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Predicting Leg Forces and
Knee Moments Using Inertial
Measurement Units:
An In Vitro Study
We compared the ability of seven machine learning algorithms to use wearable inertial
measurement unit (IMU) data to identify the severe knee loading cycles known to induce
microdamage associated with anterior cruciate ligament rupture. Sixteen cadaveric knee
specimens, dissected free of skin and muscle, were mounted in a rig simulating standardized
jump landings. One IMUwas located above and the other below the knee, the applied three-
dimensional action and reaction loads were measured via six-axis load cells, and the three-
dimensional knee kinematics were also recorded by a laboratory motion capture system.
Machine learning algorithmswere used to predict the kneemoments and the tibial and femur
vertical forces; 13 knees were utilized for training each model, while three were used for
testing its accuracy (i.e., normalized root-mean-square error) and reliability (Bland–Altman
limits of agreement). The results showed the models predicted force and kneemoment values
with acceptable levels of error and, although several models exhibited some form of bias,
acceptable reliability. Further research will be needed to determine whether these types of
models can be modified to attenuate the inevitable in vivo soft tissue motion artifact
associated with highly dynamic activities like jump landings. [DOI: 10.1115/1.4064145]

1 Introduction

In the U.S., approximately 100,000–200,000 anterior cruciate
ligament (ACL) ruptures are reported every year [1,2]. Several
studies have examined the mechanisms by which an ACL may be
injured, usually during sports like basketball, football, soccer, and
volleyball, including so-called “contact” (30% of all cases) and
“noncontact” (70% of all cases) injuries [3–6]. Noncontact injuries
involve no load transfer from another player but rather loads on the
knee generated by limbmuscles and passive structures as well as the
ground reaction force beneath the foot. Recent studies have
suggested that some noncontact ACL injuries may be due to
overuse of the ligament, whereby repetitive high-stress/strain-
inducing activities result inACL collagen unraveling andmultiscale
damage thereby weakening the ligament; without adequate built-in
rest periods for repair, ACL rupture can occur [7–10]. So, counting
the accumulated number of these potentially injurious loading
cycles over a given period could have considerable clinical import,
as we shall discuss later.
Older studies have reported the circumstances of noncontact ACL

injury. These include landing with an externally rotated knee in an
extended position (20 deg or less of flexion) in slight valgus, or with
a powerful quadriceps contraction; this can cause anterior displace-
ment of the tibia with respect to the femur via the patella-femoral
mechanism, thereby increasing the ACL strain above its tolerable
threshold [11,12]. Other studies suggest that landing a jump with a
fully extended knee in neutral, or internal rotation with valgus

orientation, can excessively strain the ligament [11], with ACL
stress being correlated with the magnitude of internal rotation and
valgus knee moments [13–16].
Traditionally, lower limb joint kinematics and kinetics are

measured in laboratory settings using camera-based motion capture
systems and force plates. However, such systems are large and
bulky, making them impractical for regular usage in the field. In
recent years the development of wearable sensors has emerged as an
alternative to camera-based motion capture systems, and they have
usefully been employed in various applications including gait
analysis and assistive rehabilitation [17–23]. Inertial measurement
unit (IMUs) are small, wearable sensors generally consist of
orthogonal accelerometers, rate gyroscopes, and magnetometers
allowing direct measurement of a body segment’s linear accel-
eration, angular velocity, and environmental magnetic field
strength. IMUs, of course, can be used as a system to capture
information about multiple body segments to provide information
about physiological angles of various joints. Studies have also
examined the correlation between linear acceleration and ground
reaction force (GRF), joint force, and moments in the lower limb
with varying degrees of agreement [24–29]. Various techniques
ranging from regression modeling to developing machine learning
algorithms have been applied [30]. To develop models that can be
used to track events on-field, one might focus on factors that can be
obtained from IMU data, and perhaps combine them with variables
measured before testing (i.e., weight, height, etc.). GRF and knee
moments are of interest because many actions that can cause
noncontact ACL injuries are those in which a change of direction or
sudden deceleration occurs thereby applying significant orthogonal
moments to the knee in the sagittal, coronal, and/or transverse
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planes; forces in such cases may be less important than certain
combinations of moments experienced by the knee [31–33].
The purpose of this study was to develop multivariate models

using data that are available from two wearable IMU sensors, one
located above and the other below the knee, in order to predict GRF
and knee moments in cadaveric specimens. The rationale for using
whole knees in vitro was twofold. First, this allows us to apply
loading cycles that are known to cause fatigue damage to the ACL to
examine how IMUs can be used to identify these potentially
injurious loading cycles. This method also allows us to focus on
developing models to estimate impulsive forces and moments using
IMUs under ideal conditions—without the inevitable soft tissue
movement artifact present in vivo. This advance, in turn, could
encourage athletes, coaches, and trainers tomake changes in athletic
training loads in order to permit adequate rest and recovery; they
could also adjust a training regimen to prevent an ACL rupture from
occurring due to possible overuse.

2 Methods

2.1 Specimens, Instrumentation, and Testing Procedures.
Sixteen cadaveric knee specimens were used to develop and test
each constructed multivariate model (Table 1). Each specimen was
cut to a standard length of 20 cm, dissected of tissue while leaving
the ligamentous capsule and key tendons intact, and then potted in
polymethylmethacrylate cylinders. Prepped specimens were
mounted in a custom-built and validated testing apparatus designed
to simulate a one-legged landing in the presence of simulated trans-
knee muscle forces (Fig. 1) [34,35]. Specimens were instrumented
with two wearable IMUs (APDM Opal, APDM Wearable
Technologies, Portland, OR), one rigidly attached to the medial
aspect of the midtibia and the other to the lateral aspect of the
midfemur using a combination of Coban

TM

and elastic ties. Two six-
axis load cells (MC3A-1000, AMTI, Watertown, MA) were used to
measure action and reaction forces andmoments applied to the knee.
ACertus optoelectronic tracking system (Optotrak Certus; Northern
Digital, Inc., Waterloo, ON, Canada), which served as the motion

capture system, was used to measure knee kinematics and to
determine the moment arms for individual knee specimens about
each orthogonal axis. For the flexion moment, the moment arm was
the distance from the lateral epicondyle to the tibial load cell; for the
abductionmoment it was the distance between themedial and lateral
epicondyles, while for the rotation moment it was directly measured
by the tibial load cell. All models that we developed were based on
the data of the certus/load cell system (CLS). TheCLS sampling rate
was 2 kHz while that of the IMUs was 200Hz.
After each specimen was positioned, the IMU sensors were

calibrated and initialized through the predefined calibration
conditions used by the MOVEO MOBILITY software developed by
APDM, after which, the sensors continuously recorded data until
testing concluded. The quadriceps, hamstring, and gastrocnemius
muscles were pretensioned to 180N, 70N, and 70N, respectively
(mimicking real-world values), the initial knee flexion angle
adjusted to 15 degrees, and the quadriceps tendon was clamped
securely in place with mechanical grips cooled by liquid nitrogen.
This last step was repeated every 25 cycles to prevent tendon
thawing and slippage from the clamp; it was only during these
instances that corrections of the knee angle and/or muscle tension
occurred.
Landing forcemagnitudewas fine-tuned by adjusting drop height/

weight to achieve the desired submaximal impulsive knee loading,
ranging from one to four body weights (1x–4xBW) applied to the
tibia. A combination of paired and single-knee specimens was used.
Paired knee specimens had one side (either left or right) tested under
lower BW conditions (1–2xBW) and the other at higher (3xþ BW),
whereas single knee specimens were all tested under high
submaximal loading conditions (3x–4x BW). Impacts were initiated
by releasing a weight, guided via two parallel linear bearings, to
impact the load cell at the distal end of the tibia (Fig. 1). Based on
previous studies, at least five preconditioning trials were conducted
before the activation of the tibial torsional device. This allowed for
any test rig adjustments and for potential uncrimping of ligament
collagen fibers [34,35].
After the preconditioning trials the tibial torsional device was

then activated allowing for some of the impact force to be converted

Table 1 Specimen demographics

Specimen ID Sex Age
Mass
(kg)

Total
testing trials

Trials
analyzed

Demographics of the specimens used in model training

P1 M 33 72.6 216 200
P2 M 25 68.9 118 200
P3a M 32 64.4 136 119
P4 M 19 71.7 226 200
P5 M 20 69.9 214 200
P6 M 25 80.3 221 100
S1 M 39 60.8 98 88
S2 M 37 77.1 110 100
S3 M 38 69.9 126 96
S4 M 33 80.3 120 100
S5 M 15 68.9 105 99
S6 F 25 86.2 105 100
S7 F 39 54.4 105 100

Demographics of the specimens used in model testing
T1 M 23 72.6 105 100
T2 M 23 72.6 108 100
T3 F 26 68.9 105 96

aSpecimen experienced a failure before the completion of 100-cycle testing
due to aTT> 3mm.
A total number of testing trials denotes how many trials the specimen was
able to undergo before failure or completion of 100-cycle testing occurred.
Trials analyzed are the number of trials where proper testing was performed;
these are the trials that were used in model development/testing. Specimens
denoted with “P” are paired specimen; total testing trials and trials analyzed
are the sum of the pair’s testing sessions.

Fig. 1 Schematic of the test-rig. IMU placement and digital
marker location labeled. Reproduced with permission from Ref.
[34].
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Table 2 Complete overview of the best-performing models for each of the seven metrics

Model Type Kernel function Layers (size) Basis function Activation
Machine learning models

Vertical tibial force GPR Isotropic rational quadratic – Constant –
Vertical femoral force Narrow neural network – 1 (10) – ReLU
Resultant tibia force GPR Isotropic exponential – Zero –
Resultant femoral force Bi-layered neural network – 2 (10) – ReLU
Flexion moment GPR Nonisotropic 3/2 matern – Zero –
Abduction moment GPR Nonisotropic rational quadratic – Constant –
Rotation moment SVM Gaussian – – –

GPRmodel type is a Gaussian process regression model, while SVM indicates a support vector machine learning algorithm. The activation type ReLU is the
rectified linear unit.

Fig. 2 Relationship between the predicted and measured value for each of the seven parameters
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to an internal tibial torque, as can happen in a live subject when the
GRF causes internal tibial rotation at the knee [34,35] (Fig. 1). Each
specimen was then subjected to up to 100 simulated landing trials or
until knee failure occurred, the latter clinically defined as anterior
tibial translation (aTT) exceeding 3mm. Peak impact force was
typically reached at around 70ms, so each trial recording consisted
of 200ms of data to ensure the peak was captured. It was assumed
that the maximum vertical force, as measured by the load cells, and
the maximum vertical linear acceleration, as measured by the tibial
IMUs, occurred synchronously. This assumptionwasmade based on
previous studies that showed a strong correlation between GRF and
linear acceleration [24]. Because both training and testing the
validity of ourmodels were needed, we separated our specimen pool
into a training set (used in the development of our model; N¼ 13)
and a testing set (used in the testing of model validity; N¼ 3).

2.2 Data Processing. Processing began with the removal of
trials in which muscle forces and/or drop height or weight needed
adjustment, where some component of the testing rig broke or
malfunctioned, orwhere the CLS showedmissingmarker data (either
“real” or “imaginary”). IMU data were then interpolated using the
spline algorithm to match the frame rate of the sensors to the CLS. A
fourth-order, zero-lag, low pass Butterworth filter was applied to the
data from both the tibial and femoral IMUs (linear acceleration and
angular velocity).Only the training setwas utilized indetermining the
optimal frequencies. Optimum cutoff frequency for the Butterworth
low-pass digital filter was obtained by applying Winter’s method as
used in previous work [36,37]. Average optimal cutoff frequencies
were determined as: 9Hz for the accelerometer (X¼ 9Hz; Y¼ 9Hz;
Z¼ 9Hz); 8Hz for the gyroscope (X¼ 8Hz; Y¼ 8Hz; Z¼ 8Hz) and
were the same for the tibial and femoral IMU.

Fig. 3 Bland–Altman plots for each of the parameters for which the residual difference between predicted and
measured is located on the y-axis and the measured value on the x-axis
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2.3 Model Development. We used the “regression learning”
app developed by MATLAB to apply several types ofmachine learning
algorithms to each metric (peak tibial or femoral forces; knee
moments). To address the potential of overfitting and bias, a five-
fold cross-validation was performed during each model’s con-
struction; this method is like the “leave-one-out” method but was
applied five times on smaller subsets of the training set. Various
adjustable modeling parameters (i.e., basis function, kernel
function, isotropic nature of kernel function, number of layers,
and activation function) for eachmodel were tuned to obtain models
with the lowest root-mean-square error (RMSE) values with respect
to the training set. Following that, a Bayesian optimization with an
“expected improvement per second” acquisition function was
applied for 30 iterations to tune numerical parameters (i.e., kernel
scale, sigma value, epsilon value, box constraint, and layer size).We
determined the best model based on two criteria: normalized root-
mean-square error (NRMSE) and Bland–Altman (BA) limits of
agreement (LoAs) for the testing set. NRMSEwas constructed as the
RMSE value between predicted and measured values over the
interquartile range of the measured value; these served as a measure
of a model’s accuracy as used elsewhere [27]. Based on the work of
others NRMSE was limited to 20%, so only models that exhibited
values at or below 20% were deemed accurate enough for further
consideration [27]. LoAs were the measure of a model’s reliability,
and while often established a priori based on clinical/researcher
specifications, in this study we utilized the 95% confidence interval
(CI) of the residuals. Hence the smaller the 95%CI, themore reliable
the model. The model with an acceptable level of accuracy and
smallest LoAs was then determined as the best-fitting model. To
further our analysis, BA plots were developed for descriptive
analysis purposes to illustrate trends or bias that may be present. We
recognize that our dependency onmachine learning algorithmsmay
preclude the development of a prediction equation (i.e., a simple
model with defined variables and coefficients) and result in the
“black-box” phenomenon. So, F-test graphs were used to determine
the strength of the correlation between the parameter and predicted
metric.
A confusion matrix was constructed to determine the specificity,

precision, recall, and accuracy in correctly classifying “potentially
injurious” from and “noninjurious” loading cycles. Two matrices
were developed to compare the measured values (true class) to the
predicted values (estimated class). The first compared events were
classified based on the vertical femoral force (low risk: <3x BW;
high risk: >3x BW). The second compared events were classified

based on the rotation moment (low risk: <45.5 N�m; high risk:
>45.5 N�m). These values were determined based on previous
studies examining noncontact ACL injuries [7,38].

3 Results

Application of the “regression learning” app to each of themetrics
generated a unique machine learning algorithm. These differed by:
type (Gaussian process regression (GPR), neural network, or
support vector machine (SVM)); basis function for GPR only
(zero, constant, or linear); kernel function for GPR or SVM (rational
quadratic, exponential; isotropic or nonisotropic); or number of
layers for neural network only (single layer, bilayer) (Table 2). A
GPRmodel had the lowest RSME for both the vertical and resultant
tibial force and flexion and abduction moment, though each had
different basis and kernel functions (Table 2). For the vertical tibial
force, a GPR with constant basis function and rational quadratic
kernel function was best, whereas a GPR with zero basis function
and exponential kernel function was best for resultant tibial force. A
GPR with a quadratic kernel and a constant basis function was also
best for abduction moment predictions, though here the kernel was
nonisotropic (i.e., not Euclidean distance dependent). The optimal
model to predict knee flexion moment was a GPR with a
nonisotropic 3/2 Mat�ern kernel function and zero-basis function.

Feed-forward neural networks were the best model type to predict
both the vertical and resultant femoral forces, though with differing
layer structures (Table 2). Vertical femoral force was best modeled
through a single hidden layer, narrow neural network. The resultant
femoral force was best modeled through a bilayer neural network
that uses two hidden layers instead of one. In both cases, layer size
was set to 10 nodes. Both neural networks’ activation function was a
rectified linear unit (ReLU). The rotationmomentwas best predicted
using an SVM algorithm, more specifically a nonlinear SVM
regression with a Gaussian kernel function (Table 2).

All forcemodels developed exhibited a very strong level of fit (R2

range: 0.95 to 0.98) and had NRMSEs below our pre-established
conditions, with the resultant femoral force model having the lowest
of these values (Table 2) (Fig. 2). There were no discernable trends
as force increased in magnitude, illustrating that at any given
measured value, a predicted value has consistent variability (Fig. 3).
The resultant force model tended to overestimate force; this was
evidenced by the upper bound condition being larger than the lower
bound (Fig. 3). Vertical force models showed near equal tendencies
for overestimations as underestimations. LoAs for the tibial models

Table 3 Results of model application for both training and testing sets across all seven metrics

Model RMSE R-squared MSE MAE
Training results (5-fold cross-validation)

Vertical tibial force 26.2 N 0.99 687 14.8 N
Vertical femoral force 102 N 0.97 10,505 70.9 N
Resultant tibial force 28.2 N 0.98 796 13.9 N
Resultant femoral force 80.4 N 0.98 6468 56.8 N
Flexion moment 1.51 N�m 0.99 2.28 0.85 N�m
Abduction moment 1.12 N�m 0.98 1.25 0.63 N�m
Rotational moment 1.48 N�m 0.97 2.12 0.84 N�m

Model RMSE R-squared MAE MAPE NRMSE LoA
Testing results

Vertical tibial force 37.9 N 0.97 29.4 N 4.42% 11.6% (–70.6, 77.7) N
Vertical femoral force 202 N 0.95 159 N 9.14% 12.4% (–413, 375) N
Resultant tibial force 49.6 N 0.97 40.4 N 5.34% 13.2% (–53.9, 109) N
Resultant femoral force 145 N 0.98 111 N 6.18% 8.93% (–171, 321) N
Flexion moment 1.99 N�m 0.97 1.55 N�m 3.97% 17.2% (–4.08, 3.69) N�m
Abduction moment 0.82 N�m 0.93 0.64 N�m 6.77% 19.9% (–1.41, 1.74) N�m
Rotation moment 2.62 N�m 0.95 2.07 N�m 5.42% 17.1% (–5.77, 3.61) N�m

Root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), mean absolute percent error (MAPE), normalized root-mean-square
error (NRMSE), and limits of agreement (LoA) are presented.
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fell within 615% while the femoral force models exceeded 20%
(Table 3).

Knee moment models all exhibited strong levels of fit (R2 range:
0.93 to 0.97), and had NRMSE values below our pre-established
condition, however, compared to the force models, the NRMSE
values of the knee moment models were larger (Fig. 2 and Table 2).
The BA plots showed varying degrees of bias and some trends. The
knee flexion moment model tended to slightly underestimate the
moment, and a linear slope was observed between the residuals and
measured flexion moment; lower measured values tended to be
overestimations, while higher values tended to be underestimations
(Fig. 3). The knee abductionmomentmodel had an overall tendency
to overestimate the value, however, there was no discernable trend
throughout the range of measured values; it should be noted
however, that as the magnitude of the knee moment increased,
variation also increased (Fig. 3). The knee transverse plane rotation
moment model tended to slightly underestimate predicted values,
and a negative linear relationship between the residual andmeasured
value was observed (Fig. 3). The LoAs for all the moment models
fell below 620% (Table 3).
Classification of events as either potentially injurious or non-

injurious was performed with a 99.7% accuracy for force
classification and a 99.3% accuracy for rotation moment classi-
fication (Fig. 4). In both cases, recall was 100%with no instances of
false negatives. Precision for force classification was 99.0% while
that of the rotation moment classification was 97.9%. Specificity for
the force classification was 99.5% and 99.0% when using the
rotation moment classification (Fig. 4).

4 Discussion: Parameter Significance and Model

Performance

In the introduction, we reviewed studies that utilized regression
modeling techniques to establish correlations between data obtained
from an IMU and metrics measured by a camera-based motion
capture system. In this study, however, our goal was to develop
models to predict those metrics. To that end, we used machine
learning and considered all parameters measured by an IMU as well
as mass to predict forces and knee moments during one-legged
landing. We recognize that the added complexity of machine
learning carries with it the benefits of increased accuracy at the cost
of computational speed and potential training set dependency but

given that our models are to be applied postcollection, computa-
tional speed is not a factor of concern. We applied our model to a
testing set to examine their performance, thereby addressing the
possibility of training set dependency. Finally, we examined
whether we could accurately classify loading cycles as potentially
injurious using information from a wearable sensor.
The vertical (x-axis) tibial linear acceleration was the largest

contributing feature for both the tibial and femoral force models
(Fig. 5). This was expected because of the relationship between
force and acceleration. In the vertical and resultant tibia force
models, other features that contributed included the flexion (z-axis)
angular velocity of the tibia, x-axis femoral linear acceleration, and
z-axis angular velocity of the femur. Z-axis angular velocity is
correlated to ground reaction force during landing—an increase in
angular velocity has been reported to decrease ground reaction force
[24,39]. As mentioned in the Results, the vertical models showed
near equal tendencies for overestimations as underestimations as
opposed to the resultant models which tended to overestimate the
predicted value. This may be due to the more complex nature of
resultant forces; while vertical force is uniaxial, resultant forces are
triaxial.
Several human subjects’ studies have predicted GRF from the

data obtained from an IMU using different techniques and sensors
[27,40,41].We used cadaveric specimens to rigidly fix the sensors to
the segments thereby minimizing any soft tissue artifacts that are
usually present when wearable sensors are fixed to human subjects.
Even with no soft tissue, the predicted values had some error,
indicating that this error may be caused by factors other than soft
tissue movement. Thiel et al. correlated IMU data (triaxial linear
acceleration) and stride count of the subject with force using
multivariable linear regression models [40]. In that study, 15
subjects ran five 50m sprints from a block start on an instrumented
running track [40]. They constructed models for each individual
subject, not a group, which may potentially limit the model’s
effectiveness for universal use on-field [40]. They reported
moderate correlations between predicted and measured GRF with
mean absolute percent error (MAPE) values ranging from 3.29% to
33.3% for each individual [40]. Although we measured tibia and
femur force, not ground reaction force, in our study all force-related
models had average MAPEs that were lower than these values. This
may be the result of using machine learning or the mitigation of soft
tissue artifact.

Fig. 4 Confusion matrices comparing the measured classification to the estimated one. The femoral
measured force (true class) is on the left and compared to the estimated femoral force (estimated class).
On the right is the measured rotation moment (true class) compared to estimated rotation moment
(estimated class). Column and row normalization of instances of correctly classified events are
presented either to the right (column) or bottom (row) of each matrix.
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A study conducted by Neugebauer et al. reported strong
correlations (similar to ours) in GRF (R2¼ 0.97) between predicted
andmeasured valueswhenapplyingmixed effectmodels to IMUdata
during gait [41].They reportedaMAPEof 5.261.6% [41].This study
produced more accurate results than previously reported, possibly
due to the added complexity ofmixed effectmodels over generalized
regression models. However, Neugebauer et al. only used linear
accelerometer data; this does not consider potential angular move-
ment contributions to forces. Angular rates were among the largest
contributing factors to our models.
Lee et al. used machine learning to develop algorithms that

predicted GRF as well as joint torques of the lower limbs, during
normal walking using only feedforward neural networks. It was not

clear whether other algorithms were considered [27]. In our study, a
wide variety of learning algorithms were applied as we assumed
different metrics may exhibit different relationships with the IMU
data. Lee et al. observed a very strong fit between predicted and
measured GRF (R2¼ 0.93), which is comparable to what we found
[27]. They also presented NRMSE values, normalized to the
amplitude of the output for each stance phase. In the case of average
GRF, a NRMSE of 6.70% was reported which is lower than any
NRMSE of our study [27]. Although, the lower value could be
attributable to differing normalization techniques or the lack
of an exclusive testing set, they used the leave-one-out method
[27]. Because we had a larger set of data, we used a k-fold cross-
validation [42].

Fig. 5 F-test graphs used in determining how well correlated a variable was to a prediction model. On the y-axis are the
differing featuresused in the constructionof themodelwhileon thex-axis are the importance scores. Largerscores indicate
moresignificant features.Features inorange indicate theassociatedp-valuewassufficientlysmall as tobeconsideredzero.
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The contributions of each IMU feature to prediction differed across
the moment models. Flexion moment showed the least clear divide
between those of more and those of lesser importance, however, the
top three features were the x-axis and z-axis tibial linear accelerations
and as well as the y-axis femoral linear acceleration (Fig. 5). This
shows a potentially more dependent nature of flexion moments on
tibial components. Abductionmoment showed a clear divide between
the upper six features and the lower seven, with z-axis and x-axis tibial
linear accelerations, x-axis angular velocity of both the tibia and the
femur, and the z-axis and y-axis femoral linear accelerations being
the largest contributing features (Fig. 5). Unlike most other models,
the abduction moment model was equally dependent on the data from
the femur IMU as the tibia IMU. The greatest divide between the
importance of the features was for the rotation moment model, where
y-axis angular velocity of the femur was the largest contributing
feature for prediction, having an F-score nearly twice that of the next
most contributing feature, mass (Fig. 5). This observation was
counterintuitive to what we initially theorized which was that the
x-axis angular velocities of both segments would be the greatest
contributing feature, however, both were ranked among the least
contributing. This may be due to anatomical constraints of the knee
that do not allow a significant amount of rotation.
As noted in the results, moment models exhibited larger NRMSE

than those of the force models; this may be due to a larger range in
force measurements, which in turn would mean an increased
interquartile range value and ultimately a lower NRMSE value.
Thus, whilemomentmodels all appear to have largeNRMSE, itmay
be simply due to the nature of moments having smaller observed
ranges. Of interest when discussing moments are the mean absolute
error (MAEs).Moment differences between predicted andmeasured
values less than 1 Nm may effectively be negligible for clinical
relevance. Studies conducted by Shin et al., Levine et al., and
Kiapour et al. have tested the strain response of the anterior cruciate
ligament to both abduction and rotational moments, and have
reported that knee abduction moments up to 51 N�m and internal
rotation moments up to 30 N�m during noninjurious landing
[16,43,44]. High-risk injurious moments can be up to three times
those [45,46]. Therefore, while abduction moments illustrated the
largest NRMSE, because the associatedMAEwas below 1N�m, this
may be clinically insignificant, as we would be able to differentiate
between noninjurious and potentially “at-risk” moments.
Numerous studies have used IMU data in the development of

predictionmodels for abduction and rotationmoments, with varying
success, though in most cases, low correlations were reported
[27,33,47]. Konrath et al. created regression models using IMU data
obtained from commonly performed rehabilitation activities for
abduction moments. Three participants were fitted with two placed
on the thigh and shank and asked to perform a stair ascent/descent as
well as a sit-to-stand action. Strong, to very strong correlations
between their predicted and measured values were reported which
were comparable to ours [47]. They also reported very low NRSME
values (NRMSE: SA: 0.01; SD: 0.014; StS: 0.006), though the direct
comparison between our NRMSE and theirs cannot be done due to
our differing normalization techniques [47]. Sit-to-stand is a slower
action that is not as dynamic as a jump landing and may have also
contributed to the low NRMSE values. Karatsidis et al. predicted
rotational moments during walking of the knee using a full body
internal motion capture (IMC) method [33]. Strong correlations
between their predicted and measured values were reported
(R¼ 0.82), which were slightly lower than that observed by our
study [33]. The IMC system is made up of many individual IMUs
and provides information on the kinematics of the entire body, rather
than the limited view of a two IMU system. However, use of an IMC
system on-field may not be practical in a real-world application.
Previous studies did not present a measure of reliability.

Measuring and reporting the accuracy of a model is important, but
arguably of equal importance is the model’s reliability of
measurement. Poor reliability would indicate predications are
random in nature; while some instances may be highly accurate,
others could be gross over/under estimations. Using an IMU to

estimate whether landing techniques could possibly be injurious
requires consistency.We also note that no study applied their model
to data outside of a training set. Error presented through training set
predictions will be smaller than the true error, and thus may be
misleading with respect to the generalizability of the model to new
points. Exclusive testing data to validate a model’s accuracy/
reliability is needed.
In recent years, IMUs have been used as tools in risk assessment

and event classification, though this has been mostly limited to
lifting tasks [48,49]. A study by Brandt et al. used a tri-axial
accelerometer and a linear discriminate analysis algorithm to
classify events as risky based on the Danish Working Environment
Authority guidelines and reported event classification accuracy
reaching 65.5% [49]. Donsis et al. also examined lifting tasks using
IMUs and theNIOSH (National Institute ofOccupational Safety and
Health) standard to distinguish between “at risk” and “no risk”
events [48]. They reported high accuracy (82.8%), sensitivity
(84.8%), and specificity (80.9%) [48]. We demonstrated a 99.7%
accuracy in classifying events as either potentially injurious or
noninjurious, which is comparable.

4.1 Limitations. There are several limitations in this study
including the use of cadaveric specimens. If the models developed
during this stage were directly applied to human subjects, there
would likely be errors between predicted andmeasured values due to
noise pollution produced by motion of the soft tissue. We also
acknowledge the potential over-tuning of our models to a specific
action. Due to the limitations of the rig, we were only able to
simulate a one-legged jump landing. Other actions, such as cutting
and sudden decelerations have also been linked to noncontact ACL
injuries [4]. More types of actions would be required to develop
models robust enough to predict kinematics under any on-field
condition. In addition, we acknowledge that risk assessment and
classification of an event as either potentially injurious or not is not
based on a single variable, but instead a combination of multiple
variables. While in this work we focused on correctly assessing the
risk based on force and rotational moments, we did so by treating
each variable separately. In reality, risk assessment could be based
on the combination of the force, rotational moment, abduction
moment, and the orientation of knee at the time of loading. Future
testing should focus on constructing a classification system that
incorporates all these variables when assessing risk.

5 Conclusion

For these in vitro studies, each model demonstrated an acceptable
level of accuracy with NRMSE values of less than 20% in a testing
set independent of the data used for training the model. While
several models exhibited some bias, most models exhibited LoAs
below20%.The femoral forcemodels exhibitedLoAs that exceeded
20%.Classification based on either force or rotationmoment yielded
high levels of accuracy, precision, specificity, and recall force
correctly classifying whether an event was potentially injurious if
repeated a sufficient number of times to cause ligament fatigue
failure. Future studies should examine whether such models can be
applied to in vivo movement data that will inevitably include
unavoidable soft tissue movement artifacts.
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