocable by the HBC runtime (so the
runtime can perform parallelism promotions), and then it
replaces the original IR code of the target loops with invoca-
tions of the loop-slice tasks where the slice speci�ed is the
entire iteration space of the related loop. Hence, if no pro-
motion happens at runtime, the execution stays sequential.

After the passes in the middle-end, we lower the program
to binary code, using an o�-the-shelf back-end available in
the LLVM codebase (e.g., the intel x86_64 back-end). The
output program then reaches our heartbeat linker, the �nal
stage of our pipeline. The heartbeat linker enables the heart-
beat to be seen by the running program by injecting hooks
from the runtime into the program’s IR.

3.1 Loop Nested Tree Outlining
Themiddle-end starts by outlining all DOALL loops. For each
loop of this set, a conventional data-�ow analysis identi�es
its live-in and live-out variables. Then, a function is created to
copy the loop in it as done by prior work [5, 7, 14, 33, 37]. This
function has live-ins of the loop as parameters and its live-
out variables are passed as references. Now the loop can be
executed by invoking the function with proper parameters.
The resulting functions are then modi�ed to replace any
nested DOALL loops with a call to their outlined versions.
Live-ins and pointers of the live-outs of a nested DOALL
loop are passed via parameters of the injected call. Live-outs
are allocated on the caller’s stack.

4

HBC needs to represent the original nesting relation of
DOALL loops because it is needed by the heartbeat run-
time to implement promotions. Hence, HBC extends the
loop-nesting-relation analysis in LLVM to make it inter-
procedural. The result of this analysis is a directed graph
where nodes are loops and edges represent the nesting re-
lation from a parent loop to one of its children (similarly
to [8]). HBC prunes this graph to remove all nodes that do
not represent DOALL loops. The result is a tree because the
original DOALL loops formed a tree (they came from the
same original function).
Our solution follows the general approach of OpenMP

compilers, where DOALL loops are outlined �rst into sepa-
rate functions before reaching themiddle-end. An alternative
solution to this problem is to compute the loop-nesting re-
lation of the original code and then implement an ad-hoc
outliner transformation that also generates the mapping
from the original loops to the new ones that now belong to
di�erent functions. This solution would be equivalent to the
one we implemented. We chose our solution to allow us to
re-use the general-purpose outliner transformation already
available in conventional compilers, which does not provide
the loop mapping mentioned above.

The inter-procedural loop nesting tree is used to compute
the IDs of each DOALL loop. The ID of a DOALL loop is a
pair (level, index), where level represents the nesting
level of that loop, starting from 0 for the root loop, and index
represents the position of the loop within its respective nest-
ing level, incrementing from 0 onwards. The root loop has an
index value of 0. In spmv, the row loop has the identi�cation
pair (0, 0) and the col loop has the identi�cation (1, 0).

3.2 Loop-slice task generation
Following Fig. 1(b), when the �rst heartbeat interrupts spmv’s
col loop, a promotion handler is called to spawn parallel
tasks. To seed the task, we need the loop’s environment. The
challenge is that the loop we need to promote (the row loop)
is not the loop that was in execution at the time a heartbeat
was received (the col loop). To solve it, we need to pass the
environment of the row loop to the inner col loop and its
promotion handler. To do so, HBC generates code to cou-
ple each loop with a data structure that captures its closure,
its iteration space, and its induction variable. We call this
structure the Loop-Slice Task (LST) context. LST contexts of a
given DOALL loop of a loop nesting tree are allocated before
the outermost loop of that tree (the root loop) is invoked.
These LST contexts are passed down to all nested loops as a
set. When a nested loop invokes the promotion handler, all
loops’ LST contexts are accessible to the promotion handler
to seed any task that runs any parent loop.

Loop closure generation. HBC �rst modi�es the signa-
ture of the outlined DOALL loops of each loop-nesting tree
such that all parameters are replaced by a pointer to a set of

LST contexts, which includes the LST context of the invoked
loop itself. The outlined loop function is now considered a
loop-slice task. Next, HBC generates code to load live-ins,
live-outs, and iteration space to run from the corresponding
LST context and replaces all values previously read from the
function parameters with loaded values.

Promotion point insertion. HBC inserts a call to the
promotion handler at the latch of a DOALL loop, for all
DOALL loops, to enable promotion within a loop-slice task.
The latch of a loop ! is a basic block within ! that is the
predecessor of the header of ! [4]. DOALL loops only have
one latch.

The promotion handler returns whether a promotion hap-
pened (1) or not (0). When a promotion happens, the promo-
tion handler returns only when the execution of all remain-
ing loop iterations has been completed. Therefore, HBC adds
a conditional branch to read the value returned by the pro-
motion handler to exit the loop when a promotion happens.

Loop chunking transformation. The promotion han-
dler inserted by HBC can degrade performance because the
call breaks up the control �ow of the target loop, blocks
compiler optimizations, and can impose dynamic costs (de-
pending on which mechanism the heartbeat linker uses to
drive heartbeats). To mitigate such costs, the loop chunking
transformation modi�es the target loop to invoke the pro-
motion handler every (number of iterations (called chunk
size). This is obtained by creating within the target loop a
sub-loop !B whose body contains only the original code of
the target loop.

The loop chunking transformation needs to guarantee that
the promotion handler is invoked every (iteration. This re-
quires extra code for when the number of iterations executed
by the original loop is not a multiple of (. In more detail, a
chunk can be partially �nished within a given invocation
of the target loop (e.g., (is bigger than the total number of
loop iterations). Therefore, a task needs to track how many
iterations remain to be executed till the full completion of a
chunk between (potentially several) loop invocations. To do
so, each task maintains a private counter ' (initialized to (),
and the number of iterations of !B is set to be the minimum
between ' and the number of iterations left to �nish the
current invocation of the target loop. The chunking trans-
formation adds a check after !B , which will execute after !B
�nishes its iterations. It compares the number of iterations
⇠ executed by !B to ', and it invokes the promotion handler
only if they match (and reinitializes ' to (). Otherwise, it
updates ' to be ' �⇠ (called chunk size transferring).
The loop chunking transformation is applied to every

innermost DOALL loop of a loop nesting tree. Finally, the
chunk size (is determined by a dynamic technique (§4).

5

Algorithm 1 Generating all leftover tasks between loop
pairs.
Input: C : Loop nesting tree
Input: B: Set of all LST contexts of all loops
1: for all ; : C .64C!40E4B () do
2: ? ; .64C%0A4=C ()
3: while ? do
4: G�������L�������T���(;, ?, B)
5: ? ? .64C%0A4=C ()

3.3 Leftover task generation
This compilation step generates all possible leftover tasks
of a loop nesting tree of DOALL loops. The generation of
such tasks allows HBC to generate additional parallelism
compared to prior work, as the leftover task of a promotion
can now run in parallel with the other two tasks generated
with it. This opportunity was not explored by prior work
because tasks were written manually and the number of
leftover tasks can grow quadratically with the number of
loops in a nesting tree. Hence, it is too much to ask from
a programmer to write them all. However, HBC generates
them automaticallywhile keeping the code size under control
by sharing code between leftover tasks.

Iterating over possible le�over tasks. The possible left-
over tasks depend on the shape of the loop nesting tree.
They are generated using Algorithms 1 and 2. Algorithm 1
takes as input a loop nesting tree of DOALL loops and all
LST contexts. The algorithm identi�es the need for gener-
ating a leftover task for a pair of loops (!8 , ! 9). The loop
!8 represents the loop that gets a heartbeat that leads to a
promotion; ! 9 represents the loop that gets split. To identify
the above set of pairs, Algorithm 1 iterates over the leaves of
the loop-nesting tree (line 1). For each leaf ; , it iterates over
its ancestors starting from its parent (lines 2-5). For each
ancestor ? , the pair (;, ?) is identi�ed and the associated
leftover task is generated by invoking Algorithm 2 (line 4).

Code generation of a le�over task. For each (!8 , ! 9) pair
found in Algorithm 1, HBC creates a leftover task that will
execute in that case. Thus, HBC implements Algorithm 2
taking as input !8 and ! 9 that represent the case where !8 gets
a heartbeat and ! 9 gets split. It also takes as input the LST
contexts of the loops included in the current loop nesting
tree. The output is the leftover task C for the (!8 , !9) case.
The algorithm starts by creating a new empty leftover

task C (line 2) followed by increasing the induction variable
by 1 of the LST context used by !8 when it gets a heartbeat
(lines 3-4). The algorithm then adds the code to invoke the
loop-slice task of !8 starting from its next iteration until the
end (line 5). At this point, Algorithm 2 has generated the
code for C to complete the current invocation of !8 .
What is left for the algorithm is to append the code that

composes the work between the end of !8 to the end of the
current iteration of ! 9 , referred as tail work. To do so, it

Algorithm 2 Generating a leftover task between two loops.
Input: !8 : Loop that gets a heartbeat
Input: !9 : Loop that gets split
Input: B: Set of all LST contexts of all loops
1: function G�������L�������T���(!8 , !9 , B)
2: C =4F !4 5 C>E4A)0B: ()
3: C .033⇠>34 (2 B .64C!()⇠>=C4GC (!8))
4: C .033⇠>34 (2 .8=2A40B4�+ (1))
5: C .033⇠>34 (20;; L���S����T���(!8 , 2))
6: ?A4E !8
7: ? !8 .64C%0A4=C ()
8: while ? < !9 do
9: C .033⇠>34 (2 B .64C!()⇠>=C4GC (?))
10: C .033⇠>34 (T���W���(?, ?A4E, 2))
11: C .033⇠>34 (2 .8=2A40B4�+ (1))
12: C .033⇠>34 (20;; L���S����T���(?, 2))
13: ?A4E ?
14: ? ? .64C%0A4=C ()
15: C .033⇠>34 (2 B .64C!()⇠>=C4GC (!9))
16: C .033⇠>34 (T���W���(!8 , ?A4E, 2))

iterates over the ancestors of !8 starting from its parent to
the ancestor just before reaching ! 9 (lines 8-14). For each
ancestor ? , Algorithm 2 adds code to get its LST context,
which contains the current induction variable of ? (line 9).
It then places the tail work of ? , which composes of the
code after invoking the previous ancestor till the end of the
body of loop ? using ?’s LST context (line 10). After that,
Algorithm 2 increases ?’s induction variable by 1 and invokes
?’s loop-slice task passing its updated LST context (lines 11-
12). Finally, the algorithm adds code for the tail work of ! 9

using its LST context after invoking its previous ancestor
(lines 15-16).

3.4 Task linking
At this point of the compilation pipeline, the HBC middle-
end has generated all possible tasks that could run in parallel.
To be performant the heartbeat runtime also needs to quickly
access the right triple of tasks that will instantiate when a
heartbeat happens. This triple depends both on the innermost
loop that has received the heartbeat and the loop that gets
split. Because of this, the HBCmiddle-end ends with the next
two steps. First, all tasks are organized to enable an e�cient
identi�cation of the triple of tasks. Then, the tasks are linked
into the program by allocating and initializing the necessary
LST contexts of the DOALL loops of a loop nesting tree. This
allocation is performed just before jumping to the header of
the root of the corresponding loop nesting tree.

Making the tasks invocable by the runtime. To help
the heartbeat runtime to quickly �nd the right task to invoke
for a promotion, this step takes advantage of the structure
of the loop IDs described in §3.1. The middle-end allocates
a two-dimensional array for every loop nesting tree with
DOALL loops. This array is called the loop-slice task array

6

Figure 3. Sequence of transformations of spmv that are performed by the HBC’s middle-end. We used C++ code for readability
and illustrative purposes. HBC performs these transformations in LLVM IR. The white letter in a red cyrcle attached to the
code surrounded by a rectangular red box indicates where in the pipeline of Fig. 2 that code is added.

of a loop nesting tree. Each value of this array is a pointer
to the function of a loop-slice task. The array is passed as
a parameter to the promotion handler inside all loop-slice
tasks that compose this nesting tree. The level and index

that compose the ID of a loop are used as the row and column
of the loop-slice task array. The value obtained at that row
and column is the pointer of the loop-slice task with that
speci�c loop ID. The loop-slice task array is allocated as
globals and are statically initialized.

Leftover tasks also need to be e�ciently retrieved by the
heartbeat runtime. To this end, the HBCmiddle-end allocates
a hash table called the leftover task table where it returns
the pointer to the function of a leftover task from a pair of
loop IDs. The �rst ID of the input pair is the loop that has
received the heartbeat. The second ID is of the loop that gets
split. A perfect hashing function is generated at compile time
to perform this mapping. Finally, the leftover task table is
allocated as global, statically initialized, and the signatures
of all tasks are modi�ed to take a leftover task table.

Tasks linker. The last step of the HBCmiddle-end is to al-
locate the LST contexts for all loop nesting trees with DOALL
loops. For every loop-nesting tree, it replaces the code of

the loop at the root of the tree with a call to the equivalent
loop-slice task after preparing the initial environment and
specifying the whole iteration space for that loop inside its
LST context. Any call to a nested loop inside a loop-slice
task is replaced by the call to its corresponding loop-slice
task, with the environment and the iteration space set by the
parent loop. Fig. 3 shows the full transformation of spmv.

4 Heartbeat Linker
HBC implements two mechanisms for handling heartbeats:
software polling and hardware interrupts. Software polling
proactively reads the timestamp register to decide if a heart-
beat has arrived. Hardware interrupts invoke heartbeat pro-
cessing on receipt of a timer interrupt. HBC uses software
polling by default as it delivers better average performance
on an unmodi�ed Linux platform (§6.5), but allows the user
to select either heartbeat mechanism.

So�ware polling injection. The linker injects the polling
function at PRPPTs (§2) and guards the promotion handler
call with a conditional branch. The polling function reads
the timestamp register (i.e, TSC for x86) to tell whether a

7

heartbeat has arrived. If it has, the promotion handler gets
called, generating parallelism. Otherwise, it does not.

Hardware interrupt enablement via rollforwarding
compilation. In software polling, we always pay the cost of
the polls. In contrast, using hardware timer interrupts avoids
this, but an interrupt can arrive at any assembly instruction,
not just at PRPPTs, and thus rollforwarding [36] is needed.
Conceptually, we implement rollforwarding by having

the hardware interrupt trigger an instruction pointer switch
from the “source” version of the object code (which contains
no polls) to the “destination” version (which contains the
polls). A mapping table (the “rollforward table”) from source
to destination instruction addresses is included in the binary
and used by the hardware interrupt mechanism (§5.2) to
�nd the appropriate “destination” address to switch to. An
inverse table (the “rollback table”) is also needed.

Our rollforward compiler (RFC) automates the process of
producing the source and destination code (at the assem-
bly level), and tables. RFC is a source-to-source translator
that operates over the assembly intermediate �le (the “.s
�le”). To generate the source, every input line is prepended
with a new label we generate based on its line number (e.g.
__RF_SRC_42). Lines that involve polling have their instruc-
tion elided. To generate the destination, every input line is
repeated, but now prepended with a label that corresponds
to the source line (e.g. __RF_DST_42). In the destination, the
polling instructions are left in place. Finally, we emit the ta-
bles, mapping between the newly introduced labels (i.e., we
add __RF_SRC_42$ __RF_DST_42). GNU ld resolves all the
labels to addresses. Special care is taken to handle numerous
edge cases and other issues.
Despite the apparent complexity of this transform, the

novelty of RFC is that it operates entirely using regular ex-
pressions, instead of requiring compiler backend changes or
assembler modi�cations. RFC comprises 250 lines of dense
Perl. It takes < 1 second to translate each of our benchmarks.

5 Heartbeat Runtime
This section describes the two runtimes that we designed
for the two heartbeat solutions we implemented for HBC:
software polling and interrupt-based solutions.

5.1 Software Polling using Adaptive Chunking (AC)
AC dynamically updates the chunk size of a leaf loop to
reduce the number of wasted polls per heartbeat. The initial
chunk size is set to 1. The runtime runs a sliding window
algorithm [31] where the loop chunk size is updated only at
the end of the window when a given number of heartbeats
(called the window size) have been received. Each worker
thread keeps track of how many times the polling function
is invoked since the last heartbeat. On each heartbeat, the
runtime logs the number of polls made during that heartbeat
interval. After the number of heartbeats that compose the

window, a thread records the minimum number of polls in
the log since the beginning of the window. Then, it computes
the ratio of the minimal poll count to a target polling count.
This ratio is then multiplied to the current chunk size to form
the new chunk size (minimum 1) for the worker thread.

5.2 Hardware Interrupt-based Solutions
HBC supports hardware interrupt-based heartbeats using
either portable user-level code or a Linux kernel module.

Interrupt Ping Thread for Purely User-level Operation.
This mechanism uses the POSIX SIGALRM signal to drive the
heartbeat via the ping thread model from earlier work [42].

Kernel Module for Accelerated Operation. In earlier
work [42], an alternative mechanism was proposed and eval-
uated that used the x86 APIC hardware timer and inter-
processor interrupt (IPI) mechanisms directly. While this
dramatically improves heartbeat accuracy, precision, and
scalability, it requires the non-trivial inclusion of the appli-
cation directly into a specialized kernel. As a middle ground,
we developed a Linux kernel module that provides many of
the same bene�ts, while requiring no application changes.

Our kernel module con�gures one core to use the kernel’s
hrtimer interface, a thin veneer over the APIC timer, and
allows the runtime to con�gure heartbeat rates. A timer in-
terrupt invokes the module, which in turn broadcasts an IPI
to all current heartbeat-enabled cores. Each of these deter-
mines if the current interrupted user thread is a heartbeat
application thread. If it is, the handler searches the rollfor-
ward table for the interrupted “source” RIP and �nds its
corresponding “destination”. It then edits the return address
of its own interrupt frame so that on IRET, control returns to
the destination address, switching to the rollforward code.

Unlike a ping thread, this structure operates mostly in ker-
nel, directly using the hardware. It also avoids the high cost
of general-purpose POSIX signal injection. An event requires
only 3800 cycles (user!kernel!user) on our system.

6 Evaluation
This section evaluates the �rst fully automatic solution for
heartbeat scheduling, HBC. After describing the experimen-
tal settings, this section shows the higher performance ob-
tained by HBC compared to the clang-based OpenMP com-
piler for irregular workloads. Then, this section compares the
performance of the binaries automatically generated by HBC
against those manually generated in the TPAL work [42].
Our results suggest that the automation done by HBC to
generate binaries preserves the performance obtained by
the intense manual work done by TPAL. By leveraging our
automatic solution, this paper shows the �rst empirical com-
parison between two signaling mechanisms for heartbeat
scheduling: software polling and hardware interrupts. Our
results counter-intuitively show that the former is as good as

8

the latter, even when the latter is implemented with custom
OS support. This result has the potential to help broaden
heartbeat scheduling’s adoption as it can now be used on the
o�-the-shelf Linux OS without sacri�cing performance. This
section also evaluates the need for adapting the chunk size
at run-time and evaluates how well our runtime solution
performs. Finally, this section ends by comparing HBC and
OpenMP for regular workloads.

6.1 Experimental Settings
Next, we describe our test-bed, where we performed all em-
pirical evaluations described in this paper. We will open
source HBC and all benchmarks/results described in this
section.

HBC, TPAL, and OpenMP compilation. HBC builds
upon NOELLE [34], a compilation framework that augments
LLVMwith additional dependence-oriented abstractions like
the Program Dependence Graph [18]. We ported NOELLE to
LLVM 14 because the public version only supports LLVM 9.
HBC, OpenMP, and TPAL parallelize the same set of loops
for all benchmarks. All loops parallelized are DOALL.

LLVM 14 is the underlying compilation infrastructure used
for all of our results. The TPAL and OpenMP binaries are
generated using clang as included in LLVM 14. This enables
a fair comparison between the three systems as they share
a signi�cant portion of their compilers, leaving parallelism
granularity control to be the main di�erence between them.
All benchmarks are compiled using -O3 -march=native

with vectorization passes disabled (as done in evaluating
TPAL [42]).

Benchmarks. We evaluated HBC on two sets of bench-
marks. Table 1 lists the benchmarks we used to evaluate HBC,
along with the input used, their regularity, and whether they
were also evaluated by TPAL.

The �rst set of benchmarks is composed of all the itera-
tive (eight) benchmarks that the prior work TPAL [42] was
evaluated on. As HBC aims to replace all signi�cant manual
e�orts behind the manual generation of the assemblies used
in TPAL [42], it is important to evaluate HBC against the
original benchmarks used by this prior work. To this end,
we targeted the iterative benchmarks from this prior work
since HBC targets loops and not recursive functions. In more
detail, we imported the same implementation of benchmarks
previously evaluated by TPAL [42]. We have also used the
same matrix generator implementation [41] for generating
the di�erent inputs of the benchmark spmv.
We have also evaluated HBC on a second set of bench-

marks to further demonstrate HBC’s e�ectiveness in tar-
geting irregular workloads. To this end, we evaluated ten
extra benchmarks whose computations are irregular. The
rest of this subsection describes them. The �rst one is the
benchmark cg from the NAS benchmark suite; we used its
implementation in NPB3.0 [39]. We chose only cg from this

Benchmark Source Input Regularity

OpenMP pragmas are generated by programmers

mandelbrot

TPAL [40, 42]

512 ⇥ 1024 ⇥ 40k irregular
spmv-arrowhead 150 million rows

450 million nonzeros
irregular

spmv-powerlaw 16.7 million rows
402 million nonzeros

irregular

spmv-random 6 million rows
600 million nonzeros

regular

�oyd-warshall 4k ⇥ 4k regular
kmeans 10 million elements regular
plus-reduce-array 100 billion elements regular
srad 10k ⇥ 10k regular
mandelbulb 3D Mandelbrot

[52]
100 ⇥ 200 ⇥
300 ⇥ 400

irregular

cg NAS [39] cage15 [50] irregular

OpenMP pragmas are automatically generated

ttv TACO [28, 29] nell-2 [46] irregular
ttm irregular
bfs

GraphIt [54, 55]

Twitter [30]
irregular

cc irregular
pr irregular
cf

LiveJournal [12]
irregular

pr-delta irregular
sssp irregular

Table 1. The benchmarks used in this paper, with input used,
their regularity, and if they were also evaluated by TPAL.

suite because it is the only benchmark in the NAS suite
whose input can lead to an irregular workload. In more de-
tail, we used a non-synthetic and irregular input because
most synthetic inputs of cg (including the one included in
the suite) lead to a regular workload. We used the input
cage15 [50], which is a real-world matrix from the Univerity
of Florida sparse matrix collection [12]. The second bench-
mark we targeted is mandelbulb [52], which is an extension
of mandelbrot to handle 3D inputs.

We have also evaluated eight more benchmarks from two
domains: sparse tensor computation and graph analytics
applications. We targeted these two domains because ap-
plications in these domains tend to be highly irregular due
to their computational sparsity. For the sparse tensor com-
putation, we imported TTV and TTM from TACO [29], a
domain-speci�c language for sparse tensor algebra. TACO
asks programmers to supply an index expression of a ten-
sor algebra kernel and specify each tensor’s storage format
(dense or sparse) in the index expression provided. This high-
level expression is compiled to C/C++ code where the main
kernel computation is a loop nest, within which all loops
are DOALL. TACO disables nested parallelism by annotating
OpenMP pragmas only on the outermost loop. We manu-
ally changed the C/C++ code generated by TACO to have
multiple versions of the same benchmark by enabling (or
disabling) parallelization of the nested loops. This enabled us
to evaluate how both an OpenMP compiler and HBC handle
nested parallelism. We used the same inputs that were used
to evaluate TACO [29]; these inputs are obtained from the

9

������

���

�����

����

���

����

���

����

����

����

�����

����

����

����

�������

���

����

����

���

���

����

�����

����

����

�����

����

�����

����
� �� �� �� �� �� ��

JHRPHDQ
VVVS

SU�GHOWD
FI
SU
FF
EIV
WWP
WWY
FJ

PDQGHOEXOE
VSPY�SRZHUODZ
VSPY�DUURZKHDG

PDQGHOEURW

2SHQ03��G\QDPLF�
+%&

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 4. 64-core evaluation comparing OpenMP dynamic
scheduling and HBC over irregular workloads.

FROSTT Tensor Collection [46]. We use the storage format
of dense for the �rst dimension of the input tensor and sparse
for the rest of the dimensions.
For graph analytics applications, we imported bfs, cc, pr,

cf, pr-delta and sssp from GraphIt [55], a domain-speci�c
language for writing graph analytics. GraphIt enables pro-
grammers to write high-level computation with the freedom
to apply various optimizations such as parallelization, cache
partitioning, and data layout optimizations. GraphIt compiler
transforms high-level graph computations to C/C++ code
with OpenMP pragmas. The main kernel from the above
graph analytics benchmarks is often a DOALL loop that
goes through every node of a graph and applies an update
function on outgoing neighbors of that node. We enabled
parallelization for all benchmarks and used DensePull as the
direction of applying the update function. We used social
network graphs Twitter [30] and LiveJournal [12], which
exhibit high irregularity for the input data. These graphs are
the same inputs that the authors of GraphIt have used to
evaluate their work.

Platform. All of our results are computed using an AWS
instance that runs Linux kernel 5.19.0 equipped with an Intel
Xeon Platinum 8375C processor featuring 64 cores over two
sockets running at 3.0 GHz, with 2MiB L1i, 3MiB L1d, 80MiB
L2 and 108 MiB L3. Both hyperthreading and turbo-boost are
disabled throughout the evaluation. We set the heartbeat rate
to 100 `B following the tuning process proposed in TPAL [42].
We report the median result over 100 runs.

6.2 HBC Outperforms OpenMP for Irregular
Workloads

HBC binaries outperform OpenMP for all irregular work-
loads. Fig. 4 shows the speedups of these two sets of binaries
on 64 cores. The speedup (on average) increases from 14.2⇥
to 21.7⇥ when switching from OpenMP to HBC. This shows
HBC’s e�ectiveness in generating optimized parallel binaries
that bene�t from heartbeat scheduling. HBC outperforms
OpenMP by adapting the parallelism at run-time, following

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����

�����

�����

� �� �� �� �� ���

VVVS
SU�GHOWD

FI
SU
FF
EIV
WWP
WWY
FJ

PDQGHOEXOE
VSPY�SRZHUODZ
VSPY�DUURZKHDG

PDQGHOEURW

1HVWLQJ�OHYHO��
1HVWLQJ�OHYHO��
1HVWLQJ�OHYHO��
1HVWLQJ�OHYHO��

3DUDOOHOLVP�SURPRWLRQV�JHQHUDWHG����

����

����

����
����
���
����
����
���

����

����

����

����

����

Figure 5. Parallelism is generated at di�erent loop nesting
levels.

the heartbeat approach. Fig. 5 shows that HBC enables the
program to generate parallelism at di�erent loop nesting
levels upon a heartbeat. This suggests that using a static
granularity decision is sub-optimal as the best granularity
depends on the input data. This also demonstrates that the
granularity decisions can be o�oaded to the compiler and
runtime, reducing the burden on programmers.

6.3 HBC Automates TPAL’s Prior Work
HBC automates the code generations and optimizations done
manually in the TPAL work [42]. Hence, it is important
to understand whether the automation performed by HBC
delivers the same binary quality that was manually obtained
by TPAL.

Fig. 6 shows the speedups of the HBC and TPAL binaries
in our testbed. HBC automatically delivers comparable
or superior performance compared to the state-of-the-
art and manually-generated code implemented using
TPAL. The TPAL-based heartbeat manual transformation
uses rollforwarding to switch between the serial version of
the code and rollforwarded code to promote parallelism. Its
runtime reserves an extra interrupt ping thread to signal
the arrival of heartbeats to all active worker threads. Similar
to our solution, TPAL inserts the promotion handler at the
end of each loop body. TPAL binaries perform chunking on
all leaf loops using a static chunk size determined with a
tuning process and de�ned at compile time per benchmark.
These per-benchmark manual tunings performed in TPAL’s
binaries are fully automated in HBC (on top of the code par-
allelization, generation, and optimization). Next, we discuss
in detail why HBC outperforms TPAL on some benchmarks.

HBC generates more parallelism. HBC obtains higher
speedups than TPAL for kmeans (+13.7%),mandelbrot (+24.4%)
and srad (+44.8%) because HBC runs in parallel all three tasks
generated per promotion (two loop-slice tasks and a leftover
task), while TPAL only runs two tasks in parallel, placing
the third one in its critical path. According to the authors,
this was done because running the leftover task in parallel

10

�����

����

�����

������

�����

���������

������

����������

����

�������

���

����

�����

�����

���������

�����

�������

�����

� �� �� �� �� �� ��

JHRPHDQ
VUDG

SOXV�UHGXFH�DUUD\
NPHDQV

ᎰR\G�ZDUVKDOO
VSPY�UDQGRP

VSPY�SRZHUODZ
VSPY�DUURZKHDG

PDQGHOEURW

73$/
+%&

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 6. HBC automatically delivers comparable perfor-
mance compared to the manually-generated TPAL binaries.
These are the loop-based benchmarks used in [42] running
on 64 cores.

would have further increased the already high time it took
them to manually generate the code. The limitation was due
to having the leftover task still referencing the execution en-
vironment (e.g., stack) of the parent task; in other words, the
leftover task in TPAL did not have a complete closure. Notice
that in the worst case, the number of possible static leftover
tasks grows quadratically with the number of nested loops;
writing all of them manually with their closure is impracti-
cal. Because HBC is fully automatic, it is able to automate
the closure generation of all possible leftover tasks, which
unlocks an extra level of parallelism. This additional level
of parallelism becomes important when the time it takes
to sequentially execute all leftover tasks is non-negligible,
which is the case for kmeans, mandelbrot and srad.

HBC is penalized for chunk size transferring. In all
spmv-based benchmarks, HBC performs worse than TPAL.
The worst is spmv-arrowhead, which shows a 22% slowdown.
This slowdown is caused by continuously tracking and up-
dating the remaining chunk size before making a poll. This
overhead is in the critical path for this input, starting from
the second row. TPAL relies on interrupts and thus does not
generate this extra overhead. The chunk size transferring
cost decreases for HBC once there are more non-zeros to be
processed per row, as shown in spmv-powerlaw (-9%) and
spmv-random (-9%).

6.4 HBC Overhead Analysis
Next, we analyze the extra work performed by the HBC bi-
naries compared to the baseline. To this end, we compile all
the loops without enabling parallelism promotion and thus
avoid the cost of task scheduling. Since now the program
runs sequentially, all extra work that the HBC binaries per-
form comes from loop outlining, closure generation, loop
chunking, promotion insertion, chunk size transferring and
polling overhead. Fig. 7 shows the overhead results and their
breakdowns.
Only spmv-arrowhead and spmv-powerlaw have signi�-

cant overhead (others have less than 10% overhead). The
extra work added by HBC for all benchmarks includes the

ಜ�� � �� �� �� �� �� ��

VUDG

SOXV�UHGXFH�DUUD\

NPHDQV

ᎰR\G�ZDUVKDOO

VSPY�UDQGRP

VSPY�SRZHUODZ

VSPY�DUURZKHDG

PDQGHOEURW 73$/
&ORVXUH�JHQHUDWLRQ

+%&��LQWHUUXSW�EDVHG�
.HUQHO�PRGXOH

+%&��VRIWZDUH�SROOLQJ�
/RRS�RXWOLQLQJ
&ORVXUH�JHQHUDWLRQ
/RRS�FKXQNLQJ�WUDQVIRUPDWLRQ
3URPRWLRQ�LQVHUWLRQ
&KXQN�VL]H�WUDQVIHUULQJ
$&�SROOLQJ�RYHUKHDG

2YHUKHDG�RYHU�EDVHOLQH����

�����

������

������

�����

�����

�����

�����

����

Figure 7. Overhead of HBC (w/ and w/o software polling)
and TPAL.

parent loop passing via memory the iteration space for the
nested loop to run. This overhead is negligible when the
invoked loop runs many iterations, which is true among all
these benchmarks. HBC inserts a promotion handler call at
the end of the body of a loop, followed by a check on the
call’s return value. This does not generate much overhead
because HBC applies chunking to all leaf loops. Hence, pro-
motion insertion overhead becomes insigni�cant compared
to the amount of work performed inside a chunk.
When the loop getting invoked repeatedly runs only a

small number of iterations, the overhead generated by HBC
cannot be amortized and becomes signi�cant. This is because
for spmv-arrowhead (+58.46%) and spmv-powerlaw (+22.14%),
the binary needs to do chunk size transferring each time a
leaf loop is invoked, while only processing a few non-zero
elements. For the same reason, the overhead of promotion
insertion at the outer loop accumulates quickly when a small
leaf loop is invoked, and gets added into the critical path.

6.5 Software Polling is as Good as Hardware
Interrupts

HBC supports both software polling and hardware interrupts
for handling heartbeats. The former is the default one and
it is the mechanism used for all results shown in this paper
outside this sub-section. We �rst analyze the overhead of
software polling and then compare it with the interrupt-
based mechanism implemented using rollforwarding.
Software polling overhead. Software polling has the

potential to broaden the adoption of heartbeat scheduling as
it does not require any hardware or OS support. The main
problemwith software polling is its overhead.We show, how-
ever, that adding a few optimizations (e.g., loop chunking)
signi�cantly reduces the polling overhead to the point that
software polling becomes an interesting design choice. To
show this, we start with an unoptimized implementation of
a simple algorithm for software polling, showing its high
overhead. Then, we slowly improve its quality, leading to-
wards a more and more optimized algorithm, until we reach
the �nal algorithm (with low overhead) described in §5.1,
which is the default implementation of HBC.

Our simplest implementation disables the loop chunking
transformation in HBC. Hence, a poll is performed at ev-
ery loop iteration. The “No chunking” bar of Fig. 8 shows

11

the overhead (in clock cycles) obtained by this simple im-
plementation compared to the same baseline of Fig. 6. This
is computed by running the generated code without doing
promotions; hence, the execution stays sequential even if we
perform the polls. The overhead is signi�cant and completely
erases the bene�ts of parallelism, causing a 7.5x slowdown.
Our second implementation adds loop chunking using

static chunk sizes used in TPAL [42]. Hence, a poll is per-
formed per chunk. The bar “Static chunking” of Fig. 8 shows
that the overhead of this algorithm is signi�cantly lower.
Finally, we measured the overhead of polling generated

by the algorithm described in §5.1 where the chunk size
is decided by our runtime. This is the bar called “Adaptive
Chunking” of Fig. 8. This low overhead led to the speedups
shown in Fig. 6.

���

���

���

��� ���

���

���

��� ���

���

���
��� ��� ��� ��� ��� ��� ���

PDQGH
OEURW

VSP
Y�DUU

RZKH
DG

VSP
Y�SR

ZHUO
DZ

VSP
Y�UDQ

GRP

ᎰR\G
�ZDU

VKDOO NPHDQV

SOXV�
UHGX

FH�D
UUD\ VUDG

�

�

�

�

�

�� 1R�FKXQNLQJ
6WDWLF�FKXQNLQJ
$GDSWLYH�&KXQNLQJ

2
YH

UK
HD

G�
��

�

����� ����� ����� ����� ����� �����

Figure 8. Software polling overhead with di�erent chunking
mechanisms. Both static and adaptive chunking signi�cantly
reduce overhead, with adaptive performing best.

So�ware polling and interrupt-based solutions are
comparable. Prior work on heartbeat scheduling relied on
hardware interrupts. HBC implements this solution as well
as software polling, so for the �rst time, these techniques
can be compared within the context of heartbeat scheduling.

TPAL work relies on a dedicated thread to send heartbeat
interrupts to worker threads. HBC is the �rst compiler that
automated the code generation needed by this technique (§4).
To measure the e�ciency of this solution, we used a user-
space thread to send heartbeat interrupts as done by prior
work [42]. Results obtained with this technique are shown by
the bar "Interrupts (ping thread)" of Fig. 9. This �gure shows
that software polling boosts the speedup obtained by this
prior work technique from 17.7⇥ to 22.0⇥. This is because of
the high signaling overheads created by the interrupt ping
thread, making it unable to deliver heartbeats at a rate that
matches the desired one. This results in missing up to 45%
of the heartbeats (and therefore generating less parallelism).
Because of this high overhead, we have implemented a

custom OS support to reduce the latency of delivering heart-
beats (§5.2). This is the bar "Interrupts (kernel module)" of
Fig. 9. While this new implementation is better than the
one adopted by prior work, its performance is still compati-
ble to that of software polling. This suggests that heartbeat
scheduling can be embedded in programs without special
OS support, increasing adaptability.

��������

�����

�������

�������

�����

��������

������

���������

�����

�������

����

�����

������

������

��������

�����

�������

�����

�������

����

�����

������

������

���������

������

�������

�����
� �� �� �� �� �� ��

JHRPHDQ

VUDG

SOXV�UHGXFH�DUUD\

NPHDQV

ᎰR\G�ZDUVKDOO

VSPY�UDQGRP

VSPY�SRZHUODZ

VSPY�DUURZKHDG

PDQGHOEURW

,QWHUUXSWV��SLQJ�WKUHDG�
,QWHUUXSWV��NHUQHO�PRGXOH�
6RIWZDUH�SROOLQJ

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 9. Software polling is as good as interrupt-based
mechanisms.

Why is so�ware polling comparable? To understand
why software polling is comparable to the interrupt-based
solution adopted in prior work, we compared the overhead
of these two techniques. Fig. 7 shows such a comparison
where promotion is disabled for both techniques; hence, the
promotion cost and task scheduling cost are not included in
the overhead.
Software polling pays (on average) less overhead than

the best interrupt-based technique (the one with custom
OS support). This is because the overhead for the latter per
heartbeat is almost two orders of magnitude compared to a
single poll. For each heartbeat, it can take 3800 cycles (§5.2).
Instead, by our measurement, a poll takes 50 cycles. Ideally,
a single poll per heartbeat is enough for the software polling
technique. Even when 10 polls are performed per heartbeat,
the total cost is still an order of magnitude less than the cost
of an interrupt.

6.6 Chunking Needs to be Adapted at Runtime
The best chunk size is input-dependent and therefore it needs
to be adapted at run-time. Next we are going to use mandel-
brot as an example of code that highlights this need.

The need for adapting. Fig. 10 shows the execution time
of mandelbrot using heartbeat scheduling on 64 cores with
two di�erent inputs, one with high latency (input 1) and
the other with low latency (input 2). As we increase the
static chunk size used from 20 to 29, input 2 performs better
while input 1 performs worse. Therefore, the best chunk size

� � � � �� �� �� ��� ��� ��� ����
�

�

��

��

�� ,QSXW����KLJK�ODWHQF\�
,QSXW����ORZ�ODWHQF\�

6WDWLF�FKXQN�VL]HV

3U
RJ

UD
P
�U
XQ

�W
LP

H�
�V
�

)RU�LQSXW����
�WKH�EHVW�FKXQN�VL]H�LV�����

���EXW�IRU�LQSXW����
�WKH�EHVW�FKXQN�VL]H�LV������

Figure 10. Optimal chunk size for mandelbrot is input-
dependent.

12

����
�����
�����

�����
�����

�����
���

���
����
����

����
� � �� �� �� ��

�
���
���
���
��
��
��
�
�
�
�

�������

3URJUDP�VSHHGXS

6W
DW
LF
�F
KX

QN
�V
L]
HV

Z��$&

Figure 11. Speedup of invokingmandelbrot 10 timeswith dif-
ferent inputs, using static chunk size versus adapting chunk
size at run-time.

setting for mandelbrot is input-dependent, and there is no
single chunk size setting that is optimal across all inputs.

A common scenario in many applications is that an impor-
tant loop gets invoked repeatedly and possibly with di�erent
inputs. To further show the limitations of setting the chunk
size statically, we studied mandelbrot in this scenario by in-
voking its main loop 10 times, using input 1 and 2 �ve times
each. We measured the time it takes to sequentially run these
invocations (compiling the code with clang) and we consider
this time to be the baseline for this experiment. The speedup
obtained by HBC forcing a static chunk size or by adapting
it at run-time are shown in Fig. 11. Adapting the chunk size
at run-time boosts the speedup from 17⇥ (static chunk size
set to 2) to 28⇥, an increase of 64%.

The benchmark mandelbrot is just an example that shows
the need for adapting the chunk size at run-time. To show
this, let us now observe spmv with di�erent matrix inputs
and use the number of non-zeros per row to show the im-
pact of having di�erent latencies per loop iteration. AC is
included in our HBC solution and is needed when there are
di�erent latencies between loop iterations. This is because
the code needs to perform the right amount of polls to mini-
mize their overhead while avoiding missing heartbeats. The
higher the latencies, the smaller the chunk size needs to be.
Fig. 12 shows how the chunk size changes in reaction to loop
iteration latency.

�

��

���

����

��N

�

���

���

���

���

�

��

���

����

��N

�

���

���

���

���

1
RQ

]H
UR
V

&K
XQ

N�
VL
]H

1
RQ

]H
UR
V

&K
XQ

N�
VL
]H

DUURZKHDG

SRZHUODZ SRZHUODZ�UHYHUVH

UDQGRP

Figure 12. Visualization of Adaptive Chunking.

Adapting chunk size requires the right target. To adapt
the chunk size of a loop, our runtime implements a sliding
window algorithm (§5.1), controlled by two parameters: tar-
get polling count and window size. All HBC results shown

��

��

��

��

��

���

� � �� �� ��
�

��

PDQGHOEURW
VSPY�DUURZKHDG
VSPY�SRZHUODZ
VSPY�UDQGRP
ᎰR\G�ZDUVKDOO
NPHDQV
SOXV�UHGXFH�DUUD\
VUDG

7DUJHW�SROOLQJ�FRXQW
�+

HD
UW
EH

DW
�G
HW
HF
WLR

Q�
UD
WH
���

�

Figure 13. Heartbeat detection rate via AC. A target polling
count value of 4 is e�cient in capturing almost all heartbeats.

in this paper use 8 for both the target polling count and the
window size for all loops in all benchmarks, which we will
justify next.

Target polling count. Our primary goal is to avoid miss-
ing heartbeats while minimizing polling overhead, thus we
compare how many heartbeats are detected to the total num-
ber of heartbeats generated. We perform this experiment at
di�erent target polling ratios. Our results in Fig. 13 show
that a too-low target polling count results in missing a signif-
icant number of heartbeats (almost 50% for spmv-powerlaw),
which leads to less parallelism. On the other hand, having
a too-high target polling count results in extreme polling
overhead. Setting this value to 4 captures over 99% of the
heartbeats while paying a small overhead. Similar results are
obtained for other benchmarks. Hence, we used the target
count 4 for all loops in all benchmarks for every result shown
in this paper.

Window size. Theoretically, this parameter could impact
the reaction speed of changing the chunk size at run-time to
changes of the latency of loop iterations. In practice, our re-
sults show negligible impact for this parameter on all bench-
marks used. Hence, we used window size 8 (anything � 2
would have worked �ne) for all results shown in this paper.

6.7 Manual Granularity Control for OpenMP
Compilers

All OpenMP-related results described in prior sub-sections
are obtained by parallelizing only the outermost loops of a
benchmark (and by using the default chunk size for each
parallel loop, which is one). This is recommended as a good
practice to control the scheduling overhead. However, if an
OpenMP compiler can perform granularity control automat-
ically (like HBC), then a better solution for programmers is
to expose the parallelism of all DOALL loops of a benchmark
without worrying about the scheduling overhead. This is
what we did when we used HBC in the prior sub-sections.

OpenMP compilers rely on the programmer to make gran-
ularity control decisions such as determining which loops
to parallelize and specifying the chunk size of a loop being
parallelized. To show that the decisions that OpenMP pro-
grammers of our target benchmarks are reasonable, this sub-
section performs the following experiments. We changed

13

�������

���

�����

����

���

������

���

�����

����

���

�����

���

�����

����

���

�����

���

���

���

���

�����

���

����

���

���

���

���

���

���

���
� �� �� �� �� �� ��

FJ

PDQGHOEXOE

VSPY�SRZHUODZ

VSPY�DUURZKHDG

PDQGHOEURW

�����������2SHQ03��G\QDPLF��FKXQN�VL]H
���GHIDXOW� � � � �� ��

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 14. 64-core evaluation of OpenMP dynamic schedul-
ing using varying chunk sizes. Only the outermost loop is
parallelized.

(manually) the selection of which loops to parallelize as well
as their chunk size while using the OpenMP compiler to see
if these changes can improve performance. We performed
these experiments on all manually implemented benchmarks,
where programmers have the full control over where and
how OpenMP pragmas are generated. Our results show that
both tuning the chunk size and parallelizing all DOALL loops
(instead of parallelizing only the outermost loops) degrade
the performance.

Tuning the chunk size. OpenMP programmers can man-
ually perform granularity control of the parallelism of their
code by changing the chunk size of a parallel loop. While tun-
ing the chunk size for performance is often input-dependent
and labor-intensive (and therefore not ideal), it is important
to know how much performance can be gained by it (to un-
derstand how well the default chunk size performs). To this
end, we run a sensitivity analysis over the chunk size of the
OpenMP dynamic scheduler for all manually implemented
benchmarks. As shown in Fig. 14, all benchmarks get their
performance degraded when keep increasing the chunk size
except for one benchmark, cg, whose performance is slightly
improved. The worse performance is because when tasks get
coarsened, chunking results in less balanced execution for
irregular workloads.

Parallelizing all DOALL loops. The OpenMP results
described in prior sub-sections have been obtained by paral-
lelizing only the loops that the original author of the bench-
marks has parallelized (which is only the outermost DOALL
loops). However, some nested loops of the target benchmarks
could be parallelized as DOALL as well. Enabling their par-
allelism (by adding more OpenMP pragmas) leads to �ner-
grained parallelism. To understand how OpenMP compilers
handle more (�ne-grained) parallelism, we ran an experi-
ment where we exposed fork-join parallelism for all DOALL
loops (as we did for HBC) for all manually implemented
OpenMP benchmarks. This is achieved by explicitly invok-
ing omp_set_max_active_levels routine at the beginning

����

���

����

����

���

���

���'1)

���'1)

���'1)

���

� �� �� �� �� �� ��

FJ

PDQGHOEXOE

VSPY�SRZHUODZ

VSPY�DUURZKHDG

PDQGHOEURW

RXWHUPRVW�'2$//�ORRS�RQO\
DOO�'2$//�ORRSV

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 15. 64-core evaluation of OpenMP dynamic sched-
uling (using default chunk size) parallelizing the outermost
loop only versus all DOALL loops. DNF means the program
did not �nish within the allowed time frame (2 hours) or
crashes.

of the code and tagging all DOALL loops with OpenMP prag-
mas (using the dynamic scheduler and its default chunk size)
of all loop nests. As shown in Fig. 15, all benchmarks, except
for cg, have their performance signi�cantly degraded when
all DOALL loops are parallelized. spmv-arrowhead and spmv-
powerlaw did not �nish in time (2 hours).mandelbulb crashed
because the OpenMP runtime failed to allocate necessary
resources for 64 workers. The performance degradation is be-
cause enabling nested parallelism by parallelizing all DOALL
loops in OpenMP generates too many tasks, which overloads
the system and wipes out the bene�t of parallelism.

6.8 When Heartbeat Scheduling is Ine�cient
We compared HBC and OpenMP for regular benchmarks to
understand whether heartbeat scheduling can become the
solo policy. HBC performs worse than OpenMP in this case,
as shown in Fig. 16, because heartbeat scheduling incurs
extra overhead that is not justi�ed for workloads that have
well-balanced loop iterations. The only exception is kmeans,
which HBC outperforms OpenMP static scheduler by more
than 50%. HBC obtains this performance gain because it
is able to reduce an array of elements between all tasks in
parallel. Instead, the OpenMP implementation performs the
reduction operation over an array sequentially by the main
thread, and this adds to the critical path of the computation.
We used the unmodi�ed OpenMP implementation kmeans
from the Rodinia benchmark suite [10], which is the same
implementation used by TPAL [42].
The static policy outperforms all dynamic policies (in-

cluding heartbeat) for most regular benchmarks we studied.
This is because a static decision about how to parallelize

�����

�����

�����

�����

���������

�����

�����

�����

��������

�����

�������

����
� �� �� �� �� �� ��

JHRPHDQ
VUDG

SOXV�UHGXFH�DUUD\
NPHDQV

ᎰR\G�ZDUVKDOO
VSPY�UDQGRP 2SHQ03��VWDWLF�

+%&

3URJUDP�VSHHGXS

EDVHOLQH FRUHV

Figure 16. 64-core evaluation comparing OpenMP static
scheduling and HBC over regular workloads.

14

the code generates minimal run-time overhead. Therefore,
an ideal compiler should include both heartbeat and static
scheduling.

7 Related work
Lazy scheduling and clone optimization. Lazy sched-

uling (LS) dates back to the proposal for lazy task creation
of Mohr et al. [35], and was later adapted to the speci�cs of
the work-stealing scheduler [20], resulting in the clone opti-
mization. Our HBC runtime uses the clone optimization to
avoid paying synchronization costs (e.g., the execution cost
of atomic instructions) between tasks that are executed by
the same thread. For HBC, in more detail, when a heartbeat
happens at time C , while a task : is executing, : splits into
three tasks that cumulatively perform the same computation
that : still had to do to complete at time C . These three tasks
execute in parallel and the continuation of : (the code to
execute after : ends) can execute only when all three tasks
end, which requires the three tasks to synchronize. However,
when the three tasks are executed by the same thread that
was executing : , they will execute sequentially and in the
right order (thanks to the thread-local deque). In this case
(the fast path), our runtime avoids performing the synchro-
nization. However, if one of these three tasks is stolen by
another thread and therefore it will execute on another core,
then our runtime performs the necessary synchronization
(the slow path).

Other instantiations of LS include backtracking-based load
balancing [24] for recursive programs, library-based imple-
mentations of work stealing [17, 53], and lazy binary split-
ting [47, 49] for parallel loops.

Granularity control. A classic alternative to LS and heart-
beat scheduling is granularity control (GC), a family of ap-
proaches that operate in a proactive manner to amortize
task overheads. Like with LS, in GC, the program switches
between serial and parallel modes of execution. However,
switching in GC is guided by predicted amounts of future of
work (LS and heartbeat scheduling are guided by measured
amounts of past work). Manual granularity control [27] re-
mains commonplace in spite of its limitations [47]; there
have also been various proposals for automatic granularity
control [15, 26, 32, 38, 44, 51]. Oracle-guided GC [2, 3] is
the �rst to be backed by formal guarantees that bound task-
related overheads and guarantee preservation of parallelism.
However, these bounds require certain assumptions on the
dynamic behavior of the program, which may be di�cult
to know in general, and the approach is not fully automatic.
In particular, it requires application programmers to write
annotations at fork points in the program that specify ab-
stract cost functions, which require manual e�ort and are
sometimes not practical.
Prior work has performed granularity control applied to

a single program to dynamically adapt on changes to the

hardware resources available while the parallel program ex-
ecutes (e.g., due to having multiple programs running on the
same machine at the same time) [9, 16, 25, 45]. Compared to
heartbeat scheduling, these approaches react to change in
available resources rather than changes of available paral-
lelism of the target program.

Compiler support for parallelism. Tapir [43] is a recent
proposal to embed fork-join parallelism into the LLVM IR.
The motivation is to unlock conventional middle-end opti-
mizations (i.e., optimizations that target LLVM IR code) in
LLVM to work within parallel constructs (e.g., loop invariant
code motion across parallel loops). These optimizations are
otherwise only applicable to serial regions of programs. Al-
though our HBC extends the LLVM IR, our focus is to enable
granularity control rather than to unlock existing optimiza-
tions of LLVM’s middle end. Finally, notice that HBC can be
extended to target TAPIR rather than LLVM IR. HBC and
Tapir should compose well.

8 Conclusion
Obtaining e�cient parallel execution still requires program-
mers to manually control the parallelism granularity of their
programs. This leads to either platform-speci�c and hard-
to-maintain codebases or ine�cient programs. Heartbeat
scheduling can solve this problem, but it requires the soft-
ware to �t to an unconventional structure. This paper intro-
duces HBC, the �rst compiler that automatically transforms
C/C++ programs with nested fork-join constructs into such
unconventional structure, unlocking heartbeat scheduling
for a wide programmer base. HBC outperforms the clang-
based OpenMP compiler for irregular workloads, where even
programmers (not tools) struggle to optimize.

Acknowledgements
We thankmembers of the ARCANALab for their support and
feedback on this work. We also thank the anonymous review-
ers for their insightful comments and feedback, which made
this work stronger, and especially Jean-Pierre Lozi, who sig-
ni�cantly helped �nalize the writing of this paper. This ef-
fort is based upon work supported by the U.S. Department
of Energy under contract number DE-SC0022268. It is also
based upon work supported by the National Science Founda-
tion under Grants CCF-1901381, CCF-2107241, CCF-2115104,
NSF-2119069, CCF-2119352, NSF-2107042, NSF-2028851, and
NSF-1908488, and via the Exascale Computing Project (17-
SC-20-SC), a collaborative e�ort of the U.S. Department of
Energy O�ce of Science and the National Nuclear Security
Administration, by the U.S. Department of Energy, O�ce of
Science, under Contract DE-AC02-06CH11357.

15

A Artifact Appendix
A.1 Abstract
Our artifact includes the source �les for the heartbeat com-
piler (HBC), which is described in the paper. This artifact
also includes the source code for all benchmarks evaluated in
the paper. Furthermore, it includes the automated work�ow
to set up and run all experiments after building/running the
Docker image/container. The output of this artifact gener-
ates all evaluation �gures included in the paper, plus the raw
results needed to generate the �gures. The artifact also pro-
vides a README �le detailing the steps to follow to extend it
to evaluate new benchmarks or to customize the evaluation
of a benchmark (e.g., by changing how many runs to execute
per benchmark).

A.2 Artifact check-list (meta-information)
• Algorithm: Heartbeat Compiler (HBC)
• Program: All iterative loop-based benchmarks evalu-
ated by TPAL. cg from NAS benchmark suite. A new
benchmarkmandelbulb. Two benchmarks from TACO
and six fromGraphIt. The implementations of all bench-
marks are available within this artifact.

• Compilation: LLVM 14.0.6. The Docker�le handles the
installation of this dependency.

• Transformations: NOELLE transformations are used in
the compilation �ow of HBC. NOELLE is not included
in this artifact but is downloaded and built during the
setup stage.

• Data set: The artifact uses data (a total of 40 GB) from
various sources (see §A.3.4 for full detailed descrip-
tions). All data will get downloaded during the setup
stage.

• Run-time environment: Linux
• Hardware: Intel x86_64 CPU
• Metrics: Benchmark execution time
• Output: All experimental results and evaluation �g-
ures from Figure 4 to Figure 16. The artifact also in-
cludes results and �gures from various systems, in-
cluding the AWS machine used in the paper.

• Experiments: Setting up the artifact and running ex-
periments both use automated work�ow.

• How much disk space required (approximately)?: 80
GB

• How much time is needed to prepare work�ow (ap-
proximately)?: 30 minutes

• How much time is needed to complete experiments
(approximately)?: 10 hours (using the default con�gu-
ration

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Work�ow framework used?: Docker, Unix Make�les,
and Bash

• Archived?: h�ps://doi.org/10.5281/zenodo.10551774

A.3 Description
A.3.1 How to access. The artifact can be accessed and
downloaded from Zenodo, at h�ps://doi.org/10.5281/zenodo.
10551774.

A.3.2 Hardware dependencies. 32+ physical cores x86_64
CPU and 16+ GB RAM. This artifact has been tested on Intel
processors, including Intel Xeon Gold 6258R and Intel Xeon
E5-2695 v3 processors.

A.3.3 Software dependencies. Running the artifact re-
quires LLVM 14.0.6. The dependency is handled when build-
ing with the Docker image. This artifact has been tested on
Docker 24.0.5.

A.3.4 Data sets. The artifact uses the following data sets:
• cage15 matrix (2.5 GB) from the SuiteSparse Matrix
Collection.

• NELL-2 tensor (1.5 GB) from the Formidable Reposi-
tory of Open Sparse Tensors and Tools (FROSTT).

• Twitter (25 GB) and LiveJournal (1.1 GB) graphs from
the Stanford Network Analysis Project (SNAP).

All data are not included in the artifact but will get down-
loaded at the setup stage.

A.4 Installation
Please run the artifact inside a Docker container. A Docker-
�le is provided to handle the installation of all dependencies.
First, please download and extract the artifact. Then, from
within the artifact, run the following commands:

docker build -t asplos24ae .

docker run –privileged -it asplos24ae

cd hbc-asplos24-artifact && make setup

To verify the artifact is set up correctly, run the following
command:

make test

If you see the text "The artifact sets up correctly, and all tests
passed!", then the installation phase is complete.

A.5 Experiment work�ow
The artifact includes a fully automatic work�ow to generate
all experimental results included in the paper. The work�ow
runs HBC to compile all benchmarks evaluated in the paper.
Then, the generated binaries are invoked to generate the
raw results (e.g., the execution times of multiple runs of a
benchmark). Then, these raw results are used to generate
the �gures included in the paper.

The paper includes multiple experiments that test di�erent
con�gurations of HBC. Therefore, the work�ow included
in this artifact invokes HBC with di�erent con�gurations
depending on the target �gure/experiment.

A.6 Evaluation and expected results
After installing the artifact and passing all tests, please run

16

https://doi.org/10.5281/zenodo.10551774
https://doi.org/10.5281/zenodo.10551774
https://doi.org/10.5281/zenodo.10551774

make

The plots/current_machine directory will be populated
with the �gures as the output of the experiment work�ow.
The raw results used to feed all �gures can be found under
results/current_machine directory.
Figure 4 (fig4.pdf) evaluates HBC against an OpenMP

compiler (dynamic schedule) on all irregular benchmarks.
Figure 5 (fig5.pdf) plots the statistics about the nesting

levels of the loops that get parallelized.
Figure 6 (fig6.pdf) evaluates HBC against the prior

work TPAL for all iterative-based loop benchmarks.
Figure 7 (fig7.pdf) plots the breakdown of the overhead

of the binaries generated by HBC.
Figure 8 (fig8.pdf) plots the polling overhead using

HBC between three di�erent polling mechanisms.
Figure 9 (fig9.pdf) evaluates HBC using di�erent heart-

beat signal mechanisms.
Figure 10 (fig10.pdf) plots the execution time of man-

delbrot over two di�erent inputs with varying chunk sizes.
Figure 11 (fig11.pdf) plots the program speedup of ten

invocations of mandelbrot using static chunk sizes against
adaptive chunking.

Figure 12 (fig12.pdf) visualizes adaptive chunking.
Figure 13 (fig13.pdf) plots the heartbeat detection rate

using adaptive chunking varying target polling count.
Figure 14 (fig14.pdf) evaluates the OpenMP implemen-

tation varying chunk sizes on all irregular benchmarks.
Figure 15 (fig15.pdf) evaluates the OpenMP implemen-

tation between parallelizing the outermost loop versus par-
allelizing all DOALL loops on all irregular benchmarks.
Figure 16 (fig16.pdf) evaluates HBC against the clang

OpenMP compiler (static schedule) on all regular bench-
marks.

A.7 Experiment customization
The artifact can be con�gured during the setup stage. The
con�gurable options are as follows:

• number of runs: speci�es how many times to run
the experiment per benchmark. The default value is 3.

• number of workers: speci�es the number of threads
to use when the generated binaries are evaluated on
multiple cores. The default value is the number of
physical cores detected on the underlying machine.

• heartbeat rate: controls how frequent an heartbeat is
generated. The default value is 100 microseconds.

The artifact can also be con�gured to evaluate new bench-
marks that were not included in the paper. To this end, we
ask you to modify your program into a form that can be
recognized by HBC. This is needed to declare to HBC which
loops are DOALL. More information about this can be found
in the Section "Extend to evaluate new benchmarks"
within the README �le of the artifact.

A.8 Notes
We assume you have an internet connection during the setup
stage of this artifact to download all necessary data and ex-
ternal libraries. This artifact does not handle the installation
of the Linux kernel module for delivering heartbeats. This
artifact does not include the Linux kernel module for deliv-
ering heartbeats and its corresponding work�ows. For more
details on how to build and load the kernel module, please
reference the README �le.

A.9 Methodology
Submission, reviewing and badging methodology:

• h�ps://www.acm.org/publications/policies/artifact-review-
badging

• h�p://cTuning.org/ae/submission-20201122.html
• h�p://cTuning.org/ae/reviewing-20201122.html

17

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

References
[1] Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and

Filip Sieczkowski. Heartbeat scheduling: Provable e�ciency for nested
parallelism. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, pages
769–782, 2018.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle sched-
uling: Controlling granularity in implicitly parallel languages. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 499–518, 2011.

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle-guided
scheduling for controlling granularity in implicitly parallel languages.
Journal of Functional Programming (JFP), 26:e23, 2016.

[4] V Aho Alfred, S Lam Monica, and D Ullman Je�rey. Compilers princi-
ples, techniques & tools, 2007.

[5] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and
David I. August. Perspective: A sensible approach to speculative auto-
matic parallelization. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 351–367, New York, NY, USA,
2020. Association for Computing Machinery.

[6] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-YeonWei, and David Brooks. HELIX-RC: An architecture-compiler
co-design for automatic parallelization of irregular programs. In Pro-
ceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture, ISCA ’14, pages 217–228, Piscataway, NJ, USA, 2014. IEEE
Press.

[7] Simone Campanoni, Glenn Holloway, Gu-YeonWei, and David Brooks.
HELIX-UP: Relaxing program semantics to unleash parallelization. In
Proceedings of the 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’15, pages 235–245, Washing-
ton, DC, USA, 2015. IEEE Computer Society.

[8] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. HELIX: Automatic paralleliza-
tion of irregular programs for chip multiprocessing. In Proceedings of
the Tenth International Symposium on Code Generation and Optimiza-
tion, CGO ’12, pages 84–93, New York, NY, USA, 2012. ACM.

[9] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and
David Brooks. The helix project: Overview and directions. In DAC
Design Automation Conference 2012, pages 277–282, June 2012.

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Shea�er, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In Proceedings of the 2009 IEEE
International Symposium on Workload Characterization (IISWC), IISWC
’09, page 44–54, USA, 2009. IEEE Computer Society.

[11] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of
synchronization and granularity on parallel systems. ACM SIGARCH
Computer Architecture News, 18(2SI):239–248, 1990.

[12] Timothy A. Davis and Yifan Hu. The university of �orida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011.

[13] SK Debray, Manuel V Hermenegildo, and Pedro López García. A
methodology for granularity-based control of parallelism in logic pro-
grams. Journal of symbolic computation, 21(4-6):715–734, 1996.

[14] Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardavel-
las, and Simone Campanoni. Unconventional parallelization of nonde-
terministic applications. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, pages 432–447, New York, NY,
USA, 2018. ACM.

[15] A. Duran, J. Corbalan, and E. Ayguade. An adaptive cut-o� for task
parallelism. In 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11, 2008.

[16] Murali Krishna Emani, Zheng Wang, and Michael F. P. O’Boyle. Smart,
adaptive mapping of parallelism in the presence of external workload.

In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 1–10, 2013.

[17] Karl-Filip Faxén. Wool-a work stealing library. SIGARCH Comput.
Archit. News, 36(5):93–100, June 2009.

[18] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, jul 1987.

[19] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models
can be accurately pruned in one-shot. 2023.

[20] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The im-
plementation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[21] Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda.
Compiler-based timing for extremely �ne-grain preemptive paral-
lelism. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’20. IEEE
Press, 2020.

[22] Milind Girkar and Constantine D Polychronopoulos. Automatic ex-
traction of functional parallelism from ordinary programs. IEEE trans-
actions on parallel and distributed systems, 3(2):166–178, 1992.

[23] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. Automatic hybridiza-
tion of runtime systems. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’16, page 137–140, New York, NY, USA, 2016. Association for
Computing Machinery.

[24] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.
Backtracking-based load balancing. Proceedings of the 2009 ACM SIG-
PLAN Symposium on Principles & Practice of Parallel Programming,
44(4):55–64, February 2009.

[25] Henry Ho�mann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. ACM SIGARCH computer architecture news,
39(1):199–212, 2011.

[26] Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. Using
the run-time sizes of data structures to guide parallel-thread creation.
In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, LFP ’94, pages 79–90, 1994.

[27] Intel. Intel threading building blocks, 2011. h�ps://www.
threadingbuildingblocks.org/.

[28] Fredrik Kjolstad. Taco github, 2017. h�ps://github.com/tensor-
compiler/taco.

[29] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. Proceedings of the
ACM on Programming Languages, 1(OOPSLA):1–29, 2017.

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, page 591–600,
New York, NY, USA, 2010. Association for Computing Machinery.

[31] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neu-
mann. E�cient processing of window functions in analytical sql
queries. volume 8, page 1058–1069. VLDB Endowment, jun 2015.

[32] Hans-Wolfgang Loidl and Kevin Hammond. On the granularity of
divide-and-conquer parallelism. In Proceedings of the 1995 Glasgow
Workshop on Functional Programming, pages 1–10, 1995.

[33] Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian
Homerding, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle C.
Hale, and Peter A. Dinda. Paths to openmp in the kernel. In Bronis R.
de Supinski, Mary W. Hall, and Todd Gamblin, editors, SC ’21: The
International Conference for High Performance Computing, Networking,
Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021,
pages 65:1–65:17. ACM, 2021.

[34] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
David I. August, and Simone Campanoni. NOELLE O�ers Empowering
LLvm Extensions. In International Symposium on Code Generation and

18

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://github.com/tensor-compiler/taco
https://github.com/tensor-compiler/taco

Optimization, 2022. CGO 2022., 2022.
[35] Eric Mohr, David A. Kranz, and Robert H. Halstead Jr. Lazy task cre-

ation: a technique for increasing the granularity of parallel programs.
In Conference record of the 1990 ACM Conference on Lisp and Functional
Programming, pages 185–197, New York, New York, USA, June 1990.
ACM Press.

[36] David Mosberger, Peter Druschel, and Larry L Peterson. Implement-
ing atomic sequences on uniprocessors using rollforward. Software:
Practice and Experience, 26(1):1–23, 1996.

[37] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni.
Performance implications of transient loop-carried data dependences
in automatically parallelized loops. In Proceedings of the 25th Inter-
national Conference on Compiler Construction, CC 2016, pages 23–33,
New York, NY, USA, 2016. ACM.

[38] Joseph Pehoushek and JosephWeening. Low-cost process creation and
dynamic partitioning in Qlisp. In Takayasu Ito and Robert Halstead,
editors, Parallel Lisp: Languages and Systems, volume 441 of Lecture
Notes in Computer Science, pages 182–199. Springer Berlin / Heidelberg,
1990.

[39] Omni Compiler Project. Nas-c-openmp3.0, 2014. h�ps://benchmark-
subse�ing.github.io/cNPB/.

[40] Mike Rainey. Tpal github, 2021. h�ps://github.com/mikerainey/tpal/
tree/master.

[41] Mike Rainey. Tpal matrix generator, 2021. h�ps://github.com/
mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659.

[42] Mike Rainey, Kyle Hale, Ryan R. Newton, Nikos Hardavellas, Simone
Campanoni, Peter Dinda, and Umut A. Acar. Task parallel assem-
bly language for uncompromising parallelism. In Proceedings of the
42nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’21, New York, NY, USA, June 2021. ACM.

[43] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Em-
bedding fork-join parallelism into llvm’s intermediate representation.
In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’17, page 249–265, New York,
NY, USA, 2017. Association for Computing Machinery.

[44] Kish Shen, Vitor Santos Costa, and Andy King. Distance: A newmetric
for controlling granularity for parallel execution. Journal of Functional

and Logic Programming, 1999:1–23, 1999.
[45] Filippo Sironi, Davide B. Bartolini, Simone Campanoni, Fabio Can-

care, Henry Ho�mann, Donatella Sciuto, and Marco D. Santambrogio.
Metronome: Operating system level performance management via
self-adaptive computing. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 856–865, New York, NY, USA,
2012. ACM.

[46] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park,
Xing Liu, and George Karypis. FROSTT: The formidable repository of
open sparse tensors and tools, 2017.

[47] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi
Vishkin. Lazy binary-splitting: a run-time adaptive work-stealing
scheduler. In Symposium on Principles & Practice of Parallel Program-
ming, pages 179–190, 2010.

[48] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev
Barua. Lazy scheduling: A runtime adaptive scheduler for declarative
parallelism. ACM Trans. Program. Lang. Syst., 36(3), sep 2014.

[49] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev
Barua. Lazy scheduling: A runtime adaptive scheduler for declarative
parallelism. TOPLAS, 36(3):10:1–10:51, September 2014.

[50] A. van Heukelum, G. T. Barkema, and R. H. Bisseling. DNA elec-
trophoresis studied with the cage model. Journal of Compututational
Physics, 180:313–326, July 2002.

[51] Joseph S. Weening. Parallel Execution of Lisp Programs. PhD thesis,
Stanford University, 1989. Computer Science Technical Report STAN-
CS-89-1265.

[52] Daniel White. 3d mandelbrot generator, 2008. h�ps://www.
fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm.

[53] Chaoran Yang and John Mellor-Crummey. A practical solution to the
cactus stack problem. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 61–70, 2016.

[54] Yunming Zhang. Graphit github, 2018. h�ps://github.com/GraphIt-
DSL/graphit.

[55] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Ju-
lian Shun, and Saman Amarasinghe. Graphit: A high-performance
graph dsl. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1–30, 2018.

19

https://benchmark-subsetting.github.io/cNPB/
https://benchmark-subsetting.github.io/cNPB/
https://github.com/mikerainey/tpal/tree/master
https://github.com/mikerainey/tpal/tree/master
https://github.com/mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659
https://github.com/mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659
https://www.fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm
https://www.fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm
https://github.com/GraphIt-DSL/graphit
https://github.com/GraphIt-DSL/graphit

	Abstract
	1 Introduction
	2 Background
	3 The Heartbeat Compiler (HBC)
	3.1 Loop Nested Tree Outlining
	3.2 Loop-slice task generation
	3.3 Leftover task generation
	3.4 Task linking

	4 Heartbeat Linker
	5 Heartbeat Runtime
	5.1 Software Polling using Adaptive Chunking (AC)
	5.2 Hardware Interrupt-based Solutions

	6 Evaluation
	6.1 Experimental Settings
	6.2 HBC Outperforms OpenMP for Irregular Workloads
	6.3 HBC Automates TPAL's Prior Work
	6.4 HBC Overhead Analysis
	6.5 Software Polling is as Good as Hardware Interrupts
	6.6 Chunking Needs to be Adapted at Runtime
	6.7 Manual Granularity Control for OpenMP Compilers
	6.8 When Heartbeat Scheduling is Inefficient

	7 Related work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

	References

